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Abstract

The objective of the thesis is the theoretical and practical background of capital structure

arbitrage strategies and the empirical evidence of key relationships applying these strategies.

Capital structure arbitrage involves taking long and short positions in different financial in-

struments of a company’s capital structure, particularly between a company’s debt and equity

products. In general, capital structure arbitrage strategies can be viewed as an example of

the interaction between market risk and credit risk, which often leads to an analysis of the

relationship between the credit spreads and its proxy credit default swaps (CDS), the implied

equity volatility skew, and the level of leverage. As an example the long-term relationship

between France Telecom’s CDS rates and volatility skew is analysed by means of cointegra-

tion tests. The results indicate that volatility skew and CDS rates are cointegrated over a

three-year period. When a leverage indicator is used in a sub-sample the results are even more

signficant than before.
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Introduction

The objective of the thesis is the theoretical and practical background of capital structure

arbitrage and hedging strategies, and the empirical evidence of key relationships applying these

strategies. Capital structure arbitrage and hedging involves taking long and short positions in

different instruments and asset classes of a company’s capital structure, in particular between

a company’s debt and equity products. In general, capital structure arbitrage strategies can

be viewed as an example for a the interaction between market risk and credit risk, which often

leads to an analysis of the relationship between credit spreads and the implied equity volatility

surface - so-called the volatility skew - or equity prices. Because of the lions share of the credit

default swaps within the credit derivatives market and the general tremendous growth of this

market during the last years, typical capital structure arbitrage strategies such as credit

default swap (CDS) versus cash equities or equity options lead to the relationship between

credit default swap rates and the volatility skew or equity prices. With the knowledge of these

relationships and detailed information of the leverage cycles of firms, the implementation of

a capital structure arbitrage strategy can be set as a convergence trade.

The thesis will be a first step in the relatively new area of capital structure arbitrage

strategies with empirical analysis on the relationship between CDS rates, equity and equity

options. The empirical result for a telecommunication sector firm, France Telecom, shows that

there exists a long-run relationship between CDS rates and the corresponding equity volatility

skew. This relationship, detected by cointegration tests, indicates that short-run dynamic

deviations of these two variables (CDS rates and volatility skew) will revert to an equilibrium

in a long-term; the variables are thus found to be cointegrated and the relationship between

them is mean-reverting. When a proxy for the leverage is used the long-run relationship is

even more significant, meaning that the relationship mean-reverts faster than before.

Therefore the thesis is organized in two parts, a descriptive part and an empirical analysis

part. The completion of financial market information by using credit derivatives and, more

specifically credit default swaps, as well as the consequences to the financial market from

capital structure arbitrage strategies are discussed in the descriptive part of the thesis. The

vii
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relation of the empirical results to the recent trading applications of capital structure arbitrage

strategies are analysed and discussed in the empirical analysis part.

For a better understanding of the relatively new area of capital structure arbitrage strate-

gies the descriptive part includes all relevant key facts on the bond pricing models based on

equity price behavior, such as structural and reduced-form approaches. For example, to hedge

the credit risk of convertible bonds with credit default swaps is also a favorite strategy with

capital structure characteristics but is more known as classical convertible arbitrage. Merely

the fact that in the near past the credit default swap market overcame the asset swap market

in terms of liquidity brings this strategy also more in the light of capital structure arbitrage.

Therfore an overview of convertibles is discussed as well in the descriptive part. Furthermore,

before discussing in detail the market, the structures, valuation models and the implementa-

tion issues of credit default swaps, some basics about the important area of credit derivatives

are presented in the descriptive part of the thesis. In the end of the descriptive part the main

strategies and the market for capital structure arbitrage strategies is discussed.

The empirical analysis part includes the results of the cointegration analysis of the rela-

tionships described before. For these analysis the vector autoregression (VAR) and vector

error-correction (VEC) methodologies and Granger causality as well other significant tests

were used to show that the implied volatility skew is causing the CDS rates significantly in

the long run especially in a leverage cycle of a firm. The descriptive statistics, discussion of

the results and the conclusion is made in this part.

Capital structure arbitrage strategies currently are the fastest growing sector in the hedge

fund market and in proprietary trading departments in large banks. For example, the number

of hedge funds exploiting capital structure arbitrage strategies is expected to grow from 30 to

approximately 200 funds until end of this year, according to Currie and Morris (2002). Addi-

tionally, Germany will open their financial market for hedge funds by a change in legislation

for beginning 2004. This will also have an impact for the leading investment banks inside and

outside Europe, which are highly active in such strategies, and therefore an increase in debt

instruments versus equity instruments trading is expected.

One of the main reason is given by the fact that after the -world wide- equity bubble in

2000, investment-grades as well as high-yield default rates increased dramatically with respect

to previous years. On the other side, the past months have been the best period for corporate

bonds in at least 20 years, according to Zuckerman (2003). Trading debt versus equity of

distressed companies has been highly attractive subsequently the bubble, because in times of

widening credit spreads the correlation between movements in credit spread and the equity
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price increases, see Currie and Morris (2002). Another reason why investors are currently

getting involved in capital structure arbitrage is related to the development of the credit

default market.

By far the main users of credit derivatives are large banks, followed by securities firms

and insurance companies. While banks and securities firms act both as sellers and buyers of

protection, insurance companies, which have reportedly increased their market participation

substantially in recent years, are primarily protection sellers, presumably using their exper-

tise in evaluating and diversifying risk. Hedge funds are also relatively active participants,

arbitraging perceived mis-pricing between the cash and the derivatives markets. Other par-

ticipants include pension funds and mutual funds, but their participation in the market is

very small. In terms of volume, according to the credit derivatives survey, Risk (2003), in

the course of the year 2002 the credit derivatives market in terms of total notional amount

of outstanding contracts has grown by more than 50% to $ 2,306 trillion and is expected to

double until the end of 2004 up to $ 4.8 trillion, see also British Banker Association (BBA)

forecasts.

The CDS capture nearly the half of the market share and become the dominant financial

instrument in the credit derivatives market. CBOs and CDOs are also more and more used for

balance sheet re-organisation. The risk replication of CDOs via portfolios of CDSs is one of the

key transaction and one of the major reason why the CDS market remains more liquid than

the markets for other credit derivative instruments. Furthermore, besides all these reasons

and the fact that the CDS is the key instrument for completing market information, the CDS

market is at the moment more liquid than the corresponding cash market for bonds and asset

swaps, so that the CDS rate is the key information for the creditworthiness of companies and

reflects the credit quality better than credit spreads in financial market.

Moreover, the results of Hull et al. (2003) and Zou (2003) provide new findings and

alternatives for the relation between credit spreads and implied equity volatility surfaces,

which we will also focus on throughout the thesis. Additionally, resent research interests

as focused the sector such as the forthcoming works from Berd (2003) and Ilinski (2003)

developing models to extract CDS rates from implied equity volatility surfaces. These models

are based mainly on Merton approaches, but they use reduced form models or mixed versions

as well, sometimes additional statistical models are also involved. None of these models is

completely public at the moment but in the near future a lot of forthcoming papers will be

produced by the industry and will be very interesting for academics as well.

Because of the overall development during the last years within the important area of

capital structure arbitrage strategies the objective of the thesis is to do a first step in this
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new area. For the analysis of the relationship between CDS rates and the implied volatility

skew we made use of powerful econometric techniques such as cointegration analysis, Granger

causality test and VAR and VEC models.

Historically, Merton’s model (1974) claims that the value of a company can be divided

in an equity and a debt part. This model treats equity as an option on the firm’s assets

considering equity as a call option, the total liabilities as the strike price, and the value of

the firm’s assets as underlying. Merton takes the market value of a firm derived from the

Black & Scholes formula. If the value of a company increases, the value of its equity increases.

On the other hand, the probability of default declines, which results in a lower risk premium

demanded from debtors. As a result, the value of debt increases as well. Both asset classes

are therefore mutually correlated. A strategy to arbitrage could be to find undervalued bonds

or stocks. Of the applications for arbitrage between equity and debt the Merton model has

inspired the strategy of going short on stocks of high levered firms and long on their bonds, or

taking the opportunity to profit from misalignment between CDS spreads and falling stocks.

Alternatively a strategy could consist of comparing implied and historical volatilities between

stock and bond markets. A corresponding sale of high implied volatility of one asset class could

be hedged with the purchase of the lower volatility of the other asset class (trading across

asset classes). As an alternative to bonds one could consider credit default swaps (CDS) which

have become more liquid than the cash market particularly during the last 2 years after the

equity bubble.

Recently, Lardy (2002) has shown a direct link between equity prices, implied volatilities

and probabilities of default with a closed-formed formula and an uncertain default barrier.

See also Finkelstein (2001). The commercial application of this issue is implemented in a

web based tool called CreditGrades (www.creditgrades.com), see Finger et al (2002). Moodys

KMV is an earlier commercial application, which is using the concept of distance to default.

Arbitrage opportunities can be worked out by discrepancies between theoretical credit spreads

and the traded spreads in the market. Furthermore, a similar arbitrage could be performed

between different debt classes, such as senior and junior debt. A quite fashioned strategy in the

past was convertible bond arbitrage. The typical strategy is to go long the convertible bond

and short the equity. Convertible bonds rank as a more senior claim compare to ordinary

equity in a company’s balance sheet. In many cases the coupon, while less than the bond

rate for that company, provides a yield higher than the equity dividend yield. The terms

of convertibility from the bond into shares are usually fixed from the outset. If the share

price rises then the convertible starts to behave like the equity. If the share price falls the

convertible behaves like a corporate bond.
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The plan of chapter 1 is the following: In Section 1.1 the thesis presents bond pricing

models on equity price behavior based on structured models and reduced-formmodels. For the

structured models initiated by Black and Scholes (1973) and Merton (1974) in this section we

present the extensions during the last decades and a discussion of empirical evidence including

newer works such as Collin-Dufrense (2000) and Goldstein (2001) and Gemmill (2002) for the

analysis of credit spreads. In a recent development, Hull et al. (2003) provide a ranking

ordering of creditworthiness via the credit spread implied by the Merton model. They use an

analytical Merton framework to extract implied credit spreads from two implied volatilities

as a measure for the implied volatility skew. To develop this framework they use a compound

option pricing model introduced by Geske (1979). In section 1.1.1 a short description of this

framework is presented including a corrected formula with detailed proves in appendix A.

Also in section 1.1.1 some results from these framework are discussed and a extension for an

analytical formula is shown in section 3.1.1, such that the implied put volatility is a function of

the implied credit spread and the leverage of a company is shown with a proof in appendix A.5.

In the following the main ideas of some commercial applications based on Merton model are

presented in this section. Capital structure models use mainly Merton type models - so-called

structured models - such as those provided by Moody’s KMV and CreditGrades to work out

discrepancies between a theoretical credit spread and the actual spread in the market. The

basis of these models is mainly the assumption that buying a share in a company is equivalent

to buying an option on the company’s assets. The distance to default is the difference between

the company’s asset value and the value of its liabilities. The key thing is that the driver of

the credit spread or the default probability of the debt is going to be the equity price of the

firm. The impact in changes of these parameters is, however different for each security. In

the end of section 1.1 a short discussion of reduced form models including empirical evidence

is presented. In reduced-form models introduced by Jarrow and Turnbull (1995) the time to

default is modelled as an exogenous variable via intensity processes that eliminate the need

to have the default depending explicitly on the issuer’s capital structure. Structured models

give a more precise idea of the impact of true economic factors underlying the pricing of

bonds, whereas reduced-form models can handle more complex structures in an easier way

and can provide for better fitting of historical data, without always capturing the non-linear

interdependence of the variables concerned.

In section 1.2 some key facts on convertible bonds (CBs) and their terminologies and capital

structure characteristics are presented. Section 1.2 serves also with a little survey on pricing

models for CBs and the risk management and arbitrage techniques of single CBs as well as

portfolios of CBs. Convertible arbitrage is a classical strategy in trading & sales, but since

the introduction of more exotic products such as credit default swaps and volatility swaps in
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the late 90’s, these strategies comes more and more in the light of capital structure arbitrage

strategies. Simply the reason to hedge the credit risk of a convertible bonds using credit default

swaps has a capital structure characteristics such in strategies including CDS versus equity

options or cash equities. Because of the fact that volatility changes of the underlying stock is

frequently positively correlated with credit spreads and negatively correlated with equity prices

volatility swaps can be also used to hedge credit-spread risk and to hedge against directional

moves in the equity market. This is not a direct or complete hedge and can be seen more as

a correlation hedge. However, if the correlation is not significant or not holding anymore a

more preferable hedging strategy would be a basket of CDSs with similar characteristics.

Section 1.3 gives a brief overview of the credit derivative sector, where section 1.3.7 con-

centrates more specifically on CDSs. It is obvious that section 1.3 can only discuss some basic

aspects of this important area. First a short introduction about the basics of credit deriv-

atives is presented to clarify the definitions and terminologies used in the following sections

and chapters. In the following, an overview of the major credit derivative instruments, their

types, structures and applications is briefly presented. Furthermore, a brief overview of the

credit derivative market and the use of credit derivatives is given. At the end of this section a

comment on completing financial market information by using credit derivatives is presented.

Credit derivatives are a fundamental innovation for many important practical problems

such as transfering credit risk. CDSs have become the dominant instrument in the credit

derivatives market, and we include a fairly extensive discussion of this instrument within

sections 1.3.7 to 1.3.9. Section 1.3.7 concentrates on CDS as they constitute the lions share

of the credit derivatives market. Based on the terminologies and definitions made in section

1.3.2, section 1.3.7 will serve with a detailed definition of a CDS and an illustrative example

to give a more realistic idea of how CDSs works. Furthermore, the key rule played by CDSs

within the credit derivatives market is discussed to point out that the CDS is the main

factor in completing financial markets. After clarifying these basic facts on CDSs section

1.3.8 is focusing fairly extensive on the valuation methodologies used for CDS pricing. After

presenting an overview of the different methodologies and the involved model parameters

including explanations and discussions, the replication method, a structural model and a

reduced-form model is considered. The part of the replication method is illustrated with

some well-known and important examples initiated by Duffie (1999). The presentation of a

structural model by Das (1995) will more brief, where the reduced-from model will serve with

some useful fundamental techniques within this methodology. The reduced-form models are

most widely used in practice to price CDSs. The implementation of such models is discussed

after presenting a recent literature survey for CDS pricing models. At the end of section 1.3
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a summary of the main issues of the use of CDSs and their valuation approaches are given.

At the beginning of Chapter 2 the focus in section 2.1 is on the main capital structure arbi-

trage and hedging strategies. Here only the main strategies are presented including strategies

of equity instruments against debt instruments, as well as strategies with equity and credit

instruments as well as mixed strategies. Some types of basic debt versus equity trading are

quite simple, but more interesting and classical examples are plain convertible or reverse con-

vertible bond’s delta-neutral hedging strategies with stocks or equity options. More advanced

strategies in this area, more known as convertible aribitrage - however with capital structure

characteristics - are the use of convertible bonds with embedded options such as call write or

call for take-over protection or covered convertibles. Further well-known strategies in capital

structure arbitrage strategies are those where equity instruments are traded against credit

instruments. Here the main trading strategies are CDS versus common stocks or CDS versus

equity options. These strategies can also be implemented as pure volatility arbitrage trade

between the two asset classes where an implied equity volatility is extracted from CDS rates

and traded against volatility in the equity market. For mixed strategies every possible trade

can be done, but in this section we focus on basis trades which are also a key indicator to

quantify arbitrage opportunities, meaning CDS versus the corresponding cash market instru-

ments such as bonds and asset swaps (so called trading basis risk) . Here some applications of

the replication strategies in section 1.3.8 are presented and much more important strategies to

transfer credit risk such as convertibles versus CDS or asset swaps using convertible stripping

and special purpose vehicles (SPV) are discussed.

Section 2.2 serves with a market description of capital structure arbitrage strategies and

the players involved. As we show previously in chapter 1 and section 2.1 the major role in

those strategies. Therefore we will focus only on CDS-related strategies. We want to make

more clear the different rules of banks and hedge funds for such capital structure arbitrage

strategies and what the consequences are for the financial markets, for example such that

easy arbitrage opportunities will start disappearing faster and the volatility of profit and loss

positions in financial institutions will fall.

Chapter 3 presents the empirical part of the thesis. The empirical evidence for the rela-

tionship between CDS, implied equity option volatilities and cash equity prices was analysed

using cointegration analysis. The empirical analysis will try to assess if there is some long-run

equilibrium between the CDS market and the equity options market and also to analyse the

mechanism of price discovery between these markets for a specific company. In section 3.1, the

rationale for the empirical analysis is outlined and explained. Section 3.1.1 shows a formula

to estimate the implied put option volatility depending manly on the credit spread and lever-
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age of a firm. In order to explain the econometrics behind the cointegration theory, section

3.2 presented a brief description of stationary and non-stationary stochastic processes, VAR

models, cointegration and error correction model. The data set used was described in section

3.3 and section 3.4 presents the description of the applied tests and the obtained results.

It is not possible to present all details about credit derivatives pricing as in Schönbucher

(2003) or practical issues on credit derivatives as presented in JPM (1999), Das (1998, 2001),

O’Kane (2001), Tavakoli (2001), and Bowler and Tierney (2000). More detailed information

on convertible bonds trading is presented in Calamos (2003). The objective of the thesis

was to discuss the main strategies and the needs for capital structure arbitrage. A complete

discusssion of the full range of trading strategies including mixed and hybrid instruments

including as well as new models which are not completely available now can easily fill an

entire book. It is interesting that there does not exist enough public material about capital

structure arbitrage strategies such as in the area of credit derivatives at the moment. In fact,

the presentation in chapter 2 is based on a large mix of internal documents and interviews

with practitioners. The objective in the descriptive part of the thesis was to work out the

main key facts in these different areas including practical issues which are relevant for capital

structure arbitrage strategies, such as CDS against equity options or cash equitie, which is

the most common form. CDSs are relatively new in the literature and play the key rule

in capital structure arbitrage strategies, thus we discussed this area fairly deep. Therefore,

sections 1.3.7 to 1.3.9 can be seen as a primer for CDS but can not replace standard works

such as Tavakoli (2001), Das (1998, 2001), Schönbucher (2003), Cossin and Pirotte (2001),

JPM (1999), O’Kane (2001), Bowler and Tierney (2000) or Moore and Watts (2003) which

serves with a recent market guide for CDS. For the concepts and the mathematics behind the

most important and popular credit risk models see Schönbucher (2003).

This thesis is a contribution to the empirical literature on credit derivatives. In fact,

the approach presented here is innovative in terms of variables used such as CDS rates and

volatility skew and the choise of the econometric tests applied. Although Hull et al. (2003)

used similar variables in their work, the applied econometric test are different. In that work,

rank order correlation measures such as Kendall and Spearman measure were used. Another

similar work is Skinner and Townend (2002). The authors interpret CDS as put options and

regress CDS prices on factors that should influence their price in this framework. Again,

this thesis differs from that work in terms of the analysed variables and the method used.

Campbell and Taskler (2002) explores the effect of equity volatility on corporate bond yields.

Blanco et al. (2003) is probably the first paper to examine CDS rates in a time series

framework. This work has a significant resemblance with this thesis. The authors analysed
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three main issues. First, whether bond and CDS markets price default risk equally. Second,

where credit risk price discovery takes place predominantly. Third, what are the factors are

that influence short-run changes in CDS prices and credit spreads. This thesis works out

the second and third issues of Blanco et al (2003). The first issue could not be addressed

because the available data was not sufficient. The second issue is adressed partially in that

the Gonzalo-Granger measure is reported here. The third issue is addressed in the same

fashion employing cointegration test, which in our work were based on the variables CDS

rates and volatility skew, whereas in the work of Blanco et al. (2003) were based on several

variables: the change in long-term interest rate, equity market returns, firm-specific equity

returns, change in market volatility, firm-specific volatility, and change in slope of yield curve.

It will be shown that a significant relationship between the CDS rates and the corresponding

volatility skew exists.



Notation

Part I :

A protection buyer
At asset value at time t
a value of default-free annuity in discrete time
Bt debt value at time t
B protection seller
B(t, T ) default-free zero coupon bond value at time t
Bd(t, T ) defaultable zero coupon bond value at time t
C reference credit
C(t) default-free fixed coupon bond value at time t
C̃(t) default-free floating coupon bond value at time t
Cd(t) defaultable fixed coupon bond value at time t
C̃d(t) defaultable floating coupon bond value at time t
c Coupon for a default-free fixed coupon bond
cd Coupon for a defaultable fixed coupon bond
CB convertible bond
CBO collateralised bond obligation
CDO collateralised debt obligations
CDS credit default swap
CLN credit linked note
CLO collateralised loan obligation
CO call option premium
DD distance to default
DDS digital default swap
Et equity or stock value at time t
F face value of debt
F (t) default-free FRN value at time t
F d(t) defaultable FRN value
FTDS first to default swap

xvi
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J Cox or time-inhomogeneous Poisson process
K strike level
L LIBOR (London inter bank offering rate)
l leverage of a firm
M cumulative bivariate standard normal distribution function
N cumulative standard normal distribution function
N 0 derivative of N
P survival probability
P dirty dirty price
PD default probability
PO put option premium
PV present value
q continuous dividend yield
R recovery rate
r instantaneous risk-free rate, continuously compounded
s swap spread
sasset asset swap spread
sc credit spread
scds CDS rate
sfrn FRN spread
spar par spread of defaultable coupon bonds
T maturity or expiration time
TRS total return swap
α scalar
αt,T annuity or numeraire in continuous time
βt,T risk free discount factor in continuous time
Γ option gamma
∆ option delta
Θ option theta
κ option moneyness



NOTATION xviii

λ intensity or hazard rate
µ Black-Scholes drift
ν implied equity put volatility
O omicron
% quasi-debt ratio (leverage measure)
σ asset volatility
σE equity volatility
τ time to default
Φ present value of the premium leg of a CDS
Ψ present value of the protection leg of a CDS

Part II:

~β cointegration vector
GG Gonzalo and Granger measure
εt white noise process
L lag operator
θ moving average coefficient
µ statistical drift term or mean
σ2 Variance
γ speed-of-adjustment coefficient
φ autoregressive coefficient
~φ, ~ϕ short-run dynamics among markets
H0 null hypothesis
yt time series



Part I

Descriptive Part

1



Chapter 1

Theoretical and Practical Background

In this section, the theoretical background of risky debt valuation based on the Contingent

Claims Analysis (CCA) is presented. CCA started with the seminal work of Black and Scholes

(1973) and later refined by Merton (1974, 1977). Their famous option pricing model was

extended to valuing corporate liabilities. The related approach called “reduced-form” firstly

introduced by Jarrow and Turnbull (1995) is analysed here as well. We present also key

facts about convertible bonds including a brief survey on pricing models and the coresponding

hedging and arbitrage techniques. The descriptive part will serve with basics about credit

derivatives, their main structures, markets and applications. This includes an discussion on

how credit dreivatives can complete financial market information. After this we focus more on

credit default swaps, the leading credit derivatives intrument and present here the valuation

methodologies, such as replication approaches, a structural and a reduced form model. Within

this part a Litrature review for credit default swap pricing models including implementation

issues is given as well. Based on the knowledge of the these securitie classes, such as credit

default swaps, equity derivatives and convertible bonds, which form the building block for the

capital structure trading strategies, the main strategies and the market of them are discussed.

The discussion includes the rule of large banks and hedge funds as well as the impact of capital

structure arbitrage strategies to the financial market.

1.1 Bond Pricing Models based on Equity Price Behav-

ior

The link between the values of equity and debt of a firm has many important applications,

such as:

• Trading between shares and debt of a given company (or between equity options and

2
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credit derivatives);

• Assessment of the probability of default of a given firm based upon its assets and level
of debt;

• Capital structure efficient frontier optimisation;

The probability of default (or credit risk) of a company based on its fundamental (balance

sheet) analysis tends to be the focus of most models of risky debt valuation. The classical

version of this valuation, known as Contingent Claim Analysis or Merton’s model, is due to

Black and Scholes (1973) and Merton (1974, 1977). Essentially, default is assumed to occur

when the firm’s market value of assets falls below the outstanding firm’s debt. This model

is termed also structural model because it relies upon balance sheet information, such as the

capital structure, and based on that the probability of default is derived endogenously. A

second approach, called by Duffie and Singleton (1999) “reduced-form”, models the time of

default exogenously, eliminating the dependency on the firm’s capital structure. Reduced-form

models assume the probability of default as a perfectly unpredictable event.

1.1.1 Structural Models

The key insight of Black and Scholes (1973) and Merton (1974) is that both equity and debt

can be regarded as derivative securities on the value of the firm’s assets. The model makes it

possible to analyse and measure the impact on credit risk spreads of a change in the parameters

of an option, such as volatility of the underlying, volatility of interest rates, etc. The method

points out that equity is considered a call option on the market value of the firm’s total assets

with a strike price equal to the book value1 of the firm’s debt. The value of corporate debt

can be determined by solving for the equity value and using the accounting identity, expressed

in market terms, total firm assets = total debt + total equity. Debt could also be considered

as a put option on the market value of the firm’s total assets with a strike price equal to the

book value of the firm’s debt. We could also express debt as a combination of a default-free

loan and a barrier put option implicitly sold to the firm.

Some assumptions are required to derive Merton’s model and its simple methodology. The

objective is to have a pricing formula of a straight bond issued by a defaultable firm for a

given period of time.

Assumption 1: There are no transactions costs or taxes. Assets are perfectly

divisible and are traded continuously. Nor are there short-selling restrictions.

Borrowing rates are equal to lending rates.

1The book value is the current value of an asset as it appears on the balance sheet.
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Assumption 2: There are sufficiently many investors with comparable level

of wealth such that they can buy or sell as much as they want at a given

market price.

Assumption 3: The instantaneous risk-free rate, r, is known and constant

over time. This implies a flat term structure of risk-free interest rate and the

value of a riskl-free zero-coupon bond paying $1 at time T will be B (0, T ) =

exp [−rT ].
Assumption 4: The value of the assets of the firm, A, follows a diffusion-type

stochastic process with stochastic differential equation

dA

A
= (µ− C) dt+ σdz, (1.1)

where µ is the instantaneous expected rate of return per time,C is the total

cash outflow by the firm per unit time, σ the volatility of the return on the

underlying firm’s assets per unit time, and dz is a standard Wiener process.

Assumption 5: The Modigliani-Miller theorem holds in the sense that the

value of the firm is invariant to its capital structure. The total value of the firm

is financed by equity, E t, and a zero-coupon noncallable debt, Bt, maturing

at time T with face value F ,

At = Bt +Et (1.2)

where the subscription t means per unit of time.

Assumption 6: Debt holders receive whatever asset value remains in the

event of default and default can occur only at the maturity of the debt.

Assumption 7: Bankruptcy protection: Firms cannot file for bankruptcy

except when they cannot make required cash payments. Perfect priority rules

govern distribution of assets to claimants at the time of liquidation.

Assumption 8: Dilution protection: Unless all existing non-equity claims

are eliminated, no new securities other than additional common equity can

be issued. Equity holders cannot negotiate arrangements on the side with

subsets of other claimants.

Assumption 9: Perfect liquidity: Firms can sell assets as necessary to make

cash payouts with no loss in total value.
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Consider a firm with one class of equity, one class of zero-coupon debt with face value, F ,

and no dividend payments. Using the assumption 6, the value of the bond at maturity is

BT (A,T ) = min (AT , F ) . (1.3)

The value of the equity is given by

ET (A,T ) = max (0, AT − F ) . (1.4)

The payoff of the equity is exactly the payoff of a European call option on the firm’s value;

the payoff of the bond is either its face value or whatever is left of the firm’s value A if it is

below the face value of the debt. The payoff of debt value is showed in Figure 1.1 and the

payoff of equity value is shows is Figure 1.2.

Figure 1.1: Debt value at maturity as a function of the assets value of the firm

Alternatively, the debt holders are said to have lent money without risk with face value F

and to have written (sold) a put option on the assets of the firm with an exercise price of F .

To see this, rewrite equation 1.3 as

min (AT , F ) = F −max (0, F −AT ) . (1.5)

The value of the equity is given by the partial differential equation (PDE)

0 =
1

2
σ2t (A)A

2∂
2Et (A)

∂A2
+ rA

∂Et (A)

∂A
− rEt (A) + ∂Et (A)

∂t
, (1.6)

subject to
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Figure 1.2: Equity value at maturity as a function of the assets value of the firm

Et (A)

A
6 1,

Et (0) = 0,

ET (A) = max (0, AT − F ) .

In the case of constant volatility, the well known Black and Scholes relation give the pricing

formula of the equity:

Et (A,T,σ, r, F ) = AtN (d1)− Fe−r(T−t)N (d2) , (1.7)

with

d1 =
ln
¡
At
F

¢
+
³
r + σ2

2

´
(T − t)

σ
√
T − t =

ln
³
Ater(T−t)

F

´
σ
√
T − t + 0.5σ

√
T − t,

d2 = d1 − σ
√
T − t,

where as N is the cumulative normal distribution function, N (y) = 1√
2π

R y
−∞ e

−u2

2 du.

The value of the debt satisfies the same PDE, but with a different boundary conditions:

0 =
1

2
σ2t (A)A

2∂
2Bt (A,T )

∂A2
+ rA

∂Bt (A,T )

∂A
− rAt (A, T ) + ∂Bt (A,T )

∂t
, (1.8)

subject to
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Bt (A,T )

A
6 1,

Bt (0, T ) = 0,

BT (A,T ) = min (AT , F ) .

From the accounting identity we know that the value of a risky zero-coupon bond is equal

to the value of the firm less the value of the equity (which is calculated as a call option). By

equation 1.2, the risky bond is equal to the risk free bond less the value of the credit risk

put option. Assuming again constant volatility and applying the Black and Scholes pricing

formula, the debt value is given by

Bt (A, T ) = At −Et
= At −AtN (d1)− Fe−r(T−t)N (d2)
= AtN (−d1) + Fe−r(T−t)N (d2) ,

or

B0 (A, T ) = Fe−rT − European put (1.9)

= De−rT − £−N (−d1)A0 +De−rTN (−d2)¤
= AoN (−d1) +De−rTN (d2) ,

where d1, d2 and N(·)are defined as above.
Given the basic Merton framework, we are ready to derive analytical expressions for the

yield to maturity, the probability of default, the credit spread, and the discounted expected

recovery value.

The yield to maturity, y, of a bond in continuous time is the solution to

Bt = Fe
−y(T−t), (1.10)

which is given simply by

yt (T ) = −
ln
¡
Bt
F

¢
T

. (1.11)

Substituting 1.11 in 1.7 and knowing that the credit spread, sct (T ), is the difference be-



CHAPTER 1. THEORETICAL AND PRACTICAL BACKGROUND 8

tween the yield to maturity and the risk free rate,

sct (T ) = −
1

T
ln

·
N (d2) +

At
Fe−rT

N (−d1)
¸
. (1.12)

It is worth noting that the credit spread is a function of only a measure of leverage % =
Fe−rT
At

(sometimes called quasi-debt ratio2) the volatility of the firm value, and the time to

maturity.

Using Ito’s lemma, derive an expression of the standard deviation of the bond, which

corresponds to the default risk over the next trading interval:

σB =
At
B

∂B

∂A
σ =

N (−d1)
N (−d1) + %N (d2)σ. (1.13)

Despite the fact that both equations 1.12 and 1.13 depend on the same variable, they

measure different risks. Credit spread is the promised risk premium over the life of the bond

and the standard deviation of the bond measures the risk of the rate of return over the next

period.

The risk-neutral probability of default, PD , is the probability that the shareholders will

not exercise the call option to buy the assets of the firm for F at time T. Crouhy and Galai

(1997) and others show that

PD = N (−d2) . (1.14)

To get the expected discounted recovery rate, it is useful to rewrite equation 1.9 as (at

time t = 0),

B0 (V, T ) = Fe
−rT −N (−d2)

·
Fe−rT − N (−d1)

N (−d2)A0
¸
, (1.15)

where the fraction N(−d1)
N(−d2) in brackets is the recovery rate, see later section 1.3.2.

Similarly to equation 1.13, because the equity value is a function of the asset value, the

instantaneous standard deviation of equity is a function of the asset volatility and is given by,

σE = σ
∂E

∂A

A

E
, (1.16)

where σ is the standard deviation of the asset return ot the firm and ∂E
∂A
is the partial

derivative of the value of equity with respect to the asset value of the firm. This means that

E0σE = N (d1)A0σ, (1.17)

2later we use l = %−1 as a measure for the leverage.
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according to Hull et al.(2003), where E0 and A0 are the equity value at time 0 and the

asset value at time 0 of the firm.

Bohn (2000a) makes a link between the probability of default given by equation 1.14 and

the CAPM framework. A relationship between the expected return on the firm’s assets and

the overall expected return for the market is given by

µ− r = Cov (rA, rM)

σM

µM − r
σM

(1.18)

where rM is the return on the market, rV is the return on the firm’s assets, µM is the

expected return on the market, and σM is the volatility of the market. After some calculus,

the risk-neutral probability of default is given by

PD = N

 ln
³
F
A0

´
− µT + 0.5σ2T
σ
√
T

+ ρ
µM − r
σM

√
T

 , (1.19)

where ρ = Cov (rA, rM).

Essentially, the actual probability of default is adjusted upwards to reflect the compensa-

tion necessary to motivate risk-averse investor to buy an asset with price sensitivity to overall

market risk and time to maturity. µM−r
σM

is determined by the entire market and can be inter-

preted as the reward per unit of market risk taken (an overall market Sharpe ratio). ρ derives

from the sensitivity of the firm’s assets to the overall market risk.

See Table 1.1 for a categorization of several representative structural models published in

the finance literature as shown in Bohn (2000a)3.

Extensions of Merton’s model

The basic framework of Merton’s model can be extended to more complicated debt securities

by reflecting a security’s payouts and indenture provisions in the model definitions. Some

extensions of this basic modelling include modifying the asset value process, the default-risk-

free rate process, and the conditions that could trigger default (including both the default

barrier and the assumptions governing the reasons for default).

Relaxing assumption 6, Black and Cox (1976) introduced an absorbing barrier to reflect

the presence of net worth or safety covenants. In this way, the asset value can be modelled

such that it can be absorbed into the default barrier (which is defined as the value at which the

3The table includes notations original from the articles. For the detailed drift and diffusion terms as well
as specific dynamics we refer to the original articles.
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Reference Asset Value and Interest Rate
Black and Scholes (1973); Merton (1974) dA = µAdt+ σAdz

dr = rdt
Black and Cox (1976) dA = (µ− δ)Adt+ σAdz

dr = rdt
Leland (1994); Leland and Toft (1996) dVA = (µ(A, t)− δ)dt+ σAdz

dr = rdt
Shimko, Tejima, and Van Deventer (1993) dA = µAdt+ σ1Adz1

dr = κ(γ − r)dt+ σ2dz2
Kim, Ramaswamy, and Sundaresan (1993) dVA = Adt+ σ1Adz1

dr = κ(γ − r)dt+ σ2dz2
Longstaff and Schwartz (1995) dA = µAdt+ σ1Adz1

dr = (γ − κr)dt+ σ2dz2
Briys and de Varenne (1997) dA = rAdt+ σ1(ρdz2 +Adz1)

dr = κ(t)(γ(t)− r)dt+ σ2(t)dz2
Zhou (1997) dA = (µ− λδ)Adt+ σ1Adz1 + (Π− 1)dJ

dr = (γ − κr)dt+ σ2dz2

Table 1.1: Categorization of Structural Models

firm can no longer meet its contractual obligations). Valuation becomes a first-passage-time

problem, which determines the probability of the first time the asset value passes through the

default barrier.

Geske (1977) models defaultable coupon debt as a compound option on the firm’s value.

Default occurs at the coupon dates when the firm’s value is insufficient to pay off the coupon.

His model gives a closed-from solution for a defaultable bond with one intermediate coupon.

However, for a higher number of coupons the compound options become difficult to be repre-

sented in simple integrals of the normal density.

As default cannot occur by surprise in the traditional Merton’s framework, it would be

expected as time to maturity of the debt goes to zero, credit spreads should also approach

zero. In practice, non-zero credit spreads are observed for nearly all-corporate debt regardless

of maturity. Zhou (1997) presents one solution to this problem. He incorporated in the firm’s

asset process a jump process to periodically shock the asset price process. In this way, short-

dated risky debt can be shown to require a significant credit spread. This model assumes

investors demand a price for both general credit risk and credit risk arising from jumps.

Relaxing assumption 3, Shimko et al. (1993) combined the basic structural model with

a stochastic process for the default-risk-free interest rate using the mean-reversion model of

Vasicek (1997). An important characteristic of this model specification involves the correla-

tion between the asset value factor and the risk-free interest factor. The importance of this

extension is not only that of a more sophisticated model but it is also an extended reason-

ing that shows how far the structural model might further serve for the monitoring and the

management of the financial funding activity.

The main drawback of Merton’s model and Shimko et al. (1993) is that the firm can only
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default at the maturity of the debt and default occurs only when the assets of the firm are

exhausted. Longstaff and Schwartz (1995) developed a two factor models with an exogenous

threshold value at which financial distress occurs. They used the approach of Black and Cox

(1976) where a down-and-out barrier is added to the Black and Scholes framework in a way

that default can be triggered earlier should this barrier be reached before the maturity of the

debt. This allows the firm defaulting by asset insolvency or by cash-flow insolvency. The term

structure of interest rate is assumed to follow the Vasicek model. The authors evaluate a risky

corporate zero-coupon as a risk free bond minus a value resulting from the loss that can be

incurred, times the probability of defaulting, either during the life of the bond or at maturity

when the assets value process reaches the barrier. A solution for a floating rate debt is also

provided.

Other more complicated characterizations of these models where default can occur prior to

maturity (the option to default can be considered a barrier option) are presented in Ericsson

and Reneby (1995) and Briys and de Varenne (1997). After simplification, the form of the

valuation equation for many of these models resembles the one in equation 1.7.

Another modification of the basic Merton framework concerns about the specification of

the firm’s asset value that set off bankruptcy. In the majority of the structural models, this

value is set exogenous. Leland (1994) makes it endogenous by introducing taxes, bankruptcy

costs and bond covenants as determinants of the optimal asset value at which a firm should

declare bankruptcy. Leland and Toft (1996) relax the assumption of infinite life debt of Leland

(1994) and study the impact of the choice of debt amount on the capital structure and thus

on credit spread and also the impact of the maturity of the debt chosen. The model thus gives

the value of the overall firm depending on its capital structure. The model can be used as a

basis for determining the term structure of credit spreads as well.

See Table 1.2 for a categorization of several representative of the extension of structural

models published in the finance literature as shown in Bohn (2000a).4

Empirical evidences

The empirical evidence for the Merton’s framework identifies the following issues addressed

in the recent literature:

• Term structure of credit spreads

4The table includes notations from the original articles. For the detailed default barrier and recovery terms
we refer to the original articles.
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Reference Default Barrier Recovery
Black and Scholes (1973); Merton (1974) D AT
Black and Cox (1976) LFe−r(T−t);AB LFe−r(T−t)

Leland (1994); Leland and Toft (1996) A∗t (δ, T, ξ,α);AB (1− L)A∗t
Shimko, Tejima, and Van Deventer (1993) F AT
Kim, Ramaswamy, and Sundaresan (1993) c/δ;AB min[(1− L(t))P (r, t, c), Bt]
Longstaff and Schwartz (1995) K;AB (1− L)F
Briys and de Varenne (1997) LFP (t, T );AB LFP (t, T )
Zhou (1997) K;AB (1− L)F
AB denotes an absorbing barrier

Table 1.2: Categorization of Structural Models - continuation

• Ranking of issuers

• Credit spread movements or prediction of default probabilities

• Pricing accuracy

As far as the shape of credit spreads are concerned, Sarig and Warga (1989) estimated the

term structure of credit spreads using a small sample of zero coupon corporate bonds and zero

coupon U.S. treasury bonds. They show that the term structure is slightly upwardly sloping

for investment grade debt, humped shaped for lower grade debt, and downward sloping for very

low-grade debt. Those shapes are consistent with the contingent-claims model predictions.

More recently, Wei and Guo (1997) and Bohn (2000b) the results of faveor Merton’s model as

well. However, Helwege and Turner (1997) report the exception and found positive slope for

speculative grade debt for each issuer.

The next set of tests examines whether structural models are able to reproduce a rank

ordering of the creditworthiness of different companies at different times. Although admitting

that there may be pricing errors, this test checks whether Merton’s model is able to distinguish

between riskier and less risky issuers. Crosbie (1998) and Crosbie and Bohn (2003) explain the

predicted power of the KMV model in estimating the relative creditworthiness5. Lardic and

Rouzeau (1999) perform a study using corporate bonds issued by French firms. Despite the

fact that theoretical prices did not reproduce the risk ranking in the market, the movements of

theoretical and empirical spreads seemed cointegrated, which means that the Merton’s model

was able to pick up changes in the credit quality of the same obligor. Hull et al. (2003c) test

the assertion of Crosbie (1998) and Crosbie and Bohn (2003) using different market proxies6.

The prediction of default probabilities is relevant for hedging purposes. Longstaff and

Schwartz (1995) examined credit spreads movements on the aggregate using Moody’s corpo-

5The KMV model will be explained later on this section.
6Hull et al. model (2003) will be detailed later on.
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rate bond yield averages. They found that the pairs credit spreads-rating class and spreads-

share index are both negatively correlated. The found also that the influence of the share

index was less important than the influence of interest rates. Another important result came

from Delianedis and Geske (1998). They found that rating migrations (using S&P credit

ratings) and defaults are detected months before in the equity markets.

As far as pricing accuracy for credit spreads are concerned, Fons (1994) finds that his

model seriously underestimates the spreads he obtains from fitting linear regressions through

data within different credit classes. Particularly, his model specification shows difficulty with

investment grade bonds. In a broad empirical research, Eon et al. (2003) test five differ-

ent models: Merton’s original framework from 1974, Geske (1977), Leland and Toft (1996),

Longstaff and Schwartz (1995), and Collin-Dufresne and Goldstein (2001). They implement

the models using a sample of bond prices from firms with simple capital structures during

the period 1986-1997. The conventional wisdom that the structural models do not generate

spreads as high as those seen in the bond market is confirmed in their work. They found sub-

stantial pricing errors in all models, as all five models tend to generate extremely low spreads

on the bonds that the models consider safe (usually bonds with low leverage and low asset

volatility) and to generate very high spreads on the bonds considered to be very risky. The

Merton original model underestimated the spreads by as much as 80%, and even variations in

the parameters in not help much to improve the pricing accuracy. Geske’s model performed

similarly to the Merton model with severe underestimation of spreads. The Longstaff-Schwartz

model tended to overestimate the spreads severely for risky bonds and underestimated spreads

for investment grade ones. Yet its performance was slightly better than the Merton model.

In the Leland-Toft model they found that the coupon size drove much of the variation in pre-

dicted spreads. Therefore, in a recent research, Gemmill (2002) found that Merton’s model

predicts bond yield spreads fairly well when the model is applied to companies with very sim-

ple capital structures and transparent values for both assets and liabilities. These companies

are UK based closed-end funds that issue zero-coupon bonds.

Recent market applications

A particularly recent field of research is the relationship of the credit default probabilities

and the volatility skews or surface of equity options and the estimation of credit spreads from

option prices. Hull et al. (2003a) propose a way that the basic structural model’s parameters

can be estimated from the implied volatilities of options on the company’s equity. In fact, the

research objective is to provide a rank ordering of creditworthiness for U.S. companies rather

than to estimate precisely the level of credit spreads. In order to accomplish this, the authors

explore the Merton’s model role of explaining equity implied volatilities and the volatility
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skews that are observed in the equity options. They use extensively the model proposed by

Geske (1979) to evaluate compound options. Within Merton’s model framework, an option

on the firm’s equity that expires before the debt matures is a compound one, an option on a

European call option. The formula for a put with strike price K and expiry time ω < T on

the equity is

P = Fe−rTM
µ
−a2, d2;−

r
ω

T

¶
−A0M

µ
−a1, d1;−

r
ω

T

¶
+Ke−rωN (−a2) , (1.20)

where

a1 =
ln
³

A0
A∗ωe−rω

´
σ
√
ω

+ 0.5σ
√
ω,

a2 = a1 − 0.5σ
√
ω.

M is the cumulative bivariate normal distribution function, and A∗ω is the critical asset

value at time ω, the value for which the equity value at that time equals K. In fact, A∗ω is the

asset value below which the put on the equity will be exercised. The parameters α and κ are

defined as

A∗ω = αA0e
rω,

K = κE0e
rω.

The parameter α is the scalar multiple of the forward asset value at which the option

is at-the-money (referred as the implied strike level). The parameter κ is the ratio of the

strike price to the forward equity price (referred as the option’s moneyness). Defining ν as the

implied put option volatility and assuming that market prices are given by Merton’s model,

the implied volatility can be determined by solving:

F ∗M
µ
−a2, d2;−

r
ω

T

¶
−A0M

µ
−a1, d1;−

r
ω

T

¶
+ κE0N (−a2) =

= κE0N (−d∗2)−E0N (−d∗1) (1.21)

where
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d∗1 =
− ln (κ)
ν
√
ω

+ 0.5ν
√
ω; d∗2 = d

∗
1 − ν

√
ω

a1 =
− ln (α)
σ
√
ω

+ 0.5σ
√
ω; a2 = a1 − σ

√
ω,

F ∗ = Fe−rT

Inserting equation 1.21 in equation 1.7 results in7

lM

µ
−a2, d2;−

r
ω

T

¶
−M

µ
−a1, d1;−

r
ω

T

¶
+ κN (−a2) [κN (d1)− lN (d2)] =

= [κN (−d∗2)−N (−d∗1)] [N (d1)− lN (d2)] . (1.22)

The authors rewrite equation 1.7 to determine the implied strike level , α:

κE0e
rω = A∗ω

·
N (d1,ω)−

µ
l

α

¶
N (d2,ω)

¸
,

so that

κ =
αN (d1,ω)− lN (d2,ω)
N (d1)− lN (d2) , (1.23)

where

d1,ω =
− ln ¡ l

α

¢
σ
√
T − ω

+ 0.5σ
√
T − ω; d2,ω = d1,ω − σ

√
T − ω.

Equations 1.22 and 1.23 define an implicit relationship between the implied volatility of an

option and the parameter κ, the moneyness, for a set of model parameter values of leverage,

l, asset volatility and debt and option maturities. The volatility skew arises from different

values of κ and different values of implied volatilities. In summary, the equations 8 and 9

developed above suggest a new way of implementing Merton’s model. Having two implied

volatilities and assuming a value for T, equations 1.22 and 1.23 can be solved for the leverage

ratio and the asset volatility. This in turn can be used to calculate the risk-neutral probability

of default by time T using equation 1.14 or the credit spread for a zero-coupon bond maturing

at time T using equation 1.12. This approach allows probabilities of default and credit spreads

to be estimated directly from implied volatility data. In fact, it is a powerful alternative to

7We have modified the results from the Hull et al. (2003a) as there seems to have been a computational
mistake in their working paper. A detailed proof is presented in Apendix I.
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Merton’s model implementation such as Jones et al. (1984) because it avoids the estimation

of the instantaneous equity volatility and the company’s liability structure into a single zero-

coupon bond. More detailed proofs refer to Appendix I.

