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Abstract: This paper presents two new models of portfolio default loss that extend the

standard Gaussian copula model, yet preserve tractability and computational efficiency. In

one extension, we randomize recovery rates, explicitly allowing for the empirically well-

established effect of inverse correlation between recovery rates and default frequencies. In

another extension, we build into the model random systematic factor loadings, effectively

allowing default correlations to be higher in bear markets than in bull markets. In both

extensions, special cases of the models are shown to be as tractable as the Gaussian cop-

ula model and to allow efficient calibration to market credit spreads. We demonstrate that

the models—even in their simplest versions—can generate highly significant pricing effects

such as fat tails and a correlation “skew” in synthetic CDO tranche prices. When properly

calibrated, the skew effect of random recovery is quite minor, but the extension with ran-

dom factor loadings can produce correlation skews similar to the steep skews observed in the

market. We briefly discuss two alternative skew models, one based on the Marshall-Olkin

copula, the other on a spread-dependent correlation specification for the Gaussian copula.

1 Introduction

The valuation of synthetic CDO tranches requires the modeling of joint default losses
in portfolios of credit default swaps. A common technique for the description of co-
dependence of defaults is to specify a copula that governs the joint distribution of default
times. While many copulas have been proposed for this purpose (see e.g. Schonbucher
(2001)), the market standard copula is the Gaussian copula Li (2000) and its convenient
Student t extension Frey and McNeil (2003). In this model each underlying credit risk
is associated with a Gaussian (or Student t) random default variable whose value deter-
mines the time of default. The map from default variables to default times can be chosen
to reproduce observed default swap quotes, allowing an interpretation of the default vari-
ables as firm asset values; see Merton (1974). The random default variables are assumed
correlated with a constant correlation matrix, the entries of which can conveniently be
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thought of as correlations of firm asset returns. If the correlation matrix can be repre-
sented by a low number of systematic factors, portfolio loss distributions—and thereby
CDO tranche prices—can be computed efficiently using either recursions or Fourier meth-
ods; see Andersen et al. (2003) or Gregory and Laurent (2003).

While convenient and intuitive, the Gaussian copula has a number of obvious short-
comings as a model of the real world. For instance, standard implementations of the
model make the assumption that recovery rates on default are known firm-specific con-
stants. In reality, however, forecasting recovery rates of companies in default is notori-
ously difficult. While a number of modeling frameworks exist (e.g. Gupton and Stein
(2002)), the reality is that the certainty with which one can predict recovery at present is
not significantly better than when guessing a draw from a uniform distribution. Among the
few undisputed facts about recovery rates, however, is the observation that average recov-
ery rates tend to be inversely related to default rates: in a bad year, not only are there many
defaults, but recoveries are also low. The empirical literature supporting this observation
is large and growing; relevant papers include Acharya et al. (2003), Altman et al. (2003),
Frye (2000), Frye (2003), and Hu and Perraudin (2002), to name a few. Altman et al.
(2003) reviews much of the empirical research in detail.

Models for stochastic recovery rates have been proposed by a number of authors,
see Frye (2000), Jarrow (2001), Jokivuolle and Peura (2000), and Pykhtin (2003). The
primary focus of most of the existing literature is on applications to risk management
and the management of tail risk. In this paper, however, we shall tailor the modeling of
recovery rates to the pricing of CDOs and other structured credit derivatives. This, in
turn, imposes a number of constraints. First, precision in the fit to market observables
now becomes of prime importance, necessitating the construction of explicit calibration
routines. Second, to efficiently risk-manage and hedge CDO positions, tractability and
numerical efficiency is critical. Third, given the nature of the underlying collateral (credit
default swaps), recovery rates as a percentage of notional are bounded on [0,1] and should
be modeled as such1. This paper introduces, and embeds into a Gaussian copula, a multi-
dimensional factor-type recovery model that satisfies these constraints.

With the introduction of a quoted market on standardized tranches of credit indices,
another imperfection of the Gaussian copula has recently become evident: the allocation
of value across tranches implied by the model does not match the observable market. This
effect is perhaps best discussed in the context of implied “base correlation”, defined as the
constant correlation (for all pairs of credits) required for a Gaussian copula to match the
price of an all-equity CDO tranche with fixed upper detachment level2. Graphed against
the upper detachment level, the implied base correlations observable in the market tend to
form a steeply increasing skew, as illustrated in Figure 1 for 5-year tranches on the I-Boxx
index.

1In Frye (2000) and Pykhtin (2003), for example, loss amounts are Gaussian and log-normal, respec-
tively, and thus unbounded.

2That is, we consider loss tranches spanning the first x% of the total pool notional. Non-equity tranches
spanning a percentage loss interval of, say, [l,u], 0 < l < u, can trivially be priced as differences of two
equity trances with x = u and x = l, respectively.
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Figure 1: Base correlation skew in I-Boxx NA (May 2004)
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Equipped with interpolation and/or extrapolation rules, one can use graphs such as
that on Figure 1 to price arbitrary tranches on standard indices. Apart from the fact that
such schemes may be subject to arbitrage3, this practice has obvious shortcomings. For
instance, for customized portfolios with composition and/or maturities different from that
of a traded index it is unclear how to use the base correlation information in a systematic
way. It is also unclear how to use the market information for the pricing of non-vanilla
structured instruments, such as CDOs on portfolios of CDOs (“CDO-squared”). To ad-
dress these issues and to predict the evolution of the skew with changes in spreads as
required for hedge computations, we need a fundamental model mechanism capable of
producing the correlation skew.

To understand the demands on a model for the base correlation skew, consider that
tranche prices are essentially integrals over the risk-neutral portfolio loss distribution, al-
lowing us to back out the market-implied loss distributions from base correlation skew
graphs such as that of Figure 1. As demonstrated schematically in Figure 2, the market
loss distribution is more “kinked” than that of a Gaussian copula with empirical correla-
tions, with a fat upper tail and a relatively low probability of generating small losses.

While it is easy to make a Gaussian copula fat-tailed by switching to a Student t cop-
ula (or by raising all correlations), it is difficult to do so without increasing too much the
probability of generating zero losses4. Families of copulas exist that can produce market-
similar loss distributions directly, see Section 5, but these tend to be unwieldy numerically

3The observed I-Boxx base skew is often (suspiciously) close to a straight line. This can lead to arbitrage
for sufficiently high detachment points.

4One, somewhat contrived, way of doing this is to simply assume—contrary to empirical evidence—that
pairwise asset correlations are suitable functions of credit spreads. We consider this case in Section 5.
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Figure 2: Market implied portfolio loss distribution (schematic)
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Notes: Schematic portfolio loss distribution in the presence of an upward-sloping base
correlation skew (fat curve). The loss distribution for a Gaussian copula is given for
reference (thin curve).

and difficult to parameterize and make operational. In this paper, we suggest a straight-
forward extension of the Gaussian copula where factor loadings are made functions of
the systematic factors themselves. Interpreting systematic factors as the “state of the mar-
ket”, we can use this mechanism to mimic the well-known empirical effect that equity
(and thereby asset) correlations are higher in a bear market than in a bull market. As we
shall show, this mechanism will also induce a strong correlation skew.

The rest of the paper is organized as follows. First, in Section 2, we present a general
framework which can accommodate a wide range of factor models. For reference, we
introduce the standard Gaussian copula model and briefly review the efficient numerical
technique of Andersen et al. (2003) available for this model. In Sections 3 and 4, we
present our models for random recovery and random factor loadings, respectively. For
both models, our treatment puts particular emphasis on financial engineering aspects such
as model implementation and calibration. For intuition and for traditional portfolio risk
management, we also give easy-to-use results for large-portfolio limits. In Section 5
we briefly consider some alternatives to the main developments: first, a model based
on the Marshall-Olkin copula, and second, the imposition of specific structures on the
correlation matrix for the Gaussian copula. Section 6 contains numerical examples and
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model comparison and we present our conclusions in Section 7. Appendix A collects a
number of useful results for Gaussian integrals.

2 General framework

Consider a portfolio of N default-risky obligors. For a fixed time horizon [0,T ], we asso-
ciate the obligors with known default probabilities (eg, inferred from default swap quotes)
pi(T ), i = 1, . . . ,N, for default before time T . Note that we usually suppress the depen-
dence of default probabilities on the time horizon T .

On default, the obligors generate (possibly random) loss amounts of li, i = 1, . . . ,N.
Define the random default time of obligor i to be τi. The total portfolio loss experienced
on [0,T ] is then

L =
N

∑
i=1

li1τi≤T , (1)

with expected value

E(L) =
N

∑
i=1

piE(li|τi < T ).

In our notation the indicator function, 1τi≤T , in (1) is one if the i’th obligor defaults
no later than time T and zero otherwise. We assume that each li is bounded, ie, li ∈
[0, lmax

i ], lmax
i ∈ R+, such that 0 ≤ L ≤ ∑ lmax

i = Lmax. Often, it is convenient to introduce
the notion of a recovery rate, Ri, whereby

li = lmax
i (1−Ri) (2)

for (possibly random) R1, . . . ,RN taking values on [0,1].
To provide further structure to the loss distribution, we assume the existence of con-

tinuous random variables X1, . . . ,XN and fixed thresholds c1, . . . ,cN , such that

1τi≤T ≡ 1Xi≤ci , i = 1, . . . ,N.

Let the distribution function of Xi be FX
i . Assuming that FX

i is invertible, we have

ci = (FX
i )−1(pi), i = 1, . . . ,N.

Often, it is convenient to think of the Xi and ci as proxies for firm asset and liquidation
values, respectively, as in the structural model of Merton (1974).

