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Abstract

We consider a factor copula appoach to the pricing of basket credit derivatives and

CDO tranches. Our purpose is to deal in a convenient way with dependent defaults

and credit spreads. We provide semi-explicit expressions of the stochastic intensities of

default times, credit spreads, and price of basket default swaps involving large number

of names. We also consider the explicit pricing of CDO tranches within our framework.

Two cases are studied in detail: mean-variance mixture models and Archimedean

copulas.

Introduction
We consider a factor copula appoach to the pricing of basket credit derivatives and CDO tranches. Our
purpose is to deal in a convenient way with dependent default dates, credit spreads and basket default
swap premiums associated with this modelling of dependence between default dates. A typical pattern
with a regular copula such as the Gaussian one is the following: credit spreads tend to decrease until
the …rst to default time since no defaults on the other underlyings usually means good news for a given
underlying1, while we observe jumps in credit spreads at default times: the default on one given name
usually provide some news for the remaining reference credits. We consider in greater detail the special case
of the factor copulas. The dimensionality issue is important for theoretical and practical reasons. When
pricing counterparty risk on derivatives, one usually needs only the joint distribution of two default dates,
but when dealing with synthetic CDO’s, we must consider up to one hundred names or more. It may even
be uneasy to specify simple models such as the multivariate exponential models of Marshall and Olkin in
large dimension. Moreover, it involves a large number of unknown parameters, while the factor approach is
usually more parcimonious, thus easing the calibration. Even in the simple Gaussian framework, one must
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usually rely on Monte Carlo techniques that prove to be costly and where acceleration techniques often
perform poorly. Thanks to the factor approach, we can provide semi-explicit expressions of the stochastic
intensities of default times, credit spreads, and basket default swap premiums involving large number of
names. We also consider the explicit pricing of CDO tranches within our framework.

The …rm value approach to credit (see Bielecki and Rutkowki [2002] for a presentation) has been extended
to multi name pricing (see Arvanitis and Gregory [2001], Hull and White [2001]). This approach is suitable
for the pricing of hybrid equity credit products. However, it proves to be time-consuming for multi-name
basket structures, especially for risk analysis.

The framework of reduced form models has also been considered for the pricing of basket credit derivatives
(see Du¢e [1998]) and leads to simple theoretical expressions of prices. Dependence of default times has
been …rstly addressed through correlated stochastic risk intensities (see Du¢e and Gârleanu [1998] for an
application to the pricing of CDO). However, this usually results in low default times dependence as studied
in Andreasen [2001]. Another approach consists in relaxing the independence assumption of the latent
uniform random variables involved in the Cox process modelling. This results in a series of models such
as the Gaussian copula approach introduced for the pricing of basket credit derivatives by Li [1999, 2000].
The multivariate exponential copula of Marshall and Oklin [1967] (see Du¢e and Singleton [1998], Wong
[1998], Kijima [2000], Li [2000]) provides another framework which allows for simultaneous defaults and
is associated with non smooth joint distribution functions. Schönbucher and Schubert [2001] study the
dynamics of default intensities and show that Clayton copulas, a member of the Archimedean copula family,
are related to the dependent intensities approaches of Kusuoka [1999], Davis and Lo [1999, 2001], Jarrow
and Yu [2001]). A related reference is Giesecke [2001]. Bouyé et al [2000], Durrleman et al [2000], Schmidt
and Ward [2002] also consider some applications of copulas for the pricing of basket credit derivatives.

On the other hand, latent factor models have been widely used for the computation of default events and
loan loss distributions (see Crouhy, Galai & Mark [2000], Belkin, Suchover and Forest [1998], Finger [1998,
1999], Koyluoglu and Hickman [1998], Lucas, Klaasen, Spreij and Staetmans [1999], Merino and Nyfeler
[2002], Schönbucher [2002], Vasicek [1997]). Frey, McNeil and Nyfeler [2001], Wang [1998], relate factor and
copula approaches. The new Basel agreement, popular models such as Credit Metrics, Credit Risk+, KMV
rely on such approaches. These models have been thoroughly used in the statistical literature (see Junker
and Ellis [1998] for some characterizations of one factor models and Gouriéroux and Monfort [2002] for some
application to credit risk). Moreover, de Finetti’s theorem for exchangable sequences of binary random
variables provide some theoretical background for the use of such factor models in the credit risk framework.
The main feature of these models is that default events, conditionally on some latent state variables are
independent. This eases the computation of aggregate loss distributions through dimensionality reduction.
This factor approach is nicely suited for large dimensional problems. Since semi-explicit expressions of most
relevant quantities can be obtained, it provides an alternative route to Monte Carlo approaches, while we
can still rely on the latter when useful. The main technical assumption in our paper is the smoothness of
the joint survival function. On economic grounds, this precludes simultaneous defaults. The smoothness
assumption is not ful…lled in some multivariate exponential models (associated with Marshall Olkin [1967]
copulas), that have been used by Du¢e and Singleton [1998], Wong [2000].

The paper is organized as follows:
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² The …rst section de…nes marginal and conditional hazard rates of default times. We relate condi-
tional hazard rates from the joint survival function of default times. Eventually, some expressions
of conditional hazard rates as conditional probabilities are provided for regular joint distributions of
default times. marginal and conditional hazard rates can be related to stochastic intensities of default
times under di¤erent …ltrations. The stated results will provide some building blocks for the pricing
of basket credit derivatives and CDO. The proofs are gathered in appendix A. We also recall some
standard results on copulas and also relates this approach to multivariate Cox processes.

² The second section considers the special case of factor copulas. We study the conditional survival
functions, hazard rates and the number of defaults under this assumption. We consider Gaussian
copulas, mean-variance mixtures and Archimedean copulas where semi-explicit expressions can be
provided.

² The third section deals with the computation of the various basket default swaps premiums.
² The fourth section considers the pricing of CDO tranches.

1 Survival function and hazard rates

1.1 Marginal hazard rates
We consider n underlying defaultable issuers, with associated default times, ¿ i, i = 1; : : : ; n. For all t1; : : : ; tn
in R, (t1; : : : ; tn) ! S(t1; : : : ; tn) will denote the joint survival function of default times: S(t1; : : : ; tn) =
Q(¿1 ¸ t1; : : : ; ¿n ¸ tn) where Q denotes the risk-neutral probability2. Let us note that we consider here
unconditional probabilities. Similarly, the joint distribution function F will be such that F (t1; : : : ; tn) =
Q(¿1 < t1; : : : ; ¿n < tn). Si and Fi will be respectively the marginal survival and marginal distribution
function, Si(ti) = Q(¿ i ¸ ti) and Fi(ti) = Q(¿ i < ti) = 1 ¡ Si(t). We denote by ¿1 = min(¿1; : : : ; ¿n) =
¿1 ^ : : : ^ ¿n the …rst to default time. The survival function of ¿1 is thus simply given by Q(¿1 ¸ t) =
S(t; : : : ; t). In the following, we will make the following convenient and simplifying assumption:

Assumption 1 The marginal distributions of default times ¿ i, i = 1; : : : ; n, are absolutely continuous (wrt

to the Lebesgue measure), i.e. for all i = 1; : : : ; n, with right continuous densities fi, i.e. Fi(t) =
Z t

0

fi(u)du

for all t ¸ 0 and fi are right continuous3.

Since the marginal distributions are absolutely continuous, the Fi are continuous. Moreover, assuming right
continuity of the densities implies that the distribution functions Fi are right di¤erentiable4.

2We assume here the use of some pricing measure and do not discuss the existence or uniqueness of such
a measure. Q characterizes an arbitrage free pricing model.

3it is presumably possible to state a slighly di¤erent and possibly weaker assumption, i.e. that the
distribution functions Fi are right di¤erentiable.

4The right continuity of fi implies that 8" > 0;9®" > 0 with u 2 [t; t + ®"[)j fi(u) ¡ fi(t) j< ".
Let us consider ® with 0 < ® · ®". 8u 2 [t; t + ®[, we have fi(t) ¡ " · fi(u) · fi(t) + ", which gives
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De…nition 1 marginal hazard rates
Under the oustanding assumption (1), we de…ne the following marginal hazard rates of default times ¿ i,
i = 1; : : : ; n as:

hi(t) = lim
dt!0+

Q(¿ i 2 [t; t+ dt[j ¿ i ¸ t)
dt

=
fi(t)

Si(t)
= ¡ 1

Si(t)

dSi(t)

dt+
:

Since the distribution of ¿ i is absolutely continuous and right di¤erentiable, the hi(t) are well de…ned.
Indeed,

Q(¿ i 2 [t; t+ dt[j ¿ i ¸ t)
dt

=
Q(¿ i ¸ t)¡Q(¿ i ¸ t+ dt)

Q(¿ i ¸ t)dt =
1

Si(t)

Fi(t+ dt)¡ Fi(t)
dt

:

From the previous footnote, the limit of the previous quantity as dt tends to 0 (by the right) is equal to
fi(t)

Si(t)
.

Assuming only right continuity of fi allows to deal with the following modelling: Si(t) = exp
Z t

0

¡hi(u)du,
where hi is piecewise constant of the form hi(u) =

X
j2N

hi;jI[aj ;aj+1[(u) and aj ; hi;j 2 R, j 2 N is an

increasing to in…nity sequence with a0 = 0. This modelling is common when stripping defaultable bonds or
credit default swaps5.

We can notice that since the marginal distributions of default times ¿ i are continuous, then a standard
probability result states that the joint distribution of default times S(t1; : : : ; tn) is continuous too. As a
consequence, under assumption (1), there is no point with a (strictly) positive probability6. However, it can
be that the marginal distributions of default times are absolutely continuous while the joint distribution is
not absolutely continuous (i.e. there does not exist a joint density)7 .

fi(t)¡ " ·

Z t+®

t

fi(u)du

®
· fi(t) + ". The last equality states that lim

®#0

Z t+®

t

fi(u)du

t+ ®¡ t = fi(t), which means

that Fi(t) is right di¤erentiable and the associated derivative is fi(t). One point to check is the existence of
some hazard rate under the sole assumption of absolute continuity

5Assumption (1) may have to be further relaxed since the outcomes of some strippers are rather discrete
distributions with mass points at tenor dates.

