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1 Introdcution

Copulas are tools for modelling dependence of several random variables. The term copula was
first used in the work of Sklar (1959) and is derived from the latin word copulare, to connect or
to join. The main purpose of copulas is to describe the interrelation of several random variables.

The outline of this chapter is as follows: as a starting point we explore a small example
trying to grasp an idea about the problem. The first section then gives precise definitions
and fundamental relationships as well as first examples. The second section explores the most
important examples of copulas. In the following section we describe measures of dependence
as correlation and tail dependence and show how they can be applied to copulas. The fourth
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1 Introdcution 2

section shows how to simulate random variables (rvs) from the presented copulas. The final
section resumes and gives a word of caution on the problems arising by the use of copulas.
Finally, Table 1 at the very end of this chapter shows all the introduced copulas and their
definitions.

The important issue of fitting copulas to data is examined in the next chapter of this book,
“The Estimation of Copulas: Theory and Practice”, by Charpentier, Fermanian and Scaillet.

Let us start with an explanatory example: Consider two real-valued random variables X1 and
X2 which shall give us two numbers out of {1, 2, . . . , 6}. These numbers are the outcome of
a more or less simple experiment or procedure. Assume that X1 is communicated to us and
we may enter a bet on X2. The question is, how much information can be gained from the
observation of X1, or formulated in a different way, what is the interrelation or dependence of
these two random variables (rvs).

The answer is easily found if the procedure is just that a dice is thrown twice and the outcome
of the first throw is X1 and the one of the second is X2. In this case the variables are independent:
the knowledge of X1 gives us no information about X2. The contrary example is when both
numbers are equal, such that with X1 we have full information on X2.

A quite different answer will be given if X1 is always the number of the smaller throw and X2

the larger one. Then we have a strict monotonic relation between these two, namely X1 ≤ X2.
In the case where X1 = 6 we also know X2. If X1 = 5, we would guess that X2 is either 5 or 6,
both with a chance of 50%, and so on.

For a deeper analysis we will need some tools which help us to describe the possible dependency
of these two rvs. Observe that each rv is fully described by its cumulative distribution function
(cdf) Fi(x) := P (Xi ≤ x) (the so-called marginals). In the case of throwing the dice twice we
would typically have F1 = F2 =: F . However, and this is important to note, the cdfs give us
no information about the joint behaviour. If we have independence as in the first example, the
joint distribution function is simply the product of the marginals,

P (X1 ≤ x1, X2 ≤ x2) = F (x1) · F (x2). (1)

Hence, to obtain a full description of X1 and X2 together we used two ingredients: the marginals
and the type of interrelation, in this case independence. The question is if this kind of separation
between marginals and dependence can also be realized in a more general framework. Luckily
the answer is yes, and the right concept for this is copulas.

To get a feeling about this, consider the third case in the above example, where X1 (X2) is
the minimum (maximum) of the thrown dice, respectively. It is not difficult to deduce the joint
distribution function,

P (X1 ≤ x1, X2 ≤ x2) = 2F (min{x1, x2})F (x2)− F (min{x1, x2})2.

Now, if the dice were numbered 11, 12, . . . , 16 instead of 1, 2, . . . , 6, the dependence structure
obviously wouldn’t change, but the joint distribution function would be totally different. This
is due to the different marginal distribution. We therefore aim at finding a way to somehow
disentangle marginal distribution and dependence structure. The goal is to transform the rvs
Xi into uniformly distributed rvs Ui. As will be shown in Proposition 2.2, a rv X with cdf F
can always be represented as X = F←(U), where F← denotes the generalized inverse of F as
defined below. Therefore the joint distribution function can be restated, using two independent
and standard uniformly distributed rvs U1 and U2, as

P
(
F←1 (U1) ≤ x1, F

←
2 (U2) ≤ x2

)
= P

(
U1 ≤ F1(x1), U2 ≤ F2(x2)

)
.
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For example, comparing the expression for the independent case (1) and the above representa-
tions of the joint distribution function we realize that the dependence structure itself – stripped
from the marginals – may be expressed2 setting ui = Fi(xi) = F (xi) via

C(u1, u2) = u1 · u2

and this function is a copula. This function describes the dependence structure separated from
the marginals. The intuition behind this is that the marginal distributions are transformed to
uniform ones which are used as the reference case. The copula then expresses the dependence
structure according to this reference case.

In the third example where we considered minimum and maximum, the two marginals are
F1(x) = 2F (x)−F (x)2 and F2(x) = F (x)2. With these results at hand one receives the following
copula that describes the dependence structure of the third example:

C(u1, u2) = 2 min{1−√1− u1,
√
u2}√u2 −min{1−√1− u1,

√
u2}2

2 Copulas: first definitions and examples

In this section, we give precise definitions and necessary fundamental relationships as well as
first examples. To this, we mainly follow McNeil, Frey, and Embrechts (2005). Proofs as well as
further details may be found therein. Starting point is the definition of a copula in d dimensions.
The copula in the explanatory example was simply the distribution function of rvs with uniform
marginals. It turns out that this concept is rich enough to be used for defining copulas.

Definition 2.1. A d-dimensional copula C : [0, 1]d :→ [0, 1] is a function which is a cumulative
distribution function with uniform marginals.

In the following the notation C(u) = C(u1, . . . , ud) will always be used for a copula. The
condition that C is a distribution function immediately leads to the following properties:

• As cdfs are always increasing, C(u1, . . . , ud) is increasing in each component ui.

• The marginal in component i is obtained by setting uj = 1 for all j 6= i and as it must be
uniformly distributed,

C(1, . . . , 1, ui, 1, . . . , 1) = ui.

• Clearly, for ai ≤ bi the probability P (U1 ∈ [a1, b1], . . . , Ud ∈ [ad, bd]) must be nonnegative,
which leads to the so-called rectangle inequality

2∑

i1=1

· · ·
2∑

id=1

(−1)i1+···+id C(u1,i1 , . . . , ud,id) ≥ 0,

where uj,1 = aj and uj,2 = bj .

On the other side, every function which satisfies these properties is a copula. Furthermore, if we
have a d-dimensional copula then C(1, u1, . . . , ud−1) is again a copula and so are all k-dimensional
marginals with 2 ≤ k < d. Hence, for many theoretical questions one may concentrate on two-
dimensional copulas.

2It may be noted, that for cdfs which are not continuous the copula is not unique, and therefore in this example,
also other copulas exist, which express the same dependence structure. We discuss this issue in more detail in
Sklar’s theorem below.
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As mentioned in the explanatory example, the main goal of copulas is to disentangle marginals
and dependence structure. The key to this is the following result on quantile transformations3.

