
Local volatility models (Dupire, 1994), whose raison d’être is their abil-
ity to exactly fit observed market smiles, have historically been used to
price skew-sensitive options. Even though implied volatilities do move in
these models, their motion is driven purely by the spot and is dictated by
the shape of the market smile used for calibration. This also materialises
in the fact that forward smiles depend substantially on the forward date
and the spot value at the forward date.

It would be desirable to be able to independently calibrate today’s
market smile and specify its future dynamics. One can attempt to di-
rectly specify an ab initio joint process for implied volatilities and the
spot. This approach has been explored (Schönbucher, 1999) but is ham-
pered by the difficulty of ensuring no arbitrage in future smiles.

In this article, we focus on models based on a specification of the spot
process. We consider some of the most popular models and characterise
the dynamics of implied volatilities that they generate. Our purpose is not
to be exhaustive; rather, we select examples of models and products to
point out specific properties of the models at hand and, more important-
ly, structural features that are shared by classes of models. We comment
on the pricing of specific products.

This article is organised as follows. In the next section, we set up a
simple pricing and hedging framework for models in incomplete markets,
specialising to the case of stochastic volatility and jump and Lévy process-
es. We discuss pricing equations and deltas. We then deal with the Hes-
ton model, typical of one-factor stochastic volatility models. Jump and
Lévy processes and one of their stochastic volatility extensions are then
covered. The concluding section summarises and presents our views on
future work.

This article focuses on the dynamic properties of smile models. In the
Black-Scholes model, by construction, implied volatilities for differ-
ent strikes are equal and frozen. Over the years, several alternative

models, starting with local volatility, have emerged that aim to fit market
implied volatilities across strikes and maturities.

This capability is a desirable feature of any smile model: the model price
then incorporates by construction the cost of trading vanilla options to
hedge the exotic option’s vega risk – at least for the initial trade. Other-
wise, the price has to be manually adjusted to reflect hedging costs, that
is, the difference between market and model prices of vanilla options used
for the hedge. This may be sufficient if the vega hedge is stable, which is
usually the case for barrier options.

However, most of the recent exotic structures, such as Napoleons and
reverse cliquets1, require rebalancing of the vega hedge when the under-
lier or its implied volatilities move substantially. To ensure that future hedg-
ing costs are priced-in correctly, the model has to be designed so that it
incorporates from the start a dynamic for implied volatilities that is con-
sistent with the historically experienced one.

Stated differently, for this type of options, ∂2P/∂σ̂2 and ∂2P/∂S∂σ̂ are
sizeable and a suitable model needs to price in a theta to match these gam-
mas. In our view, this issue is far more important than the model’s ability
to exactly reproduce today’s smile surface.
■■ An example. As an illustration, let us consider the following example
of a Napoleon option with a maturity of six years. The client initially in-
vests 100, then gets a 6% coupon for the first two years and, at the end of
years three, four, five and six, an annual coupon of 8% augmented by the
worst of the 12 monthly performances of the Eurostoxx 50 index observed
each year, with the coupon floored at zero. At maturity, he also gets his
100 back. The payout for the last four coupons is designed so that their
value at inception is very small, thereby financing the ‘large’ fixed initial
coupons2, which we remove from the option in what follows.

Figure 1 shows on the left the Black-Scholes value of the option at
time t = 0, as a function of volatility. As we can see, the Napoleon is in
effect a put option on long (one-year) forward volatility, for which no
time value has been appropriated for in the Black-Scholes price (no theta
matching ∂2P/∂σ̂2).

Now let us move to the end of the first month of year three. The right-
hand side of figure 1 shows the vega of the coupon of year three at 20%
volatility, as a function of the spot price, assuming the spot value at the
beginning of the year was 100. It is a decreasing function of the spot
and goes to zero for low spot values, as the coupon becomes worthless.
Now, as the spot decreases, the option seller will need to buy back vega.
However, moves in spot prices are historically negatively correlated with
moves in implied volatilities, resulting in a negative profit and loss to
the seller, not accounted for in the Black-Scholes price (no theta match-
ing ∂2P/∂S∂σ̂). 

The Black-Scholes price should thus be adjusted for the effect of the
two cross-gammas mentioned, as well as for the one-month forward skew
contribution.
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Smile dynamics
Traditionally, smile models have been assessed according to how well they fit market option
prices across strikes and maturities. However, the pricing of most recent exotic structures,
such as reverse cliquets or Napoleons, is more dependent on the assumptions made for the
future dynamics of implied volatilities than on today’s vanilla option prices. Here, Lorenzo
Bergomi studies examples of some popular classes of models, such as stochastic volatility
and jump/Lévy models, to highlight some structural features of their dynamic properties
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1. Price and vega of Napoleon

1 See review article by Jeffery (2004)
2 As well as the distributor’s fee, typically 1% a year



Pricing and hedging
Pricing and hedging is in essence a stochastic control problem: once a
measure of the replication risk has been specified, what is the optimal
hedging strategy, and what price should be quoted?

