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Using the reduced form framework with inter-dependent default correla-
tion, we perform valuation of credit default swap with counterparty risk.
The inter-dependent default risk structure between the protection buyer,
protection seller and the reference entity in a credit default swap are char-
acterized by their correlated default intensities, where the default intensity
of one party increases when the default of another party occurs. We ex-
plore how settlement risk and replacement cost affect the swap rate in
credit default swaps.
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1 Introduction

According to the Credit Derivatives Report of British Bankers’ Association
(2002), nearly half of the market share of credit derivatives trading is cap-
tured by single-named credit swap contracts. A credit default swap (CDS)
is a contract agreement which allows the transfer of credit risk of a risky
asset/basket of risky assets from one party to the other. A financial institu-
tion may use a CDS to transfer credit risk of a risky asset while continues
to retain the legal ownership of the asset.3 The rapid growth of the credit

1The opinions expressed in this paper are exclusively the personal views of the author
and should not be cited as opinion and interpretation of HSBC, Hong Kong, China

2Author to whom any correspondence should be addressed. E-mail: maykwok@ust.hk
3Apart from hedging purpose, CDSs are recently often used by synthetic deal managers

to tailor credit risk and create arbitrage opportunity not available in the cash markets.
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default swap market has reached to the stage where credit default swaps on
reference entities are more actively traded than bonds issued by the reference
entities. The choice of credit sensitive instruments for empirical studies on
default risk has slowly moved from risky corporate bonds to credit default
swaps on the bonds (Longstaff et al . 2003; Ericsson et al ., 2004). Default
swap premia are believed to reflect changes in credit risk more accurately
and quickly than corporate bond yield spreads.

Assume that party A holds a corporate bond and faces the credit risk
arising from default of the bond issuer (reference party C). To seek protec-
tion against such default risk, party A enters a CDS contract in which he
agrees to make a stream of periodic premium payments, known as the swap
premium to party B (CDS protection seller). In exchange, party B promises
to compensate A (CDS protection buyer) for its loss in the event of default of
the bond (reference asset). A CDS involves three parties: protection buyer,
protection seller, and issuer of the reference bond. Unlike interest rate swaps
and currency swaps, where cash flows are exchanged between the two coun-
terparties periodically, the protection seller pays only when default of the
reference bond occurs.

As remarked by Jarrow and Yu (2001), “an investigation of counterparty
risk is incomplete without studying its impact on the pricing of credit deriva-
tives.” We would like to address the following queries in this paper. How does
the inter-dependent default risk structure between the protection seller and
the reference bond affect the swap rate? Should we go to a European bank or
a Korean bank as the protection seller for a Korean bond? Can the protec-
tion seller fulfill its obligation to make the compensation payment at the end
of the settlement period, given that its credit quality may have deteriorated
due to contagious effect arising from the default of the reference bond? What
would be the impact on the swap rate due to potential replacement cost of
entering a new CDS contract when the protection seller defaults prior to the
reference bond? To determine a fair swap rate of a CDS in the presence of
counterparty risks, the inter-dependent default risk structures between these
parties must be considered simultaneously.

For interest rate swaps, theoretical analyzes show that the difference in
swap rates between two counterparties of different credit ratings is much less
than the difference in their debt rates. For example, for a 5-year interest rate
swap between a given party paying LIBOR and another party paying a fixed
rate, Duffie and Huang (1996) find that the replacement of the given fixed-
rate counterparty with a lower quality counterparty whose bond yields are
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100 basis points higher would only increase the swap rate by roughly 1 basis
point. However, the very nature of contingent compensation payment upon
default in a CDS may lead to a higher counterparty risk exposure compared
to that of an interest rate swap. Our results show that CDS dealers should
not quote the same rates to all counterparties irrespective of their credit
ratings, like the usual practice in interest rate swaps market.

There have been numerous works on credit default swap valuation. Duffie
(1999) proposes a non-model based pricing approach where a credit default
swap is priced by reference to spreads over the riskfree rate of par floating
rate bonds of the same quality. He also discusses the estimation of the haz-
ard rate from defaultable bond prices. Based on the reduced form approach
with correlated market and credit risks, Jarrow and Yildirim (2002) obtain
closed form valuation formula for the swap rate of a CDS. In their model, the
default intensity is assumed to be “almost” linear in the short interest rate.
To examine the impact of counterparty risk on the pricing of a CDS, Jarrow
and Yu (2001) assume an inter-dependent default structure that avoids loop-
ing default and simplifies the payoff structure where the protection seller’s
compensation is made only at the maturity of the swap. They discover that
a CDS may be significantly overpriced if the default correlation between the
protection seller and reference entity is ignored. Hull and White (2001) apply
the credit index model for valuing CDS with counterparty risk. They argue
that if the default correlation between the protection seller and the reference
entity is positive, then the default of the counterparty will result in a positive
replacement cost for the protection buyer. Their results show that the CDS
swap rates increase with credit index correlation and the rates may differ by
more than 10% when the protection seller’s credit rating decreases from AAA
to BBB and the value of the credit index correlation is 0.6 or higher. Using
a structural default correlation model, Kim and Kim (2003) conclude that
the pricing error in a CDS can be quite substantial if the correlation between
the default risks of the counterparty and reference bond is ignored. Chen
and Filpovic (2003) develop a generalized affine model to price credit default
swaps under default correlations and counterparty risk. By the specification
analysis of the affine process, they manage to incorporate market-credit risk
correlation, joint credit migrations and firm specific default risk into their
pricing model. Yu (2004) uses the “total hazard” approach to construct the
default processes from independent and identically distributed exponential
random variables. He obtains an analytic expression of the joint distribution
of default times in his two-firm and three-firm contagion models. Under the
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framework of contagious defaults, the default risk is modeled by the reduced
form approach, where the probability of default is determined by an exoge-
nously specified instantaneous default intensity. The contagious defaults are
effected by inter-dependent default risk structure between the parties, where
the default intensity of one party increases when the default of another party
occurs.