6i.e. the joint distribution is atomless.
7A typical example is the following. Let us consider three independent exponentially distributed random

variables, denoted by ¹¿1, ¹¿2 and ¿ c with corresponding parameters ¹̧1; ¹̧2; ¸c. Let us de…ne two default
times as ¿1 = min(¹¿1; ¿ c) and ¿2 = min(¹¿2; ¿ c). It can be seen that ¿1 and ¿2 are exponentially distributed
with parameters ¹̧1 + ¸c and ¹̧2 + ¸c. Thus, the marginal distributions are smooth. Moreover, the …rst to
default time min(¿1; ¿2) = min(¹¿1; ¹¿2; ¹¿ c) is also exponentially distributed with parameter ¹̧1 + ¹̧2 + ¸c.
However, it appears that (¿1; ¿2) does not admit a joint density. The probability of simultaneous defaults
of the two reference credits is provided by Q(¿1 = ¿2) = Q(¿ c · min(¹¿1; ¹¿2)) > 0. It can be checked that if
(¿1; ¿2) has a joint density, then Q(¿1 = ¿2) = 0, since the diagonal has zero Lebesgue measure in R2. It can
be easily checked that the joint survival function is given by S(t1; t2) = exp¡(¹̧1t1 + ¸2t2+ ¸cmax(t1; t2)),
which is indeed continuous but not absolutely continuous. From this example, we can also conclude that a
model where simultaneous defaults can occur cannot be associated with a joint density of default times.
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1.2 Conditional hazard rates up to …rst to default time
Typically, the pricing of basket default derivatives requires the joint distribution of default times. In this
subsection, we de…ne the conditional hazard rates up to …rst to default time. We relate then to conditional
probabilities under some continuity assumption. We thus need to introduce the following assumption:

Assumption 2 The joint survival function (t1; : : : ; tn)! S(t1; : : : ; tn) is right di¤erentiable in each coor-
dinate for every point of the …rst diagonal (t1; : : : ; tn) = (t; : : : ; t), t ¸ 0.

De…nition 2 conditional hazard rates (before …rst to default time)
Under assumption (2), we de…ne the conditional hazard rates ¸i(t), i = 1; : : : ; n as:

¸i(t) = lim
dt!0+

Q(¿ i 2 [t; t+ dt[j ¿1 ¸ t; : : : ; ¿n ¸ t)
dt

= ¡ 1

S(t; : : : ; t)

@S(t; : : : ; t)

@t+i
:

In the previous de…nition, the conditioning information set consists in the joint observation of default
times. ¸i(t) is interpreted as the probability of name i defaulting in the next small time interval [t; t + dt[
provided that none of the reference credits have defaulted prior to t, which means that ¸i(t) is de…ned on
f¿1 ¸ t; : : : ; ¿n ¸ tg. Let us remark that while for notational convenience ¸i(t) is indexed on i only, it
depends on the whole joint distribution of default times. For instance, if the set of names in a basket is
modi…ed, so does the conditional hazard rate of some given name. We can circumvent this di¢culty by
de…ning a large set of relevant reference credits including the names in traded baskets, keeping this set
unchanged8. We consider hazard rates before the …rst default. We will consider later the e¤ect of some
default on the remaining reference credits. Assumption (2) guarantees that the ¸i(t) are well de…ned.

We can provide some interpretation of the marginal hazard rates and the conditional hazard rates as sto-
chastic intensities of default times under di¤erent …ltrations. We denote by Hi;t the natural …ltration of
the stopping time ¿ i. The marginal hazard rate hi(t) will be related to the Hi stochastic intensity of ¿ i.
More precisely, the stochastic intensity of ¿ i is hi(t)I¿i<t. We consider the …ltration Ht =

Wn
i=1Hi;t. ¸i(t)

is related to the Ht stochastic intensity of ¿ i. For instance on f¿1 < tg the Ht stochastic intensity of ¿ i is
equal to ¸i(t), where ¿1 is the …rst to default time.

In the special case where default times ¿1; : : : ; ¿n are independent, we have:

Lemma 1.1 Under assumption (1), if default times ¿1; : : : ; ¿n are independent, then hi(t) = ¸i(t), for
i = 1; : : : ; n.

This is a consequence of:

Q(¿ i 2 [t; t+ dt[j ¿1 ¸ t; : : : ; ¿n ¸ t) = Q(¿ i 2 [t; t+ dt[; ¿1 ¸ t; : : : ; ¿n ¸ t)
Q(¿1 ¸ t; : : : ; ¿n ¸ t) =

Q(¿ i 2 [t; t+ dt[)
Q(¿ i ¸ t) ;

the latter equality is due to the independence assumption. However, in the following examples, default times
will be correlated and the previous property may not hold. When default times are positively correlated,

8However, for pricing purpose, the conditional hazard rates associated with the set of reference names
in a basket or CDO structure are to be used. Later on, we show that these hazard rates are related to
stochastic intensities of ¿ i under di¤erent …ltrations.
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we can expect that ¸i(t) will be smaller than hi(t). Indeed if none of the underlyings have defaulted,
this provides some extra good news about underlying i. Let us emphasize that we can still have “positive
correlation" between default times while hi(t) = ¸i(t). If we turn back to the example with simultaneous
defaults, we can check that S(t1; t2) is right-di¤erentiable in each coordinate on the …rst diagonal and that
¸1(t) = ¹̧1 + ¸c = h1(t).

Assumption 3 The joint survival function (t1; : : : ; tn)! S(t1; : : : ; tn) is di¤erentiable on R+n.

We recall that if S(t1; : : : ; tn) is di¤erentiable, then there exist derivatives in all directions. For instance,
under assumption (3) the function t! S(t; : : : ; t) is di¤erentiable and:

d

dt
S(t; : : : ; t) =

nX
i=1

@S

@ti
(t; : : : ; t);

where
@S

@ti
(t; : : : ; t) denotes the derivative of the joint survival function with respect to the ith component

taken at point (t; : : : ; t). A su¢cient condition for S(t1; : : : ; tn) to be di¤erentiable is that there exists

continuous partial derivatives
@S

@ti
(in this case, S(t1; : : : ; tn) is continuously di¤erentiable). We can also

state the useful technical lemma:

Lemma 1.2 Under assumption (3), we have:

@S

@ti
(t1; : : : ; tn) = ¡Q (¿ j ¸ tj ;8j 6= i j ¿ i = ti) fi(ti): (1.1)

Under the di¤erentiability assumption, we now now write the conditional hazard rate using conditional
expectations :

Property 1.1 conditional hazard rate before the …rst to default time
Under assumption (3), the conditional hazard rates before the …rst to default time are given by:

¸i(t) = fi(t)£ Q (minj 6=i ¿ j ¸ t j ¿ i = t)
Q (minj ¿j ¸ t) ; (1.2)

This is a direct consequence of previous lemma. The conditional hazard rates can be compared to the
marginal hazard rates hi(t):

hi(t) =
fi(t)

Si(t)
= fi(t)£ Q (minj 6=i ¿ j ¸ t j ¿ i ¸ t)

Q (minj ¿ j ¸ t) : (1.3)

If default times ¿ j are positively correlated, then f¿ i = tg means worse news than f¿ i ¸ tg. Thus, we can
expect that Q (minj 6=i ¿ j ¸ t j ¿ i = t) < Q (minj 6=i ¿ j ¸ t j ¿ i ¸ t), which then means that ¸i(t) < hi(t).
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1.3 Between …rst and second to default
The computation of hazard rates at and after the …rst to default times and the related credit spread curves
are useful to study the pricing of second to default swaps or counterparty risk on credit default swaps. We
start with a useful technical lemma:

Lemma 1.3 For given dates, t; tj ; ti, 0 · tj · t · ti and a set of default times ¿1; : : : ; ¿n, we can write
the following conditional probability of default as:

Q

µ
¿ i ¸ ti j min

k 6=j
¿k ¸ t; ¿ j = tj

¶
=
Q (¿ i ¸ ti;mink 6=j ¿k ¸ t j ¿j = tj)

Q (mink 6=j ¿k ¸ t j ¿ j = tj) : (1.4)

We can remark that Q (¿ i ¸ ti j mink 6=j ¿k ¸ t; ¿j = tj) is a conditional survival function, i.e. the conditional
probability that default on i occurs after time ti. However the conditioning set is no more fmin

i
¿ i ¸

tg = f¿1 ¸ tg (that is before the …rst default on the basket) as was studied in the previous subsection
but fmink 6=j ¿k ¸ t; ¿j = tjg, which can be interpreted as follows for tj · t · ti: …rst default has
occured on underlying j at time tj < t, t is the current date and no other default has occured since tj
(we are between the …rst to default and the second to default time). The conditional survival functions
Q (¿ i ¸ ti j mink 6=j ¿k ¸ t; ¿j = tj) (for i 6= j) will be involved in the computation of credit spread curves
between the …rst to default time ¿1 and the second to default time ¿2.

It is possible to go further in this analysis and compute survival functions and hazard rates given a series
of past defaults. This usually results in jumps of hazard rates at default times. The derivations involve
partial derivatives of the joint survival function9 and conditional distributions of default times. However,
these extra computations are not required for the pricing of basket credit derivatives and CDO.

1.4 First to default time hazard rates
Assumption 4 The function t! S(t; : : : ; t) is right di¤erentiable for all t ¸ 0.

Lemma 1.4 Under assumption (4), the hazard rate of the …rst to default time ¿1 de…ned as:

¸1(t) = lim
dt!0+

Q(¿1 2 [t; t+ dt[j ¿1 ¸ t) = lim
dt!0+

Q(¿1 2 [t; t+ dt[j ¿1 ¸ t; : : : ¿n ¸ t);

is equal to ¡ 1

S(t; : : : ; t)

dS(t; : : : ; t)

dt+
.

Lemma 1.5 Under assumption (3) the hazard rate of the …rst to default time ¿1 is equal to the sum of the
conditional hazard rates:

¸1(t) =
nX
i=1

¸i(t):

9One can also use derivatives of the copula of default times as in Schönbucher and Schubert [2001].
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This lemma is a straightforward consequence of the previous lemmas. Let us notice that in the correlated

case, ¸F (t) 6=
nX
i=1

hi(t). This is rather unfortunate since the hi(t) are standard outputs from strippers

while the ¸i(t) are more di¢cult to obtain. Let us remark that assumption (3) may not be satis…ed in
practical examples. It can be that t! S(t; : : : ; t) is di¤erentiable while (t1; : : : ; tn)! S(t1; : : : ; tn) is not
di¤erentiable. Since when default rates are correlated conditional hazard rates di¤er from marginal hazard
rates, the …rst to default time di¤ers from the sum of the marginal hazard rates.

1.5 Copula functions and joint distributions
The use of Copula functions10 will allow to have some easy to implement results on the dynamics of credit
spreads and default times. Let us …rstly recall the de…nition of a copula.

De…nition 3 A copula function C on Rn, n 2 N is a joint distribution function on Rn with marginal
distribution functions being uniform on [0; 1].