For the illustration between the implied credit spread (see below) and the implied volatil-

ities the following example and assumptions are considered in Hull et al. (2003a):

• The time to make the payment to the shareholders, T , is one year, T = 1.

• The time to exercise the put option on equity, ω, is ω = 0.25

• The asset volatility is given by σ = 15%

To calculate the implied credit spread sc (see A.27) of the debt for each value of the leverage

parameter, l, the formula A.27 is used. To calculate the implied volatility of puts on the equity

option moneyness, κ, the compound option model of equation A.23 and A.18 is applying. For

an option moneyness κ = 1, an at-the-money put option is considered where the put option

delta is approximately ∆p
κ=1 ' −0.5 and for κ = 0.9 the put option is out-of-the-money with

a delta of about ∆p
κ=0.9 ' −0.25. In general ∆p

κ denotes an put option delta for a given option

moneyness, κ.

Given a range of values for the leverage parameter, l, and defining the implied volatility

surface as the spread between the implied volatility of the out-of-the-money put and the

implied volatility of the at-the-money put, denoted as SKEW, see 3.1, the relation between

implied credit spread, implied volatilities and and the volatility surface can be easily estimated.

Figure 1.3 shows that there is a positive relationship between the at-the money implied

volatility and the implied credit spread. This result is not too surprising and consistent with

observable parameters. Figure 1.4 shows that the relationship between the volatility skew and

the implied credit spread is a little bit more complex. The volatility skew increases monoton-

ically with the credit spread for relatively low spreads (up to about 3%). For higher spread

levels the slope of the skew is almost zero. As Figure 1.5 shows, the relationship between the

volatility skew and the level of the at-the-money implied volatility is monotonically increasing.

These results were generated using a particular set of assumptions, the general character

of them, however, is quite insensitive to the assumptions. Changing the various parameter

values or using changes in the asset volatility to generate the variation in implied volatility

and the credit spread almost always produces similar relationships between the variables.

The empirical tests of this newmethodology use as estimate of the company’s credit spreads

five-year credit default swap spread8. This is done because in theory, as empirically analysed

8CDS securities will be detailed in section 1.3.
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Figure 1.3: Relationship between the at-the money implied volatility and the implied credit
spread

Figure 1.4: Relationship between the volatility skew and the implied credit spread
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Figure 1.5: Relationship between the volatility skew and the level of the at-the-money implied
volatility

in Blanco et al. (2003), CDS spreads are very close to the credit spreads on five-year par yield

bonds (despite the fac t that in Merton’s model implied spreads are the spreads on five-year

zero-coupon bonds). This discrepancy is said to be not important because the objective of

this implementation is to test the ability of structural model ranking the creditworthiness of

companies. Thus the creditworthiness is measured by the estimate of the company’s five-year

CDS spread.

The authors test the ranking order ability for their model and compare it to Jones et al.

(1984) and reduced form model derived from Duffie and Singleton (1999)9. One of the results

is the insensitiveness of ranking order to the debt maturity when using their implementation.

This shows effectively that their model requires only two implied volatilities. They also find

that their implementation works better than the one of Jones et al. (1984) and the reduced

form model. In that sense, they suggest that equity implied volatilities could be used (using

their implementation) in the place of CDS spreads to estimate the probability of default for

given company.

Contrarily to the above research, Zou (2003) is interested in finding a model that pre-

dicts credit spreads rather than ranking order using the information from the equity options

volatility surface. His goal is to develop a model that does not require additional unknown

parameters and does not rely on the log-normality assumption. Using a maximum entropy

method to estimate the implied probability density from volatility smile of equity options, it

9Reduced models will be explained in the next section.
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is possible to estimate the corersponding CDS premium. The maturity of the debt is chosen

to be between two to three years (the tests show that CDS is not very sensitive to the ma-

turity within this range) and the recovery rate is set to 40%, as this seems to be the market

convention (the model is not very sensitive to the precise level of the recovery rate between

30% and 60%). The results seem to be encouraging and show also that the CDS level could

be used as a major factor for forecasting long-term equity volatility.

Commercial Applications based on Merton’s Model

A variety of commercial applications have been developed based on Merton’s model. Among

the most important ones are Moody’s KMV model (a Moody’s company) and CreditGrades

model (a joint venture of Deutsche Bank, Goldman Sachs, JPMorgan and RiskMetrics Group).

Moody’s KMV has created an approach for estimating the default probability that follows

three steps essentially, according to Crosbie and Bohn (2002):

1. Estimation of the asset value and the volatility: market value and volatility of the

firm are estimated from the market value of its stock, the volatility of its stock, and

the book value of its liabilities.

2. Distance-to-default (DD): DD is calculated from the asset value and asset volatility

(estimated in step 1) and the book value of liabilities. It is the number of standard

deviations the asset value is away from default.

3. Default probability: the default probability is determined directly from DD and the

default rate for given levels of distance-to-default.

The market value and volatility of assets can be determined directly using an option-

pricing based approach, such as the ones presented above. Given the more complex balance

sheets structures observed in practice, KMV proposes using the default point as the sum of the

short-term liabilities (coupon and principal payments due in less than one year) and one-half

of the long-term liabilities. This choice is based on the empirical evidence that firms default

when their asset value reaches a level that is somewhat between the value of total liabilities

and value of short-term liabilities.

The probability of default is the probability that the asset value will fall below the default

point. This area is called, within the KMV model, as the Expected Default Frequency (EDF).

EDF is defined as the relative amount of firms with the same distance to default that have

actually defaulted in history. If the future distribution of the distance to default were known,

the default probability (or EDF value) would simply be the likelihood that the final asset

value was below the default point. However, the distribution of the DD is difficult to measure
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and the asset returns of the firms may in practice deviate from a normal distribution. As a

consequence, the KMV model measures DD as the number of standard deviations the asset

value is away from default and then uses empirical data to determine the corresponding default

probability. The distance-to-default is calculated as:

[Distance to Default] =
[Market Value of Assets]− [Default Point10]
[Market Value of Assets]− [Asset Volatility]

or formally

DD =
ln A0

FT∗
+
³
µ− σ2

2

´
T ∗

σ
√
T ∗

,

where, 0 < T ∗ < T and DT ∗ is the book value of the frim’s liabilities due at time T ∗.

Schöhnbucher (2003) argues that with the calibration to historical data to determine the

probability of default, the KMV model leaves the Merton’s framework. He states that the

KMV model should be viewed as a statistical scoring model with a huge historical database

and a very specific definition of the distance to default, which is the key quantity within the

used model.

Another commercial application is an open and transparent web-based service of Credit-

Grades, which can be accessed at the website www.creditgrades.com. It provides analytics on

more than 11,000 of North American, European, Asian and Japanese companies. Finger et

al. (2002) provide the technical discussion of the CreditGrades model. Finger et al. (2002)

assume the firm’s asset value, A, follows a lognormal random walk and default is defined

as the first time A crosses the default barrier. The assumed asset value follows a Brownian

motion with zero dirft (pure diffusion prozess) The default barrier is defined as the amount of

the firm’s assets that remain in the case of default. This quantity is the recovery value that

the debt holders receive, RV ·DS, where RV is the average recovery on the debt and DS is

the firm’s debt-per-share. The average recovery value RV is assumed to be stochastic and

to follow a lognormal distribution with mean RV and a percentage standard deviation of the

default barrier η. Specifically,

RV = E [RV ] , (1.24)

η2 = ηV ar [ln (RV )] , (1.25)

RV ·DS = RV ·DSeηz−η2/2, (1.26)
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where z is a standard normal distributed random variable11. For an initial asset value A0
default does not occur as long as

A0e
σWt−σ2t/2 > RV ·DSeηz−η2/2, (1.27)

where W is a Wiener process well known as a standard Brownian motion.

After some algebra, the authors derive the following approximation for the survival prob-

ability up to time:

P (t) = N

µ
−Qt
2
+
log (h)

Qt

¶
− h ·N

µ
−Qt
2
− log (h)

Qt

¶
, (1.28)

where

h =
A0e

η2

RVDS
, (1.29)

Q2t = σ2t+ η2. (1.30)

In order to implement the survival probability formula 1.28, it is necessary to link the

initial asset value A0 and the asset volatility σ to observable market parameters. For this the

model is using a calibration procedure and assumes that for the initial asset value A0 at time

t = 0

A0 = E0 +RVDS, (1.31)

where E0 is the initial equity or stock price. This gives

σ = σE
E

E +RVDS
, (1.32)

which relates the asset volatility to the observable equity volatility. It often makes sense

to use a reference share price E∗ and the corresponding reference equity volatility σ∗E (either

historical or implied) to determine an asset volatility, σ, and keep it stable for some period of

time. In this case, the asset volatility will be given by

σ = σ∗E
E∗

E∗ +RVDS
. (1.33)

Now, equation 1.28 can be calculated using only observable market parameters as follows:

11E [ ] and V ar [ ] denote the Expectation and the Variance of a random variable.
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d =
E0 +RVDS

RVDS
eη

2

, (1.34)

Q2t =

µ
σ∗E

E∗

E∗ +RVDS

¶2
t+ η2. (1.35)

The debt-per-share DS is taken from balance sheet data. Firstly, all liabilities that are

part of the financial leverage of the firm are calculated. This calculation includes the principal

value of all financial debts, short-term and long-term borrowings and convertible bonds. Ad-

ditionally, this calculation includes quasi-financial debts such as capital leases, under-funded

pension liabilities or preferred shares. On the other side, non-financial liabilities such as ac-

counts payable, deferred taxes and reserves are not included. Thus debt-per-share is the ratio

of the value of the liabilities to the equivalent number of shares. The equivalent number of

shares is calculated as the common shares outstanding, as well as any shares necessary to ac-

count for other classes of shares and other contributors to the firm’s equity capital. The mean,

RV , is set to a historical average recovery rate of 0.5 and the percentage standard deviation,

η, are set to a historically plausible recovery rate volatility of 0.3, following Hu and Lawrence

(2000). The equity price E is taken from the market value and σe is the 750-1000-day historical

average volatility.

1.1.2 Reduced-form Models

As already stated, in reduced form models the time of default is modelled as exogenously

defined, in fact an intensity process that eliminates the need to have the default depending

explicitly on the issuer’s capital structure. In fact, the assumption is that default is an

unpredictable event governed by an intensity-based or hazard-rate process. It is worth noting

that since the default process can be endogenously derived, the structural model can be recast

as a reduced form model making the structural modelling approach a special case of the

reduced form approach. The strength of this modelling lays in the ability of modelling default

without much information about why the issuer defaults. However, the model weakness is

this separation between the possible economic factors explaining default.

One of the first works on this modelling is Jarrow and Turnbull (1995) where the default

or stopping time is exponentially distributed and the loss given default (LGD) is constant.

The distribution is parameterised by a hazard rate or the intensity of default, here equal to

l. Furthermore, they assume that the default-free process, the LGD function and hazard

rate process are mutually independent. In this approach, they model risky bonds as foreign

currency bonds denominated in promised dollars. If default has not occurred the exchange
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rate equals 1 and while it equals the recovery rate in case of default. Despite the fact that this

framework allows a variety of specifications for the default risk-free process, the assumption

of constant default intensity is unrealistic. This specification implies default as a Poisson

process and makes the model easier to estimate. However, companies might be characterized

by different default intensities depending on the time horizon considered.

The previous model was extended by Jarrow, Lando, and Turnbull (1997) in assuming

the default time following a continuous-time Markov chain with k states (where the states

were associated with credit ratings) and default occurring the first time the chain hits the

default (absorbing) state. The advantage of this model rests in its great flexibility to calculate

the parameters from observable data and to use it for many purposes: pricing and hedging

of bonds with embedded options, OTC vulnerable derivatives, pricing of credit derivatives

and credit-risk management. This flexibility greatly increases the number of parameters to

be estimated. The authors resolve this problem by suggesting the use of S&P transition

probability matrices and the default process is modelled as a finite state Markov process in

the firm’s credit ratings. Lando (1997) affirms that without any doubt a formulation involving

credit ratings is necessary for the pricing of instruments whose contractual terms explicitly

involve ratings changes of the issuer. An earlier application of the above Markov model ,

modified to have random recovery rates, can be found in Das and Tufano (1996).

Duffie and Singleton (1999) represent one line of reduced-form models that were originally

inspired by the initial research of Mandan and Unal (1993). In Duffie and Singleton (1999)

default is viewed as an unpredictable event governed by a hazard rate process. The difference

is on the continuous-time specification of the claim in case of default. The advantage of this

model is that currently available term structure models of interest rates (such as the Heath,

Jarrow, and Morton (1992)) can be applied to the modelling with small adjustment, such as

refining it for an additional credit risk spread.

Duffie and Lando (1997) showed how to formulate a structural model such that it can be

estimated as a reduced form model. The firm’s asset value is assumed to follow a diffusion

process and there exists a default barrier that marks the asset value at which the firm defaults.

They derive a formula for the hazard rate that is a function of the asset value volatility, the

default barrier, and the conditional distributions of asset value based on available public

information.

The imperfect accounting information is the mechanism that creates the inaccessible de-

fault stopping time. With imperfect accounting data, credit spreads are bounded away from

zero if the risky security matured.
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Cathcart and El-Jahel (1998) discuss another example of a reduced form model that can

transformed to a structural model. In the corrsponding framework, default occurs when

a signalling process (instead of asset value) hits some lower barrier. The default risk-free

rate is assumed to follow a stochastic CIR process (Cox, Ingersoll, and Ross (1985)) and a

signalling process. The interest rate process are assumed to be uncorrelated. The authors

argue that their model produces credit spread term structures more consistent with observed

credit spreads than other approaches.

More about reduced form models later in section 1.3.8.

Empirical evidences

The empirical evidence of reduced form models starts with Duffie (1996a). He adds up three

independent square-root processes12 for the default risk-free term structure to arive at the

default-adjusted discount rate and assumes constant recovery rate. Strong evidence of mis-

specification is found with the model having notably fail producing a flat term structure of

credit spreads for investment-grade bonds with less credit risk and steeper term structure of

credit spreads for the same category of bonds with more credit risk. If non-investment-grade

bonds are included the evidence of mis-specification is magnified. However, on average the

model appears to reproduce investment-grade corporate bond prices reasonably well.

Duffie and Singleton (1999) test the Duffie and Singleton (1997) model on defaultable

swap yields. They express the default-adjusted discount rate as the sum of two-independent

square —root diffusions processes. One drives credit risk and the other liquidity risk. They

subtract the corresponding US treasury zero-coupon yields to arrive at implied, defaultable

swap spreads. These spreads are studied in the context of a multivariate vector autoregression

with proxy variables for credit and liquidity risk. Liquidity shocks are found to be short-lived

while credit shocks have small short-term impact followed by significant long-term impact.

The model reproduces well the swaps yields with the exception of the short-end of the term

structure.

These two empirical tests assume independence between the interest rate process and credit

spreads. More complicated two-factor models (where both interest rate and credit spreads

processes are assumed stochastic) introduce a relationship between these variables. Longstaff

and Schwartz (1995) report a negative relationship between credit spreads and interest rates,

which is characterized by the fact that an increase in the interest rate increases the drift of

12For square-root processes see Jamshidian (1996).
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the asset value process. As a consequence, the risk-neutral probability of default decreases

leading to lower credit spreads.

Duffie (1996b) has found as well time periods where this negative correlation appears.

He finds that for bonds with highest credit-quality, changes in credit spreads are generally

unrelated to changes in interest rates. However, for lower credit-quality bonds that are still

investment grade, credit spreads appear to be negatively correlated with interest rates (liq-

uidity). Another interesting finding is the rejection of the hypothesis that the relationship

between treasury yields and credit spreads is driven by changes in credit quality.

1.2 Convertible Bonds

Convertible bonds (CB) are fixed income hybrid securities that lie between straight bonds

and stocks. They are typically listed securities issued by companies and traded on secondary

markets. CB are bonds that give their holder the right (but not the obligation) to convert

the bond into a fixed number of shares of common stock. These shares are generally of the

issuer, but they could be of another company as well. The most common terminologies of a

convertible bond are:

• Bond Value (Bond Floor): The price of a non-convertible, corporate bond of

otherwise equivalent terms. This value is the lower bound because it is the net present

value of the fixed cash flows of the convertible, maximised for early redemptions (puts).

• Conversion Price: The price at which shares are bought upon conversion; it is the
security price implied by the conversion ratio.

• Conversion Ratio: The number of common stock shares for which a convertible is
exchanged. The ratio is determined ex-ante and remains fixed throughout the life of

the CB.

• Conversion Value (Parity): The market value of the stock position obtained in
case the bond is converted immediately. It represents the equity part of the CB and

is calculated by multiplying the conversion ratio by the spot price of the stocks (and

by the spot exchange rate, in case of a non-domestic issue).

• Conversion Premium: Is calculated as the difference between the convertible price
and the conversion value as a percentage of the latter. It is thus the extra amount an

investor must pay to own shares via the convertible.
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• Callable Feature: This feature gives the issuer the option to call back the instrument
prior to maturity at a price specified ex ante. The call provision reduces the price of

the CB.

• Hard Call Protection: The period of time beyond which the convertible cannot be
called back by the issuer.

• Provisional Call Protection: This protection implies that the bond cannot be
called unless the stock trades above a pre-defined level for a certain period of time.

• Redeemable Feature (Put Provision): This feature enables the holder to redeem
the security at a specific price prior to maturity. The put option has the effect of

increasing the value of the CB.

Due to this hybrid characteristic, a convertible bond presents features of several instru-

ments. It can be seen as debt, as it pays its buyer a regular coupon until maturity and then

restitutes its face value. Obviously, in case of default it ranks senior to equity and its value

depends on the current interest rates. A convertible bond can be seen as equity as well, as

its holder has the right to convert the face value of the bond into shares. As soon as the

quoted stock price is greater than the conversion price, the conversion becomes favorable. A

convertible can also be seen as an option to exchange a bond against a share. The convertible

holder decides if and when he wishes to convert, unless the CB exhibit presents a callable

feature.

Convertibles are worth the greatest of the cash redemption value or the market value of the

shares into which they are convertible. However, before maturity the features of a convertible

are more complicated. Figure 1.6 shows the typical convertible bonds value as a function of

the stock price. The value is bounded below by the conversion value and the straight bond

value and there is an upside potential arising from the equity component

It can be seen from Figure 1.6 that there are 5 distinctive stages in the life of a CB.

When the stock price is very low, the issuer’s ability to finance its debt is unsecure and the

convertible enters the distressed or junk area. The parity is between about 0 and 40% of the

face value. When the stock price is lower than the conversion price, the exposure to the equity

upside will remain small and the bond cap is more important. The convertible is said to be

out of the money and the parity is between 40% and 80% of the face value. When the stock

price equals the conversion price, the convertible is said to be about at the money. The parity

is between about 80% and 120% of the face value. In case the CB being of in the money, the

stock price is very high and the conversion is very likely. Parity is commonly above 120% of
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the face value and the equity premium is less than 10%. The discount to parity is the one

that parity is greater than the convertible price, where the parity is the market value of the

shares into which the bond can be converted at that time.

Figure 1.6: Stages of a convertible bond; Source: Deutsch Bank

Companies usually issue convertible bonds because it is a cheaper way of debt funding by

implicitly selling an option on their stock, which will only be exercised in case the company

financially performs well. Davis and Lischka (1999) state that convertibles help to resolve

the problem of asymmetric information on the riskynes of the underlying assets, and in turn

reduces agency costs. This is because equity holders have an incentive to increase the risk and

return relationship of the assets, which increases the value of equity and decreases the value

of debt, when holding the firm value constant. On the other hand, the call feature of a CB

increases in value and the total value of the convertible can be made insensitive to changes in

risk. A further reason is an indirect and delayed issuing of equity that reduces dilution and

avoids circumvents regulatory restrictions.

Essentially, investors hold convertibles for their upside potential with limited downside

risks. However, different reasons arise for using convertibles depending on the type of investors

dealing with an issuance. According to Aboltina and Skutelis (2001), hedge funds are in par-

ticular interested in exploiting the asymmetric link between convertibles and bonds/equities

to exploit arbitrage opportunities and profit from volatility trading13. Equity funds enhance

13Volatility trading is here the trading between different asset class volatilities, such as bond price and equity
price volatility.
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income via coupons higher than the corresponding stock dividends and increase the universe

of available asset classes to invest. Fixed income funds achieve exposure to equity markets at

a reduced risk to capital and they manage interest rate cycles. Finally, dedicated convertible

investors pursue all of the above strategies.

1.2.1 Brief Survey on Pricing Models

The framework for pricing convertible bonds should incorporate elements of both equity and

debt modelling. Andersen and Buffum (2002) argue that there seems to have been confusion

and disagreement on how to apply properly and consistently a default-adjusted discount oper-

ator to cash flows generated by convertible bonds. Many of the early papers on pricing used an

ad-hoc approach to discounting, including McConell and Schwarz (1986), Cheung and Nelken

(1994), and Ho and Pfeffer (1996). Some of these models do not model bankruptcy explicitly

and to compensate for that shortcomings they apply an arbitrary risky spread to the risk-free

discount rate. Recent papers acknowledge that the components of convertible bonds, equity

and debt, are indeed subject to different default risk. A study by Goldman Sachs (1994)

considers the probability of conversion at every node of a binomial lattice adjusted for the

issuer’s credit spread. Tsivioritis and Fernandes (1998) split the convertible bond into equity

and cash components, with only the latter being subject to credit risk. This modelling is

extended in Yigitbasioglu (2001) to include multiple factors. The splitting scheme is analysed

also in Ayache et al. (2002). They conclude that this scheme is intrinsically not satisfactory

due to the assumption of stock prices being not impacted by bankruptcy.

However, the pricing models for convertible bonds has improved greatly with the researches

on reduced-form models that started with Jarrow and Turnbull (1995). One of the develop-

ments of this modelling is the inclusion of stock price dynamics that incorporate default events,

and the explicit modelling of bond and stock recoveries in case of default as well. As already

stated, default is modelled as Poisson process and the process drives stock prices into some

low value and coupon bond prices into a fixed percentage of their notional amounts. The

works of Davis and Lischka (1999) and Takahashi et al. (2001) incorporate market and credit

risk in a similar way in the convertible pricing model. Ayache et al. (2002) discuss in detail

how state-of-the-art finite-difference methods can substitute the not optimal binomial and tri-

nomial trees applied in the previous literature. Finally, Andersen and Buffum (2002) discuss

the parameterization and calibration of convertible bond models to quoted prices of straight

debt14 and equity options. In fact, the authors attempt to imply parameters from market

quotes on actively traded securities.

14Sometimes called ”plain vanilla bond”, which means bonds without embedded or hidden options.
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1.2.2 Risks and the Greeks

As already stated, a convertible bond is a hybrid securitiy that is characterized by a fixed-

income part as well as an equity part and as a consequence diverse risk factors arise to the

holders of a CB. Therefore a CB is exposed to the same or even more risks than its constituents.

A brief summary of these risks is:

• Equity market risk: As seen in Figure 1.6, at high share prices the CB price

approaches the parity line and it behaves like pure-equity and thus shares the benefits

of a rising market. At low share prices the CB value falls to a lower rate and flattens

out to a constant level and at maturity it is likely the redemption would be invoked

rather than conversion. The relationship between equity volatility and CB is that a

share with a higher volatility has a higher chance of ending up with a value significantly

greater than the conversion price and thus has the potential to be worth more. In

fact, the equity volatility risk can be hedged by shorting the underlying stock against

the long position convertibles. Such hedging produces a very small beta risk and thus

a market neutral position.

• Interest rate risk: As for every bond, the price of a CB moves inversely to interest
rate changes and its sensibility to these changes depends on how closely it is in relation

to the fixed income part of the instrument. Therefore, the embedded option value

moves in line with interest rate changes. Commonly, the interest rate risk is hegded

with treasury futures or interest rate swaps.

• Credit risk: The exposure comes from the long convertible position, because a widen-
ing in credit-spreads widening leads to the stock price to decline. Typically this risk

is hedged with credit default swaps (CDS) or by shorting a plain bond or another not

identical CB from the same issuer.

• Liquidity risk: A CB investor is subject to liquidity risk of the long position not
beeing liquid as expected, the short equity position being called in or being short

squeezed. Liquidity risk can occur as well due to the size of an issue or because of the

low credit quality of the issuer. There is no hedging possibility for such risk.

• Currency risk: Some CB issuances are overseas and thus foreign currency denomi-
nated and to hedge the currency risk the investor usually utilises currency options or

forward contracts.

To quantify more precisely the impact of the market variables in the valuation of a CB, it

is important to analyze the ”greeks” or the sensitivity of the CB to a given market movement.
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The measure delta quantifies the change in the CB’s value CV with respect to changes in the

stock price E and can represented as:

∆CB =
∂CV

∂E
= e−q(T−t)N (d1,q) , (1.36)

where

d1,q =
ln
¡
E
K

¢
+ (r − q + 0.5σ2E) (T − t)

σE
√
T − t ,

d2,q = d1,q − σE
√
T − t,

q is the continuous dividend yield and K the adjusted strike price.

Delta estimates the number of shares of the corresponding stock to short against the long

CB position in order to keep a neutral hedge position and it can be visualized in Figure 1.6

as tangent to the convertible price function. Thus it can be seen that in case the CB moves

towards the in-the-money position, ∆ approaches 1 and ∆ approaches 0 if the CB moves

towards the out-of-the-money position.

Another important greek measure is gamma and it quantifies the changes in delta with

respect to the change in the underlying stock price. Gamma represents the convexity of the

convertible price evolution and it is represented as15:

Γ =
∂2CV

∂E2
=
N 0 (d1,q) e−q(T−t)

EσE
√
T − t . (1.37)

Low gamma values are found when the CB value is deep in-the-money or deep out-of-

the-money, while a CB value cloae to at-the-money possesses higher gammas values. Gamma

is associated with the rebalancing frequency of a delta-hedge portfolio. The higher a CB’s

gamma, the more frequent the hedge needs to be rebalanced. Vega measures the change in

the convertible price with respect to changes in the implied volatility of the embedded stock

option and is calculated as:

V ega =
∂CV

∂σ
= E

q
(T − t)N 0 (d1,q)e−q(T−t). (1.38)

The relationship between vega and the stock price is similar as in the case of gamma in that

CB value in-the-money or out-of-the-money possesses lower vegas, while CB values close to to

at-the-money presents higher vegas. Vega risk for instance can be reduced with put options

on a stock index. When volatilities decline, so does the market, the put option becomes more

valuable while the long position in convertible declines in value.

15N 0 () denotes the first derivative of N () subject to E.
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Theta measures the change in the CB price with respect to changes in time. Theta should

also be associated with volatility in that if implied volatility, meaning that changes in a given

position, theta should be recalculated. Theta is given by:

Θ =
∂CV

∂t
=

·−EN 0 (d1,q)σe−q(T−t)

2
√
T − t

¸
− rKe−r(T−t)N (d2,q) + qEN (d1,q) e−q(T−t). (1.39)

When a CB is out-of-the-money it has little theta sensitivity until maturity, while an at-

the-money CB presents a high theta risk, due to the high value of the conversion premium and

because of the price of the CB being above the call price or par value. As an in-the-money

CB has less conversion premium to lose it is less sensitive to theta. The sensitivity of the CB

value to changes in the interest rate is named rho and, as for all bonds, higher interest rates

lead to lower CB prices. A CB has negative rho values at almost all the points of its valuation

because as interest rates increase, a bond value decreases. When the CB is deep-in-the-money

it will have a rho value close to zero. The CB reaches its maximum value of rho when the

it is out-of-the-money and thus its equity component has a very low value. In case the CB

moves in-the-money it becomes less sensitive to changes in interest rates and more sensitifity

to equity price movements. When CB moves from deep-out-of-the-money to out-of-the-money

values it exhibits a very small sensitivity to changes in interest rates.

Omicron is defined by Calamos (2003) as the measure of the change in CB value with

respect to changes in credit spread and is calculated as:

O =
∂CV

∂OAS
, (1.40)

where OAS is an option adjusted spread. According to Calamos (2003), Omicron represents

an important measure for many low-grade CB issues trading near or below their exercise price.

In general, an out-of-the-money CB is more influenced by omicron than to any other greek.

In fact, an out-of-the-money CB has a high omicron measure, whilst a deep-in-the-money CB

has a very low one.

1.2.3 Arbitrage Technique - Delta Hedging

The most popular CB arbitrage strategy is the so-called delta neutral hedge. The basic

idea is to buy a convertible and to short the underlying stock at the appropriate delta. The

position is fully hedged for very small movements in stock price and cash-flow is received from

the convertible’s yield and from the short’s position interest rebate. In this hedge, the CB’s

equity risk is neutralized but not the interest rate risk (rho) and the long volatility risk (vega).

Interestingly, another denomination for this strategy is long volatility hedge, because of the
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remaining vega risk.

Because of this long vega exposure, it is expected that the implied volatility of the CB

should increase from its initial value. If the implied volatility level decreases or stays the

same, the position will benefit just from the income flow from the convertible’s yield and the

short’s interest rebate. Therefore, the more volatile the implied volatility, the more earnings

the position gets. Thus the arbitrageur should identify convertible with low implied volatility

level relative to his or her expected level of future volatility. Other criteria used to identify

delta neutral hedge opportunities could be:

• A higher value for vega than for omicron,

• A Convertible’s yield higher than LIBOR16,

• A Low conversion premium,

• Low or no stock dividends on the underlying shares,

• A high gamma,

• A low liquidity risk, and

• Stock short-selling possible.

However, some risks have to be taken into consideration, including:

• A decreasing in implied volatility,

• A widening of credit spreads, and

• A CB beeing called from the issuer.

In more detail, the appropriate number of shares to short against the long convertible

determines the accuracy of the hedge. Shorting too many shares can cause the hedge to lose

money if the stock price increases, and shorting too few can cause a loss if the stock price

decreases. Thus the correct basic hedge ratio is calculated as:

Neutral hedge ratio = Conversion ratio ∗∆.

Consider the following example, extracted from Calamos (2003): A CB is trading at 105%

of par with 19.65% conversion premium that converts into 22.50 shares of stock and possesses

16The LIBOR, London interbank offering rate, is considered as a risk-free rate.
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a delta of 0.594. The investor makes a long investment of $1,050,000 in buying 1,000 bonds.

He shorts 16,000 underlying stock based on the current stock price of $39 and the delta of

0.594 . If the stock price thus moves up 1% to $39.39 the convertible price moves up to

105.624% of par and the gain of $6,240 from the long CB position is offset with an equivalent

loss on the short stock position. Table 1.3, illustrates the initial hedge setup:

Quantity Price Value Profit/(Loss)
CB long 1,000 1,050.00 $ 1,050,000
Short stock 16,000 39.00 $ (624,000)
Stock price moves 1%
CB long 1,000 1,056.24 $ 1,056,240 $ 6,240
Short stock 16,000 39.39 $ (630,240) $ (6,240)

Net P/L $ 0

Table 1.3: Initial hedge

Theoretically, each time the stock price moves up (down) a few percentage points, the

investor increases (decreases) the short position to reflect the increasing (decreasing) delta.

In the previous example, after the movement of the stock price the new delta for the CB

is 0.605. In order to maintain the proper hedge ratio, 223 additional shares of stock should

be shorted. If not, the original hedge ratio would realize a gain or loss on the next move of

the stock price. As shown in table 1.4, in case there is no adjustment to the hedge ratio the

CB position gains $6,390 while the short position loses $6,304 for a net gain of $86. As the

example demonstrates, the investor must constantly measure the portfolio hedge ratio and

compare it to the CB’s theoretical delta.

The delta neutral position can also capture gains from mispricing in the convertible market

and an optimal strategy is one in which the arbitrageur purchases a theoretically undervalued

CB, in terms of implied volatility. From the previous example, the long volatility hedge may

be theoretically undervalued if the purchased CB has an implied volatility of 35%, yet the

Quantity Price Value Profit/(Loss)
CB long 1,000 1,056.24 $ 1,056,240
Short stock 16,000 39.39 $ (630,240)
Stock price moves up 1%
CB long 1,000 1,062.63 $ 1,062,630 $ 6,390
Short stock 16,000 39.78 $ (636,544) $ (6,304)

Net P/L $ 86

Table 1.4: Initial hedge after stock move
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Quantity Price Value Profit/(Loss)
CB long 1,000 1,056.24 $ 1,050,000
Short stock 16,000 39.00 $ (624,000)
Stock price moves down 1% and volatility rises to 40%
CB long 1,000 1,055.00 $ 1,055,000 $ 5,000
Short stock 16,000 38.61 $ (617,760) $ 6,240

Net P/L $ 11,240

Table 1.5: Initial hedge after an increase in volatility

investor expects the volatility to rise to 40%. The CB with a current volatility of 35% and

stock price at $39.00 is bought for 105% of par, but if priced with a 40% volatility the CB

is worth 106.5% of par. As the position is long vega, it is expected to pick up five volatility

points. With the equity position hedged, the position is not affected by the stock price moves

up or down, but that volatility reverts back to the 40% level. The vega for this position is

calculated in 0.28.

Considering the previous example again, suppose the stock price declines 1% to $38.61,

and the CB increases in value because it trades at the expected 40% volatility level . As a

consequence the theoretical CB value increases $ 5 per bond to $ 1,055, as shown in Table

1.5. In fact, the vega influence offset the delta impact of the stock price decline. Therefore,

the short position and the long side of the trade return a profit.

In summary, delta neutral hedges are build to get the cash flows from the long convertible

position and to profit from the long cheap volatility position. Therefore, the strategy should

be dynamically rebalanced in order to keep the neutrality of the hedge or the in terms of greek

exposure wanted. The desired amount of volatility sought after in the strategy determines the

right time to rebalance the position and the rebalancing frequency of rebalanced is a function

of the gamma measure and of the stock liquidity.

As already stated, the higher the gamma, the more the position has to rebalanced. Surely,

static hedging or least infrequent rebalancing could occur in a not leverage portfolio when

trading costs are important. Some others CB hedging strategies can be established by means

of gamma. It is worth mentioning the delta neutral gamma hedge, the bull gamma hedge

and the bearish gamma hedge. The way to capture gamma is to combine a static hedge ratio

with a changing delta, regardless of the direction of the stock price move. In fact, the delta

neutral hedge is established to account for gamma because even with a very small stock price

move, gamma will be captured before the hedge is rebalanced. Frequent rebalancing can cover

incremental gamma, but the smaller the gamma capture, the lower the volatility; and the total
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return will be significant only for a leveraged position. The neutral gamma hedge strategy

works best for a CB with a high gamma value and with the price of the underlying stock

being highly volatile. A high gamma convertible results in a large change in delta when the

stock price changes and because of that the CB offers good equity upside potential with low

equity exposure on the downside. Differently from the delta neutral hedge, a gamma hedge

will generally lead to a slight price direction bet on the underlying stock to maximize returns

with an unleveraged hedge. Therefore, to reduce the overall equity market exposure, the hedge

portfolio should have both bullish-tilt gamma hedges and bearish-tilt gamma hedges. These

positions have a longer expected holding period due to the larger stock price moves necessary

before a hedge adjustment is made. The gamma hegde will also cause the portfolio to be more

volatility in returns because of the higher equity exposure.

The tilt of a gamma hedge is measured by comparing its hedge ratio with the ratio of a

delta neutral position. The bull gamma hedge is hedged less than required for a delta neutral

position, and bear gamma hedge is hedged more. The bull gamma tilt hedge captures upside

gamma potential with a semi-directional tilt on the hedge. The difference between the delta

neutral and the bull gamma hedge ratios is a function of the downside risk tolerance and the

expected short-term upward trend in the underlying stock price. Conversely, the bear tilt

hedge position is designed for profit in case the underlying stock price declines. The following

characteristics help identifying a bull gamma arbitraging opportunity:

• Undervalued or fairly valued convertible;

• A CB with high gamma measure - high upside and low downside gamma potential,

• A yield advantage compared to the underlying stock,

• A stock characterized by high volatility, and

• A common stock with improving technical ratios, such as improving RSI, increasing
EPS estimates17.

However, some risks have to be taken into consideration, including:

• A decline in Stock price,

• A decline in implied volatility,

• Yield curve shifts, and
17RSI: Relative Strenght Index; EPS: Earnings per Share
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• Credit deterioration.

The following characteristics help identifying a bear gamma arbitraging opportunity:

• Both securities undervalued or fairly valued convertible,

• A CB with high gamma measure - low upside and high downside gamma potential,

• A yield advantage compared to the underlying stock,

• A stock characterized by high volatility, and

• A common stock with deteriorating technical ratios, such as declining RSI, decreasing
EPS estimates.

However, some risks have to be taken into consideration, including:

• A rise in stock price,

• A decline in implied volatility,

• Yield curve shifts, and

• Credit deterioration.

1.2.4 Portfolio Risk Management

In terms of CB portfolio risk management, it is important to separate the different types of

hedge positions to guarantee that the inefficiency arbitraged at individual CB level is not

hedged away at the portfolio level. Delta and omicron (specific credit spread) risks are best

hedged at position level because they are non-systematic risks, whilst other systematic risks,

such as vega, rho, and omicron (general credit spread), should be hedged at portfolio level.

The question of diversification is accounted for at the portfolio level. The diversification should

include the industry and sector exposure, credit exposure, and the exposure to the variety of

convertible hedges. In relation to arbitrage strategies, it is important that the portfolio level

risk management does not eliminate a risk or a hedge that is otherwise acceptable at the

position level.

The means of hedging systematic risks within the portfolio level are generally performed

with index options, U.S. Treasury or LIBOR futures, variance or volatility swaps, and CDS

basket or closed-end funds. One way to hedge the portfolio due to market crashes is to buy

out-of-the-money index put options. These options can be puts on indices that mirror the
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portfolio’s securities and they represent a fixed cost insurance that pays off in case of extreme

market events. Using index put options has a significant impact on the negative return part

of the portfolio’s return distribution. The number of put option contracts to purchase is

determined as:

number of contracts =

µ
Market value of portfolio ∗ adjusted beta

Contract strike ∗ 100
¶
, (1.41)

where the adjusted beta is calculated as the weighted average beta for the underlying stock

versus the index times the convertible’s expected delta in extreme conditions. Generally, U.S.

Treasury futures are used advantageously to hedge interest rate risk (rho risk) at portfolio

level. It is not favorable to do so for an individual position, because rho moves quickly in

case the underlying stock price moves sharply up or down. Yet at portfolio level, these moves

are decreasing by the moves of other CBs, providing a more stable portfolio rho measure.

The short-term interest risk, or rho2, the leverage borrowing cost, is hedged at the portfolio

level with LIBOR futures or with a fixed receiver interest-rate swap. The number of futures

contracts to short is calculated as:

number of contracts =

µ
$ Change in portfolio for a 1 bps move

$ Change in futures contract for a 1 bps move

¶
. (1.42)

As already stated, delta neutral strategies are long-volatility hedges, making the CB port-

folio exposed to volatility (vega) risk. Therfore an increase in volatility should cause many of

the individual positions to increase in value and should have some impact on the portfolio’s

overall value as well. The simplest way to manage vega risk at position level is shorting call

options against a position when the implied volatility is expected to decline. Furthermore,

purchasing put options can reduce this vega risk in that the movement of volatility and equity

prices is inverse to each other. At the portfolio level, variance and volatility swaps are recom-

mended to hegde volatility risk18. The swap allows the portfolio to gain long or short exposure

to market volatility. Interestingly, the swap provide also a way to dynamically rebalance the

delta-neutral hedge strategy.

It is known that volatility changes are highly correlated with other market factors that

must be analysed before a hegde is designed. Rising volatility is commonly associated with

increasing risk aversion in the market, which results in changes of delta, gamma, and rho.

Moreover, volatility is frequently positively correlated with credit spreads and negatively cor-

18For a comprehensive giude of such financial instruments see Demeterfi et al. (1999).
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related with equity market indices. Because of these correlations, volatility swaps can also be

used to hedge credit-spread risks (omicron) and to hedge against equity market directional

moves.

The omicron hedge with volatility swap is not a direct credit-spread hedge, but a ”correla-

tion” hedge in which the positive correlation between credit spreads and volatility is expected

to hold. It would thus be preferable to use a credit default swap (CDS) basket with similar

characteristics for hedging the long portfolio. The characteristics to match are -among others-

credit quality, duration, convexity, and sector exposure. The way the basket CDS hedge works

is similar to the individual CDS hedge applied to individual issues, which will be describe in

details in section 2.1.3. Another strategy to hedge omicron is to short a high-yield closed end

fund against the portfolio, which will however generally bring additional duration, convexity,

and credit rating mismatches into the hedge.

1.3 Credit Derivatives

This section gives a very brief overview of the credit derivative market, where the next sections

concentrate more specifically on credit default swaps (CDSs). It is obvious that this section can

only discuss some very basic aspects of this important area. First a short introduction about

the basics of credit derivatives is presented to clarify the used definitions and terminology in

the following. Then an overview over the major credit derivative instruments, their types,

structures and applications is briefly presented. Furthermore, a short overview of the credit

derivative market and the use of credit derivatives is made. At the end of this section a brief

comment on completing financial market information by using credit derivatives is presented.

For an introduction see Das (1997), more complete works are Das (1998, 2001), Tavakoli

(2001). Very helpful works including a wide range of practical issues are JPM (1999), O’Kane

(2001), and Bowler and Tierney (2000).

1.3.1 Basics about Credit Derivatives

Before we point out in detail in the next section what a CDS exactly is and their characteristics

we start with some basics about credit derivatives and present the common definitions and

terminologies for credit derivatives which we will use throughout the thesis.

Conventional market theory describes two main risk categories: market or price risk and

credit risk. Market risk refers to general risks and instabilities inherent in the market, such as

inflation, interest rates, and the production of goods. To protect themselves against changes in

these areas, investors mostly enter in long positions, forwards, futures and options on exchange
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rates or prices for assets. But while a variable rate protects the investor against market risk,

he still may not receive the entire return on the bond, as the bond issuer may not be able

to make all its coupon payments, and thereby defaults. This is the simplest manifestation of

credit risk. The derivative market is a lucrative one which aims to structure and price the

market and credit risk respectively to hedge against these risks. Economic theory tells us that

market and credit risk are related to each other and not separable.

Dealing with over-the-counter (OTC)-derivative financial instruments bears a counter-

party-risk (see 10, 1.3.2, below). Instead of exchange traded futures and options, the mostly

used derivative instruments in corporate treasury activities and financial institutions are in-

terest rate swaps or currency forwards and other structured fixed income derivatives. These

financial instruments are traded over-the-counter and therefore entering in these contracts

bears the risk of the default of the counterparty. Credit derivatives are OTC derivative finan-

cial instruments whose payoff depends on the credit quality of a certain issuer. This credit

quality can be measured by the credit rating of the issuer or by the credit spread of his de-

faultable bonds over the yield of a comparable default-free bond (see 12,1.3.2, below). They

represent a diverse and heterogeneous group of transactions, which are principally concerned

with the isolation of credit risk as a separately traded market-variable. The different products

essentially are focussed on structuring financial instruments to allow trading in this attribute

in varied formats to allow hedging or risk assumption by market participants.

Credit derivatives are simply a mean of protecting against credit risk. They come in many

shapes and sizes to protect against different kind of credit risk. Essentially, a credit derivative

is a security with a payoff linked to credit related event (see ’Terminology and Definitions’, 4.,

below), such as default, credit rating downgrade, or structural change in a security containing

credit risk. Credit derivatives can make large and important risks tradeable. They form an

important step towards market completion and efficient risk allocation, and can further bridge

the traditional market segmentation between corporate loans and bond markets.

For detailed discussion of credit derivative structures, instruments, markets and application

we refer to Das (1998, 2001) and Takavoli (2001). Moore and Watts (2003) provides a very

informative introduction about the credit derivatives business.

1.3.2 Terminologies and Definitions

One of the attractions of credit derivatives is the large degree of flexibility in their specification.

Here we should recall in mind on the complexity of specifications in OTC derivatives trans-

actions. Additionally the credit derivative market is relatively new in Finance. Standardized

contracts do not exist for a long time compared to the fixed income and equity derivatives
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market. Therefore, some of the terminologies used in credit derivative market comes from the

interest rate swap market and is mixed with some new terminologies. First we need to clarify

the common features of most credit derivatives. The list below is selective rather than being

comprehensive.

1. Credit derivative: A credit derivative is a derivative security that has a payoff which

is conditioned on the occurrence of a credit event (or so called contingent on the

occurrence of a credit event, see below). The credit event is defined with respect to

a reference credit (or several reference credits), see below, and the reference credit

asset(s), see below, issued by the reference credit. If the credit event has occurred,

the default payment has to be made by one of the counterparties. Besides the default

payment a credit derivative can have further payoffs that are not contingent on default.

2. Reference Credit (sometimes called credit entity or reference entity): One (or several)

issuer(s) whose defaults trigger the credit event. This can be one (typical) or several

(basket structure) defaultable issuers. We use throughout the thesis party C for the

reference credit.

3. Reference Credit Asset (or Reference Asset): A set of assets issued by the reference

credit. The instruments on which credit risk is traded. They are needed for the

determination of the credit event and for the calculation of the recovery rate (which is

used to calculate the default payment), see below. The definition can range from any

financial obligation of the reference credit to a specific list of just a few bonds issued

by the reference credit. Loans and liquidly traded bonds of the reference credit are

a common choice. Frequently, different assets are used for the determination of the

credit event and the recovery rate.

4. Credit Event : A credit event is the default or the down grade of a firm (also called

credit risk). A precisely defined default event (or so-called default risk), which is

usually defined with respect to the reference credit(s) and reference credit assets.

Throughout the thesis we will not distinguish between credit risk and default risk.

Possible definitions for credit events include:

• payment default (typically a certain materiality threshold must be exceeded or
simply the failure to pay),

• bankruptcy or insolvency; protection filing; ratings downgrade below given a

threshold (i.e. ratings triggered credit derivatives),

• changes in the credit spread, see below,
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• repudiation/moratorium19, and
• restructuring.

The definition for a credit event can further include events that go as far as armed

hostilities, social unrest or earthquakes for sovereigns or mergers and takeovers for

corporates. A default event: can significantly extend or limit the scope of protection

in the case of bankruptcy, when a credit event upon merger, in cross acceleration,

in cross default, in a rating downgrade, currency convertibility, governmental action,

market disruption on one of several reference assets.

5. Recovery value: When the credit event occurs, the payoff of the credit instrument will

depend on the recovery value of the asset at the moment of default. This value is

rarely zero. Usually some positive amount will be recoverable. Hence, the protection

buyer, see below, needs to buy protection over and above the recoverable amount.

Determination of the recovery value needs to be done before the settlement. Major

rating agencies such as Moody’s and Standard and Poor’s have recovery rate tables

for various credits that are prepared using past default data.20

6. Default Payment : Sometimes called contingent default payment. These are payments

which have to be made if a credit event has happened. The default payment is the

defining feature of most credit derivatives.

7. Protection buyer/seller : Most credit derivatives have a default-insurance (or so called

protection) feature. In naming the counterparties we will use the convention that

counterparty A will be the insured counterparty (i.e. the counterparty that receives

a payoff, in form of contingent payments, see below and pays in exchange to that a

premium payment, see below). A is long the credit derivative, the Protection buyer

which buys a credit derivative instrument, and counterparty B will be the insurer

or protection seller, which sells the credit derivative instrument (the one who has to

make contingent payments and receives a premium). Party C will be the reference

credit.