In this paper, we would like to analyze the impact of correlated risks
between the three parties in a CDS using similar contagion models. Instead
of following Yu’s approach, we employ the change of measure introduced
by Collins-Dufresne et al . (2002) in our valuation procedures. Using this
change of measure, our counterparty risk model reduces to the standard
reduced form model. Specifically, the probability measure of firm i is defined
by its default intensity which is absolutely continuous with respect to the risk
neutral measure and zero probability is assigned to firm i if default occurs
before maturity. Compared to the total hazard construction (Yu, 2004), the
analytic derivation procedures using the change of measure approach become
less tedious. In his CDS pricing model, Yu (2004) places several assumptions
on the payment structures in order to simplify his calculations. Firstly, the
protection buyer is assumed to make continuous premium payment at the
swap rate till expiration, provided that the buyer does not default prior to
expiry. However, the swap payment terminates upon default of either one
of the three parties in market practice. Secondly, the protection seller is
assumed to make the contingent compensation payment on the expiration
date, provided that the protection seller survives beyond the expiration date
of the swap.

Distinctive from others’ work on CDS valuation with counterparty risk,
we consider the more realistic scenario in which the compensation payment
upon default of the reference party is made at the end of the settlement
period after default. If the protection seller defaults prior to the reference
entity, then the protection buyer renews the CDS with a new counterparty.
Supposing that the default risks of the protection seller and reference entity
are positively correlated, we would like to estimate the expected replacement
cost due to an increase in the swap rate in the new CDS. The change of
measure technique provides an effective tool for CDS valuation in our more
refined pricing model. Furthermore, we extend our counterparty risk frame-
work to the three-firm contagion model by including the possibility of default
of the protection buyer. This represents an extension from unilateral default
to bilateral defaults among the counterparties.
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The paper is organized as follows. In Section 2, we present the setup
of the two-firm contagion model. We employ the inter-dependent default
model to analyze the effects of settlement risk and replacement cost on the
fair swap rate of a CDS. In Section 3, the analysis of correlated default risks
in CDS valuation is extended to the three-firm model where all three parties
have inter-dependent default structure. The paper is ended with conclusive
remarks in the last section.

2 Two-firm Model

We consider an uncertain economy with a time horizon of T described by a
filtered probability space (Ω,F , {Ft}T

t=0, P ) satisfying F = FT , where P is
the risk-neutral (equivalent martingale) measure in the sense of Harrison and
Kreps (1979), that is, all security prices discounted by the risk-free interest
rate process rt are martingale under P . We use the Cox framework to specify
the random default times. We denote the default time of firm i by

τ i = inf

{
t :

∫ t

0

λi
s ds ≥ Ei

}
, (1a)

where {Ei}i∈I is a set of independent unit exponential random variables. We
further assume that τ i possesses a strictly positive Ft-predictable intensity
λi

t with right-continuous sample paths such that

M i
t = Nt −

∫ t∧τ i

0

λi
s ds (1b)

is a (P,Ft)-martingale. Under the above characterization, given the FX
t -

adapted intensity λi
t, the conditional survival probability of firm i is given

by

P [τ i > T |Ft] = E

[
exp

(
−

∫ T

t

λi
s ds

)∣∣∣Ft

]
. (2)

In this section, we perform credit default swap valuation using the two-
firm contagion model. The likelihood of default of the protection seller (firm
B) with random default time τB and the reference entity (firm C) with ran-
dom default time τC are modeled by their correlated default intensities while
the protection buyer (firm A) is assumed to be default-free. Under the CDS
contract, a periodic stream of swap premium payments will be paid to the
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protection seller until the occurrence of a contractually defined credit event
(either protection seller defaults or the reference entity defaults) or the expi-
ration of the contract, whichever comes earlier. If the reference entity defaults
prior to the expiration of the contract, then the protection buyer receives the
compensation from the protection seller on the settlement date (at the end
of the settlement period). The compensation is given by the difference be-
tween the face value and the recovery value of the reference entity, less the
swap premium that has accrued since the last payment date. The accrued
premium is calculated on a time-proportional basis. If the protection seller
defaults prior to the default of the reference entity, the contract terminates.
The protection buyer enters a new contract with another counterparty for
the remaining life of the original CDS.