We now state a useful result that relates continuous joint distributions to copulas:

Theorem 1.1 Sklar theorem for continuous marginal distributions
Let F be a joint distribution function on Rn with continuous marginal distributions Fi. Then there exist a
unique copula function C such that for all x1; : : : ; xn in R,

F (x1; : : : ; xn) = C(F1(x1); : : : ; Fn(xn)):

While keeping the assumption of continuity, Let us moreover assume that the Fi are strictly increasing.
On …nancial grounds, this means that default can occur at all positive times. In this case, the cdf Fi,
i = 1; : : : ; n, have plain inverses11 F¡1i we simply get:

C(u1; : : : ; un) = F (F
¡1
1 (u1); : : : ; F

¡1
n (un)): (1.5)

1.6 Multivariate Cox Processes
We can easily relate the copula approach and the multivariate Cox process framework. Let us consider
a random vector U = (U1; : : : ; Un) with marginals uniformly distributed on [0; 1] and joint distribution
function C(u1; : : : ; un). We construct a set of default times ¿1; : : : ; ¿n as:

¿ i = inf
½
u;

Z u

0

hi(v)dv ¸ ¡ logUi
¾
; i = 1; : : : ; n:

The hi are some positive deterministic functions12. It can be checked that the marginal survival functions
are given by:

Si(ti) = Q(¿ i ¸ ti) = exp
µ
¡
Z ti

0

hi(v)dv

¶
:

10See Joe [1997], Frees and Valdez [1998], Nelsen [1999] for some general presentations and further details.
11For a general univariate distribution function F , we de…ne F¡1 as the generalized inverse or quantile

function by F¡1(u) = fsup z; F (z) · ug. We can check that: x · F¡1(u) , F (x) · u; u; x 2 R. As a
consequence, if U is uniformly distributed, F¡1(U) has distribution F .
12These can be made stochastic but for simplicity, we rely on the deterministic assumption.
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Thus, hi are the marginal hazard rates introduced above. Similarly, the joint survival function is given by:

S(t1; : : : ; tn) = C

µ
exp¡

Z t1

0

h1(v)dv; : : : ; exp¡
Z tn

0

hn(v)dv

¶
:

We can notice that C is the survival copula of default times13 and thus we can equally think of the dependence
structure of the default times and of the underlying uniform random variables.

2 Factor Copula approaches
We now detail various examples with practical importance.

2.1 Gaussian Copulas
The Gaussian Copula is given by:

C½(u1; : : : ; un) = ©n;½(©
¡1(u1); : : : ;©¡1(un)); (2.1)

where ©n;½ is the joint distribution function of a multivariate Gaussian vector with mean zero and covariance
matrix equal to ½ (where ½ is a correlation matrix) and © is the distribution function of a standard Gaussian
random variable. It has been introduced by Li [1999, 2000] for the pricing of basket credit derivatives and
corresponds to the dependence structure underlying CreditMetrics and the New Basel Agreement. From
equations (1.5) and (2.1), we get :

F (t1; : : : ; tn) = P (¿1 < t1; : : : ; ¿n < tn) = ©n;½(©
¡1(F1(t1)); : : : ;©¡1(Fn(tn))): (2.2)

We can rewrite the previous equation as :

P
¡
©¡1(F1(¿1)) < ©¡1(F1(t1)); : : :

¢
= ©n;½(©

¡1(F1(t1)); : : : ;©¡1(Fn(tn))); (2.3)

which states that
¡
©¡1(F1(¿1)); : : : ;©¡1(Fn(¿n))

¢
is a Gaussian vector with mean zero and covariance

matrix ½. However, even if the computation of default times is fairly easy, let us remark that for good quality
reference credits, simulated default times are usually much larger than maturity dates. Thus, Monte Carlo
convergence is very slow, especially regarding the computation of the greeks, and this calls for acceleration
techniques such as importance sampling. Another route is to provide some semi-explicit results and rely on
numerical integration in one or more dimensions.

One factor Gaussian copula: If we consider a Gaussian vector (X1; : : : ;Xn) whereXi = ½iV +
p
1¡ ½2i ¹Vi,

where V; ¹Vi; i = 1; : : : ; n are independent standard Gaussian random variables14 we get cov(Xi;Xj) = ½i½j
for i 6= j and cov(Xi;Xi) = 1 for i = 1; : : : ; n. Such a correlation structure is appropriate for computations:
it involves only n parameters and provides tractable expressions for survival functions. Let us consider the
Gaussian copula in that framework:

C(u1; : : : ; un) = Q
¡
X1 < ©

¡1(u1); : : : ;Xn < ©¡1(un)
¢
:

13This depends on the hi’s being deterministic.
14Here, we depart from the BIS notations, where Xi =

p
½iV +

p
1¡ ½i ¹Vi. In the BIS settings, if ½i = ½

is independent of i, then cov(Xi;Xj) = ½. Thus ½ can readily be seen as a correlation parameter.
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By iterated expectations theorem, we can write the previous term as:

E
¡
Q
¡
X1 < ©

¡1(u1); : : : ;Xn < ©¡1(un)
¢¯̄
V
¢
;

which leads to:

C(u1; : : : ; un) =

Z Ã
nY
i=1

©

Ã
©¡1(ui)¡ ½ivp

1¡ ½2i

!!
'(v)dv;

where '(v) = 1p
2¼
e¡v

2=2 is the Gaussian density. Thus, the n-dimensional copula is computed through a
one dimensional integral. Similarly, the joint distribution and the joint survival functions are provided by:

F (t1; : : : ; tn) =

Z Ã
nY
i=1

©

Ã
©¡1(Fi(ti))¡ ½ivp

1¡ ½2i

!!
'(v)dv;

and by:

S(t1; : : : ; tn) =

Z Ã
nY
i=1

©

Ã
½iv ¡©¡1(Fi(ti))p

1¡ ½2i

!!
'(v)dv:

The previous integrals can be easily computed through some quadrature.

2.2 One factor mean variance Gaussian mixtures
The previously described one factor Gaussian copula can be extended to a variety of one factor models with
easy implementation. This includes mean variance Gaussian mixtures and Archimedean copulas. In a mean
variance or location scale mixture model, we write Xi =mi(µ)+¾i(µ)"i, where µ is a one dimensional mixing
latent variable with density function f and the "i are independent standard Gaussian random variables.
A special case to be discussed below is mi(µ) = ½iµ and ¾i =

p
1¡ ½2i . Conditionally on µ, the Xi’s

are independent Gaussian random variables with mean mi(µ) and standard deviation ¾i(µ). Let us …rstly

compute the marginal and joint distributions of theXi’s. Gi(xi) = Q(Xi < xi) =
Z
©

µ
xi ¡mi(u)

¾i(u)

¶
f(u)du

and G(x1; : : : ; xn) = Q(X1 < x1; : : : ;Xn < xn) =

Z nY
i=1

©

µ
xi ¡mi(u)

¾i(u)

¶
f(u)du, where the Gi’s denote

the marginal cdf and G the joint cdf. From this, we derive the copula:

C(u1; : : : ; un) =

Z nY
i=1

©

µ
G¡1i (ui)¡mi(u)

¾i(u)

¶
f(u)du; 8u1; : : : ; un 2 [0; 1];

which involves the computation of a one dimensional integral. Let us remark (see below that the "i do
not need to be Gaussian in order to obtain this dimensionality reduction. By invariance of copulas under
monotonic transforms, the previous copula is also that of the default times ¿ i. The calibration to the
marginal distributions of default times consists in determining increasing real functions gi, i = 1; : : : ; n such
that ¿ i = gi(Xi) and ¿ i has distribution function Fi. We have Fi(gi(t)) = Q(¿ i < gi(t)) = Q(Xi < t) =

Gi(t) =

Z
©

µ
t¡mi(u)

¾i(u)

¶
f(u)du. Thus, we have the calibrating equation:

gi(t) = F
¡1
i

µZ
©

µ
t¡mi(u)

¾i(u)

¶
f(u)du

¶
; (2.4)
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which completes the description of the model. Let us remark that the joint survival function of default times
is readily obtained as:

S(t1; : : : ; tn) = Q(¿1 ¸ t1; : : : ; ¿n ¸ tn) =
Z nY

i=1

©

µ
mi(u)¡ g¡1i (ti)

¾i(u)

¶
f(u)du: (2.5)

2.3 One factor structure and Archimedean copulas

Let Fi be the cdf of default time ¿ i, f the density of a positive mixing variable µ and Ã(s) =
Z 1

0

e¡sxf(x)dx,

the Laplace transform of f . We de…ne Gi as 8t ¸ 0, Gi(t) = exp
¡¡Ã¡1(Fi(t))¢. Gi de…nes a distribution

function. Thus Fi(t) = Ã (¡ lnGi(t)) =
Z 1

0

G®i (t)f(®)d®. Let us remark that G
®
i is a proper distribution

function. Thus conditionally on ®, the distribution of ¿ i is G®i . We de…ne the joint distribution of default

times by: F (t1; : : : ; tn) =
Z 1

0

nY
i=1

G®i (ti)f(®)d®. 8t1; : : : ; tn, Q (¿1 < t1; : : : ; ¿n < tn j ®) =
nY
i=1

G®i (ti) ;

conditionally on ® the default times are independent. Thus Q (¿1 ¸ t1; : : : ; ¿n ¸ tn j ®) =
nY
i=1

(1¡G®i (ti)).
By iterated expectations theorem, this leads to the joint survival function:

S(t1; : : : ; tn) =

Z nY
i=1

(1¡G®i (ti)) f(®)d®:

Since
Z 1

0

nY
i=1

G®i (ti)f(®)d® = Ã

Ã
¡

nX
i=1

lnGi(ti)

!
= Ã

Ã
nX
i=1

Ã¡1 (Fi(ti))

!
, we conclude that the joint dis-

tribution function can be computed directly as:

F (t1; : : : ; tn) = Ã

Ã
nX
i=1

Ã¡1 (Fi(ti))

!
;

and the copula of default times is given by:

C(u1; : : : ; un) = Ã
¡
Ã¡1(u1) + : : :+ Ã¡1(un)

¢
:

Thus C is an Archimedean copula with generator Á = Ã¡1. We will see further that we can compute
the distribution of k-th to default times and loss distribution within this one factor framework. A typical
example is the Clayton copula, where the mixing variable has a Gamma distribution with parameter 1=µ,

where µ > 0. More precisely, we have f(x) =
1

¡(1=µ)
e¡xx(1¡µ)=µ, Ã¡1(s) = s¡µ ¡ 1, Ã(s) = (1 + s)¡1=µ.

This leads to C(u1; : : : ; un) =
¡
u¡µ1 + : : :+ u¡µn ¡ n+ 1¢¡1=µ and Gi(t) = exp ¡1¡ Fi(t)¡µ¢.

2.4 Survival function of …rst to default time
We consider here the computation of the survival function of the …rst to default time that will be further
involved in computing basket default swap premiums under various dependence assumptions. The distrib-
ution of …rst to default time can be computed directly, while for more general kth to default time, we use a
moment generating function approach as discussed below.
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General Gaussian copula: The survival function of the …rst to default time ¿1, S(t) = Q(¿1 ¸ t) is equal
to:
S(t) = S(t; : : : ; t) = Q(¿1 ¸ t; : : : ; ¿n ¸ t) = Q

¡
X1 ¸ ©¡1(F1(t)); : : : ;Xn ¸ ©¡1(Fn(t))

¢
. Eventually, we

get:
S(t) = ¹©n;½

¡
©¡1(F1(t)); : : : ;©¡1(Fn(t))

¢
where ½ is the covariance matrix of (X1; : : : ;Xn) and ¹©n;½̂ is the n Gaussian joint survival function with
covariance matrix ½.