For a distribution function F we define its generalized inverse by

F←(y) := inf{x : F (x) ≥ y}.
If a rv U is uniformly distributed on [0, 1], we write U ∼ U [0, 1]. Throughout we use ∼ as
notation for ”is distributed as”.

Proposition 2.2. If U ∼ U [0, 1] and F is a cumulative distribution function, then

P
(
F←(U) ≤ x) = F (x). (2)

On the contrary, if the real-valued rv Y has a distribution function F and F is continuous, then

F (Y ) ∼ U [0, 1]. (3)

The relation (2) is typically used for simulating random variables with arbitrary cdf from
uniformly distributed ones.

2.1 Sklar’s theorem

Given the above result on quantile transformations, it is not surprising that every distribution
function on Rd inherently embodies a copula function. On the other side, if we choose a copula
and some marginal distributions and entangle them in the right way, we will end up with a
proper multivariate distribution function. This is due to the following theorem.

Theorem 2.3. Sklar (1959) Consider a d-dimensional cdf F with marginals F1, . . . , Fd. There
exists a copula C, such that

F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
(4)

for all xi in [−∞,∞], i = 1, . . . , d. If Fi is continuous for all i = 1, . . . , d then C is unique;
otherwise C is uniquely determined only on RanF1 × · · · × RanFd, where RanFi denotes the
range of the cdf Fi. In the explanatory example with dice, the range was {1

6 ,
2
6 , . . . ,

6
6}, while for

a continuous rv this is always [0, 1].

On the other hand, consider a copula C and univariate cdfs F1, . . . , Fd. Then F as defined in
(4) is a multivariate cdf with marginals F1, . . . , Fd.

It is interesting to examine the consequences of representation (4) for the copula itself. Using
that Fi ◦ F←i (y) ≥ y, we obtain

C(u) = F
(
F←1 (u1), . . . , F←d (ud)

)
. (5)

While relation (4) usually is the starting point for simulations that are based on a given copula
and given marginals, relation (5) rather proves as a theoretical tool to obtain the copula from a
multivariate distribution function. This equation also allows to extract a copula directly from
a multivariate distribution function. So, if we refer in the sequel to a copula of rvs X1, . . . , Xd,
we actually refer to the copula given by (5).

It is an easy guess that for discrete distributions copulas are not as natural as they are for
continuous distributions. For example, in the explanatory example at the beginning, the copula
will be uniquely defined only on RanF1 × RanF2 = {1

6 , . . . ,
6
6}2. For the independent case this

was

C
( i

6
,
j

6

)
=
i

6
· j

6
, i, j = 1, . . . , 6

and any copula satisfying this constraint is a considerable choice, for example C(u, v) = u · v.
3See, for example McNeil, Frey, and Embrechts (2005), Proposition 5.2.
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2.2 Copula densities

According to its definition, a copula is a cumulative distribution function. It is quite typical
for these monotonically increasing functions, that albeit being theoretically very powerful their
graphs are hard to interpret. Because of this, typically plots of densities are used to illustrate
distributions, rather than plots of the cdf. Of course, not in all cases copulas do have densities
and we will see examples very soon. However, if the copula is sufficiently differentiable the
copula density can be computed:

c(u) :=
∂dC(u1, . . . , ud)
∂u1 · · · ∂ud .

In contrast to this, it may be the case that besides an absolutely continuous component (repre-
sented by the density) the copula also has a singular component. We will discuss this issue in
the section on Marshall-Olkin copulas.

If the copula is given in form (5) we obtain the copula density in terms of the joint density
together with marginal cdfs as well as marginal densities. Note that as it is necessary that the
cdf is differentiable, we have F←i = F−1

i . Denoting the joint density by f and the marginal
densities by fi, i = 1, . . . , d, it follows by the chain rule that

c(u) =
f
(
F−1

1 (u1), . . . , F−1
d (ud)

)

f1(F−1
1 (u1)) · · · fd(F−1

d (ud))
.

In the following we will typically plot copula densities to illustrate the copulas under consider-
ation, see for example Figures 2 and 3. However, also a realised sample is shown in Figure 4 on
the right.

2.3 Conditional distributions

As pointed out in the introductory example, dependency is an important concept inferring
outcomes from a rv based on the knowledge of a related factor. For an illustration, consider
two uniform rvs U1 and U2 with known copula C and U1 is observed. The goal is to deduce
the conditional distribution which can then be used for predicting or estimating U2. Assuming
sufficient regularity, we obtain for the conditional cdf

P (U2 ≤ u2|U1 = u1) = lim
δ→0

P (U2 ≤ u2, U1 ∈ (u1 − δ, u1 + δ])
P (U1 ∈ (u1 − δ, u1 + δ])

= lim
δ→0

C(u1 + δ, u2)− C(u1 − δ, u2)
2δ

=
∂

∂u1
C(u1, u2).

Hence, the conditional cdf may be derived directly from the copula itself. The conditional
density function is obtained by deriving once more with respect to u2. In most cases, the best
estimator of U2 will be the conditional expectation which of course is directly obtained from the
conditional density function.

2.4 Bounds of copulas

It was Hoeffding’s idea (already in the 1940’s) to study multivariate distributions under “arbi-
trary changes of scale”, and although he did not introduce copulas directly, his works contribute
a lot of interesting results, see for example Fisher (1995). In this spirit is the following result:



2 Copulas: first definitions and examples 6
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Figure 1: According to the Fréchet-Hoeffding bounds every copula has to lie inside of the pyramid
shown in the graph. The surface given by the bottom and back side of the pyramid (the lower
bound) is the countermonotonicity-copula C(u, v) = max{u+ v − 1, 0}, while the front side is
the upper bound, C(u, v) = min(u, v).

Proposition 2.4. Consider the rvs X1, . . . , Xd whose dependence structure is given by a copula
C. Let Ti : R → R, i = 1, . . . , d be strictly increasing functions. Then the dependence structure
of the random variables

T1(X1), . . . , Td(Xd)

is also given by the copula C.

Basically, this means that strictly increasing transformations do not change the dependence
structure. On first sight, this seems to be counterintuitive. Of course, monotone transformations
do change the dependence. Just after removing the effect of the marginals we end up with the
same dependence structure, i.e. copula. Consider for example two normally distributed random
variables X1 and X2 and let the covariance be the measure of dependence we look at. For c > 0,
we could look at X1 and cX1 and obtain the covariance cCov(X1, X2), thus the covariance has
changed under this transformation. However, the correlation stayed the same, and similarly the
copula did not change. We will discuss the importance of correlation for elliptical distributions
in the section “measures of dependence”.