To simplify our CDS valuation, we assume a flat term structure of riskless
interest rate r.4 In our two-firm contagion model, the inter-dependent default
risk structure between firm B and firm C is characterized by the correlated
default intensities:

λB
t = b0 + b21{τC≤t} (3a)

λC
t = c0 + c21{τB≤t}, (3b)

where the default intensity λB
t (λC

t ) jumps by the amount b2 (c2) when firm
C (B) defaults. The parameters b0, b2, c0 and c2 are assumed to be constant
and distinct. Without loss of generality, we take the notional to be $1 and
assume zero recovery upon default. Since it takes no cost to enter a CDS,
the value of the swap rate S2(T ) under this two-firm model is determined by

n∑

i=1

E
[
e−rTi S2(T ) 1{τB∧τC>Ti}

]
+ S2(T )A2(T )

= E
[
e−r(τC+δ)1{τC≤T}1{τB>τC+δ}

]
, (4)

where {T1, · · · , Tn} are the swap payment dates with 0 = T0 < T1 < · · · <
Tn = T and δ is the length of the settlement period. Here, τC + δ represents
the settlement date at the end of the settlement period. We assume that
the payment dates are uniformly distributed, that is, Ti+1 − Ti = ∆T for
1 ≤ i ≤ n − 1. The first term in Eq. (4) gives the present value of the sum

4Without loss of analytical tractability, our framework can be extended to stochastic
interest rate within the class of affine structure.
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of periodic swap payments (terminated when either B or C defaults or at
maturity) and S2(T )A2(T ) is the present value of the accrued swap premium
for the fraction of period between τC and the last payment date. The present
value of accrued swap premium is given by

S2(T )A2(T ) = S2(T )

n∑

i=1

E

[
e−rτC

(
τC − Ti−1

∆T

)
1{Ti−1<τC<Ti}1{τB>τC}

]
, (5)

where the accrued premium is paid at τC and
τC − Ti−1

∆T
represents the frac-

tion of the time interval between successive payment dates. To compute
S2(T ), we set the present value of protection buyer’s payment equal to the
present value of the compensation payment made at τC + δ, conditional on
default of C prior to T and no default of B prior to τC + δ. The buyer may
face potential replacement cost when τB < min(τC, T ). However, since S2(T )
represents the fair swap rate charged by the seller party B, the replacement
cost should not be included in the calculation of the swap premium.

Compared to other CDS valuation models in the literature, our pricing
framework models the payoff structures closer to reality, in particular, the
compensation is payable in the end of settlement period after C’s default,
and periodic discrete payments are made at T1, . . . , Tn.

2.1 Change of Measure

We adopt the change of measure introduced by Collins-Dufresne et al . (2002)
in our valuation procedure of the swap rate. Accordingly, we define a firm-
specific probability measure P i which puts zero probability on the paths
where default occurs prior to the maturity T . Specifically, the change of
measure is defined by

ZT ,
dP i

dP

∣∣∣∣∣
FT

= 1{τ i>T} exp

(∫ T

0

λi
s ds

)
, (6)

where P i is a firm-specific (firm i) probability measure which is absolutely
continuous with respect to P on the stochastic interval [0, τ i). One can show
that ZT is a uniformly integrable P -martingale with respect to FT and is
almost surely strictly positive on [0, τ i) and almost surely equal to zero on
[τ i,∞) [see Collins-Dufresne et al . (2004)]. To proceed the calculations under
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the measure P i, we enlarge the filtration to F i = (F i
t )t≥0 as the completion

of F = (Ft)t≥0 by the null sets of the probability measure P i.
Under the default risk structure specified in Eq. (3a,b), the survival prob-

abilities of firm B and firm C are defined recursively through each other and
this leads to the phenomenon of “looping default.” Under the new measure
P B defined by Eq. (6), λC

t = c0 for t < T , so this effectively neglect the
impact of firm B’s default on the intensity of firm C, so looping default no
longer exists. An analogous argument also holds under the measure P C.

Using the change of measure, the joint density of default times (τB, τC)
is found to be (see Appendix A)

f(t1, t2) =

{
c0(b0 + b2)e

−(b0+b2)t1−(c0−b2)t2, t2 ≤ t1,

b0(c0 + c2)e
−(c0+c2)t2−(b0−c2)t1, t2 > t1.

(7)

The marginal density of the default times τB and τC can be obtained by
integrating the joint density f(t1, t2). This gives

P [τB ∈ dt1]

dt1
=

(b0 + b2)c0

c0 − b2

[
e−(b0+b2)t1 − e−(b0+c0)t1

]
+ b0e

−(b0+c0)t1 (8a)

and

P [τC ∈ dt2]

dt2
=

(c0 + c2)b0

b0 − c2

[
e−(c0+c2)t2 − e−(b0+c0)t2

]
+ c0e

−(b0+c0)t2. (8b)

Consequently, the marginal survival probabilities are given by

P [τB > t1] =
c0e

−(b0+b2)t1 − b2e
−(b0+c0)t1

c0 − b2

, (9a)

and

P [τC > t2] =
b0e

−(c0+c2)t2 − c2e
−(b0+c0)t2

b0 − c2
. (9b)

2.2 Swap Premium in the Two-firm Model

Using the joint density f(t1, t2) given in Eq. (7) and performing the expec-
tation calculations in Eq. (4), one can show that the swap premium is given
by (see Appendix B)

S2(T ) =
c0e

−(b0+b2+r)δ(1 − e−βT )

β

[
e−β∆T (1 − e−βn∆T )

1 − e−β∆T
+ A2(T )

]−1

, (10)

8



where β = b0+c0+r and the expression for A2(T ) is given in Appendix B. It is
interesting to observe that S2(T ) is independent of c2, though the calculation
of S2(T ) involves E[e−rTi1{τB∧τC>Ti}]. A more careful consideration reveals
that an increase of the default intensity of C by c2 due to B’s default would
have impact only on the replacement cost. Since the calculation of S2(T )
does not include the effect of replacement cost, the independence of S2(T )
on c2 seems logically.