Throughout, we make the assumption that there exists a d-dimensional vector of in-
dependent conditioning variables Z = (Z1, . . . ,Zd) such that all components of the aug-
mented vector (X1, . . . ,XN, l1, . . . , lN) are independent when conditioned on Z. Without
loss of generality we assume that the Zi, i = 1, . . . ,d, all have zero mean and unit vari-
ance.
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We shall refer to the vector Z as the systematic factors of our model, and write pi(Z) =
E(1Xi≤ci|Z) = Prob(Xi ≤ ci|Z) and li(Z) = E(li|Z). By conditional independence,

E(L) = E

(
N

∑
i=1

pi(Z)li(Z)

)
.

While Z may simply be an abstract set of latent variables, it is often useful to think of Z
as representing the industry or economy data that characterize the systematic credit risk
of the portfolio. Existence of a low-dimensional conditioning variable is often critical to
the numerical efficiency of a model. In particular, the portfolio loss distribution can be
efficiently computed with the techniques developed in Andersen et al. (2003) when the
dimension of the conditioning variable is low. As shown in, eg, Andersen et al. (2003),
knowledge of the portfolio loss distribution for a grid of horizon times suffices for the
purpose of pricing CDO tranches.

For practical purposes it is crucial that the market quotes of default swaps be repro-
duced. The valuation of the default swap coupon leg is straightforward and standard
given the default probabilities for all times to default swap maturity, but the valuation of
the default leg needs to be revisited for the general model framework considered here.

Recall that the default leg of a credit default swap pays (1−Ri) at the time of default if
and only if default happens before swap maturity. If P(0, t) denotes the risk-free discount
factor for time t we have5

PVi,default(0) = E

[∫ T

0
(1−Ri)P(0, t)1τi∈[t,t+dt]

]

=
∫ T

0
P(0, t)E

[
(1−Ri)

∣∣∣τi = t
]

p′i(t)dt, (3)

where the prime denote differentiation. In the second equation we used the definition of
conditional expectation to factorize the expectation.

From (3) we see that the valuation of a default swap requires (only) the expectation
of recovery conditioned on default. Once this is given the default swap value can be
computed as usual from default probabilities. As a consequence, the default probabilities
may be inferred by standard methods such as, eg, “bootstrapping”, from default swap
quotes.

For the special case where recovery rates are not random, ie, each Ri is just a number
in [0,1], the requisite recovery expectations require no calculation, but in models with
random recovery it is natural to let the conditional recovery expectation be given exoge-
nously. This not only makes calibration simple, it is also avoids the possibly nonsensical
and certainly non-intuitive concept of “recovery without default”.

Remark. As just demonstrated, the valuation of default swaps under random recovery
requires the knowledge of the expectation of recovery conditioned on default taking place

5Here we make the standard assumption of independence between risk-free discounting rates and de-
fault.
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at a given time. Sometimes we need or are given the expectation conditioned instead on
default taking place before a certain time. If

fi(t) := E
[
(1−Ri)

∣∣∣τi ∈ [t, t +dt]
]

;

Fi(t) := E [(1−Ri)|τi ≤ t] ,

then we note the following general relationships6

Fi(T )pi(T ) =
∫ T

0
fi(t)p′i(t)dt (4a)

fi(t) = Fi(t)+F ′
i (t)

pi(t)
p′i(t)

. (4b)

We note that the special case of horizon-independent expectations

fi(t)≡ Fi(t)≡ consti, for all t,

is a solution to (4).

2.1 Gaussian copula model

In the general framework set out above the Gaussian copula model is described by letting
the factors Z be Gaussian and by assuming the following relationships

Xi = ai ·Z +
√

1−||ai||2εi

li = lmax
i (1−Ri)

}
i = 1, . . . ,N, (5)

where Ri ∈ [0,1], i = 1, . . . ,N, are non-random and εi, i = 1, . . . ,N, define an iid sequence
of zero-mean, unit-variance Gaussian variables independent of Z. The factor loadings ai

are d-dimensional vectors of length less than one. We note that Andersen et al. (2003)
give an efficient algorithm for computing the factor loadings by optimally approximating
an arbitrary correlation structure with a low-dimensional factor structure. Clearly, in (5)
the conditional independence of the Xi’s and therefore of defaults is manifest.

In Andersen et al. (2003) quasi-analytical techniques were developed for studying this
model starting from the observation that since defaults are independent when conditioned
on factors, we can build the conditional distribution of losses over the time interval [0,T ]
by a simple recursion. To do this we require an arbitrary loss unit, u, to be defined such
that the loss amounts li (and thereby all portfolio losses) can be well-approximated by
integer multiples of u, say li = kiu. Now let Ln, 1 ≤ n < N, be the loss (measured in loss
units) over [0,T ] in the subportfolio consisting of the first n obligors in some arbitrary

6These follow from rewriting Fi(T )pi(T ) as E [(1−Ri)1τi≤T ] which is clearly identical to∫ T
0 E
[
(1−Ri)1τi∈[t,t+dt]

]
.
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ordering. Evidently we have the following recursive relation between the conditional
distributions of Ln and Ln+1:

Prob(Ln+1 = K|Z) = pn+1(Z)Prob(Ln = K − kn+1|Z)
+(1− pn+1(Z))Prob(Ln = K|Z) (6)

and we may use this to compute the loss distribution of the portfolio from the boundary
case of the empty portfolio for which we have Prob(L0 = K|Z) = δK,0. For sensitiv-
ity computations it is useful to remark that clearly the portfolio loss distribution cannot
depend on the ordering of the obligors.

In general the distribution of a sum of independent random variables is given by the
convolution of the distributions of each random variable; the recursion method can be
seen as a particular way of performing the (discrete) convolution of the single-obligor loss
distributions to obtain the portfolio loss distribution. An alternative is the use of Fourier
transformation techniques (see Gregory and Laurent (2003)) although this was found in
Andersen et al. (2003) to be less computationally efficient for the Gaussian copula model.

As shown in Andersen et al. (2003) sensitivities of expectations over the portfolio
loss distribution can be efficiently computed using (6). Let X(L) be some function of the
portfolio loss and consider its sensitivities to default probabilities7, ie, ∂E(X)/∂ pi. These
can be computed as

∂E(X)
∂ pi

=
∫ ∂E(X |Z)

∂ pi
dΦd(Z)

=
∫

dpi(Z)
dpi

∂E(X |Z)
∂ pi(Z)

dΦd(Z)

=
∫

dpi(Z)
dci

(
dpi

dci

)−1 ∂E(X |Z)
∂ pi(Z)

dΦd(Z), (7)

where Φd is the d-dimensional cumulative Gaussian distribution function with all corre-
lations zero. Here the first two factors of the integrand are easy to compute analytically
and the last factor follows from (6):

∂E(X |Z)
∂ pi(Z)

= ∑
K

X(K)
∂Prob(LN = K|Z)

∂ pi(Z)

= ∑
K

X(K)
[
Prob(L(i)

N−1 = K − ki|Z)−Prob(L(i)
N−1 = K|Z)

]
.

Here L(i)
N−1 is the loss of the portfolio with the i’th obligor removed and we may obtain

the distribution of L(i)
N−1 by solving (6) recursively for given portfolio loss distribution.

7These are related to hazard rate sensitivities and credit spread deltas by simple Jacobian factors.
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3 Random recovery

In this section we consider a special case of the general framework of the previous section
in which the loss amounts—or equivalently, the recovery rates—associated with defaults
are random. To specify the model let ai, bi, i = 1, . . . ,N, be d-dimensional vectors with
ai non-negative and of less than unit length. Also, let εi, i = 1, ...,N, define a sequence
of independent, zero-mean, unit variance random variables independent of Z. Finally, let
ξi, i = 1, ...,N, be a sequence of independent zero-mean random variables with variances
σ 2

ξi
, independent of Z and the εi’s.
Now consider the model

Xi = ai ·Z +
√

1−‖ai‖2εi

li = lmax
i (1−Ci(µi +bi ·Z +ξi))

}
i = 1, . . . ,N, (8)

where the Ci : R → [0,1], i = 1, . . . ,N, are arbitrary mapping functions, and the µi, i =
1, . . . ,N, are constants. Note that in this model the i’th recovery has a systematic term
(bi ·Z) as well as an idiosyncratic one (ξi). The interdependence between default of the
i’th obligor and recovery on the j’th obligor is controlled by ai ·b j; in particular, ai ·b j = 0
implies independence.

We note that the conditional default probabilities are straightforward:

Proposition 1 If Fε
i is the distribution functions of εi, then

pi(Z) = Fε
i

(
(FX

i )−1(pi)−ai ·Z√
1−‖ai‖2

)
. (9)

Proof: Simply note that

pi(Z) = Prob(Xi ≤ ci|Z) = Prob

(
εi ≤ ci −ai ·Z√

1−‖ai‖2

∣∣∣∣∣Z
)

= Fε
i

(
ci −ai ·Z√
1−‖ai‖2

)
= Fε

i

(
(FX

i )−1(pi)−ai ·Z√
1−‖ai‖2

)
.

Let us consider characterizing the correlation structure of the setup in (8). Given
the non-linear dependence of recovery rates on the stochastic drivers, we wish to focus on
rank correlation, rather than the usual linear (Pearson) correlation coefficient. Specifically,
let τ(x,y) be the Kendall’s Tau (rank correlation) of random variables x and y, such that, by
definition, τ(x,y) = Prob((x− x̃)(y− ỹ) > 0)−Prob((x− x̃)(y− ỹ) < 0), where (x̃, ỹ) is
an independent copy of (x,y). For the practically important class of elliptical distributions,
the following characterization is possible.
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Proposition 2 Consider (8) with the recovery mapping functions C strictly increasing.

