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1 Introduction

The paper discusses theoretical properties, shows the performance and
presents some extensions of Heston’s (1993) stochastic volatility model.
The model proposed by Heston extends the Black and Scholes (1993)
model and includes it as a special case. Heston’s setting take into account
non-lognormal distribution of the assets returns, leverage effect, impor-
tant mean-reverting property of volatility and it remains analytically
tractable. The Black-Scholes volatility surfaces generated by Heston’s
model look like empirical implied volatility surfaces. The complication is
related to the risk-neutral valuation concept. It is not possible to build a
riskless portfolio if we formulate the statement that the volatility of the
asset varies stochastically. This is principally because the volatility is not
a tradable security.

2 Heston’s Stochastic Volatility Model

In this section we specify Heston’s stochastic volatility model and pro-
vide some details how to compute options prices.
We use the following notations:

S(t)  Equity spot price, financial index. . ..
V(t) Variance.
C European call option price.

K Strike price.

Wi, Standard Brownian movements.
r Interest rate.
Dividend yield.
K Mean reversion rate.
0 Long run variance.
Vo Initial variance.
o Volatility of variance.
0 Correlation parameter.
to Current date.

T Maturity date.

Heston’s stochastic volatility model (1993) is specified as followed

as()

av(t) = k(0@ — V(1)dt + o/ V(5)dW,. (1.2)

To take into account leverage effect, Wiener stochastic processes Wy, W,
should be correlated dW; - dW, = pdt. The stochastic model (1.2) for the
variance is related to the square-root process of Feller (1951) and Cox,
Ingersoll and Ross (1985). For the square-root process (1.2) the variance is
always positive and if 2k6 > o? then it cannot reach zero. Note that the
deterministic part of process (1.2) is asymptotically stable if « > 0.
Clearly, that equilibrium pointis V; = 6.
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Applying the Ito lemma and standard arbitrage arguments we arrive
at Garman’s partial differential equation
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where A is the market price of volatility risk.

Heston builds the solution of the partial differential equation (1.3)
not in the direct way but using the method of characteristic functions.
He is looking for the solution in the form corresponding Black and
Scholes model

C(So,K, Vo, t,T) = SP; — Ke~ —9T=0p, (1.4)

where P; is the delta of the European call option and P, is the condition-
al risk neutral probability that the asset price will be greater than K at
the maturity. Both probabilities P, P, also satisfy PDE (1.3) Provided that
characteristic functions ¢;, ¢, are known the terms P, P, are defined via
the inverse Fourier transformation

[o¢]
1 1 e Inky, Sy, Vo, t, T, u
Pj:E-;-—/.Re[ %o, Vo )]du, j=1,2. (15
b
0

m

Heston assumes the characteristic functions ¢, ¢, having the form

©(So, Vo, 75 ¢) = exp{G(r: @) + Di(zr; #)Vo +i9Se}, v=T—1, (1.6)

After substitution of ¢, ¢, in the Garman equation (1.3) we get the fol-
lowing ordinary differential equations for unknown functions G(z; ¢)
and Di(t; ¢):

@ —kOD(t; ) — (r — Q)i = 0, (1.7)
dDj(t; ¢)  o’DX(T; ¢) o L9t
Fr— 5 T —poddD(z;¢) —udi+ — =0
(1.8)
with zero initial conditions
G(0, ¢) = D(0,¢) = 0. (1.9)
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The solution of the system (1.7) (1.9) is given by

., kO , 1—ge'*
C(r,¢) = (r —¢it + — { (b — podi+d)T — 21n :
o 1-g
(1.10)
b — podi+d 1—ed’]
D(t: — ]
(= 9) o2 [1 — ged
where
b —pogi+d : :
=——— d= —b)? — a2Quipi — ¢?).
b— pogi—d (o1 =) o2 ugi - 9*)
u; =0.5, uy,=-0.5a=«k6, b, =«+A—po, (1.11)
bz =K+)\.

3 Realization of Heston’s Stochastic
Volatility Model

3.1 How to use the model
Implementing such a model consists of different parts that can be divid-
ed under a lot of people:

e The first thing is to implement the closed-form solutions for a stan-
dard call for the Heston model and the Heston model with jump
diffusion, trying to optimize the numerics for speed, such that the
calibration can be done as fast as possible.

e The closed-form solution should be verified with a Monte-Carlo
(MC) simulation and by directly solving the resulting PDE’s using
the Finite Difference Method (FDM).

¢ With the closed-form solutions a suitable set-up should be estab-
lished to calibrate the models to traded standard calls.

¢ With the now calibrated model we finally should be able to calcu-
late the price and the greeks of volatility sensitive products such as
cliquets using again Monte-Carlo simulation and the Finite
Difference Method.