One factor Gaussian copula: Let us consider the previous one factor assumption for the correlation
structure and compute the distribution of the …rst to default time S(t) = Q(¿1 ¸ t). Since,

S(t) = S(t; : : : ; t) = Q
¡
X1 ¸ ©¡1(F1(t)); : : : ;Xn ¸ ©¡1(Fn(t))

¢
;

where Xi = ½iV +
p
1¡ ½2i ¹Vi, we can write:

S(t) = E
£
Q
¡
X1 ¸ ©¡1(F1(t)); : : : ;Xn ¸ ©¡1(Fn(t)) j V

¢¤
;

from iterated expectations theorem. Using that ¹Vi ¸ ©¡1(Fi(t))¡ ½iVp
1¡ ½2i

and the independence assumptions,

we obtain:

S(t) = E

"
nY
i=1

©

Ã
½iV ¡ ©¡1(Fi(t))p

1¡ ½2i

!#
=

Z nY
i=1

©

Ã
½iv ¡©¡1(Fi(t))p

1¡ ½2i

!
'(v)dv; (2.6)

where '(v) = 1p
2¼
e¡v

2=2 is the Gaussian density. This permits to compute the premium leg of a …rst to
homogeneous15 default swap under the assumption of independence between defaults and interest rates.

One factor mean variance Gaussian mixture copula: We need once again to compute S(t) = Q(¿1 ¸
t; : : : ; ¿n ¸ t). Since ¿ i = gi(Xi), i = 1; : : : ; n, we get the survival function of …rst to default time as:
S(t) = Q

¡
X1 ¸ g¡11 (t); : : : ;Xn ¸ g¡1n (t)

¢
. Conditioning on µ, we get:

S(t) = E
£
Q
¡
X1 ¸ g¡11 (t); : : : ;Xn ¸ g¡1n (t)

¯̄
µ
¢¤
;

which leads to:

S(t) =

Z Ã
nY
i=1

©

µ
mi(v)¡ g¡1i (t)

¾i(v)

¶!
f(v)dv: (2.7)

Archimedean copula: From the expression of the joint survival function, we get:

S(t) =

Z Ã
nY
i=1

(1¡G®i (t))
!
f(®)d®;

which in the case of the Clayton copula provides:

S(t) =
1

¡(1=µ)

Z Ã
nY
i=1

1¡ e®(1¡Fi(t)¡µ)
!
e¡®®(1¡µ)=µd®:

15Equal nominal amounts and recovery rates of reference credits.
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2.5 Survival functions at and after the …rst to default time
We concentrate here on the conditional survival functions just after …rst to default time; thus ¿1 = t where
t is the current time. This will allow to compute the jumps in the credit spreads at …rst to default time and
to study hedging e¤ects. Moreover, we will obtain some further technical results useful in pricing of …rst
to default swaps. To make notations simpler, we assume that name one has defaulted …rst. Thus ¿1 = ¿1.
The time t conditional survival function for name i (i > 1) is then given by:

Si;t(ti) = Q

µ
¿ i ¸ ti j ¿1 = t;min

k>1
¿k ¸ t

¶
:

Thanks to lemma 1.3, we can alternatively write Si;t(ti) as:

Si;t(ti) =
Q (¿ i ¸ ti; mink>1 ¿k ¸ t j ¿1 = t)

Q (mink>1 ¿k ¸ t j ¿1 = t) :

In the Gaussian copula framework, this usually involves computations of n¡1 dimensional survival Gaussian
distributions. The computations can be made simpler under a factor structure assumption. This allows to
reduce the dimension of the problem.

One factor Gaussian copula: Let us as before denote by:

(X1; : : : ;Xn) = (©
¡1(F1(¿1)); : : : ;©¡1(Fn(¿n)));

the Gaussian vector associated with default times. We assume here that Xi = ½iV +
p
1¡ ½2i ¹Vi. Let us

now compute the probabilities conditional on ¿1 = t. We start with the following lemma:

Lemma 2.1 conditional Gaussian distribution, one factor case
Under the one factor Gaussian copula assumption, we have:

Q (X2 ¸ x2; : : : ;Xn ¸ xn j X1 = x1) =
Z nY

i=2

©

Ã
½i
p
1¡ ½21u+ ½i½1x1 ¡ xip

1¡ ½2i

!
'(u)du: (2.8)

Using previous lemma 2.1, we get Si;t(ti) = Q (¿ i ¸ ti j ¿1 = t;mink>1 ¿k ¸ t) (t2 ¸ t), the survival function
on name i just after default of name one. We have :

Si;t(ti) =
Q (¿ i ¸ ti; mink>1 ¿k ¸ t j ¿1 = t)

Q (mink>1 ¿k ¸ t j ¿1 = t) =

Z nY
j=2

©

0@½jp1¡ ½21u+ ½j½1x1 ¡ xjq
1¡ ½2j

1A'(u)du
Z nY

j=2

©

0@½jp1¡ ½21u+ ½j½1y1 ¡ yjq
1¡ ½2j

1A'(u)du
; (2.9)

for ti ¸ t, with xj = yj = ©¡1(Fj(t)) for j 6= i and xi = ©¡1(Fi(ti)), yi = ©¡1(Fi(t)).

One factor mean-variance Gaussian mixture copula: Simple expressions can also be obtained in that
framework. We use here the connection between conditional probabilities and the partial derivatives of the
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joint survival function (see lemma (1.2)):

Q

µ
¿ i ¸ ti; min

k>1
¿k ¸ t j ¿1 = t

¶
= ¡ 1

f1(t)

@S

@t1
(t; : : : ; ti; : : : ; t);

for ti ¸ t. Let us now compute the partial derivative. We start from:

S(t; : : : ; ti; : : : ; t) =

Z nY
j=1

©

Ã
mj(u)¡ g¡1j (tj)

¾j(u)

!
f(u)du;

with tj = t forj 6= i. This leads to:
@S

@t1
(t; : : : ; ti; : : : ; t) = ¡dg

¡1
1 (t)

dt

Z
1

¾1(u)
'

µ
m1(u)¡ g¡11 (t)

¾1(u)

¶ nY
j=2

©

Ã
mj(u)¡ g¡1j (tj)

¾j(u)

!
f(u)du;

with tj = t forj 6= i. Eventually, the conditional survival function is provided by:

Si;t(ti) =

Z nY
j=2

©

Ã
mj(u)¡ g¡1j (tj)

¾j(u)

!
'

µ
m1(u)¡ g¡11 (t)

¾1(u)

¶
f(u)

¾1(u)
du

Z nY
j=2

©

Ã
mj(u)¡ g¡1j (t)

¾j(u)

!
'

µ
m1(u)¡ g¡11 (t)

¾1(u)

¶
f(u)

¾1(u)
du

; (2.10)

for ti ¸ t, with tj = t forj 6= i.

Archimedean copulas: we assume here that the distributions Gi admit some continuous hazard rates,
i.e. that we can write 1 ¡ Gi(t) = exp¡ R t

0
wi(u)du, for some positive continuous functions wi. Since

S(t; : : : ; ti; : : : ; t) =

Z nY
j=1

(1 ¡ G®j (tj))f(®)d® and
dG®1 (t)

dt
= ®w1(t)(1 ¡ G1(t))G®¡11 (t) where tj = t for

j 6= i, we get:
@S

@t1
(t; : : : ; ti; : : : ; t) = ¡w1(t)(1¡G1(t))

Z
®G®¡11 (t)

nY
j=2

(1¡G®j (tj))f(®)d®;

where tj = t for j 6= i. Eventually,

Si;t(ti) =

Z
®G®¡11 (t)

nY
j=2

(1¡G®j (tj))f(®)d®Z
®G®¡11 (t)

nY
j=2

(1¡G®j (t))f(®)d®
; (2.11)

for ti ¸ t, with tj = t forj 6= i .

2.6 Conditional hazard rates until the …rst to default time
In the case of a Gaussian copula, the joint survival function is di¤erentiable and thus ful…lls assumption (3).
We can then use property (1.1) and we recall the expression of the conditional hazard rates before the …rst
to default time:

¸i(t) = fi(t)£ Q (minj 6=i ¿j ¸ t j ¿ i = t)
Q (minj ¿ j ¸ t) (2.12)
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One factor Gaussian copula: Using lemma (2.1), we get:

Q(min
j 6=i

¿ j ¸ t j ¿ i = t) =
Z Y

j 6=i
©

0@½jp1¡ ½2iu+ ½j½ixi ¡ xjq
1¡ ½2j

1A'(u)du; (2.13)

where xj = ©¡1(Fj(t)) for j = 1; : : : ; n. Then from property (1.1), we write the following:

¸i(t)S(t) = hi(t)Si(t)£
Z Y

j 6=i
©

0@½jp1¡ ½2iu+ ½j½ixi ¡ xjq
1¡ ½2j

1A'(u)du; (2.14)

where hi(t), Si(t) are the marginal hazard rate and the marginal survival function (taken at time t) for name
i and as before where xj = ©¡1(Fj(t)) for j = 1; : : : ; n. Such an expression is useful for the computation of
non homogeneous16 …rst to default swaps.

One factor mean-variance Gaussian mixture copula: in order to get the conditional hazard rates up
to …rst default time, we rely the joint survival function since by de…nition:

¸i(t)S(t) = ¡@S(t; : : : ; t)
@ti

:

From equation (2.5), we have:

S(t; : : : ; t) =

Z nY
j=1

©

Ã
mj(u)¡ g¡1j (t)

¾j(u)

!
f(u)du;

and:

¸i(t)S(t) = ¡@S(t; : : : ; t)
@ti

=
dg¡1i (t)

dt

Z
'

µ
mi(u)¡ g¡1i (t)

¾i(u)

¶Y
j 6=i
©

Ã
mj(u)¡ g¡1j (t)

¾j(u)

!
f(u)

¾i(u)
du:

Let us remark that from the calibrating equation (2.4), we get:

hi(t)Si(t) = fi(t) =
dg¡1i (t)

dt

Z
'

µ
mi(u)¡ g¡1i (t)

¾i(u)

¶
f(u)

¾i(u)
du;

where fi is the marginal density of default time ¿ i. Thus:

¸i(t)S(t) = fi(t)

Z
'

µ
mi(u)¡ g¡1i (t)

¾i(u)

¶Y
j 6=i
©

Ã
mj(u)¡ g¡1j (t)

¾j(u)

!
f(u)

¾i(u)
du

Z
'

µ
mi(u)¡ g¡1i (t)

¾i(u)

¶
f(u)

¾i(u)
du

: (2.15)

Archimedean copulas: using the above approach and the expression of the survival function, we get:

¸i(t)S(t) = ¡@S(t; : : : ; t)
@ti

= wi(t)(1¡Gi(t))
Z
®G®¡1i (t)

nY
j 6=i
(1¡G®j (t))f(®)d®; (2.16)

16Nominal amounts or recovery rates may di¤er.
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where wi is the hazard rate associated with the baseline distribution Gi.