Define Yi = µi + bi · Z + ξi and σi =
√

bi ·bi +σ 2
ξi
, i = 1, ...,N. If (X1, ...,XN,Y1, ...,YN)

belong to the class of continuous elliptical distributions, then

τ(Xi,Xj) = 2π−1 sin−1(ai ·a j), i �= j (10a)

τ(Ri,R j) = τ(Yi,Yj) = 2π−1 sin−1 (bi ·b j/(σiσ j)
)
, i �= j (10b)

τ(Ri,Xj) = τ(Yi,Xj) = 2π−1 sin−1(bi ·a j/σi). (10c)

Proof: All three statements are derived the same way, so we just concentrate on (10c).
First, notice that the normalization assumption on the Xi implies a linear correlation coef-
ficient between Yi and Xj of just bi ·a j/σi (i �= j). The equality

τ(Yi,Xj) = 2π−1 sin−1(bi ·a j/σi)

is a consequence of a general result for elliptical distributions in Lindskog et al. (2003);
the equation τ(Ri,Xj) = τ(Yi,Xj) follows from the fact that Kendall’s Tau is invariant un-
der strictly increasing transformations (see e.g. Embrechts et al. (2001)).

The class of elliptical distributions is characterized in detail in Embrechts et al. (2001)
and includes the Gaussian and Student’s t distributions, among many others. We note that
if recovery mapping functions are strictly decreasing, the sign on statement c) should
simply be reversed.

3.1 Portfolio loss distribution

The computation of the portfolio loss distribution in this model is more involved than for
the Gaussian copula model. This is because the conditional loss distributions of individ-
ual obligors are in general—due to the idiosyncratic randomness of recovery—not just
two-point distributions. However, since losses from individual obligors are independent
conditional on the factors, we can still compute the conditional portfolio loss distribution
as the convolution product of all of the single-name loss distributions.

To do this we assume that a positive loss unit u is given such that we can approximate
the distribution of each li by the discrete distribution of the integer valued ki, li = kiu.
Since li ∈ [0, lmax

i ] the support of the discrete distribution must lie on the non-negative
integers up to some finite value kmax

i (≈ lmax
i /u, but depending on the details of the chosen

discretization). What we need in building the portfolio loss distribution is a discretization
of the quantity �i := li1τi≤T , which describes the distribution of losses due to default
before time T . Since recovery and default are independent when we condition on Z, we
have

Prob(�i ≤ x|Z) = Prob(li ≤ x|Z) ·Prob(τi ≤ T |Z)+Prob(τi > T |Z)
= 1− pi(Z)(1−Prob(li ≤ x|Z))
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and we can therefore get a discrete distribution for �i, denoted P(i)(·|Z), from the discrete
distribution for li. The support of P(i)(·|Z) lies on the non-negative integers up to kmax

i .
Now let L denote the total portfolio loss (measured in loss units) and let ‘∧’ denote

the discrete convolution product over the integers. Then the conditional portfolio loss
distribution is given by

Prob(L = k|Z) =

(
N∧

i=1

P(i)(·|Z)

)
(k),

where we note that the convolution product is well-defined since all factors have finite
support. Clearly, the conditional portfolio loss distribution also has finite support. In the
computation of the convolution product we can make use of standard Fourier transform
techniques, but we may also do a recursive computation. Specifically, let Ln, 1 ≤ n < N,
be the loss (measured in loss units) in the subportfolio consisting of n obligors. Then
we have the following recursive relation between the conditional distributions of Ln and
Ln+1:

Prob(Ln+1 = K|Z) =
kmax

n+1

∑
k=0

Prob(Ln = K − k|Z)P(n+1)(k). (11)

We may use this recursion to compute the conditional loss distribution of the portfolio
from the boundary case of the empty portfolio for which we have Prob(L0 = K|Z) = δK,0.

Sensitivities may be computed from (11), but in general the direct recursive solution
of (11) for the loss distribution of the portfolio with one obligor removed is numerically
unstable. This problem is of a purely numerical nature and may be overcome, eg, by the
use of Fourier transform or matrix inversion techniques. Note that the problem exists only
for the general case where recovery has an idiosyncratic component. If there is no idiosyn-
cratic component, ie, recovery is completely determined by the conditioning factors, then
the conditional loss distributions of individual obligors are two-point distributions and
(11) can be solved by a stable recursion.

3.2 Specific model: cumulative Gaussian recovery

We consider the specific model defined from (8) by letting Z, εi and ξi be Gaussian and
by assuming that the mapping functions Ci(·) are all given by the standard cumulative
Gaussian distribution: Ci = Φ, for all i.

For later use, and to further characterize the model, we now list some useful results
for losses and conditional defaults. First note that the Xi’s are also standard Gaussian and
that

pi(Z) = Φ

(
Φ−1(pi)−ai ·Z√

1−‖ai‖2

)
, i = 1, . . . ,N, (12)

as a special case of Proposition 1.
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Proposition 3 Define σi =
√

bi ·bi +σ 2
ξi

and ρi = ai ·bi/σi and let ϕ(x) = (2π)−
1
2 exp(−1

2x2)

be the standard Gaussian density. Also, let Φ2(·, · ;ρ) be the bivariate cumulative Gaus-
sian distribution function with correlation ρ . Then we have

Prob(Ri ≤ x) = Φ
(

Φ−1(x)−µi

σi

)
; (13a)

Prob(Ri ∈ [x,x+dx]) = dx ·ϕ
(

Φ−1(x)−µi

σi

)(
ϕ
(
Φ−1(x)

)
σi
)−1

; (13b)

E(Ri) = Φ

⎛
⎝ µi√

1+σ 2
i

⎞
⎠ ; (13c)

V(Ri) = Φ2

⎛
⎝ µi√

1+σ 2
i

,
µi√

1+σ 2
i

;
σ 2

i

1+σ 2
i

⎞
⎠−Φ

⎛
⎝ µi√

1+σ 2
i

⎞
⎠

2

; (13d)

li(Z) = lmax
i

⎛
⎝1−Φ

⎛
⎝µi +bi ·Z√

1+σ 2
ξi

⎞
⎠
⎞
⎠ ; (13e)

Prob(Ri ≤ x|Z) = Φ

(
Φ−1(x)−µi −βi ·Z

σξi

)
; (13f)

E(Ri|τi ≤ T ) = p−1
i Φ2

⎛
⎝ µi√

1+σ 2
i

,ci;
−ρiσi√
1+σ 2

i

⎞
⎠ . (13g)

Proof: Introduce Yi = µi + bi · Z + ξi which is obviously Gaussian with mean µi and
standard deviation σi. The statement (13a) follows from

Prob(Ri ≤ x) = Prob
(
Yi ≤ Φ−1(x)

)
= Prob

(
Yi −µi

σi
≤ Φ−1(x)−µi

σi

)
= Φ

(
Φ(x)−µi

σi

)
.

Differentiation of this expression results in (13b). As for statements (13c) and (13d), we
note that

E(Ri) =
∫ ∞

−∞
Φ(µi +σix)ϕ(x)dx;

V(Ri) =
∫ ∞

−∞
Φ(µi +σix)2ϕ(x)dx−E(Ri)2.

Expressions for these integrals can be found in Appendix A, yielding the stated results.
Statement (13e) follows directly from Proposition 1, and statement (13f) follows from (2)
and (13c), after observing that Yi|Z is Gaussian with mean µi + bi ·Z and variance σ2

ξi
.

To prove (13g) note that the correlation between Yi and Xi is ρi and that, conditional on
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Xi = x, the distribution of Yi is N

(
µi +ρiσix,σ2

i

√
1−ρ2

i

)
. It then follows easily from

(13c) that

E(Ri|Xi = x) = Φ

⎛
⎝ µi +ρiσix√

1+σ 2
i (1−ρ2

i )

⎞
⎠ ,

whereby

E(Ri|τi ≤ T ) = E(Ri|Xi ≤ ci) = p−1
i

∫ ci

−∞
Φ

⎛
⎝ µi +ρiσix√

1+σ 2
i (1−ρ2

i )

⎞
⎠ϕ(x)dx.

Using the result (30c) in Appendix A proves the proposition.

Calibration of recovery model parameters could be done by matching moments and
rank correlation properties of the recovery distribution to empirical data. The results
in Propositions 2 and 3 are useful for this. Importantly, in any calibration scheme we
must ensure that the model remains consistent with the default swap market. For this
we use (13g) in conjunction with (3) and (4). We note that if, for instance, recovery
on default swaps (ie, the expectation of recovery conditioned on default) is assumed
time-independent, then it follows from (13g) that one or more of the parameters σ , µ
or c must in general be time-dependent. Alternatively, if the parameters are assumed
time-independent, the recovery expectation must be time-dependent. In either case it is
straightforward to fit the parameters in a bootstrap procedure.

The specific model for random recovery just described is tractable and capable of pro-
ducing a variety of distributions of recovery rates. The use of a Gaussian distribution may
be unconventional, but we note that the more traditional choice of a specification in terms
of the beta-distribution leads to a less tractable model. Furthermore, the range of possi-
ble recovery densities does not seem to differ much between the two specifications8. For
illustration, Figure 3 graphs the (unconditional) recovery densities for various parameter
specifications for our model. Finally, we note that extensions to a Student’s t copula are
straightforward.

3.3 Large Portfolio Limit

To gain intuition, we shall now consider some useful limit results arising when the size of
the underlying portfolio becomes large, in the sense that N → ∞. Such results are conve-
nient and, as documented in Schonbucher (2001) and Vasicek (2003), large-portfolio limit
loss distributions are often remarkably accurate approximations for finite-sized portfolios,
especially in the upper tail. Moreover, for empirical estimations done on economy-wide
data, the large-portfolio approximation is often natural to consider.