Hoeffding and Fréchet independently derived that a copula always lies in between certain
bounds. The reason for this is the existence of some extreme cases of dependency. To get some
insight, consider two uniform rvs U1 and U2. Certainly, if U1 = U2 these two variables are
extremely dependent on each other. In this case, the copula is given by

C(u1, u2) = P (U1 ≤ u1, U1 ≤ u2) = min(u1, u2). (6)

In terms of rvs, this copula is always attained if X2 = T (X1), where T is a monotonic transfor-
mation. Rvs of this kind are called comonotonic.

Certainly, independence is quite contrary to this, and for two independent rvs the copula
equals C(u1, u2) = u1 · u2. However, independence just serves as an intermediate step on the
way to the contrary extreme of comonotonicity, namely the case of countermonotonic rvs. In
terms of uniform rvs this case is obtained for U2 = 1 − U1. The related copula equals for
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1− u2 < u1

C(u1, u2) = P (U1 ≤ u1, 1− U1 ≤ u2) (7)
= P (U1 ≤ u1, 1− u2 ≤ U1) = u1 + u2 − 1 (8)

and zero otherwise. Compare also Fig. 1 for a graph of the two copulas (6) and (8).

These considerations can be extended to the multidimensional case. However, whereas a
comonotonic copula exists in any dimension d, there is no countermonotonicity copula in the
case of dimensions greater than two4. To explain this, consider rvs X1, X2, X3. We are free to
choose X1 and X2 countermonotonic as well as X1 and X3. However, this already gives some
restriction on the relation between X2 and X3. In particular, if X1 decreases, both X2 and
X3 have to increase, so they can not be countermonotonic again. On the other hand, even if a
countermonotonic copula does not exist, the bound still holds.

Theorem 2.5. (Fréchet-Hoeffding bounds) Consider a copula C(u) = C(u1, . . . , ud). Then

max
{ d∑

i=1

ui + 1− d, 0
}
≤ C(u) ≤ min{u1, . . . , ud}.

3 Important copulas

It is time to give the most important examples of explicit copulas. Some of them have already
been mentioned, or were implicitly given in the examples.

3.1 Perfect dependence and independence

First of all, the independence copula

Π(u) =
d∏

i=1

ui

relates to the case of no dependence. As a direct consequence of Sklar’s theorem we obtain that
rvs are independent if and only if their copula is the independence copula. The related copula
density is simply constant.

As already mentioned, the Fréchet-Hoeffding bounds are also related to copulas, where the
comonotononicity copula or the Fréchet-Hoeffding upper bound is given by

M(u) = min{u1, . . . , ud}.

Comonotonicity refers to the following case of perfect positive dependence. Consider strictly in-
creasing transformations T2, . . . , Td and and set Xi = Ti(X1) for i = 2, . . . , d. Using Proposition
2.4 we see that these random variables indeed have the comonotonicity copula.

The other extreme is given by countermonotonicity and as already mentioned, the related
bound is only attained in the two-dimensional case. The countermonotonicity copula or Fréchet-
Hoeffding lower bound reads

W (u1, u2) = max{u1 + u2 − 1, 0}.

4See McNeil, Frey, and Embrechts (2005), Example 5.21, for a counter-example.
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This case refers to perfect negative dependence in the sense that X2 = T (X1) with a strictly
decreasing function T .

These two copulas do not have copula densities as they both admit a kink and therefore are
not differentiable. It may be recalled, that conditionally on U1, U2 is perfectly determined, for
example U2 = U1 in the comonotonicity case. Hence the distribution has mass only on the
diagonal u1 = u2 and this is the reason why this copula can not be described by a density.
Similar, in the countermonotonicity case there is mass only on {u1 = 1− u2}.

3.2 Copulas derived from distributions

Quite exchangeably we used the expression copula from rvs X1, . . . , Xn and copula according to
its precise definition. This suggests that typical multivariate distributions describe important
dependence structures. The copulas derived therefrom shall be introduced in this section. The
multivariate normal distribution will lead to the Gaussian copula while the multivariate Student
t-distribution leads to the t-copula.

First, consider two normally distributed rvs X1 and X2 which are also jointly normal. It is
well known that their correlation

Corr(X1, X2) :=
Cov(X1, X2)√

Var(X1) ·Var(X2)
(9)

fully describes the dependence structure. This remains true in the whole family of elliptical
distributions5, while it is totally wrong outside this family. Unfortunately, this is a typical pitfall
which frequently occurs when measuring correlation and deducing results from the dependence
structure outside this family (see, for example, Embrechts et al. (2002)). We will clarify this in
the following section, when we explore different measures of dependence.

Following relation (5), we obtain the two-dimensional Gaussian copula

C Ga
ρ (u1, u2) = ΦΣ

(
Φ−1(u1),Φ−1(u2)

)
,

where Σ is the 2 × 2 matrix with 1 on the diagonal and ρ otherwise, explicitly stated in (10)
below. Φ denotes the cdf of a standard normal distribution while ΦΣ is the cdf for a bivariate
normal distribution with zero mean and covariance matrix Σ. Note that this representation is
equivalent to

Φ−1(u1)∫

−∞

Φ−1(u2)∫

−∞

1

2π
√

1− ρ2
exp

(
− s2

1 − 2ρs1s2 + s2
2

2(1− ρ2)

)
ds1 ds2.

For normal and elliptical distributions independence is equivalent to zero correlation. Hence
for ρ = 0, the Gaussian copula equals the independence copula. On the other side, if ρ = 1
we obtain the comonotonicity copula, while for ρ = −1 the countermonotonicity copula is
obtained. The intuition of positive or negative dependence recurs in the form of positive/negative
linear dependence in this example. Thus the Gaussian copula interpolates between these three
fundamental dependency structures via one simple parameter, the correlation ρ. A copula with
this feature is named comprehensive.

Note that the covariance matrix Σ, used in the above example, is not arbitrary. In fact it
is a correlation matrix, which is obtained from an arbitrary covariance matrix by scaling each
component to variance 1, which we illustrate in the following example. According to Proposition
2.4 this does not change the copula.

5Elliptical distributions are considered in more detail in the section on “measures of dependence”.
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Figure 2: The copula densities of a Gaussian copula (left) and a Student t-copula (right). Both
copulas have correlation coefficient ρ = 0.3 and the t-copula has 2 degrees of freedom.

Example 3.1. The covariance matrix

Σ̃ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

leads to the correlation matrix Σ, already mentioned above,

Σ =
(

1 ρ
ρ 1

)
. (10)

In the multivariate case the Gaussian copula for a correlation matrix Σ is given by

C Ga
Σ (u) = ΦΣ(Φ−1(u1), . . . ,Φ−1(ud)).