Lastly, under the assumption that the marginal densities fi(t) are continuous, in our factor copula framework,
the joint survival function is di¤erentiable and the hazard rate of the …rst to default time is equal to the

sum of the conditional hazard rates: ¸1(t) =
nX
i=1

¸i(t).

2.7 Number of defaults: pgf and FFT approaches
When considering k out of n default swaps, it may be important to compute the probability of k couterparties

being in default at time t where k = 0; : : : ; n. We thereafter denote by N(t) =
nX
i=1

If¿i·tg, N(t) being the
counting process associated to the number of defaults. If we denote by Ni(t) the indicator of default of name

i at time t (Ni(t) = If¿i·tg), we have N(t) =
nX
i=1

Ni(t). We will compute the probabilities of k defaults

at time t, i.e. P (N(t) = k), k = 0; : : : ; n through the probability generating function (or pgf) and discrete
Fourier transform (DFT) or FFT (Fast Fourier Transform).

2.7.1 Computation of the probability generating function of N(t)

One factor Gaussian correlation structure: We consider here the simple correlation structure with a
single common factor. We denote by pijVt the probability of f¿ i · tg conditionally on V (i.e. the probability
of name i to be in default at time t conditionally on V ). We have:

p
ijV
t = Q (¿ i · t j V ) = Q

µ
½iV +

q
1¡ ½2i ¹Vi · ©¡1(Fi(t)) j V

¶
= ©

Ã
¡½iV +©¡1(Fi(t))p

1¡ ½2i

!
:

Let us compute the moment generating function (or probability generating fucntion) of N(t):

ÃN(t)(u) = E
h
uN(t)

i
=

nX
k=0

Q(N(t) = k)uk:

Let us remark that Ni(t) is a Bernoulli random variable and E
£
uNi(t) j V ¤ = 1 ¡ pijVt + p

ijV
t £ u. Using

that E
£
uN(t)

¤
= E

£
E
£
uN(t) j V ¤¤, and the conditional independence of the Ni(t), we obtain: ÃN(t)(u) =

E

"
nY
i=1

³
1¡ pijVt + p

ijV
t £ u

´#
. This leads to:

ÃN(t)(u) =

Z nY
i=1

Ã
©

Ã
½iv ¡©¡1(Fi(t))p

1¡ ½2i

!
+©

Ã
¡½iv +©¡1(Fi(t))p

1¡ ½2i

!
u

!
'(v)dv; (2.17)

Since ÃN(t)(u) can be written as E [u
nÁn(V ) + : : :+ Á0(V )], where Ák(V ) is obtained by a formal expansion

of:
nY
i=1

Ã
©

Ã
½iV ¡©¡1(Fi(t))p

1¡ ½2i

!
+©

Ã
¡½iV +©¡1(Fi(t))p

1¡ ½2i

!
u

!
:
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We can then obtain the probability of k names being in default at time t as :

Q(N(t) = k) = E [Ák(V )] =

Z
Ák(v)'(v)dv: (2.18)

One factor mean-variance mixture model: We recall that ¿ i = gi(Xi), i = 1; : : : ; n and Xi =mi(µ) +

¾i(µ)"i where the mixing variable µ has density f . As a consequence the conditional probability p
ijµ
t can be

written as: pijµt = Q (¿ i < t j µ) = Q
¡
Xi < g

¡1
i (t) j µ¢ = ©µg¡1i (t)¡mi(µ)

¾i(µ)

¶
and ÃNi(t)(u) = 1¡pijµt +pijµt u.

This leads to the pgf of the number of defaults:

ÃN(t)(u) =

Z nY
i=1

µ
©

µ
mi(µ)¡ g¡1i (t)

¾i(µ)

¶
+©

µ
g¡1i (t)¡mi(µ)

¾i(µ)

¶
u

¶
f(µ)dµ: (2.19)

One factor Archimedean Copula: Here the conditional probability of default pij®t is given by G®i (t)
where Gi(t) = exp

¡¡Ã¡1(Fi(t))¢ and Ã is the Laplace transform of the density f of the mixing variable ®.
This leads to the following expression of the pgf of the number of defaults:

ÃN(t)(u) =

Z nY
i=1

¡
1¡ exp ¡¡®Ã¡1(Fi(t))¢+ exp ¡¡®Ã¡1(Fi(t))¢u¢ f(®)d®: (2.20)

Let us remark that for practical purpose, the formal expansion approach to the computation of the pro-
babilities P (N(t) = k), k = 0; : : : ; n is well suited for small dimensional problems. More generally one can
use FFT approaches to obtain the distribution function from its pgf.

3 Pricing of basket default swaps
We consider thereafter the pricing of various basket default swaps. In a …rst to default swap, there is a
default payment at the …rst to default time. The payment corresponds to the non recovered part of bond in
default17 . In a m out of n basket default swap (m · n, where n is the number of names), there is a default
payment a the m-th default time. The payment corresponds to the non recovered part of the corresponding
bond in default. There are also some basket default swaps that provide protection for defaults ranking
between dm and dM , with 1 · dm · dM · n. The default leg here is simply the sum of default legs of
m out of n default swaps, with dm · m < dM . We detail below the premium payments of such a basket
credit derivative. In an homogeneous basket, the nominals and the recovery rates of the reference credits
are assumed to be equal. However, the marginal default probabilities may di¤er.

We compute separately the price of the premium leg and of the default payment leg. The basket premium
is such that the prices of the two legs are equal.

17More precisely, the recovery is based on the nominal plus the accrued coupon. In the following, we will
make the simplifying assumption of a recovery based on the nominal only. However, this assumption can
easily be relaxed by considering a time dependent nominal in the pricing formulas.
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² The premium payment leg computations only involve the distribution of the number of defaults N(t).
In the case of …rst to default swaps, computations depend only on the survival function of the …rst
to default time.

² The price of the default leg of an homogeneous m out of n basket default swap only involves the
distribution of the number of defaults18. Under the homogeneity assumption, …rst to default swaps
do not deserve a special treatment: the only point worth mentioning is that the survival function of
…rst to default time can be easily computed, without the use of the pgf of N(t). In the general case
of the default leg of a non homogeneous m out of n basket default swap, the computations are a bit
more involved. First to default swaps can also be valuated in a somehow more direct way.

We thereafter compute the price at time 0 as the expected discounted payo¤ at time 0. For simplicity, we
moreover assume independence between default dates and interest rates, since the important issue for basket
type credit derivatives is the modelling of dependence between default dates19. Since basket derivatives
payo¤s do not depend on interest rates, we can then only consider the discount bond prices at time 0.
Similarly, we assume that the recovery rates on the underlying bonds are independent from default times
and interest rates. Since the payo¤s of basket default swaps are linear in these recovery rates, only the
expected recovery rates are involved. For notational simplicity, we will thus confuse recovery rates and their
expectation20.

3.1 m out of n basket default swaps: premium leg
We consider here a basket default swap on a set of n reference credits, with protection payment arising
between defaults of rank dm (included) and dM (excluded). We denote by ti, i = 1; : : : ; I the premium
payments dates (with tI = T where T is the maturity date of the basket default swap) and by X the
periodic premium. ¢i¡1;i represents the length of period [ti¡1; ti] and B(0; ti) is the discount factor for
maturity ti. For simplicity, we do not take into account accrued premium payments due to defaults between
premium payments dates. Let us …rstly detail the premium payments and consider some payment date ti.
If N(ti) ¸ dM , the basket payments are exhausted21. If N(ti) < dm, the premium is due on a full nominal
of dM ¡ dm. In between, if dm · N(ti) < dM , the premium is payed on the oustanding protected nominal,
i.e. dM ¡N(ti).

From the distribution function of N(t) we can compute the premium payment leg for m out of n basket
default swaps. The discounted expectation of premium payment of date ti can then be written as:

¢i¡1;iXB(0; ti)£
Ã
(dM ¡ dm)Q(N(ti) < dm) +

dMX
k=dm

(dM ¡ k)Q(N(ti) = k)
!
;

where the probabilities of k names being in default at time t, Q(N(t) = k) have already been computed.
We can eventually write the price of the premium payment leg by summing over possible premium payment

18More precisely the survival function of m-th default time.
19However, for such products as quanto default swaps, defaultable interest rate swaps, credit spread

options, the dependence between defaults and interest rates is an important issue.
20Let us remark that CDO tranches do not ful…ll that linearity in the recovery rates. The distribution of

recovery rates can have some e¤ect on the price of such tranches (see below).
21We recall that N(t) is the number of names in default at time t.
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dates:

nX
i=1

¢i¡1;iXB(0; ti)£
Ã
(dM ¡ dm)

dm¡1X
k=0

Q(N(ti) = k) +
dMX
k=dm

(dM ¡ k)Q(N(ti) = k)
!
:

This price only involves semi explicit probabilities Q(N(ti) = k).

3.2 m out of n homogeneous default swaps: default leg
Similarly, let us consider the default payment leg of an homogeneous basket default swap: we denote by 1,
the nominal of a given reference credit and by ± the unique recovery rate. The homogeneity assumption
allows the computation of the price of the default payment leg knowing the distribution of the number of
defaults only. We denote by ¿k the time of the k-th default. We can write the distribution function of ¿k

as:
Q(¿k · t) = Q(N(t) ¸ k):

Thus, the distribution function of ¿k can be computed. We will consider the default payments at dates
¿dm+1; : : : ; ¿k; : : : ; ¿dM provided that these dates are before the maturity of the basket default swap T = tI .
Straightforward algebra shows that the payo¤ of the default leg is equal to the sum of the payo¤s of default
legs paying 1¡ ± at the k-th default, dm · k < dM , provided that the k-th default is before T = tI . Then,
we simply have to compute the current price of a k-th to default payment and sum over possible k. We
denote by F k(t) = Q(¿k · t) and by Sk(t) the distribution and the survival functions of the k-th to default
time. We have:

Sk(t) = Q(¿k > t) = Q(N(t) < k) =
k¡1X
l=0

Q(N(t) = l);

which involves only the known Q(N(t) = k), k = 0; 1; : : : ; n. Under the previous assumptions independence
assumptions on interest rates and recovery rates, we can then write the price of the k-th to default payment
leg as:

E

"
(1¡ ±)I[0;T ](¿k) exp

Ã
¡
Z ¿k

0

r(s)ds

!#
= ¡(1¡ ±)