8In fact, when the first two recovery rate moments are set to fit the moments of a given beta distribution,
the model density is nearly indistinguishable from the beta density.
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Figure 3: Recovery rate densities in cumulative Gaussian model
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ξ (and we have suppressed the obligor index i).

To ensure the existence of a large-portfolio limit, we shall need to impose some struc-
ture on the portfolio:

Assumption 1 There exists systematic factors Z and a function h such that (pointwise)

lim
N→∞

N−1
N

∑
i=1

pi(Z)li(Z) = h(Z). (14)

Moreover, the composition of the portfolio satisfies

lim
N→∞

N−2
N

∑
i=1

(lmax
i )2 = 0. (15)

Proposition 4 Let the distribution function for the (independent) systematic factors Z be
denoted FZ. Under the terms of Assumption 1, we have

lim
N→∞

Prob(L/N ≤ y) = Prob(h(Z) ≤ y) =
∫

h(z)≤y
dFZ(z).
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Proof:
First notice that

E(L/N|Z) = E

(
N−1

N

∑
i=1

li1τi<T |Z
)

= N−1
N

∑
i=1

E(li|Z)E(1τi<T |Z) = N−1
N

∑
i=1

pi(Z)li(Z),

where we have relied on conditional independence in the second equality. Conditional
on Z, the variance of the average loss L/N is bounded by N−2 ∑i(lmax

i )2 which, by as-
sumption, approaches 0 for large N. We can use Chebychev’s inequality to show that the
random variable L/N|Z converges in probability to limN→∞ N−1 ∑N

i=1 pi(Z)li(Z) = h(Z).
This, in turn, implies convergence in distribution:

lim
N→∞

Prob(L/N ≤ y|Z) = 1h(Z)≤y.

Now,

lim
N→∞

Prob(L/N ≤ y) = lim
N→∞

E(Prob(L/N ≤ y|Z))

= E

(
lim

N→∞
Prob(L/N ≤ y|Z)

)
= E(1h(Z)≤y),

where interchange of limit and expectation is justified by the fact that Prob(L/N ≤ y|Z)
is bounded.

The conditions in Assumption 1 are quite weak. For instance, (15) is satisfied by
any portfolio where the lmax

i are bounded for all i. Equation (14) is trivially satisfied by
homogeneous portfolios where pi(Z) ≡ p(Z) and li(Z) ≡ l(Z) are independent of i; in
this case, obviously h(Z) = p(Z)l(Z). A more general type of portfolio satisfying the
condition splits the portfolio into M equal-sized homogeneous subgroups, with M some
fixed positive integer.

The result in Proposition 4 simplifies for the popular special case of a one-dimensional
systematic factor structure. Specifically, assuming that d = 1 and that conditional loss-
weighted default probability function h : R → R is strictly decreasing in its argument, we
just get

lim
N→∞

Prob(L/N ≥ y) = Prob(h(Z) ≥ y) = Prob
(
Z ≤ h−1(y)

)
= FZ (h−1(y)

)
. (16)

We note that the assumption that h(z) is decreasing in z is natural and consistent with
our earlier discussion of loss-given-default being positively related to portfolio default
frequency. Indeed, interpreting Z as a proxy for the state of the economic environment, it
is reasonable to assume that all pi(Z)’s and li(Z)’s are adversely affected (that is, increase)
by a low outcome of Z.

For a concrete model parameterization, consider the following proposition, valid for a
homogeneous portfolio (so we omit obligor indices on parameters):
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Proposition 5 Consider an homogeneous portfolio in a one-factor version of the model
in Section 3.2, with the identical default probability of all obligors denoted p̄. We have

lim
N→∞

Prob(L/N ≤ y) = Φ
(−h−1(y)

)
,

h(z)/lmax = Φ
(

Φ−1(p̄)−az√
1-a2

)⎛⎝1−Φ

⎛
⎝ µ +bz√

1+σ 2
ξ

⎞
⎠
⎞
⎠

for constants a, µ, b, σξ , where 0 < a < 1 and b ≥ 0.

Proof:
The function h is defined in Assumption 1 and can be computed explicitly by combin-

ing equation (12) and (13e). For the given restrictions on a and b, it is easy to see that h is
strictly decreasing. As the model in Section 3.2 has standard Gaussian systematic factors,
the proposition then follows directly from (16).

The result in Proposition 5 is straightforward to implement and gives an attractive
alternative to the constant-recovery result in Vasicek (2003) (which is the special case
of Proposition 5, for b = 0). Determination of the parameters of the recovery model
(a, µ, b, σξ ) can be done straightforwardly by matching moments and rank correlation,
using the expressions in Propositions 1 and 2. For illustration, in Figure 4, we have
locked the values of E(R), V(R), and ρ(Xi,Xj) = a2 and consider the effect on the large
portfolio limit distribution of varying the recovery/default rank correlation τ(Ri,Xi) =
2π−1 sin−1(ba/σ), σ 2 ≡ σ 2

ξ +b2. As one would expect, increasing the rank correlation
will increase the likelihood of having high-loss scenarios, making the upper distribution
tail significantly fatter.

To support empirical estimation, we round off this section with a few results on the
rank correlation between default frequency and average recovery. Let ∆N := ∑N

i=1 1τi≤T

be the total number of defaults and define the default frequency fN := ∆N/N and average
recovery

rN :=
{

L/∆N , ∆N > 0
0 , ∆N = 0

Proposition 6 Consider a homogeneous portfolio with non-zero default probability and
let pi(Z) ≡ p(Z) and li(Z) ≡ l(Z) for all i. Then

τ( f∞,r∞) = τ (p(Z), l(Z)) .

If the factor setting of equation 8) holds and: a) systematic factors Z are jointly elliptical;
b) the recovery mapping function C is strictly increasing; and c) the distribution function
of residuals εi is strictly increasing; then

τ( f∞, l∞) = τ(a ·Z,b ·Z) = 2π−1 sin−1
(

b ·a/
√
‖a‖2 +‖b‖2

)
.
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Figure 4: Large-portfolio distribution, cumulative Gaussian recovery model
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Proof:
Notice that E( fN |Z) = N−1 ∑N

i=1 E(1τi≤T |Z) = N−1N p(Z) = p(Z). As the variance
of fN|Z is bounded from above by N−1, fN converges to the random variable p(Z) in
probability. Assuming that at least one default takes place, we notice that

E(rN|Z) = E

(
N

∑
i=1

1τi≤T li/∆N

∣∣∣∣∣Z
)

= E

(
E

(
N

∑
i=1

1τi≤T li/∆N

∣∣∣∣∣Z,1τ1≤T , ...,1τN≤T

))
,

where the outer expectation in the last expression is with respect to the N default indicator
functions. Due to conditional independence, we have

E

(
N

∑
i=1

1τi≤T li/∆N

∣∣∣∣∣Z,1τ1≤T , ...,1τN≤T

)
=

N

∑
i=1

1τi≤T E(li|Z)/∆N

= l(Z).

As the probability of at least one default taking place approaches 1 for N → ∞, and the
variance of fN |Z is bounded from above by (lmax)2N−1, rN converges to the random vari-
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able l(Z) in probability. The first part of the proposition then follows. To prove the second
part notice that c) and Proposition 1 ensures that p(Z) is strictly decreasing in a ·Z. Sim-
ilarly, b) ensures that l(Z) is strictly decreasing in b ·Z. By the invariance of Kendall’s
Tau under strictly increasing transformations, we get that τ( f∞, l∞) = τ(−a ·Z,−b ·Z) =
τ(a ·Z,b ·Z), where the second equality follows from the definition of Kendall’s Tau. The
statement τ(a ·Z,b ·Z) = 2π−1 sin−1(b ·a/

√
‖a‖2 +‖b‖2) follows from the elliptical dis-

tribution of Z and the proof of Proposition 2.

4 Random factor loadings

In this section we consider the special case of the general framework of Section 2 where
the factor loadings depend deterministically on the factors. More specifically, let Z j, j =
1, . . . ,d, and εi, i = 1, . . . ,N, be independent random variables with zero means and unit
variances. Then we consider

Xi = ai(Z) ·Z + viεi +mi

li = lmax
i (1−Ri)

}
i = 1, . . . ,N, (17)

where Ri ∈ [0,1] are fixed, vi :=
√

1−V [ai(Z) ·Z] and mi := −E [ai(Z) ·Z], such that Xi

has zero mean and unit variance.
Note that

vi =
√

1−
∫

Rd
(ai(z) · z)2dFZ(z)+m2

i (18)

mi = −
∫

Rd
ai(z) · zdFZ(z) (19)

where FZ is the distribution function for Z.
For this model we can build the conditional loss distribution by the simple recursion

(6) used for the Gaussian copula model. The requisite conditional default probabilities
are given by

pi(Z) = Fε
i

(
ci −ai ·Z −mi

vi

)
, (20)

where Fε
i is the cumulative distribution of εi. The computation of sensitivities closely

follows the Gaussian copula model as described in Section 2.1.
In the model (17) the probability of default before some horizon T is

pi = Prob(τi ≤ T ) = Prob(Xi ≤ ci) = E

(
Prob

(
εi ≤ ci −ai(Z) ·Z−mi

vi
|Z
))

=
∫

Rd
Fε

i

(
ci −ai(z) · z−mi

vi

)
dFZ(z). (21)
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This expression—computed either numerically or, if possible, by a closed-form solution—
allows us to calibrate the model by determining the trigger levels ci from default proba-
bilities.