A plot of the bivariate Gaussian copula density with correlation 0.3 is given in the left part of
Figure 2.

In statistics, the Student t-distribution arises in the context of tests on the mean of normally
distributed random variables when the variance is not known but has to be estimated. Quite
natural, the t-distribution is a so-called mixture of a normal distribution. A mixture occurs if a
parameter of the main distribution is itself random. A rv η from a t-distribution with ν degrees
of freedom can always be represented as

η =
X1√
ξ/ν

=
√
ν ·X1√

Y 2
1 + · · ·+ Y 2

ν

,

where X1 as well as Y = Y1, . . . , Yν are standard normal, while ξ has a χ2
ν-distribution, X1 and

Y being independent. The χ2 distribution stems from sums of squared normal rvs, which was
used for the second equality.

The multivariate t-distribution in d dimensions with ν degrees of freedom is obtained from
X = X1, . . . , Xd ∼ N (0,Σ) via

(η1, . . . , ηd) =
( X1√

ξ/ν
, . . . ,

Xd√
ξ/ν

)
, (11)

where ξ is again χ2
ν , independent from X. If d = 2 and if the correlation of X1 and X2 is 1 (or

−1) we again have comonotonicity (countermonotonicity, resp.) while it is important to notice
that for ρ = 0 we do not have independence, as some dependence is introduced via ξ.
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Formally stated the t-copula or the Student copula is given by

C t
ν,Σ(u) = tν,Σ(t−1

ν (u1), . . . , t−1
ν (ud)), (12)

where Σ is a correlation matrix, tν is the cdf of the one dimensional tν distribution and tν,Σ
is the cdf of the multivariate tν,Σ distribution. The correlation matrix is obtained from an
arbitrary covariance matrix by scaling each component to variance 1, compare Example 3.1.
In the bivariate case one uses the simpler notation Ctν,ρ referring directly to the correlation
analogously to the Gaussian copula.

The bivariate t-copula density for 2 degrees of freedom and correlation 0.3 is plotted in the
right part of Figure 2. Observe that the behaviour at the four corners is different from the
Gaussian copula while in the center they are quite similar. This means, although having the
same correlation, the extreme cases (which correspond to the four corner points) are much more
pronounced under the t-copula. Particularly in applications in finance, where the rvs under
consideration describe losses of a portfolio, values in the (0, 0) corner correspond to big losses
in both entities of the portfolio. The fact that the t-copula is able to model such extreme cases
is due to the tail-dependence which we will examine more closely soon.

Furthermore, the t-copula also shows peaks at the (0, 1) and (1, 0) corners which stem from
its mixing nature. Suppose that the mixing variable ξ has a low value. Then the peaks in
theses respective corners stem from a positive value in X1 and a negative one in X2. For the
independent case, this is as likely as two values with the same sign, so in this case the density
rises up at all four corners symmetrically. However, introducing some correlation changes this
probability. In Figure 2 the correlation was 0.3, so it is more likely to have values with the same
sign, which is perfectly in line with the observation that their peaks are less pronounced as the
peaks at (0, 0) and (1, 1).

3.3 Copulas given explicitly

In contrast to the copulas derived from multivariate distributions, there are a number of copulas
which can be stated directly and have a quite simple form. They typically fall in the class
of Archimedean copulas, and we give a short introduction to Archimedean copulas in the bi-
variate case. It is also possible to define Archimedean copulas in the multivariate case and we
refer to McNeil, Frey, and Embrechts (2005), Section 5.4.2 for this issue. Further examples of
Archimedean copulas may be found in Nelsen (1999), in particular on may consider Table 4.1
therein.

After this we shortly discuss the bivariate Marshall-Olkin copula. For the multivariate exten-
sion we refer to Embrechts, Lindskog, and McNeil (2003).

3.3.1 Archimedean copulas

The bivariate Gumbel copula or Gumbel-Hougaard copula is given in the following form:

C Gu
θ (u1, u2) = exp

[
− ((− lnu1)θ + (− lnu2)θ

) 1
θ

]
,

where θ ∈ [1,∞). For θ = 1 we discover the independence copula, while for the θ → ∞ the
Gumbel copula tends to the comonotonicity copula so that the Gumbel copula interpolates be-
tween independence and perfect positive dependence. The Gumbel copula comes as an example
of a simple copula which has tail dependence in one corner which we explore in more detail in
the following section.
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A second example is the Clayton copula, given by

C Cl
θ (u1, u2) =

(
max{u−θ1 + u−θ2 − 1, 0}

)− 1
θ
,

where θ ∈ [−1,∞)\{0}. For the limits θ → 0 we obtain the independence copula, while for θ →
∞ the Clayton copula arrives at the comonotonicity copula. For θ = −1 we obtain the Fréchet-
Hoeffding lower bound. Thus, as the Gumbel copula, the Clayton copula interpolates between
certain dependency structures, namely countermonotonicity, independence and comonotonicity.
Both these copulas belong to the family of Archimedean copulas, which we will introduce now.

The above examples suggest that it might be possible to generate quite a number of copulas
from interpolating between certain copulas in a clever way. Indeed, the family of Archimedean
copulas is a useful tool to generate copulas.

Revisiting the two examples above more closely, one realizes that the copula itself was always
of the form

C(u1, u2) = φ−1
(
φ(u1) + φ(u2)

)
,

where φ was a decreasing function mapping [0, 1] into [0,∞]. Indeed, with

φGu(u) = (− lnu)θ,

φCl(u) =
1
θ

(u−θ − 1)

we obtain the Gumbel and the Clayton copula, respectively6. The function φ is called the
generator of the copula.

Theorem 3.2. Consider a continuous and strictly decreasing function φ : [0, 1] :→ [0,∞] with
φ(1) = 0. Then

C(u1, u2) =

{
φ−1(φ(u1) + φ(u2)) if φ(u1) + φ(u2) ≤ φ(0),
0 otherwise

is a copula, if and only if φ is convex.

A proof can be found in Nelsen (1999), p. 111.

If φ(0) = ∞ the generator is said to be strict and C(u1, u2) = φ−1(φ(u1) + φ(u2)). For
example, the generator of the Clayton copula is strict only if θ > 0. For θ > 0 we obtain the
representation

(
u−θ1 + u−θ2 − 1

)− 1
θ .