Z T

0

B(0; t)dSk(t); (3.1)

where r(s) denotes the short rate and ¡dSk(t) = Sk(t) ¡ Sk(t + dt) is the probability of the k-th default
to occur in [t; t+ dt[. The previous pricing equation has straightforward …nancial interpretation and corre-
sponds to equation (5.18) in Bielecki and Rutkowksi [2002]. The price of the default leg of the m out of n
homogeneous default swap is obtained by summing up over the relevant ranks:

¡(1¡ ±)
dM¡1X
k=dm

Z T

0

B(0; t)dSk(t); (3.2)

Integrating by parts, we can write the price of the payment leg of the k-th to default swap as:

(1¡ ±)£
Ã
1¡ Sk(T )B(0; T ) +

Z T

0

Sk(t)dB(0; t)

!
: (3.3)
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Under the usual smoothness assumptions we have that f(0; t)B(0; t) = ¡dB(0; t)
dt

where f(0; t) is the spot
forward rate. Thus, we can also write the previous price as:

(1¡ ±)£
Ã
1¡ Sk(T )B(0; T )¡

Z T

0

f(0; t)B(0; t)Sk(t)dt

!
:

We now consider some boundaries of the price of the default payment leg. Since B(0; t) and Sk(t) are

decreasing, it is possible to bound the integral
Z T

0

B(0; t)dSk(t) by discrete sums. We have:

B(0; tj)£
¡
Sk(tj¡1)¡ Sk(tj)

¢ · ¡Z tj

tj¡1
B(0; t)dSk(t) · B(0; tj¡1)£

¡
Sk(tj¡1)¡ Sk(tj)

¢
:

This provides the following boundaries for the price of the default leg of the k-th to default swap:

Upper boundary = (1¡ ±)£
JX
j=1

B(0; tj¡1)£
¡
Sk(tj¡1)¡ Sk(tj)

¢
; (3.4)

Lower boundary = (1¡ ±)£
JX
j=1

B(0; tj)£
¡
Sk(tj¡1)¡ Sk(tj)

¢
; (3.5)

where Sk(tj¡1)¡ Sk(tj) =
k¡1X
l=0

Q(N(tj¡1) = l)¡Q(N(tj) = l) involves only known quantities, t0 = 0 (thus

B(0; t0) = 1) and tJ = T . Using these boundaries, we can easily control the size of the grid tj , j = 1; : : : ; J
in order to get a good accuracy22.

As an example let us consider a First to Default swap (we drop the 1¡ ± term):

1¡ S(T )B(0; T )¡
Z T

0

f(0; t)B(0; t)S(t)dt;

where S(t) is the survival function of …rst to default date, B(0; t) is the discount factor for maturity t
and f(0; t) is the corresponding spot forward rate. From subsection (2.4), we can specialize the previous
expression to the one factor Gaussian, one factor mean-variance Gaussian mixture and Archimedean copulas.
For instance, in the one factor Gaussian copula case, the price of the default payment leg is provided by:

1¡B(0; T )
Z nY

i=1

©

Ã
©¡1(Fi(T ))¡ ½ivp

1¡ ½2i

!
'(v)dv ¡

Z T

0

Z
f(0; t)B(0; t)

nY
i=1

©

Ã
©¡1(Fi(t))¡ ½ivp

1¡ ½2i

!
'(v)dvdt;

(3.6)

22We might have worked through the second expression involving integrals with respect to B(0; t), which
leads to the same approximations.
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3.3 Default leg of …rst to default swap: non homogeneous case
We consider a series of n names with nominal Ni and recovery rates ±i, i = 1; : : : ; n. We denote by
Mi = Ni £ (1 ¡ ±i) the payment in case of default23 . We consider a …rst to default swap with maturity
T . As before, let us denote by ¿1 the …rst to default time. If ¿1 · T , there is a default payment at that
time that depends on the name in default: if name i is in default, the payment is equal to Mi. Thus, the
default payment can be decomposed as the sum of n default payments, each of them corresponding to a
speci…c name being the …rst to default. We denote by Ni(t) = If¿ i·tg, i = 1; : : : ; n, the indicator function
of default time of name i. Let us consider the price of the default payment leg as the limit of the price in
a discrete model24 We denote by ¼k, k 2 N, a sequence of partitions of [0; T ] with mesh converging to zero.
The time zero price of the default leg is given by:

lim
k!1

nX
i=1

X
tl2¼k

MiB(0; tl)Q (¿ i 2 [tl; tl+1[; ¿ j ¸ tl; j 6= i) = ¡
nX
i=1

Mi

Z T

0

@iS(t; : : : ; t)B(0; t)dt; (3.7)

where @iS(t; : : : ; t) =
@S(t; : : : ; t)

@ti
denotes the partial derivative of the joint survival function with respect

to the ith component at point (t; : : : ; t). Indeed ¡@iS(t; : : : ; t)dt ¼ Q(¿ j ¸ t; j 6= i; ¿ i 2 [t; t+ dt[)25. From
the de…nition of the conditional hazard rates, we have ¸i(t)S(t) = ¡@iS(t; : : : ; t), where S(t) denotes the
survival function of …rst to default time. Thus, the price of the default payment leg can also be written as:

nX
i=1

Mi

Z T

0

¸i(t)S(t)B(0; t)dt:

Fortunately, we can use the expressions of ¸iS(t) for the one factor Gaussian, mean-variance Gaussian
mixture and Archimedean copulas stated in subsection (2.6), to readily obtain the price of the default
payment leg of a …rst to default swap in the non homogeneous case. For example, in the one factor Gaussian
copula case, using equation (2.14), we obtain:

Z T

0

Z nX
i=1

Mihi(t)Si(t)£
Y
j 6=i
©

0@½jp1¡ ½2iu+ ½j½ixi ¡ xjq
1¡ ½2j

1A'(u)dudt; (3.8)

where xj = ©¡1(Fj(t)) for j = 1; : : : ; n. These expressions only involve simple numerical quadratures.

3.4 default leg of m out of n default swaps: general case
We consider a series of n names with nominal Ni and recovery rates ±i, i = 1; : : : ; n and the default leg of am
out of n basket default swap (1 · m · n) with maturity T . We consider here a single default payment ; more
23The nominals will normally be equal but the estimated recoveries may well di¤er.
24See below, default leg of a m out of n basket default swap, for a more detailed discussion.
25We can provide a more rigorous, while more abstract, derivation of this statement. Let us denote by

¿ (¡i) = minj 6=i ¿ j the …rst to default time for the set of reference credits, i excluded. Under assumption (3),
there are no simultaneous defaults and I¿ (¡i)>¿i = I¿1¸¿ i Q-a.s. where ¿1 = minj ¿ j is the …rst to default
date. Thus, the discounted …rst to default basket payo¤ can be written as

Pn
i=1MiB(0; ¿ i)I¿1¸¿iI¿i·T .

From Fubini’s theorem, E
£
B(0; ¿ i)I¿1¸¿ iI¿ i·T

¤
=
R T
0 B(0; t)Q(¿

1 ¸ t j ¿ i = t)fi(t)dt. From lemma (1.2),
we get Q(¿1 ¸ t j ¿ i = t)fi(t) = ¡@iS(t; : : : ; t), which allows to conclude.
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general cases can be treated straightforwardly by summing up (see subsection on homogeneous baskets).
We denote by Mi = Ni £ (1 ¡ ±i) the payment in case of default. ¿m denotes the m-th default time. If
¿m · T , there is a default payment at that time that depends on the name in default: if name i is in

default, the payment is equal to Mi. We recall that Ni(t) = If¿i·tg) and N(t) =
nX
j=1

Nj(t). We de…ne

N (¡i)(t) =
X
j 6=i
Nj(t) and Nm(t) = If¿m·tg.

Let us …rstly compute the probability of name i being the m-th to default time and that default time being
in the interval ]t; t0], t0 > t. Let us remark that:

f¿m = ¿ i; ¿m 2]t; t0]g = fN(t) = m¡ 1; ¿ i 2]t; t0]g;

The latter set corresponding to m¡ 1 names being in default at time t and default date of name i being in
the interval ]t; t0]. Since f¿ i 2]t; t0]g = fNi(t0)¡Ni(t) = 1g, we can write:

fN(t) =m¡ 1; ¿ i 2]t; t0]g = fN(t) = m¡ 1;Ni(t0)¡Ni(t) = 1g:

Lastly, for events such that ¿ i is after t, N(t) = N (¡i)(t). Thus, we need to compute:

Q
³
N (¡i)(t) =m¡ 1; Ni(t0)¡Ni(t) = 1

´
:

We consider the slightly more general issue of computing Q
¡
N (¡i)(t¤) =m¡ 1; Ni(t0)¡Ni(t) = 1

¢
, where

t¤ · t · t0. This can be for done by using the joint pgf of ¡N(¡i)(t¤); Ni(t0)¡Ni(t)
¢
de…ned by Ã(u; v) =

E
h
uNi(t

0)¡Ni(t)vN
(¡i)(t¤)

i
. We compute Ã by conditioning on the latent variable V . Conditionally on V ,

Ni(t
0)¡Ni(t) is a Bernoulli random variable with Q (Ni(t0)¡Ni(t) = 1 j V ) = Q(¿ i · t0 j V )¡Q(¿ i · t j

V ) = p
ijV
t0 ¡ pijVt . We can write Ã(u; v) as:

Ã(u; v) =
nX
k=1

Q
³
Ni(t

0)¡Ni(t) = 0; N (¡i)(t¤) = k
´
vk +

n¡1X
k=1

Q
³
Ni(t

0)¡Ni(t) = 1; N (¡i)(t¤) = k
´
uvk:

On the other hand,
Ã(u; v) = E

h
E
h
uNi(t

0)¡Ni(t)vN
(¡i)(t¤) j V

ii
:

By conditional independence:

Ã(u; v) = E
h
E
h
uNi(t

0)¡Ni(t) j V
i
£E

h
vN

(¡i)(t¤) j V
ii
;

which leads to:

Ã(u; v) = E

24³1¡ pijVt0 + p
ijV
t +

³
p
ijV
t0 ¡ pijVt

´
u
´
£
Y
j 6=i

³
1¡ pjjVt¤ + p

jjV
t¤ v

´35 :
As a consequence, we obtain:

n¡1X
k=1

Q
³
Ni(t

0)¡Ni(t) = 1; N (¡i)(t¤) = k
´
vk = E

24³pijVt0 ¡ pijVt
´
£
Y
j 6=i

³
1¡ pjjVt¤ + p

jjV
t¤ v

´35 ;
where the term within the expectation can be computed by formal expansion.
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The price of the default payment leg is given by:

E

"Z T

0

B(0; t)
nX
i=1

MiIN(¡i)(t)=m¡1dNi(t)

#
; (3.9)

where B(0; t) is the maturity t discount factor. We can see N (¡i)(t) = m ¡ 1 as an activating condition.
When m¡ 1 names apart from i are in default, then default of name i triggers a payment of Mi. We have
thus decomposed the default payments into n payo¤s, each of them being similar to a plain CDS default
payment activated upon some event being satis…ed. Let us now turn to the computation of the di¤erent
terms:

E

"Z T

0

B(0; t)MiIN(¡i)(t)=m¡1dNi(t)

#
; i = 1; : : : ; n:

Z T

0

B(0; t)IN(¡i)(t)=m¡1dNi(t) is a plain stochastic integral with respect to the pure jump process Ni(t).