In practice, it is advantageous to work with a “separable” structure

ai(Z) =
(
ai,1(Z1), . . . ,ai,d(Zd)

)
, (22)

which will simplify variance and mean computations. For instance.

V(ai(Z)Z) =
d

∑
j=1

V
(
ai j(Zj)Zj

)
; (23)

Cov(ai(Z) ·Z,aj(Z) ·Z) =
d

∑
k=1

Cov(ai,k(Zk)Zk,a j,k(Zk)Zk), (24)

and so forth.

4.1 Specific model: two-point loadings distribution with Gaussian
factors

Above we defined a fairly rich class of random factor loading models differing in the
functional relationship between factors and loadings and in the choice of distributions for
the factors and residuals.

For illustration, we shall now study in more detail a simple model, building on the
standard Gaussian copula specification. Specifically, in this model Z j, j = 1, . . .d, and
εi, i = 1, . . .N, are standard Gaussian variates and the factor loadings are given by a two-
point distribution:

ai j(Zj) =
{

αi j, Zj ≤ θi j

βi j, Zj > θi j
(25)

where αi j, βi j are positive constants and θi j ∈R. Note that we have assumed the separable
structure of equation (22). Loosely, we can think of this as a regime-switching model
where loading j takes value αi j with probability Φ(θi j) and value βi j with probability
1−Φ(θi j). If αi j > βi j then the factor loadings decrease in Z j and thus, intuitively, asset
values couple more strongly to “the economy” in bad times than in good. Clearly, the
special case of constant, factor-independent ai j’s is the Gaussian copula model, but in
general the default drivers, Xi, (and thus the copula) will not be Gaussian.

While analytical tractability is not particularly important9 we note that more general
specifications than 25) are also tractable. For instance, extending the 2-point specification
to an N-point specification is trivial and allows one to approximate a given smooth func-
tion to arbitrary precision. A piecewise linear (rather than piecewise flat) factor loading

9Non-tractable factor loading functions can be handled by numerical quadrature coupled with some type
of function caching
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function is also tractable. We also note in passing that (25) is a special case of the smooth
and analytically tractable specification

ai(Z) =
(
χi,1 + γi,1Φ(µi,1Z1 +νi,1) , ...,χi,d + γi,dΦ

(
µi,dZd +νi,d

))
= χi +diag(γi)Φ(µi ·Z +νi) , (26)

where we introduced the d-dimensional vectors χi ≥ 0, 0 ≤ γi ≤ 1− χi, µi, and νi. In
the last equation, we understand that Φ(·) is to be applied componentwise. We note that
0 ≤ ai(Z) ≤ χi + γi, and must thus require that

||χi + γi||2 ≤ 1.

We would typically expect µi to be negative, such that factor loadings increase when the
factors decrease.

Although the specification (26) is tractable it requires additional parameters and in-
volves fairly lengthy expressions. For the purposes of this paper the simpler specification
(25) suffices and will serve to illustrate the basic idea of random factor loadings.

Moment properties of (25) are straightforward and are listed below.

Proposition 7 For the model in (25), we have

mi = −
d

∑
j=1

(−αi jϕ(θi j)+βi jϕ(θi j)
)
;

vi =

√√√√1−
d

∑
j=1

Vi j,

where

Vi j = α2
i j

(
Φ(θi j)−θi jϕ(θi j)

)
+β 2

i j

(
θi jϕ(θi j)+1−Φ(θi j

)
−(−αi jϕ(θi j)+βi jϕ(θi j)

)2
.

Proof: Using the results of Lemma 5, we immediately get

E
(
ai j(Zj)Zj

)
= E

(
αi j1Z j≤θi jZ j +βi j1Z j>θi jZ j

)
= −αi jϕ(θi j)+βi jϕ(θi j)

E
(
ai j(Zj)2Z2

j

)
= E

(
α2

i j1Z j≤θi jZ
2
j +β 2

i j1Z j>θi jZ
2
j

)
= α2

i j

(
Φ(θi j)−θi jϕ(θi j)

)
+β 2

i j

(
θi jϕ(θi j)+

(
1−Φ(θi j)

))
.

From this V
(

ai j(Zj)2Z2
j

)
= Vi j, with Vi j given above. The result then follows from equa-

tion (23).

To characterize the dependence structure of the model we give the following result.
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Proposition 8 Define θ̄i, j,k = max(θi,k,θ j,k) and θ i, j,k = min(θi,k,θ j,k). Then

E(ai, j) = αi, jΦ(θi, j)+βi, j
(
1−Φ(θi, j)

)
; (27a)

V(ai, j) = α2
i, jΦ(θi, j)+β 2

i, j

(
1−Φ(θi, j)

)−E(ai, j)2; (27b)

ρ
(
Xi,Xj

)
=

d

∑
k=1

(Ei, j,k −mim j), i �= j, (27c)

where

Ei, j,k := E
(
ai,k(Zk)a j,k(Zk)Z2

k

)
= αi,kα j,k

(
Φ
(
θ i, j,k

)−θ i, j,kϕ(θ i, j,k)
)

+βi,kβ j,k
(
1−Φ

(
θ̄i, j,k

)
+ θ̄i, j,kϕ(θ̄i, j,k)

)
+αi,kβ j,k1θi,k≥θ j,k

(
Φ(θi,k)−Φ(θ j,k)+θ j,kϕ(θ j,k)−θi,kϕ(θi,k)

)
+βi,kα j,k1θ j,k≥θi,k

(
Φ(θ j,k)−Φ(θi,k)+θi,kϕ(θi,k)−θ j,kϕ(θ j,k)

)
.

Proof: The first equation is obvious. The second follows from

E
((

αi, j1Z j≤θi, j +βi, j1Z j>θi, j

)2
)

= E
(
α2

i, j1Z j≤θi, j +β 2
i, j1Z j>θi, j +2αi, jβi, j1Z j>θi, j1Z j≤θi, j

)
= E

(
α2

i, j1Z j≤θi, j +β 2
i, j1Z j>θi, j

)
= α2

i, jΦ(θi, j)+β 2
i, j

(
1−Φ(θi, j)

)
,

v̄i, j = V
(
χi, j +θi, jΦ

(
αi, jZ j +βi, j

))
= θ 2

i, jV
(
Φ
(
αi, jZ j +βi, j

))
= θ 2

i, jE
(

Φ
(
αi, jZ j +βi, j

)2
)
−θ 2

i, jE
(
Φ
(
αi, jZ j +βi, j

))2

= θ 2
i, jΦ2

⎛
⎝ βi, j√

1+α2
i, j

,
βi, j√

1+α2
i, j

;
αi, j√

1+α2
i, j

⎞
⎠−θ 2

i, jΦ

⎛
⎝ βi, j√

1+α2
i, j

⎞
⎠ ,

where we used (30b) from Appendix A.
To prove the third equation we notice that

E
(
ai,k(Zk)a j,k(Zk)Z2

k

)
= E

(
αi,kα j,k1Zk≤θi,k 1Zk≤θ j,kZ2

k +βi,kβ j,k1Zk>θi,k 1Zk>θ j,kZ2
k

)
+E
(

αi,kβ j,k1Zk≤θi,k1Zk>θ j,k Z2
k +βi,kα j,k1Zk>θi,k1Zk≤θ j,k Z2

k

)
= E

(
αi,kα j,k1Zk≤min(θi,k,θ j,k)Z

2
k +βi,kβ j,k1Zk>max(θi,k,θ j,k)Z

2
k

)
+E
(

αi,kβ j,k1θ j,k<Zk≤θi,kZ2
k +βi,kα j,k1θi,k<Zk≤θ j,k Z2

k

)
.

From Lemma 5 in Appendix A, the value of this expression is Ei, j,k, as given in the
proposition. The final result now follows from

ρ(Xi,Xj) = E(XiXj) = Cov(ai(Z) ·Z,aj(Z) ·Z)
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and

Cov(ai(Z) ·Z,aj(Z) ·Z) =
d

∑
k=1

Cov(ai,k(Zk)Zk,a j,k(Zk)Zk).

If we restrict ourselves to low-dimensional models, the specification (25) is simple
enough to allow for closed-form default probabilities. For instance:

Proposition 9 Assume that the dimension of Z is d = 1. Then

Prob(τi ≤ T ) = Prob(Xi ≤ ci)

= Φ2

⎛
⎝ ci −mi√

v2
i +α2

i

,θi;
αi√

v2
i +α2

i

⎞
⎠+Φ

⎛
⎝ ci −mi√

v2
i +β 2

i

⎞
⎠

−Φ2

⎛
⎝ ci −mi√

v2
i +β 2

i

,θi;
βi√

v2
i +β 2

i

⎞
⎠ . (28)

Proof: We have

Prob(τi ≤ T ) = Prob(αi1Z≤θiZ +βi1Z>θiZ + εivi +mi ≤ ci)

= E

(
Prob

(
εi ≤ ci − (αi1Z≤θiZ +βi1Z>θiZ)−mi

vi
|Z
))

= E

(
Φ
(

ci − (αi1Z≤θiZ +βi1Z>θiZ)−mi

vi

))

=
∫ θi

−∞
Φ
(

ci −αiZ −mi

vi

)
ϕ(Z)dZ +

∫ ∞

θi

Φ
(

ci −βiZ −mi

vi

)
ϕ(Z)dZ

and the proposition now follows from results in appendix A.
We note that the density of Xi can be obtained by differentiating (28) wrt ci.