8. Contingent payment: These are payments based on a defined credit event to occur

with respect to the underlying reference asset. If a default happens we called contin-

gent default payment, see default payment. Otherwise we called periodic payments

(sometimes called termination payments or contingent periodic payments)

19Means a reference credit (a) disaffirms, disclaimes, repudiates or rejects, in whole or in part, or challenges
the validity of, one or more obligations, or (b) declares or imposes a moratorium, standstill or deferral, whether
de facto or de jure, with respect to one ore more obligations (see also 1999 ISDA Credit Event Definitions)
20Usually the recovery rate is defined as a percentage of the par value.
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9. Premium payment : Payment (e.g. for default protection) which is typically made

periodically, although it may be paid as an up-front fee for short-dated transactions.

10. Counterparty risk : Type of risk which creates defaultable payment obligations in OTC

derivatives transactions or simply risk in terms of the default of a counterparty. The

counterparty defaulting means that there is a loss incurred by an investor or lender,

such as failure to make scheduled principle or interest payments. Given the long term

and large notional amount of some of these transactions the counterparty risk may be

significant, even if netting procedures are in place.

11. Notional amount : The principal balance underlying a swap transaction, and the

amount used to compute swap payments e.g. for an interest rate swap is called the

notional principal. The two counterparties to a swap agreement exchange periodic

cash flows not the notional amount.

12. Credit spread : In general credit spreads represent the margin relative to the risk-free

rate designed to compensate the investor for the risk of default on the underlying

security. The credit spread itself is calculated as: Credit spread = yield of security

or loan-yield over the corresponding risk-free security. Two general formats of credit

spreads are used: (1) credit spread relative to the risk-free benchmark (the absolute

credit spread) and (2) credit spread between two credit-sensitive assets (the relative

credit spread).

1999, the ISDA has published a standard specification for credit default swaps. This

contributed much more to the transparency of the market. For some more specific standard-

ized definitions see also ISDA (International Swaps and Derivatives Association) 2002 Master

Agreements.

1.3.3 Credit Derivative Types

The classification of credit derivatives differs from the one of other types of financial deriva-

tives Even the difference between forward and option-type contracts being clear-cut for other

financial derivatives is less clear in credit derivatives (where credit default swap may look as

much as an option on swaps; more about this later). There are currently three main classes

of credit derivatives:

1. Credit event instruments: These are instruments that make payments depending on

the occurrence of a mutually agreeable event. The CDS is the most common example

here. CDS offer users protection against a credit event pre-specified in the contract by
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having a payoff contingent on this event (here the default event). Other instruments

within this class are, for example, credit event swaps, credit linked notes (CLN) and

credit default options (sometimes classified as spread instrument in terms of credit

spread options). The most common credit events with this instruments are linked to

the migration and the default risk.

2. Spread instruments: The payoff of spread instruments depends on movements in credit

spreads. An example is a Credit Spread Option (mostly puts) that makes a payment

in case a credit spread moves beyond a strike level K. Credit spread forwards are

also common instrument in this class. This kind of derivatives allows users to take

positions on the future spread between two financial assets, with one of them of stable

credit risk as reference, such as government bond or an interbank rate. There is not yet

a liquid market for such instruments, while event instruments have gained significant

liquidity.

3. Total return instruments: The most popular within this class are total return swaps

(TRS, some times called total rate of return swaps, TRORS, where the payoff depends

on the behavior of spreads as well as on events such as defaults. We will use TRS as

notation throughout the thesis. They allow an investor to transfer the total LIBOR

plus a spread, mostly a absolute spread (see above credit spread). Another common

type is a loan swap. Some would not consider these being true credit derivatives,

though, as they do not isolate credit risk, while the other two classes of instrument

do. The main characteristic of these products is that they are instruments written on

both credit and market risk. The two risks are bundled together and furtheron sold

to clients.

Only the credit default swap and the credit default option truly separate credit risk from

market risk. Nonetheless, a TRS, as well as credit linked notes or credit spread option have

a significant market risk component as well, and thus can be considered as products with

embedded credit risk derivatives. For example, a CDS differs from a TRS in that the investor

does only the risk of default and not take price risk of the reference asset.

Current credit derivatives are very flexible financial contracts. Their payouts can be derived

from loans or bond values, default or credit event, credit spreads or credit ratings. These

reference assets, in turn, can be associated with single-names, baskets or indices with cash

settlement or physical delivery of a relevant underlying asset or portfolio of assets. For an

extensive analysis and classification of the characteristics of credit derivative instruments, we

refer to Das (1998, 2000) and Tavakoli (2001).
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Credit default instruments

The following subsection will focus more on credit default instruments. Prior to doing this

some words about the differences. Credit risk can be broadly grouped into two different

categories. On the one hand there is credit migration risk21. A downgrade, or a warning by

a rating agency are two explicit examples. But changes in credit spread can also serve as an

indicator of credit migration risk. The second element of credit risk is credit default risk22.

This latter is far from being identical to credit migration risk, although it is certainly correlated

with it. Credit default instruments trade default risk, by separating it from credit migration

risk. Credit default instruments share the properties of instruments that exist already for a

long time. For example, banks have issued letters of credits, guarantees and insurances for

a long time. The major distinguishing characteristic of these traditional instruments is that

they transfer credit risk only. On the other side they do not transfer market risk or the risk of

credit migration. Essentially, a payment is made when default occurs. With these products

no compensation is exchanged in case of credit migrates. New credit default products share

some the properties of these traditional instruments. There are two mainly kinds of such

instruments:

1. CDS, where a periodic fee is paid until a credit event occurs, triggered by which a

potential is received.

2. Credit default options (or credit spread options). These are similar to CDSs, the fee

being however paid up-front. Essentially both instruments involve swapping a fixed

fee against a contingent payment in case of default.

The characteristics of credit default instruments will be dealed with when we present

credit default swaps in more detail (see section 1.3.7). For credit spread options we refer to

Schönbucher (2003).

It is worth stressing that default swaps are not options. By academics and practitioners

credit default swaps are sometimes referred to as credit default options. This may have

come about because the transaction involves payment of a fee by the protection buyer in

return for a payoff in case default should occur. However, a key characteristics of options is

their asymmetrical payoff and price performance as the price of the underlying changes. By

contrast, the price of the default swap varies directly with changes in the credit spread of the

21The credit risk based on a multi-state credit event process associated with rating migrations from transition
probability based models are called credit or rating migration risk.
22The credit risk based on the probability of default associated with a default process is called credit default

risk.
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underlying, in a similar way as the price of an interest rate swap varies directly with changes

in the underlying interest rate.

We discuss the pricing of credit default swaps below in subsection 1.3.8. Credit option

products - so called credit spread options or specifically credit default options are well pre-

sented in Schönbucher (2003). Frequently when default swaps are called credit default options,

people become confused as to whether the product under discussion is indeed a credit default

swap and not a credit default option, as there are different instruments.

Spread instruments and total return instruments are products that trade credit migration

-changes in credit worthiness as perceived by the market. For a more comprehensive discussion

on this types of instruments we refer to Schönbucher (2003), Tavakoli (2001), Bowler and

Tierney (2000), O’Kane (2001) and Das (1998, 2001).

1.3.4 Credit Derivative Structures and Applications

In this subsection Asset Swaps, Total Return Swaps and Credit Spread Options will be briefly

presented which are beside the Credit Default Swaps the most important instruments for

completing market information in such that the credit worthiness of a firm might be deduced

from market parameters. In the next section 1.3.7 a fairly detailed discussion of thee structure

and applications is given. For more complete presentation of credit derivatives structures and

applications we refer to Bowler and Tierney (2000) and O’Kane (2001).

An Asset Swap is a synthetic floating-rate note. By this we mean that it is a specially

created package that enables an investor to buy a fixed-rate bond and then hedge out almost

all of the interest rate risk by swapping the fixed payments to floating. The investor takes

on a credit risk that is economically equivalent to buying a floating-rate note issued by the

issuer of the fixed-rate bond. For assuming this credit risk, the investor earns a corresponding

excess spread known as the asset swap spread.

Asset swaps are playing various roles in the structured credit market. At one level, the

investment objectives and economics of asset swap transactions are recurring themes in the

structured credit market, and as such asset swaps can be viewed as one of its basic building

blocks. Indeed the development of many structured credit products has been driven by the

shortcomings of asset swaps. But asset swaps are also an important structured credit product

in their own right.

While the interest rate swap market was born in the 1980s, the asset swap market was born

in the early 1990s. It continues to be most widely used by banks, which use asset swaps to

convert their long-term fixed-rate assets, typically balance sheet loans and bonds, to floating
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rate in order to match the maturities of their short term liabilities, i.e. depositor accounts.

During the mid-1990s, there was also a significant amount of asset swapping of government

debt, especially Italian Government Bonds. Figure 1.7 below shows a typical asset swap

transaction.

Figure 1.7: Asset swap transaction

The main reason for doing an asset swap is to enable a credit investor to take exposure to

the credit quality of a fixed-rate bond without having to take interest rate risk. For banks,

this has enabled them to match their assets to their liabilities. As such, they are a useful tool

for banks, which are mostly floating rate based. Asset swaps can be used to take advantage

of mispricings in the floating rate note market. Tax and accounting reasons may also create

an incentive for investors to buy and sell non-par assets at par through an asset swap.

ATotal Return Swap (TRS) is a contract that allows investors to receive all of the cash

flow benefits of owning an asset without actually holding the physical asset on their balance

sheet. As such, a total return swap is more a tool for balance sheet arbitrage than an outright

credit derivative. However, as a derivative contract with a credit dimension - the asset can

default - it usually falls within the scope of the credit derivatives trading desk of investment

banks and thus becomes classified as a credit derivative. Before discussing why this product

may be of interest for investors, we describe the mechanics of the structure, which is shown

in Figure 1.8.

At trade inception, one party, the total return receiver, agrees to make payments of LIBOR

plus a fixed spread to the other party, the total return payer, in return for the coupons paid

by some specified asset and the changes in value of the asset itself. In case of default, the

TRS-receiver faces a loss which encompasses the coupons as well as the usually dramatic loss
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Figure 1.8: Total return swap mechanics; Source: Lehman Brothers International (Europe)

in value of the asset itself. The asset is delivered or sold and the price shortfall paid by the

receiver. In some instances, the total return swap may continue with the total return receiver

posting some collateral.

There are several reasons why an investor might wish to use such a total return structure:

In terms of funding/leverage:

• Total return swaps enable to take a leveraged exposure to a credit.

• They enable investors to obtain off-balance-sheet exposure to assets to which they
might otherwise be precluded for tax, legal or regulatory, or other reasons.

In terms of trading/investing:

• Total return swaps make it possible to short an asset without actually selling the
asset. This may be useful from the point of view of temporarily hedging the risk of

the credit, deferring a payment of capital gains tax, or simply gaining confidentiality

regarding investment decisions.

• Total return swaps can be used to create a new synthetic asset with the required

maturity. Credit maturity gaps in a portfolio may therefore be filled.

A Credit Spread Option is an option contract in which the decision to exercise is based

on the credit spread of the reference credit relative to some strike spread. This spread may
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be the yield of a bond quoted relative to a Treasury or may be a LIBOR spread. In the latter

case, exercising the credit spread option can involve the physical delivery of an asset swap, a

floating-rate note, or a default swap.

This reference asset may be either a floating rate note or a fixed rate bond via an asset

swap. As with standard options, one must specify whether the option is a call or put, the

expiry date of the option, the strike price or strike spread, and whether the option exercise

is European (single exercise date), American (continuous exercise period), or Bermudan style

(multiple exercise dates). The option premium is usually paid up front, but derivatives with

a schedule of regular payments exists as well.

A call on the spread (put on the bond price), expressing a negative view on the credit,

will usually be exercisable in the event of a default. In this case, it would be expected to be

at least as expensive as for the corresponding default swap. For a put on the spread (call on

the bond price), expressing a positive view on the credit, the option to exercise on default is

worthless and, hence, irrelevant. Figure 1.9 below shows the mechanics of a call option on an

asset swap

Figure 1.9: Mechanics of a call option on an asset swap; Source: Lehman Brothers Interna-
tional (Europe)

Credit spread options present an unfunded way for investors to express a pure credit view.

Unlike options on fixed rate bonds, which we discuss in the next section, the decision to

exercise has no dependency on interest rates. It simply depends on where the credit spread

of the reference credit is relative to the strike spread.

For example, the value of a 1-year option to enter into a 5-year asset swap is determined

by the 5-year asset swap spread one year from today. It is, therefore, a strategy based on

assumed movements in the forward asset swap spread and so can be used to take a view on

the shape of the credit curve. The more volatile the credit spread, the more time-value the

option will have and thus more the option will be worth. Furthermore, if the investors hedge
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the option by trading the underlying, they will be long volatility. As a result, credit spread

options allow investors to express a view about spread volatility separate from a view about

the direction of the credit spread.

Buying an out-of-the money put option on a bond is similar to a buying protection with

a default swap with one advantage: it can be exercised even when the credit deterioration is

significant but a default event has not yet occurred.

An extension of credit-spread options is the exchangeable asset swap option. This gives

the purchaser the right but not the obligation to swap one asset swap package for another

asset swap package linked to different credit. This makes it possible for the purchaser of the

option to take a view on the difference between two underlying asset swap spreads. Investors

can use credit spread options to assume a position in credit spread volatility.

Applications

Some of the applications of credit derivatives have already been mentioned when they were

specific to the credit derivative discussed. General fields of application common to most credit

derivatives are:

1. An important role of credit derivatives on portfolio level is the fact that they enable

to choose investments between the two extremes of bond or loan portfolios without

credit risk (all assets being hedged by corresponding credit derivatives) and -on the

other side- assuming credit risk without any direct exposure at all (pure derivatives

portfolio)

2. Applications in the management of credit exposures: These include the reduction of

credit concentration (through basket structures), easier diversification of credit risk

and the direct hedging of default risk.

3. In trading, credit derivatives can be used for the arbitrage of mispricing in defaultable

bonds (through the possibility of long and short positions in credit risk) and the

general possibility to trade a view on the credit quality of a reference credit (usually

through credit spread products).

4. The largest group of credit derivative users are banks who use credit derivatives to free

up or manage credit lines, manage loan exposures without needing the consent of the

debtor, manage (or arbitrage) regulatory capital or exploit comparative advantages

in costs of funding (sometimes called ’funding cost arbitrage’). Another important

application in this context is the securitization of loan portfolios in form of collateral
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loan obligations CLOs23. There are some additional benefits to booking the trans-

action off balance sheet24 from a tax or accounting point of view (see chapter 7 in

Tavakoli (2001)).

5. The specification of the credit derivatives can be adjusted to the needs of the counter-

parties: Denomination, currency, type of coupon, maturity or even the general payoff

need not match the reference asset. This is especially useful in the management of

counterparty exposures from derivatives transactions.

1.3.5 The Market and the Use of Credit Derivatives

Credit derivatives and structured credit instruments are relatively new compared to derivatives

related to market risk only and have gone trough a major revolution during the last few years,

and are still subject to a continuous. In such an environment where most of these developments

come directly from the industry we want to present briefly an overview of the market and the

use of they instruments.

The interest in this new market lies not only in the large margins that banks may raise

with exotic, difficult-to-price instruments but more importantly in the fact that the birth of

this market has truly “completed” the financial market, see subsection ’Credit Derivatives can

complete market information’, creating both arbitrage opportunities on a previously poorly

priced credit risk and allowing corporates and financial intermediaries to manage their credit

risk exposure25. Credit risk is everywhere, in any contract involving uni- or bilateral flows or

claims on future cash flows.

The possibility of trading credit risks, buying or selling to a counterparty independently

23In general, the purpose of a cash flow Colletral Loan Obligation, so-called CLO, is to move a portfolio
of loans off the balance sheet of a commercial bank. This is done in order to free up the regulatory and/or
economic capital that the bank would otherwise be obliged to hold for risks arising from these loans. This
allows banks to use this capital to fund other higher-margin business, new product lines, or share repurchase
plans. It furthermore transfers the credit risk of these loans to the buyer of the CLO, thereby reducing the
bank’s concentrations of credit risk. The main purpose of cash flow CLOs is to move credit risk off the balance
sheet of a bank for the purpose of regulatory capital reduction.
24Off balance sheet means, obligations that are contingent liabilities of a bank, and thus do not appear on

its balance sheet. In general, off balance sheet items include the following: direct credit substitutes in which
a bank substitutes a own credit for a third party, including standby letters of credit; irrevocable letters of
credit that guarantee repayment of commercial paper or tax-exempt securities; risk participation in bankers’
acceptances; sale and repurchase agrements; and asset sales with recourse against the seller; interest rate
swaps, OTC options and Credit Derivatives, except when embedded in structured notes.
25The credit risk exposure can consist of a couple of components such as current counterparty exposure or

potential future exposure and others depending on the implemented methodologies. The counterparty exposure
is related to the market value of of the portfolio of OTC derivative positions with a counterparty that would
be lost if the counterparty were to default. The current exposure is the current market value of the exposure
to a counterparty. The potential future exposure is a measure on how the exposure might develop in the future
with some degree of statistical confidence.
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of the underlying bond itself is one of the attractive feature of credit derivatives. The credit

derivative market (sometimes called structured credit market) encompasses a broad range

of capital markets products designed to transfer credit risk among investors through over-

the-counter transactions. These include a variety of off-balance sheet products such as credit

default swaps, total return swaps, first-to-default baskets26, and credit spread options; and on-

balance sheet customized structured products such as credit-linked notes, repackaged notes,

and standard or synthetic collateralized debt obligations (CDOs)27. These types of transac-

tions is what makes the credit derivative market and in particular the CDSs so attractive.

The risk replication of a CDO via a portfolio of CDSs is one of the key transactions and one

of the major reasons why the CDS market remains more liquid then other credit derivative

instruments.

The credit derivative products have developed over the past decade, but it has only been in

the past couple of years that this sector has started attracting more attention and experienced

accelerated growth. The British Bankers’ Association estimates that from a total notional

amount of $180 billion in 1997, the credit-derivatives market grew more than tenfold to $2.0

trillion by the end of 2002. Furthermore, the British Bankers’ Association (BBA) forecasts

that the total notional amount of credit derivatives will reach $4.8 trillion by the end of 2004.

In a November 19, 2002 speech before the Council on Foreign Relations, Federal Reserve

Chairman Alan Greenspan praised the credit derivatives market for its role in allowing banks

and other financial institutions to hedge credit risk. The nearly-explosive growth of this

market, however, has also been accompanied by controversy28. In particular, concerns have

been raised recently about whether credit protection is priced fairly in the credit-derivatives

market. For example, it was claimed that hedge funds have artificially driven up the price of

credit protection in an effort to induce the ratings agencies to downgrade specific firms (the

Wall Street Journal on December 5, 2002).

26In a first-to-default basket, or so-called first-to-default basket default swap, we have several reference
credits with their respective reference credit assets. The credit event is triggered by the first default in the
basket.
27A collateralized debt obligation (CDO) is a structure of fixed income securities whose cash flows are

linked to the incidence of default in a pool of debt instruments. These debts may include loans, revolving
lines of credit, other asset-backed securities, emerging market corporate and sovereign debt, and subordinate
debt from structured transactions. When the collateral is mainly made up of loans, the structure is called a
Collateralised Loan Obligation (CLO), and when it is mainly bonds, the structure is called a Collateralised
Bond Obligation (CBO).
28For example restructuring as a credit event in 1999 ISDA definitions has been a bone of contention in the

credit derivatives market for quite some time - see ”ISDA resolves restructuring issue” (29.5.2001).
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Credit Derivatives - a successful Financial Innovation

The growth to date has bee n driven by several factors. Banks, under increasingly pressure

to improve financial performance, have turned to credit derivatives to more actively manage

the concentration and correlation risk inherent in their loan portfolios as well as the economic

and the regulatory capital required to support their operations.

The Asian financial crisis that began in August 1997, with devaluations by Thailand and

Korea and various corporate defaults, initiated a new wave of interest in credit derivatives.

Investors who had become more aware of about credit risk began to focus more on using credit

derivatives to hedge or lay off credit risk. But it was in the period following the Russian

default in August 1998 that the credit derivatives market seemed to come of age. On the one

hand, the Russian crisis highlighted a number of documentation and administration problems

in the market, on which market participants have taken decisive steps to address29. These

difficulties, however, were relatively minor. In most respects the credit derivatives market

worked the way it was supposed to, and the Russian crisis illustrated to participants and

non-participants alike how these products transfer credit spread risk and default risk between

counterparties. Before that event, many investors had viewed credit derivatives as a curious

but highly specialized and exotic corner supplementing the bondmarket. When suddenly faced

with the prospect of deteriorating credits and bond market illiquidity worldwide following

Russia’s default, investors could see in a very tangible way the attractions of a market where

one could “buy protection” to reduce risk and “sell protection” to diversify a concentrated

portfolio.

Another source of growth has been the presence of significant credit arbitrage opportunity

across different market sectors (e.g., loans and bonds) as well as across different countries.

Structured credit entails applying financial engineering techniques to leverage these opportu-

nities and create customized financial products for investors, including credit-linked notes and

repackaged notes. Many investors are unable to participate directly in the credit derivatives

markets due to regulatory constraints, investment policy guidelines, or a lack of analytic tools

to evaluate, price and effectively use credit derivatives in their portfolios. However, in many

cases they are able to acquire structured credit investments incorporating credit derivatives or

repackaged assets that would have otherwise been inaccessible in conventional cash form. In

the emerging markets front, investors often have been unable to invest directly in these secu-

rities due to a variety of non-credit risk factors, including administrative, custodial, legal, tax

and other issues. As the Asian crisis gave rise to extremely discounted valuations throughout

29See also ”LTCM crisis” detailed explained in Dunbar (2000).
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the emerging markets, investors sought structured products that isolate credit risk from other

factors, which helped broaden the investor base for emerging market securities and credit

derivatives. Credit derivative trading operations were established to help clients meet risk

management needs and develop credit arbitrage techniques to create many new investment

products.

A further key factor for the huge growth is the standardized credit derivatives definitions

introduced by the ISDA. This project established a new and standardised ISDA confirmation

form for credit derivatives, thereby simplifying the documentation and approval process of

credit derivative transactions. Even more importantly, transactions based on the new defini-

tions will be based on a common set of definitions. Previously, credit derivatives transactions

were based on ISDA documents introduced in early 1998, but different firms and countries

had developed minor variations on the standard ISDA long form confirmation. This gave rise

to potential legal issues, and as a result, some participants were selective about who they

would deal with, and other conservative firms probably did not participate in the credit deriv-

atives market at all. The new definitions, by eliminating this documentation/legal risk, are a

significant factor in broadening the investor base for credit derivatives and improving market

liquidity. Fore more details see 1999 ISDA credit derivatives definitions.

The credit default swap has become the dominant product in the credit derivatives market.

As in previous surveys from BBA, single-name credit default swaps continued to be by for

most popular credit derivatives product in 2001, represented 45% or nearly half of market

share in terms of notional. The percentage of Portfolio Products/CLOs has substantially

increased over the last few years and constituted 22% of market share in 2001. It is predicted

to increase even further to 26% of market share by 2004. None of the other products captured

more than 8% of market share in 2001 and are not predicted to do so in the near future. Table

1.6

Head 1996 1997 1999 2002 2004(est)
Credit Default Swaps 35 52 38 37 34
Portfolio/CLOs NA NA 18 18 23
Asset Swaps NA NA 12 11 9
Total Return Swaps 17 14 11 10 8
Credit linked Notes 27 13 10 11 11
Basket Products 6 5 6 7 7
Credit Spread Products 15 16 5 6 8

Table 1.6: Market share of credit derivatives in percentage
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Regulatory issues

A significant issue for the credit derivatives market has been a less than accommodating

regulatory environment. Credit derivatives, being relatively new, by and large do not fit

into the existing regulatory framework for banks or insurance companies, and face ambiguous

accounting treatment. Progress is being made on this sector but for the most part appears to

be slow.

Documentation — The new ISDA credit derivatives definitions represents a major step

forward for the credit derivatives markets. This project was undertaken largely in reaction to

the documentation problems that arose after the Russian default in August 1998. However,

its true significance lies in greatly simplifying the administrative process of closing credit

derivative transactions and eliminating documentation inconsistencies across different market

participants. This will lead to a broadening of the investor base for credit derivatives and

substantially improved liquidity.

Banking industry — Many bank regulators consider credit derivatives as being develop-

ment of enormous potential importance for helping banks manage the credit risk inherent

in their lending activities. At the same time they acknowledge that the existing regulatory

capital framework provides little incentive to encourage banks to develop and use these tools.

According to Bowler and Tierney (2000):

”We review the guidance that has been issued to date in six countries. While

each country tried to respect the spirit of the original Capital Accord, there are

significant differences and inequities among them. On a positive note, bank

regulators in some countries are becoming more comfortable with credit deriv-

atives, and have shown willingness to consider and approve credit derivative

strategies on a case by case basis.”

The Basle Committee on Bank Supervision issued a discussion paper in 1998 that proposed

a major changes to the existing risk based capital framework, but the proposed framework for

credit risk mitigation strategies (i.e. credit derivatives) remains conservative.

Insurance industry — Insurance companies in many countries can use derivatives only for

hedging purposes. However, they can invest in CLNs and repackaged notes30. Some coun-

tries provide strong incentives or even require that insurance companies invest in principal-

protected structures. In the US, the industry has been working with regulators to develop

30Repackaging vehicles such as repackaged notes are used to convert or create credit risk structures in a
securitized form that is accessible to a broad range of investors. They can be used to convert existing credit
derivative products into the cash form required by many investors. They can be used as well to increase
liquidity and to trade risks that do not currently exist in a traded format.
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a replication framework. This would allow insurance companies to create synthetic positions

using cash instruments and derivatives that replicate otherwise permitted investments.

Accounting — Derivatives, including credit derivatives, will are be subject to mark-to-

market accounting under new accounting standards issued by the Financial Accounting Stan-

dards Board in the US and the International Accounting Standards Committee in London.

These new rules established a new hedge accounting models for derivatives. Credit derivatives

and their applications raise a variety of issues that were not included in current accounting

standards. The Derivatives Implementation Group (DIG) will address these issues on a case

by case basis.

For detailed discussion on regulatory issues about credit derivatives we refer to Bowler and

Tierney (2000) and O’Kane (2001).

1.3.6 Credit Derivatives can complete Financial Market Informa-

tion

The credit derivative will take more importance when regulators will admit standard reduc-

tions in capital requirements when credit risk is mitigated, diversified away, or in particular

transferred through credit derivatives. Why is it important? Because it is linked to the main

deterrent of sustainable financial markets: the illiquidity or the scarcity of liquidities. Theo-

retically markets are efficient, they can be volatile as they could be, but times of distress are

always recovered. In reality, there exist some barriers under which the market will not be able

to recover which might be seen analogous to stop loss rules for traders on the exchange31. In

periods of recession, the need for cash as well as the cost of available cash can be very high.

The lack of available inflow can include large selling blocks, falling prices and rolling distress

that can drive the whole market into a crash. It is not obvious that credit derivatives will

really help to manage the risk of a breakdown of the market, or a substantial number of its

members due to illiquidity.

1.3.7 Credit Default Swap Basics

As mentioned before, credit derivatives are a fundamental innovation that might serve to

solve many important practical problems such as transfering credit risk. CDSs have become

the dominant instrument in the credit derivatives market, and we include a fairly extensive

discussion of this instrument within this and the next section.

31For example a stop loss rule for stocks is the customer sell order to triggers a sale in case the stock price
falls below a pre-defined value. A stop-loss order therefore will protect profits that have already been made
or prevent further losses if the stock drops.
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This section concentrates on CDS as they constitute the lions share of the pure credit

derivative market. Based on the terminologies and definitions made before this section will

provide with a detailed definition of a CDS and an illustrative example to give a more realistic

idea of how a CDS works. Furthermore, the key rule played by the CDSs within the credit

derivatives market is discussed to point out that the CDS is a major factor in completing

financial markets by using credit derivatives. For more complete discussions see Tavakoli

(2001), Das (1998, 2001) or Schönbucher (2003) Moore and Watts (2003) serves with a recent

market guide for CDS. The valuation of CDSs is discussed more deeply in the next section.

Specification of Credit Default Swaps

For explanatory purposes, we focus on the ’plain vanilla’ single-name CDS, which means that

the CDS under discussion is an instrument on a single reference credit asset. This is the

most common form of such instruments. Let us further mention that there exist some exotic

CDS structures, so-called ’Default Digital Swaps’ (DDS), which is a CDS with a constant pre-

defined amount as default payment or a ’First-to-Default Swaps’ (FTDS), which are examples

of CDS written on a portfolio or ’basket’ of reference credit assets (i.e., CDS linked to a

portfolio of business loans or credit-sensitive securities). Such kind of so called multi-named

CDS can be thought of as the building blocks for synthetic collateralized debt obligations

(CDOs).32

Let’s make clear, based on our ’Terminologies and Definitions’ we made before, what a

plain vanilla single-name CDS (in the following denoted as CDS):

In a CDS B (the protection seller) agrees to pay the contingent default pay-

ment to A (protection buyer) in case a default has happened. If there is no

default of the reference asset until the maturity of the CDS, counterparty B

pays nothing. A pays a fee (premium payment) for the default protection.

The fee can be either a lump-sum fee up front (credit default put option) or

periodic fixed payments expressed in basis points per notional until default or

maturity of the CDS. A typical CDS structure is shown in Figure 1.10.

CDSs mainly differ in the contract specification. The most important features of such

contracts are:

1. The specification of the credit event, which is in a CDS formally defined as a default,

32CDS are no longer purely used as a form of insurance for lenders or an alternative method of gaining credit
risk exposure. Their common features and tradability has allowed people to create new and innovative financial
products and was named the ’building block’ for a number of other products-mainly for portfolio-based ones
such as collateralized and credit-linked instruments (see also Moore and Watts (2003)).
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Figure 1.10: Credit default swap transaction

2. The contingent default payment, which may be structured in a number of ways. Com-

mon alternatives are:

• An alternative might be the payment of the difference between par and actual
value by the protection seller (settlement in cash, so called cash settlement),

• The protection buyer (A) may deliver one or several of the reference assets (or
other qualifying assets that are equal to or higher in priority of payment) to

the protection seller (B) in exchange of the corresponding par value (physical

delivery),

• It can be set at a pre-determined level of a fixed percentage of the notional
amount of the transaction (DDS).

Sometimes substitute securities may be delivered, or an exotic payoffmay be specified (e.g.

to hedge counterparty exposure, see above, in derivatives transactions).

A CDS allows the separation of the credit risk component of a defaultable bond from its

non-credit driven market risk components. The protection buyer (A) retains the market risk

but is hedged against the credit risk of C, while the protection seller (B) can assume the

credit risk alone. Depending on the credit quality of the protection seller, his counterparty

may require him to post collateral on the contract which can range from 5% to 50% of the

notional amount, see Schönbucher (2003). The possible payments in default have already been

discussed above. Both counterparties can agree to appoint a calculation agent who supervises

the price determination and settlement procedures of the CDS in default.

In the context made above it is worth nothing that credit default swaps are not credit swaps
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or credit event swaps. Sometimes the literature uses the wording default swap, credit swap

or credit event swap for credit default swaps. The differences comes from the specification of

periodic contingent payments which depend, in large part, on the credit quality of the reference

asset. Credit swaps or credit event swaps can be settled in cash and also provide for physical

delivery. For example, it may involve payment at par by the seller in exchange for the delivery

of the defaulted reference credit asset. If the payment is triggered by the default and equals

to the difference between the face value of a bond and its market price, a contract is named

the CDS.

In cash settlement the price determination is involved, Therefore most of the CDSs specify

physical delivery in default. Cash settlement is only chosen when there may not be any

physical assets to deliver (i.e. the reference credit has not issued enough bonds) or if the CDS

is embedded in another structure where physical delivery would be inconvenient, as in the case

of CLN. Physical delivery is not entirely without problems, e.g. when traders have speculated

on the default of C by buying credit protection without having an underlying position in the

bonds. These traders will have to buy C-bonds after a default event in order to deliver them

to their respective protection sellers. This demand might push up prices to an artificially high

level which may damage the value of the default protection.

One more word on terminology: The asset that is traded in a CDS is default protection.

This means:

• A long position in a CDS is a position as protection buyer,

• A short position in a CDS is a position as protection seller,

• A bid of x bp33 on a CDS means that the bidder is willing to enter in a CDS as

protection buyer for a periodic fee (sometimes called CDS rate or CDS spread) of x

bp at the notional amount, and

• An offer of y bp on a CDS means that the offerer is willing to enter in a CDS as
protection seller for a periodic fee of y bp at the notional amount.

Credit Default Swap Example

Lets look at an example for ’plain vanilla’ CDS in which the reference asset is a corporate

bond:

Credit default swap on DaimlerChrysler bonds:34

33bp=basis points. 1bp is 0,01% of an absolute amount.
34This example is from Schönbucher (2003) and is here presented with some modifications.
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Counterparty A and B enter in credit default swap on DaimlerChrysler AG. They have

agreed on:

• Protection buyer: A

• Protection seller: B

• Notional amount: USD 50 million

• Reference credit: DaimlerChrysler AG (C)

• Reference credit asset: a particular or class DaimlerChrysler bond issues

• Trade date = today (t = 0)

• Effective date = Trade date35

• Maturity Date: the term of the CDS is 5 years from today

• Payment amount: CDS fee 120 bp per annum

• Day count convention: e.g. act/36036

• Default payment and settlements: see below

These are the most important items in the specification of a simple CDS. For other details

of contract specifications we assume that A and B follow the specifications proposed by the

ISDA.

The settlement period for the trade is three business days from the trade date, this is when

the payment period for the first fee and the default protection begin.

The fee payments: The credit default swap fee 120 bp is quoted per annum as a fraction of

the notional amount. A pays the fee in regular intervals, semi-annually. To simplify the day

count fractions we choose 1
2
such that A pays to B:

120 bp× USD 50 million = 600000 USD at t1 = 0.5, t2 = 1, ..., and at t10 = 5.

These payments are stopped and the CDS is unwound as soon as a default of Daimler-

Chrysler AG on its payment obligations for the bond in question occurs.

35Often the effective start of an CDS or even for a simple interest rate swap could be some days or weeks
later than the trading day.
36For a comprehensive discussion about day count conventions we refer to Miron and Swannell (1995).
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Determining a credit event: The credit events (bankruptcy, failure to pay, obligation ac-

celeration, repudiation/moratorium or restructuring) are defined in the CDS contract with

respect to a large set of bonds issued by the reference credit (C) DaimlerChrysler. Let us

assume these are all senior unsecured EUR and USD-denominated37 bonds issued by Daim-

lerChrysler with an issue size of at least USD 10 million or EUR 10 million (USD
EUR

= 1).

Furthermore, let us assume that at the time to default, DaimlerChrysler AG has failed to pay

a coupon payment that was due at this date on one of the bonds listed in the contract. This

could potentially constitute a credit event according to the CDS contract, if some conditions

are met. First the disputed amount must exceed a materiality threshold, and second, it must

remain unpaid after a grace period of some days. If these conditions are fulfilled then the

protection buyer A will notify the protection seller B of the occurrence of a credit event and

the CDS contract is unwound.

The default payment: First, A pays the remaining accrued fee. If the default occurred

two month after the last fee payment, A will pay USD 600000 × 2
6
. The next step is the

determination of the default payment. If physical settlement has been agreed upon, A will

deliver DaimlerChrysler bonds to B with a total notional amount of USD 50 million. The

set of deliverable obligations has been specified in the documentation of the CDS contract.

As liquidity in default securities can be very low, this set usually contains more then one

bond issue by the reference credit C. Naturally A will choose to deliver the bond with the

lowest market value38, unless he has an underlying position of his own that he needs to unwind.

However, even then he may prefer to sell his position in the market and buy the cheaper bonds

to deliver them to B. This delivery option enhances the value of his default protection. B

must pay the full notional for these bonds, USD 50 million in our example. If cash settlement

has been agreed upon, a robust procedure is necessary to determine the market value of the

bonds after default. If there were no liquidity problems, it would be sufficient to ask a dealer

to give a price for these bond, and use that price, but liquidity and manipulations are a serious

concern in the market of distressed securities. Therefore not one, but several, dealers are asked

to provide quotes, and an average is taken after eliminating the highest and lowest quote. This

is repeated, sometimes several times, in order to eliminate the influence of temporary liquidity

holes. Following this procedure the price of the defaulted bonds is determined, e.g. 450 USD

for a bond of 1000 USD notional amount. Now, the protection seller B pays the difference

between this price and the par value for a notional amount of USD 50 million, in numbers

(1000− 450) /1000× 50, 000, 000 USD = 27, 500, 000 USD.
37USD-denominated means the bond is issued in another currency than EUR, here in USD, but does not

necessarily mean the bond is issued outside the EUR-Zone.
38Cheapest to deliver.
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Whatever settlement procedure is agreed upon, the CDS settles very quickly in a matter

of only a few weeks (usually around six weeks) after the credit event is noticed. This is much

faster than the determination of the final recovery rate (see recovery value above) through

bankruptcy courts.

Tavakoli (2001) presents for the most common structures in the credit default protection

market besides many other examples with detailed indicative term sheets which gives an idea

how complex a real CDS contract can be. See also Schönbucher (2003) for an illustrative

example of a CDS on distressed debt.

Credit Default Swap the leading Credit Derivative Instrument

As we mentioned before the CDS is the most liquid and dominant credit derivative instrument

form of a single-named instrument. Even more it is the most common instrument, serving

as the building block39 for many multi-name products. Why is this so? The ability to use

CDSs to hedge (or assume) credit spread risk and to create customized maturity products

account for large part for the success of the CDS product. CDSs are not static instruments

that only perform in the event of default. They are dynamic, market-sensitive products whose

mark-to-market performance is closely related to changes in credit spreads. More about this

see subsection ’Credit Default Swap valuation’ below. As a result they are an effective tool

for hedging against (or assuming exposure to) changes in credit spreads as well as default risk.

Credit spread option products provide an asymmetric (option) approach to hedge against or

assume credit spread risk but the market for this product is not well developed at this time.

Furthermore, CDS have the special feature that they can be used to create credit exposure

of different maturities to a reference credit (C) that are unavailable in the cash market, which

is one of the key benefits of CDSs. For instance, consider an investor who has a negative view

on the future credit-worthiness of a given corporation. One strategy for such an investor would

be to short the bonds issued by the corporation, but the corporate repo market and other

mechanisms for taking short positions in corporates are not well developed for most individual

corporate issuers. In buying protection with a CDS, the investor essentially replicates the

cash flow of a short position in the corporation’s debt. In case the corporation default, the

investor is able to buy the defaulted debt for its recovery value in the market and sell it to

its counterparty the protection seller (B) for its face value. CDSs allow counterparties to buy

and sell protection on credit risk inherent in a bond, loan, or guarantee/swap counterparty

exposure. According to Bowler and Tierney (2000):

39In this thesis we focus principally on the single-named credit default swap, which is commonly described
as a ’building block’ for a number of other products, mainly for portfolio-based ones such as collateralised and
credit-linked instruments, which have become increasingly important products recently. More about this in
Moore (2003), JPMorgan (2002), Schönbucher (2003).
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”... if an investor wants a three-year maturity and duration exposure to an is-

suer that has only 1.5-year and 10-year securities outstanding, the appropriate

exposure can be created by selling a three-year default swap, or by purchasing a

credit-linked note with an embedded written default swap (CDS). Total return

swaps are sometimes marketed as providing customized maturity exposures

(e.g., a five-year total return swap on a 10- year reference asset), but it is

important to distinguish between maturity and duration exposure. During the

term of the swap the total return receiver has full exposure to the market risk

and duration of the reference asset, as if it were on the balance sheet.”

To create or hedge maturity exposures, the CDS provides for useful engineering character-

istics, in particular, because of the fact that the CDS will fall naturally as the residual from

the decomposition of a typical risky bond (we show this later in ”CDS pricing via replication”

- Example 1 and 2). More precisely we take a bond that has default risk (in the following also

called risky bond only) and then show how the cash flows of this bond can be decomposed

into simpler, liquid constituents. CDSs fall as a natural constituent of this decomposition.

This natural function played by CDS may explain probably mostly their appeal in the credit

derivative market and their position as the leading credit instrument.

When an investor’s objective is to transfer or acquire credit risk in the derivatives market,

the CDS is the most effective and liquid tool available. As we mentioned before the CDSs are

often described and offered as financial instruments that provide protection against default

risk. While this description is certainly true, it is also limited and does not begin to convey

the full versatility of the product.

1.3.8 Credit Default Swap Valuation

This section is focusing fairly extensive on the valuation methodologies for CDS pricing After

presenting an overview of the different methodologies and the involved model parameters in-

cluding explanations and discussions, the replication method, a structural model and a reduced

form model is considered. The part of the replication method is illustrated with some well

known and important examples initiated by Duffie (1999). The presentation of a structural

model initiated by Das (1995) is given in overview form, while more details on reduced-from

model will serve with some useful fundamental techniques within this methodology. The

reduced-form models are most widely used in practice to price CDSs and were initiated by

Jarrow and Turnbull (1995). The implementation of such models is discussed after presenting

a recent literature survey for CDS pricing models. Finally we summarize the main issues of
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the use of CDSs and their valuations. For concepts and the mathematics behind the most

important and popular credit risk models see Schönbucher (2003).

Methodologies and Model Parameters

Since a reliable benchmark model for credit derivatives is not yet available, it is common in

market practice to value a credit derivative on a stand-alone basis, using a judiciously chosen

ad hoc approach, rather than a sophisticated mathematical model. Before we shall review the

most widely used methodologies for CDS pricing we quote one statement from the industry:

According to Tavakoli (2001):

”As one U.S. bank credit derivatives department head said, in talking about

some of the more exotic credit default structures: The spread is where it is

because that is where market says it is. What he was referring to is that

the models for certain types of credit derivatives either don’t exist or require

assumptions about unknowable unknowns.”

To give an overview for a classification of market pricing methods for CDSs valuation the

following approaches are established in academia and practice:

1. Replication-based method : This method prices the CDS by an evaluation the cost

of a portfolio replicating the CDS. This method replicates the standard approach to

contingent claim valuation in an arbitrage-free set up. The benefit of this approach is

the pricing of CDS via replicated well known and more liquid fixed-income instruments

from the cash market.

2. Structural-model-based method : As we discussed before this method based on the

firm value and the share price (capital structure of the firm). The classical credit

risk structural models were introduced by Merton (1974) and Longstaff and Schwartz

(1995). Based on the balance sheet information of the borrower and the bankruptcy

code they derive endogenously the probability of default and the credit spreads based

on no-arbitrage arguments, making some additional assumptions on the recovery and

the default-free interest rate term structure (see also credit-spread based methods).

3. Reduced-form-based method : These models work directly with the probability of de-

fault (and the corresponding processes) of risky debt as an exogenous variable cali-

brated to some data, their name coming from the reduction of the credit economics

behind the probability of default. This approach for CDS pricing was mainly initiated

from Duffie (1998), Lando (1998) and Duffie and Singleton (1999). For more classical

reduced-from models we refer to Jarrow and Turnbull (1995).
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4. Credit-spread-based method : The valuation using this method is based on a comparison

of the yield of the reference credit asset and the yield of a risk-free bond with similar

maturities and focus on the credit spread. This method will estimate a credit spread

directly using structural models or indirectly by using reduced-from models.

5. Credit-rating-based method : This approach based on the available credit ratings by

rating agencies such as Standard and Poor’s, Moody’s KMV or Fitch. To derive

default probabilities an estimated Markov transition-matrix is used representing the

credit-rating-migration process. The credit-spread-based method can be seen as a

variant of the credit-rating-based method40.

We will focus our discussion within this subsection on the methods 1, 2 and 3. For

detailed descriptions of these models we refer to Schönbucher (1998, 2000, 2003), Bielecki and

Rutkowski (2000), Duffie (1999) and Cossin and Pirotte (2001). For practical implementations

building trees (lattice approach) and Monte Carlo methods are widely used, in some specific

cases also closed-form approaches. For closed-from solutions we refer to Hübner (1997), Duffie

and Singleton (1999) Jarrow and Turnbull (2000) and Cheng (2001).

The specification of the model parameters such as recovery rate, intensity (or hazard-rate),

credit spread, default probabilities and default correlation within these models is the most

difficult part of the valuation of a credit derivative and there underlying risk. The valuation

of a credit derivative depends on the measure of the credit risk. Credit risk models usually

involve a relatively large number of parameters when compared with any standard model of

market risk. Additionally, in many cases the volume of available empirical data related to

credit-sensitive assets is insufficient for statistical studies (the scarcity of data might cause

problems even for a reliable estimation of the credit-spread curve). Let’s now discuss briefly

the specifying model parameters:

• Default probabilities: The notion of a credit event involves a number of various sit-
uations related to the credit quality of the reference asset. It is thus worth to men-

tioning that in most empirical studies undertaken before 1990 by default probability

researchers have meant a probability of defaulting on either interest or principal pay-

ment, see also Bielecki and Rutukowski (2000). In more recent studies, it is common

to adopt a less stringent definition of default, which can be more adequately referred

to as credit distress, see also Bielecki and Rutukowski (2000). In this context, let us

40There is a large and - in the light of Basle II - rapidly growing literature on the problem of how to assign
a rating to a given obligor and how to build up an internal rating system. We do not consider this problem
here.
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observe that though the different debts of the same firm encounter credit distress at

the same time, it may well happen that senior debt obligations are satisfied in full

during bankruptcy procedures, while subordinated debt is paid back only partially.

This feature is accounted for in the specification of different recovery rates to indi-

vidual types of debt of the same firm, according to the debt seniority. Let us stress

that observed default frequencies correspond to the actual probabilities of default, as

opposed to the risk-neutral probabilities which are used to value derivative securi-

ties. In an arbitrage-free setup, the risk-neutral default probabilities should be seen

as by-products obtained within the model, rather then the model inputs.

• Recovery rates: It is known that the likely residual value net of recoveries depends on
the seniority class of the debt, in the case of default. To account for this feature, we

may assume that the value of a recovery rate depends not only on the bond credit

quality, but also on the seniority classification of the bond, from senior secured to

junior unsecured. It is debatable whether it should be represented as a constant or

as a random variable. For simplicity, a random recovery rate can be assumed to be

independent from other random quantities involved in the used model construction.

In practice the recovery can be modelled as recovery equivalent in terms of risk-

free bonds, as cash or as fraction of the pre-default value of the defaultable bond.