The impact of contagious default structure between the protection seller
B and the reference asset C on the swap premium is illustrated in Figure 1.
Consistent with our intuition, the swap premium decreases with b0 as the
protection buyer is willing to pay a lower premium when dealing with a more
risky protection seller. The swap premium becomes smaller as b2 assumes a
higher value because the default of C increases the default probability of B.
Similar to other credit risk factors, the swap premium is highly sensitive to
the underlying default risk of C proxied by c0.

From Eq. (10), one deduces that the swap premium is not quite sensitive
to the length of the protection period. This is consistent with the empirical
studies by Aunon-Nerin et al . (2002). They have tested several specifications
for the maturity effect, but none of them appear to be significant.

2.3 Settlement Risk and Replacement Cost

We now turn our attention to the settlement risk and replacement cost in a
CDS. Suppose a financial institution enters a CDS to protect its underlying
asset. But this does not mean that default risk can be fully hedged due to
the possibility of swap seller’s default occurred before the settlement date.
Observe that if firm B is default-free, the swap premium is then given by

n∑

i=1

E
[
e−rTiS̄2(T ) 1{τC>Ti}

]
+ S̄2(T )Ā2(T ) = E

[
e−r(τC+δ)1{τC≤T}

]
, (11)

where

Ā2(T ) =
n∑

i=1

E

[
e−rτC

(
τC − Ti−1

∆T

)
1{Ti−1<τC<Ti}

]
.

To examine the effect of settlement risk on the swap premium , we define the
swap premium spread V (T ) to be the difference of the swap premium with
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and without settlement risk, that is,

V (T ) = S̄2(T )− S2(T ). (12)

Intuitively speaking, it is not clear that whether V (T ) is strictly positive.
In a CDS, the protection buyer inevitably faces a trade-off between a higher
present value of compensation for its loss in the event of C’s default, that is,

E
[
e−r(τC+δ)1{τC≤T}

]
≥ E

[
e−r(τC+δ)1{τC≤T}1{τB>τC+δ}

]

and a higher present value of total swap payments due to an obligation to
make compensation to swap buyer upon the default of underlying asset, that
is,

E
[
e−rTi1{τC>Ti}

]
+ Ā2(T ) ≥ E

[
e−rTi1{τB∧τC>Ti}

]
+ A2(T ).

It is quite straightforward to derive S2(T ), which can be obtained by setting
b0 = b2 = 0 in S2(T ).

The change on settlement risk premium with respect to the settlement
period δ is illustrated in Figure 2. We observe that the settlement risk
premium increases as δ becomes larger, and its sensitivity is very significant.
Doubling the value of c0 from 0.1 to 0.2 leads to a significant increase of
60 basis points in the settlement risk premium. The effect of b0 and b2

have relatively less influence on the settlement risk premium. We find that
the default correlation between the protection seller and the reference asset,
proxied by b2, is slightly more important than the underlying risk of the
protection seller when settlement risk is analyzed. This suggests that the
protection buyer should be aware of the credit rating of its counterparty B,
its correlated default risk with the reference asset as well as the settlement
period in order to determine a fair swap premium.

From protection buyer’s perspective, it is uncertain to pay a stream of
fixed payments for credit protection throughout the whole period due to the
default of the protection seller. In the presence of counterparty risk, the credit
rating of the reference entity varies over time. This results a change in swap
premium when entering a CDS at a different time. Specifically, the protection
buyer can benefit or lose from a new contact, depending upon the credit
rating of the reference entity at the default time of the original protection
seller. In our model, the rating movement depends on the sign of b2 and c2.
We define the replacement cost as the excess premium required to enter a new
contract upon the default of the original protection seller. Mathematically,
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the default intensity of the reference entity becomes a constant after the
default of the protection seller, that is,

λC
t = c0 + c2. (13)

Assume that the effect of swap maturity is very insensitive to the premium
so that we can ignore this factor into consideration. Let S̃2 denote the price
of a CDS with the above default intensity. Conditional on the default of the
protection seller before maturity, the replacement cost is S̃2−S2. To magnify
the effect of counterparty risk on the replacement cost, assuming all other
factors being fixed, the expected replacement cost5 is given by

P [τB < T ](S̃2 − S2).

The relation between the default intensity parameters and swap premium,
settlement premium and expected replacement cost is illustrated in Table
1. The results illustrate the quantitative insight of how the inter-dependent
default structure affects swap premium as well as settlement risk and re-
placement cost. We observe that the expected replacement cost increases
with the level of counterparty risk, i.e, b2 and c2. Our finding indicates that
the effect of counterparty risk on the reference entity has a much stronger in-
fluence on the replacement cost than that on the protection seller. Also, the
swap settlement premium increases with b2. This means that the protection
buyer faces a higher settlement risk when the protection seller has a stronger
correlation with the reference entity.