Everything should be done in C++ and be usable as a DLL in Microsoft
Excel.

3.2 Implementing the Fourier integral

Inverse Fourier transformation (1.5) is the main point in numerical
implementation of the option valuation algorithm provided that charac-
teristic function is known.

The complex numbers can be conveniently implemented by using
the complex <> class from the C++ Standard Library. Because the
integral should be computed with a high precision for a wide range of
parameters (parameters of the stochastic vol process, different strikes
and maturities) we decided to use an adaptive quadrature for the first
try. Then the algorithm can adjust to changes in the integrand on its
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own, saving us from the need to do so. We use an adaptive Simpson
and an adaptive Gauss-Lobatto quadrature which both give good
results, where the Gauss-Lobatto one uses less computation time for
the same precision. But after some experience with the model, we
ended up with a special optimized fixed stepwidth Gauss quadrature
for faster computation.

3.3 The pitfalls of the complex logarithm

Due to the fact, that the complex logarithm is multiple valued (see
Figure 1)

logz = log |z| + i(arg(z) + 2mn) (1.13)
with n being an integer, one usually restricts the logarithm to its prin-
ciple branch by restricting arg(z) € [-=, 7| and setting n = 0. This
choice is used by the standard C++ log-function and it is necessarily
discontinuous at the cut along the negative real axis. At first we had
problems with numerical implementation of complex logarithm.
Fortunately, we found help at www.wilmott.com in the thread on sto-
chastic volatility models. After implementing the code with a complex
logarithm function that maintains continuous over the cut (thanks
Roger for the instruction), the results of our three different numerical
approaches (Monte-Carlo simulations, Finite Difference method and
closed-form solution) agreed nicely and this gave us the confidence to
continue our work.

Real part of In(z) Imaginary part of In(z)

-4 -4

0

2 Re(z) Re(z)

FIGURE 1: Shows the real part and principle branch of imaginary part of complex
logarithm

4 Calibration of Heston’s Model to Market
Data

With the now stable implementation of the closed-form solution we are
able to calibrate the models to some traded plain vanilla calls.

4.1 Calibration scheme

We decide to do a least squared error fit in the following way.

Let 7y, 12, ..., Ty be some times to maturities with fwd,, fwd,, ..., fwdy
being the corresponding forwards and dfs, dfs,, ..., dfsy the correspon-
ding discount factors. Let X;, X,, ..., Xy be a set of strikes and aij.mp the cor-
responding market implied volatility. The aim of the calibration is to mini-
mize the least squared error

N M

SqErr(0) = Z Z Wi [Cvp (X3, ) — Cov (S(D), Xi, fwd, dfs;, 7, 6)]"

i=1 j=1

+ Penalty (©, ©g)

(1.14)

where Cyp (X, 1) denotes the market price for a call with strike X; and
maturity g. Cgy is the price calculated with the stochastic volatility model
which depends on the vector of model parameters ® = («, 0, o, p, Vo, A)
for the Heston model. Further «, typically @ = 2n,n = 1, 2, .... The penal-
ty function may be e. g. the distance to the initial parameter vector
Penalty(®, ®y) = ||® — O¢||*> and may be used to give the calibration
some additional stability.

As it turns out, the suitable choice of the weight factors w; is crucial
for good calibration results.

4.2 Local vs. global optimization

Minimizing the objective function (1.14) is clearly a nonlinear pro-
gramming (NLP) problem with the nonlinear constrain
2k0 — o* > 0. This condition ensures that the volatility process
cannot reach zero. Unfortunately the objective function is far from
being convex and it turned out, that usually there exist many local
extrema. As a consequence we decide to try both local and global
optimizers:

* Local (deterministic) algorithms

Within these types of algorithms one has to choose an initial
guess (hopefully a good one) for the parameter vector ®, € R?.
The algorithm then determines the optimal direction and
the stepsize and is moving downhill on the parameter mani-
fold to the minimum of the objective function. There are a lot
of algorithms available both for unconstrained and con-
strained problems and are usually based on simplex or some
kind of gradient method. Most of these algorithms work rea-
sonably fast, but one always has the risk to end up in a local
minimum. As a consequence a good initial guess is crucial.
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* Stochastic algorithms

In contrast to the local optimizers the initial guess is (hopeful-
ly) irrelevant in the concept of stochastic optimization. The sim-
ulated annealing algorithm chooses the direction and stepsize
randomly, it “searches everywhere”. It moves always downhill
but may accept an uphill move with a certain probability pr
which depends on the annealing parameter T. This parameter
is called “the temperature” for historical reasons. During the
optimization process the temperature is gradually reduced.
There exist some convergence theorems, which state that the
algorithm always ends up in the global minimum if the anneal-
ing process is sufficiently slow. There are different variants (e.g.
FA, VEFSRA, ASA) available which differ from the original simu-
lated annealing (SA) in the annealing scheme, but in general
these stochastic algorithms are computationally more burden-
some than the local optimizers.