4.2 Large-portfolio limits of two-point distribution model

With the specification (25), we are not only hoping to (crudely) mimic an empirical de-
pendence of correlations on broad market conditions, we also hope to generate a base
correlation skew when αi j > βi j. To elaborate, consider the view of a senior tranche
investor. This investor will only experience losses on his position when several names
default together, that is, in scenarios where the systematic factors Z likely take on low
values. If Z is low, however, the factor loading will be high, making it appear to the senior
investor that correlations are quite high. For the equity investor, who is likely to experi-
ence losses even in scenarios where Z is not low, the effective factor loading will appear
as a weighted average between αi j and βi j. To the equity investor, the world will thus
look as if correlations are of average magnitude. In fact, the convexity of tranche values
in correlation will further reduce the “effective” correlation seen by the equity investor
and increase that seen by the senior investor.
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To lend some credence to the above intuitive argument, and to provide some useful
results for large portfolio risk management under (25), we shall now briefly examine the
large-portfolio limit distribution of the model10. A direct examination of base correlation
skews for a finite portfolio can be found in Section 6.2. To proceed, assume for simplicity
that d = 1 and that the portfolio is homogeneous11. Reflecting the homogeneity of the
portfolio, we omit subscripts in the following result (β i j = β , αi j = α, mi = m, and so
forth).

Proposition 10 Consider a homogeneous portfolio with a 1-dimensional factor structure.
Under (25), the following holds

lim
N→∞

Prob(L/N ≥ ly) = Φ(min(Ω(y)/α,θ))+1Ω/β>θ (Φ(Ω(y)/β)−Φ(θ)) ,

Ω(y) := c− vΦ−1(y)−m.

Proof: Consider

h(Z) = N−1l−1E(L|Z) = N−1E

(
N

∑
i=1

1τi≤T |Z
)

= N−1
N

∑
i=1

E(1τi≤T |Z) = Prob(X1 ≤ c|Z)

= Prob

(
ε1 ≤ c−a(Z)Z −m

v
|Z
)

= Φ
(

c−1Z≤θ αZ −1Z>θ βZ −m
v

)
.

Then, by the usual diversification arguments,

lim
N→∞

Prob(L/N ≥ ly) = Prob(h(Z) ≥ y)

= Prob(a(Z)Z ≤ Ω(y))
= Prob(a(Z)Z ≤ Ω(y),Z ≤ θ)+Prob (a(Z)Z ≤ Ω(y),Z > θ)
= Prob(αZ ≤ Ω(y),Z ≤ θ )+Prob(βZ ≤ Ω(y),Z > θ)
= Φ(min(Ω(y)/α,θ))+1Ω(y)/β>θ (Φ(Ω(y)/β)−Φ(θ)) .

In Figure 5 below, we use the result in Proposition 10 to examine the loss distributions
associated with different settings β and α . We note that when α > β , the loss distribution
has qualitative properties consistent with the existence of a base skew: a fat upper tail,
yet a reduced probability of generating small losses, c.f. Figure 5. (The somewhat non-
smooth form of the large-portfolio loss distribution in Figure 5 is caused by the simple
two-point specification used and the absence of residual noise in the large-portfolio limit).

10 Large-portfolio results for more general models than ( 25) are obviously possible, given the conditional
independence of the model. The required procedure to obtain such results is similar to that given in the text.

11Extensions to non-homogeneous portfolios are trivial; see Section 3.3 for the required arguments and
assumption.
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Figure 5: Large-portfolio distribution, two-point random factor loading model
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5 Alternative correlation skew models.

While the method presented in Section 4 is attractive for its simplicity and close relation
to an established and well-understood framework, it is just one of many ways to generate
a correlation skew. At the end of the day, any model that can generate a loss distribution
similar to that of Figure 2 will produce a correlation skew. To briefly comment on a
few alternative approaches, consider first an outright move to a copula different from the
Gaussian12. For instance, among the better-known alternatives to the Gaussian copula, the
Marshall-Olkin copula (see e.g. Giesecke (2003) and references therein) can be verified
to have enough flexibility to produce correlation skews. As the model apparently enjoys
some popularity with practitioners, let us discuss it in more detail.

We first recall that the Marshall-Olkin is a Poisson-type model where the default inten-
sity of credit i, λi, is broken into an idiosyncratic component and a number of systematic
components. Say that we have M systematic default shocks, modeled as independent
Poisson processes N̄k(t) with intensities λ̄k, k = 1, ...,M; these systematic shocks can
potentially affect several firms simultaneously. To define whether a particular firm is sen-
sitive to a particular systematic shock, one introduces 0- or 1-valued indicator variables Iik

12 The random factor loading approach obviously makes the copula non-Gaussian, but the change of
copula is, in a sense, implicit rather than explicit.
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such that firm i will default with certainty the first time N̄k(t) jumps if and only if Iik = 1.
If Iik = 0, firm i is assumed completely insensitive to N̄k(t). Define also N idiosyncratic
Poisson processes N f

i (t), i = 1, ...,N, (“f” for “firm”) independent of each other and of the
N̄k(t), k = 1, ...,M. Let the intensities of these Poisson processes be λ f

i (t), i = 1, ...,N.
In the Marshall-Olkin copula model, we then express the aggregate default Poisson pro-
cesses for the firms as

Ni(t) =
M

∑
k=1

N̄k(t)Iik +Nf
i (t), i = 1, ...,N,

where the right-hand side is obviously Poisson (as a thinned sum of independent Poisson
processes is again Poisson) with intensity

λi(t) =
M

∑
k=1

λ̄kIik +λ f
i (t), i = 1, ...,N.

The dependence structure of the Marshall-Olkin model is determined by the matrix {Iik}
and the intensities λ̄k, k = 1, ...,M. By having a construct such as the {Iik} matrix, the
Marshall-Olkin copula is quite flexible and grants tight control of the relative probabilities
of various combinations of firm defaults, and thereby of the total loss distribution. We
have verified that this model is easily capable of generating a correlation skew. On the
other hand, the exact parameterization of the Marshall-Olkin copula is a rather formidable
problem, given the abstract nature (and sheer number) of its parameters. We note that
to make the model consistent across different CDOs, one really must calibrate a single
matrix and a single set of intensities for all credits in the universe of traded credit default
swaps. Such a calibration would likely be difficult to make robust, and strong assumptions
will be needed to make it feasible. We also point out that even if a calibration method
could be constructed, the model remains quite unwieldy and involve a number of non-
trivial operational and computational issues, particularly in the computation of hedges.
Similar issues arise with many other copulas and, to an even greater extent, dynamic
portfolio models (such as the one in Duffie and Garleanu (2001)).

Stepping back to the Gaussian copula set-up, it is well-known that a Gaussian copula
equipped with a non-constant correlation matrix will produce a non-flat base correla-
tion skew. Some authors (see eg, Gregory and Laurent (2004)) have proposed correlation
structures where correlations are high within certain ‘sectors’ (arbitrary subportfolios)
and low between sectors. However, when—as is perhaps natural—the sectors are taken
to represent industrial or geographical categories, the resulting skew is far weaker than
that observed in practice. One could imagine taking this approach one step further and
attempting to “imply” a correlation matrix that will reproduce the observed smile. This
approach is perhaps best framed in a factor set-up, where we make factor loadings func-
tions of the credit spreads. To be more specific, consider replacing equation (5) with13

Xi = g(si)Z + εi

√
1−||g(si)||2, i = 1, ...,N, (29)

13Or perhaps a perturbative specification: Xi = aig(si)Z + εi
√

1−||aig(si)||2, i = 1, ...,N, where ai may
be an empirical factor loading, for instance.
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where si represents the input credit spread of firm i, i = 1, ...,N, and g : R → [0,1]d is
some mapping function. We stress that the g(si) are to be interpreted as constants, not
as stochastic quantities; g(·) can be “implied” (parametrically or non-parametrically) to
best-fit the correlation skew. We note that to produce a skew consistent with that seen in
the market, g needs to produce a correlation matrix such that the senior investor (who is
affected more by low-spread credits than is the equity investor) will “see” a higher corre-
lation than the equity investor. For d = 1 this simply means that g must be decreasing.

While the approach (29)—even in its one-factor version—is certainly capable of gen-
erating strong correlation skews, it has a number of drawbacks. First, there appears to
be little empirical support for the basic conjecture, namely that firms with high default
risk are less correlated to the overall market than firms with low default risk; second, to
reproduce the correlation skews observed in practice, the function g turns out to have be
quite extreme, producing correlation matrices with elements that get unrealistically close
to 0 or 1; and third, the model predicts that near-homogeneous baskets should have no
correlation skew (which is unlikely). Furthermore, depending on the details of the chosen
specification, one will have the problem that the correlations change daily when spreads
are updated. Finally, the extreme correlations required to match observed skews lead to
hedges in terms of single-obligor positions which are radically different from those com-
puted with other models.

6 Numerical results

Having previously examined large-portfolio limits, we now turn to a numerical exami-
nation of tranches in finite-sized portfolios, using the models and algorithms developed
in Sections 3 and 4. While we shall conclude this section with some data for a realistic
portfolio (I-Boxx) under real market conditions, to facilitate replication of our results we
use a simplified portfolio for most of our tests. Results for more realistic portfolios are
qualitatively similar.

We consider a test portfolio consisting of N = 25 obligors each with a notional of
10 million for a total portfolio notional of 250 million. On this portfolio we consider 5-
year tranches 0–3%, 3–7%, 7–12%, 12–20%, and 20–30%. All models will be calibrated
to a market where default-free interest rates are zero, where the default swap spread of the
i’th obligor is i · 10bps, ie, spreads run from 10 to 250bps, and where the expectation of
recovery conditioned on default (E(Ri|τi = T )) is assumed to be 40% for all obligors and
all T . To ease comparison all parameterized models will be required to price the 0–7%
base tranche at 20% flat correlation.