3 Credit Default Swap with Defaultable Buyer

To study the effect of correlated default risk between all parties in a CDS on
the swap premium, we extend our counterparty risk model to the three-firm
model. The default risk structure is specified by the inter-dependent default

5Another possible way to compute the present value of replacement cost is to use the
LIBOR risky measure introduced by Schönbucher (2000). One can take the spot swap
rate S0 observed in the market and take the expectation e−rT E[(ST − S0)] where ST is
the forward swap rate.
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intensities

λA
t = a0 + a11{τB≤t} + a21{τC≤t}, (14a)

λB
t = b0 + b11{τA≤t} + b21{τC≤t}, (14b)

λC
t = c0 + c11{τA≤t} + c21{τB≤t}. (14c)

From this setting, it is evident that the default probability of each party
in the CDS depends on the default status of other firms. This model nests
a number of simpler models. For instance, it reduces to the two-firm model
in Section 2 if we take a0 = a1 = a2 = 0. If we take c1 = c2 = 0, the default
status of both counterparties in the CDS do not affect the credit rating of the
reference asset. One may provide the financial interpretation as follows: the
reference asset, say a risky bond, is issued by a large firm C whose default
has an economy-wide impact. A small firm A holds this bond and wants to
enter a CDS for the protection of the bond upon C’s default. Suppose that
A finds a swap seller, say B, in the same sector, so A and B have correlated
default risk.

3.1 Swap Premium in the Three-firm Model

We employ the three-firm model specified by Eqs.(6a,6b,6c) to price a CDS.
Under this framework, we study the effect of each party’s default on the swap
premium. Suppose that the protection buyer (firm A) holds a defaultable
asset issued by firm C, and enter a CDS contract from the protection seller
(firm B). Distinct from the two-firm model, the protection buyer is obligated
to pay the periodic swap premium until the expiration of the contract, or the
occurrence of the default either by the protection seller, the reference asset or
itself, whichever is earlier. As before, upon the default of the reference asset,
the protection buyer receives from the protection seller the difference between
the face value and the recovery value of the reference entity. Moreover,
if the protection buyer defaults prior to the default of the reference asset,
the protection seller can simply walk away from the contract and has no
obligation to pay the compensation to the protection seller.

In the presence of defaultable swap buyer, the swap premium is deter-
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mined by

n∑

i=1

E
[
e−rTiS3(T )1{τA∧τB∧τC>Ti}

]
+ S3(T )A3(T )

= E
[
e−r(τC+δ)1{τC≤T}1{τA>τC}1{τB>τC+δ}

]
. (15)

To determine the swap premium S3(T ), it requires the knowledge of the
joint density f(t1, t2, t3) of (τA, τB, τC). By following similar calculation pro-
cedures as those for the two-firm model, the joint density f(t1, t2, t3) is found
to be

f(t1, t2, t3) =





a0(b0 + b1)(c0 + c1 + c2)
×e−(a0−b1−c1)t1−(b0+b1−c2)t2−(c0+c1+c2)t3, t1 < t2 < t3,
a0(c0 + c1)(b0 + b1 + b2)
×e−(a0−b1−c1)t1−(c0+c1−b2)t3−(b0+b1+b2)t2, t1 < t3 < t2,
b0(a0 + a1)(c0 + c1 + c2)
×e−(b0−a1−c2)t2−(a0+a1−c1)t1−(c0+c1+c2)t3, t2 < t1 < t3,
c0(a0 + a2)(b0 + b1 + b2)
×e−(c0−a2−b2)t3−(a0+a2−b1)t1−(b0+b1+b2)t2, t3 < t1 < t2,
b0(c0 + c2)(a0 + a1 + a2)
×e−(b0−c2−a1)t2−(c0+c2−a2)t3−(a0+a1+a2)t1, t2 < t3 < t1,
c0(b0 + b2)(a0 + a1 + a2)
×e−(c0−b2−a2)t3−(b0+b2−a1)t2−(a0+a1+a2)t1, t3 < t2 < t1.

(16)
With the aid of f(t1, t2, t3), the swap premium S3(T ) is given by

S3(T ) = Lχ(T )

[
e−α∆T (1 − e−αn∆T )

1 − e−α∆T
+ A3(T )

]−1

e−rδ, (17)

where α = a0 + b0 + c0 + r, Lχ(T ) and A3(T ) are presented in Appendix D.
Note that when we set a0 = a1 = a2 = 0, S3(T ) reduces to the swap premium
S2(T ) in Eq. (10).

In Figures 3 and 4, we plot the swap premium against varying values of
default intensity parameters in the three-form model. Figure 3 illustrates
that the reference asset’s default risk proxied by c0 gives the most significant
impact on swap premium, and an increasing higher value of c0 gives rise to a
higher swap premium. On the other hand, the default risk of the protection
buyer has little impact on the swap premium, i.e., an increase in the likeli-
hood of default of the protection buyer (a higher value of a0) only increases
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the swap premium marginally. It is because when the financial health of the
protection seller affects the default status of the underlying asset, this con-
tagion effect makes the underlying asset more risky, in turn the protection
seller would take a higher swap premium. Unlike the effect of the protection
seller and the underlying asset, this effect is of third-order, so the impact is
much less significant.