0.30% 4 -

4.3 Results

We tested different local optimizer and surprisingly the built-
in Excel solver, which comes with Excel for free, turned out to
be very robust and reliable. It is based on the Generalized
Reduced Gradient (GRG) method (s. www.solver.com for details)
and is our favored optimizer when we have some “good” initial guess
for our parameter vector, e.g. if one has to recalibrate the model
every day and the volatility surface has not changed much. We were
able to calibrate the Heston model to the S&P 500 index with an max-
imum error of less than 0.15% for ATM calls (s. Figures 2 and 3). The

S&P 500 12July2002

50% =
40%
30% -

20%

100 450

Maturity t

200 Strike K

250 O

FIGURE 2: Volatility surface for the S&P 500 index
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FIGURE 3: Errors after calibration the Heston model to the S&P 500 index

Excel solver may however sometimes end up in a local minimum
instead of reaching the global minimum. In such cases or when there
is no good initial guess available, we use the adaptive simulated
annealing (ASA) algorithm (www.ingberg.com), which allows a faster
annealing scheme than the standard SA. It further turned out, that
adding jump-diffusion to the Heston model often does not improve the
quality of the calibration any more. This may be due to the fact, that
the market now frequently shows an inverted yield curve and the
model is simply overtaxed with this situation.

5 Stochastic Volatility Model with Time-
dependent Parameters

Why are more complex stochastic models required? The answer is sim-
ple—because the prices from stochastic engines are not supported by
market prices. As a result financial engineers have to recalibrate model
parameters every day to new market data. It is not consistent with an
accurate description of the dynamics. The next (but not the last) step in
the stochastic volatility models history is to models with time-depend-
ent parameters. Since the Riccati differential equation (1.8) is non-lin-
ear, the generalization of Heston model for variable parameters is not
straightforward.

5.1 Analytical solutions to the Riccati equation
We rewrite the Riccati equation (1.8) in the standard form
dx(t)
dt

+ a()x*(t) + b(O)x(t) + c(t) = 0. (1.15)

77



78

Recall, that the general solution of a Riccati equation (1.15) cannot be
expressed by means of quadratures except in some particular cases.

The simplest case is a(t) = 0. In this case we have a linear differential
equation with variable parameters that has an analytical solution.

After change of variable y(t) = —1/x(t) we arrive again at Riccati
equation

d
YO | cwy2® + boy® +aw = o.

- (1.16)

Therefore if ¢(t) = 0 in the original Riccati equation then after transfor-
mation we obtain again the linear equation with analytical solution.

The general solution of the Riccati equation can be written by means
of two quadratures if one particulary solution of a Riccati equation is
known.

For the Heston stochastic volatility model the ordinary extension for
the time-dependent coefficients is long run variance 6. Since this
parameter does not appear in the Riccati equation (1.8) the analytical
solution for arbitrary 6(t) can be constructed. For the other Heston mod-
els coefficients «, p, o the generalization to the time-dependent model is
not so straightforward. Some analytical solutions are possible. For exam-
ple if x(t) = at + b, or x(t) = ae~*". In this case the Riccati equation (1.8)
has closed form solutions expressed by means of hypegeometric func-
tion. The drawback—numerical implementation of this analytical solu-
tion might be more time consuming than direct numerical integration
of equations (1.7), (1.8).

5.2 Asymptotic solution to Riccati equation

As to find the general solution of the Riccati equation with time-variable
coefficient is not possible. Natural approach is to apply asymptotic meth-
ods. Let for simplicity all Heston model parameters but the correlation
coefficient are constant. The approximate solution to the Riccati equa-
tion can be found in the form of the asymptotic expansion

p(t) = po +epr(t) + o2 (1) + ...,

) (1.17)
D(t) = Do(t) + eDi(t) + "D (D) + .. .,

e K 1.

In the first approximation we arrive at a linear equation with
time-variable coefficients. To obtain the solution of this ODE is
straightforward

t T

Dy(t) = —Oui/m (t)Do(7) exp fDo(é)dé" — (=pooui+b)t ¢ dr

0 0 (1.18)

X exp (—O/EDo(r)dr + (—pooui + b,-)t)

The alternative to the above-discussed approach is asymptotic analysis of
the systems with slow varying parameters.

5.3 Analytical solution to Riccati with piece-wise con-
stant parameters

The second extension of standard Heston stochastic volatility model to
time-dependent coefficients is the setting with piecewise-constant
parameters. We can define the solution of the Riccati equation (1.8)
with piecewise-constant coefficients by means of adjusting of initial
conditions.