Historically, the first assumption made is that of equivalent recovery, introduced by

Jarrow and Turnbull (1995) and has been further developed by Lando (1998) and

Madan and Unal (1998). Under this assumption, each defaulting security is replaced

by a number 0 ≤ R ≤ 1 of non-defaultable, but otherwise equivalent securities. One
advantage of equivalent recovery is that it allows us to calculate implied survival

probabilities (see ’A reduced-form model for CDS pricing’ below) from bond prices

using closed-form equations for a given recovery rate R. On the other hand, a fixed

recovery rate implies an upper bound on the credit spread. An equivalent recovery

model uses decomposition of the defaultable bond price into default-free bonds and

defaultable bonds with zero-recovery. The strength of this approach is that it allows

default-risky claims to be valued as if they were default-free and discounted by an

adjusted interest rate. Schönbucher (2000) present a fractional recovery model as an

extension of the Duffie and Singleton model (1999) for multiple defaults. In this model

a default does not lead to a liquidation but a reorganization of the issuer: defaulted

bonds loose a fraction of their face value and continue to trade. This feature enables

us to consider European-type payoffs in our derivatives without necessarily needing

to specify a payoff of the derivative at default. Both the equivalent and the fractional

recovery assumptions do not correspond to market conventions for bonds. When a
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real-world bond defaults, the bond holders recover a fraction R of the bond’s principal

value (and perhaps of the accrued interest since the last coupon date, but we will ignore

this for simplicity). The outstanding coupon payments are lost. In the literature, this

convention is sometimes called recovery of face value. Similar to the case of equivalent

recovery, the recovery rate does impose bounds on credit spreads under recovery of

face value. However, the effects are more complex than in the equivalent recovery

case and are best analyzed on a case-by-case basis. In general, these constraints only

become binding for long maturities or in extreme cases.

• Intensity (or hazard-rate): An intensity-basedmethod is an alternative to the structured-
based methods. Because of the non-existence of a firm value process within an

intensity-based model another technic must be introduced to model the payment in

case of default. Therefore an intensity-based modelling is focusing on the default

process. The most simple form of the time to default with intensity is a exponential

distributed random variable. The characteristic of the default process is described

through its intensity. These methods following an insurance-based approach which

is based on martingale methods. For an introduction to these methods we refer to

Bielecki and Rutukowski (2000).

• Credit spreads. The knowledge of credit spreads represents a prerequisite of the credit-
spread-based approach. To be more specific, we need to examine not only the credit-

spread-curves, but also credit-spread volatilities, and, if in advance several distinct

assets are modelled simultaneously, the credit-spread correlations. Due to the relative

scarcity of data, the estimation of the credit-spread-curve is more problematic than the

estimation of the risk-free yield-curve. This is especially difficult to overcome when one

deals with the risky debt issued by a particular firm. In such a case, one might use the

rating-specific credit-spread-curve as a proxy for the unobservable firm-specific credit-

spread-curve (see Fridson and Jónsson (1995)). The difficulty in collecting sufficient

empirical data will be probably lessen in the future, with the further development of

the sector of credit derivatives. The same remarks apply to the estimation of credit-

spread volatilities, which in principle can be statistically inferred from the observed

variations of the credit-spread yield curve, see for example Fons (1987, 1994) or Foss

(1995). An alternative and perhaps more promising, approach would be to focus

instead on volatilities implicit in market prices of the most actively traded option-like

credit derivatives. In practice, the construction of a credit-spread-curve will be mostly

described via the term structure of discount factors for a risky issuer under the zero

recovery assumption. Inputs for the credit-spread-curve are typically bonds, whether
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fixed coupon non-callable bonds or floating rate notes, asset swap spreads, or CDS

spreads.

• Default correlations are simply the correlations between two or more defaults of sin-
gle named issuer. Empirical analysis of default correlation is limited by the lack of

default events. One study, Lucas (1995), which computed the default correlation

between assets in different rating categories, has made two particularly interesting

observations. The first is that a default correlation increases as we descend the credit

rating spectrum. This has been attributed to the fact that lower rated companies are

more vulnerable to an economic downturn than higher rated companies and are thus

more likely to default together. The second observation is that a default correlation

is horizon-dependent and it has been postulated that this may be linked to the pe-

riodicity of the economic cycle. Computing industry-industry default correlations is

difficult due to the shortage of default events. In practice, default correlation is often

approximated using some other quantity such as credit-spread correlation or stock

price correlation. While this may appear a reasonable assumption, strictly speak-

ing there is no model-independent mathematical relationship that can link the two

together.

Credit Default Swap Pricing via Replication

Although complex mathematical models (see section 1.3.8) should ideally become the way

of pricing credit derivative instruments, the complexity of the contracts and low reliability

of fitting such models have made more simple methodologies predominant in pricing credit

derivative instruments. The best alternative, when possible, is to price these instruments via

simple replication. For some of the basic credit derivative instruments there exist simple ap-

proximative hedge and replication strategies. The cash-and-carry valuation methods are often

very important and popular in financial engineering. This methods are based on the funda-

mental principle of no-arbitrage and the concept of dynamic hedging41. Therefore we must

use the risk-neutral probabilities for this valuation approach. The risk-neutral probabilities

are extractable from prices of traded securities.

The replication approach provide upper and lower bounds and hedge strategies that cover

much of the risks involved in the credit derivative instruments. The results are robust because

41The opposite of no-arbitrage is arbitrage which is simply the combination of trades in several instruments
which yields in a riskless return without investing additional money. In a perfect market are no arbitrage
opportunities, meaning that the market prices are related in absence of arbitrage. If there were arbitrage
opportunities, the market would immediately realise such discrepancies and adjust the prices so that there are
fair.
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they are independent of any specific pricing model. the CDS and also the TRORS are usually

priced this way. Applying the replications approach we assume in the following that the

real market is perfect. In reality, markets -especially in the CDS market- show significant

differences related to the theoretical relations. In this market the liquidity plays a major rule

and has to be taken into account for an adequate pricing methodology.

A CDS is designed such that the combined position of a CDS with a defaultable bond

issued by C is very well hedged against default risk, and should therefore trade close to the

price of an otherwise equivalent default-free bond. This is the intuition behind the cash-and-

carry arbitrage pricing of CDSs. The cost of setting up the replicating portfolio gives the pice

of the CDS.

Before we start with important replication examples for CDS we need to make some

notations and definitions for underlying and hedge instruments:

• Loans are the oldest and well known type of payment obligation, and they are still one
of the most important ways to raise investment capital. They are bilateral contracts

between the borrower and the lender, which is usually a bank. Basically a loan

consists of a sum, the principal or the notional amount, which was originally lent by

the creditor to the obligor and which the obligor has to repay to the creditor at the

maturity date. Additionally, the obligor has to make regular interest payments in the

meantime.

• Bonds are the securitized version of loans, the major difference to loans is that they
are tradeable in small denominations in the secondary market. Tradeability has the

advantage that it opens access to a much larger number of potential lenders. The

lenders can lend smaller amounts and do not need to remain invested for the whole

borrowing period, because they can easily sell the bond before its maturity. The

defining characteristics of a bond are its issuer, a notional coupon size, frequency of

coupon payments and maturity date. We consider here standardized plain bonds. For

a detailed discussion of standard and structured bonds we refer to Fabozzi (2001).

In the following we consider default-free bonds and defaultable bonds with fixed and floating

coupons as well as default-free and defaultable zero-coupon bonds.42

• Default-free bonds: These are default-free coupon bonds issued by C with fixed and

float coupons. Fixed-coupon bonds are the most common type of default-free and

42As we described before convertible bonds are also typical underlying instruments (see also section1.2).
In addition to the conventional coupon and principal payment of a plain fixed coupon bond, the holder of a
convertible bond has the right to convert the bond into shares.
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defaultable bonds. The coupon amounts are fixed in advance, and we assume that

the notional amount is only and fully repaid at maturity. C (t) denotes the time t

price of a default-free coupon bond with a coupon of c. Par floater or floating coupon

bonds also have full prepayment at maturity but their coupon amounts are linked to a

benchmark short-term interest rate, usually Libor, denoted as Lt for the time t Libor.

The floating coupon bonds has a price C̃ (t) at time t.

• Defaultable bonds: These are defaultable coupon bonds issued by C with fixed and

floating coupons. The default fixed coupon bond carries a coupon of cd and has a

price Cd (t) at time t. We also consider defaultable floating coupon bonds which have

also full prepayment at maturity as well whose coupon amounts, however, are linked

to a benchmark short-term interest rate plus a constant spread, L+ spar, and a price

C̃d (t) .The spread is chosen such that the price of the par floater is initially at par.

• Zero-coupon bonds do not have any coupon payments during the lifetime of the bonds
and to compensate the investors they are issued at a significant discount from par.

They are rarely seen in the corporate bond market but they are very convenient

building blocks for credit risk modelling. These results from applying structural models

such as Merton (1974). At any time t there are default-free zero coupon bonds of all

maturities T > t. We use B (t, T ), for the time t price of a default-free zero-coupon

bond with maturity T and Bd (t, T ) for the defaultable zero-coupon bond.

• Interest-rate swaps: s (t) denotes the swap rate at time t of a plain vanilla fixed-for-
floating interest rate. The forward interest-rate swap rate contracted at t for the time

interval [tn, tN ] is

s := s (t) =
B (t, tn)−B (t, tN)

a(t; tn, tN)
, (1.43)

where a(t; tn, tN) =
PN

i=n+1 δiB (t, ti) =: a (t) is the value of an annuity paying δi

at each date ti starting from the first date tn+1 after tn and δi are the day count

fraction for the time intervals [ti, ti+1], which are assumed equidistant. The maturity

is tN = T . If the swap start immediately, we have tn = t . In this case the annuity

value is exactly the value of 1 basis point and therefore called ’PV01’. Some of the

hedge instruments may not always be available. Most obligors only issue fixed-coupon

bond, if they issue traded at all. In many cases the only bonds available carry call

provisions or are convertible into equity which makes them unsuitable for the simple

hedging strategies outlined here. On the other hand we can assume the existence of

interest-rate default free coupon bonds and interest-rate swaps of all maturities. The

floating rate Lti of the interest rate swap and the swap payment are assumed to be
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default-free.

• Recovery: In the following we assume that the event premium is the difference of

par and the value of a specified reference credit asset after default. The value after

default is the recovery value which defined by a recovery rate R as a fraction of par

(see also the item ’Recovery rate’ before).

For simplicity we need to make some assumptions:

We assume that the coupon payments of coupon bonds and the fixed leg of the swap

payments occur on the same dates which are denoted by 0 ≤ t0, t1, t2, ..., tN . In reality this
will not always be the case but the relevant adjustment should be straight forward. We also

abstract from the day count conventions that have to be used to adjust payments occurring at

regular intervals. Therefore, we write s(ti) for the payment of the fixed leg of an interest-rate

swap at times ti, i ≥ 1, where it in reality should be s (ti) δi , where δi is the day count fraction
for the time period [ti−1, ti ]43. Furthermore we consider assume zero recovery.

Let’s now start with some examples to create a CDS via replication. In order to simplify

the discussion of financial engineering aspects we need to make some additional assumptions

on the payoff of a CDS in default.

1. We assume that the payoff takes place at the time of default. The time delay through

grace periods, dealer polls, etc. is ignored.

2. We ignore the delivery option that is embedded in a CDS with physical delivery. We

will frequently consider portfolios that contain a defaultable bond which is protected

by a CDS, and in this case the defaultable bond is the only deliverable bond of the

CDS.

3. We assume that the CDS is triggered by all defaults of the reference credit and only

by defaults of the reference credit. In particular we ignore the possibility of technical

default, i.e. events that trigger the CDS default definition while they do not constitute

a real default of the reference credit such as ”restructuring of the debt”. Furthermore,

we ignore the possibility of legal, documentation and specification risk, i.e. the risk

that a real default does not trigger the CDS. In tabular representations of the payoff

streams of a trading strategy we abstract from day count conventions and set for all.

Otherwise we assume that the same day count conventions and payment dates apply

to all the securities involved.

43For standard technics of swap pricing and hedging see Miron and Swannell (1991) (the best book available
for pricing and hedging plain-vanilla Swaps and the most expensive one as well).
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These assumptions apply throughout the rest of the following examples. They are common

assumptions, although they are explicitly stated.

Example 1: Synthesizing a risky bond via static replication

We present here a very intuitive approach to synthesize a risky bond with a

CDS and other liquid financial instruments as a technology to replicate a CDS

in a simple way. The presentation of this example based mainly on our class

notes, see Neftci (2003).

Consider a defaultable bond purchased at time t0. The bond does not contain

any call or put options and pays a coupon cd annually over 3 years. This means

there are coupon payments, cd, in t1, t2, and in t3. For simplification we make

two assumptions. First we assume that, in case of default, the recovery value

will be equal to zero, and secondly that the default only occurs in t3.

Considering the cash flows of this bond and assuiming that the bond is initially

purchased for 100, three coupon payments are made and the principal of 100

is returned if there is no default. On the other hand in case there is default

(in period t3 only), the bond pays nothing. There is an optionality due to the

possibility of default at time t3. At this time period, there are two possibilities

of default and no-default and the claim is contingent on these. How do we

replicate these cash flows in a way the constituents can be converted into

liquid financial instruments? We answer this question in steps.

Step 1:

By introducing a useful trick that will facilitate greatly the application of

static replication methods to defaultable instruments. Remember that we

would like to isolate the underlying default risk using a single instrument.

This task will be much simplified if we add and subtract the amount cd+100

to the cash flows in the default case at time t3. Note that this does not change

the original cash flows in any way.

Yet it is very useful in isolating the inherent CDS. In fact the bond contains

three different types of cash flow structures.44

44Drawing cash-flow diagrams as in Miron and Swannel (1991) can help to illustrate these facts as well as
further cash-flow algebtra throughout this example, which we haven’t done in this work.
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Firstly there are the three coupon payments on the dates t1, t2, t3. Of course,

by assumption, the third coupon payment h as default risk, but the trick

of adding and subtracting cd + 100 in the cash flows of time t3 , permits

considering this as if there were a guaranteed payment at time t3. Therefore

-although- the last coupon payment is risky, we can extract three default free

coupon payments from the bond cash flows due to the trick we used.

In fact, to get the default-free third coupon payment we simply pick the

positive cd at time t3. Note, that this leaves the negative c in case default

occurs.

The second type of cash flow structure is the initial and final payments of 100.

Again the trick of adding and subtracting 100 is used to obtain a default-free

receipt of 100 at time t3.

As a result of these two cash flow structure the negative payment of 100 in the

default state of time t3 remains. The remaining cash flow structure consist of

the negative cash flow cd + 100 that occurs at time t3 default state.

Step 2:

The next step is to convert these three cash flow structures into recognizable

and preferably the most liquid contracts available in the markets. Remember

that in order to do so we add and subtract any arbitrary cash flow to the

three chash-flow-structures above as long as the following conditions are met:

• For each addition of a cash flow we need to subtract the same amount (or its present
value) from somewhere else in the cash-flow-structures.

• These cash flows should be added so that the resulting instruments become liquid
instruments.

• As a consequence when added back together the now modified cash-flow-structures
should give back the same cash flows as the one we initially started. In other words,

we should be able to recover the cash flows of the defaultable bond.

To convert the first cash-flow-structure above into a recognizable instrument

we subtract a floating Libor payment, Lti at times t1, t2, t3. The resulting

series of cash flows looks like a fixed-receiver interest rate swap. This is con-

venient because swaps are very liquid instruments. However, there is one
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additional modification required. The fixed receiver swap rate is usually a

rate s(t0) such that

s(t0) ≤ cd,

the difference, denoted by sc,

sc = cd − s(t0), (1.44)

being the credit spread over the swap rate. This is how much a credit rated

AA- and lower has to pay over and above the swap rate due to the possibility

of default. Note that we are defining the credit spread as a spread over the

corresponding swap rate and not over the treasury rate. This is in fact market

practice and the “correct” way to handle.

Therfore in order to have the cash flows being labelled a receiver swap, we

need to subtract sc from each coupon receipt c. It follows that the fixed

receipts will equal the swap rate

cd − sc = s(t0) (1.45)

and, the resulting instrument becomes a true interest rate receiver swap.

The construction, however, leaves an important question to be answered.

Where do we add and subtract the cash flows sc and Lti that we just in-

troduced? After all, unless the same cash flows are entered somewhere else

with opposite signs, they will not cancel out and the resulting synthetic in-

strument will not reduce to a risky bond.

Let’s start with the Libor payments. The three Libor payments need to be

compensated by three Libor receipts that need to be added somewhere else

in the whole cash flow structure, preferably at the same times. Adding the

corresponding Libor receipts in the second type of the cash flow structure

convert this into a default-free money market deposit. This deposit will be

rolled over at the going floating Libor rate. Note that this is also a very liquid

instrument. Alternatively we can call this a Floating Rate Note (FRN).

The final adjustment is how to compensate the reduction of cd by the credit

spread sc. We add the sc to the remaining cash flow structure and the result
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is a new instrument. This is the critical step since we have now obtained

a new instrument that has fallen naturally from the decomposition of the

risky bond. Essentially this instrument has three receipts sc dollars at times

t1, t2, t3.Yet, if default occurs, the instrument will makes a payment of cd+100.

According to this, in case of default at time t3, the next payment becomes

cd + 100 − sc. Doing this once can see that indeed the vertical sum of all

cash flows replicate exactly the cash flows of the defaultable bond. What is

the instrument? How can we call it?. In fact this instrument is equivalent

to selling protection against default risk of the bond. The contract involves

collecting fees equal to sc at evert ti until the default occurs. Then, the

protection buyer is compensated for the loss c + 100−sc. On the other hand,
if there is no default, the fees are collected until the expiration of the contract

and no payment is made. We call this instrument a Credit Default Swap

(CDS) and in fact the defined credit spread above is equal the CDS spread or

so-called the CDS rate (sc = scds).

The step by step discussion above shows that a defaultable bond could be

replicated with a portfolio made of a fixed receiver interest rate swap, a default-

free money market deposit and a CDS. Here, the maturities of the bond, swap

and the CDS would be the same. Hence using these instruments we can write

down the following contractual equation:

Defaultable Bond (on credit reference asset) = Receiver Swap +Money Market

Account (default free deposit) + CDS (on reference credit asset),

which is algebraically equivalent to

CDS (on reference credit asset) = Defaultable Bond (on credit reference asset)

- Receiver Swap - Money Market Account (default free deposit)

and another possible replication following the same logic above is

CDS (on reference credit asset) = Defaultable Bond (on credit reference asset)

+ Payer Swap - default-free Money Market Loan.

Furthermore, the prices of defaultable bonds contain extremely important

information about the market’s assessment of the issuer’s credit risk. De-

faultable bonds are natural hedge instruments against default risk exposures
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and the price of defaultable bonds and credit default swaps are closely linked,

as we will also see in the following examples.

Example 2: Hedge strategy with fixed-coupon bonds

Lest’s consider the following two portfolios:

Portfolio 1 :

• A long position in a defaultable fixed coupon bond: cost at t = 0 is Cd (0), coupon is
cd and maturity is tN

• A short position in a CDS: CDS spread scds

Portfolio 2 :

• A long position in a default-free fixed-coupon bond: this bond has the same payment
dates as the defaultable fixed coupon bond, maturity tN and the size of the coupon

is cd − scds. The cost at t = 0 is C (0)

Table 1.745

Time Portfolio 1 Portfolio 2
defaultable fixed-coupon bond CDS default-free fixed coupon bond

t = 0 −Cd (0) 0 −C (0)
t = ti cd −scds cd − scds
t = tN 1 + cd −scds 1 + cd + scds

t = τ R 1−R C (τ)

Table 1.7: Replication strategy with fixed-coupon bonds

Portfolio 1 is fixed after a default and the default-free fix coupon bond is sold in case of

default. The idea is the following: portf olio 1 can be seen approximately as a synthetical

default-free fixed-coupon bond. Defaultable bonds are natural hedge instruments against

default risk exposures because the price of a defaultable bond and of the corresponding CDS

are closely linked (see example 1). In absence of arbitrage and if the payoffs of both portfolios

are the same, provided the payoffs in default also coincide, the initial cost of both portfolios

should be the same. This can be seen from Table 1.7. Otherwise, a risk-free profit can be

45See later in subsection 1.3.8 an exact definition for the ”time to default”, denoted here as τ .
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made by buying the cheaper portfolio of the two, and short selling the more expensive one.

Doing this and taken the payoffs in default in account, we must yield

Cd (0) = C (0) = B(0, tN) + a (0) c
d − a (0) scds. (1.46)

Now the default-free fix-coupon bond price is expressed as the sum of values of the final

principal repayment and the regular coupon payments. The equation above can be solved for

the ’fair’ CDS rate (spread) scds for any given term structure of default-free interest rates.

Considering the payoff in default we realize that the payoffs of portfolio 1 and 2 do not

coincide exactly. This is the CDS gives us the right to put the defaultable fix coupon bond

to the protection seller (B) at par, so that the value of portfolio 1 will be the notional value

in the event of default. The value of the equivalent default-free fix-coupon bond will depend

on the term structure of the default-free interest rate, and almost certainly it will differ from

par. The difference at default between portfolio 1 and portfolio 2 will be

1− C(τ). (1.47)

There are several reasons why C(τ), the value of the default-free fix-coupon bond at time

to default will differ from 1. It may have already been off par at time t = 0, C (0) 6= 1, or, if
the term structure of the interest rate is stochastic, the value of C(τ) will move stochastically

as well and there is no reason to believe that it will be close to par, except at its final maturity.

Additionally, there is the issue of accrued interest. At the coupon payment dates ti the dirty

price of the bond will drop by the coupon payment amount cd − scds, and in the following it
will be increase again until the next coupon payment date.

The resulting price path will have a typical saw-toothed pattern that is common to all

coupon-paying bonds. These facts illustrate that the replication method based on the cash-

and-carry arbitrage is only an approximate arbitrage relationship. The reason for that lies in

the unknown value of the default-free fix-coupon bond at a random point in time. For further

discussions on this issue we refer to Schönbucher (2003).

The example presented here mainly based on Schönbucher (1999, 2003). The following

example is also based on descriptions in Schönbucher (1999, 2000, 2003). Nevertheless all

replication examples presented here and in the recent literature are based on the initial work

of Duffie (1999).
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Example 3: Hedging strategy with floating rate notes and floating rate coupon

bonds

I) Floating rate notes:

A CDS on a defaultable floating rate note (FRN) can be used to set up a perfect hedge

even for stochastic recovery rates and correlation between spreads and interest rates. We

use this property to give a characterization of the CDS rate in terms of the credit spread

of defaultable FRNs. Buying protection via a CDS is functionally equivalent to shorting a

FRN with the same maturity, issuer, credit rating and seniority in case of bankruptcy and

buying a corresponding AAA FRN. In equilibrium, the value of the CDS should be equal to

the replicating portfolio.

Assume the following payoffs:

Portfolio 1:

• The defaultable FRN pays the floating Libor rate, Lti , plus a constant spread sfrn
per time.

Portfolio 2:

• The default swap rate is scds and the default swap pays the loss to par in default.

The default-free FRN pays the floating rate Libor. Both floaters have a final payoff of 1.

The payoffs are shown in Table 1.8

Time Portfolio 1 Portfolio 2
defaultable FRN CDS default-free FRN

t = 0 1 0 1
t = ti Lti−1 + sfrn scds Lti−1
t = tN LtN−1 scds 1 + LtN−1
t = τ R − (1−R) 1

Table 1.8: Replication strategy with FRNs

If the defaultable FRN trades at par at t = 0, i.e. F d(0) = 146, then initially (at t = 0), at

default (t = τ) and at maturity (t = T = tN), we have

defaultable FRN + CDS = default-free FRN. (1.48)

46Lets denote the time t price for the defaultable FRN by F d(t) := F d(t, ti)
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As both the spread, sfrn for the defaultable FRN, and the CDS rate scds are constant they

must coincide. Therefore we get

sfrn = scds. (1.49)

Assume there is a defaultable FRN that trades at par and has a spread of sfrn over the

default-free rate . Then sfrn = scds is the fair swap rate for a CDS of the same maturity.

For a deeper discussion on this see Duffie (1999) and Schönbucher (1999, 2000, 2003). This

argument only uses a simple comparison of payoff schedules, it does not use any assumptions

about the dynamics and distribution of default-free interest rates or credit spreads or about

the recovery rates. If the FRNs pay coupons only at discrete time intervals this relationship is

only approximately valid, with an exact fit at the coupon dates, because only at these times

the default-free FRN is worth exactly 1. Finally, we can say that the price of a CDS is closely

related to the price of a defaultable floating rate note. Although the defaultable FRN is not

a derivative, its pricing is nevertheless not trivial, because it does not always have to trade at

par like default-free FRNs.

II) Floating Rate Coupon Bonds:

The replication strategy with parfloaters is quasi equivalent to the FRN replication

strategy. (Remember that a par floater with value C̃d is a defaultable bond with a floating

rate coupon of c̃d = Lti + s
par, where the par spread spar is chosen such that at issuance the

par floater is valued at par, see above.)

Considering the following portfolio strategy:

Portfolio 1:

• One defaultable floating coupon bond (defaultable par floater) with spread over Libor.
The coupon is c̃d = Lti + s

par

• One CDS on this bond with CDS rate scds

Portfolio 2:

• One default-free par floating-coupon bond with the same payment dates as the de-
faultable par floater and coupon of Libor flat c̃ = c = Lti

The payoffs are shown in Table 1.9
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Time Portfolio 1 Portfolio 2
defaultable floating-coupon bond CDS default-free floating-coupon bond

t = 0 −1 0 −1
t = ti Lti−1 + s

par −scds Lti−1
t = tN 1 + LtN−1 + s

par −scds 1 + LtN−1
t = τ R 1−R Cd (τ)

Table 1.9: Replication strategy with floaters

The bond is sold after default and matching the payoffs in default and the initial cost we

see that the payoffs before default differ only by the difference of the par spread to the CDS

rate. These payoffs, however, must coincide, too, in absence of arbitrage. This means that

the CDS rate must equal to the par spread, analogously to what we have seen before with the

FRN replication strategy

spar = scds (1.50)

We can arrange the replication portfolios to synthesize short and long positions in a CDS

as shown in Table 1.10.

Synthetic Position Replication Portfolio
CDS defaultable default-free

floating-coupon bond floating-coupon bond
long short long
short long short

Table 1.10: Replication portfolios for synthetic CDS positions

Example 4: Hedging strategy with asset swap packages

The biggest problem with the hedging strategy with floating-rate coupon bonds is that in

most cases these instruments do not exist in the market. An obvious alternative would be use

of an asset swap package instead, as shown in Table 1.11.

Time Portfolio 1 Portfolio 2
asset swap package CDS default-free floating-coupon bond

t = 0 −1 0 −1
t = ti Lti−1 + s

asset −scds Lti−1
t = tN 1 + LtN−1 + s

asset −scds 1 + LtN−1
t = τ R+ interest rate swap value 1−R Cd (τ)

Table 1.11: Replication with asset swap package
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An asset swap package is a combination of a defaultable fixed coupon bond (the asset)

with a fixed-for-floating interest rate swap whose fixed leg is chosen such that the value of

the whole package is the par value of the defaultable bond. The asset swap package has at

least some of the described properties of the defaultable par floaters. Initially, the asset swap

package is priced at par, meaning that it has a value of 100, and prior to default it pays a

coupon of Libor plus a spread, the asset swap spread, denoted as sasset. Formally,

P dirty − 100 = PV swap
³X

cdti

´
− PV swap(

X
Lti + s

asset), (1.51)

where P dirty is the dirty price of the defaultable fixed coupon bond (the asset) at time

t = 047. Therefore, the only difference in value arises at default. While the value of the par

floater is just the recovery value, the value of the asset swap package is the recovery plus

the market value of the interest rate swap. The interest rate swap derives its value from

movements in the default-free interest rate term structure (and from any initial value that the

swap might have had).

Let’s assume that the initial value of the underlying defaultable coupon bond is close to

par, and that the movements in value of the default-free interest rate term structure are quasi

independent of the default. Then we can view an asset swap package as a substitute to a

defaultable par floater in the strategies of the previous examples and we get the following

approximate relationship between the CDS spread and the Asset Swap spread

CDS spread scds ≈ Asset Swap Spread sasset. (1.52)

However, there is something missing in our arguments. Compare to the par floater an asset

swap package, which has a different feature in case of default. If the default of the reference

credit asset occurs the owner of the package receives the recovery value of the defaultable

fixed coupon bond and additionally he is the fixed-coupon payer of the interest rate swap.

Depending on the swap curve at the time to default, the interest rate swap has a value that

could be negative or positive. This value has an influence of the overall recovery value of the

asset swap package.

Independently of this tiny issue, the asset swap rate is a good indicator for a fair credit

default swap spread. See Figure 1.11.

The accuracy of the relationship between the CDS spread and the Asset Swap spread

depends on the degree to which the following assumptions are fulfilled:

47Note that P dirty − Cd(0) = accrued interest = dirty price − clean price, PV denotes the present value
in general and PV swap the present value of the swap.
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Figure 1.11: Mid-market asset and credit default swap levels on Brazil IDUs

1. The initial value of the underlying bond is at par;

2. Interest rate movements and defaults occur independently;

3. Short positions in the asset swap market are possible; and

4. at default, the default-free floating-coupon bond trades at par.

The first two assumptions ensure that the value of the interest-rate swap does not introduce

any bias in the analysis. Assumption 2 makes sure that the expected market value of the

interest-rate swap at default is indeed 0. This holds only true for the expectation of the value,

while the realization can be different. Assumption 3 is necessary to reach a two-sided bound

on the CDS rate, and assumption 4 addresses the slight mismatch at default that arose in the

hedge with a par floater.

If short sales of the asset swap package are impossible, then the approximate equality of

asset swap spread and CDS is not holding anymore and we get an inequality, see Schönbucher

(2003)

scds, offer ≥ sasset, offer, (1.53)

where scds, offer is the CDS spread for a CDS offer and sassset, offer the asset swap spread

for asset swap offer. If on the other hand short sales of the asset swap package are possible,

then we have in addition the following inequality

scds, bid ≤ sasset, bid. (1.54)
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If one analyses quoted spreads in the markets, one can observe that the CDS rate sometimes

differ significantly from asset swap spreads even for defaultable bonds that trade close to par.

This difference is called the Basis between the CDS rates and the spreads in the cash market

(bonds, asset swaps, etc.). Theoretically this would tend to show the existence of arbitrage

opportunities. The reason for the simply called Basis48 lies mainly in the differences of

supply and demand, meaning in fact the liquidity in the different markets. Because of this,

the supposed arbitrage opportunities can not be realized in practice. The inequality for the

offered CDS rates will in most cases not be violated, but the inequality for the bidding is

regularly invalidated.

Sometimes different standards are used in practice to measure the Basis. Usually if the

inequality for the bidding is regular, then we have to consider

Basis∗ = scds, bid − sasset, offer, (1.55)

and if the inequality for the offering is regular we have to consider

Basis0 = sasset,bid − scds,offer. (1.56)

For an illustration see Table 1.12, which shows differences between CDS rates and asset

swap spreads for some selected banks.

Banks CDS Asset Swap Basis
bid/offer bid/offer (bid-offer)

Bank of America 48/55 46/43 5
Bank One Corp 60/75 65/60 0
Chase Corp 40/48 35/30 10
Citigroup 38/45 30/27 11
First Union 68/85 66/63 5
Goldman 45/55 46/41 4
Lehman Brothers 70/80 68/63 7
Merill Lynch 40/50 28/23 17
Morgan Stanley 45/55 28/23 22

Table 1.12: CDS and asset swap quotes; Source: Schmidt (2001)

An extreme example for a significant Basis was the telecommunication industry, with 80

bp (calculated as Basis∗) for Deutsche Telekom 2001, see Schmidt (2001).

The example (4) above followed mainly the initial work of Schmidt (2001). Schönbucher

(2003) presented a similar example.

48Basis risk is the imperfect correlation between the reference asset and risk substitution via the corre-
sponding derivative instrument. For example, bond future price versus the theoretical future price of the
coresponding bond, or the CDS rate versus the asset swap rate, etc.
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Example 5: Hedging strategy with the repo market

A more realistic institutional setup is when the investor wants to replicate the protection

through swap and repo market49. For this we assume that the defaultable bond is available in

the cash market with the same maturity as the CDS. Suppose that an investor sells protection

via a CDS on the reference credit asset. The investor can replicate the short position in CDS

by the following strategy:

• Purchasing the defaultable bond on the reference credit asset at a spread spar over
the risk-free curve for par;

• Paying fixed at a rate risk-free + s on a swap of the same maturity as the bond

against L; and

• Financing the position in the repo market with the defaultable bond on the reference
credit asset as collateral at a spread to Libor of L− srepo.

See Figure 1.12 for an illustration of the structure50.

Figure 1.12: Replication of a short position in credit default swap; Source: Cossin and Pirotte
(2001)

This strategy exactly replicates a CDS only in the absence of a haircut51. In case of

a haircut, the price impact of the haircut has to be taken into account. In practice this

49As already known by practitioners, government bonds are no longer considered by the markets to be the
reference for default free instruments. Swap and Repo rates have taken over this position.
50In the picture is Treasry+sswap used instead of risk-free-rate+s, as well as L− srepo instead of L− srepo,

and furthermore sbond instead of spar.
51A ’haircut’ is an extra amount of cash an investor would have to pay.
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replication is used to price CDSs approximately. The net position of the this replication gives

as the CDS rate

scds = spar + srepo − s. (1.57)

Contract design matters first among instruments that are not fully standardized. Some

CDS may require a payment of the CDS rate until maturity even in case of default. This

should obviously affect the pricing. For similar discussions see Duffie (1999). Fundamentally,

though, the replication described above works well as long as all markets are efficient. Low

credit risk may not get good pricing from the swap market, in particular if one cannot access

them at all, or even worse, may access them with specific collateral requirements that are not

taken into account in the pricing but that do not affect the pricing, see Cossin and Pirotte

(2001). One possibility would be to obtain from theoretical models a price modified to take

in account the presence of collateral. The swap market remains quite efficient, however the

repo markets, especially for high credit risk, may show more inefficiencies. Haircuts may be

imposed by collateral, which will also effect the pricing. The counterparty risk itself cannot be

neglected as defaults have occurred in the repo market as well. This would also be true for the

swap market, but should have less impact on the pricing. More fundamentally, instruments

and corresponding rates may not be available to obtain useful replication, i.e. the bond with

the correct maturity may not exist and bonds of the same rating are not necessarily good

substitutes as rating do not properly take into account recovery risk. Furthermore, the cor-

responding repo may not available for investors. Worse, and more probable, the repo market

may not offer a quote for that specific bond, specially for lowly or unrated bonds. For de-

tailed discussion on this we refer to Duffie (1999), Cossin and Pirotte (2001) and Schönbucher

(2003).

Having formal pricing models of different classes of credit derivatives thus represents a

viable alternative to replication. We present below models for CDS, or even credit derivatives

that can be used when simple replication is not ambiguous, as in subsection ’A Structural

Model for CDS pricing’.

Problems with cash and carry arbitrage

The most obstacle to an efficient cash-and-carry arbitrage link between the CDS market

and the corresponding defaultable bond market and asset swap packages are problems in

implementing short positions in defaultable bonds (i.e. to costly because of possible short-

squeezes in bond markets). Furthermore, problems arise when the defaultable bond does not

match the CDS in maturity and when coupon and CDS fee payment dates do not coincide.

In that case, even in survival, the arbitrageur is exposed to the risk of having to unwind the
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position in the defaultable bond at time tN at a disadvantageous price. Let’s summarize the

problems with cash-and-carry arbitrage as follows:

• The implementation of short positions in a defaultable bond may be difficult or even
impossible. Furthermore, the trader is exposed to the risk of changing repo rates.

• The arbitrage is unprecise at default events: The default-free bond price will differ
from par; The interest-rate swap of an asset swap package will have a certain market

value; CDSs contain a delivery option for the protection buyer in the case of default.

This increases the value of the protection offered by a CDS.

• There might be other peculiarities in the settlement of the CDS at default which
makes its value hard to predict.

• The only available defaultable bond may not match the CDS maturity or the corre-
sponding coupon payment dates might not coincide with the CDS fee payment dates.

Even if similar maturity bonds exist, these may not be very liquid, especially during

times of high market volatility. In that case it would be very natural to see deviations

between CDS rates and benchmark spreads.

• The tax treatment of corporate bonds and CDSs are different, which will enlarge the
gap between the corresponding spread and the CDS rates.

• The method cannot be applied if the reference credit has not issued any defaultable
bonds.

All these problems widen the price bounds that can be imposed upon a CDS rate by using

pure static arbitrage strategies. The analysis of potential arbitrage strategies enables us to

better understand the links between the market for the underlying asset, the ’cash’ bond

market, and the derivative market for CDS and other credit derivatives. Inefficiencies can

occur in both markets but frequently there are more inefficiencies in the cash market than in

the credit derivatives market. A liquid CDS market is often a more useful indicator for the

price of the default risk of a particular obligor than the underlying cash market.

Nevertheless, cash-and-carry arbitrage is still a very useful instrument for identifying mis-

pricings in the market and for finding advantageous prices, even if they do not constitute pure

arbitrage strategies. The strategies only rely on the payoff comparison, therefore they are very

robust and unaffected by the model and parameter risk of more complex models.
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A Structural Model for Credit Default Swap Pricing

In the previous section we mainly took the discussion of the Das (1995) model from Cossin

(2001) and modified some parts. Das (1995) presents an evolution of structural models that

allow for pricing of credit derivatives, including CDS as a special case, as a compound option

problem52, credit risk being an option and the credit derivative being an option on the option

of credit risk. The model allows for stochastic interest rates as well as stochastic exercise

price. Interestingly, the Das (1995) model provides for N-shaped53 credit term structures

by combining stochastic interest rates and endogenous recovery. The classical credit risk

structural models, such as Merton (19974) and Longstaff and Schwartz (1995b), give rise

to hump-shaped credit spread term structures. The credit spreads rise first and then fall

with maturity and tend asymptotically towards a constant in case of the Merton model and

towards zero in the Longstaff Schwartz model. For further discussion see Wei and Guo (1997).

In case of high credit risk, e.g. junk bonds, these models give a monotonic decrease of spreads

with maturity. Fama and French (1987) and Wei and Guo (1997) tend to find that the credit

spreads take as N-shape with maturity: they first rise, then decrease, then rise again. Although

theoretical discussions of time length considered in the empirical studies would be valid, the

empirical fact remains that in the medium to short term, we observe N-shaped credit spread

term structures that can not be fitted by classical hump shapes of the common structural

models.

The Das (1995) model relies on the Ho and Lee (1986) term structure model and obtains

N-shaped credit-spread term structures and prices theoretical CDS as a compound option. The

Ho and Lee (1986) term structure model has the advantage of being a Markov analytically

traceable model. They assume a one-factor Gaussian term structure model for the initial term

structure of defaultable bonds. It easily reaches exact fits of the empirical term structure. Its

main weaknesses certainly are its lack of mean reversion and the simplicity of the volatility of

interest rates in the model.

Consider an option in which the writer agrees to compensate the buyer for pre-specified fall

in credit standing (quality) of the underlying bond (Reference Credit Asset), as determined

by strike level either in ratings or in yields. The payoff of the option the amount by which

the price of the bond at the prevailing default-free rate plus the spread defined by the strike

exceed the prevailing market price of the bond. Assuming constant interest rates, it means

that K = F−(r+r
∗)(T−T ∗), where T is the maturity of the bond, T ∗ the maturity of the option,

F the face value of the bond, K the exercise or strike price of the option in the firm value

52For the valuation of compound options see also Geske (1979).
53N-shaped means here the style of the curve of the credit spread term structure such as a N looks like, first

up, then down, and up again.
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and r∗ the strike rate or strike credit spread. It is further assumed that the value of the firm

follows a process

dA = µAdt+ σ1Adz1 + σ2Adz2, (1.58)

where µ is a constant drift term, σ1,2 two different volatilities and z1,2 two different Wiener

processes and that the dynamic of the forward interest rate, denoted as f(t, T ) is given by

df(t, T ) = θ(t, T )dt+ σrdz1,

where θ(t, T ) is a stochastic drift term and σr the interest rate volatility. The process

of the firm value and the process of the forward interest rates are correlated via the Wiener

process z1. Since equity S is a call option on the firm value with maturity being the maturity

of the debt T and exercise price the face value of the bond, the bond can be valued as the

difference between the firm value and the equity value. Cossin and Pirotte (2001) modified

the results of Das (1995) as there seems to have been a computational mistake in Das (1995)

and obtain:

Bd0 = A0[1−N(k)] + FB0N(k − ξ), (1.59)

where B0 is the price of risk-free discount bond at 0 maturing at T,

k =
log
h

A0
FB(0,T )

i
+ 1

2
ξ2

ξ
(1.60)

and

ξ2 = (σ21 + σ22)T − σ1σrT
2 +

2

3
σ2rT

3. (1.61)

This simple Ho and Lee structure allows for many different shapes of the credit spread

term structure, whicch is a welcome generalization of the previous model using Vasicek and

limited to hump-shaped credit spread term structure, see Cossin and Pirotte (2001). Das

(1995) provides also a general form for the HJM term structure.

This model takes into account that the shape of the credit spread structure is affected by

the choice of three volatility parameters σ1, σ2 and σr. The measure of the risk-free interest

rate volatility,σr, tends to affect the long maturity spreads. Here σ1, the correlation between

changes in firm value and interest rate, affects spreads at short maturities, and the volatility,

σ2, of the firm value, which is independent from the interest rate volatility, affects the spread

curve across all maturities.

With this structural model, yield curves and spread curves of many different shapes can
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thus be fitted. N-shaped credit spread curves, as described in Fama and French (1987) and

Guo and Wei (1997) can be obtained with this model, see Cossin and Pirotte (2001).

For pricing credit derivatives, once the risky bonds are priced, we can follow Das (1995) in

pricing options on risky bonds as compound options. Note here that the risky bond itself is an

option on the firm value. The buyer of the option described above receives a compensation in

case the date T ∗ price of the credit-risky bond falls below the price of a bond which is priced

at the riskless rate plus r∗, the strike credit spread. The stochastic interest rate leads to a

stochastic exercise value of the bond. It can be written, as (see Cossin and Pirotte (2001))

K (T ∗, T, F, r∗) = Fe[−(−(
1

T−T∗ ) logBT∗+r∗)(T−T∗)]. (1.62)

Finally the value of the credit derivatives is obtained by taking the expectation under the

risk-neutral measure:

Credit Derivative V alue =

Z
z1

Z
z2

max
£
K (T ∗, T, F, r∗)−BdT ∗, 0

¤
N 0 (z1)N 0 (z2) dz1dz2.

(1.63)

For implementation we have to take into account that the double integral takes considerable

computing time. Das (1995) proposes a methodology which is based on discrete time ap-

proximations and reduces the computating time drastically. Discrete time approximation also

allows for easy extensions to coupon bonds, debt with embedded derivatives, such as convert-

ibles or callables. Additionally these framework allows extensions for alternative bankruptcy

procedures and stochastic volatilities. The discrete time approach is straight-forward, starting

from the expression in continuous time above. The numerical analysis in Das (1995) is based

on building binomial trees and shows that such credit derivatives tend to be valued highest at

middle maturities, when a combination of both the time value of the credit risk debt and that

of the derivative instrument on the credit-risky debt is considered, decrease with the volatility

of interest rates and increase with the volatility of the firm value. See also Cossin and Pirotte

(2001) for a further discussion of structural models.

Although addressing the problem of the resolution of default54, available structured models

such as described above make the simplification that they involve the presence of one risk-less

counterparty against a risky one. Reduced-form models allow relaxation of this important

feature. All these models published at present analyse the CDSs value free from any special

features such as collateralization or any other credit risk mitigation technique which would

54A default process represents a period of time.
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considerably reduce or in extreme cases cancel the original exposure.

A Reduced-Form Model for Credit Default Swap Pricing

Drawing from the work of Schönbucher (2000, 2003) and O’Kane and Schlögel (2001), we

outline a simple framework for pricing CDSs in a way, which is basically an intensity-based

reduced-form model approach originally initiated by Jarrow and Turnbull (1995).

In contrast to structural models, reduced-form credit pricing models do not attempt to

explain the occurrence of a default event in terms of a more fundamental process such as the

firm value or an earnings stream. The aim is instead to describe the statistical properties of the

default time as accurately as possible, in a way that allows the repricing of fundamental liquid

market instruments and the relative valuation of credit derivatives. The reduced-form model

approach is closer to that of the actuarial sciences than to the corporate finance methods used

in structural models, and the pricing techniques are similar to those used in traditional models

of the term structure, as opposed to the more equity-like structural models.

We will develop this approach in several steps. First we start with a setup for the model

where we give the used Notations and Definitions. Than we serve with basic relationships and

introduce the inhomogeneous Poisson Process. After this we work out what needs to be known

about pricing in defaultable claims. Having done this we introduce recovery to come with a

framework to price a CDS. Finally a brief remark on extensions and practical implementations

is made.

Setup: Notations and Definitions

The time to default : The recent literature uses two different models for the recovery rate of

defaultable bonds, the fractional recovery model and equivalent recovery model (see before the

item ’Recovery rates’), the model for the time(s) of the default is the same for both. Initiated

by Jarrow and Turnbull (1995), we assume that defaults are exogenous events. Therefore we

can assume that the random times of default τ i, i = 1, 2, ..., are generated by a Cox process.

Intuitively, a Cox process is defined as a Poisson process with stochastic intensity (or hazard

rate) λ(t),see Lando (1998). Formally the definition is the following:

J is called a Cox process, if there is a nonnegative adapted stochastic process55 λ (t),

called the intensity of the Cox process, with
R
0
λ (s) ds < ∞∀t > 0, and conditional on the

realization {λ (t)}{t>0}, where 1{t>0} is the indicator function, see below, of the intensity, N(t)
55For nonnegative adapted stochastic processes see Jacod and Shiryaev (1988).
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is a time-inhomogeneous Poisson process with intensity λ (t). This definition follows (Lando

1998).

The following assumptions are made:

1. Lets define the default counting process as J(t) := max {i | τ i 6 t} =
∞P
i=1

1{τ i≤t} ,

which is a Cox process with intensity λ (t) ,where i = 1, 2, ...

and 1{τ i≤t} =

(
1, τ i ≤ t, if default before t
0, τ i > t, if default after t

is the so called indicator function.

2. In the equivalent recovery model the time of default is the time of the first jump of

J . To simplify notation the time of the first default will be referred to as τ := τ 1.

3. In the fractional recovery model the times of default are the times of the jumps of J .

4. In the following the time of the first jump is defined as the random time to default ,

τ , and thus, for J(0) = 0, we can write

τ = min {t ≥ 0 | J(t) ≥ 1} . (1.64)

Intuitively, J(t) denotes the number of events that have occurred up to time t.

5. The intensity (or hazard rate) can be interpreted as a conditional instantaneous prob-

ability of default:

P (τ ≤ t+ dt | τ > t) = λ (t) dt. (1.65)

This equation states that, conditional on having survived until time t, the probability

of defaulting in the next infinitesimal instant is proportional to λ (t) and the length of

the infinitesimal time interval dt. The function λ describes the rate at which default

events occur, which is the reason why it is called the hazard rate of J.

6. The implied survival probability between in the time interval [t, T ] is denoted by P (τ >

T ) ≡ P (t, T ). The cumulative implied default probability in the time interval [t,T] is
then given by P (τ ≤ T ) ≡ 1− P (t, T ).

7. Let’s define βt,T := e
− R Tt r(s)ds as the risk-free discount factor over the time interval

[t, T ], where r(t) is the instantaneous default-free short-interest rate, and let’s use

the value of the money market account (sometimes called savings or bank account)

αt,T := e
R T
t r(s)ds in continuous time as the annuity (sometimes called numeraire).
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Basic relationships:

The payoff of a default-free zero-coupon bond is 1 at time T, or formally 1{τ>T}, where

1{τ>T} =

(
1, τ > t, if default after T

0, τ ≤ t, if default before T is the indicator function.