The expression for the swap premium in Eq. (17) shows no dependence
on a1, c1, and c2. Financially speaking, prior to the default of the underlying
asset, the default event of the protection buyer or the protection seller will
terminate the contract. This explains why a1, c1 and c2 have no influence
on the swap premium. Though S3(T ) in Eq. (17) has dependence on a2,
one can show that the change of the swap premium is insensitive to a2, and
this can be explained by a similar argument. Figure 4 illustrates the change
of swap premium with respect to varying levels of the default risk of the
protection seller. The swap premium declines with the credit quality of the
protection seller proxied by b0. However, the degree of magnitude in the
change is relatively low compared with that of c0. In addition, a stronger
correlated default risk with other counterparties on the protection seller, a
lower swap premium the protection buyer is willing to pay, as seen by the
increases in b1 and b2 lead to lower swap premium, while the swap premium is
more sensitive to b2. The order of sensitivity to the protection seller is b2, b0

and b1. Similar to the two-firm model, the swap premium is also insensitive
to maturity.

4 Conclusion

In this paper, using both the two-firm and three-firm contagion risk models,
we provide the insight on how counterparty risks influence the swap rate in
a credit default swap. It may be possible for a financial institution to have
good estimates of marginal distributions (or default intensities), yet end up
with the wrong evaluation of its credit exposure. For example, firm A could
estimate a parametric model using the bond prices issued by firm B. However,
if the counterparty risk for firm B is incorrectly identified by another party
whose default is independent of firm C, this could severely overprice the swap
rate due to neglect of default correlation. Our findings can be summarized
as follows:

1. For CDS valuation, the swap premium can be significantly affected by
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counterparty risk. If the protection seller (firm B) has a higher correla-
tion with the reference asset (firm C), then the swap premium becomes
slightly lower. It is due to the fact that the swap buyer (firm A) is ex-
pected to pay a lower swap premium for less protection on its reference
asset. On the other hand, when C has a higher correlation with A and
B, the swap premium has no change at all. Though the occurrence of
default either of A or B (prior to the default of C) increases the default
probablility of C, the contract is then immediately terminated, so it
has no impact on the swap premium. The same reasoning can be used
to explain the insignificant change on the swap premium due to the im-
pact of A’s default on B. Due to the very nature of the CDS structure,
the impact of default either of B or C on A does not give any change
on the swap premium. Suppose B defaults prior to C, A can simply
walk away and enter a new contract for the remaining period. When
A survives longer than C during the life of the contract, A will receive
compensation from B, independent of whether A defaults or not before
the settlement date. In summary, the default risk of C is the primary
determinant of the swap premium, and a higher value of c0 leads to a
significant increase in swap premium. Both results agree with finan-
cial intuition. Furthermore, the swap premium increases with a0 and
declines with b0, but this effect is comparatively less pronounced.

2. The swap premium shows almost a flat term structure for all maturities.
This behavior is probably attributed to our CDS payment structure.
When B defaults prior to C’s default, the protection buyer can simply
walk away and enters a new contract for the remaining period. How-
ever, when the protection buyer defaults prior to C’s default, B has the
right to terminate the contract and has no obligation on the protec-
tion. This leads to the insensitivity of the swap premium with respect
to maturity.

3. The change of settlement risk premium with respect to the settlement
period is highly sensitive: a longer settlement period, a higher settle-
ment risk premium. This suggests that the protection buyer should
be aware of the credit rating of its counterparty B and the settlement
period in order to determine a fair swap premium.

Our work also provides the motivation for investigating other credit risk
issues. It is worth to study the effect of counterparty risk on other credit
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derivatives and structured products. Since the default intensity of one party
jumps until another party defaults, the contagion model is unable to capture
the intermediate change in credit rating of counterparties prior to credit
event. Unlike structural models, it is not appropriate to use our framework
to price structured credit products with strong dependence on the prior-to-
maturity change in credit rating. On the other hand, the contagion model
provides nice analytic tractability for multi-asset instruments while most
structural models have great difficulty to provide an extension to the inter-
dependent default structure for a basket of multiple assets.
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Appendix

A. Joint density of default times (τB, τC)

Let EC[·] denote the expectation taken under the measure P C . For
t1 < t2, the joint distribution of the pair of default times is found to be

P [τB > t1, τ
C > t2]

= E
[
1{τB>t1}1{τC>t2}

]

= EC

[
1{τB>t1} exp

(
−

∫ t2

0

(c0 + c21{τB≤s}) ds

)]

= e−c0t2EC
[
1{τB>t1} exp

(
−c2(t2 − τB)1{τB≤t2}

)]

= e−c0t2

[∫ t2

t1

b0e
−b0u−c2(t2−u) du +

∫ ∞

t2

b0e
−b0u du

]

= b0e
−(c0+c2)t2

[
e−(b0−c2)t1 − e−(b0−c2)t2

b0 − c2

]
+ e−(b0+c0)t2.

The fourth equality follows from the fact that λB
t = b0 for t ≤ t2 under P C .

By a similar argument, for t2 < t1, the joint distribution is given by

P [τB > t1, τ
C > t2] = c0e

−(b0+b2)t1

[
e−(c0−b2)t2 − e−(c0−b2)t1

c0 − b2

]
+ e−(b0+c0)t1.

The differentiation of P [τB > t1, τ
C > t2] with respect to t1 and t2 gives the

joint density of the default times in Eq. (7).

B. Swap premium S2(T ) of the two-firm model

Using the joint density f(t1, t2), we obtain

E

[
e−

∫ τC+δ
0 r ds1{τC≤T}1{τB>τC+δ}

]
=

c0e
−(b0+b2+r)δ[1 − e−(b0+c0+r)T ]

b0 + c0 + r
.