In the usual Black-Scholes and local volatility framework, the only source
of randomness is the spot process, which is diffusive. It turns out that the
delta strategy not only minimises the replication risk, it eliminates it. This
peculiar feature is typical of this framework and is not generic. Actually,
the variance of the hedger’s final profit and loss will be finite only because
trading in the underlier does not occur continuously in time.

In more general settings, the variance of the final profit and loss (P&L)
will be finite even though trading occurs continuously, either because the
spot process is not continuous (this is typical of jump and Lévy process-
es) or because additional sources of randomness are present (as in sto-
chastic volatility models) or both.

In this article, we derive pricing equations assuming that we only trade
in the underlier. Our criterion is to minimise the variance of the hedger’s
discounted final profit and loss3, which, for a European-style option reads:

(1)

Here, f denotes the payout function, r is the interest rate, T is the ma-
turity, and q incorporates both repo cost and dividend yield. ∆ is a func-
tion of S and t, and may depend on other variables. ∆ is determined by
requiring that it minimises the variance of the profit and loss. We then de-
fine the price of the option as –E[P&L].

In contrast with approaches based on utility functions, we do not ad-
just the price for the residual risk. One reason is that, in practice, the op-
tion will be added to an existing book: the marginal variation in the risk
upon adding an extra option depends on the existing book. The other rea-
son is that, for the sake of simplicity, we want pricing to remain a linear
operation: the price of a book is the sum of the prices of each option in
the book. In the two following sections, we carry out this analysis, first for
the Heston model, typical of one-factor stochastic volatility models, then
for a jump model.
■■ Stochastic volatility – the Heston model. In the Heston model (He-
ston, 1993), the historical dynamics for the spot process is:

(2)

where W, Z are Brownian motions with correlation ρ.
Let m∆(t, S, V) be the expectation and v∆(t, S, V) the variance of the

hedger’s discounted final profit and loss assuming zero initial wealth at
time t. The subscript ∆ indicates that m and v depend on the – as yet un-
known – function ∆(t, S, V). In the Hamilton-Jacobi-Bellman (HJB) sto-
chastic control formalism, one derives a partial differential equation for the
‘value function’ J. Here, the part of J is played by v∆, the control being ∆.
In contrast to the usual HJB setting, the equation for v∆ is not autonomous;
it has to be supplemented with an equation for m∆. In what follows, we
will drop the ∆ subscripts for notational economy. From the dynamics (2),
we derive the following coupled equations for m and v:

where the differential operator L reads:

At maturity, the profit and loss has no uncertainty anymore, hence the
boundary conditions for m and v:
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As expected, the source term in the equation for m only involves the
difference between the historical drift µ and r – q, which is the cost of trad-
ing in the underlying. The source term for v is the sum of two positive
contributions: one generated by the spot, the other generated by the por-
tion of volatility degrees of freedom that cannot be hedged by the spot.
By variationally differentiating v with respect to ∆ and requiring that v be
minimal, we get the following expression for ∆:

This expression of ∆ makes the first source term in the equation for v
cancel out. The second term remains: the variance of the final profit and
loss does not vanish and there is no risk-neutral price for the option. We
define the price P as P = –m.

By plugging the expression of ∆ in the equation for m, we get the fol-
lowing equation for P:

(3)

where:

∆ is given by:

(4)

A few observations are in order:
■ As expected, the pricing drift for the spot is its financing cost r – q.
■ The Black-Scholes delta and price are recovered when σ tends to zero.
■ The second portion of the delta is the ratio of the covariance of V and
S increments to the variance of S increments.
■ V0 is renormalised. This is due to the fact that the volatility degree of
freedom is partially hedged by trading in the underlying. Note that V0

__

keeps
the same functional form as V0 (here a constant) so that the pricing equa-
tion keeps its usual form. In other stochastic volatility models, the func-
tional form for the pricing drift of V as a function of S and V will be different,
unless µ = r – q.

We will use the above pricing equation in the sequel and replace V0

__

with V0 for notational economy. As in the Black-Scholes framework, the
pricing equation generalises to path-dependent options.
■■ Jump models. Now we apply the same ideas to jump models (Merton,
1976). Let the process for the spot be a jump-diffusion process where σ is
the volatility, λ the intensity of the Poisson process and J the size of the
jumps, itself a random variable:

Now ∆ will depend solely on S and t. The equations for m and v are:

with the same boundary conditions as in the previous section. We have
used the following notation: δm = m(S(1 + J), t) – m(S, t) and f

_
= E[ f ],

where the expectation is taken over J, the amplitude of the jump. The in-
tegro-differential operator L is defined as:
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3 See Bouchaud & Potters (2000) for a treatment in discrete time



and the associated delta is:

(8)

This can be generalised to Lévy processes and path-dependent options.