To ease the notation we shall refer to the Gaussian copula model with flat correlation ρ
as ‘Gρ ’, to the specific random recovery model of Section 3.2 as ‘RR’ and to the specific
random factor loading model of Section 4.1 as ‘RFL’.
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6.1 Random recovery model

For the specific RR model of Section 3.2 we consider a generic model with two factors
in order to allow control over the codependence between defaults and recovery rates. We
assume that the parameters, a, b, µ and σξ are obligor-independent and we suppress the
obligor index i. For given values of a, b and σξ we calibrate µ such that E(Ri|τi = T ) =
40%, for all T , as required. Note that this requires µ to depend on T . Next, for given b
and σξ we choose the value of a such that the requirement on the valuation of the 0–7%
tranche is satisfied14.

We shall look at the six different sets of parameter values listed in Table 1. From the
table we see that the value of a is smaller in all cases than the

√
20% ≈ 0.447 required

to satisfy the 0–7% tranche price requirement in the absence of random recovery. Going
into more detail, we note that the required value of a increases with σξ and decreases with
default-recovery correlation (as measured by a · b). Intuitively, this is because tranches
are actually sensitive to the covariance between single-obligor losses (not just defaults); a
large value of b results in large recovery covariance and this leads to high loss correlation
even when default correlations and default-recovery correlations are low. When tranche
values are translated into a Gaussian copula framework the loss covariance has to be
represented solely in terms of default correlation, which will therefore appear higher.
These observations hold also for more realistic tranched portfolios such as I-Boxx.

Name a b σξ
RR1 (0.225,0) (0.8,0) 1.0
RR2 (0.305,0) (0.4,0.4) 1.0
RR3 (0.355,0) (0,0.8) 1.0
RR4 (0.195,0) (0.8,0) 0.01
RR5 (0.3,0) (0.4,0.4) 0.01
RR6 (0.355,0) (0,0.8) 0.01

Table 1: The six named sets of parameter values for the RR model. Note that a and b are
two-dimensional vectors reflecting the fact that the model has two factors.

As pointed out in the introduction, a skew in tranche values arises from a loss distribu-
tion which differs from the loss distribution of a Gaussian copula model by having lower
probability of zero loss and a fat upper tail. Based on our intuitive understanding of the
impact of random recovery in generating loss covariance, we would expect that its effect
on the loss distribution can largely be compensated by a reduction in default correlation.
Thus we would expect a properly based comparison between models with and without
random recovery to show little difference.

To examine this in detail Figure 6 shows the difference between the cumulative loss
distributions for the RR model with the parameter values of Table 1 and the distribution

14By rotational invariance we can take the second component of a to be zero.
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of the G20% model. As expected, the differences are quite small and do not exhibit the
characteristics required to generate a skew in tranche values.

Figure 6: Loss distributions for random recovery model
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Notes: Parameter sets RR1-RR6 are in Table 1. The graphs show the differences between
the model distributions and the distribution of the G20% model.

To investigate the impact on tranche values in more detail, Figure 7 shows the implied
base correlations for the RR model. We observe that, as expected from the loss distribu-
tions, the RR model is not capable of producing strong skews15. This finding also applies
to tranches of traded index portfolios.

6.2 Random factor loadings model

For the specific RFL model of Section 4.1 we shall consider a generic one-factor model
where the parameters α , β and θ are identical for all obligors. We shall look at the six
different sets of parameter values listed in Table 2. For given values of β and θ we have
determined α such that the requirement on the 0–7% tranche is satisfied. Note that when
β is small and θ is low (negative) a high value of α is required. Thus, intuitively, this
gives a model where factor loadings are “normally” low, but, for very low factor values,
they become very high. In this model senior tranches derive a great deal of value from
the many expected defaults in the “disaster state” with high factor loadings, whilst junior

15For the special case of independence between default and recovery, this conclusion can also be drawn
from numerical results in Gregory and Laurent (2004).
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Figure 7: Implied base correlations for random recovery model
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Notes: Parameter sets RR1-RR6 are in Table 1.

tranches derive value from the low effective correlation in the normal state; intuitively,
this should produce a strong skew. On the other hand, when θ is high (and positive), the
difference |α −β | cannot be too great and this leads to more “peaceful” and less skewed
models. We first look at the cumulative loss distributions generated by the model with

Name α β θ
RFL1 0.62 0.03 0
RFL2 0.425 0.5 0
RFL3 0.54 0.03 1
RFL4 0.43 0.54 1
RFL5 0.9 0.269 -2
RFL6 0.425 0.485 -1

Table 2: The six named sets of parameter values for the RR model.

these parameters. To show the differences from the Gaussian copula model more clearly,
Figure 8 actually shows the difference between the model distributions and the distribution
of the G20% model. As expected on intuitive grounds, the RFL model can give rise to loss
distributions which differ markedly from the distribution of the Gaussian copula model in
the way required to generate a skew: lower probability of zero loss and a fat upper tail.

Next, Figure 9 shows the implied base correlations for the same sets of parameters. As
is clear from Figure 9, the RFL model is capable of producing strong skews. In particular,
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Figure 8: Loss distributions for random factor loading model
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Notes: Parameter sets RFL1-RFL6 are in Table 2. The graphs show the differences be-
tween the model distributions and the distribution of the G20% model.

we note that the skew is upward (downward) sloped for α greater (smaller) than β and that
the steepest skew is produced with the smallest value (−2) of θ . This is not unexpected,
given the interpretation of models with small β and low θ given above.

We now turn to the properties of the skew, in particular its dynamics under spread
changes. The question of skew dynamics is important because it affects the sensitivities of
tranche values to default swap spreads. More precisely, when spreads go up, tranche val-
ues move for two reasons: first, because of the increase in overall expected loss, second,
because (implied) correlations change when the skew changes. Of course, it is possible
that the skew should be insensitive to spreads. This seems very counterintuitive, however,
when we consider that the relative riskiness of tranches clearly depends on the overall
portfolio spread. For example, in a high spread environment the 3–7% tranche will look
much more like an equity tranche than it does when spreads are low. Thus—rather than
expecting a static skew—we would expect the skew to move to the right, ie, for an upward
sloping skew, implied correlations to move down, when, ceteris paribus, spreads go up.

To illustrate the dynamics of the skew in the RFL model, we give in Figure 10 the
skews produced by the model with parameters RFL5 when all default swap spreads are
increased by 50bps. When compared to the skew produced for the initial spreads using
the same parameters, we see that the effect of an increase in spreads is to shift the skew
to the right. For an upward sloping skew this implies that the base correlation for given
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Figure 9: Implied base correlations for random factor loading model
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detachment level decreases.
Since all base tranche values decrease with increasing correlation, base tranche spread

sensitivities in the RFL model (with upward sloping skew) must be greater than those
computed with a static skew. For tranches with non-zero attachment levels, sensitivities
may be computed as differences between base tranche sensitivities; for such tranches the
contribution to sensitivities coming from the skew dynamics can have either sign.

6.3 A real-life example: I-Boxx

For a more realistic application of the RFL model we here present the base correlation
skews produced for the I-Boxx NA portfolio (of May 2004) with a range of model pa-
rameters. The parameter sets are listed in Table 3 and the resulting base correlations are
shown in Figure 11. Evidently, the RFL model—even in its simplest form with only three
parameters—is capable of generating skews of a wide range of slopes and curvatures for
I-Boxx. We note that the market skew is compatible with a low, negative threshold and
a large difference in factor loadings between the low-factor and high-factor regimes. It
is thus possible that the relatively high premiums of senior tranches are due to a market
perception of the existence of a “disaster state” in which not only default probabilities,
but also effective correlations are high. On the flip side, the relatively high price of insur-
ance on the equity tranche could be due to the perception that correlations are “normally”
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Figure 10: Skew dynamics in random factor loading model
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Notes: Base correlation for the RFL model with parameters RFL5 after a 50bps additive
shift to all default swap spreads (fat curve). The correlations produced with the initial
spreads is given for reference (thin curve).

Name α β θ
RFL7 0.58 0.38 -1.6
RFL8 0.85 0.45 -3
RFL9 1.01 0.41 -2.5

RFL10 1.26 0.36 -2.4
RFL11 0.63 0.01 -0.6

Table 3: The six named sets of RFL model parameters applied to the tranches of I-Boxx
NA.

rather low16.

7 Conclusion

This paper has introduced two tractable extensions of the Gaussian copula, both aimed at
making the model conform better with observed phenomena. The first of these mecha-

16This perception does not necessarily conflict with the correlation values computed from historical data
(such as, eg, the KMV data sets); if the sampling period spans several business cycles, the resulting corre-
lations will be weighted averages of correlations in bear and bull markets.
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Figure 11: Base correlation skews for random factor loading model
(I-Boxx NA portfolio, May 2004)
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nisms – randomized recovery – is shown to produce a heavy upper tail in portfolio loss dis-
tributions and as such should be of interest in the tail risk management of default-sensitive
portfolios. Convenient large-portfolio results useful for this exercise were produced. For
finite portfolios, efficient numerical techniques were developed to handle random recov-
ery; we use these techniques, along with a carefully developed calibration mechanism,
to demonstrate that it is unlikely that random recovery is the prime mechanism behind
the correlation skews observed in CDO tranches on standardized index portfolios. Our
second extension – randomized factor loadings – does a much better job in this respect
and, at reasonable parameter levels, is capable of producing correlation skews similar to
those observed in the market. The resulting model is straightforward to parameterize and
numerically efficient.