To evaluate E
[
e−rTi1{τB∧τC>Ti}

]
, we can take the advantage of the change

of measure to avoid tedious integration involving f(t1, t2). Specifically, we
have
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E
[
e−rTi1{τB∧τC>Ti}

]

= e−rTiE
[
1{τB>Ti}1{τC>Ti}

]

= e−rTiEC

[
1{τB>Ti} exp

(
−

∫ Ti

0

(c0 + c2)1{τB≤s} ds

)]

= e−(c0+r)TiEC
[
1{τB>Ti}

]

= e−(b0+c0+r)Ti.

By letting β = b0 + c0 + r and observing ∆T = Ti+1 − Ti for 1 ≤ i ≤ n − 1,
we obtain

n∑

i=1

e−(b0+c0+r)Ti =
e−β∆T (1 − e−βn∆T )

1 − e−β∆T
.

In Appendix D, we will derive A3(T ). Since A3(T ) is an extension of A2(T )
with the inclusion of the default possibility of the protection buyer, A3(T ) is
reduced to A2(T ) by taking a0 = 0. Combining all these results, we obtain
the swap premium S2(T ) in Eq. (10). As a result, we obtain

A2(T ) =
c0

∆T

[
1 − e−(b0+c0+r)T

(b0 + c0 + r)2
− Te−(b0+c0+r)T

b0 + c0 + r

]

− c0

b0 + c0 + r

N∑

i=1

Ti−1

[
e−(b0+c0+r)Ti−1 − e−(b0+c0+r)Ti

]
.

C. Joint density of default times (τA, τB, τC)

Suppose t1 < t2 < t3, we have

P [τA > t1, τ
B > t2, τ

C > t3]

= E
[
1{τA>t1}1{τB>t2}1{τC>t3}

]

= EC

[
1{τA>t1}1{τB>t2} exp

(
−

∫ t3

0

(c0 + c11{τA≤s} + c21{τB≤s}) ds

)]

= e−c0t3EC
[
1{τA>t1}1{τB>t2} e

−c1(t3−τA) 1{τA≤t3}
−c2(t3−τB) 1{τB≤t3}

]
.
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Note that

1{τA>t1}1{τB>t2}

= 1{t1<τA≤t2}1{t2<τB≤t3} + 1{t2<τA≤t3}1{t2<τB≤t3} + 1{τA>t3}1{t2<τB≤t3}

+1{t1<τA≤t2}1{τB>t3} + 1{t2<τA≤t3}1{τB>t3} + 1{τA>t3}1{τB>t3}.

Hence, we have

P [τA > t1, τ
B > t2, τ

C > t3]

= e−(c0+c1+c2)t3EC
[
1{t1<τA≤t2}1{t2<τB<t3}e

c1τA+c2τB
]

+ e−(c0+c1+c2)t3EC
[
1{t1<τA≤t2}1{τB>t3}e

c1τA
]

+ e−(c0+c1+c2)t3EC
[
1{t2<τA≤t3}1{t2<τB≤t3}e

c1τA+c2τB
]

+ e−(c0+c1+c2)t3EC
[
1{t2<τA≤t3}1{τB>t3}e

c1τA
]

+ e−(c0+c1+c2)t3EC
[
1{t2<τB≤t3}1{τA>t3}e

c2τB
]

+ e−(c0+c1+c2)t3EC
[
1{τA>t3}1{τB>t3}

]
.

Under the measure P C and for t < t3, the default intensities λA
t and λB

t are
given by

λA
t = a0 + a11{τB≤t}

λB
t = b0 + b11{τA≤t}.

Using the joint density of (τA, τB)

f(u1, u2) = a0(b0 + b1)e
−(b0+b1)u2−(a0−b1)u1 , u1 < u2,

one can compute EC
[
1{t1<τA≤t2}1{τB>t3}e

c1τA
]

and other similar terms.

Once we have obtained P [τA > t1, τ
B > t2, τ

C > t3], we differentiate the
distribution function with respect to t1, t2 and t3 to give the joint density
function

f(t1, t2, t3) = a0(b0 + b1)(c0 + c1 + c2) e−(a0−b1−c1)t1−(b0+b1−c2)t2−(c0+c1+c2)t3,

for t1 < t2 < t3.
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We can obtain f(t1, t2, t3) for other permutation in a similar manner and get
the results in Eq. (16).

D. Swap premium S3(T ) of the three-firm model

Using the joint density function f(t1, t2, t3) for t3 < t2 < t1 and t3 <
t1 < t2, we obtain

Lχ(T )

, E
[
e−r(τC+δ)1{τC≤T}1{τA>τC}1{τB>τC+δ}

]

=
c0(a0 + a2)e

−(b0+b1+b2+r)δ

(a0 + a2 − b1)(a0 + b0 + c0 + r)

[
1 − e−(a0+b0+c0+r)T

]

− c0(a0 + a2)(b0 + b1 + b2)e
−(a0+a2+b0+b2+r)δ

(a0 + a2 − b1)(a0 + b0 + c0 + r)(a0 + a2 + b0 + b2)

[
1 − e−(a0+b0+c0+r)T

]

+
c0(b0 + b2)(b0 + b1 + b2)e

−(a0+a2+b0+b2+r)δ

(a0 + b0 + c0 + r)(a0 + a2 + b0 + b2)

[
1 − e−(a0+b0+c0+r)T

]

where the vector of parameters χ = (a0, a2, b0, b1, b2, c0) captures the corre-
lated default “characteristic.” The expectation E

[
e−rTi1{τA∧τB∧τC>Ti}

]
can

be handled in a similar fashion as that in the two-firm model. The expecta-
tion calculations are given by

E
[
e−rTi1{τA∧τB∧τC>Ti}

]

= e−rTiEA

[
1{τB>Ti}1{τC>Ti} exp

(
−

∫ Ti

0

(a0 + a1)1{τB≤s} + a21{τC≤s} ds

)]

= e−(a0+r)TiEA
[
1{τB>Ti}1{τC>Ti}

]
.