Taking into account that the value of a default-free zero-coupon bond is equal to the

expected payoff, we can formally write B(t, T ) = E[βt,T ]. For the value of a defaultable zero-

coupon bond we can than easily write Bd(t, T ) = E[βt,T1{τ>T}]. If there is no correlation

between the default and the payoff of the zero-coupon bond (meaning also the independence

of interest rates and default intensity), we get

Bd(t, T ) = E[βt,T ]E[1{τ>T}] (1.66)

= B(t, T )E[1{τ>T}]

= B(t, T )P (τ > T )

= B(t, T )P (t, T ),

where the implied survival probability is the ratio of zero coupon bond prices

P (t, T ) =
Bd(t, T )

B(t, T )
, (1.67)

with the property that the curve P (t, T ) is decreasing in T with P (t, t) = 1 and P (t,∞) =
0. P (t, T ) will change over time. Typically the survival probability will change over time

because of two effects: Firstly, if there were no default in [t, t+ dt] , this reducing the possible

default times, information has arrived via the (non)-occurrence of the default. Secondly,

additional default-relevant information could have arrived in the meantime.

Qualitatively the credit default curve, 1− P (t, T ) is very similar to a curve which consists
of discount factors, βt,T . Formally we have the following slopes

B(t, t1) > ... > B (t, tN) , (1.68)

Bd(t, t1) > ... > Bd (t, tN) ,

P (t, t1) > ... > P (t, tN),

and

Bd (t, ti) > P (t, ti) > B(t, ti), for all i = 1, 2, ... (1.69)
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Inhomogeneous Poisson Process:

Given the realization of λ (t), the probability of having exactly n jumps is

P [J(T )− J(t) = n | {λ (s)}{T≥s≥t}] =
1

n!

µZ T

t

λ (s) ds

¶n
exp

µ
−
Z T

t

λ (s) ds

¶
. (1.70)

Using the inhomogeneous Poisson Process56 we can easily write the probability of no jumps

(n = 0) as follows

P (t, T ) := P [J(T ) = J(t) | {λ (s)}{T≥s≥t}] = exp
µZ T

t

λ (s) ds

¶
. (1.71)

Integration of equation 1.65 gives the same result.

For τ > T, P (t, T ) can be interpreted as the survival probability from time t until time

T .57

Pricing defaultable claims:

Note that the purpose of the model is the arbitrage-free valuation of default-linked payoffs.

The probability measure P is therefore a risk-neutral measure, meaning that the survival

probability under P is not directly related to historical default frequencies, where the default

risk can be hedged in the market. Furthermore, the intensity function λ (t) governs the

behavior of J under P, and must therefore incorporate the risk premium demanded by the

market.

Suppose we want to price a defaultable claim that has a payoff X(T ) at time T in case

no default occurred and 0 otherwise. Under the risk neutral valuation the time t the price

of such a claim, in case of a defaultable coupon bond denoted as Cd (t) , is given by the risk

neutral expectation of the discounted payoff

Cd (t) = Et

·
X(T )

αt,T
1{τ>T}

¸
, (1.72)

where Et [] is the time t expectation under the risk neutral measure. If we assume that
X(T )
αt,T

, the payoff process and 1{τ>T}, the default process are independent, we get

Cd (t) = Et

·
X(T )

αt,T

¸
P (t, T ). (1.73)

56Inhomogeneous means here a Poisson processes with time-dependent (sometimes called time-invariant)
intensity function.
57Given τ > T the probability density of the time of the first default over the interval [t, T ] is p(t, T ) =R T
t
λ (u) du exp

³R T
t
λ (s) ds

´
, see Lando (1998).
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Note that in absence of default risk, P (t, T ) would be 1 and X(T )
αt,T

would be the payoff of

a default-free claim. The expected present value of such a payoff would be C (t) = Et
h
X(T )
αt,T

i
,

and thus we can write the pricing equation for a default claim as follows

Cd (t) = C(t)P (t, T ). (1.74)

This shows that, under the independence assumption, the price of a defaultable claim

is obtained by multiplying the price of the equivalent non-defaultable claim by the implied

survival probability in between the time interval [t, T ].

Suppose now that the intensity has a constant value λ. We consider a defaultable zero-

coupon bond with maturity T under the zero recovery assumption, i.e. the bond pays 1 if no

default occurs until T and nothing otherwise. The time t price of such a bond is denoted as

Bd,0(t, T ). The survival probability is P (t, T ) = e−λ(T−t). Assuming the instantaneous default-

free short-interest as deterministic, r(t) = r, we obtain from equations 1.67 and 1.71 (using

that B0(t, T ) = E[βt,T ] = e
−r(T−t))

Bd,0(t, T ) = e−(r+λ)(T−t). (1.75)

Therefore, with zero recovery, the spread between the yield to maturity on a defaultable

bond over that on a default-free bond is given by the intensity or hazard rate of the default

process, which represents the credit spread.

Introducing recovery

We can modify the simple pricing model above to allow for non-zero recovery rates. To do so

let’s consider another type of contingent claim which makes a random payment X (τ) at the

time of default, if the default does occur before a given time T , and zero otherwise. Its time

s price D(s, T ), s ≥ t, can be written as

D(s, T ) = Es

·
X (τ)

αs,T
1{τ≤T}

¸
. (1.76)

To calculate this expectation, we need to derive the probability density of the default

time, P (s < τ ≤ s + ds), in order to be able to price such a claim. Using the definition of
conditional probabilities, we know from equation (13) that the probability of defaulting in the

time interval [s, s+ ds] is given by

P (s < τ ≤ s+ ds) = P (τ ≤ s+ ds | τ > s)P (s > τ) = λ (s) e−
R s
t λ(u)duds. (1.77)
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The above equation simply says that the time s probability of a default occurring in some

future time interval [s; s+ds] is equal to the probability of surviving through time s, P (τ > s),

times the conditional probability of default in the next time interval.

Let D(t, T ) be the time t price of a default contingent claim. Again using the money

market account as the numeraire, we obtain D(t, T ) by integrating over the density of τ , so

that

D(t, T ) =

Z T

t

Es

·
X(s)

αs,T

¸
λ (s) e−

R s
t λ(u)duds. (1.78)

Assuming now that the payoff X is constant and equal to 1, and taking into account that

for the default free zero coupon bond holds Et
£
α−1τ ,T

¤
= Et

£
βτ ,T

¤
= Et

h
e
R T
t r(u)du

i
= B(s, T ),

equation 1.78 leads to

D(t, T ) =

Z T

t

B(s, T )λ (s) e−
R s
t λ(u)duds. (1.79)

D(t, T ) is merely a weighted average of non-defaultable zero coupon bond prices, where

the weights are given by the density of τ .

Assuming again that the intensity and the instantaneous default-free short-interest are

deterministic and constant we can write

D(t, T ) =

Z T

t

B(s, T )λ (s) e−λ(s−t)ds =
λ

r + λ

¡
1− e−(r+λ)(T−t)¢ . (1.80)

Consider now a defaultable zero coupon bond. For simplicity we assume again indepen-

dence between interest rates and the intensity. If the recovery rate is zero, its price Bd,0(t, T )

is given by

Bd,0(t, T ) = B(t, T )P (t, T ). (1.81)

Note that we have added a subscript of zero to the bond price to emphasize that this is

the price obtained under the zero recovery assumption.

We can now price a defaultable zero coupon bond with face value 1 that pays a general

recovery rate R, expressed as a percentage of the bond’s face value, in the event of default. We

can think of such a bond as a portfolio composed by a defaultable bond that pays no recovery

and a contingent claim that pays R in the event of default via simple static replication. Using

equation 1.80 and 1.75, the price of the defaultable zero coupon bond Bd(t, T ) is

Bd(t, T ) = RD(t, T ) + (1−R)Bd,0(t, T ) (1.82)

= e−(y+λ)(T−t) +R
λ

λ+ r

¡
1− e−(r+λ)(T−t)¢ .

This expression can be used for determining the fair value of, for example a corporate

bond. In practice though, recovery rates are a major problem in the credit market because
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of the significant uncertainty surrounding actual recovery rates (see discussion before). More

general, if r denotes the default-free short rate, it can be shown (for example see Schönbucher

(2000)), that the price of a defaultable zero coupon bond is given by

Bd(t, T ) = Et
h
e−

R T
t (r(s)+λ(s))ds

i
, (1.83)

where the expectation is taken under the risk-neutral measure. This simplifies the mod-

elling process for defaultable bonds, as only the loss rate λ needs to be specified. In particular,

the recovery rate does not impose any bounds on the credit spreads. However, knowledge of

the default probabilities is necessary for the pricing of credit derivatives, such as digital default

swaps. These cannot be directly inferred from defaultable bond prices under the fractional

recovery assumption without specifying the stochastic dynamics of λ.

Pricing a credit default swap:

Pricing a CDS means determining the premium or the credit rate, scds, that will be paid

periodically by the protection buyer. Taking scds initially as given, we first compute the time

t value of the premium and the protection legs of a contract with maturity at time T . For

simplicity we assume that the premium is paid continuously and that the risk-less rate and

the intensity are constant.

The present value of the premium leg, Φ(t, T ), is

Φ(t, T ) =

Z T

t

scdse−(r+λ)(s−t)ds =
scds

r + λ

¡
1− e−(r+λ)(T−t)¢ . (1.84)

Note that, as in equation 1.75, the premium stream is discounted at the risky rate r + λ,

reflecting the uncertainty surrounding the default event.

To value the protection leg, we note that it is equivalent to a contingent claim that pays

(1 − R) in the event of default before maturity T . The value of such a claim is given by

equation 1.85. Let Ψ(t, T ) denote the present value of the protection leg, we can write

Ψ(t, T ) =
λ(1−R)
r + λ

¡
1− e−(r+λ)(T−t)¢ . (1.85)

A CDS typically has zero market value when it is set up, and thus pricing such a contract

is equivalent to finding the value of the CDS premium, scds, that makes the two legs of the

swap have equal value (Φ(t, T ) = Ψ(t, T )). This is given by

scds = λ(1−R). (1.86)

To provide some intuition about the credit-default swap premium, we note that in the
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paper, Duffie (1999) shows that the premium equals the fixed spread over the risk-less rate

that a corporate floating rate note would need to pay to be able to sell at par. Thus, if both

a firm and the risk-free issued floating rate notes tied to the risk-less rate r, the fixed spread

between the rates paid by the FRN would equal scds (see example 3 above). It is important to

stress, however, that this result does not extend to the yield spreads between corporate and

Treasury fixed rate bonds. Duffie and Liu (2001) show that the spreads on fixed rate bonds

can differ from spreads on floating rate securities. To a first order approximation, however,

it is often useful to think of the credit-default swap premium as being roughly equal to the

yield spread of the reference issue corporate bond over the yield of a risk-free bond with the

same maturity date and coupon rate.

Remarks:

Extensions of the above model should take into account that several restrictive assumptions

made above, such as continuously paid premiums, constant interest rates and intensity, and

zero coupons. All of these assumptions can be relaxed to make the pricing closer to reality.

If we assume stochastic interest rate r(t) and intensity λ(t) the present value of the premium

leg Φ(t, T ) of a CDS can be expressed as (e.g. Finkelstein (2000)),

Φ(t, T ) = Et

·
scds

Z T

t

e−
R s
t (r(s)+λ(s))dsdt

¸
. (1.87)

Similarly, the value of the protection leg of a CDS, Ψ(t, T ), can be expressed as

Ψ(t, T ) = Et

·
(1−R)

Z T

t

λ(t)e−
R s
t (r(s)+λ(s))dsdt

¸
. (1.88)

At the time of setting up the CDS we get the following CDS rate, scds,

scds =
Et
h
(1−R) R T

t
λ(t)e−

R s
t (r(s)+λ(s))dsdt

i
Et
hR T
t
e−

R s
t (r(s)+λ(s))dsdt

i , (1.89)

and the present value of a CDS is then given by

PV CDS = −Et
·
scds

Z T

t

e−
R s
t (r(s)+λ(s))dsdt

¸
+Et

·
(1−R)

Z T

t

λ(t)e−
R s
t (r(s)+λ(s))dsdt

¸
. (1.90)

Hull and White (2000a, 2000b) developed a framework contingent on default by multiple

reference entities and situations with is counterparty default risk (see also 1.3.8 below). We

should also not forget that the liquidity (basis risk) is determining the variation of the CDS
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spreads, see also ’Summary’ below.

Brief comment for practical implementations of reduced-form approaches To

value financial instruments related to default risk, e.g. a CDS, we have to set up a credit

default curve specified by the default probabilities. The credit default curve is constructed as

implied from market prices of liquid instruments, such as bonds and CDSs. Since the pricing

of those products involves risk-less discount factors and default probabilities the implied de-

fault probabilities are always relative to the specified risk-less curve, i.e. Libor. The steps to

price credit derivatives in an intensity-based framework are then mainly the following

1. Identify the payoff function: special care has to be taken in the treatment of defaults

2. Form the expectation and condition on the realization of the intensity

3. Replace direct references to the defaults with references to the intensity

4. The problem is now accessible to standard techniques for continuous processes (change

of numeraire, distributions etc.

In this form the pricing issue is much better conditioned for numerical solutions.

Some comments about correlation and counterparty risk

Correlation is primarily an issue at the individual portfolio level and as such

it should not affect the pricing of credit default swaps per se in reasonably

liquid markets. However, in a still developing market, correlation problems

may give rise to technical supply and demand factors. If correlation in a given

portfolio is relatively high or a portfolio has high concentrations that could

be highly correlated in certain scenarios, a portfolio manager may be willing

to pay a relatively high price (relative to cash market credit premiums) to

purchase protection to hedge credit risk. Alternatively a portfolio manager

may accept a relatively low premium to sell protection and thereby diversify

credit exposure. Over time, however, this activity should actually lead to a

more efficient market for default swaps. Using CDS to manage credit risk in

a portfolio context has received much attention in the past year, but to date,

most credit portfolio managers are either not actively managing their port-

folios in this way or have taken only tentative steps. In many organizations,

it has been very difficult to gather the data required to develop robust credit

models. As more people and institutions become familiar with quantitative

credit risk techniques and commercially available models become more robust,
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we expect credit derivatives to be used more widely to manage portfolio credit

risk and correlation-related issues. This in turn will enhance market liquidity.

Counterparty risk, in a credit default swap transaction, the protection buyer

has counterparty exposure to the protection seller. If the protection seller and

the issuer of the reference credit default simultaneously, the buyer will suffer

the full loss despite having paid for default protection. Thus the protection

buyer must ensure that the correlation risk between the protection seller and

the reference asset is low. In times of low credit concerns (perhaps in peri-

ods of high economic growth), buyers of protection will tend not to focus on

counterparty risk and A-rated counterparties may be able to sell protection on

equivalent terms as AAA-rated counterparties. In periods of high credit con-

cerns, however, buyers of protection might avoid counterparties rated below,

say, A1 at any price.

Literature Survey for Credit Default Swap Pricing Models

The literature on credit derivatives and even more on CDS is growing rapidly. There are two

distinct approaches to the modelling of credit risk, structural and reduced-form models, as

we pointed out before, but now we focus more on the context of CDS pricing and even more

credit derivatives pricing in general. We will present a brief overview of the main theoretical

works of structural and reduced-form models and discuss some of them in more detail for

those models we not already have considered until now. For a more detailed literature review

we refer to Schlögel (2000), Cossin and Pirotte (2001) and Schönbucher (2003).

An overview of structural and reduced-form models for credit risk pricing:

1. Structural approaches:

Merton (1974): debt as a contingent claim written on the assets on the firm. Others:

Bhattacharya and Mason (1981), Black and Cox (1976), Crosbie (KMV 1997), Das

(1995), Delianedis and Geske (1998), Geske (1977), Huang (1996), Kim, Ramaswamy

and Sundaresan (1989), Leland (1994), Longstaff and Schwartz (1995 a, b), Nielsen,

Saa-Requejo and Santa-Clara (1993), and Shimko, Tejima and VanDeventer (1993).

2. Reduced form approaches:

Early works: Madan and Unal (1994, 1998), Duffie and Singleton (1994), Jarrow

and Turnbull (1995), Lando (1994), Jarrow et al. (1997) Das (1995) (solutions that

include the real term structure of CDS bearing the default along with a non-flat and
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non-constant term structure of risk free interest rates were introduced by Duffie and

Huang (1996), Li (1996) and Hübner (1997b)).

Newer works: Duffie (1998, 1999), Lando (1998), Schönbucher (1998, 2000), Duffie

and Singleton (1999), Jarrow and Turnbull (2000), Hull and White (2000a,b), Jarrow

and Yildirim (2001), Das, Sundaram, and Sundaresan (2003), and many others.

Credit-rating based approaches focusing on the default being triggered by a gradual

change in ratings driven by a Markov transition matrix were introduced by Jarrow,

Lando and Turnbull (1997), Lando (1998), or Das and Tufano (1996).

3. Intensity-based approaches were introduced by Duffie and Singleton (1997), Madan

and Unal (1994, 1998), Schonbucher (1998). See also Duffie and Huang (1996), Duffie,

Schroder and Skiadas (1996), Jarrow and Turnbull (1995), Kijima and Komorobayashi

(1998), Kijima (1998, 2000), and Ramaswamy and Sundaresan (1986).

There are also several recent empirical studies of the pricing of credit-default swaps in-

cluding Cossin, Hricko, Aunon-Nerin, and Huang (2002), Houweling and Vorst (2002),

Blanco, Brennan and Marsh (2003), Zhang (2003) and Longstaff, Mithal and Neis

(2003).

Let’s focus on some main approaches on credit risk pricing, in particular CDS pricing:

In Jarrow and Turnbull (1995) both, a stochastic process of the term structure for default-

free zero-coupon bonds and the term structure for defaultable zero-coupon bonds are ex-

ogenously specified, as it is the case for any reduced-form model. The main argument for

this discrete approach is that many kinds of payoffs, including the decomposition of a CDS,

can be reproduced and priced in taking advantage of existing calibration techniques of the

arbitrage-free dynamics for these term structures and the risk-neutral valuation procedure.

Scott (1998) developed basically the same simple approach we present in the subsection

’A reduced from model’ above in discrete time. He determines the CDS value for all default

times τ i, and then builds the sum over i. See also Brooks and Yan (1998). Furthermore some

empirical tests of the model is done for Argentina bonds and the corresponding CDSs with

3,5 and 10 years time to expiration.

Schönbucher (1998) presents a model for the development of the term structure of de-

faultable bonds based on a multiple-defaults model. Instead of modelling a cash payoff in

default he assumes that defaulted bonds are restructured and continue to trade. He uses a

Heath-Jarrow-Morton (HJM) approach to represent the term structure of defaultable bond

prices and gives arbitrage-free drift restrictions. In its most general version the model is set



CHAPTER 1. THEORETICAL AND PRACTICAL BACKGROUND 100

in a marked point process framework to allow for jumps. For implementation, the extensive

machinery of risk-free interest rate modelling can be used.

Duffie (1999) serves with a review of the pricing of CDSs including the pricing with ref-

erence to spreads over the risk-free rate of par floating-rate bonds of the same quality and

considers model-based pricing. The independence assumption is the same as in Jarrow and

Turnbull (1995). His paper is the initial work, which presents the CDS pricing via replication

methods. The estimation of hazard rates is discussed and the role of asset swap spreads as

reference for pricing credit swaps is also considered.

Duffie and Singleton (1999) presents convenient reduced-from models of the valuation of

contingent claims subject to default risk, focusing on applications to the term structure of

interest rates for corporate and sovereign bonds. The examples include special cases with ex-

ogenous expected loss, the valuation of noncallable corporate bonds with square-root diffusion

and more flexible correlation structures, and the valuation of a credit-spread option.

Das and Sundaram (2000) develop a framework for modelling risky debt and valuing

credit derivatives based on an expand HJM term-structure model to allow for defaultable

bonds. Rather than following the procedure of extracting the behavior of spreads from as-

sumptions conerning the default process, they work directly with the evolution of spreads.

The risk-neutral drifts in the resulting model possess a recursive representation that facil-

itates implementation and makes it possible to handle path-dependence and early exercise

features without difficulty. Basically, it is a two factor model on the intensity and the interest

rate. In an earlier work, Das and Sundaram (1998) present a model for credit derivatives pric-

ing that is arbitrage-free, includes path dependence, and handles a range of securities, even

with American features. The basis of the computer implementation, as the model is notably

interesting for its engineering implementation, is presented in the paper.

Hull and White (2000a) provide a methodology for valuing CDS in case the payoff is con-

tingent on default of a single reference entity and there is no counterparty default risk. The

paper tests the sensitivity of CDS valuations to assumptions on the expected recovery rate.

Furthermore, it tests whether approximate no-arbitrage arguments give accurate valuations

and provides an example of the application of the methodology to real data. In a subsequent

paper of Hull and White (2000b), the analysis is extended to cover situations where the payoff

is contingent on default by multiple reference entities and situations where there is counter-

party default risk. It develops a model of default correlations between different corporate or

sovereign entities. The model is applied to the valuation of vanilla CDSs where the seller

may default and to the valuation of basket credit default swaps. Within this model-based
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pricing framework the value of the CDS spread is such that the expected present value of the

premium must be equal the expected present value of the protection. These expected present

values are derived from a theoretical model that incorporates specific assumptions about the

behavior of the market interest rate and default rates in order to generate a default probabil-

ity distribution function for default times τ i. Instead of using the intensity λ (t) they use the

default probability density p(t, T ).

Bielecki and Rutkowski (2000) provide a survey of the theoretical foundations of intensity-

based approaches for credit-rating based and credit-spread-based HJM type models in discrete

and continuous time including alternative recovery schemes and the modelling with state

variables within a martingale framework.

Cheng (2001) developed a recursive valuation formula for CDS pricing, which implies the

most common pricing formulas from different approaches such as the model of Jarrow and

Turnbull (1995), Scott (1998), Duffie (1999), Das and Sundaram (2000) and Hull and White

(2000a,b).

In any case the most interesting models are already implemented in major banks and not

available in public now. They are at the moment the most innovators in pricing credit risk in

terms of global market models including capital structure and liquidity issues as well.

Practical Implementation of Credit Default Swap Pricing Models

The practical implementation of CDS pricing models mainly comes with a combination of

tree models using the Hull and White algorithm (see Hull and White (1994a, 1994b, 1996))

and reduced-form models. Mostly, the tree models are used to build a recombining trinomial

trees for the state variables and processes with Gaussian mean-reverting dynamics such as

generalized Vasicek dynamics. The reduced from models are based on the theory of so-called

reduced-form default models such as Duffie and Singleton (1997), Jarrow, Lando, Turnbull

(1997), Lando (1996, 1998) and Lando and Turnbull (2000).

This class of models takes as key input parameters a stochastic intensity process λ (t) and

a fractional recovery of bonds. The intensity λ (t) can be viewed as the conditional rate of

default given no default until t. For a deterministic constant λ, the default time is just the

random time of the first jump of a Poisson process. In reduced-from models the default time

is unpredictable. A different class of models consists of so-called structural models, where the

default time is modelled as the first time a stochastic state variable process (e.g. value of

the firm) crosses a certain level. If the state-variable process is continuous these models yield

predictable default times in a sense that one can see the default ’coming closer’.
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Widely used in practice is a model which combines a one-factor arbitrage free interest rate

term structure model with a model for the default intensity. In such a framework both, the

risk-less short rate process r (t) and the intensity process λ (t) are assumed to be continuous

diffusion processes. Following the general theory of arbitrage free pricing a risk adjusted

probability distribution is used such that all securities are normalized by the money market

account. The implementation of such a model outlined above can be done by means of a two-

factor tree. Basically this model is a combination of two correlated one-factor models, one for

the risk-less short rate and the other for the default intensity. Monte Carlo simulations can

be used to estimate some variables in such frameworks. Combinations with liquidity based

approaches could be an extension of such models.

A critical issue is the modeling of correlated defaults. In the framework of reduced-form

models correlation appears as correlation of the intensity processes. The correlation of the

intensity processes is to a certain extend an historically observable variable as correlation of

spreads. A first approach to the modeling of correlated defaults would be to apply Monte

Carlo methods to sample the correlated default intensity process and to calculate the survival

probabilities for the baskets. However, for a model, if the we assume intensity processes

to be diffusion processes, it turns out that the impact of correlation on the basket survival

probabilities is much less than desired. The conclusion is to use intensity processes that permit

jump components which seems also much more realistic. Duffie and Singleton (1998) propose

several techniques for the simulation of correlated defaults, which seems to be of particular

interest for very large baskets of credits.

For pricing of first-to-default swaps for baskets containing a small number of credits of

relatively high credit quality practical experience is that the numbers of samples needed to

achieve good results is essential. For example, in case of uncorrelated credits the survival

probability for such a basket should be exactly the product of the individual probabilities.

Motivated by this, the intention is to depart from any Monte Carlo approach and to develop

a reasonable model which allows for closed form expression for the joint distribution of all

default times for the individual reference credits from the basket. The starting point for such

an approach would be the multivariate exponential distribution.

Multi-issuer credit derivatives such as first-to-default basket and CDOs gain an increasing

importance in the market. The pricing of first and second loss products requires the use of

models, which induce a default correlation between assets. In such models, the specification of

the independence structure is of primary importance, because of the crucial role of correlation

parameters when valuing multi-issuer credit derivatives.
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1.3.9 Credit Default Swap Summary

In summary, the structured credit market includes a wide variety of capital markets products

designed to transfer credit risk to other markets represents an exponentially growing market.

This growth is occurring because credit derivatives and structured credit techniques add value

by allowing investors and financial institutions to access credit markets and credit instruments

that were previously not available and to manage credit risk far more efficiently. The CDSs

play the major rule in this growth. A main reason is the rule of hedge funds and their growth

in capital structure arbitrage strategies (more about this discussion in 2.2).

Modelling credit is a difficult task for a wide variety of reasons. Nonetheless, credit models

have become an essential requirement in the analysis, pricing and risk management of credit.

An understanding and appreciation of the advantages and disadvantages of various models is

therefore necessary to anyone wishing to apply a more quantitative approach.

In general, and as usual, structured-form models give a more precise idea of the impact of

true economic factors underlying the pricing of credit derivatives and are thus more meaningful

economically. Reduced-form models, on the other hand, can handle more complex structures

more easily and can provide for better fitting of historical data, without generally capturing

the nonlinear interdependence of the variables concerned. Within the structural approach,

the amount recovered by a bondholder in the event of a default emerges naturally from the

model - it is simply the value of the assets of the firm at the bond’s maturity. However, within

the reduced-form approach, the recovery process must be modelled explicitly. Therefore to

completely determine the price process of a security subject to default risk, the payoff in the

event of default must be specified in addition to the mechanism describing the occurrence

of default events. Structural models were reviewed and shown to be best for performing a

risk assessment of publicly traded companies, or where a better understanding of the effect of

the capital structure of a firm is needed. Structural models are, however, not the preferred

choice for pricing and hedging credit derivatives in a risk-neutral framework. This is where

reduced form models are more appropiate since they are powerful enough to price even the

more exotic credit derivatives and have the flexibility to exactly reprice the observable market

instruments.

The pricing of CDSs is closely tied to the credit premiums on related reference cash instru-

ments and levels in the financing and swap markets. Therefore, liquidity is a major issue for

pricing CDS. Because in reality it is fact that some markets are sometimes very illiquid (i.e.

emerging markets, specially in the time 1998-1999, telecommunication or aircraft industry in

2001 or in general bonds on corporations in distress). The illiquidity issue, affect not only

prices of defaultable bonds but also their derivatives such as CDS. To solve this problem the
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differences between the market and the theoretical par CDS spreads -meaning the basis- has

to be taken into account in the pricing models. Traditional and recent approaches explain the

differences mainly by building new implied survival probability curves calculated from market

data (see Duffie (1999) and others). It is already known that besides credit risk the liquidity

(basis risk) is the driving determinant of the CDS spreads. None of the recent models takes

account for this fact properly. Until now there are no approaches for CDS pricing models

which valuate a ’liquidity premium‘ directly.

The problem is widely addressed in the literature such as in Longstaff, Mithal and Neis

(2003) or Das, Sundaram and Sundaresan (2003). In case of interest rate swap spreads, Huang,

Neftci and Jersey (2003) have shown empirically the significance between liquidity and swap

spreads. However, in any case a proper solutions including a liquidity based approach as

the one of the main factor (basis risk) in pricing and hedging credit derivatives or capital

structure arbitrage strategies is missing. Finally, the following bullets should summarize the

major issues:

• For single-name instruments pricing is well understood

• Recovery value definition can have a significant effect on pricing and hedging

• In hedging CDS with bonds basis risk cannot be ignored

• The distinction between Emerging Markets and Fixed Income credit derivatives grad-
ually disappears

• Consistency of pricing and hedging methods becomes more and more important



Chapter 2

Capital Structure Arbitrage and

Hedging

In this chapter, the main arbitrage strategies related to the capital structure of a firm will

be analysed. Capital structure arbitrage involves taking long and short positions in different

instruments of a company’s capital structure. The analysis will focus on the strategies between

equity, debt, and pure credit instruments of a given company, sector or industry. This chapter

will try to answer why such mispricing occurs and how to profit from it. In the end of this

chapter a discussion of the market for these strategies is presented including the rules of banks

and hedge funds and the consequences to the financial market such as decreasing margins and

increasing hedge fund industry in these strategies.

2.1 Main Strategies

The number of underlying securities and its option leads to a massive number of possible com-

bining trading strategies, not including structured and hybrid products. Therefore describing

all existent trading strategies are out of the scope of this thesis. As a consequence, only the

most important strategies related to the capital structure of a firm will be presented.

2.1.1 Equity and Debt Market

One example of trading including securities in both equity and debt markets is the convertible

bond’s delta neutral hedge strategy. Basically, this strategy involves going long a CB and

going short the underlying common stock. This example was fully detailed in Chapter 2.

However, an interesting reverse hedge is an effective way of capturing temporary overvalued

CB, so-called the Chinese hedge. In fact, it is the opposite of the traditional delta-neutral

hedge in that the investor sells sho rt the CB and buys the underlying stock, making the

105
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Stock price Volatility Credit-spread
Long convertible Negative Positive Negative
Hedged convertible No effect Positive Negative
Reverse hedge No effect Negative Positive

Table 2.1: Comparison of effects

position short in volatility. The opportunities to set up such a reverse hedge are identified

when there is low liquidity in a CB issue, high demand for a particular issue, high implied

volatility not sustainable in the short-term, or a combination of a ”hot” issue in a favored

industry.

The hedge ratio between the short convertible position and the long stock position should

be establish to keep a neutral hedge, as to profit from a temporary CB overvaluation and

thus to quickly close the short position. In terms of risks, theta risk has to be considered,

since the reverse hedge creates a negative cash flow carry (CB’s yield is higher than stock’s

yield). Another risk derives from the inverse relationship between volatility and stock price:

if a stock price declines, volatility might increase, causing the option component of the CB to

increase in value, avoiding the capture of the overvaluation intended. Yet increasing volatility

and declining stock prices are generally linked with widening credit spreads, which has the

opposite effect on CB values. Therefore, the position’s omicron risk has to be compared

with vega risk to ensure that the hedge will pay off on the downside from one or both of

these factors. In fact the exposure to positive omicron as a result of increasing volatility and

declining stock price leads the reverse hedge to be indirectly long volatility. Because of this,

the position could provide good returns even in the case it has a greater exposure to omicron

risk than to vega risk. Table 2.1 shows a comparison between the effects of the stock prices,

volatility, and credit spreads on the delta neutral and reverse hedges.

Since many types of convertible instruments include embedded call options and contrac-

tual or embedded put options, different arbitrage strategies occur between the CB embedded

options and the CB issuer’s listed or OTC options. The main objective is to sell the expensive

option and to buy the cheaper one, although call options can increase the protection of a

traditional convertible delta neutral hedge or even enhance the return of a position. Since a

CB may be converted into the underlying common stock, a put or call option can be bought

or sold against the convertible security. Usually, the investor will short a call option in a cov-

ered or partially covered way and/or purchase a put option to get some additional protection.

Furthermore, the longer-term embedded CB option’s implied volatility is lower than the listed
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shorter-term call option implied volatility at or close to the same strike price. This suggests

that opportunities in the volatility time skews could appear from time to time.

The first example of an option hedge strategy is the covered (or partially covered) convert-

ible call option hedge. This strategy is done by selling a call option against a long convertible,

and it is considered a full covered hedge if the number of shares the options can exchanged for

no more than the number of shares of stock the convertible can be exchanged for. The short

call option earns the premium if the stock price remains below the strike price and suffers

unlimited loss otherwise. However, the gain of the part long CB’s embedded call option off-

sets or reduces the loss on the call short in case the stock price moves above the option strike

price plus the call option premium. Stocks that have recently registered a strong price decline

are excellent candidates to hedge because there present high implied volatility and they are

not likely to regain their previous value. There are other characteristics that could identify a

candidate for this hedge strategy, such as:

• Undervalued CB (implied volatility < expected volatility),

• CB with higher upside than downside gamma potential,

• Implied call option volatility > expected call option volatility > implied CB volatility,

• Overvalued underlying stock price, and

• No significant reason for upside stock move.

However, some risks have to be considered, including:

• A possible take-over of convertible issuer,

• A stock price moving above call option strike price, and

• A widening volatility time skew.

In fact, shorting an in-the-money call option is an alternative to the traditional (short)

stock hedge of the delta neutral strategy presented in Chapter 2. This alternative is put

in practice in case a stock borrow is not available, or if the underlying stock pays a high

dividend yield. It is worth noting that this strategy will not protect the position if the stock

price declines significantly below the option strike price. In fact, a covered call option hedge

is not a true risk-neutral strategy, yet it provides an attractive return profile for a wide range

of stock prices.

Instead of shorting in-the-money call options, the hedge can also be done with at-the-

money and out-of-the-money options. The at-the-money hedge offers the highest risk-reward
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profile for small stock price ranges around the strike price. The out-of-the-money strike offers

better upside returns, but less downside protection. Figure 2.1 shows a covered out-of-the-

money call write with a strike price of $30 established when the stock traded at $25. At stock

price above $32, the CB’s gains do not offset the loss on the call option and the minimum

return point is $35.

Figure 2.1: Covered call write - upside risk; Source: Calamos (2003)

Even though the neutral delta hedge with stocks offers more downside protection when the

stock price declines, covered call writing offers a much better neutral return profile than stock

hedging, especially with out-of-the-money convertible bonds, mainly because the income flow

from the call write is higher than the income from the short stock position. The covered call

write overlay hedge can be set up with protective put options to provide insurance or to raise

the bond floor of the CB. Deeply out-of-the-money put options are a means of protecting

against downside risk and close-to or at-the-money puts are used to enhance the position

return. In either cases, the cost of the puts must be much less than the call option premium

received.

Another option hedge technique is the long convertible stock (or delta neutral) hedge with

call option overlay. This overlaying can significantly improve the total return of the position

without compromising the neutral profile. This strategy profits from the changes in the

volatility skew of the lower long-term implied volatility of the short stock and the higher

short-term volatility of the overlaid covered-call write. The following characteristics help
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identifying opportunities for this hedging:

• A call option implied volatility above short-term expected implied volatility,

• Difficulties in borrowing additional stock,

• A stock price expected to trade within a small range over the life of the option, and

• A call option implied volatility > the CB’s implied volatility.

The risks associated with this hedge strategy are:

• A CB issuer take-over at stock price above option strike, and

• A widening implied volatility skew.

A non-traditional option hedge is the long distressed1 (or out-of-the-money) convertible

with call write and long out-of-the-money call for take-over protection. In fact, this hedge can

be regarded as a synthetic bond in that its entire purpose is to add yield to an already high-

yielding security. The risks to consider are related to credit and interest rate risk. Omicron is

reduced if the CB issuer has a strong balance sheet2, and rho risks is mitigated at the portfolio

level, using U.S. Treasury or LIBOR futures. As the convertible is in the distressed or junked

area, it is likely that a take-over could happen. Should the CB issuer be taken-over at a stock

price greatly above the current stock and option prices, the short calls will generate a huge

loss that may not be offset by the CB income and embedded option. That is because a long

out-of-the-money call option close to the break-even point should be purchased. The following

characteristics help identifying a CB candidate for this strategy:

• A CB with stable or improving credit rating,

• A short call option implied volatility > the expected implied volatility,

• A cheap long call option implied volatility, and

• The CB issuer’s industry activity is not in a M&A wave.

Yet some risks have to be considered, such as:

• Widening credit spreads,
1Sometimes called ”junked” or ”busted”.
2Means here low leveraged companies.
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• Interest rates moving up,

• A Further decline in stock price.

Another application for options in the traditional delta neutral convertible strategy is the

use of put options to enhance stock hedge positions when the CB’s downside risk is high or

the bond floor is elusive. Buying put options on the underlying stock improves the hedging

risk-reward profile. These options can also be used to hedge the credit risk of low-grade CBs,

because of the high correlation between declining stock prices and credit spreads. Put options

can also be bought as catastrophic insurance instead of CDS. The delta neutral hedge position

can be designed with deep out-of-the-money put options that will protect the position should

a sharp stock price declining and a credit event occur. The put option strike price should

be set at the stock price level at which negative gamma values may occur in the CB. Figure

2.2 shows the return profile of an unhedged, a stock hedged with a put, and a stock hedged

without puts, in the event of a declining stock price.

Figure 2.2: Stock hedge with catastrophic put protection; Source: Calamos (2003)

For the stock hedge position without puts, the return starts to enter in negative ground

because the CB’s delta begins to rise and the stock hedge is insufficient to offset the negative

gamma. As seen in Figure 2.2, the profile for the position with puts represents a slightly lower

return for all stock prices above $15, because of their cost, but once the stock price declines

below $15, the puts preserve the hedge’s neutral profile. The following characteristics help

identifying CB suitable for this technique:
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• A CB with low downside gamma potential, high volatility, and high liquidity,

• A low put option implied volatility and price,

• A CB with low credit rating but not trading in the distressed zone, and

• CDS protection expensive or not available.

The following risks should be considered:

• Under-hedging of short stock protection,

• An incorrect setting of negative gamma point, and

• Expensive put options reducing the overall position return.

2.1.2 Equity and Credit Market

The empirical researches of Hull et al. (2003a) and Zou (2003), presented in Chapter 2, show

that a direct link between equity and credit market exists. In the former, the ranking order of

a company credit worthiness can be drawn given the volatility skew implied by the company’s

equity option. In the latter, the implied volatility surface of a given company determines its

CDS spreads observed in the market. Furthermore, through the analysis of the business cycle

of a given company, called leverage cycle, by AXA (2003) it is possible to infer that debt and

equity markets follow a regular cycle as shown in Figure 2.3.

In Figure 2.3, when credit quality is good the CDS rate is down and vice-versa. The

leverage cycle can help explaining the volatility discrepancies of equity and credit. Analysing

Figure 2.4, when there is a volatility divergence in theDebt > Profit phase, most likely equity

will be ahead of credit, meaning that equity volatility will be higher than credit volatility3.

When both volatility converges, this could be a bubble burst indicator. In such a situation,

both volatilities will increase and they will diverge again in the deleveraging phase (or debt

reduction). In this phase, credit will be ahead of equity, meaning that credit volatility will

contract more than equity volatility. After the deleveraging phase most likely profits will start

again increasing faster than debt and the equity and credit volatilities will stay stable or down

until the debt starts growing faster than profits and the cycle starts over again. The leverage

cycle and its statistical properties will be empirically analysed in next part of the thesis.

There might be identified at least two trading strategies from the volatility discrepancies

explained above, according to Illinski (2003):

3Credit volatility means in this context the model implied volatility of the CDS rate.
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Figure 2.3: Leverage cycle

Figure 2.4: Volatility convergence and divergence follow the leverage cycle; Source: AXA
(2003)
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1. To buy low volatility in CDS market through going long (or buying) a CDS and

selling high volatility in equity options through going short (or selling) an option on

the equity.

2. To buy low volatility in CDS market through going long (or buying) a CDS and

capturing daily volatility spread through daily gamma trading.

The first strategy will arbitrage using the equity and credit implied volatility and as an

example, the position can be detailed as:

• Buy CDS,

• Delta-hedge with underlying equity:

— The result is a long volatility position at x% for a daily time decay (theta) Z,

• Sell N equity options,

• Delta-hedged with underlying equity:

— The result is a short volatility position at y% for a daily time decay (theta) W .

In this strategy, N is calculated in a way that the portfolio is neutral to volatility moves

and gamma risks. In fact, the portfolio is delta, gamma, and vega neutral, but theta positive.

In case the implied volatilities of CDS and equity markets converge the position is closed. If

not, asW −Z À 0 there exists a positive carry position, which can be carried until expiration

to generate positive returns.

The second strategy will arbitrage using equity historical volatility and the matter of factly

the entering position can be detailed as:

• Buy CDS,

• Delta-hedge with underlying equity,

• Long volatility at x% for a daily time decay (theta) Z.

In this strategy, the objective is to capture the daily volatility spread through a daily

gamma trading with delta being hold neutral. In this position, the downside is limited with

strong upside potential. The exit occurs when the daily spread between realised equity volatil-

ity and x% is captured. In fact, x% should be as low as possible to benefit from upward

volatility moves and to provide a strong downside protection.

These two strategies and the leverage cycle could be combined, as depicted in Table 2.2.
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Leverage Cycle Equity Credit Strategy
Profits > Debt Stock price up Stable or Up Buy CDS, sell options

Vol. stable or down Delta-hedge
Debt > Profits Stock price sharply up Stable Buy CDS, Delta hedge

Vol. up
Bubble Burst Stock price sharply down Sharply down Buy CDS, Delta hedge

Vol. up
Deleveraging Stock price Stable Up Butterfly position

Vol. Down Buy CDS, sell AtM options
Buy OtM call
Delta-hedge

Table 2.2: Leverage cycle

Table 2.3 depicts the link between the leverage cycle and possible profits coming from the

two strategies analysed above.

Leverage Cycle Profit
Profits > Debt Theta positive carry

Debt > Profits Gamma trading

Bubble Burst Vega position
Gamma trading

Deleveraging Theta positive carry
Net short vega position or

Default or
Sharp equity upward move

Table 2.3: Leverage cycle and profits

2.1.3 Credit and Debt Markets

As noted by Section 1.3.8, the asset swap rate is a good indicator for a fair credit default swap

spread and a positive basis means that the default risk is priced not equally in the debt market

and in the credit market. The CDS market considers the default risk to be much higher than

the bond market does. Protection sellers demand a high premium through the credit market,

whilst bond investors are willing to buy bonds at a rather high price. The bond investors

receive a low asset swap spread and a low compensation for the inherent default risk. Thus

the arbitrageur could apply the following strategy (sometimes called basis trading), if short

sale of bonds are possible:

1. To sell CDS (sell protection) at a high price.
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2. To short the bond or the asset swap.

or

1. To sell CDS at a high price.

2. To buy bonds at a lower spread.

The above strategies are the selling side of protection or being long to risk, if an investor

wants to short a credit and lock-in term financing, avoiding squeezes and buy-ins, the following

strategy is recommended:

1. To buy CDS (buy protection) at low price.

2. To sell bonds at a higher spread.

An example for the above strategy: a bond of a company trades at a spread to Libor of

177 bps and a CDS for the same company is offered at 150 bps. The investor can thus get

short at 27 bps cheap to cash. If short sales are not possible due to liquidity, tax, accounting,

or other causes, than a possible strategy would be:

1. To issue credit-linked notes (CLN ), which are linked to the default risk.

2. To sell these CLN in the asset swap market.

or

1. To buy long dated discount bonds of an issuer.

2. To buy default protection on the same issuer.

For example, suppose the bond is offered at 85.5% of par with a spread of 436 bps and a

5-year default protection at 460 bps, allowing the investor to purchase a par-put4 at +24 bps

to the bond. If the credit defaults within 5 years the investor earns 14.5 bps, because in case

of default he receives par from the CDS. If credit improves, the higher spread duration on

the bonds overcompensates the spread tightening on defaults. If credit deteriorates, the basis

between bonds and defaults increases and which helps to offset the higher spread duration of

the bonds.

A classical example of credit and debt markets trading strategy is the Convertible Asset

Swaps and Credit Default Swaps. Basically, a convertible bond is stripped out synthetically

in its equity option and fixed-income stub, typically with the fixed-income part being asset-

swapped via an interest rate swap or hedged with a CDS. More details about this strategy

will be shown in the next section.

4Par-put means the investor will ”put” the bond to the credit protection seller in case of default and will
receive par for the defaulted bond.
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Convertible, Asset Swaps and CDS

Convertibles can be stripped in two ways. The traditional approach is through an asset swap,

where a fixed income investor purchases the convertible bond and simultaneously enters into

a callable asset swap that converts fixed cash flows to floating and effectively monetizes the

embedded equity option. The fixed income investor ends up with a position in the credit

component of the convertible. Meanwhile equity investors obtain an equity call option that

can be held or monetized in the equity derivatives market. A second form of stripping occurs

when equity investors purchase convertibles and lay off credit risk by purchasing protection,

mostly in form of a CDS.

Convertible Asset swapping One of the most traditional ways of transferring credit risk

is via asset swap instruments. Essencially, the asset swap buyer assumes the credit risk for

a predetermined return. The asset swap transaction can be easily adapted to the convertible

bond market through a call option feature: the convertible investor has the right to call the

asset swap at a predetermined rate and thus to reconstruct the CB. Yet the convertible buyer

retains the equity option. It can be said that an asset swap provides a way of extracting the

mispriced option from the CB. The CB investor initially prefers asset swaps as only holding

the equity component commits less capital and allows leverage.

Briefly, a plain vanilla asset swap transforms a fixed income bond to a floating rate synthetic

security. To replicate a convertible bond through an asset swap a call option feature is required.

In that sense, a basic convertible asset swap strips out synthetically the components of the

convertible in its fixed-income and embedded option components. The asset swap components

are illustrated in Figure 2.5.

The replication and the mechanism of a typical convertible asset swap can be seen in Figure

2.6. As already stated, the objective of the asset swap is to purchase a cheap or mispriced

equity option of the issuer. The description of the mechanism is as follows. An equity investor

purchases a CB issue, sells the convertible bond to a broker (in this case Credit Suisse First

Boston) and receives an option to repurchase the CB. The broker finds an investor who is

interested in the credit feature of the issue. In fact, the broker and the credit buyer enter

into an interest rate swap and then exchange floating rate income to fixed rate income. A

recall spread is put in place to protect the asset swap credit value against an early call or

conversion. That recall spread regulates the price at which the credit seller (equity investor)

must repurchase the CB.

If a credit buyer does not want to enter into a swap agreeement, asset swaps can also be

structured using a Special Purpose Vehicle (SPV). The broker sells the convertible to the SPV

that in turn issues callable floating rate note. Then, the broker enters into an interest rate
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Figure 2.5: Asset Swap Components of a Convertible Bond; Source: Calamos (2003)

Figure 2.6: Flow diagram for a plain vanilla asset swap
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swap with the SPV. The net effect is the same credit risk for the asset swap buyer. Figure

2.7 shows this mechanism.