Let us consider a given sequence of partitions of [0; T ], ¼k with mesh converging to zero. We de…ne the
processes:

Vi;k(t) =
X
tl2¼k

IN(¡i)(tl)=m¡1I]tl;tl+1](t):

Vi;k is an adapted process (with respect to the …ltration generated by the set of default times) with
càglàd paths. The sequence of processes Vi;k converges uniformly on compacts in probability26 towards
IN(¡i)(:)=m¡1. By continuity properties of stochastic integrals,Z T

0

B(0; t)IN(¡i)(t)=m¡1dNi(t) = lim
k!1

X
tl2¼k

B(0; tl)IN(¡i)(tl¡1)=m¡1 (Ni(tl+1)¡Ni(tl)) ;

where the limit is taken in probability27 . The random variables:Z T

0

B(0; t)IN(¡i)(t)=m¡1dNi(t);
X
tl2¼k

B(0; tl)IN(¡i)(tl¡1)=m¡1 (Ni(tl+1)¡Ni(tl)) ;

are uniformly integrable28. Therefore, we conclude:

E

"Z T

0

B(0; t)IN(¡i)(t)=m¡1dNi(t)

#
= lim
k!1

E

"X
tl2¼k

B(0; tl)IN(¡i)(tl¡1)=m¡1 (Ni(tl+1)¡Ni(tl))
#
;

or equivalently as lim
k!1

X
tl2¼k

B(0; tl)Q
³
N (¡i)(tl¡1) =m¡ 1; Ni(tl+1)¡Ni(tl) = 1

´
. Let us for instance con-

sider the partitions of [0; T ] given by ¼k = f0; Tk ; : : : ; lTk ; : : : ; Tg. We can write:
n¡1X
k=1

h
Q
³
Ni(tl+1)¡Ni(tl) = 1; N(¡i)(tl) = k

´
¡Q

³
Ni(tl+1)¡Ni(tl) = 1; N (¡i)(tl¡1) = k

´i
vk;

26Under the standing assumption of a smooth joint survival function. This implies that there exists some
hazard rate for the di¤erent rank statistics.
27We do not need ucp here.
28They take value in [0,1].
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as:
n¡1X
k=1

E

24³pijVtl+1 ¡ pijVtl ´£
0@Y
j 6=i

³
1¡ pjjVtl + p

jjV
tl v

´
¡
Y
j 6=i

³
1¡ pjjVtl¡1 + pjjVtl¡1v

´1A35 vk = oµ1
k

¶
;

for smooth conditional default probabilities pijVt . As a consequence, we can consider the limit:

lim
k!1

X
tl2¼k

B(0; tl)Q
³
N (¡i)(tl) = m¡ 1; Ni(tl+1)¡Ni(tl) = 1

´
:

For smooth conditional default probabilities pijVt , we de…ne:

Zik(t) = lim
t0!t

1

t0 ¡ tQ
³
Ni(t

0)¡Ni(t) = 1; N(¡i)(t) = k
´
; k = 1; : : : ; n¡ 1; i = 1; : : : ; n:

The Zik(t) are given by:
n¡1X
k=1

Zik(t)v
k = E

24dpijVt
dt

£
Y
j 6=i

³
1¡ pjjVt + p

jjV
t v

´35. The price of the default pay-
ment leg is then given by:

Z T

0

nX
i=1

B(0; t)MiZ
i
m¡1(t)dt: (3.10)

We can provide some simple alternative expressions. Let us denote by:

Z
ijV
k (t) = lim

t0!t
1

t0 ¡ tQ
³
Ni(t

0)¡Ni(t) = 1; N(¡i)(t) = k j V
´
:

Then,
n¡1X
k=1

Z
ijV
k (t)vk =

dp
ijV
t

dt
£
Y
j 6=i

³
1¡ pjjVt + p

jjV
t v

´
;

and E
h
Z
ijV
k (t)

i
= Zik(t), where the expectation is taken upon V . Moreover,

Z
ijV
k (t) =

dp
ijV
t

dt
£Q

³
N (¡i)(t) = k j V

´
:

As a consequence the price of the default payment leg can be written as:

E

"Z T

0

nX
i=1

B(0; t)MiQ
³
N(¡i)(t) = m¡ 1 j V

´
dp
ijV
t

#
; (3.11)

where the expectation is taken over V and Q
¡
N(¡i)(t) = m¡ 1 j V ¢ is obtained from the formal expansion

of the polynomial
Y
j 6=i

³
1¡ pjjVt + p

jjV
t v

´
.

As can be seen from the previous equations, one can readily compute the price of the default payment leg of
a general m out of n default swap, once the conditional (on the latent variable) probabilities of default are
given. Putting in the relevant probabilities provides the price of the default payment leg for the one factor
Gaussian model, the mean variance mixture model and the Archimedean copula model.
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4 Loss distributions and the pricing of CDO’s
Under the factor copula framework, it is easy to compute the characteristic function of the cumulative loss
at a given time. Here, we consider the losses due to defaults only and not the losses due to changes in credit
spreads. The knowledge of the loss distribution is useful in some CDO computations. We can obtain it by
inverting the characteristic function and we can also provide some explicit computations of moments of the
Loss distribution that can be useful for cross-checking the Monte Carlo or tree approaches.

We consider n reference credits, with nominal Ni, i = 1; : : : ; n and recovery rate ±i. Mi = (1¡ ±i)Ni will
denote the Loss Given Default. In a …rst step, we will consider the recovery rates as determistic and further
show how the framework can easily be extended to stochastic recovery rates. We denote by ¿ i the default
time of name i and by Ni(t) the counting processes Ni(t) = I¿ i·t which jumps from 0 to 1 at default time
of name i. L(t) will denote the cumulative loss on the credit portfolio at time t:

L(t) =
nX
i=1

MiNi(t); (4.1)

which is thus a pure jump process.

4.1 Probability Generating Function of Loss Distribution
Let us now compute the loss distribution of L(t) assuming a discrete grid for the values of Mi, i = 1; : : : ; n.
We proceed with the moment generating function ÃL(t)(u):

ÃL(t)(u) = E
h
uL(t)

i
:

As a starting point, we model the default times along the one factor Gaussian copula where V denotes
the Gaussian factor, for the sake of simplifying the presentation. We can thus write from iterated expec-
tations theorem: ÃL(t)(u) = E

£
E
£
uL(t) j V ¤¤ : From the independence of Ni(t) conditionally on V , we get

E
£
uL(t) j V ¤ = ¦ni=1E £uMiNi(t) j V ¤. This gives : E £uL(t) j V ¤ = nY

i=1

³
1¡ pijVt + p

ijV
t uMi

´
, where pijVt =

Q(¿ i · t j V ) = ©
µ
¡½iV+©¡1(Fi(t))p

1¡½2i

¶
. The conditional moment generationg function can be computed re-

cursively as follows : let us de…ne ÃkjVL(t)(u) =
kY
i=1

³
1¡ pijVt + p

ijV
t uMi

´
. Then, Ãk+1jVL(t) (u) = Ã

kjV
L(t)(u) £³

1¡ pk+1jVt + p
k+1jV
t uMk+1

´
. We eventually get ÃL(t)(u) = E

£
uNÁN(V ) + : : :+ Á0(V )

¤
, where N =Pn

i=1Mk and the Ák(V ) are obtained as the coe¢cients of the polynomial expansion of E
£
uL(t) j V ¤. Thus,

we eventually obtain the probability distribution of L(t) as : Q(L(t) = k) = E[Ák(V )) =
R
Ák(v)'(v)dv,

where '(v) = 1p
2¼
e¡v

2=2 denotes the Gaussian density. Let us also remark that the probability of no loss

occuring is given by: Q(L(t) = 0) = E

"
nY
i=1

³
1¡ pijVt

´#
.
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4.2 Pricing the default payment leg of a CDO tranche
Let us consider a tranche of a CDO, where the default payment leg pays all losses that occur on the credit
portfolio, above a threshold A and below a threshold B where 0 · A · B ·

X
i=1

Ni. When A = 0,

we usually speak of the equity tranche. If A > 0 and B <
nX
i=1

Ni, we consider mezzanine tranches and

when B =
nX
i=1

Ni, we consider senior or super-senior tranches. In order to simplify notations, we use a

unique terminology M(t) to denote the cumulative losses on a given tranche. These losses are equal to
zero if L(t) · A, to L(t) ¡ A if A · L(t) · B and to B ¡ A if L(t) ¸ B. This can be summerized as :
M(t) = (L(t)¡A)I[A;B](L(t)) + (B ¡A)I]B;P Ni](L(t)). We can notice that as L(t), M(t) is a pure jump
process. The default payments are simply the increments of M(t). In other words, there is a payment
of M(t+) ¡M(t) at every jump time of M(t) (which is such that M(t+) ¡M(t) > 0). Since M(t) is an
increasing process, we can de…ne Stieltjes integrals with respect to M(t). Here, since M(t) is constant apart
from jump times, any integral with respect to M(t),

R
g(t)dM(t) (where g is some function) turns out to be

a discrete sum
X
i

g(ti)
¡
M(t+i )¡M(ti)

¢
, where the ti denotes the jump times. From the previous remarks,

we can write the price of the default payment leg of the given tranche as:

EQ

"Z T

0

B(0; t)dM(t)

#
;

where B(0; t) stands for the discount factor for maturity t and T is the maturity of the CDO. We assume here
deterministic interest rates. Let us again insist that the term within the brackets is the sum of discounted
default payments on the tranche. Using the Stieltjes framework allows to use the integration by parts
formula. This allows to write

R T
0 B(0; t)dM(t) = B(0; T )M(T ) +

R T
0 f(0; t)B(0; t)M(t)dt, where f(0; t)

denotes the spot forward rate. Using Fubini theorem, we then have:

EQ

"Z T

0

B(0; t)dM(t)

#
= B(0; T )EQ[M(T ] +

Z T

0

f(0; t)B(0; t)EQ[M(t)]dt:

Let us remark that we only need the …rst moment of the cumulative loss on the tranche. This can be
computed knowing the distribution of total losses. Indeed, we have:

EQ[M(t)] =
BX
k=A

(k ¡A)Q(L(t) = k) + (B ¡A)Q(L(t) > B);

or equivalently as:

EQ[M(t)] =
BX
k=A

(k ¡A)Q(L(t) = k) + (B ¡A)
P
NiX

k=B+1

Q(L(t) = k);

Here, we have assumed that A and B were corresponding to some possible values of the cumulative loss at
time t, L(t). We then can compute the price of the default payment leg of the tranche, since we already
know how to compute the probabilites Q(L(t) = k) for k = 1; : : : ;

X
Ni.
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Appendix A: Proofs related to section 1
Proof of lemma (1.2): Q(¿1 ¸ t1; : : : ; ¿n ¸ tn) = E

£
E
£I¿j¸tj ;8j j ¿ i¤¤ = E £I¿i¸tiE £I¿j¸tj;8j 6=i j ¿ i¤¤.