Using this approach, one is able to generate quite a number of copulas. For example, the
generator ln(e−θ − 1)− ln(e−θu − 1) leads to the Frank copula given by

C Fr
θ (u1, u2) = −1

θ
ln
(

1 +
(e−θu1 − 1) · (e−θu2 − 1)

e−θ − 1

)
,

for θ ∈ R \ {0}. Another example is the generalized Clayton copula obtained from the generator
θ−δ(u−θ − 1)δ:

C Cl
θ,δ(u1, u2) =

(
[(u−θ1 − 1)δ + (u−θ2 − 1)δ]

1
δ + 1

)− 1
θ
,

6Note, that for generating the Clayton copula it would be sufficient to use (u−θ − 1) instead of 1
θ
(u−θ − 1) as

generator. However, for negative θ this function is increasing, and Theorem 1.7 would not apply.
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Figure 3: Densities of the Gumbel (upper left, θ = 2), Clayton (upper right, θ = 2), Frank (lower
left, θ = 2) and generalized Clayton (lower right, θ = δ = 2) copulas. Note that all copulas
except for the Frank copula have been cut at a level of 7.

with θ > 0 and δ ≥ 1. Note that for δ = 1 the standard Clayton copula is attained. Furthermore,
it is not possible to generalize this copula to higher dimensions in this case.

To illustrate the differences of the presented copulas, we show their densities in Figure 3. It
may be spotted at first sight, that the presented copulas have different behaviour at the left lower
and right upper (the points (0, 0) and (1, 1), respectively) corners. In a qualitative manner, the
Gumbel copula shows an extremely uprising peak at (1, 1) while a less pronounced behaviour at
(0, 0). As we will see later, a mathematical analysis of the so-called tail behaviour reflects this
precisely by saying that the Gumbel copula has upper tail dependence. For the Clayton copula
the situation is reverse, while for the Frank copula no tail dependence will show up. It may
be glimpsed that the standard Clayton copula differs quite dramatically from the generalized
one in the behaviour at the corners. The reason for this is that the generalized Clayton copula
shows tail behaviour at both corners in contrast to the standard one. We will discuss this later.

An additional observation is that the t-copula is the only one which shows peaks (small ones,
though) at the (0, 1) and (1, 0) corners (see the right part of Figure 2). As was already mentioned,
this is due to the mixing nature of the t-distribution.

3.3.2 Marshall-Olkin copulas

As a final example of copulas we discuss the Marshall-Olkin copulas. For a motivation, consider
two components which are subject to certain shocks which lead to failure of either one of them
or both components. The shocks occur at times assumed to be independent and exponentially
distributed with parameters λ1, λ2 and λ12, respectively. Here the subindex 1 or 2 refers to the
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Figure 4: The Marshall-Olkin copula. Left: Continous part of the density, cut at 5. Right:
Simulation of 2000 rvs with a Marshall-Olkin copula. The parameters are α1 = 0.25 and
α2 = 0.75 or λ1 = 1.1, λ2 = 0.2 and λ12 = 0.6, respectively.

shock effecting a single component only, while the shock affecting both entities is referenced by
the subindex 12. Denote the realized shock times by Z1, Z2 and Z12. Then we obtain for the
probability that the components live longer than x1 and x2, respectively,

P (Z1 > x1)P (Z2 > x2)P (Z12 > max{x1, x2}).

The related copula can be computed with small effort and equals

Cα1,α2(u1, u2) = min{u2 · u1−α1
1 , u1 · u1−α2

2 }, (13)

where we set αi = λ12/(λi + λ12), i = 1, 2.

A copula of the form (13) with αi ∈ [0, 1] is called bivariate Marshall-Olkin copula or general-
ized Cuadras-Augé copula. In contrast to the copulas presented up to now, this copula has both
an absolutely continuous and a singular component. For the absolutely continuous component
we can compute the density and obtain

∂2

∂u1∂u2
Cα1,α2(u1, u2) =

{
u−α1

1 if uα1
1 > uα2

2 ,

u−α2
2 if uα1

1 < uα2
2 .

The continuous part of the density is shown in the left part of Figure 4. The singular component
distributes mass only on the curve u1 = u

α2/α1

2 . More precisely, one can show7 that for uniform
U1 and U2 with this copula

P (U1 = U
α2/α1

2 ) =
α1α2

α1 + α2 − α1α2
.

This effect becomes visible from the simulation data presented in Figure 4 (right). The dis-
continuous part of the copula results in data points frequently lying on the curve u1 = u

α2/α1

2

directly.

For more details on Marshall-Olkin copulas, in particular the multivariate ones, we refer to
Embrechts, Lindskog, and McNeil (2003) and Nelsen (1999).

7See Nelsen (1999), Section 3.1.1.
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4 Measures of dependence

Measures of dependence are common instruments to summarize a complicated dependence struc-
ture in a single number (in the bivariate case). There are three important concepts: The classical
one is the linear correlation as defined in Equation (9). Unfortunately, correlation is only a suit-
able measure in a special class of distributions, i.e. elliptical distributions. This class includes
the normal distribution and mixtures of normal distributions. It is well known, that outside
this class correlation leads to a number of fallacies. The two other dependence measures to
be considered are rank correlation and the coefficients of tail dependence. Both measures are
general enough to give sensible measures for any dependence structure. As already mentioned
above, tail dependence considers dependence in the extremes which is an important concept in
many financial applications.

4.1 Linear correlation

Linear correlation is a well studied concept. It is a dependence measure which is, however, useful
only for elliptical distributions. An elliptical distribution is obtained by an affine transformation

X = µ+AY

of a spherical distribution Y with µ ∈ Rd, A ∈ Rd×d. By definition Y has a spherical distribution,
if and only if the characteristic function can be represented as

IE(exp(i t′Y)) = ψ
(
t21 + · · ·+ t2d),

with some function ψ : R 7→ R. The normal distribution plays quite an important role in spher-
ical distributions, so in most cases spherical distributions are mixtures of normal distributions8.

It seems most important to mention certain pitfalls which occur when correlation is considered
outside the class of elliptical distributions, compare Embrechts et al. (2002) or McNeil, Frey,
and Embrechts (2005), Chapter 5.2.1.

1. A correlation of 0 is equivalent to independence for normal distributions. However, al-
ready for Student t distributed rvs, this is no longer true, compare Equation (11) and the
discussion thereafter.

2. Correlation is invariant under linear transformations, but not under general transforma-
tions. For example, two log-normal rvs have a different correlation than the underlying
normal rvs.

3. On the other side, one could guess, that for any marginal distribution and given correlation
ρ it would be possible to construct a joint distribution. However, whereas this is possible
for the class of elliptical distributions, this is not true in general. For example, in the
case of log-normal marginals, the interval of attainable correlations becomes smaller with
increasing volatility. To illustrate this, consider two normal rvs X1 and X2, both with zero
mean and variance σ2 > 0. Denote the correlation of X1 and X2 by ρ. The correlation of
the two log-normal rvs Yi = exp(Xi), i = 1, 2 equals

Corr(Y1, Y2) =
eρσ

2 − 1√(
eσ2 − 1

)(
eσ2 − 1

) .