Figure 2.7: Flow diagram for a SPV asset swap

Equity investors may exercise the call option feature of the asset swap for the following

reasons:

1. Conversion: the CB investor calls the asset swap and reconstructs the convertible to

exercise the bonds conversion option.

2. Issuer calls the bond: due to the issuer’s call option prior to maturity, the issuer can

force early conversion. The CB investor will thus call the asset swap to exercise the

conversion option.

3. Credit spread narrows: the credit buyer can face the asset swap being called back if

the credit spread of the issuer tightens and the equity investor simply sells the CB or

re-sells the asset swap at the current spread.

To protect the credit buyer from the call, contracts normally offer a ”make-whole” period,

according to Conway et al. (2002), of 6-12 months. If the asset swap is called, then the asset

swap buyer receives margin for he next 6-12 months as a compensation. The call feature

inherent in the asset swap is an option held by the equity investor, written by the credit

buyer. The wider the initial credit spread, the more valuable the option. The credit buyer

bears the credit risk until maturity, but can face the rewards being reduced in case the CB

is called early. The carried credit risk is greater on the lower credit quality issuers and the
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risk of the CB being called early. Given the combination of widening credit spreads and the

increase in sub-investment grade CB issuance, this call option plays an important role when

pricing asset swaps. According to Conway et al. (2002), one solution to protect asset swap

buyers is a lengthening of the ”make-whole” periods, perhaps to the first call date.

The following characteristics help identifying the opportunity to enter into an asset swap:

• A CB issue has an investment-grade credit rating,

• The CB embedded option is volatile and priced below the expected volatility,

• The structure of the CB is attractive to fixed-income buyers (demand),

• The size of the CB issue is large enough to offer a large enough asset swap to attract
fixed income investors (supply),

• An easily-borrowed underlying stock (liquidity),

• The CB call/put terms are long enough in duration to establish a swap, and

• Will an incentive to reduce credit risk and capital employed in hedge.

The following risk should be taken into account when establish a convertible asset swap:

• A considerable reduction of liquidity of the position,

• An increase in counter-party risk,

• A CB issuer calling for early redemption, and

• A position long in rho, vega, and theta.

• Delivery and documentation risk.

The equity component remaining from the bond asset swap can be hedged initially with

the underlying stock to establish a delta neutral stock hedge. In that way, the position requires

much less capital and provides more leverage opportunities than in a typical convertible hedge,

as seen in Chapter 1. The delta-neutral hedging helps decreasing many of the greek risks and

further decreasing the capital required. The credit risk is eliminated and the equity risk

neutralized. Also, the interest rate or rho risk is significantly reduced as a result of swapping

the credit and removing away much of the negative rho presented in a typical convertible

bond.
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Convertible Bond Credit Default Swap The growth of the CDS market has given CB

buyers an alternative to asset swaps. The CDS market provides a way of extracting mispriced

options embedded in low-grade CB or also to protect the delta neutral convertible hedge

against credit spread widening. The CDS does not involve ownership of the convertible to

be transferred. In fact, the CB arbitrageur keeps the bond and also buys credit protection,

just like an insurance policy. Contrarily to asset swaps, using CDS commits more capital and

reduces the possibility of leverage.

According to Calamos (2003), much of the global CB issuance comes from low-grade

companies and this feature makes CDS a useful tool to hedge and manage credit risk. In

fact, the CDS provides the CB investor with a way of transfering the credit risk to the

swap seller for a specified time period and at a fixed spread over LIBOR. The CB’s fixed-

income component is valued by the issue’s CDS spread. In this strategy, the ownership of

the convertible is not transferred: the convertible arbitrageur keeps the bond and additionally

buys credit protection, which can be seen as an insurance policy.

This policy gives the holder the right to sell the CB to CDS writer for par, given a pre-

defined credit event. Therefore, the CDS can be viewed as a put option, as it will benefit

directly from a spread expansion5. The mechanism of a typical CDS and CB strategy is

shown is Figure 2.8, as adapted from Tierney (2001). In fact, if the credit spreads widen,

the price of credit spread protection increases and the CDS profits as the CB drops in value.

Conversely, a CB hedged with CDS protection will not gain from a narrowing in credit spreads,

but the convertible itself might gain in value, as it captures some of the benefits of the spread

tightening. Another way of hedging credit risk is through put options such as the strategy

described in the previous section of this chapter. In fact, to determine if put options offer a

better opportunity to protect the hedge is to compare the cost of purchasing puts to cover the

difference between par value of the bonds and the recovery rate and the present value of the

CDS premiums. In relation to leverage, the CDS does not provide leverage on the position

as would the convertible asset swap. Furthermore, it increases the cost of the hedge, thus

reducing the amount of leverage used.

This type of stripping has become more prevalent over the past year by convertible bond

arbitrage hedge funds, which seek to earn arbitrage profits by purchasing cheap equity expo-

sure through convertibles and shorting the more expensive underlying equity. The problem for

these funds to manage the residual credit and credit spread risk associated with convertible

bonds, especially when the equity option component is out-of-the-money and the convertible

5There is a positive correlation between company specific credit spreads, equity price and option implied
volatility.
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Figure 2.8: Mechanism of a CB being hedged with a CDS

bond is trading more on its credit rather than equity characteristics. Purchasing protection

in the credit derivatives market provides an effective hedge against both spread volatility and

default risk since the value of default swaps rises (falls) as credit spreads widen (tighten). This

allows hedge funds that have neither interest nor expertise in managing credit risk to focus

exclusively on the equity component of the arbitrage strategy.

Credit investors, on the other hand, can obtain credit exposure to the company issuing

the convertible bond by selling protection (i.e. selling a CDS) or by purchasing a credit-linked

note. One interesting consequence of this hedge fund activity is that credit market investors

have been able to obtain credit exposure to up-and-coming companies that have issued only

equity and convertibles but have no bond market debt outstanding.

The following characteristics help identifying the opportunity to enter into a CDS:

• A CDS exists and it is liquid,

• The CB’s embedded equity option is inexpensive,

• The underlying stock easily borrowed, and

• Low counter-party risk.

The following risk should be take into account when establishing a convertible asset swap:

• Narrow credit spreads,

• A deterioration of counter-party credit,

• Documentation and deliverable risks, and
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• A CDS was overpriced and returns back to its fair value.

According to Conway et al. (2002), CDS are not suited to dirve a bull credit markets, as

the owner of protection cannot gain from a tightening of credit spreads. Conversely, as asset

swaps have a pre-specified recall spread, the holder of the equity component (CB investor)

will benefit from credit spread narrowing by recalling the original asset swap and re-selling it

at the new spread, being thus more suitable for bull credit markets. In fact, in their research

there is a very interest scenario analysis that clearly shows those features.

It is worth noting that either swap strategies are useful and the choice depends on the

specific market situation and the risk profile of the CB investor. In Table 2.4, adapted from

Calamos (2003), a comparison between both strategies features provided.

Convertible Asset Swap Credit Default Swap
Eliminate credit risk Eliminate credit risk

Reduces interest rate risk No reduction in interest rate risk
More expensive than CDS Less expensive than asset swap

Callable Not Callable
Less liquid market More liquid market
Provides leverage No leverage

Non standard contracts Standard contracts

Table 2.4: Comparing credit risk hedging strategies

2.2 The Market for Capital Structure Arbitrage and

Hedging Strategies

This section will serve with a market description of capital structure arbitrage and the players

involved. As pointed out in the previous section the major rule in this strategies is played by

CDSs. CDS versus equity or equity options are known as the classical capital structure arbi-

trage strategies, where CDS versus CB is more like a classical convertible arbitrage strategy.

Both strategies use the relationship between CDS rates and the implied volatility smile from

equity options with detailed knowledge of the leverage of a firm to anticipate on arbitrage

opportunities. The implementation of such strategies is simply a convergence trade. There-

fore we will focus only on CDS related strategies. We want to make more clear the different

rules of banks and hedge funds for such capital structure arbitrage strategies and what the

consequences are of the CDS market to the financial market, such as lowering margins.
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2.2.1 The Participants of the Capital Structure Arbitrage Strate-

gies Market

We already described the CDS market on instrument level in subsection 1.3.5. According to

the 2003 credit derivatives survey by Risk Magazine, CDSs with four to six years maturity

referenced on investment-grade credits account for around 49% of the total vanilla market,

which by self accounts for about 72.5% of the entire credit derivatives market in terms of

notional outstanding. Furthermore, it provides a more detailed geographical breakdown over

different maturities. It reported that 46,8% of the CDSs in investment grades are linked to

North American credits, 42% to European credits and 11,2% to Asian credits. Now we will

focus more on the participants of the CDS market.

CDS and in general the wide variety of applications of credit derivatives attracts a broad

range of market participants. Historically, banks have dominated the market as the biggest

hedgers, buyers, and traders of credit risk. Over time other types of players are entering the

market. This observation was echoed by the results of the BBA survey 2000, which produced

a breakdown of the market by type of participant. The results are shown in Figure 2.5

Counterparty Protection Buyer (%) Protection Seller (%)
Banks 63 47
Securities Firms 18 16
Insurance Companies 7 23
Corporations 6 3
Hedge Funds 3 5
Mutual Funds 1 2
Pension Funds 1 3
Government/Export Credit Agencies 1 1

Table 2.5: Market share of participants

Commercial banks are the largest players in the CDS market. According to figures com-

piled by the BBA, banks accounted for 52% of the protection buyers market and 39% of the

protection sellers market in 2001. The BBA expects both these shares to drop by 2004, to 47%

and 32% respectively. That would still make banks dominant in the market for protection

buying, but in terms of protection selling they would be overtaken by insurance companies,

the share of which will remain steady at 33% in 2004 — identical to their share in 2001, accord-

ing to BBA forecasts. Hedge funds activities in buying and selling protection was increasing

significantly over the last two years as well.
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One of the most important benefit for banks of credit derivatives in general and in particular

CDS can be traced back to 1988 and the publication of the Basel Capital Accord which forced

many lenders to reappraise the size of their exposure to corporate borrowers, many of whom

would have been long-standing customers. For lenders, this represented a serious problem:

how could they reduce their exposure (or simply leave their exposure static) to borrowers with

whom they had developed close links dating back many decades without seriously jeopardizing

those relationships? The CDS market provides a valuable solution to that dilemma. For

banks with limits on their credit lines to individual borrowers, the CDS market is an effective

means of transferring risk on outstanding loans without physically removing assets from the

balance sheet. To fit balance sheet reporting intervals of the counterparties, the counterparties

exchange payment dates varying from quarterly to annually. Furthermore, banks with high

funding costs can effectively achieve Libor funding by sourcing risk through a CDS when they

otherwise might pay above Libor. In case of specific collateral agreements the funding for

AAA rated banks can be even below Libor, see Cossin (2002).

The most powerful incentive for lending banks to use the CDS market as a means of

transferring the risk on their loan books, however, is that it allows them to do so without the

knowledge of the borrower. This in turn allows them to free up additional lending lines for

valued customers that may be very important sources of ancillary business in, say, corporate

finance. Alternatively, CDSs can be used as a means of a reducing bank’s concentration in

individual industrial sectors or geographical regions. The use of the CDS market can therefore

help banks to promote and maintain their client relationships, allowing them to open up new

credit lines that might otherwise have remained closed. Note that there is a conflict of interest

within commercial banks among the lenders.

According to Moore and Watts (2003):

“Another cause for concern about the role played in the CDS market by com-

mercial banks that are active participants in the syndicated lending market is

the potential for conflicts of interest among these lenders. Some newspapers

have alleged that Chinese walls between banking and trading desks have been

broken, with lenders privy to much more comprehensive information about

their borrowers than investors in the capital market or sellers of protection in

the CDS market.”

Investment banks are also active participants in the CDS market, both as providers of

liquidity for their customers and as proprietary traders. The CDS market can offer a highly
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efficient means of removing assets from the balance sheets of investment banks, an objective

that has become more and more important in recent years as the leading investment banks seek

to offer a ‘one-stop shopping service’ to their corporate clients. Given the relatively limited

size of an investment bank’s capital, the CDS market provides them with a useful means

of demonstrating their commitment to corporate clients by supporting syndicated lending

facilities without exerting unsustainable strains on their balance sheets.

The participation of Insurance companies’ in the CDS market, predominantly as sellers

of protection, is visibly. While many insurance companies will provide protection as writers

of single-name CDSs, they are also active in the market as buyers of CDOs and credit-linked

notes. It is important, however, to differentiate between the different types of insurance com-

panies active in the CDS market. Life assurance companies, for example, act as an important

source of investor demand for ABSs and CDOs. US insurance companies, meanwhile, are

important players in the CDS market, often as sellers of credit protection on the senior AAA

rated notes in structured portfolio transactions.

Counterparties, which do not face any credit risk linked to a specific area like hedge funds,

investment funds and insurance companies might want to take the credit risk from a CDS in

exchange for a fixed payment.

According to O’Kane (2001):

”Hedge funds are another growing participant. Some focus on exploiting the

arbitrage opportunities that can arise between the cash and default swap mar-

kets. Others focus on portfolio trades such as investing in CDOs. Equity

hedge funds are especially involved in the callable asset swap market in which

convertible bonds have their equity and credit components stripped. These all

add risk-taking capacity and so add to market liquidity.”

2.2.2 The Rule of Banks and Hedge Funds in Capital Structure

Arbitrage and Hedging Strategies market

Hedge funds have come a long way since the days Alfred Jones started borrowing stocks.

His simple -yet visionary- idea of adding short positions to a long portfolio with the aim

of producing superior risk-adjusted returns, set the path towards the wide-ranging, dynamic

industry we see today. For a general introduction of hedge funds we refer to Fung and Hsieh

(1999) and Lhabitant (2002). We focus here only on capital structure arbitrage strategies.

Hedge fund managers in these days don’t just borrow stocks, they make use of all kinds

of financial instruments. The revolution in financial engineering over the last two decades
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has generated a wide range of trading tools that they can use to participate on arbitrage

opportunities. The range of financial instruments includes exchange traded fixed income and

equity instruments as well as commodity derivatives, fixed income OTC derivatives, credit

derivatives and structured and hybrid instruments.

Since the LTCM crisis, the required repo margins have been large. During this time and

even after the equity bubble in 2000 there appears to be a change in the financial markets.

An increasing number of credit-dedicated hedge funds are being created.

According to Patel (2003):

“We’ve seen a threefold year-on-year increase in hedge funds’ credit deriva-

tives activity over 2001 and 2002, says Barry Bausano, New York-based global

head of hedge funds at Deutsche Bank. The number of accounts has doubled

during the same period, he adds.” And furthermore: ”Our credit derivatives

business with hedge funds has more than doubled each year for the past years,

says Suzanne Cain, New York-based co-head of credit derivatives at Morgan

Stanley”

and according to Currie and Morris (2002):

“ Viswas Raghavan, JP Morgan says, at the beginning of the year, there where

only a few serious investors looking at debt-equity strategies, today there are

over 30 funds and by the this time next year that figure could be well reach

200.”

These hedge funds are trading an increasing variety of credit instruments. Predominantly,

this increase in business was accounted for by existing users of CDSs becoming more active,

funds being launched, old funds pursueing new global arbitrage opportunities, and convertible

bond players as well as equity volatility arbitrageurs. Single name CDSs are the most widely-

used product among hedge funds applying capital structure arbitrage strategies.

Factors driving these changes include the efforts convertible arbitrage funds have been

making to hedge credit risk of convertible bonds, first with callable asset swaps, more recently

with CDSs. For example, a lot of convertible arbitrageurs and equity option players took the

opportunity to buy protection on the credits of German banks late last year. One striking

result was the basis between CDS and the cash bonds of Commerzbank, which was out to

a basis of around 90bps. (Source DB research, see also the example of Deutsche Telekom in

section 1.3.8 or more illustrative the detailed analysis of France Telekom in chapter3).

The other side of such long CDS protection positions held by hedge funds has typically

been either net credit risk of convertible positions or, for equity derivatives players, it has been
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sold positions in out-of-the money equity puts on the same names. This trading strategies,

trading CDS against equity options or convertibles, described in detail above in section 2.2,

is very interesting. Trading implied volatilities in the equity options market against default

probabilities implied by the credit spreads is taking credit trading beyond simple hedging.

These capital structure arbitrage strategies funds, or units within existing convertible arbitrage

funds, are leading the way in trading relative value between different claims on the assets of

a company.

According to Risk’s most recent credit derivatives survey, hedge funds account for around

13% of all credit derivatives end-users, as a proportion of trading volumes, see Risk Febuary

2003 page 23 or BBA (2002). In the previous survey, this figure was just 8%. These funds are

straight credit players, alongside equity in capital structure arbitrage.

At present hedge funds are facing more difficulties to make money. One reason for this

is the unattractive stock market, especially in low volatility periods. They are very eager to

look at new areas such as credit derivatives. Other firms are now seeking to challenge JP

Morgan Chase and Deutsche Bank, which by the mere of the size of their trading books and

early entry into the credit derivative market are the leading counterparties to hedge funds.

For more details on this see Patel (2003).

Since 1997, credit derivatives have entered the mainstream of global structured finance as

tools in a number of large, high profile synthetic securitization of assets that cannot easily be

managed using traditional techniques, see Bowler and Tierney (2000), O’Kane (2001) and JPM

(2002). By combining credit derivatives with traditional securitization tools in CLOs or MBS

(mortgage back securitization), for example, structures can be tailored to meet specific balance

sheet managements goals within banks much more efficient. In particular, credit derivatives,

such as CDSs have served banks in reducing economic and regulatory capital, preserving a

low funding-cost advantage and maintaining borrower and market confidentiality. One can

think of the first-to-default basket CDS structure as similar to a senior/subordinated CBO

or as a senior/subordinated CLO (see before or Moore and Watts (2003) ’CDSs as a building

block’ for more exotic portfolio-based structures). Therefore, the credit default protection

seller is similar to an investor in the subordinated tranche of a CBO or a CLO. The default

protection seller takes the risk of the first loss in the basket-structure. The remaining credit in

the basket is similar to the senior tranche of a CBO or a CLO. The holder of these remaining

credits, the senior position, has been protected from the first loss by the default protection

seller, the holder of the subordinated position. In addition, such structures double the size of

the counterparties.

Although this comparison is frequently made in the market, there are very important
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differences between first-to-default baskets and senior or subordinated CBOs and CLOs. The

risk of the default protection seller is an off-balance sheet risk as opposed to an on-balance

sheet risk for the buyer of a subordinated tranche of a CBO or a CLO. Furthermore, the

default protection seller does not invest capital but earns a fee. It is also important to note

that the assets that compose a first-to-default basket are generally small in numbers and not

necessarily well diversified. The construction of a first-to-default basket does not meet the

same rigorous tests that rated CBOs and CLOs must meet in determining the composition of

assets, which make up the collateral for these instruments, see also Tavakoli (2001).

For some illustrative examples and the regulatory issues see Tavakoli (2001). See also

Masters (1998) for regulatory treatment of credit derivatives and balance sheet management,

respective risk-based capital allocation and regulatory-based capital allocation.

2.2.3 The Consequences to the Financial Market fromCapital Struc-

ture Arbitrage Strategies

The increase in counterparties given by hedge funds offers the banks to be more active in selling

and buying protection to improve their balance sheet management and therefore meet better

capital allocation and even to implement requirements and risk management frameworks from

Basle II accord, which is a major issue in the banking industry today. Basle II will not set to

take effect prior to 2006, but the impact of the changes in regulations is already anticipated

in the industry. The evolution of the new Basel II accord will have a significant impact of the

credit derivatives market in the future6. Furthermore, the increase in counterparties in form

of hedge funds is a factor for completing the financial market.

According to Moore and Watts (2003): ”An IMF Global Financial Stability

report has advised that particularly as the markets mature and grow over time,

credit risk transfers have the potential to enhance the efficiency and stability

of credit markets overall and improve the allocation of capital. By separating

credit origination from credit risk bearing, these instruments can make credit

markets more efficient. They can also help to reduce the overall concentration

of credit risk in financial systems by making it easier for non-bank institutions

to take on the credit risks that banks have traditionally held.”

According to Patel (2003):”Slatter [JPM Chase] says there is an alternative

viewpoint not lacking in irony: When the accounting inconsistencies at Dutch

6As we mentioned earlier, the thesis will not focus on this important issue. However, the reader should
note that there is a strong impact from the Basle II evolution to the financial markets in the future.



CHAPTER 2. CAPITAL STRUCTURE ARBITRAGE AND HEDGING 129

retailer Ahold became apparent in late February, hedge funds were the main in-

stitutions facilitating price discovery. Hedge Funds are becoming a stabilizing

factor in the credit market”

Once can say, that hedge fund industry and the banks meet together in the capital structure

arbitrage market within a win-to-win situation. By enhancing liquidity, credit derivatives or,

in particular, CDSs achieve the financial equivalent of a ”free lunch” whereby both buyers

and sellers of risk benefit from associated efficiency gains.

A negative side effect of the liquidity in the CDS market is that the degree of success of the

CDS market will reduce liquidity in the cash market. That can clearly create difficulties for

investors who are restricted to investments in the cash bond market and unable to participate

in credit derivatives. If it is indeed the case that the CDS market is now more liquid than the

cash bond market in a number of sectors or individual credits, this implies that pricing in the

CDS market provides more reliable signs of credit quality than the cash market. By extension,

the CDS market ought to emerge as a more reliable benchmark than the cash market for the

pricing of bonds in the primary market.

Traditionally the trading departments in banks are strictly separated between equity and

fixed income activities. This has some consequences for the overall trading risk of mixed

strategies such as capital structure arbitrage strategies. One major issue are differences in

methodologies used for market and credit risk measure and -even more important- a separated

view to liquidity risk. This fact comes from the different nature of the fixed income and

the equity market as well as the underlying risk pricing methodologies. The changes in the

structured credit market during the last years and the exponential development in the credit

derivative market especially the outstanding rule of the CDS, in overcoming the classical

fixed income cash market in terms of liquidity makes it more and more important to have

an overall view in terms of a global market liquidity model. The increasing trading activities

with credit derivatives combines more efficient the equity and the fixed income market and is

therefore completing the financial markets as described before in subsection 1.3.6. This has a

consequence to manage the overall risk of capital structure arbitrage strategies to be aware of

liquidity holes in the single markets and segments.

In comparison to the traditional set up in banks the hedge fund industry is following mixed

strategies from one desk and considers per se an over all risk position to manage the positions.

This view is particular new in the proprietary trading business.

According to Patel (2003):
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”In addition to bolstering overall market liquidity hedge funds voracious ap-

petite for credit derivatives has caused dealers to radically rethink the way

they organize their business” and ”Our clients actually prefer to have CBs

and CDSs covered by the same desk because they can get more efficient fund-

ing, UBS Warburgs Naro says”

The fact that hedge funds activities take more parts in the CDS market bring another

issue into the light: Hedge funds can influence market asset prices.

Shleifer and Vishny (1997) find out that professional arbitrageurs which are specialized

and getting performance-based fees have a number of interesting implications for security

pricing, including the possibility that arbitrage becomes ineffective in extreme circumstances,

when prices diverge far from fundamental values. The model also suggests where anomalies

in financial markets are likely to appear, and while arbitrage fails to eliminate them. Causal

empiricism suggests that a great deal of professional arbitrage activity, such as that of hedge

funds, is concentrated in a few markets. These tend to be the markets where extreme leverage,

short selling, and performance-based fees are common.

Emmons and Schmidt (2002) analyze a three-date (two period) model of an professional

arbitrageur (or ”convergence trader” in the language of Kyle and Xiong (2001)) who must

obtain financing from investors less informed than he is about the intrinsic value of a financial

asset, that is its liquidation value at the end of the second period (asymmetry of information).

In addition to these two types of individuals, there are noise traders who have wealth to invest

but who misperceive the asset’s intrinsic value. It is the noise trader who drives the asset’s

price away from the intrinsic value and is reducing volatility. They showed that arbitrageurs

trading significantly affects the asset’s price. While Shleifer and Vishny (1997) assume that

the arbitrageur maximizes assets under management, Emmons and Schmidt (2002) assume

that he maximizes his income. The arbitrageurs income is determined by an incentive scheme

that resembles real-world contracts of hedge fund managers and therefore seems to be a more

realistic set-up than Shleifer and Vishny (1997).

Like Shleifer and Vishny (1997), Emmons and Schmidt (2002) assume that hedge fund

can influence the market price of assets. Hedge funds do in fact sometimes move market

prices, because they operate in specialized market segments that have limited liquidity. (see,

for example, Deutsche Telekom 2001/2002). It is also true, however, that hedge funds alone

cannot prevent asset-price volatility or occasional mispricing, which might deepen before it

eventually corrects.
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As the market becomes more established in using credit derivatives (in particular CDSs)

the margins will gradually decline and therefore participants in more complex derivatives will

increase naturally, similar to the OTC derivatives market in equities and fixed income during

the last decade.

Scepticism has been articulated sometimes from regulators and others such as Warren

Buffet that the credit derivatives market would be unable to withstand the pressures exerted

by multiple defaults and an economic crisis. However, even against the backdrop of a very

weak global macroeconomic climate in the past exacerbated by accounting scandals and char-

acterised by plummeting credit quality, the CDS market appears to have proved its stability

and efficiency. Many agree that the losses sustained as a result of defaults ranging from Ar-

gentina to Enron and WorldCom were all minimized as a direct consequence of the expansion

of the credit derivatives market, which has helped to diversify the concentration of risk highly

effectively. Additionally, increased transparency and regulations in the credit derivatives mar-

ket took they part to approach to better financial market efficiency. As a conclusion arbitrage

opportunities will start disappearing faster and the volatility of profit and loss positions in

financial institutions will fall.

Furthermore, internet trading blossomed after the first credit trade was closed over the

internet by CreditTrade in September 1999. Internet trading in credit derivatives is still in

the very early stages. ISDA short form confirmations for credit derivatives helped greatly in

this effort.
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Empirical Analysis
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Chapter 3

Cointegration Analysis

In this part of the thesis, the empirical relationship between implied option volatilities and

credit default swaps will be analysed for one company, France Telecom (FT in the following).

According to traders, in the past this company presented interesting arbitrage opportunities

involving capital structure financial instruments, such as CDS and equity options. The analysis

will try to verify the findings of Hull et al. (2003a) and Blanco et al. (2003). Hull et al. (2003a)

suggested that only two implied volatility are sufficient to determine an option-implied credit-

worthiness of a company. Blanco et al. (2003) suggested, among other issues, that CDS prices

are well integrated with firm-specific equity market variables in the short-run. In fact, the

work of Blanco et al. (2003) gives another topic to be explored in the empirical analysis: price

discovery mechanism.

Firstly, a brief theoretical introduction about stationary and nonstationary stochastic

processes for time series, vector autoregressive (VAR) models, cointegration and error cor-

rection model is presented. In the following, a statistical description of CDS spreads and

implied equity option volatility data will be made. Then a long-term relationship between

CDS rates and option volatility that could lead to some arbitrage trading strategies will be

identified. The analysis will be made by a vector autoregressive (VAR) description of the

relationship and by cointegration tests. Next it is presented what motivates this empirical

analysis and which topics will be covered thereafter.

3.1 The Rationale of empirical Capital Structure Arbi-

trage Analysis

As mentioned in previous chapters, the nature of capital structure arbitrage and hedging

strategies lies in the rule that CDSs play in the financial market. Typical trading strategies

such as CDS versus equity or CDS versus equity options are known as capital structure arbi-

133
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trage strategies. Strategies with CDS versus convertibles have also capital structure arbitrage

characteristics but they are more known as convertible arbitrage strategies. The underlying

key in all these strategies is in fact the relation between the CDS rate and the implied equity

volatility or simply the relation between the CDS rate and the equity price. When traders set

up such a strategy described they have to look on these market parameters. In reality, there

is not only one implied volatility traded in the market, but rather an entire volatility surface

traded which gives different volatilities for different strike prices with the lowest volatility

always being the at-the-money volatility.

Just to make clear the differences between surface, smile and skew, according to Daglish

et al. (2003):

“Option traders and brokers in over-the-counter markets frequently quote

option prices using implied volatilities calculated from Black and Scholes (1973)

and other similar models. Put-call parity implies that, in the absence of ar-

bitrage, the implied volatility for a European call option is the same as that

for a European put option when the two options have the same strike price

and time to maturity. This is convenient: when quoting an implied volatil-

ity for a European option with a particular strike price and maturity date, a

trader does not need to specify whether a call or a put is being considered.

The implied volatility of European options on a particular asset, as a func-

tion of strike price and time to maturity, is known as the volatility surface.

Every day traders and brokers estimate volatility surfaces for a range of dif-

ferent underlying assets from the market prices of options. Some points on a

volatility surface for a particular asset can be estimated directly because they

correspond to actively traded options. The rest of the volatility surface is typ-

ically determined by interpolating between these points. If the assumptions

underlying Black-Scholes held for an asset, its volatility surface would be flat

and unchanging. In practice the volatility surfaces for most assets are not flat

and change stochastically. Consider for example equities and foreign curren-

cies. Rubinstein (1994) and Jackwerth and Rubinstein (1996), among others,

show that the implied volatilities of stock and stock index options exhibit a

pronounced “skew” (that is, the implied volatility is a decreasing function of

strike price). For foreign currencies we observe a “smile” rather than a skew

(that is, the implied volatility is a U-shaped function of strike price). For both

types of assets, the implied volatility can be an increasing or decreasing func-

tion of the time to maturity. The volatility surface changes through time, but
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the general shape of the relationship between volatility and strike price tends

to be preserved.”

Practitioners are using the implied volatility surface from available European option prices

as a tool to value a European option in case its price is not directly observable in the market.

Doing this the trader prices the option consistent with the market. The fact that in the

volatility skew the volatility decreases as the strike price increases yields to significantly higher

volatilities to price a low-strike-option1 than such volatilities used to price a high-strike-price

option2.

The volatility surface for equity options, named volatility skew, corresponds to the implied

probability distribution of the underlying asset. It can be shown that this implied distribution

has a fatter left tail and a thinner right tail than the lognormal distribution assumed by the

Black-Scholes-Merton model; this means different kurtosis and skewness (see Hull (2003)).

Therefore, a deep-out-of-the-money call has a lower price when the implied distribution is

used for pricing than when the lognormal distribution is used, because of the fact that the

probability to exercise an option for the implied probability distribution is lower than for the

lognormal distribution. Similarly, for a deep-out-of -the money put option the probability to

exercise is higher for the implied probability distribution than for the lognormal distribution.

Therefore the price will be higher for such options. For more about surfaces, smiles and skews

see Dupire (1997), Daglish et al. (2003), and Hull (2003).

One of the reasons for the volatility skew in equity options concerns leverage. As the equity

value of a firm declines, the leverage increases. As the consequence the equity becomes more

risky and its volatility increases. This means that the credit spread will widen. Furthermore,

this results in an increasing of the CDS rate, as shown by Blanco et al. (2003). Conversely,

as the equity value of the firm increases, the leverage decreases, and in fact the CDS rates

and the credit spreads will tighten as well. Furthermore, it can be expected that the equity

volatility is a decreasing function of the equity price. Therefore, equity market can sign early

some future changes in credit quality (increase or decrease default probability) and/or of the

level of leverage of companies. As shown in section 1.3.8, this is not really a surprise because

the default probability is positively related to the CDS rate and a logical consequence is that

the information of the CDS rate should be reflected in the volatility skew.

As shown by Hull et al. (2003a), the credit spread implied by Black-Scholes-Merton model

is an increasing function of the implied put volatility3. Based on the framework in this paper,

1A low-strike-option is an out-of-the money put option or a deep-in-the-money call option.
2A high-strike-price option is a deep-in-the-money put option or a out-of-the-money call option.
3For an expression of the implied credit spread see Appendix I equation A.27.



CHAPTER 3. COINTEGRATION ANALYSIS 136

we developed a semi-analytical formula, where the implied put volatility depends, among other

parameters, on the implied credit spread and the leverage of a firm. (See 3.1.1).

As mentioned before, it is exactly this inter-relationship between equity volatility skew,

CDS rate (as a proxy to default probability) and credit spreads that motivates the appearance

of capital structure arbitrage strategies. If some of these financial trading instruments, or

its proxies, exhibit mispricing or some reliable predictable feature, there will exist arbitrage

opportunities. Implementing such strategies needs very detailed information on the leverage

cycles of the firm to do a basic convergence trading4. In fact, banks and hedge funds are highly

active in such strategies and a considerable amount of technical papers are been presented

since the beginning of this year. For example, Ali Hirsa from Morgan Stanley gave recently

a presentation entitled “Estimating Credit Spreads from Option Price” (see Hirsa (2003)).

Joe Zou from Goldman Sachs is about to publish a paper entitled “Default Probability of

Firms Implied by Equity Options Volatility Surfaces ” (Zou (2003)). Kirill Illinski from JP

Morgan Chase has developed a model that is currently being used by the bank, see Illinski

(2003). Arthur M. Berd from Lehman Brothers was presenting as first a skew-adjusted Put-

CDS relationship (see Bert (2003)). Finally, the web-based tool “CreditGrades”, described in

section 1.1.1, is in fact an application of a closed-formula that assesses default probabilities

from the equity markets.

Therefore, the motivation for the empirical analysis in this thesis is the engagement of

banks and hegde funds in such strategies, the special function of the CDS in the financial

market, the empirical evidences in bond and equity markets and the classical relationships

based on Merton´s model.

The empirical analysis will try

to assess if there is some long-run equilibrium between the CDS market and the equity

options market and also to analyse the mechanism of price discovery between these markets

for a specific company.

Price discovery is defined by Lehmann (2002) to be the efficient and timely incorporation

of the information implicit in trading activities into market prices. If there exists merely one

location for trading a financial asset, by definition all price discovery occurs in that market.

When closely-related assets are traded in different locations or markets, by definition price

discovery is split between markets.

For instance, Blanco et al. (2003) assess the mechanism of credit risk price discovery

between the CDS and corporate bond markets. Their results is that CDS market contributes

4As seen in section 2.1.2.
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around 80% of credit risk price discovery process. Following this line of research, this part

of the thesis will try to assess the mechanism of credit risk price discovery between the CDS

and equity markets and which of these two markets contributes most to the credit risk price

discovery. Concerning the long-run equilibrium, a cointegration analysis will be carried out to

assess the existence of this property (more about this in section 3.2). The analysis will be done

for one particular company, France Telecom (FT). This company is particularly attractive,

because according to certain traders it presented interesting arbitrage opportunities in the

past.

Keeping the relationship between volatility skew, default probability and credit spread in

mind, and to proceed with the empirical analysis, we will define a measure for the slope of

the volatility skew (shortly SKEW or skew measure) as the difference between deep-out-of-

the-money volatility and at-the-money-volatility, formally

SKEWt = σotmE,t − σatmE,t . (3.1)

Indeed, this skew measure is an indication of the expected future slope of the volatility

skew and can be seen as an indication of overall credit-worthiness of a firm, meaning its level

of credit spread and CDS rates. Therefore, it is expected that a steepening in the slope of

the volatility skew will trigger an increase in CDS rates, as will be shown in the empirical

analysis in section 3.4. The choice of how deeply out-of-the-money an option should be for an

appropriate empirical analysis depends on the available data or perhaps simply on liquidity

issues. The deeper the more significant will be the changes of the skew over time and therefore

a good choice for an empirical analysis. Hull et al. (2003a) choose a similar skew measure for

their analysis. They used an option moneyness5 of 0.9 for the out-of-the-money options and

in our analysis of FT we will use a simliar option moneyness of 0.8.

To compute the long-run relationship between the CDS and equity markets for FT, a

cointegration analysis between the market parameters volatility skew and CDS rate, SKEWt

and CDSt6, will be carried on (for a brief explanation about the procedures of a cointegration

analysis refer to section 3.2). Following the general idea of a cointegration relationship between

those variables, first of all a specification of the relation of the variables has to be made. The

first choice would be to express a simple linear relationship between the variables. In fact,

there is no empirical analysis in the literature about the relationship between the volatility

skew and the CDS rates. As a first approach, verifying the correlation over time between

both variables, as decipted in later on, Figure 3.6, it is indeed reasonable to assume a linear

5Moneyness is represented as the ratio of equity spot price over option strike price, and defines if an option
is in-the-money, out-of-the-money and at-the-money. More details see Hull (1998).

6In the following, CDS rate will be noted as CDSt or simply CDS, instead of scds.
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relationship.

If there really is information on CDS rates in the slope of the volatility skew, defined in

3.1, then the relationship

CDSt = a+ b SKEWt + εt, (3.2)

where εt is a white noise process and a, b, are numbers, will lead to an error correction

model representation (ECM) of the process in case both variable are cointegrated. The ECM

is defined by:

∆CDSt = γ1 (CDSt−1 − β0 − β1SKEWt−1) (3.3a)

+
lX
j=1

φ1jCDSt−j +
kX
j=1

ϕ1jSKEWt−j + ε1t

SKEWt = γ2 (CDSt−1 − β0 − β1SKEWt−1)

+
lX
j=1

φ2jCDSt−j +
kX
j=1

ϕ2jSKEWt−j + ε2t, (3.3b)

where γ1 and γ2 are the speed-of-adjustment coefficients for the cointegrating vector ~β =

(1,−β0,−β1)́ , the vectors ~φ and ~ϕ are the short-run dynamics among markets, and ε1t and

ε2t are i.i.d.7 white noise processes (see later, section 3.2 . A more detailed explanation about

this is given in the next section.

The choice of the regression form in equation 3.2 is consistent with the results of Collin-

Dufresne et al. (2000). They have shown for changes in credit spreads that the residuals

from the first-pass regression are highly cross-correlated and empirical components analysis

strongly suggests that they are driven by a single common factor. Furthermore, as seen in

Hull et al (2003), CDS rates are theoretically a good proxy for credit spreads. This is also

consistent with the market trading capital structure arbitrage strategies, as seen in chapter 2.

Blanco et al. (2003) suggested that CDS rates are well integrated with firm-specific equity

market variables in the short-run, such as equity returns and near the money option implied

volatilities. This motivates also the second empirical analysis in the thesis: the relationship

between CDS rates and equity prices. Similarly to the equation 3.2, the regression is of the

form:

CDSt = a
∗ + b∗ EQUITYt + ε∗t , (3.4)

7 i.i.d. means a independent identical distributed random variable.
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where EQUITY stands for equity prices, ε∗t is a white noise process and a
∗, b∗, are numbers.

As for the first empirical analysis, it is expected that the representation in 3.4 leads to an

error-correction model similar to equation 3.3.

Besides the long-run relationship, the cointegration specification is also the base for a

measure of the contributions to price discovery in each market. According to Blanco et al.

(2003):

“The appropriate method to investigate the mechanics of price discovery

is not clear. The two popular common factor models due to Hasbrouck (1995)

and Gonzalo and Granger (1995) both rely on vector error correction models

of market prices. Hasbrouck’s model of “information shares” assumes that

price volatility reflects new information, and so the market that contributes

most to the variance of the innovations to the common factor is presumed

to also contribute most to price discovery. Gonzalo and Granger’s approach

decomposes the common factor itself and ignoring the correlation between the

markets attributes superior price discovery to the market that adjusts least to

price movements in the other market. When price change innovations are

correlated, Hasbrouck’s approach can only provide upper and lower bounds on

the information shares of each market.”

Therefore, if the equity option market is contributing significantly to the discovery of the

CDS rate, then γ1 < 0 and statistically significant as the CDS market adjusts to reestablish

the equilibrium. Similarly, if the CDS market is contributing significantly to the discovery of

the volatility skew, then γ2 > 0 and significantly different from zero. If both coefficients are

significant, then both markets contribute to price discovery. In this study the Gonzalo and

Granger measure, referred to as GG, will be reported. The contributions of the CDS market

to price discovery is defined by

GGCDS =
γ2

γ2 − γ1
, (3.5)

and the contribution of the equity options markets, measured by the volatility skew defined

in 3.1, is

GGSKEW =
γ1

γ1 − γ2
. (3.6)
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3.1.1 Relationship between the Credit Spread and the Volatility

Skew implied by the Merton Model

We follow here the illustrations made in Hull et al. (2003a) and serve with formulas to

estimate implied out-of and at-the-money put volatilities. This semi-analtic depends mainly

on the implied credit spread and the leverage of a firm if the option moneyness, asset volatility,

time to repayment and the time expiry time of the put option are given.

Using the credit spread implied by the Merton’s model (see A.4) we found the following

general result for the implied out-of-the-money put volatility8

νotmE ' −1√
ω
N−1

µ
1

κ

·
lM(−a2,d2;−

√
ω
T )−M(−a1,d1;−

√
ω
T )

1−le−scT
+ κN (−a2)−∆κ

¸¶
(3.7)
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√
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¸¶¸2
− 2 ln (κ),

for κ 6= 1 and for κ = 1 simply

νatmE =
−2√
ω
N−1

Ã
lM

¡−a2, d2;−pω
T

¢−M ¡−a1, d1;−pω
T

¢
1− le−scT +N (−a2)−∆κ

!
, (3.8)

where

d1 = − ln (l)
σ
√
T
+
1

2
σ
√
T , (3.9)

d2 = d1 − σ
√
T ,

a1 = − ln (α)
σ
√
ω
+
1

2
σ
√
ω,

a2 = a1 − σ
√
ω,

κ [N (d1)− lN (d2)] = αN (d1,ω)− lN(d2,ω)

d1,ω = − ln
¡
l
α

¢
σ
p
(T − ω)

+
1

2
σ
p
(T − ω), (3.10)

d2,ω = d1,ω − σ
p
(T − ω) (3.11)

and

8Th proof of this result is in Appendix A 3.1.1
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l
T>0

> e
1
2
σ2T , lT=0 > 1.

For a proof of this result see A.5. From the expression above we can see that the implied

put volatility depends besides asset volatility on the implied credit spread and the leverage of

a firm and is consistent with the results of Hull et al. (2003a). For a no-arbitrage condition for

the evolution of the volatility surface and the basic dynamics of implied volatilities we refer

to Daglish et al. (2003). Campbell and Taskler (2002) explores the effect of equity volatility

on corporate bond yields.

Skew-Adjusted CDS-Equity-Put-relationship

Berd (2003) uses a put-equivalent CDS rate by applying the cost equivalence to develop a

skew-adjusted CDS-put relationship for a short protection position as follow

scds [%]

100 (1−R) = κ−1
£
PO

¡
κ, 1,σotmE

¢− PO ¡κ, 1,σatmE ¢¤
, (3.12)

where σotmE is an adjusted out-of-the-money equity option volatility, σatmE is the at-the-

money option volatility and scds [%] the CDS rate in percentage. Note that the right-hand-side

of 3.12 is equivalent to the intensity, λ, in equation 1.86. One interpretation of 3.12 is that in

case of no volatility skew the CDS rate is zero and the intensity or hazard rate is zero. The

relationship 3.12 can be convert using an approximative vega to

σotmE ' σatmE +
scds [%]κ

100 (1−R) V ega (κ, 1,σatmE )
,

which should be in case of sc = scds close to the value of equation 3.7, νotmE ' σotmE .9

3.2 Cointegration Econometrics

In this section a short description of stationary and non-stationary stochastic processes, vector

autoregressive (VAR) models, cointegration and error correction model is presented. More

details about these issues can be found in textbooks as Mills (1990), Enders (1995), Gujarati

(1995) and Greene (2003). More technical analysis is available in Granger (1983), Engle and

Granger (1987), Lütkepohl (1991), Banerjee et al. (1993), Hamilton (1994) and Johansen

(1995).

9Further extensions, proofs and analysis of the results presented in this subsection 3.1.1 are not part of this
work.
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3.2.1 Stationary and Nonstationary Stochastic Process

A time series of a variable, yt, is a set of observations on the values that that variable takes

at different times and is collected at regular time intervals, such as daily, weekly, quarterly,

annually, quinquennially, etc. Any time series can be represented as being generated by a

stochastic or random process and a set of data can be thought as a (particular) realization

or a sample of that underlying stochastic process. A univariate time-seriesmodel describes

the behaviour of a given variable in terms of its own past values, and a multivariate time-

series model describes the behaviour of a given variable in terms of its own past values and

in terms of other variables past values.

The most simple time series is the white noise time series,

{εt} , t = −∞, +∞, (3.13)

where each element in the sequence has zero mean, E [εt] = 0, constant variance σ2ε,

E [ε2t ] = σ2ε, and is non-autocorrelated, Cov [εt, εs] = 0 for all s 6= t. The sequence {εt} with
the previous characteristics is also called innovation.

A time series or stochastic process yt is (weakly) stationary or covariance station-

ary10 if its mean and variance are constant over time and the value of covariance between

observations in the series is a function only of their distance in time, not the time at which

they occur. Formally,

Mean : E [yt] = µ, (3.14)

V ariance : V ar [yt] = σ2, (3.15)

Covariance : Cov [yt, yt+k] = Covk. (3.16)

Obviously, if a time series is not stationary in the sense just defined, it is called a nonsta-

tionary time series.

Autocorrelation Function

The autocorrelation function (ACF) is a useful device for describing a time-series process

stationarity. The ACF at lag11 k, denoted by ρk, is defined as

10According to Greene (2003), strong stationarity requires that the joint distribution of all sets of observa-
tions be invariante to when the observarions are made.
11Lag 1 of a time series {yt} is defined as {yt}−{yt−1}, lag 2 of {yt} is {yt}−{yt−2} , and so on. In general,

lag k of {yt} is {yt}− {yt−k}.
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ρk =
Covk
Cov0

=
covariance at lag k

variance
, − 1 ≤ ρk ≤ 1. (3.17)

In equation 3.17, ρk denotes the true or populational autocorrelation function. In practice,

only the realization or sample of a stochastic process is available. Therefore, ρ̂k indicates the

sample autocorrelation function and the plot of ρ̂k against k is known as the sample

correlogram, just like the ones depicted in Figure 3.5. One of the characteristics of a sta-

tionary stochastic process is an autocorrelation function pattern that eventually tends to zero.

Contrarily, an ACF that presents a pattern that tends to zero very gradually is an indica-

tion of a nonstationary time series. The statistical significance of any ρ̂k can be measured

by its means of standard error. The sample autocorrelation estimators ρ̂k are approximately

normally distributed with zero mean and variance 1/n, where n is the sample size. The 95%

confidence interval is represented by the dashed lines in for instance Figure 3.5. If ρ̂k lies out-

side this interval, the null hypothesis that the true ρk value is zero can be rejected. However,

if it is inside this interval, the null hypothesis cannot be rejected.

Difference and Lag Operator

The n-difference operator (∆n) applied to a time series yt is defined as

∆nyt = ∆n−1yt −∆nyt−1 =
nX
r=0

(−1)r
µ
n

r

¶
yt−r, (3.18)

where
¡
n
r

¢
= n!

r!(n−r)! . The lag operator, denoted as L of a time series yt is defined as

Lnyt = yt−n, n = 0, 1, 2, · · · . (3.19)

The lag operator can be written in a polynomial form, where

yt + β1yt−1 + β2yt−2 + · · ·+ βnyt−n (3.20)

can be written as

¡
1 + β1L+ β22L

2 + · · ·+ βnnL
n
¢
yt = β (L) yt, (3.21)

where

β (L) =
¡
1 + β1L+ β2L

2 + · · ·+ βnL
n
¢

(3.22)

is the L polynomial.
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Autoregressive Moving-Average Processes (ARMA)

A time series yt follows an autoregressive model of order 1, AR(1), when its stochastic

process can be represented as

yt = µ+ φyt−1 + εt, (3.23)

where µ is the mean of yt, εt is a white noise process, as described in 3.13, and φ, the

autoregressive coefficient, is a real number of absolute value strictly less than 1. A more

general representation of a pth-order autoregressive model, AR(p), can be written as

yt = µ+ φyt−1 + · · ·+ φpyt−p + εt =

pX
j=1

φjyt−j + εt. (3.24)

In equation 3.23, the process with φ = 1 is said to be a random walk with drift, where µ

is the drift parameter, and display the characteristics of a non-stationary process. The process

with µ = 0 and φ = 1 is a pure random walk process, and is a non-stationary process as

well.