The specific parameterizations and model examples used in this paper were rather
simplistic, and work remains in uncovering parameters and functional forms that best
describe the market. We note that while we, for clarity, have treated the two model ex-
tensions in separation, combining both into a single model is an obvious possibility that
may further increase realism (at the expense of more parameters). Other topics for fu-
ture research involves a deeper examination of the hedges produced by various models,
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and possible further model extensions to better capture observed term structures of loss
distributions.

We conclude the paper with a word of warning about implied correlation skew mod-
eling. Here, it should be kept in mind that the market is in its absolute infancy and all
modeling attempts are necessarily based on a very limited set of observations that may
not even be fully representative. For instance, it is not inconceivable that market imper-
fections and misbalances currently contribute effects that are transitory and will abate as
the market matures. Parameters and models will then obviously require revisions over
time. In the same vein, as time progresses more information will be revealed about the
dynamics of the correlation skew and its dependence on spread levels. This, in turn, will
allow for evaluation of the realism and hedge performance of models, and will undoubt-
edly lead to more sophisticated models. At the current time, however, one is probably
best served with relatively simple mechanisms, such as those presented in this paper.

A Some Gaussian integrals

In our notation ϕ , Φ and Φ2 denote respectively the standard Gaussian density function,
the standard Gaussian cumulative distribution function and the standard bivariate Gaus-
sian cumulative distribution function.

Lemma 1 For arbitrary real constants a, b and c

∫ ∞

−∞
Φ(ax+b)ϕ(x)dx = Φ

(
b√

1+a2

)
; (30a)

∫ ∞

−∞
Φ(ax+b)2ϕ(x)dx = Φ2

(
b√

1+a2
,

b√
1+a2

;
a2

√
1+a2

)
; (30b)

∫ c

−∞
Φ(ax+b)ϕ(x)dx = Φ2

(
b√

1+a2
,c;

−a√
1+a2

)
. (30c)

Proof: Consider a Gaussian random variable z̃1 ∼N(0,
√

1+a2). We write z̃1 =−ax̃+δ1
where x̃, δ̃1 ∼ N(0,1) are independent. We notice that for some arbitrary constant b,
Prob(z̃1 ≤ b) = Φ(b/

√
1+a2). But, by the law of iterated expectations,

Prob(z̃1 ≤ b) = E(1z̃1≤b) = E(E(1z̃1≤b|x̃))
= E

(
Prob

(
δ̃1 ≤ ax̃+b

))
=
∫ ∞

−∞
Φ(ax+b)ϕ(x)dx.

This proves (30a). Introduce now a second variable z̃2 = N(0,
√

1+a2) and write z̃2 =
−ax̃+δ2, where x̃ is defined above and δ̃2 ∼ N(0,1) is independent of both x̃ and δ̃1. The
correlation between z̃1 and z̃2 is a2/(1+a2), such that

Prob(z̃1 ≤ b, z̃2 ≤ b) = Φ2

(
b√

1+a2
,

b√
1+a2

;
a2

1+a2

)
,
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where Φ2(·, · ;ρ) is the bivariate cumulative Gaussian distribution function for correlation
ρ . But also

Prob(z̃1 ≤ b, z̃2 ≤ b) = E(Prob(z̃1 ≤ b, z̃2 ≤ b|x̃)) = E(Prob(z̃1 ≤ b|x̃)Prob(z̃2 ≤ b|x̃))
where we have relied on conditional independence in the second equality. Recognizing
that Prob(z̃1 ≤ b|x̃) = Prob(z̃2 ≤ b|x̃) = Φ(ax̃+b) proves (30b).

Finally, to prove (30c) note that

Prob(z̃1 ≤ b, x̃ ≤ c) =
∫ c

−∞
Prob(z̃1 ≤ b|x̃ = x)ϕ(x)dx =

∫ c

−∞
Φ(ax+b)ϕ(x)dx

On the other hand,

Prob(z̃1 ≤ b, x̃ ≤ c) = Φ2

(
b√

1+a2
,c;

−a√
1+a2

)

where we have used the fact that the correlation between z̃1 and x̃ is −a/
√

1+a2.

An expression for the integral in (30b), but with a finite upper integration limit is also
possible, but involves the three-dimensional Gaussian distribution and is likely easier to
compute numerically.

Lemma 2 Let x be a standard Gaussian variate. For constants a and b define ω :=
a/

√
1+a2. Then

E(xΦ(ax+b)) =
ωe−

1
2 b2(1−ω2)
√

2π
= ωϕ

(
b
√

1−ω2
)

. (31)

Proof: Note that

E(xΦ(ax+b)) =
∫ ∞

−∞
xϕ(x)Φ(ax+b)dx = −

∫ ∞

−∞
ϕ ′(x)Φ(ax+b)dx

= a
∫ ∞

−∞
ϕ(x)ϕ(ax+b)dx− [ϕ(x)Φ(ax+b)]∞−∞

=
a

2π

∫ ∞

−∞
e−

1
2 (x2+a2x2+2abx+b2)dx

=
a

2π
e−

1
2 b2(1−ω2)

∫ ∞

−∞
e−

1
2(x

√
1+a2+bω)2

dx.

Clearly, then,

E(xΦ(ax+b)) =
a√
2π

e−
1
2b2(1−ω2)

∫ ∞

−∞
1√

2π
√

1+a2 e−
1
2y2

dy.

Lemma 3 Let x be a standard Gaussian variate. For constants a and b

E
(
x2Φ(ax+b)

)
=

−bω√
1+a2

E(xΦ(ax+b))+Φ(b/
√

1+a2). (32)
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Proof: We have first

E
(
x2Φ(ax+b)

)
=
∫ ∞

−∞
x2ϕ(x)Φ(ax+b)dx =

∫ ∞

−∞

(
ϕ ′′(x)+ϕ(x)

)
Φ(ax+b)dx.

Here ∫ ∞

−∞
ϕ ′′(x)Φ(ax+b)dx = −a

∫ ∞

−∞
ϕ ′(x)ϕ(ax+b)dx+

[
ϕ ′(x)Φ(ax+b)

]∞
−∞

= a
∫ ∞

−∞
xϕ(x)ϕ(ax+b)dx

and

a
∫ ∞

−∞
xϕ(x)ϕ(ax+b)dx =

a
2π

e−
1
2b2(1−ω2)

∫ ∞

−∞
xe

−1
2

(
x
√

1+a2 +bω
)2

dx

=
a√
2π

e−
1
2b2(1−ω2)

∫ ∞

−∞

(
y−bω√

1+a2

)
1√

2π
√

1+a2 e−
1
2y2dy

=
−bω2ϕ

(
b
√

1−ω2
)

√
1+a2

.

The result now follows from Lemmas 1 and 2.

Lemma 4 Let x be a standard Gaussian variate. For constants a and b define ω :=
a/

√
1+a2 and ϑ := ω/

√
1+ω2. Then

E
(
x2Φ(ax+b)2) = Φ2

(
b√

1+a2
,

b√
1+a2

;
a2

√
1+a2

)

+
2E(xΦ(ax+b))√

1+a2

[
ϑϕ
(

b(1−ω2)
√

1−ϑ 2
)
−bωΦ

(
b(1−ω2)√

1+ω2

)]

Proof: First

E
(
x2Φ(ax+b)2)=

∫ ∞

−∞
x2ϕ(x)Φ(ax+b)2dx =

∫ ∞

−∞

(
ϕ ′′(x)+ϕ(x)

)
Φ(ax+b)2dx.

Here∫ ∞

−∞
ϕ ′′(x)Φ(ax+b)2dx = −2a

∫ ∞

−∞
ϕ ′(x)Φ(ax+b)ϕ(ax+b)dx+

[
ϕ ′(x)Φ(ax+b)2]∞

−∞

= 2a
∫ ∞

−∞
xϕ(x)Φ(ax+b)ϕ(ax+b)dx

=
2a
2π

e−
1
2b2(1−ω2)

∫ ∞

−∞
xΦ(ax+b)e

−1
2

(
x
√

1+a2 +bω
)2

dx

=
2E(xΦ(ax+b))√

1+a2

∫ ∞

−∞
(y−bω)Φ

(
yω +b(1−ω2)

)
ϕ(y)dy.
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We can now use Lemma 2 to see that∫ ∞

−∞
yΦ
(
yω +b(1−ω2)

)
ϕ(y)dy = ϑϕ

(
b(1−ω2)

√
1−ϑ 2

)
.

and the lemma follows by application of Lemma 1.

Lemma 5 For a standardized Gaussian variable x and arbitrary constants a and b, we
have

E(1a<x≤bx) = 1b≥a (ϕ(a)−ϕ(b)) ; (33a)

E
(
1a<x≤bx2)= 1b≥a (Φ(b)−Φ(a))+1b≥a (aϕ(a)−bϕ(b)) . (33b)

In particular, E(1x≤bx) = −ϕ(b); E(1x>ax) = ϕ(a); E
(
1x>ax2

)
= aϕ(a)+ (1−Φ(a));

and E
(
1x≤bx2

)
= Φ(b)−bϕ(b).

Proof: If b < a, the expectations (33a)-(33b) are obviously zero, consistent with the given
expressions. For b ≥ a, we have, trivially,

E(1a<x≤bx) = 1b>a

∫ b

a
xϕ(x)dx =−1b>a

∫ b

a
ϕ ′(x)dx =1b>a (ϕ(a)−ϕ(b)) ,

and

E
(
1a<x≤bx2) = 1b>a

∫ b

a
x2ϕ(x)dx =1b>a

∫ b

a

(
ϕ ′′(x)+ϕ(x)

)
dx

= 1b>a (Φ(b)−Φ(a))+1b>a (aϕ(a)−bϕ(b)) .
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