8Compare McNeil, Frey, and Embrechts (2005), Theorem 3.25. Section 3.3 therein gives a short introduction to
elliptical distributions.
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Figure 5: The graph shows ρ = Corr(Y1, Y2) where Yi = exp(σXi) with Xi ∼ N (0, σ2) and
Corr(X1, X2) = ρ. Note that the smallest attained correlation is increasing with σ, so for σ = 1
we have that Corr(Y1, Y2) ≥ −0.368 and for σ = 2 even Corr(Y1, Y2) ≥ −0.018.

For ρ = 1 we always obtain Corr(Y1, Y2) = 1. However, the smallest correlation is always
larger than −1. For example, if σ = 1 we obtain Corr(Y1, Y2) ∈ [−0.368, 1]. In Figure 5
a plot of the attained correlation as function of σ and ρ is given and it shows that the
interval of attained correlation becomes smaller with increasing σ.

On the other side, this observation implies that it is in general wrong to deduce a small
degree of dependency from a small correlation. Even perfectly related rvs can have zero
correlation: Consider X1 ∼ N (0, 1) and X2 = X2

1 . Then

Cov(X1, X2) = E
(
X1 · (X2

1 − 1)
)

= E(X3
1 )−E(X1) = 0.

Having covariance 0 implies of course zero correlation, while on the other side the obser-
vation of X1 immediately yields full knowledge of X2.

4.2 Rank correlation

It is a well-known concept in nonparametric statistics to concentrate on the ranks of given data
rather than on the data itself. This led to important correlation estimators, Kendall’s tau and
Spearman’s rho, which we present directly in a form related to copulas. Considering ranks leads
to scale invariant estimates, which in turn is very pleasant when working with copulas. Therefore
rank correlations give a possible way of fitting copulas to data.

The motivation of Spearman’s rho is very much along the lines of the quantile transform given
in Equation 3. It should be noted that by applying the empirical cdf to the data itself the ranks
of the data points are obtained, up to a multiplicative factor. The idea is simply to take the
correlation of these transformed variables, which is equivalent to the correlation of the ranks
itself. Considering a formulation suitable to copulas one arrives at the following definition.

Definition 4.1. Consider two rvs X1 and X2 with marginals F1 and F2, respectively. We define
Spearman’s rho by

ρS := Corr
(
F1(X1), F2(X2)

)
,

correlation being defined in (9). In the multivariate case, the Spearman’s rho matrix is

ρS(X) := Corr
(
F1(X1), . . . , Fd(Xd)

)
.
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In the multivariate case, Corr refers to the correlation matrix, in other words the entries of
ρS(X) are given by

ρS(X)ij = Corr
(
Fi(Xi), Fj(Xj)

)
.

In the bivariate case Spearman’s rho was simply defined as the correlation of the uniform rvs
F1(X1) and F2(X2).

To motivate Kendall’s tau, we consider two random variables X1 and X2. For a comparison
we take two additional rvs X̃1 and X̃2 into account, both being independent of the first two
rvs but with the same joint distribution. Now we plot two points, obtained from these rvs,
in a graph, namely (x1, x2) and (x̃1, x̃2), and connect them by a line. In the case of positive
dependence we would expect that the line is increasing and otherwise that the line is decreasing.
Considering (X1− X̃1) · (X2− X̃2), a positive sign refers to the increasing case, while a negative
sign would turn up in the decreasing case. Taking expectations leads to the following definition.

Definition 4.2. Consider two rvs X1 and X2 and denote by X̃1, X̃2 rvs with the same joint
distribution, but independent of X1, X2. Then we define Kendall’s tau by

ρτ (X1, X2) := IE
[

sign
(

(X1 − X̃1) · (X2 − X̃2)
)]
. (14)

For a d-dimensional rv X and an independent copy X̃ we define Kendall’s tau by

ρτ (X) := Cov
[

sign
(
X− X̃

)]
.

Recall, that by an independent copy of X we mean a rv with the same distribution as X,
being independent of X. Alternatively, the expectation in (14) can be written as

ρτ (X1, X2) = P
(
(X1 − X̃1) · (X2 − X̃2) > 0

)

− P ((X1 − X̃1) · (X2 − X̃2) < 0
)
.

Thus if both probabilities are the same, which intuitively means that we expect upward slopes
with the same probability as downward slopes, we obtain ρτ = 0. On the other side, if Kendall’s
tau is positive, there is a higher probability of upward slopes and similarly for a negative value
we would expect rather downward sloping outcomes.

Both measures have a lot of properties in common. Being obviously measures with values
in [−1, 1], they take the value 0 for independent variables (while there might also be non-
independent rvs with zero rank correlation) and return 1 (−1) for the comonotonic (counter-
monotonic) case. Moreover, they can directly be derived from the unique copula C that describes
the dependence between X1 and X2

9:

ρS(X1, X2) = 12

1∫

0

1∫

0

(
C(u1, u2)− u1u2

)
du1 du2

ρτ (X1, X2) = 4

1∫

0

1∫

0

C(u1, u2) dC(u1, u2)− 1.

Summarizing, using rank correlations helps to solve point 3 of the above remarked pitfalls.
Indeed, for given marginals any rank correlation in [−1, 1] may be attained.

9Compare McNeil, Frey, and Embrechts (2005), Proposition 5.29.
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The rank correlations derived from a bivariate Gaussian copula are given by10

ρS(X1, X2) =
6
π

arcsin
ρ

2
, ρτ (X1, X2) =

2
π

arcsin ρ.

In this case Spearman’s rho is very close to the actual correlation.

For other interesting examples and certain bounds which interrelate those two measures we
refer to Nelsen (1999), Sections 5.1.1 – 5.1.3.

4.3 Tail dependence

Finally, we introduce the tail dependence of copulas, where we distinguish between upper and
lower tail dependence. It may be recalled, that the copula densities of the Gaussian and the Stu-
dent t-copula showed different behaviour at both the left lower and right upper corner (compare
Figure 2). The right upper corner refers to upper tail dependence, while the lower left corner
refers to lower tail dependence. The aim of this section is to consider this behaviour in more
detail.

Consider two uniform rvs U1 and U2 with copula C. Upper tail dependence means intuitively,
that with large values of U1 also large values of U2 are expected. More precisely, the probability
that U1 exceeds a given threshold q, given that U2 has exceeded the same level q for q → 1
is considered. If this is smaller than of order q, then the rvs have no tail dependence, like for
example in the independent case. Otherwise they have tail dependence.