A time series yt follows amoving average model of order 1, MA(1), when its stochastic

process can be represented as

yt = µ+ εt − θεt−1, (3.25)

where εt is a white noise process, as described in equation 3.13, and θ is the moving-average

coefficient. A more general representation of a qth-order moving average model,MA(q), can

be written as

yt = µ− θ1εt−1 − · · ·− θqεt−q = µ+
qX
j=0

θjεt−j, θ0 ≡ 1. (3.26)

A general process that encompasses 3.24 and 3.26 is the autoregressive moving average,

ARMA(p,q), model:

yt = µ+ φyt−1 + · · ·+ φpyt−p + εt − θ1εt−1 − · · ·− θqεt−q, (3.27)

where φp 6= 0, θq 6= 0, and εt is a white noise process. The description of the dynamics of

the process can be simplified if equation 3.27 can be written in terms of the lag polynomial,

such that

Φ (L) yt = µ+Θ (L) εt, (3.28)
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where the autoregressive and moving average lag polynomials are

Φ (L) = 1− φ1L− · · ·− φpL
p, Θ (L) = 1− θ1L− · · ·− θqL

q. (3.29)

Integrated Processess

A process or time series yt is said to be integrated of order 1, denoted I(1), if it is stationary

after first differencing or after applying the difference operator, defined in equation 3.18.

Therefore, it is assumed

∆yt = (1− L) yt = yt − yt−1 = εt. (3.30)

In general, a series yt is integrated of order n, denoted I(n), if ∆yt is non-stationary while

∆nyt is stationary. A white noise series and an AR(1) with φ 6= 1 are examples of I(0), while
a random walk process, such as a AR(1) with φ = 1 is an example of an I(1) series. According

to Verbeek (2000), the main differences between I(0) and I(1) processes can be summarized

as follows: An I(0) series fluctuates around its mean with a finite time-independent variance,

while I(1) series has significant different features. An I(0) series is said to be mean reverting,

i.e. displaying a tendency in the long-run to return to its mean. Moreover, an I(0) series has

a limited memory of its past behaviour, while an infinitely long memory is inherent to a I(1)

process.

Autoregressive Integrated Moving-Average Processes (ARIMA)

If ∆yt is described by a stationary ARMA(p,q) model, such as in equation 3.27, it is said that

yt is described by an autoregressive integrated moving average (ARIMA) model of

order p, 1, q or ARIMA(p, 1, q). In general, the model would be

∆yt = µ+ φ1∆
dyt−1 + · · ·+ φp∆

dyt−p + εt − θ1εt−1 − · · ·− θqεt−q, (3.31)

or in polynomial form:

φ (L)
h
(1− L)d yt − µ

i
= θ (L) εt. (3.32)

equation 3.32 differs from equation 3.27 by the presence of a unit root in the autoregressive

polynomial.
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Testing for Unit Roots

The presence of a unit root in a time series is an interesting question from an economic point

of view. In models with unit roots, external shocks have persistent effects that last forever,

while in the case of stationary models, shocks have only temporary effect. Furthermore, the

use of data characterized by unit roots has the potential to lead to serious errors in inferences.

As already stated, an AR(1) model, such the one in equation 3.23, that displays φ = 1 is a

nonstationary (random walk) process with a unit root. A test for a unit root is a test for

φ = 1, and consequently for process stationarity.

Several statistical tests were developed to detect the presence of unit roots in time series.

Depending on the data-generating process (DGP) of the process yt, the Dickey-Fuller

(DF) test, the augmented Dickey-Fuller (ADF) test, the PP test, the DF-GLS test,

and theKPSS test can be used (for a complete discussion of such tests refer to Maddala and

Kim (1998)). The KPSS test, proposed by Kwiatskowski et al. (1992), is an alternative test

that circumvents the problem that unit root tests often have low power to detect stationarity.

Basically, a time series is decomposed into the sum of a deterministic time trend, a random

walk and a stationary error term. The null hypothesis of trend stationarity specifies that the

variance of the random walk component is zero. The test is actually a Lagrange multiplier

test and the computation of the test statistic is fairly simple, for details see Verbeek (2000).

The test statistics is given by

KPSS =
TX
t=1

S2t
σ̂2
, (3.33)

where σ̂2 is an estimator for the error variance. The asymptotic distribution is non-

standard and the 5% critical value is 0.146. The null hypothesis of the KPSS test is that the

series is stationary, or H0 : σ̂
2 = 0, against H1 : σ̂

2 > 0. The rejection of the null hypothesis

implies that the series is nonstationary.

3.2.2 Vector Autoregressive Models

The ARMA model described in equation 3.27 can be extended to a multivariate time-series

model to form a multivariate vector autoregressive moving average (VARMA) process.

The most common approach and the one that often provides empirically a satisfactory fit to

multivariate time series is the vector autoregressive (VAR) model. A VAR describes the

dynamic evolution of a number of variables based on their past values. In general, a VAR(p)

model for a k-dimensional vector ~yt of variables is given by
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~yt = ~µ+Θ1~yt−1 + · · ·+Θp~yt−p +~εt, (3.34)

where ~µ is a constant k-dimensional vector, each Θj is a k × k matrix and ~εt is a k-
dimensional vector of white noise (or innovation) terms with covariance matrix Σ. Using the

lag operator, a matrix lag polynomial can be defined as

Θ (L) = Ik −Θ1L− · · ·−ΘpL
p, (3.35)

where Ik is the k-dimensional identity matrix, so that equation 3.34 can be written as

Θ (L) ~yt = ~µ+~εt. (3.36)

In the form of equation 3.34, VARs are easy to estimate. Although the equation system

can be extremely large, it is a seemingly constitute of unrelated regressions with identical

regressors. As such, the equations should be estimated separately by ordinary least squares

(OLS). The innovation covariance matrix Σ can be estimated with average sums of squares

or cross products of the least squares residuals.

Testing for Granger Causality

In the sense defined by Granger (1969), causality is inferred when lagged values of a variable,

xt, have explanatory power in a regression of a variable yt on lagged values of yt and xt. A

VAR model can be used to test the hypothesis and the tests of restrictions can be based on

standard F tests in the single equations of the VAR model. Consider an example with a VAR

representation of two variables,

~yt = ~µ+Θ1~yt−1 + · · ·+Θp~yt−p +~εt (3.37)

where ~yt = (yt, xt) and ~εt are uncorrelated. If variable xt (Granger) causes variable yt,

then changes in xt should precede changes in yt, or, in other words, the lagged values of xt
improve statistically the prediction of yt. In a similar fashion, if variable yt (Granger) causes

variable xt, then the lagged values of yt improve statistically the prediction of xt.

Innovation Accounting: Impulse Response Functions and Variance Decomposition

A disturbing in one innovation of the k-dimensional vector ~εt in VAR leads to a chain reaction

over time in all variables of the system. An impulse response functionmeasures the effect of

a transitory shock, or more precisely, a one standard deviation shock to one of the innovations

on current and future values of the endogenous variables. Using impulse responses it is possible
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to examine the dynamic interactions between the variables in the model. For further discussion

we refer to Hamilton (1994). The impulse response is highly sensitive to the ordering of the

variables, due to the Cholesky decomposition of the error covariance matrix that orthogonalize

the innovations of the VAR. Therefore, changing the order of equations could dramatically

change the impulse responses and thus a common sense approach has to be taken to choose

this ordering.

Variance decomposition provides a different method of analysing the system dynamics.

Acording to Huang et al. (2002), it decomposes variation in an endogenous variable into the

component shocks to the endogenous variables in the VAR and gives information about the

relative importance of each random innovation to the variables in the VAR. Like the impulse

response functions, the numerical variance decompositions are often very sensitive to the order

in which the original innovation covariance matrix Σ is orthogonalized.

3.2.3 Cointegration

Consider two time series, yt and xt, both integrated of order 1, I(1), that is both are non-

stationary and stationary after applying the first differencing. Then yt and xt are said to

cointegrated if there exists a β such that yt−βxt is I(0), with β being called the cointegrated
parameter, or ~β = (1,−β)T being called the cointegrating vector. What this means is that
the relationship between yt and xt, expressed in the regression equation

yt = βxt + εt, (3.38)

appears to be valid because yt and xt drift upward together over time, which means that

there is a long-run equilibrium relationship between them. Furthermore, a distinction be-

tween this long-run equilibrium and the short-run dynamics, that is, the relationship between

deviations of yt from its long-run trend and deviations of xt from its long-run trend can be

established. As a consequence, the presence of a cointegrating vector indicates the presence

of a long-run equilibrium relationship.

If yt and xt are cointegrated, then the short-run dynamics between yt and xt can be de-

scribed by a error correction model (ECM) or, in another words, there exists a valid

error correction representation of the data that describes the short-run dynamics consis-

tently with the long-run relationship. This is known as the Granger representation theorem,

according to Granger (1983) and Engle and Granger (1987). Therefore, if yt and xt are both

I(1) and possess a cointegrating vector (1,−β)T , there exists an error correction model, with
zt = yt − βxt, represented as
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θ (L)∆yt = µ+ φ (L)∆xt−1 − γzt−1 + α (L) εt, (3.39)

where εt is white noise, and θ (L), φ (L), γ is the speed-of-adjustment coefficient, and

α (L) are polynomials in the lag operator L (with θ0 ≡ 1). The speed adjustment coefficient
measures how the elements in yt are adjusted to the equilibrium error in zt−1. A special case of

equation 3.39, where the error term has no moving average part and the systematic dynamics

are kept as simple as possible, can be written as

∆yt = µ+ φ1∆xt−1 − γ (yt−1 − βxt−1) + εt. (3.40)

Testing for Cointegration

There exists more than one method of conducting cointegration tests. The one used in this

thesis was proposed by Johansen (1988), who developed a maximum likelihood estimation

procedure that allows to test for the number of cointegrating relations. The technical details

can be found in Johansen (1995). This procedure provides more robust results when there are

more than two variables, according to Gonzalo (1994), and when the number of observations

is greater than 100, according to Hargreaves (1994). The Johansen approach is to set up a

vector autoregressive model given in equation 3.34 and to estimate this system by maximum

likelihood, while imposing the restriction for a given value of r. Some assumptions have to be

made regarding the trends of the time-series and regarding the intercepts and trends of the

cointegrating equations. Johansen’s procedure considers five possibilities:

1. Series yt have no deterministic trends and the cointegrating equations do not have

intercepts.

2. Series yt have no deterministic trends and the cointegrating equations have intercepts.

3. Series yt have linear trends but the cointegrating equations have only intercepts.

4. Both series yt and the cointegrating equations have linear trends.

5. Series yt have quadratic trends and the cointegrating equations have linear trends.

These five cases are nested from the most restrictive to the least restrictive, given any

particular cointegrating rank r. The choice between these cases has to be based in an economic

interpretation about the long-run relations among the variables as well as in statistical criteria,

such as the normalized cointegrating vector.
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The likelihood ratio trace test tests for the hypothesis of at most r cointegration rela-

tionships and at least k − r common trends12 and is given by

λ∗trace = −T
kX

j=r+1

log
³
1− λ̂j

´
, (3.41)

where T is the sample size and λ̂1 > λ̂2 > · · · > λ̂k are the eigenvalues of a squared

correlation matrix between two residual vectors from level13 and first-difference regressions.

An alternative test is the likelihood ratio maximum eigenvalue test. It tests the null

hypothesis that there are exactly r cointegration relationships against r + 1, and is given by

λ∗max = −T log
³
1− λ̂r+1

´
. (3.42)

3.3 Descriptive statistics

This section will describe statistically the data set used. The set consists of daily equity

prices, 1, 2 and 5-year daily CDS spread and 6-months and 1-year maturities daily implied

option volatilities of France Telecom (FT), the French government-owned telecommunications

company. The implied volatilities are available in five different moneyness measures, 0.8, 0.9,

1.0, 1.1, and 1.2, characterizing the volatility smile. The data covers the time period from

July 31, 2001 until July 28, 2003, counting 520 observations.

Due to liquidity considerations and following academic researches, as Blanco et al. (2003)

and Hull et al. (2003a), the 5-year CDS spread was chosen to be analysed, and is referred

to as CDS. The volatility smile is reduced to a volatility skew and, as described in section

3.1, was calculated as the difference between deep-out-of-the-money implied volatility (0.8

moneyness measure) and at-the-money implied volatility (1.0 moneyness measure). The skew

measure is referred to as SKEW. The daily equity prices is referred to throughout the text

as EQUITY.

Figure 3.1 shows the time-series plot for 5-year CDS rates, the volatility skew and equity

prices. Note that CDS rates and the volatility skew were normalized by the same factor, so

that they could be plotted together, the equity prices plot is the highest one in the picture,

and the two dotted vertical lines correspond to a delimitation in the time period that will be

explained in section 3.4.2. Figures 3.2, 3.3, and 3.4 show the histograms of the 5-year CDS

rate, the skew measure, and equity prices, respectively.

12Where k is the number of variables to be regressed.
13The level defines the original time series without differencing.
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Figure 3.1: Plot of CDS rates, volatility skew and equity prices
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Figure 3.2: Histogram of CDS rates
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Figure 3.3: Histogram of volatility skew
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The descriptive statistics for the 5-year CDS rate, the skew measure and the equity price

are shown in Table 3.1. The Jarque-Bera test for normality of each series is rejected at 1%

level.

CDS SKEW EQUITY
Mean 260.74 4.25 22.34
Median 244.00 4.40 20.46
Maximum 753.00 6.90 45.99
Minimum 76.00 0.50 6.01
Std. Dev. 130.15 1.10 9.75
Skewness 0.66 -0.48 0.48
Kurtosis 2.80 3.48 2.33
Jarque-Bera 38.30 24.99 29.32
Probability 0.00 0.00 0.00

Table 3.1: Descriptive statistics

The autocorrelation function (ACF), or correlogram, of the level (on the right column)

and first difference (on the left column) of the volatility skew measure, the equity prices and

the 5-year CDS rate are shown in Figure 3.5, from top to bottom, respectively. The dashed

lines indicate the 95% confidence interval for each lag.

Table 3.2 shows a correlation matrix between CDS rates (CDS), equity prices (EQUITY)

and skew measure (SKEW). Figure 3.6 shows scatter plots of the skew measure and equity

prices against 5-year CDS spreads.

CDS EQUITY SKEW
CDS 1.0000 -0.6627 0.6177
EQUITY -0.6627 1.0000 -0.8322
SKEW 0.6177 -0.8322 1.0000

Table 3.2: Correlation Matrix

3.4 Cointegration Results

The empirical analysis will be conducted within the framework of a multivariate vector autore-

gressive (VAR) model. As stated before, VAR methodology enables to assess the evolution

dynamics of a number of variables based on their past values. It estimates a multivariate

ordinary least square (OLS) system where all the variables included are treated as endoge-

nous. The advantage is that both the instantaneous and the lagged effects of each variable

of one specific (or all) variable(s) can be captured. The section begins with a description of

the cointegration tests and specifications used. In the following, the results are shown and

analysed.
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Figure 3.5: Correlogram of the volatility skew, equity prices and CDS rates (from top to
bottom, respectively) for the level and first difference
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Figure 3.6: Scatter plot of the skew measure and the equity price against 5-year CDS rates

3.4.1 Description of the Tests

As already stated, the necessary condition for a vector ~yt of variables to be cointegrated are

twofold: First, each series must be non-stationary at level, and each series must have the same

order of integration. Therefore, the test14 for cointegration requires first an inspection in the

ACF or correlogram for the level and for the first-difference and second testing formally for

unit roots in each series. The unit roots test used in this thesis was theKPSS test, described

in section 3.2.1.

In order to estimate the parameters of the VAR model that will be specified below, the

order of the maximum lag p has to be fixed. One possible choice is to fix a sufficiently

high order pmax and then to move to tests with smaller orders one by one, being a top-down

procedure. A likelihood ratio (LR) statistic is calculated to test for the significance of imposing

the restrictions. According to Gourieroux and Monfort (1997), the LR statistics is

ξT = T log
det Σ̂i−1
det Σ̂i

, (3.43)

where Σ̂i is the estimated covariance matrix from the OLS residuals in a model with i lags

for each variable, and T is the number of observations in the sample. Another alternative to

choose the number of the lags is to use an information criterion, such as the Akaike information

criterion (AIC), the Schwartz (or Bayesian) information criterion (SC or BIC), or the Hannan-

14All tests and model specifications were computed using the software EViews 4.1, from QMS Software.
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Quinn information criterion (HQ). These criteria were proposed by Akaike (1969), Schwartz

(1979) and Hannan and Quinn (1979), respectively. The BIC and HQ criteria lead to an

asymptotically correct selection of the model, according to Hannan (1980), but the AIC is by

far the most used criterion. For a more detailed explanation see Lütkepohl (1991). EViews

gives the optimal lag order selection using these 4 different criteria: LR, AIC, BIC, and HQ.

Some papers, like Neal et al. (2000) and Luo (2002), use the AIC criterion, while others,

like Huang et al. (2002) use the LR statistics. In this work, the LR statistic will be used as

outlined in Gourieroux and Monfort (1997) and Maddala (2001).

After selecting the appropriate lag length, Granger causality tests, VAR specifications,

cointegration tests, and VEC models can be applied. The used Granger causality tests

carried out tests whether an endogenous variable can be treated as exogenous. The procedure

is the one described in section 3.2.2. The procedure implemented in EViews performs pairwise

Granger causality tests, and for each equation in the VAR, the output displays χ2 statistics

for the joint significance of each of the other lagged endogenous variables in that equation.

Furthermore, the procedure displays the statistic for joint significance of all other lagged

endogenous variables in the equation.

The VAR system with its parameters are estimated using OLS and the t-test statistic of

significance for each estimator is given in a standard form. The impulse response functions

are shown in graphical form. In fact, the shock to each equation is equal to one positive

standard deviation of the equation residual and the impulse responses of all the variables to

the shock are traced out for a period of 300 days. The plus/minus two standard deviation

bands are displayed in the graphs alongside the impulse responses. The ordering of variables

are defined case by case. The variance decomposition results based on the VAR estimates

are shown in a tabular format and the ordering of the equations are assumed to be the same

as specified by the impulse response functions.

Furthermore, if the isolated variables underlying the various relationships are non-stationary

and possess the same integration order, the cointegration tests can be applied. The cointe-

gration test used in this thesis is based on the Johansen procedure described in section 3.2.3.

The specification for the deterministic trend of the series,the specification of the intercept, and

of the trends of the cointegrating equation have to be assumed among the five possibilities

considered by Johansen. EViews provides tests for these five options and a summary showing

for each test the number of cointegrating relations found. As it is impossible to know the

error-correction model a priori, the tests will be applied assuming the third and the fourth

possibilities in Johansen’s procedure. That means, the series have linear trends but the cointe-

grating equations have only intercepts and, in the other case, both series and the cointegrating
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equations have linear trends. The one that gives better results will be presented.

3.4.2 Empirical Relationship between CDSRates and the Volatility

Skew

The first analysis is carried out between CDS rates (CDS) and the volatility skew (SKEW),

as described in section 3.1. Before following the procedures presented in 3.4.1 to detect

cointegrating relationships, it is interesting and useful to examine table 3.2 and figure 3.6.

From the table and from the corresponding plot, it is particularly evident that both variables

are reasonably correlated andmay indicate indeed some form of relationship. This suggests

that when CDS (SKEW) increases, SKEW (CDS) increases as well. The behaviour of the

variables are in accordance with the common knowledge in the market.

Unit Roots Test

Continuing with the test procedures, the first item to analyse is the ACF plots of CDS and

SKEW. From Figure 3.5 it is clear that both series are non-stationary on the level and

stationary on the first-difference, the high degree of persistence on the level ACF is consistent

with the presence of a unit root. Another indication of non-stationarity is given by a unit

root test. Table 3.3 shows the result for the KPSS test. The test rejects the null hypothesis

that the level of both series are stationary at the 1% critical value, but it fails to reject the null

hypothesis that the first difference of both series are stationary. Therefore, both series are

nonstationary I(1) processes. Therefore, it is assumed that the data generation process

contains a constant and a linear time trend.

Variable CDS SKEW
Level
KPSS statistic 0.6587 0.5871
First difference
KPSS statistic 0.0435 0.0301
1% level critical value 0.2160 0.2160

Table 3.3: Results of KPSS test

Granger Causality Test

The optimal lag length is chosen according to the LR statistic at 5% level. According to

the output of EViews:



CHAPTER 3. COINTEGRATION ANALYSIS 158

The number of lagged terms to be included in the VAR representation is 8.

The results of the Granger causality tests are presented in Table 3.4 and Table 3.5. In

Table 3.4, the columns reflect the marginal probability for the Granger causal impact of the

column variables on the row variables. The last row represents the χ2 statistics with 8 degrees

of freedom. Examining a basic F test and the VAR χ2 approach, it seems that the causality

is running from the CDS rates to the skew measure, while the other direction is

not statistically significant.

χ2 test CDS SKEW
CDS 0.0000 0.7741
SKEW 0.0120 0.0000
χ2 statistic 19.6567 4.8845

Table 3.4: VAR pair-wise causality tests

F test F -statistic p-value
H0 : SKEW does not Granger Cause CDS 0.6056 0.7735
H0 : CDS does not Granger Cause SKEW 2.4573 0.0130

Table 3.5: Pairwise causality tests

VAR-Specification

The VAR estimation is shown in equations 3.44 and 3.45 merely with the statistically

significant coefficients at 5% level15. The whole representation is given in Appendix B.

CDS = 0.8864 CDSt−1 + 0.2737 CDSt−2 − 0.1983 CDSt−3 + (3.44)

+0.1267 CDSt−5 − 0.2082 CDSt−7 + 0.1266 CDSt−8
adjusted R̄2 = 0.98

SKEW = 0.1018 + 0.0016 CDSt−3 − 0.002 CDSt−4 + (3.45)

+1.005 SKEWt−1 − 0.1037 SKEWt−2 + 0.1269 SKEWt−5

adjusted R̄2 = 0.96

15The test for autocorrelation in the residuals at 1% level results that they are not auto-correlated.
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It is worth nothing that the VAR estimation gives the same results as Granger-

causality tests: in equation 3.44 there are no SKEW lagged terms, while in equation 3.45 the

CDS lagged terms appear more than once. Note also the high values for the R̄2 measure for

both equations, which is a good indicator of goodness-of-fit for the estimations. With the

VAR regressions it is possible to examine the impulse response functions. As already said,

the ordering of the variables significantly influences the results for the functions. Therefore,

the analyses will be made in both directions: once considering CDS last and then first.

Innovation Accounting

The graphical output of the impulse responses when the SKEW enters first in the Cholesky

decomposition is shown in Figure 3.7. Since it is interesting to discover the impact of the skew

measure in CDS, it makes sense that CDS enters last. The output of the impulse responses

when the CDS enters first in the Cholesky decomposition is shown in Figure 3.8. Because it

is of interest to discover the impact of CDS in the skew measure, it makes sense that CDS

enters first. The responses to the shock of one positive standard deviation in innovation for

each equation are traced out for a period of 300 days. The standard deviations bands are

displayed in dotted lines in the graphs.

Analysing the graphs, it is interesting to see that the response of CDS to SKEW is slightly

different in both representations, due to the ordering. When CDS enters last, volatility

skew measure has a negative effect on CDS rates and there is no apparent explanation

for that. However, when CDS enters first, the volatility skew measure has a slightly

positive effect on CDS rates (as seen in the upper-right graph of Figure 3.8). As the

skew measure increases, with out-of-the-money options being more volatile than at-the-money

options, or the skew becoming more steep, the CDS rate tends to rise. An increase in the

slope of the skew generally means anticipation or reaction for bad news regarding the firm,

which is reflected in the CDS market. The influence of the skew measure on CDS rates was

not captured by the Granger causality tests made before.

The response of SKEW to CDS is positive for both representations, which is in

accordance with the results of the Granger-causality tests presented (as seen in the lower-left

graph of both representations). As CDS rates increase, the skew tends to increase also as a

sign of bad news. It seems through the impulse response functions that there is a bidirectional

effect or causality in both markets. This effect should be clarified in the cointegration analysis.

Following the same systematic of the impulse response functions, Panel A of Table 3.6

shows the variance decomposition of CDS, when CDS enters last and first in the ordering.

Panel B shows the variance decomposition of SKEW, when SKEW enters first and last in the

ordering.
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Figure 3.7: Impulse responses for CDS and SKEW with CDS entering last
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Figure 3.8: Impulse responses for CDS and SKEW with SKEW entering last
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Panel A
CDS variance decomposition
Horizon (days ahead) CDS SKEW CDS SKEW
10 99.44 0.56 99.90 0.10
50 99.61 0.39 99.96 0.04
100 99.71 0.29 99.96 0.04
200 99.75 0.25 99.95 0.05
300 99.76 0.24 99.94 0.06
Panel B
SKEW variance decomposition
Horizon (days ahead) CDS SKEW CDS SKEW
10 1.15 98.85 0.53 99.47
50 17.25 82.75 15.08 84.92
100 35.98 64.02 33.76 66.24
200 46.89 53.11 44.96 55.04
300 48.85 51.15 46.98 53.02

Table 3.6: Variance decomposition

A first evidence drawn from the variance decomposition is that even with different ordering,

CDS explains almost all of the forecast error variance of the CDS rates for the entire period.

In fact, the skew measure has little impact on the variance decomposition of the CDS

rates. By contrast, there is a more balanced contribution of both the CDS rates and the skew

measure to the SKEW variance decomposition, even changing the ordering of the variables.

As can be seen, in the initial 100 days, about 35% of the variance is explained by the CDS

rates and over the entire time horizon both variables contribute roughly equally to explain

the variance in the skew measure.

Cointegration Tests

Since there is a unit root in either variables and they have the same order of integra-

tion, I(1), cointegration tests may be applied. Using the assumption that the data-generation

process contains a constant and a linear time trend, the results of Johansen’s procedure

are displayed in Panel A of Table 3.7. Panel B shows the normalized cointegrating vector.

The trace tests in Panel A fail to reject either the null hypothesis of no cointegration,

r = 0, and the null hypothesis of at most one cointegrating vector, r ≤ 1. By contrast, the
maximum eigenvalue test rejects the null hypothesis of no cointegration at 5% level but fails

to reject the other null hypothesis of at most one cointegrating vector. Therefore,

CDS and SKEW are cointegrated with one cointegrating vector.
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Panel A: Tests
Critical values Critical values

Ho Trace 5% 1% Ho Max. Eigenvalue 5% 1%
r = 0 23.71 25.32 30.45 r = 0 19.44 18.96 23.65
r ≤ 1 4.27 12.25 16.26 r = 1 4.27 12.25 16.26

Panel B: Normalised cointegrating vector
CDS SKEW Trend Constant

Coefficient 1.00 -155.37 0.61 244.32

Table 3.7: Results of the Johansen cointegration tests

In Panel B, all coefficients of the normalized cointegrating vector are significant at

1% level. Thus the vector is
~β = (1.00,−155.37, 0.61)T .

Since the cointegration relationship can be found between CDS rates and the skewmeasure,

there must exist a representation of an error correction model (ECM) which shows

long and short run dynamics among the cointegrated variables, as described in equation 3.40.

In equation 3.46, the estimated VECM is presented only with coefficients significant at 10%

level. The complete representation is shown in Appendix B.

∆CDSt = −0.0187 (CDSt−1 − 155.3719SKEWt−1 + 0.6061t+ 244.32)

−0.0935∆CDSt−1 + 0.1702∆CDSt−2 + 0.0796∆CDSt−6 (3.46a)

−0.1156∆CDSt−7 − 5.5063∆SKEWt−2

adjusted R̄2 = 0.09

∆SKEWt = 0.0004 (CDSt−1 − 155.3719SKEWt−1 + 0.6061t+ 244.32) (3.46b)

+0.0012∆CDSt−3 − 0.073∆SKEWt−3 + 0.1044∆SKEWt−5

adjusted R̄2 = 0.10

As expected, the coefficient of adjustment (−0.0187) in the first equation of 3.46 is neg-
ative and statistically significant. That is, the skew measure of FT options contributes

significantly to the daily price levels of FT’s CDS rates, and consequently the market for FT

CDS adjusts to incorporate this information. Similarly, the coefficient of adjustment (0.0004)

in the second equation of 3.46 has the expected positive signal which is also significantly

different from zero. This means that FT’s CDS rates contribute significantly to the daily

levels of the skew measure. As both coefficients are significant,

both variables, the CDS rate and the skew measure contribute to daily levels

of information but with different speeds.
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Comparing the speed of adjustment in both equation using the half-life parameter16, the

skew measure adjusts faster (within 36 days) to the long-run equilibrium than CDS rates

(more than 200 days). Furthermore, having analysed the short-run terms of both equations

it is clear that there exists a relationship between the changes in levels of CDS and

SKEW (∆CDSt and∆SKEWt), their own lagged terms, and the cross-market lagged terms.

Therefore,

the source of causality is running in both directions (CDS rates to skew mea-

sure and vice-versa) with the skew measure contributing more to the long-run

equilibrium adjustment than the CDS rates.

It is interesting to compare the cointegrating vector ~β with the time series of CDS rates

and of deep-out-of-the-money implied volatilities, as seen in Figure 3.9.The vector exhibits

strikingly similar movements patterns both series and which is a signal that it could

capture both long-run and short-run dynamics of the interaction between CDS rates and

implied volatilities. In Figure 3.9, the graph for CDS rates corresponds to the lowest plot and

VOL6M08 represents an option with moneyness option of 0.8 and maturity 6-month.

Price discovery

In terms of price discovery measures, as explained in section 3.1 and calculated by equations

3.5 and 3.6, we get:

GGCDS = 0.02 (3.47)

GGSKEW = 0.98. (3.48)

These results suggest that 98% of the credit risk price discovery occurs in the option markets

and only 2% in CDS market, as shown for the case of FT.

Discussion of results

Why does exist such a strong evidence that the skew measure leads or even drives CDS rates?

From a market point of view, it is evident that price discovery occurs in the market where

(informed) traders trade the most. Although not knowing which market has more liquidity,

be it the market for FT’s options or for FT CDS, it could be argued from the cointegration

analysis that the FT’s options market is more liquid than FT’s CDS market. Even if the CDS

market is the easiest place for trading credit risk, this seems not to be the case for FT.

16The half-life parameter is defined by − log(2)
log(1+α) . According to Madhavan and Smidt (1993), it represents

the expected number of days required for a deviation return to the long-term equilibrium by 50 percent.
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Figure 3.9: Cointegrating vector

Some explanations arise for that: First, it could be explained by the market entering

level of both securities. It is known that options contracts have a lower contract size than

CDS contracts, which could lead to more trading activities in the option market. This is

verified in practice as deep-out-of-the-money put options are commonly used as a proxy for

hedging credit risk instead of CDS securities, as seen in section 2.1.1 on equity and debt

market trading strategies. Another point is a type of risk inherent to the CDS markets that

does not exist in option markets. As already stated, CDS is an OTC security, while options

are traded mainly in large exchanges. It could be said that, keeping all other risks equal for

both markets, a CDS security bears in terms of counterparty risk more risks than a listed

option security. But nonetheless, even with this plausible explanations it is reasonable not to

accept that the market for FT’s credit risk is almost entirely traded in the option market. In

case of considering the bubble burst cycle only, see next section, the analysis will reduce the

GG-result.

Bubble Burst Cycle

Given that CDS rates and volatility skew are linked by an arbitrage relationship, how can

one take advantage of this? First of all, knowing that there is a direct link between the
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leverage of a company and its probability of default, equity markets respond according for the

current (or future) debt payment capacity of the company. This response is reflected in the

implied volatility for the company’s traded equity options. Therefore, traders may have some

indicators to anticipate future problems related to the current financial status of a company

that could trigger a default or another credit event situation. It seems that this indicator

might be based on the corporate business cycle, or specifically in the leverage cycle (as seen in

section 2.1.2). If in reality this is the case, fundamental economic analysis and deep knowledge

about the company could anticipate financial problems and lead to arbitrage opportunities.

In fact, a good indicator for cycles in the leverage life of FT, for instance, could lead the

analysis presented to a slightly different approach. Instead of analysing the entire time-series

of the CDS rate and the volatility skew, the series could be split according to the different

leverage cycles. The analysis being carried out in sub-sets, which is more related to market

practices. Even without any indicator for a leverage cycle, one can identify at least two distinct

cycles for FT that matches the description in Figure 2.4: a bubble burst cycle fromAugust

30, 2001 to June 26, 2002 and a deleveraging cycle from June 26, 2002 to July 28,

2003. The period of the bubble burst cycle corresponds to an a strong increase in both CDS

rates and implied volatilities happening after a short period of stability. On August 30, 2001

the CDS rate was 103 bps and until June 26, 2002 it surged to 753 bps, an increase of about

630%!

By contrast, the deleveraging period corresponds to a downturn of both CDS rates and

implied volatilities. For instance, the CDS rate sunk by approximately 90% in the period. For

a graphical representation of these periods, note the two dotted vertical lines in Figure 3.1,

shown previously

To show that it makes indeed sense to split the analysis by cycles, a cointegration analysis

for the bubble burst cycle will be briefly represented. It is expected that in terms of cointe-

grating analysis the results are similar to the previous ones, rflecting, however, higher adjusted

R̄2 measures and higher adjustment coefficients. In terms of the price discovery mechanism it

is expected that the GG measure of the CDS market increases and consequently contributes

more to the price discovery of credit risk for FT. The test procedures are the same as before

and the complete results are presented in Appendix C.

To start with, the correlation between CDS and SKEWhas risen to 0.72, suggesting

a stronger interaction than before. CDS and SKEW are nonstationary time-series and

using the LR ratio a optimal lag length is found to be 7, assuming the data generation

process contains a constant and a linear time trend. Results from the Granger-causality test

for both the F test and the χ2 approaches show that there exists a bidirectional Granger
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causality between the variables. A VAR representation is estimated and impulse response

functions as well as a variance decomposition are derived accordingly. It is worth nothing to

consider the impulse response of CDS to SKEW. In the previous analysis, when the CDS

entered last in the ordering there could be seen a slightly positive relationship between both

variables. In the present analysis with both ordering, the relationship between CDS and

SKEW is reasonably positive for the entire period. Therefore, the relations drawn from

the impulse response functions are in agreement with Granger-causality tests.

The tests for cointegration show the existence of one cointegrating relation at

1% level between CDS and SKEW with the normalized cointegrating vector

~β = (1.00,−125.96, 1.11)T .

significant at 10% level. The VECM with merely the significant terms at 10% level is given

by:

∆CDSt = −0.0023 (CDSt−1 − 125.9671SKEWt−1 + 1.10941t+ 55.19) (3.49a)

−0.0079∆CDSt−1 + 0.2817∆CDSt−2 − 0.1662∆CDSt−4
−3.7694∆SKEWt−1 + 2.6372

adjusted R̄2 = 0.22

∆SKEWt = 0.0063 (CDSt−1 − 125.9671SKEWt−1 + 1.10941t+ 55.19) (3.49b)

+0.0234∆CDSt−2 + 0.0247∆CDSt−3 + 0.0154∆CDSt−6

+0.0201∆CDSt−7 + 0.5119∆SKEWt−1 − 0.2757∆SKEWt−2 −
−0.2067∆SKEWt−4 − 0.2465∆SKEWt−6 − 0.2325

adjusted R̄2 = 0.56

As expected, the coefficient of adjustment (−0.0023) in the first equation of 3.49 is neg-
ative and statistically significant. Similarly, the coefficient of adjustment (0.0063) in the

second equation of 3.49 has the expected positive signal and is significantly different

from zero as well. As two coefficients are significant, both variables contribute to daily

levels of information but with different speeds. Comparing the speed of adjustment of both

equations using the half-life parameter, the skew measure adjusts faster (within 30 days) to

the long-run equilibrium than the CDS rates (about 106 days). Comparing these half-life

parameters with those computed before shows clearly, that the speed of adjustment is faster

in the bubble burst cycle than before. It is worth nothing to verify the expected rise in
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the adjusted R̄2 measure in equation 3.49. Comparing with those values in equation 3.46,

the average adjusted R̄2s for the bubble burst cycle are much higher than those for the entire

period, suggesting that the stronger interaction in the correlation coefficient (0.72) observed

in this cycle is verified in the regression as well.

In terms of price discovery measures, this means as explained in section 3.1 and calculated

by equations 3.5 and 3.6:

GGCDS = 0.22, (3.50)

GGSKEW = 0.78. (3.51)

These results suggest that

78% of credit risk price discovery is performed in the options market and 22%

in the CDS market.

The difference between these results to the previous ones is impressive. In fact, it is more

reasonable to state that even while not being the most contributor to the credit risk price

discovery for FT, the CDS market has a considerable participation in the price discovery. As

a conclusion, it does make a difference when splitting the analysis based in on indicator for

each leverage cycle. Indeed, the analysis for the bubble burst shows that the inter-relationship

between CDS rates and the volatility skew has a different dynamic process that depends

strongly on the period analysed.

Deleveraging Cycle

The cointegration tests for the deleveraging cycle was not done in this work. Nonetheless the

following extract illustrates, from a market perspective, the existence of the deleveraging cycle

in France Telecom. According to Moore and Watts (2003):

Anticipating good news:

”On a more positive note, the CDS market can also function as an accurate

litmus test of the market’s perception of changes in corporate management or

strategy leading to an improvement in credit quality. A good example here is

provided by the heavily indebted France Télécom, which at the start of October

2002 appointed a new CEO in the form of Thierry Breton, who was well-

respected in the market as a specialist in corporate turnarounds. CDS traders

clearly responded positively to Breton’s appointment and to the deleveraging

strategy he announced soon after his arrival. Between October 10 and Novem-

ber 1, the offered price of the CDSs on France Télécom’s five-year euro bonds
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almost halved, from 500bp to 260bp. Again, this trend foreshadowed other

key market developments: in December, Moody’s confirmed its Baa3 rating

on France Télécom with a stable rating, while between mid-November and the

middle of January, the spread on the company’s benchmark 2011 bond fell

from 360bp to 264bp over swaps. In other words, the CDS market anticipated

both the action of the rating agencies and the performance of France Télécom’s

benchmark bonds in the secondary market.”

Summary of Results

The results from the empirical analysis between CDS rates and the volatility skew can be

summarized as follows, when considering the entire period:

• The variables have a highly negative correlation: -0,61.

• The Granger causality tests indicate that CDS rates Granger-cause volatility skew.

• A sinle cointegrating relationship is found between the variables.

• Both coefficient of adjustments are statistically significant and show the expected sign.

• The influence of the skew volatility on the CDS rates is more pronounced than vice
versa.

• The cointegrating relation plot shows strikingly similarity patterns with CDS rates
and deep-out-of-the-money implied option volatilities.

• It is found that the credit risk price discovery is almost entirely done in the option
markets via the volatility skew.

In a similar way, the results from the empirical analysis between CDS rates and the volatil-

ity skew can be summarized as follows, when considering only the bubble burst cycle:

• The variables have a higher than before negative correlation: -0,72.

• The Granger causality tests suggest a bidirectional Granger causality between the
variables.

• A single cointegrating relationship is found between the variables.

• Both coefficient of adjustments are statistically significant and show the expected sign.
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• The influence of the skew volatility on the CDS rates is more pronounced than vice
versa, and is even more pronounced when compared to the analysis of the entire

period..

• It is found that the credit risk price discovery is done in a more reasonable way than
before, with the volatility skew contributing about 78% to the discovery.

3.4.3 Empirical Relationship between CDS and Equity Prices

The second analysis is carried out between CDS rates and equity prices, as described in section

3.1. Before following the procedures presented in 3.4.1 to detect cointegrating relationships, it

is interesting and useful to examine Table 3.2 and Figure 3.6. From the table and the plot, it

is strikingly evident that both variables are highly correlated and may possess a certain

relationship. This suggests that when CDS (EQUITY) falls, EQUITY (CDS) will rise. The

behaviour of those variables are in accordance with common knowledge in the market.

Unit Root Tests

Continuing with the test procedures, the first thing to analyse is the ACF plots of CDS and

SKEW. From Figure 3.5 it is clear that both series are non-stationary on the level and

stationary on the first-difference, where the high degree of persistence on the level ACF is

consistent with the presence of a unit root. Another indication of non-stationarity is given

by a unit root test. Table 3.8 shows the result for KPSS test. The test rejects the null

hypothesis that the level of both series are stationary at the 1% critical value, but it fails

to reject the null hypothesis that the first difference of both series are stationary. Therefore,

both series are nonstationary I(1) processes and as a consequence it is assumed that

the data generation process contains a constant and a linear time trend.

Variable CDS EQUITY
Level
KPSS statistic 0.6587 0.5378
First difference
KPSS statistic 0.0435 0.0640
1% level critical value 0.2160 0.2160

Table 3.8: Results of the KPSS test

Granger Causality Test

The optimal lag length is chosen according to an LR statistic at 5% level. The number

of lagged terms to be included in the VAR representation is 18, according to the output of
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EViews. The results for the Granger causality tests are presented in Table 3.9 and Table

3.10. In Table 3.9, the columns reflect the marginal probability for the Granger-causal impact

of the column-variables on the row-variables. The last row represents the χ2 statistics with

18 degrees of freedom. Examining the basic F test and the VAR χ2 approach, it seems that

the causality is moving from the equity prices to the CDS rates, while the

other direction is statistically not significant.

χ2 test CDS EQUITY
CDS 0.0000 0.0002
EQUITY 0.1500 0.0000
χ2 statistic 24.1543 47.5934

Table 3.9: VAR pair-wise causality test

F test F -statistic p-value
H0 : EQUITY does not Granger Cause CDS 2.6441 0.0003
H0 : CDS does not Granger Cause EQUITY 1.3419 0.1567

Table 3.10: Pair-wise causality test

VAR-Specification

The VAR estimation is shown in equation 3.52 and 3.53 with the statistically significant

coefficients at 5% level. The whole representation is given in Appendix D.

CDS = 0.8052 CDSt−1 + 0.2990 CDSt−2 − 0.1966 CDSt−3 + (3.52)

+0.1344 CDSt−5 − 0.2039 CDSt−7 + 0.1493 CDSt−8 −
−3.7721EQUITYt−1 + 3.1202EQUITYt−2

adjusted R̄2 = 0.98

EQUITY = 0.0086 CDSt−3 − 0.0088 CDSt−13 + 1.015 EQUITYt−1 − (3.53)

−0.2270 EQUITYt−3 + 0.1269 EQUITYt−16
adjusted R̄2 = 0.99
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It is worth nothing that the VAR estimation does not give the same results as

Granger-causality tests: there seems to exist a bidiretional influence on the variables.

Note further the high values for the R̄2 measure for both equations, which is a good

indicator for the goodness-of-fit for the estimations. With the VAR regressions it is

possible to examine the impulse responses functions. As already said, the ordering of the

variables influences highly the results of the functions. Therefore, the analyses will be made

in both directions: first CDS entering last and then entering first.

Innovation Accounting

The graphical output of the impulse responses when EQUITY enters first in the Cholesky

decomposition are shown in Figure 3.10. Since it is interesting to discover the impact of

equity prices in CDS, it makes sense that CDS enters last. The output of the impulse responses

when the CDS enters first in the Cholesky decomposition are shown in Figure 3.11. Since it

is interesting to discover the impact of CDS in equity prices, it makes sense that CDS enters

first. The responses to the shock of one positive standard deviation in innovations for each

equation are traced out for a period of 300 days. The standard deviations bands are displayed

as dotted lines in the graphs.

Analysing the graphs, it is interesting to see that the response of CDS to EQUITY (as

seen in the upper-right plot of Figure 3.10) is quite ambiguous in both representations.

It would be expected that as soon as equity prices fall, CDS rates would rise. According to

the graphs, during about the first 120 days, this is exactly what happens. Later on, however,

the relationship between equity prices and CDS rates becomes positive and there is not a

logical explanation for that feature. Although the influence of equity prices on CDS rates was

captured by the Granger-causality tests, the impulse responses give no clear signal of the

correct relationship between them.

However, the response of EQUITY to CDS is as expected (as seen in the lower-left plot

of Figure 3.11). Despite of a few days of positive relationship (in particular in the first

representation), the relationship between EQUITY and CDS is strongly negative. In this

case, as CDS spread increases equity prices fall. The influence of CDS rates on equity prices

was not captured by the Granger-causality tests made before. It seems through the impulse

response functions that there is a bidirectional effect or causality presenting in both

markets.

Following the same systematics of the impulse response functions, Panel A of Table 3.11

shows the variance decomposition of CDS, when CDS enters last and first in the ordering,

respectively. Panel B shows the variance decomposition of EQUITY, when EQUITY enters
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Figure 3.10: Impulse responses for CDS and EQUITY with CDS entering last
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Figure 3.11: Impulse responses for CDS and EQUITY with EQUITY entering last
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first and last in the ordering, respectively.

Panel A
CDS variance decomposition
Horizon (days ahead) CDS EQUITY CDS EQUITY
10 75.92 24.07 90.96 9.04
50 59.18 40.82 78.09 21.91
100 69.63 30.37 85.23 14.77
200 79.44 20.56 84.58 15.42
300 77.17 22.83 76.73 23.27
Panel B
EQUITY variance decomposition
Horizon (days ahead) CDS EQUITY CDS EQUITY
10 0.20 99.80 5.75 94.25
50 0.45 99.55 4.67 95.33
100 2.94 97.06 10.75 89.25
200 15.52 84.48 25.26 74.74
300 25.25 74.75 32.36 67.65

Table 3.11: Variance decomposition

A first evidence drawn from the variance decomposition is that even with different ordering,

CDS explains almost 70% of the forecast error variance of the CDS rates for the

entire period. Similarly, even with different ordering, EQUITY explain almost 70% of the

forecast error variance of the equity prices for the whole period as well.

Cointegration Tests

Since there is a unit root in either variable and as they have the same order of inte-

gration, I(1), cointegration tests may be carried out. Using the assumption that the data-

generation process contains a constant and a linear time trend, the results of Johansen’s

procedure are displayed in Table 3.12.

Critical Values Critical Values
Ho Trace 5% 1% Ho Max. Eigenvalue 5% 1%
r = 0 15.79 25.32 30.45 r = 0 11.53 18.96 23.65
r ≤ 1 4.27 12.25 16.26 r = 1 4.27 12.25 16.26

Table 3.12: Results of the Johansen cointegration tests

The trace tests fail to reject either the null hypothesis of no cointegration, r = 0, and the

null hypothesis of at most one cointegrating vector, r ≤ 1. Similarly, the maximum eigenvalue
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tests fail to reject the null hypothesis of no cointegration and fails to reject the other null

hypothesis of at most one cointegrating vector.