For t ≤ Ti, the dynamics of the default intensities of firm B and firm C under
P A are

λB
t = b0 + b21{τC≤t}

λC
t = c0 + c21{τB≤t}.

Using the result in the two-firm model (see Appendix B), we have

EA
[
1{τB>Ti}1{τC>Ti}

]
= e−(b0+c0)Ti,
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and so
E

[
e−rTi1{τA∧τB∧τC>Ti}

]
= e−(a0+b0+c0+r)Ti.

This leads to

n∑

i=1

E
[
e−rTi1{τA∧τB∧τC>Ti}

]
=

e−α∆T (1 − e−αn∆T )

1 − e−α∆T
,

where α = a0 + b0 + c0 + r. It remains to evaluate A3(T ), which is defined by

A3(T ) =
n∑

i=1

E

[
e−rτC

(
τC − Ti−1

∆T

)
1{Ti−1<τC<Ti}1{τA∧τB>τC}

]
.

Using f(t1, t2, t3) for t3 < t2 < t1 and t3 < t1 < t2, and performing straight-
forward integration, we obtain

E
[
e−rτC

1{Ti−1<τC<Ti}1{τA∧τB>τC}

]

=
c0

a0 + b0 + c0 + r

[
e−(a0+b0+c0+r)Ti−1 − e−(a0+b0+c0+r)Ti

]
,

and

E
[
τCe−rτC

1{Ti−1<τC<Ti}1{τA∧τB>τC}

]

= c0

[
e−(a0+b0+c0+r)Ti−1 − e−(a0+b0+c0+r)Ti

(a0 + b0 + c0 + r)2

+
Ti−1e

−(a0+b0+c0+r)Ti−1 − Tie
−(a0+b0+c0+r)Ti

a0 + b0 + c0 + r

]

As a result, we obtain

A3(T ) =
c0

∆T

[
1 − e−(a0+b0+c0+r)T

(a0 + b0 + c0 + r)2
− Te−(a0+b0+c0+r)T

a0 + b0 + c0 + r

]
− c0

(a0 + b0 + c0 + r)∆T
n∑

i=1

Ti−1

[
e−(a0+b0+c0+r)Ti−1 − e−(a0+b0+c0+r)Ti

]
.
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(b0, c0)

(b2, c2) (0.05, 0.05) (0.1, 0.05) (0.05, 0.1)
1.21% 1.21% 2.44%

(0.05, 0.05) 0.02% 0.03% 0.05%
0.59% 0.85% 0.63%
1.20% 1.20% 2.41%

(0.1, 0.05) 0.04% 0.05% 0.08%
0.62% 0.89% 0.73%
1.22% 1.21% 2.44%

(0.05, 0.1) 0.02% 0.03% 0.05%
1.12% 1.67% 1.23%

Table 1: The entries illustrate the effect of the underlying default
risk (b0 and c0) and the counterparty risk (b2 and c2) on
the swap premium (first row), settlement premium (sec-
ond row) and replacement cost (third row). We take the
notional to be $1, risk-free interest rate r to be 5%, matu-
rity T of 10 years, and settlement period δ of 0.25 year.
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Fig. 1: Swap premium in a two-firm model The protection buyer
(firm A) is assumed to be default-free. The swap premium S2(T )
is plotted against various parameters in the contagion risk model,
illustrating the impact of the intrinsic and correlated risks of the
reference entity and protection seller on the swap premium. The
base parameter values are: r = 0.05, δ = 0.25, ∆T = 0.25, b0 =
0.15, b2 = 0.15, c0 = 0.1, c2 = 0.1, T = 10.
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Fig. 2: Change of settlement risk premium on δ. The base parameter
values are: r = 0.05, ∆T = 0.25, b0 = 0.15, b2 = 0.15, c0 =
0.1, c2 = 0.1.
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Fig. 3: Impact of risk of default of the protection buyer and the
reference entity on swap premium. The base parameter values
are: r = 0.05, δ = 0.25, ∆T = 0.25, T = 10, a0 = 0.1, a1 =
0.05, a2 = 0.05, b0 = 0.1, b1 = 0.05, b2 = 0.05, c0 = 0.1, c1 =
0.05, c2 = 0.05.
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Fig. 4: Impact of risk of default of the protection seller on swap
premium. The base parameter values are: r = 0.05, δ =
0.25, ∆T = 0.25, T = 10, a0 = 0.1, a1 = 0.05, a2 = 0.05, b0 =
0.1, b1 = 0.05, b2 = 0.05, c0 = 0.1, c1 = 0.05, c2 = 0.05.
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