Definition 4.3. For rvs X1 and X2 with cdfs Fi, i = 1, 2 we define the coefficient of upper tail
dependence by

λu := lim
q↗1

P
(
X2 > F←2 (q)

∣∣X1 > F←1 (q)
)
,

provided that the limit exists and λu ∈ [0, 1]. The coefficient of lower tail dependence is defined
analogously by

λl := lim
q↘0

P
(
X2 ≤ F←2 (q)

∣∣X1 ≤ F←1 (q)
)
.

If λu > 0, we say that X1 and X2 have upper tail dependence, while for λu = 0 we say that
they are asymptotically independent in the upper tail and analogously for λl.

For continuous cdfs, quite simple expressions are obtained for the coefficients using Bayes’
rule, namely

λl = lim
q↘0

P
(
X2 ≤ F←2 (q), X1 ≤ F←1 (q)

)

P (X1 ≤ F←1 (q))

= lim
q↘0

C(q, q)
q

and, similarly,

λu = 2 + lim
q↘0

C(1− q, 1− q)
q

.

Thus, basically, we need to look at the slope of the copula when approaching (0, 0) or (1, 1).
If the slope is greater than 1 (which refers to the independent case), the copula exhibits tail
dependence. Of course, the greater the slope is, the higher the tail dependence.
10Compare McNeil, Frey, and Embrechts (2005), Theorem 5.36. They also give a discussion which consideres

these measures for general elliptic distributions.
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Example 4.4. The tail coefficients for Gumbel and Clayton copulas are easily computed. Con-
sider for example the Clayton copula. According to Figure 3 there is no upper tail dependence.
The coefficient of lower tail dependence equals

(2q−θ − 1)−1/θ

q
=
(
2− qθ)−1/θ

→ 2−1/θ = λl.

Thus, for θ > 0, the Clayton copula has lower tail dependence. Furthermore, for θ → ∞ the
coefficient converges two 1. This is because the Clayton copula tends to the comonotonicity
copula as θ goes to infinity.

It is little more complicated to show that for the Gumbel copula λu = 2 − 21/θ, thus the
Gumbel copula exhibits upper tail dependence for θ > 1.

This example reflects the impressions from Figure 3, which already suggested that the Gumbel
copula has upper tail dependence, while the Clayton copula has lower tail dependence.

As the Gaussian copula as well as the Student t-copula are not given as explicitly as the
Clayton or Gumbel copula, computing the tail dependence is more complicated. In McNeil,
Frey, and Embrechts (2005), Section 5.3.1, this is done for both and we revisit shortly their
results. First, the Gaussian copula is asymptotically independent in both upper and lower tails.
This means, no matter what high correlation we choose, there will be no tail dependence from
a Gaussian copula. However, for the Student t-distribution the matters are different. For the
bivariate t-copula Ctν,ρ, the coefficient of tail dependence equals

λl = λu = 2 tν+1

(
−
√

(ν + 1)(1− ρ)
1 + ρ

)
,

provided that ρ > −1. Thus, in this case the t-copula has upper and lower tail dependence.
Note that even for zero correlation this copula shows tail dependence.

However, it is not typical that normal mixtures exhibit tail dependence. This property obvi-
ously depends on the distribution of the mixing variable, and if the mixing distribution does not
have power tails, the property of asymptotical tail independence is inherited from the normal
distribution.

5 Simulating from copulas

This section provides the essential steps necessary to implement Monte Carlo simulations of
pseudo rvs which have a certain copula C. Of course, also ordinary rvs can be generated with
these methods. In contrast to these, pseudo rvs do not aim at mimicking randomness as they
are computed from deterministic algorithms. Besides increasing the precision of the simulations
the outcome from the simulations become reproducible.

We always give an algorithm which allows to simulate one single vector U = (U1, . . . , Ud) which
has uniform marginals and the desired copula. Arbitrary marginals can then be obtained using
the quantile transformation from equation (2). Repeating the algorithm n times one obtains
a sample of n independent identically distributed (iid) multivariate pseudo rvs admitting the
desired copulas. For example, the simulations which led to the right part of Figure 4 were
achieved in this way.
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5.1 Gaussian and t-copula

If the copula is derived from a multivariate distribution, like for the Gaussian and the t-copula,
it turns out to be particularly easy to simulate such pseudo rvs. The first step is always to
simulate pseudo rvs according to the underlying multivariate distribution and the second step is
to transform these results to uniform marginals using (2). This leads to the following algorithms.

Algorithm 5.1. (Multivariate Gaussian Copula)

1. For an arbitrary covariance matrix Σ̃ obtain the correlation matrix Σ as outlined in Ex-
ample 3.1

2. Perform a Cholesky-decomposition11 Σ = A′A

3. Generate iid standard normal pseudo rvs X̃1, . . . , X̃d

4. Compute (X1, . . . , Xd)′ = X = AX̃ from X̃ = (X̃1, . . . , X̃d)′

5. Return Ui = Φ(Xi), i = 1, . . . , d where Φ is the standard normal cumulative distribution
function

Algorithm 5.2. (Multivariate t-Copula)

1. For an arbitrary covariance matrix Σ̃ obtain the correlation matrix Σ as outlined in Ex-
ample 3.1

2. Generate multivariate normal X with covariance matrix Σ as above

3. Generate independent ξ ∼ χ2
ν for example via ξ =

∑ν
i=1 Y

2
i , where Yi are iid N (0, 1)

4. Return Ui = tν(Xi/
√
ξ/ν), i = 1, . . . , d where tν is the cumulative distribution function

of a univariate t-distribution with ν degrees of freedom

5.2 Archimedean copulas

The considered copulas – Gumbel, Clayton and Frank copulas – fall into the class of so-called
Laplace transform Archimedean copulas (or LT-Archimedean copulas). For this class, the inverse
of the generator φ has a nice representation as a Laplace transform of some function G. The
simulation algorithm uses that such pseudo rvs may be generated easily.

To consider this approach in more detail, consider a cumulative distribution function G and
denote its Laplace transform by

Ĝ(t) :=

∞∫

0

e−txdG(x), t ≥ 0.

We set Ĝ(∞) := 0 and realize that Ĝ is a continuous and strictly decreasing function, thus may
serve well as a candidate for φ−1. Indeed, generate a pseudo rv V with cdf G and iid standard
uniform pseudo rvs X1, . . . , Xd (also independent of V ). Set

Ui := Ĝ
(
− lnXi

V

)
,

11The Cholesky decomposition is implemented in a lot of packages. Alternatively, you may consider Press et al
(1992).
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then the vector U has the desired Archimedean copula dependence structure with generator
φ = Ĝ−1. A proof is given in McNeil, Frey, and Embrechts (2005), Proposition 5.46.