At first we need a solution of the equations (1.7), (1.8) with arbitrary
initial conditions

G(0,¢) =C’.Di(0,¢) =D (1.19)

The solution was build by means of computer-algebra system Maple.

0
G(z.¢) = (r — QT + Z—Z

1— gerd (1.20)
X ((bj — pogi+d)r —21In (7))
1-g
_ b —pogi+d— (b — pogi—dge’
Di(r. ¢) = 1 gei)o? (1.21)
where

bj—pa(ﬁi—l—d—Djooz
&= b — podi—d—Do?’

d= \/(pa(pi — )2 — o2 Qupi — ¢?).  (1.22)

The solution is close to the Heston one (1.10), (1.11). The time interval to
maturity [t, T] is divided into n subintervals [t,t,], ..., [t, §], ..., [tam1, T]
where t;,k =1,...,n— 1 is the time of model parameters jumps. Model
parameters are constant during [t;, ] but different for the each subinter-
val. Further on it is convenient to use the inverse time 7 = T — t. The ini-
tial condition for the first subinterval from the end [0, r;] where
w=T—1t,_x,k=1,...n—1 is zero. Therefore we can use Heston’s solu-
tion (1.10), (1.11). For the second subinterval [z;, ;] we employ the gener-
al solution (1.20)—(1.22) with arbitrary initial conditions (1.19). Provided
that functions G(z, ¢), Di(z, ¢) are continuous in the time of parameters
jump 7; the initial conditions for the second subinterval can be found
from the following condition

G(0,9) =G =C'(t1,),D(0,¢) = D’ = D'(t1, $) (1.23)
where C(71, ¢), D (71, ¢) are Heston’s solutions with zero initial con-
ditions, Solving the above equations relative to CJ.O,DJ.0 we obtain the
initial values for the second time interval. The same procedure is
repeated at each time moment 7,k = 2,...,n —1 of the parameters
jumps.
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Thus the calculation of the option price for the model with piecewise-
constant parameters consists of two phase:

Firstly we determine the initial conditions for the each time interval in
accordance with formulas (1.23)

Secondly we calculate the functions G(z, ¢), Di(t, ¢) using the solution
(1.20)—(1.22) with initial conditions (1.22)

For the numerical realization this solution is closed to the Heston
one. Additionally we have to calculate initial conditions for the second
time interval.

6 Numerical Verification of the Model
with Time-dependent Parameters

Here we compare options prices calculated according to techniques
described in section 5.3 and options prices from a Monte Carlo engine.
The algorithm was implemented in C/C++ code. We assume that mean
reversion parameter « time-dependent and all other model parameters
are constant. Opening price S, of the underlying asset is 1, the maturity
of the option considered is 5 years, interest rate is 0, start value for
volatility Vj is 0.1, the long run variance 6 is 0.1 volatility of variance o is
0.2, correlation coefficient p is —0.3, market price of volatility risk A is 0.

TABLE I. COMPARISON OF ANALYTIC SOLUTION
WITH MONTE CARLO SIMULATIONS

k=1{4,2,1},T=5

Monte-Carlo Analytical
solution
N = 150000, n_b = 150
K Value StdDev Value Abs Err Rel Err
0.5 0.545298 0.001 0.543017 0.002281 | 0.004201
0.75 0.387548 0.001048 0.385109 0.002439 | 0.006333
1 0.275695 0.001021 0.273303 0.002392 | 0.008752
1.25 0.197629 0.000949 0.195434 0.002195 | 0.011231
15 0.143341 0.00086 0.14121 0.002131 | 0.015091
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The results of the numerical simulations for various strikes K are pre-
sented in the table 1.

7 Conclusions

The attractive features of the Heston stochastic volatility model are:

e its volatility updating structure permits analytical solutions to be
generated for standard plain vanilla European options and thus
the model allows a fast calibration to given market data

¢ the form of the Heston stochastic process used to model price
dynamics allows for non-lognormal probability distributions

¢ Heston stochastic model takes into account the leverage effect

¢ The Heston and the HJD model are able to nicely reproduce a wide
range of the volatility surfaces implied from option prices in the
market

On the other hand there remain some disadvantages and open questions:

¢ the integrals needed for the computation of the option prices do
not always converge nicely

¢ To perform well across a large time interval of maturities further
extensions of the model are necessary (such as time-dependent
parameters)

e Heston’s model implicitly takes systematic volatility risk into account
by means of a linear specification for the volatility risk premium.

e The standard Heston model usually fails to create a short term skew as
strong as the one given by the market, the HJD model is often unable
to fit an inverse yield curve.
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