Therefore, CDS and EQUITY are not cointegrated

and hence a VECM representation is not valid. It could be argued that rejection is due to

the fact that

credit risk for this specific company is not revealed or priced in its cash equity

market,

conversely to the evidence of cointegrating relation between CDS rates and the volatility

skew.

Since there is no cointegration among CDS and EQUITY, the VAR system estimated in

equation 3.52 and equation 3.53 has to be re-estimated in first difference. That is, the first

difference will be eliminated the non-stationarity feature of the variables, as could be seen in

Table 3.8, and Granger-causality tests can be an indication, even a simplified one, of

causality. The results are given in Table 3.13 and 3.14. As before, it seems that

the causality is moving from the equity prices to the CDS rates, while the other

direction is statistically not significant.

χ2 test ∆CDS ∆EQUITY
∆CDS 0.0000 0.0001
∆EQUITY 0.1413 0.0000
χ2 statistic 23.2500 47.0621

Table 3.13: VAR pair-wise causality test

F test F -statistic p-value
H0 : ∆EQUITY does not Granger Cause ∆CDS 2.7684 0.0003
H0 : ∆CDS does not Granger Cause ∆EQUITY 1.3676 0.1475

Table 3.14: Pair-wise causality test

As a conclusion, even if there is no cointegration between CDS and EQUITY, it was

shown that exists a strong correlation between these markets and that indeed equity prices

Granger-cause CDS rates. The same reasoning for using an indicator for leverage applies

here: the results could serve to improve the understanding of the interaction between CDS

rates and equity prices. In fact, splitting the period as before, the correlation between CDS

and EQUITY increases in absolut terms to 0.87, suggesting an even stronger relationship

between them. Further analyses on this subject was not part of the thesis.
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Summary of Results

The results from the empirical analysis between CDS rates and equity prices can be summa-

rized as follows, when considering the whole period:

• The variables have a highly negative correlation: -0,66.

• The Granger causality tests indicate that equity prices Granger-cause CDS rates.

• No cointegrating relationship is found between the variables.

• VAR in first-difference still suggests that equity prices Granger-cause CDS rates.

• There is a stronger negative correlation between the variables of -0,87 than before,
when considering the bubble burst cycle.



Chapter 4

Conclusion

The objective of this thesis was to present the principles of capital structure arbitrage: the

theoretical background that supports the existence of such arbitrage techniques, the main

trading strategies involved in this techniques, the existing market for capital structure arbi-

trage, and empirical evidence for the relationship between CDS prices, implied equity option

volatility skew and equity prices.

Apparently, capital structure arbitrage trading strategies in recent years became of para-

mount importance in financial markets while not beeing a new area in academic research. It

might be said that the theoretical foundation of capital structure arbitrage is mainly based on

the contingent claim analysis (CCA) of the so-called Merton model, see Merton (1974). CCA

states that there exists a direct link between a company’s bond credit spread, and consequently

its probability of default, and its asset value volatility, or its observable equity price and cor-

responding volatility. After the seminal work of Merton, various extensions and developments

were proposed, in particular the KMV model and the web-based tool CreditGrades. All the

CCA modelling proposed so far, however, has to make some kind of assumptions to derive a

closed-formula linking credit spreads, the probability of default, and equity volatilities.

In fact, it is exactly the modelling of this relationship that enables the existence of capital

structure arbitrage: the possibility of extracting the probability of default, or as its proxy the

CDS rates, from observable equity option prices, or in particular the deduced volatility skew,

via a mathematical model. At present, trading CDS versus put options is the most common

trading strategy in capital structure arbitrage. Hence, the more accurate the theoretical

model, the more arbitrage opportunities might be identified. However, instead of using such

mathematical modelling one could verify empirically the relationship between CDS rates and

the equity option volatility skew.

It is known that cointegration analysis is a suitable econometric tool to model dynamically
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long-run equilibrium with short-run divergence. Knowing that CDS rates and the volatility

skew present precisely this feature, cointegration analysis was chosen in this thesis to try to

describe this relationship. Besides the cointegration analysis, the empirical analysis focused on

the mechanism of price discovery for credit risk, assessed by the Gonzales-Granger measure.

This measure reveals in which of the two markets, equity options or credit instruments, credit

risk is better assessed.

An empirical analysis was carried out to study the relationship between CDS prices and a

volatility skew measure defined as diference between deep-out-of-the-money and at-the-money

put options. The relationship between CDS prices and cash equity prices was studied as well.

The entire analysis was done for one company: France Telecom.

First of all, when considering the whole time period available in the data set, the highly

negative correlation of -0,61 between CDS rates and the volatility skew should be stressed.

Granger causality tests indicate that CDS rates Granger-cause the volatility skew. The results

for the cointegration analysis showed that there exists one cointegrating vector between CDS

rates and the volatility skew measure. The existence of one cointegrating vector means that

CDS rates and the volatility skew have in indeed a long-run equilibrium despite the short-run

deviations.

In fact, the coefficients of adjustment of the error correction model indicate that the

volatility skew drives CDS rates for this time period. Another interesting result is that the

plot of the cointegrating vector presents a strikingly similar movement pattern with CDS rates

and deep-out-of-the-money implied equity volatilities for the period considered.

The GG measure of price discovery indicates that 98% of credit risk price discovery occurs

in options market via the volatility skew. This astonishing result could lead to the wrong

intepration that credit risk is almost entirely traded in France Telecom’s equity options. How-

ever, when taking into account the leverage indicator, the above result changes significantly.

In fact, it is reasonable to adopt such indicator as companies indeed present leverage or debt

cycles throughtout its corporate life. For the present case, without a specific leverage indica-

tor, such as debt per share ratio, CDS rates were used to split the time period in two sub-sets.

The first cycle, namely the bubble burst cycle, was empirically analysed in this study.

Secondly, considering the relationship between CDS rates and the volatility skew in the

bubble cycle the correlation between the variables is even more negative: -0,72. Granger

causality tests suggest a bi-directional Granger causality between the variables. The results for

the cointegration analysis showed that there exists one cointegrating vector between CDS rate

and the volatility skew measure. In fact, the coefficients of adjustment are greater than before;

meaning that in the bubble cycle the relationship reverts faster to its long-run equilibrium.
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Furthermore, the influence of the skew volatility on the CDS rates is more pronounced

than the vice versa and is even stronger than before. These facts indicate that in the bubble

cycle skew volatility drives CDS rates, as already expected. The fact that the skew volatility

drives the CDS rates during the bubble cycle is also confirmed by the price discovery measure.

It is found that the credit risk price discovery is revealed in a more reasonable way than before,

with volatility skew contributing to 78% of the discovery mechanism against 98% before.

Thirdly, considering the relationship between CDS rates and equity prices for the whole pe-

riod, the variables present a highly negative correlation: -0,66. Granger causality tests indicate

that equity prices Granger-cause CDS rates. Contrarily to the previous analysis, cointegrat-

ing relationship between the variables was not found. However, VAR in first-difference still

suggests that equity prices Granger-cause CDS rates.

The present results for France Telecom empirically suggest what was predicted by Merton’s

model: there is a direct link between equity volatilities (via the volatility skew), credit spreads

(via CDS rates) and leverage. Furthermore, the results empirically confirm that CDS rates

and the volatility skew for France Telecom can give early signs of corporate distressed, and

consequently indicate a corrsponding trading strategy. Indeed the results show that there

exists some kind of mis-pricing between these two asste classes. In fact, the results for France

Telecom indicate what banks and hegde funds have already discovered for a variety of other

companies: capital structure arbitrage is an effective trading strategy.

Recommendations

This thesis introduces a novel and innovative empirical study concerning a relatively new

trading strategy in that it presents a cointegration analysis of CDS prices and the volatility

skew as the relevant variables to be analysed. Actually, the authors believe this is a research

niche that was not explored in detailed so far, at least until the completion of this work. As a

cosequence recommendation for future works is thus to extend the cointegration analysis to a

much broader range of companies. In that sense, Merton’s model could be tested empirically

with market variables and market prices. However, a good leverage indicator is suggested to

capture the appropriate leverage or debt cycles.

Furthermore, it is recommended that the analysis of the price discovery mechanism of

credit risk should be extended. This could be implemented calculating another price discovery

measure, such as the Hasbrouck measure. This analysis is important in that its complements

and even validates the cointegration results, as demonstrated in this thesis. Another suggestion

is to perform trading-rule simulations using the cointegrating vector results as an indicator

for possible trading actions.



CHAPTER 4. CONCLUSION 181

Difficulties

The most critical points in the thesis were to have access to proprietary capital structure

arbitrage trading strategies and to obtain data. It is reasonable to expect some resistance of

banks and hedge funds for revealing their trading strategies. In fact these strategies contribute

significantly to their trading profit. However, the authors encountered faced problems to

obtain the necessary data, in particular CDS rates and implied equity option volatilities.

Even the considerable amount of contents presented in this study does not exhaust the

capital structure arbitrage theme. The subject is indeed vast and wide-ranging with ramifi-

cations into numerous and different areas of finance. The important and relevant empirical

results obtained in this thesis show that capital structure arbitrage can provides an interesting

research topic and will attract the attention of more researchers.



Appendix A

Detailed Proofs

In this appendix, following the work of Hull et al. (2003a) detailed proofs of the formulas

(8) and (9) in Hull et al. (2003a) are presented mainly to show the correct formula (8). The

formula A.23 below is the correct formula (8) in Hull et al. (2003a). Based on the knowledge

of the formulas (8) - here A.23 - and (9) - here A.18 - and the credit spread implied by the

Merton model -here A.27 we developed a formula to calculate the implied put volatilities (see

Section 3.1.1 formula 3.7) where the proof is presented within the Appendix.

A.1 Notations:

• E is the value of the firms equity

• A is the value of the firms asset

• B is the value of the firms bond

• T is the time to maturity of the debt, the time to repayment to the shareholders

• E0, A0 and B0 are the values of E, A and B today and ET , AT are the values of E

and A at time T

• COt is the value of the call option on E today with strike price K, maturity T − t,
where t is the time to start the option usually today (t = 0), the risk free interest rate

is denoted as r, and the equity volatility as σE

• POt is the value of the put option on E today with strike price K, maturity T − t,
risk free interest rate r, an the equity volatility σE

• F is the value of the promised debt payment (face value of the debt)
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• σ is the asset volatility

• σE is the equity volatility

• N( ) is the normal distribution function

• M(, ; ) is the cumulative bivariate normal distribution function

• A∗ω is the critical asset value at time ω, ω < T , the asset value for which the equity
value at ω is equal K

• Debt is a pure discount bond where a payment, F , is promised at time T . The present
value of the promised debt payment is

F ∗ = Fe−rT = FB(0, T ) (A.1)

• The measure of Leverage is defined by

l = F ∗/A0 (A.2)

• α is the scalar multiple of the forward asset value at which the option is at the money

(implied strike level) defined as

A∗ω = αA0e
rω (A.3)

• κ is the ratio of the strike price to the forward equity price (option moneyness) defined

as

K = κE0e
rω (A.4)

• ν is the implied volatility of the put option on . The implied volatilities are the ones

which, when substituted into Black-Schloles formula for given market prices

• PD is the probability of default

• The credit spread is defined as sc = y − r, where r is denoted as the risk-free interest
rate and y will be the yield to maturity of the risky bond

• ∆ is the equity option delta

A.2 Proof of formula (9) in Hull et al. (2003a)

To start with the proof of A.18 we have to look on the payment to the shareholders at time

T , which is ET = max [AT − F, 0]. As we know from Merton (1974) the equity of a firm is a
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call option on the assets of the firm with strike price equal to the promised debt payment, F .

The current equity price is given by

E0 = A0N (d1)− Fe−rTN (d2) , (A.5)

where
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using A.1 and A.2 we get

E0 = A0N (d1)− F ∗N (d2) (A.6)

= A0N (d1)− lA0N (d2)
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Using Itô’s lemma the instantaneous volatility of the equity is given by

σE =
∂E

∂A

A0
E0

σ = ∆
A0
E0

σ = N(d1)
A0
E0

σ. (A.7)

Jones, Mason and Rosenfeld (1984) have shown the empirical evidence of this relation.

Equations A.6 and A.7 allow A0 and σ to be obtained from E0, σE, l and T. Remember

that PD is the risk neutral probability that the company will default by time T , which is

the probability that share holders will not exercise their call option to buy the assets of the
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company for the value of F at time T , formally

PD = N(−d2). (A.8)

The probability of default depends on the leverage, l, the asset volatility, σ, and the time

until repayment, T .

Geske (1979) developed a formula for a put option on the value of the firms equity with

strike price K and expiry time ω < T . Within the framework of Merton (1974), an option on

the firms equity that expires before the debt matures is a compound option, i.e. an option on

a European call.
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and A∗ω is the critical asset value at time ω, which represents the asset value such that the

equity value at ω is equal K.

The Put-Call-Parity gives the following relation

CO∗0 − PO∗0 = E0 −Ke−rT̃ (A.10)
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where now T 6= T̃ and

d̃1 =
ln
³
Ke−rT̃
E0

´
ν
p
T̃

+
1

2
ν
p
T̃

d̃2 = d̃1 − ν
p
T̃ .

The Idea is that at time ω, ω < T, where the asset value is such that the equity value is

equal the strike price K, the value of the put option in equation A.10, PO∗0,at time T̃ = ω

and equation A.9, PO0, at time T = ω must be equal.
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Let’s first modify equation A.10 using equation A.4, which yields the following Black-

Scholes put option price

PO∗0 = κE0N (−d∗2)− E0N (−d∗1) ,

where

d∗1 =
ln
³
E0
κE0

´
ν
√
ω

+
1

2
ν
√
ω =

ln (κ−1)
ν
√
ω

+
1

2
ν
√
τ = − ln (κ)

ν
√
ω
+
1

2
ν
√
ω (A.11)

d∗2 = d∗1 − ν
√
ω.

Modifying equation A.9 using equation A.1 and equation A.4 yields

PO0 = F
∗M

µ
−a2, d2;−

r
ω

T

¶
−A0M

µ
−a1, d1;−

r
ω

T

¶
+ κE0N (−a2) ,

and by using equation A.3 yields

a1 =
ln
³
A0
αA0

´
σ
√
ω

+
1

2
σ
√
ω = − ln (α)

σ (ω)
1
2

+
1

2
σ
√
ω

a2 = a1 − σ
√
ω.

Now we set PO0 = PO∗0 and get

F ∗M
µ
−a2, d2;−

r
ω

T

¶
−A0M

µ
−a1, d1;−

r
ω

T

¶
+κE0N (−a2) = κE0N (−d∗2)−E0N (−d∗1) .

(A.12)

Formula A.12 is identical with formula (7) in Hull et al. (2003a)

A variation of equation A.5 can be used to determine the implied strike level, α, using the

fact that A∗ω is the critical asset value at time ω, the asset value for which the equity value

at ω is equal K. This means that we are looking for the payment to shareholders at time ω is

Eτ = max [A
∗
ω − F, 0] and get

K = A∗τN (d1,τ)− Fe−r(T−τ)N (d2,τ ) , (A.13)
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where

d1,ω =
ln
³
A∗ωer(T−ω)

F

´
σ (T − ω)

1
2

+
1

2
σ
p
(T − ω),

d2,ω = d1 − σ
p
(T − ω).

Using equations A.1, A.2, A.3 and A.4 we can write

A0 =
F ∗

l
=
Fe−rT

l
=
A∗ω
α
e−rω, (A.14)

which yields to
A∗ω
α
=
F

l
e−r(T−ω)

after rearranging being equivalent to

A∗ω
l

α
= Fe−r(T−ω)

or

F = A∗ω
l

α
er(T−ω).

Using equation A.13 we get

κE0e
rω = K = A∗ωN (d1,ω)−A∗ω

l

α
N (d2,ω) = A

∗
ω

·
N (d1,ω)− l

α
N (d2,ω)

¸
, (A.15)

where now

d1,ω =
ln
³
A∗ωer(T−ω)

A∗ω
l
α
er(T−ω)

´
σ
p
(T − ω)

+
1

2
σ
p
(T − ω) =

ln
³
1
l
α

´
σ
p
(T − ω)

+
1

2
σ
p
(T − ω) (A.16)

= − ln
¡
l
α

¢
σ
p
(T − ω)

+
1

2
σ
p
(T − ω) (A.17)

d2,ω = d1,ω − σ
p
(T − ω).
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From equation A.15 follows

E0 =
e−rω

κ
A∗ω

·
N (d1,ω)− l

α
N (d2,ω)

¸
=

e−rω

κ
αA0e

rω

·
N (d1,ω)− l

α
N (d2,ω)

¸
=

α

κ
A0

·
N (d1,ω)− l

α
N (d2,ω)

¸
=

A0
κ
[αN (d1,ω)− lN (d2,ω)] .

Using again equation A.5 yields

κ =
αN (d1,ω)− lN(d2,ω)
N (d1)− lN (d2) , (A.18)

which is exactly formula (9) in Hull et al. (2003a). q.e.d.

A.3 Proof of formula (8) in Hull et al. (2003a)

Using equations A.2, A.6, and A.12 we get the following equation:

lA0M

µ
−a2, d2;−

r
ω

T

¶
−A0M

µ
−a1, d1;−

r
ω

T

¶
(A.19)

+κA0 [N (d1)− lN (d2)]N (−a2) (A.20)

= κA0 [N (d1)− lN (d2)]N (−d∗2)−A0 [N (d1)− lN (d2)]N (−d∗1) .

Dividing this equation by A0 yields to

lM

µ
−a2, d2;−

r
ω

T

¶
−M

µ
−a1, d1;−

r
ω

T

¶
(A.21)

+κ [N (d1)− lN (d2)]N (−a2) (A.22)

= κ [N (d1)− lN (d2)]N (−d∗2)− [N (d1)− lN (d2)]N (−d∗1) .

Rearranging A.21 yields

lM

µ
−a2, d2;−

r
ω

T

¶
−M

µ
−a1, d1;−

r
ω

T

¶
(A.23)

+κ [N (d1)− lN (d2)]N (−a2) (A.24)

= [N (d1)− lN (d2)] [κN (−d∗2)−N (−d∗1)] .

Which seems to be is the corrected equation (8) in Hull et al. (2003a)
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q.e.d.

A.4 The credit spread of a risky bond implied by the

Merton model

To explain risky bond yields the Merton model can be used. The value of the assets at any

time equals the total value of the value firms equity and bonds so that

A0 = E0 +B0.

Using equation A.6 this yields

B0 = A0 − E0 (A.25)

= A0 −A0 [N (d1)− lN (d2)]
= A0 [N (−d1)− lN (d2)] .

The implied yield to maturity is defined by

B0 = Fe
−yT = F ∗e(r−y)T . (A.26)

Substituting A.26 into A.25 using equation A.14 and the definition of the credit spread

gives

F ∗e(r−y)T = A0 [N (−d1)− lN (d2)] (A.27)
F ∗

A0
e(r−y)T = [N (−d1)− lN (d2)]
Le(r−y)T = [N (−d1)− lN (d2)]
e(r−y)T =

·
N (−d1)

l
−N (d2)

¸
e−s

cT =

·
N (−d1)

l
−N (d2)

¸
sc = − ln

·
N (−d1)

l
−N (d2)

¸
1

T
.

According to the expression for the risk-neutral probability of default in equation A.8 the

credit spread implied by the Merton model, equation A.27 and therefore so-called implied

credit spread depends on the leverage l, the asset volatility, σ, and the time until repayment

T.
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Using the risk-neutral probability of default in equation A.8 the expression

sc = − ln
·
N (−d1)

l
− 1− PD

¸
1

T

shows the dependence on the risk-neutral probability of default, which by it self depends

on leverage the , L, the asset volatility, σ, and the time until repayment, T .

A.5 A formula for the implied put option volatilities

To develop a formula for the implied put option as presented in 3.1.1. We solve the two

equations A.23 and A.18 subject to the implied put volatility, ν. For this, first of all, the α,

the scalar multiple of the forward asset value at which the option is at the money (implied strike

level) has to be estimated. Because within formula A.23 the variables a2 and a1 depending

on α as well the variables d1,ω and d2,ω in formula A.18. Ones we have estimate the α0s, then

the implied put volatilities can be estimated using the variables d∗1 and d
∗
2. All calculations

depending on the leverage parameter, l.

To estimate α0s for different leverage ratios we use A.18 to get

κ [N (d1)− lN (d2)] = αN (d1,τ )− lN(d2,τ). (A.28)

Knowing that the left hand side of this equation can be estimated directly and that d1,τ , d2,τ
depends on α a simple Newton method can be used to solve A.28 numerically with subject to

α. Based on these estimated α0s the right hand side of the rearrange formula A.23

κN (−d∗2)−N (−d∗1) '
lM(−a2,d2;−

√
ω
T )−M(−a1,d1;−

√
ω
T )+κ[N(d1)−lN(d2)]N(−a2)

[N(d1)−lN(d2)]
, (A.29)

can be calculated in approximation. The quality of the approximation depends on the

number of iterations used within the used Newton method. Using now the fact that for a given

moneyness κ the option delta for the put option, ∆p
κ = −N (−d∗1) , is known in approximation.

Then follows from A.29

d∗2 ' −N−1
µ
1

κ

·
lM(−a2,d2;−

√
ω
T )−M(−a1,d1;−

√
ω
T )+κ[N(d1)−lN(d2)]N(−a2)

[N(d1)−lN(d2)]
−∆p

κ

¸¶
. (A.30)

Using the representations from A.11 to estimate the implied put volatilities using the

following quardratic equation
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d∗2 = − ln (κ)
ν
√
ω
+
1

2
ν
√
ω − ν

√
ω, (A.31)

ν
√
ωd∗2 = − ln (κ)− 1

2
ν2
√
ω,

ν2 − ν
2d∗2√
ω
+
2 ln (κ)

ω
= 0.

The equation A.31 yields to the following solution for the implied put volatilities

ν ' d∗2 ±
p
d∗22 − 2 ln (κ)√

ω
, (A.32)

and for κ = 1 simply

ν ' 2d∗2√
ω
.

Rearranging 3.1.1 yields to

1− le−scT = N (d1)− lN (d2) . (A.33)

This expression can be substitute in A.30 and we get our general result as presented in

3.7.

Because of the fact that −d1 ≥ 0 we get

ln (l)

σ
√
T
≥ 1

2
σ
√
T

ln (l) ≥ 1

2
σ2T,

which yields to

l > e
1
2
σ2T

q.e.d.



Appendix B

VAR and VECM representations of

section 3.4.2

The complete VAR and VECM representations with all the coefficients and its t-statistics of

the analysis of CDS rates and volatility skew, SKEW, (section 3.4.2) are reported here. Table

B.1 shows the 8-lags VAR estimation, where the first number in brackets are the standard

errors and second the t-statistic. Table B.2 shows the 8-lag VECM representation, where

the first number in brackets are the standard errors and second the t-statistic. In Table B.2,

adjustment stands for the coefficient of adjustment of the cointegrating equation. The 5%

critical level is 1.96. For the VAR estimation th e adjusted sample is from 10/08/2001 to

28/07/2003, and the number of observations is 512, after adjusting endpoints. For the VECM

representation the adjusted sample is from 13/08/2001 to 28/07/2003, and the number of

observations is 511, after adjusting endpoints.

192
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CDS SKEW CDS SKEW
CDS(-1) 0.8864 0.009 SKEW(-5) -2.5973 0.1269

(0.0446) (0.0005) (4.2943) (0.0517)
(19.8652) (1.5981) (-0.6048) (2.4550)

CDS(-2) 0.2737 -0.0010 SKEW(-6) -2.6919 -0.0834
(0.0592) (0.0007) (4.2979) (0.0518)
(4.6257) (1.4775) (-0.6263) (1.6115)

CDS(-3) -0.1983 0.0016 SKEW(-7) 2.8199 -0.0299
(0.0604) (0.0007) (4.2887) (0.0516)
(-3.2810) (2.1836) (0.6575) (-0.5785)

CDS(-4) -0.0302 -0.0020 SKEW(-8) 0.1314 0.0295
(0.0610) (0.0007) (3.0111) (0.0363)
(-0.4950) (-2.7219) (0.0437) (0.8134)

CDS(-5) 0.1267 0.0001 Constant 1.9882 0.1018
(0.0613) (0.0007) (3.4121) (0.0411)
(2.0670) (0.1703) (0.5827) (2.4775)

CDS(-6) 0.0148 (0.0007) R-squared 0.9830 0.9603
(0.0607) (0.0007) Adj. R- squared 0.9825 0.9590
(0.2440) (0.9479) Sum sq. resids 145370.20 21.0729

S.E. equation 17.1370 0.2063
CDS(-7) -0.2082 -0.0005 F-statistic 1793.7450 748.8519

(0.0596) (0.0007) Log likelihood -2172.5670 90.2293
(-3.4928) (0.7083) Akaike AIC 8.5530 -0.2861

Schwarz SC 8.6937 -0.1453
CDS(-8) 0.1267 0.0005 Mean dependent 263.2949 4.2994

(0.0451) (0.0005) S.D. dependet 129.5324 1.0195
(2.8107) (0.9111)

Determinant Residual Covariance 12.4732
SKEW(-1) -1.0951 1.0049 Log Likelihood (d.f. adjusted) -2099.0300

(3.0783) (0.0371) Akaike Information Criteria 8.3321
(-0.3558) (27.1147) Schwarz Criteria 8.6136

SKEW(-2) -2.9033 -0.1038
(4.3148) (0.0520)
(-0.6729) (-1.9972)

SKEW(-3) 6.4267 -0.0301
(4.3160) (0.0520)
(1.4891) (-0.5783)

SKEW(-4) -0.0394 0.0490
(4.3058) (0.0518)
(0.0091) (0.9452)

Table B.1: VAR Estimation
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∆CDS ∆SKEW ∆CDS ∆SKEW
Adjustmenta -0.0188 0.0004 ∆SKEW(-4) 1.2670 -0.0245

(0.0088) (0.0001) (3.1056) (0.0373)
(-2.1419) (3.8758) (0.4080) (-6564)

∆CDS(-1) -0.0935 0.0006 ∆SKEW(-5) -1.4260 0.1044
(0.0451) (0.0005) (3.0853) (0.0371)
(-2.0760) (1.0341) (-0.4622) (2.8178)

∆CDS(-2) 0.1702 -0.0004 ∆SKEW(-6) -3.7470 0.0132
(0.0449) (0.0005) (3.0638) (0.0368)
(3.7929) (-0.6510) (-1.2230) (0.3597)

∆CDS(-3) -0.0275 0.0012 ∆SKEW(-7) -1.4448 -0.0106
(0.0454) (0.0006) (3.0506) (0.0366)
(-0.6063) (2.2182) (-0.4736) (-0.2885)

∆CDS(-4) -0.0544 -0.0009 SKEW(-8) 1.4717 0.0052
(0.0455) (0.0006) (3.0384) (0.0365)
(-1.1935) (-1.5703) (0.4844) (0.1421)

∆CDS(-5) 0.0698 -0.0007 Constant 0.0254 0.0011
(0.0455) (0.0006) (3.7599) (0.0091)
(1.5360) (-1.2247) (0.0335) (0.1220)

∆CDS(-6) 0.0796 (0.0001) R-squared 0.0915 0.1030
(0.0455) (0.0006) Adj. R- squared 0.0601 0.0721
(1.7499) (0.2366) Sum sq. resids 144092.40 20.7829

S.E. equation 17.0961 0.2053
∆CDS(-7) -0.1157 -0.0006 F-statistic 2.9194 3.3303

(0.0451) (0.0005) Log likelihood -2166.5680 93.0951
(-2.5660) (-1.0834) Akaike AIC 8.5502 -0.2939

Schwarz SC 8.6994 -0.1447
∆CDS(-8) 0.0534 -0.0007 Mean dependent -0.0450 0.0010

(0.0452) (0.0005) S.D. dependet 17.6345 0.2131
(1.1809) (-1.2232)

Determinant Residual Covariance 12.3096
∆SKEW(-1) -2.8387 0.0740 Log Likelihood -2073.2330

(3.7684) (0.0453) Log Likelihood (d.f. adjusted) -2073.5570
(-0.7533) (1.6358) Akaike Information Criteria 8.3388

Schwarz Criteria 8.6621
∆SKEW(-2) -5.5063 -0.0428 a: The cointegrating vector is shown in equation 3.46

(3.0934) (0.0372)
(-1.7801) (-1.1528)

∆SKEW(-3) 0.9653 -0.0732
(3.1008) (0.0372)
(0.3113) (-1.9667)

Table B.2: VECM Representation
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VAR and VECM representations of

section 3.4.2

Cointegrating analysis of CDS and SKEW in the bubble cycle follows the same steps of the

analysis for the whole period, as presented is section 3.4.2. To begin with, unit roots test will

follow.

C.1 Unit Roots Test

Following with the test procedures, the first thing to analyse is the ACF plots of CDS and

SKEW. From the plots (not shown), it is clear that both series are nonstationary on the

level and stationary on the first-difference, the high degree of persistence on the level ACF

is consistent with the presence of a unit root. Another indication of nonstationarity is given

by a unit root test. Table C.1 shows the result for KPSS test. The test rejects the null

hypothesis that the level of both series are stationary at the 1% critical value, but it fails

to reject the null hypothesis that the first difference of both series are stationary. Therefore,

both series are nonstationary I(1) processes. It is assumed that the data generation

process contains a constant and a linear time trend.

Variable CDS SKEW
Level
KPSS statistic 0.2348 0.2395
First difference
KPSS statistic 0.1806 0.1595
1% level critical value 0.2160 0.2160

Table C.1: KPSS test
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C.2 Granger Causality Test

The optimal lag length is chosen according to LR statistic at 5% level. The number of

lagged terms to be included in theVAR representation is 7, according to the output of EViews.

Granger causality tests are presented in Table C.2 and Table C.3. In Table C.2, the columns

reflect the marginal probability for the Granger-causal impact of the column-variables on the

row-variables. The last row informs the χ2 statistics with 7 degrees of freedom. Examining

the simple F test and the VAR χ2 approach, it seems that the causality is running from

both directions.

χ2 test CDS SKEW
CDS 0.0000 0.0000
SKEW 0.0019 0.0000
χ2 statistic 22.7691 43.1134

Table C.2: VAR pairwise causality test

F test F -statistic p-value
H0 : SKEW does not Granger Cause CDS 3.2527 0.003
H0 : CDS does not Granger Cause SKEW 6.1591 0.000

Table C.3: Pairwise causality test

C.3 VAR Especification

The VAR estimation is shown in equation C.1 and C.2 just with the statistically significant

coefficients at 5% level1. The whole representation is the last section of this Appendix.

CDS = −8.6738 + 0.8559 CDSt−1 + 0.3678 CDSt−2 (C.1)

−0.2721 CDSt−4 + 2.8665 SKEWt−2

adjusted R̄2 = 0.96

1The test for autocorrelation in the residuals at 1% level results that they are not autocorrelated.
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SKEW = 0.0191 CDSt−1 − 0.0214 CDSt−5 + 0.7091 SKEWt−1 (C.2)

−0.8321 SKEWt−2 + 0.6083 SKEWt−3 − 0.4056 SKEWt−4

+0.3497 SKEWt−5 − 0.2491 SKEWt−6 + 0.2674 SKEWt−7

adjusted R̄2 = 0.61

It is noteworthy that the VAR estimation gives the same results as Granger-

causality tests: in equation C.1 there are SKEW lagged terms and in C.2 there are also

CDS lagged terms. Note also the high value for the R̄2 measure for equation C.1 and

the not so high value for R̄2 in C.2. With the VAR regressions it is possible to examine

the impulse responses functions. As already said, the ordering of the variables influences

highly the results of the functions. Therefore, the analyses will be made in both directions:

once CDS entering last and then entering first.

C.4 Innovation Accounting

The graphical output of the impulse responses when the SKEW enters first in the Cholesky

decomposition are shown in Figure C.1. Since it is interesting to discover the impact of

the skew measure in CDS, it makes sense that CDS enters last. The output of the impulse

responses when the CDS enters first in the Cholesky decomposition are shown in Figure C.2.

Since it is interesting to discover the impact of CDS in the skew measure, it makes sense that

CDS enters first. The responses to the shock of one positive standard deviation in innovations

for each equation are traced out for a period of 50 days. The standard deviations bands are

displayed in dotted lines in the graphs.

Following the same systematic of the impulse response functions, Table C.4 Panel A shows

the variance decomposition of CDS, when CDS enters last and first in the ordering, respec-

tively. Panel B shows the variance decomposition of SKEW, when SKEW enters first and last

in the ordering, respectively.

One first evidence drawn from the variance decomposition is that even with different

ordering, CDS explains almost all of the forecast error variance of the CDS rates for the whole

period. In fact, the skew measure has little contribution to the variance decomposition of the

CDS rates. By contrast, there is a more balanced contribution of either CDS rates and skew

measure to the SKEW variance decomposition, even changing the ordering of the variables.
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Figure C.1: Impulse Responses for CDS and SKEW with CDS entering last

Panel A
CDS variance decomposition
Horizon (days ahead) CDS SKEW CDS SKEW
5 99.45 0.55 99.27 0.73
10 99.40 0.60 99.12 0.88
25 98.42 1.58 97.95 2.05
35 98.07 1.93 97.54 2.46
50 97.86 2.14 97.30 2.70
Panel B
SKEW variance decomposition
Horizon (days ahead) CDS SKEW CDS SKEW
5 1.72 98.28 1.42 98.58
10 6.58 93.42 6.04 93.96
25 54.73 45.27 54.04 45.96
35 76.56 23.44 75.93 24.07
50 90.45 9.55 89.86 10.14

Table C.4: Variance Decomposition
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Figure C.2: Impulse Responses for CDS and SKEW with SKEW entering last
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In fact, in the 25 days, about 50% of the variance is explained by the CDS rates and over

time CDS contributes more to explain the variance in the skew measure.

C.5 Cointegration Tests

Since there is a unit root in either variables and they have the same order of in-

tegration, I(1), cointegration tests may be carried out. Using the assumption that the

data-generation process contains a constant and a linear time trend, Johansen’s procedure

results is displayed in Table C.5 Panel A. Panel B shows the normalized cointegrating

vector.

Panel A:Tests
Critical Values Critical Values

Ho Trace 5% 1% Ho Max. Eigenvalue 5% 1%
r = 0 48.29 25.32 30.45 r = 0 41.39 18.96 23.65
r ≤ 1 6.89 12.25 16.26 r = 1 6.89 12.25 16.26

Panel B: Normalised cointegrating vector
CDS SKEW Trend Constant

Coefficient 1.00 -125.96 1.11 121.91

Table C.5: Johansen cointegration tests

The trace tests in Panel A reject the null hypothesis of no cointegration, r = 0, at all level

of significance and fail to reject the null hypothesis of at most one cointegrating vector, r ≤ 1.
Similarly, the maximum eigenvalue tests reject the null hypothesis of no cointegration at all

level of significance but fails to reject the other null hypothesis of at most one cointegrating

vector. Therefore, CDS and SKEW are cointegrated with one cointegrating vector.

In Panel B, all coefficients of the normalized cointegrating vector are significant at 1%

level. Thus the vector is ~β = (1.00,−125.96, 1.11)0.
Since the cointegration relationship can be found between CDS rates and the skewmeasure,

there must exist a representation of an error correction model (ECM) which shows

long and short run dynamics among the cointegrated variables, as described in equation 3.40.

In equation 3.49 of section 3.4.2, the estimated VECM is presented with only significant

coefficients at 10% level. The complete representation is shown in the next section of the

Appendix.
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C.6 VAR and VECM representations

The complete VAR and VECM representations with all the coefficients and its t-statistics of

the analysis of CDS rates and volatility skew for the bubble cycle (section 3.4.2) are reported

here. Table C.6 shows the 7-lags VAR estimation, where the first number in brackets are the

standard errors and second the t-statistic. Table C.7 shows the 7-lag VECM representation,

where the first number in brackets are the standard errors and second the t-statistic. In Table

C.7, adjustment stands for the coefficient of adjustment of the cointegrating equation. The

10% critical level is 1.65. For the VAR estimation the adjusted sample is from 10/09/2001 to

26/06/2002, and the number of observations is 208, after adjusting endpoints. For the VECM

representation the adjusted sample is from 11/09/2001 to 26/06/2002, and the number of

observations is 207, after adjusting endpoints.



APPENDIX C. VAR AND VECM REPRESENTATIONS OF SECTION 3.4.2 202

CDS SKEW CDS SKEW
CDS(-1) 0.8559 0.0191 SKEW(-6) -0.2018 -0.2491

(0.0777) (0.0076) (1.2168) (0.1190)
(11.0195) (2.5160) (-0.1658) (-2.0936)

CDS(-2) 0.3678 0.0135 SKEW(-7) 1.4665 0.2674
(0.1005) (0.0098) (0.9379) (0.0917)
(3.6594) (1.3785) (1.5635) (2.9154)

CDS(-3) -0.1412 0.0011 Constant -8.6738 -0.2322
(0.1063) (0.0104) (4.3055) (0.4210)
(-1.3285) (0.1021) (-2.0146) (-0.5515)

CDS(-4) -0.2721 -0.0127 R-squared 0.9648 0.6364
(0.1085) (0.0106) Adj. R- squared 0.9623 0.6100
(-2.5076) (-1.1923) Sum sq. resids 70198.44 671.3411

S.E. equation 19.0715 1.8651
CDS(-5) 0.2128 -0.0214 F-statistic 378.3247 24.1260

(0.1089) (0.0107) Log likelihood -900.5797 -417.0001
(1.9544) (-2.0066) Akaike AIC 8.8037 4.1538

Schwarz SC 9.0443 4.3945
CDS(-6) 0.0572 (0.0163) Mean dependent 252.7019 3.9188

(0.1098) (0.0107) S.D. dependent 98.2128 2.9865
(0.5209) (1.5222)

Determinant Residual Covariance 1219.3100
CDS(-7) -0.0814 -0.0068 Log Likelihood (d.f. adjusted) -1329.3070

(0.0889) (0.0087) Akaike Information Criteria 13.0703
(-0.9154) (-0.7862) Schwarz Criteria 13.5516

SKEW(-1) -1.0641 0.7091
(0.7441) (0.0728)
(1.4301) (9.7440)

SKEW(-2) 2.8665 -0.8321
(0.9469) (0.0926)
(3.0273) (-8.9863)

SKEW(-3) 0.0402 0.6083
(1.3213) (0.1292)
(0.0305) (4.7073)

SKEW(-4) 0.7429 -0.4056
(1.3676) (0.1337)
(0.5432) (-3.0327)

SKEW(-5) -0.8391 0.3497
(1.3028) (0.1274)
(-0.6441) (2.7453)

Table C.6: VAR Estimation
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∆CDS ∆SKEW ∆CDS ∆SKEW
Adjustmenta -0.0227 0.0064 ∆SKEW(-5) -0.4126 0.0702

(0.0121) (0.0011) (1.2246) (0.1139)
(-1.8753) (5.6479) (-0.3370) (0.6164)

∆CDS(-1) -0.0794 0.0107 ∆SKEW(-6) -1.0536 -0.2466
(0.0797) (0.0074) (0.9579) (0.0891)
(-0.9968) (1.4408) (-1.0999) (-2.7673)

∆CDS(-2) 0.2818 0.0234 ∆SKEW(-7) -0.6648 0.1271
(0.0799) (0.0074) (0.9707) (0.0903)
(3.5287) (3.1486) (-0.6849) (1.4073)

∆CDS(-3) 0.1106 0.0248 Constant 2.6372 -0.2325
(0.0902) (0.0084) (1.4667) (0.1364)
(1.2263) (2.9518) (1.7980) (-1.7045)

∆CDS(-4) -0.1662 0.0120 R-squared 0.2184 0.5643
(0.0929) (0.0086) Adj. R- squared 0.1570 0.5301
(-1.7905) (1.3897) Sum sq. resids 71768.85 620.8674

S.E. equation 19.3844 1.8029
∆CDS(-5) 0.0532 -0.0045 F-statistic 3.5574 16.4936

(0.0936) (0.0087) Log likelihood -899.0387 -407.4045
(0.5682) (-0.5152) Akaike AIC 8.8410 4.0909

Schwarz SC 9.0986 4.3485
∆CDS(-6) 0.0818 0.0154 Mean dependent 2.7633 -0.0420

(0.0944) (0.0088) S.D. dependent 21.1122 2.6302
(0.8665) (1.7548)

Determinant Residual Covariance 1160.1520
∆CDS(-7) -0.0820 0.0201 Log Likelihood -1301.1160

(0.0962) (0.0090) Log Likelihood (d.f. adjusted) -1317.7680
(-0.8525) (2.2460) Akaike Information Criteria 13.0702

Schwarz Criteria 13.6337
∆SKEW(-1) -3.7694 0.5120 a: The cointegrating vector is shown in equation 3.49

(1.4843) (0.1381)
(-2.5396) (3.7087)

∆SKEW(-2) -1.0903 -0.2757
(1.5308) (0.1424)
(-0.7123) (-1.9363)

∆SKEW(-3) -0.4248 0.1966
(1.4227) (0.1323)
(-0.2986) (1.4856)

∆SKEW(-4) -0.2006 -0.2067
(1.2481) (0.1161)
(-0.1607) (-1.7809)

Table C.7: VECM Representation



Appendix D

VAR and VECM representations of

section 3.4.3

The complete VAR and VECM representations with all the coefficients and its t-statistics of

the analysis of CDS rates and equity prices (section 3.4.3) are reported here. Table D.1 shows

the 8-lags VAR estimation, where the first number in brackets are the standard errors and

second the t-statistic. Table D.2 shows the 8-lag VECM representation, where the first number

in brackets are the standard errors and second the t-statistic. In Table D.2, adjustment stands

for the coefficient of adjustment of the cointegrating equation. The 5% critical level is 1.96.

For the VAR estimation the adjusted sample is from 10/08/2001 to 28/07/2003, and the

number of observations is 512, after adjusting endpoints. For the VECM representation the

adjusted sample is from 13/08/2001 to 28/07/2003, and the number of observations is 511,

after adjusting endpoints.

204
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CDS SKEW CDS SKEW
CDS(-1) 0.8864 0.009 SKEW(-5) -2.5973 0.1269

(0.0446) (0.0005) (4.2943) (0.0517)
(19.8652) (1.5981) (-0.6048) (2.4550)

CDS(-2) 0.2737 -0.0010 SKEW(-6) -2.6919 -0.0834
(0.0592) (0.0007) (4.2979) (0.0518)
(4.6257) (1.4775) (-0.6263) (1.6115)

CDS(-3) -0.1983 0.0016 SKEW(-7) 2.8199 -0.0299
(0.0604) (0.0007) (4.2887) (0.0516)
(-3.2810) (2.1836) (0.6575) (-0.5785)

CDS(-4) -0.0302 -0.0020 SKEW(-8) 0.1314 0.0295
(0.0610) (0.0007) (3.0111) (0.0363)
(-0.4950) (-2.7219) (0.0437) (0.8134)

CDS(-5) 0.1267 0.0001 Constant 1.9882 0.1018
(0.0613) (0.0007) (3.4121) (0.0411)
(2.0670) (0.1703) (0.5827) (2.4775)

CDS(-6) 0.0148 (0.0007) R-squared 0.9830 0.9603
(0.0607) (0.0007) Adj. R- squared 0.9825 0.9590
(0.2440) (0.9479) Sum sq. resids 145370.20 21.0729

S.E. equation 17.1370 0.2063
CDS(-7) -0.2082 -0.0005 F-statistic 1793.7450 748.8519

(0.0596) (0.0007) Log likelihood -2172.5670 90.2293
(-3.4928) (0.7083) Akaike AIC 8.5530 -0.2861

Schwarz SC 8.6937 -0.1453
CDS(-8) 0.1267 0.0005 Mean dependent 263.2949 4.2994

(0.0451) (0.0005) S.D. dependet 129.5324 1.0195
(2.8107) (0.9111)

Determinant Residual Covariance 12.4732
SKEW(-1) -1.0951 1.0049 Log Likelihood (d.f. adjusted) -2099.0300

(3.0783) (0.0371) Akaike Information Criteria 8.3321
(-0.3558) (27.1147) Schwarz Criteria 8.6136

SKEW(-2) -2.9033 -0.1038
(4.3148) (0.0520)
(-0.6729) (-1.9972)

SKEW(-3) 6.4267 -0.0301
(4.3160) (0.0520)
(1.4891) (-0.5783)

SKEW(-4) -0.0394 0.0490
(4.3058) (0.0518)
(0.0091) (0.9452)

Table D.1: VAR Estimation
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∆CDS ∆SKEW ∆CDS ∆SKEW
Adjustmenta -0.0188 0.0004 ∆SKEW(-4) 1.2670 -0.0245

(0.0088) (0.0001) (3.1056) (0.0373)
(-2.1419) (3.8758) (0.4080) (-6564)

∆CDS(-1) -0.0935 0.0006 ∆SKEW(-5) -1.4260 0.1044
(0.0451) (0.0005) (3.0853) (0.0371)
(-2.0760) (1.0341) (-0.4622) (2.8178)

∆CDS(-2) 0.1702 -0.0004 ∆SKEW(-6) -3.7470 0.0132
(0.0449) (0.0005) (3.0638) (0.0368)
(3.7929) (-0.6510) (-1.2230) (0.3597)

∆CDS(-3) -0.0275 0.0012 ∆SKEW(-7) -1.4448 -0.0106
(0.0454) (0.0006) (3.0506) (0.0366)
(-0.6063) (2.2182) (-0.4736) (-0.2885)

∆CDS(-4) -0.0544 -0.0009 SKEW(-8) 1.4717 0.0052
(0.0455) (0.0006) (3.0384) (0.0365)
(-1.1935) (-1.5703) (0.4844) (0.1421)

∆CDS(-5) 0.0698 -0.0007 Constant 0.0254 0.0011
(0.0455) (0.0006) (3.7599) (0.0091)
(1.5360) (-1.2247) (0.0335) (0.1220)

∆CDS(-6) 0.0796 (0.0001) R-squared 0.0915 0.1030
(0.0455) (0.0006) Adj. R- squared 0.0601 0.0721
(1.7499) (0.2366) Sum sq. resids 144092.40 20.7829

S.E. equation 17.0961 0.2053
∆CDS(-7) -0.1157 -0.0006 F-statistic 2.9194 3.3303

(0.0451) (0.0005) Log likelihood -2166.5680 93.0951
(-2.5660) (-1.0834) Akaike AIC 8.5502 -0.2939

Schwarz SC 8.6994 -0.1447
∆CDS(-8) 0.0534 -0.0007 Mean dependent -0.0450 0.0010

(0.0452) (0.0005) S.D. dependet 17.6345 0.2131
(1.1809) (-1.2232)

Determinant Residual Covariance 12.3096
∆SKEW(-1) -2.8387 0.0740 Log Likelihood -2073.2330

(3.7684) (0.0453) Log Likelihood (d.f. adjusted) -2073.5570
(-0.7533) (1.6358) Akaike Information Criteria 8.3388

Schwarz Criteria 8.6621
∆SKEW(-2) -5.5063 -0.0428 a: The cointegrating vector is shown in equation 3.46

(3.0934) (0.0372)
(-1.7801) (-1.1528)

∆SKEW(-3) 0.9653 -0.0732
(3.1008) (0.0372)
(0.3113) (-1.9667)

Table D.2: VECM Representation
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