Thus, we have the following algorithm

Algorithm 5.3. (Laplace transform Archimedean copula)

1. Generate a pseudo rv V with cdf G

a) For a Clayton copula, V is gamma distributed, Ga(1/θ, 1), and Ĝ(t) = (1 + t)−1/θ

b) For a Gumbel copula V is stable distributed, St(1/θ, 1, γ, 0) with γ = (cos(π/2/θ))θ

and Ĝ(t) = exp(−t1/θ)
c) For a Frank copula, V is discrete with P (V = k) = (1− e−θ)k/(kθ) for k = 1, 2, . . .

2. Generate iid uniform pseudo rvs X1, . . . , Xd

3. Return Ui = Ĝ
(
− lnXi

V

)
, i = 1, . . . , d

Note that for this algorithm it is necessary to simulate gamma, stable or discrete distributions.
We refer to McNeil, Frey, and Embrechts (2005) or Schoutens (2003) for a detailed outline how
this may be done.

5.3 Marshall-Olkin copula

The Marshall-Olkin copula stems from a concrete model assumption which can easily be used
to simulate pseudo rvs. It may be recalled that rvs X1 and X2 with a Marshall-Olkin copula
are obtained from the independent, exponentially distributed rvs Z1, Z2 and Z12 with intensities
λ1, λ2 and λ12, respectively, by

Xi = min{Zi, Z12}, i = 1, 2.

The marginals of the Xi are easily computed and one obtains that

Fi(x) := P (Xi ≤ x) = 1− exp
(− (λi + λ12)x

)
.

Finally, we obtain uniform distributed rvs letting Ui = Fi(Xi) and U1, U2 have the desired
copula. We summarize the steps in the following algorithm.

Algorithm 5.4. (Marshall-Olkin copula)

1. Generate independent pseudo rvs Zi ∼ Exp(λi), i = 1, . . . , 3

2. Return Ui = 1− exp
(− (λi + λ12) max{Zi, Z3}

)
, i = 1, 2

If the parametrization via α1, α2 as in (13) is used, one chooses for some λ12 the parameters
λ1 and λ2, such that

αi =
λ12

λi + λ3
, i = 1, 2.
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6 Conclusion and a word of caution

The literature on copulas is growing fast. For a more detailed exposition of copulas with different
applications in view we refer to the excellent textbook McNeil, Frey, and Embrechts (2005) as
well as to the article Embrechts, Lindskog, and McNeil (2003). The book of Cherubini, Luciano,
and Vecchiato (2004) gives additional examples but offers less theoretical detail. Using extreme
value theory and copulas, the book of Malevergne and Sornette (2006) analyses extreme financial
risks. For an in-depth study of copulas the book of Nelsen (1999) is the standard reference,
which only deals with two-dimensional copulas as this is sufficient for mathematical purposes12.
Interesting remarks of the history and the development of copulas may be found in Fisher (1995).

A word of caution is due at this place. Copulas are a very general tool to describe dependence
structures, and have been successfully applied in many cases. However, the immense generality
is also the drawback of copulas. For a discussion we refer to Mikosch (2006) and the commentary
of Genest and Rémillard (2006). Some points mentioned therein shall be emphasized here.

• In general, it is quite difficult to estimate copulas from data. Of course, this stems in
particular from the generality of copulas. In many multivariate distributions it is quite well
understood how to estimate the dependence structure, so a sensible statistical estimation
of a copula will consider a particular parametrization, i.e. stemming from a multivariate
family of distributions, and estimation of the parameters will typically be much easier.

• As we have seen, some copulas stem from multivariate distributions, as for example the
Gaussian and the t-copula. Using that the copula marginals and the dependence structure
can be disentangled, the dependence structure can be handled independently from the
marginals. Obviously the Gaussian copula can be applied to t-marginals and vice versa.
This results in new multivariate distributions with different behaviour. This or similar
procedures may often be seen in applications of copulas. However, the use of this procedure
is questionable and the outcomes should be handled with care.

• On the other side, various copulas which do not stem from multivariate distributions,
like Archimedean copulas for example, have their form mainly because of mathematical
tractability. Therefore their applicability as natural models for dependence should be
verified in each case.

• Finally, copulas refer to a static concept of dependence, while many applications, especially
in Finance, refer to time series and a dynamic concept of dependence is needed.

Despite of this critics, it is remarkable that the use of copulas has greatly improved the mod-
elling of dependencies in practice. For example, in contrast to linear correlation, the use of
copulas avoids typical pitfalls and therefore leads to a mathematically consistent modelling of
dependence. Also the variety of possible dependence structures applied increased significantly.

It is obvious that a structural modelling of the dependency, for example via factors, is always
preferable to a simple application of an arbitrarily chosen copula. When the time for a deeper
analysis is short, copulas may still serve as a quick fix for approximating the underlying relations.

Needless to say, despite of these cautious words the application of copulas has been a great
success to a number of fields, and especially in finance they are a frequently used concept. The
complicated interaction observed, e.g. in credit risk, has lead to a number of approaches where
copulas are used to model the dependence structure and calibrations to market data seem to
be quite successful. Furthermore, they serve as an excellent tool for stress testing portfolios or
12The construction of multivariate copulas from bivariate ones is covered in Section 3.5 in Nelsen (1999).
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other products in finance and insurance as they allow to interpolate between extreme cases of
dependence. This in turn makes the copula an effective element of risk management.

This chapter may serve as a short introduction to the concept of copulas. Needless to say
that many important topics have not been covered and the interested reader may find additional
material from the bibliography and the following chapters of this book.

References

Cherubini, U., E. Luciano, and W. Vecchiato (2004). Copula Methods in Finance. Wiley,
Chichester.

Embrechts, P., F. Lindskog, and A. McNeil (2003). Modelling dependence with copulas and
applications to risk management. In S. Rachev (Ed.), Handbook of Heavy Tailed Distribu-
tions in Finance, pp. 331–385. Elsevier.

Malevergne, Y. and D. Sornette (2006). Extreme Financial Risks. Springer Verlag. Berlin
Heidelberg New York.

McNeil, A., R. Frey, and P. Embrechts (2005). Quantitative Risk Management: Concepts,
Techniques and Tools. Princeton University Press.

Nelsen, R. B. (1999). An introduction to copulas, Volume 139 of Lecture Notes in Statistics.
Springer Verlag. Berlin Heidelberg New York.
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Table 1: List of Copulas. Note that for the Gumbel, Clayton, Frank and the Marshall-Olkin
copula the bivariate versions are stated.