Let us remark that E
£I¿j¸tj ;8j 6=i j ¿ i¤ = Q (¿j ¸ tj ;8j 6= i j ¿ i) is a measurable function of ¿ i. Thus,

S(t1; : : : ; tn) =

Z 1

ti

Q (¿ j ¸ tj ;8j 6= i j ¿ i = ui) fi(ui)dui. The previous equation can also be seen as a
direct consequence of Fubini’s theorem. Assuming that Q (¿j ¸ tj ;8j 6= i j ¿ i = ui) is continuous at ti, we
obtain the stated result by di¤erentiation ¥
Proof of lemma (1.3): Q

µ
¿ i ¸ ti;min

k 6=j
¿k ¸ t j ¿ j = tj

¶
= E

£If¿i¸ti;mink 6=j ¿k¸tg¯̄ ¿ j = tj¤. From iterated
expectation theorem:

E
£If¿i¸ti;mink 6=j ¿k¸tg¯̄ ¿j = tj¤ = E ·E ·If¿i¸ti;mink 6=j ¿k¸tg ¯̄min

k 6=j
¿k ¸ t; ¿ j

¸¯̄̄̄
¿ j = tj

¸
:

The previous term can be expressed as: E
·
Ifmink 6=j ¿k¸tgE

·
If¿ i¸tig

¯̄
min
k 6=j

¿k ¸ t; ¿ j
¸¯̄̄̄
¿ j = tj

¸
. It can be

checked that E
·
If¿i¸tig

¯̄
min
k 6=j

¿k ¸ t; ¿ j
¸
= h(¿ j) where h is a measurable function. Thus:

E

·
Ifmink 6=j ¿k¸tgE

·
If¿i¸tig

¯̄
min
k 6=j

¿k ¸ t; ¿j
¸¯̄̄̄
¿j = tj

¸
= h(tj)E

£Ifmink 6=j ¿k¸tg j ¿j = tj¤ ;
which can be written as:

Q

µ
¿ i ¸ ti j min

k 6=j
¿k ¸ t; ¿ j = tj

¶
£Q

µ
min
k 6=j

¿k ¸ t j ¿ j = tj
¶
;

which proves the stated result ¥
Proof of lemma (1.4): Let us …rstly remark that f¿1 ¸ tg = f¿1 ¸ t; : : : ¿n ¸ tg. Thus Q(¿1 ¸ t) =

S(t; : : : ; t). Then, we simply remark that:

Q(¿1 2 [t; t+ dt[j ¿1 ¸ t) = Q(¿1 ¸ t)¡Q(¿1 ¸ t+ dt)
Q(¿1 ¸ t) = ¡S(t+ dt; : : : ; t+ dt)¡ S(t; : : : ; t)

S(t; : : : ; t)
¥

Proof of lemma (2.1): It can be seen that Xi = ½1½iX1 + "i, where "i is Gaussian and independent
from X1. A quick expansion shows in turn that "i = ½i

p
1¡ ½21

³p
1¡ ½21V ¡ ½1 ¹V1

´
+
p
1¡ ½2i ¹Vi, where

W1 =
p
1¡ ½21V ¡ ½1 ¹V1 and ¹Vi are standard Gaussian independent random variables and also independent

from X1. As a consequence, we get:

Q (X2 ¸ x2; : : : ;Xn ¸ xn j X1 = x1) = Q ("2 ¸ x2 ¡ ½1½2x1; : : : ; "n ¸ xn ¡ ½1½nx1) :

Let us denote by ~xi = xi ¡ ½1½ix1. From iterated expectations theorem, we get:

Q ("2 ¸ ~x2; : : : "n ¸ ~xn) = E [Q ("2 ¸ ~x2; : : : "n ¸ ~xn jW1)] :

Using the independence properties, we have:

Q ("2 ¸ ~x2; : : : "n ¸ ~xn jW1) =
nY
i=2

¹©

Ã
~xi ¡ ½i

p
1¡ ½21W1p

1¡ ½2i

!
;
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where ¹©(x) = 1¡©(x) is the survival Gaussian distribution function. We can thus write:

Q ("2 ¸ ~x2; : : : "n ¸ ~xn) =
Z nY

i=2

©

Ã
½i
p
1¡ ½21u¡ ~xip
1¡ ½2i

!
'(u)du;

Eventually, we obtain the stated result:

Q (X2 ¸ x2; : : : ;Xn ¸ xn j X1 = x1) =
Z nY

i=2

©

Ã
½i
p
1¡ ½21u+ ½i½1x1 ¡ xip

1¡ ½2i

!
'(u)du ¥

References
Andreasen , 2001, Credit Explosives, working paper, Bank of America.
Arvanitis A. & J. Gregory, 2001, Credit: The Complete Guide to Pricing, Hedging and Risk Manage-
ment, Risk Books.
Belkin B., S. Suchover & L. Forest, 1998, A One Parameter Representation of Credit Risk and
Transition Matrices, Credit Metrics Monitor 1(3), 46-56.
Bielecki T. & M. Rutkowski, 2002, Credit Risk: Modeling, Valuation and Hedging, Springer Verlag.
Bielecki T. & M. Rutkowski, 2001, Intensity Based Valuation of Basket Credit Derivatives, forthcoming
in Proceedings of the International Conference on Mathematical Finance, Fudan University, May 10-13,
2001.
Bouyé E., Durrleman V., Nikeghbali A., Riboulet G. & T. Roncalli, 2000, Copulas for Finance:
A Reading Guide and Some Applications, working paper, GRO, Crédit Lyonnais.
Credit Suisse First Boston, 1997, Credit Risk+ Technical Document.
Crouhy M., D. Galai & R. Mark, 2000, A Comparative Analysis of Current Credit Risk Models, Journal
of Banking and Finance, 24, 59-117.
Davis M. and V. Lo, 2001, Infectious Defaults, Quantitative Finance, 1, 382-386.
Davis M. and V. Lo, 2000, Modelling Default Correlation in Bond Portfolios, working paper, Imperial
College.
Duffie D., 1998, First to Default Valuation, working paper, Stanford University and Paris Dauphine Uni-
versity.
Duffie D. and Gârleanu N., 2001, Risk and the Valuation of Collateralized Debt Obligations, Financial
Analysts Journal, 57, 41-59.
Duffie D. and Singleton K., 1998, Simulating Correlated Defaults, working paper, Stanford University.
Durrleman V., Nikeghbali A. and T. Roncalli, 2000, A simple transformation of Copulas, working
paper, GRO, Crédit Lyonnais.
Embrechts P., McNeil A. and Strautmann D., 1998, Correlation and Dependency in Risk Manage-
ment: Properties and Pitfalls, working paper, ETH Zurich.
Embrechts P., McNeil A. and Strautmann D., 1999, Correlation: Pitfalls and Alternatives, Risk, May,
93-113.
Finger C., 1999, Conditional Approaches for Credit Metrics Portfolio Distributions, Credit Metrics Moni-
tor, 2(1), 14-33.
Finger C., 1998, Sticks and Stones, working paper, RiskMetrics Group.



4 LOSS DISTRIBUTIONS AND THE PRICING OF CDO’S 29

Frees E. and Valdez E., 1998, Understanding Relationships Using Copulas, North American Actuarial
Journal, 2(1), 1-25.
Frey R., A. McNeil and M. Nyfeler, 2001, Copulas and Credit Models, Risk, October, 111-113.
Frey R., A. McNeil and M. Nyfeler, 2001, Modelling Dependent Defaults, Asset Correlations Are Not
Enough !, working paper, ETH Zurich.
Giesecke K., 2001, Correlated Default with Incomplete Information, working paper, Humboldt University.
Gouriéroux C. and A. Monfort, 2002, Equidependence in Qualitative and Duration Models with Appli-
cation to Credit Risk, working paper, CREST.
Hull J. & A. White, 2001, Valuing Credit Default Swaps II: Modeling Default Correlations, Journal of
Derivatives, vol. 8(3), 12-22
Jarrow R. and F. Yu, 2000, Counterparty Risk and the Pricing of Defaultable Securities, Journal of
Finance, 56, 1765-1799.
Joe H., 1997, Multivariate Models and Dependence Concepts, Monographs on Statistics and Applied Prob-
ability, volume 37, Chapman and Hall.
Junker B.W and J.L Ellis, 1998, A characterization of monotone unidimensional latent variable models,
Annals of Statistics, 25(3), 1327-1343.
Kijima M., 2000, Valuation of a Credit Swap of the Basket Type, Review of Derivatives Research, 4, 81-97.
Koyluoglu U. and A. Hickman, 1998, Reconcilable Di¤erences, Risk, October.
Kusuoka S., 1999, A Remark on Default Risk Models, Advances in Mathematical Economics, 1, 69-82.
Lando D., 1998, On Cox Processes and Credit Risky Securities, Review of Derivatives Research, 2(2/3),
99-120.
Lando D., 2000, On correlated Defaults in a Rating-Based Model - Common State Variables versus Simul-
taneous Defaults, Working paper, University of Copenhagen.
Li D.X., 1999, The Valuation of Basket Credit Derivatives, CreditMetrics Monitor, April, 34-50.
Li D.X., 2000, On Default Correlation: a Copula Approach, Journal of Fixed Income, 9, March, 43-54.
Lucas A., Klaasen P., Spreij P. and Staetmans S., 1999, An Analytical Approach to Credit Risk of
Large Corporate Bond and Loan Portfolios, working paper 1999-18, Vrije Universiteit Amsterdam.
Marshall A. and Olkin L., 1967, A Multivariate Exponential Distribution, American Statistical Associ-
ation Journal.
Merino S. & M. Nyfeler, 2002, Calculating Portfolio loss, RISK, August, 82-86.
Nelsen R. B., 1999, An Introduction to Copulas, LNS 139,Springer.
Schmidt W. and I. Ward, 2002, Pricing Default Baskets, Risk, January, 111-114.
Schönbucher P. and D. Schubert, 2001, Copula Dependent Default Risk in Intensity Models, working
paper, Department of Statistics, Bonn University.
Schönbucher P., 2002, Taken to the Limit: Simple and Not-So-Simple Loan Loss Distributions, working
paper, Department of Statistics, Bonn University.
Vasicek O., 1997, The Loan Loss Distribution, working paper, KMV.
Wang S., 1998, Aggregation of Correlated Risk Portfolios: Models & Algorithms, working paper, CAS
Committee on Theory of Risk.
Wong D., 2000, Copula from the Limit of a Multivariate Binary Model, working paper, Bank of America
Corporation.