Dynamic properties – stochastic volatility (the Heston model)
Here, we examine the Heston model, a typical example within the class
of one-factor stochastic volatility models. First, we characterise its static
properties. Next we compare the model-generated dynamics of implied
volatilities with their historical dynamics. Then we comment on the pric-
ing of forward-start options and end with a discussion of the delta and a
comparison with local volatility models.
■■ The Heston model. The Heston model has five parameters, V, V0, ρ, σ
and k, among which k plays a special role: τ = 1/k is a cutoff that separates
short and long maturities. The Heston model is homogeneous: implied volatil-
ities are a function of V and moneyness: σ̂= f(K/F, V), where F is the for-
ward price. Perturbation of the pricing equation at first order in σ yields the
following expressions for the skew and at-the-money-forward volatility:
■ T << τ, at order zero in T:

(9)

■ T >> τ, at order one in 1/T:

(10)
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Differentiating with respect to ∆ yields the following expression:

(5)

which is readily interpreted as the ratio of the covariance of the price and
spot increments – either generated by diffusion or by jumps – to the vari-
ance of the spot increments. Let us now set P = –m and use the above ex-
pression for ∆.

A power expansion in the size of jumps yields at the lowest non-triv-
ial order:

(6)

Because ∆ is different from ∂P/∂S, one can see in the equation for m
that µ remains in the pricing equation. Thus by using the delta in equa-
tion (5) we are making a bet on the realised historical drift. This materi-
alises in the fact that our profit and loss between two re-hedges comprises
a linear term of the form (∆ – ∂P/∂S)δS, where δS is the variation of the
spot. This is the price we pay for having an ‘optimal’ delta that takes jumps
into account: in exchange for reducing the contribution of jumps to the
variance of the profit and loss, we increase the contribution of the ‘nor-
mal’ diffusive behaviour.

Thus it will be sensible to use the delta in equation (5) only if the spec-
ification of the jump model is in agreement with the historical dynamics
of the underlying. As this is not guaranteed, it may be wiser to choose ∆
= – ∂m/∂S so as to remove the linear contribution in the profit and loss.
This is the choice we make here.4 The pricing equation then reads:
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reducing the size of the profit and loss upon a jump, the delta in equation (5) would be used



The long-term behaviour of the skew is what we expect: in a stochas-
tic volatility model with mean reversion, increments of ln(S) become sta-
tionary and independent over long periods. Thus the skewness of ln(S)
scales like 1/√T; consequently5, the skew decreases like 1/T.

Let us write the expression of the variance swap volatility σ̂VS (T), de-
fined such that Tσ̂2

VS(T) is the expectation of the realised variance for ma-
turity T:

(11)

■■ Dynamics of implied volatilities. We have calibrated the market im-
plied volatilities of the Eurostoxx 50 index from March 12, 1999, to March
12, 2004, for options with maturities of one month, three months, six months
and one year.

Although the dynamics of both short and long implied volatilities in
the model is driven by V, equation (11) shows that the dynamics of V
is mostly reflected in that of short volatilities. We thus choose k = 2 and
fit all other parameters. The daily historical values for V, V0, σ and ρ are
shown in figure 2.

We can see surges in volatility on September 11, 2001, in summer 2002
following the WorldCom collapse and in spring 2003 at the beginning of
the second Gulf war.

Figure 3 shows how well levels of short and long implied volatilities
are tracked. The graph on the left shows the at-the-money one-month im-
plied volatility and √V.

The right-hand graph in figure 3 shows the one-year at-the-money
volatility as well as the one-year variance swap volatility, calculated from
V and V0 using equation (11). We see that, as we would expect for equi-
ty smiles, the variance swap volatility lies higher than the at-the-money
volatility. Here, too, the calibration is satisfactory.
■ Discussion. In the Heston model, while S and V are dynamic, V0, ρ and σ
are supposed to be constant. Their dynamics is not priced-in by the model.
Figure 2 shows that: V0 moves, but this is expected as the model fits both
short and long implied volatilities; ρ is fairly stable, and does not seem cor-
related with other parameters; and σ is the most interesting parameter. We
have superimposed the graph of V with a scale 10 times larger. We see that
σ varies substantially and seems closely correlated with V.

The last observation can be accounted for by looking at the approxi-
mate expression for the short-term skew. Equation (9) shows that in the
Heston model it is inversely proportional to √V, which is approximately
equal to the at-the-money volatility. The fact that fitted values for σ are
roughly proportional to V suggests that market skews are proportional to
at-the-money volatilities, rather than inversely proportional.

In this respect the model is mis-specified, since it is not pricing in the
observed correlation between V and σ. This correlation is very visible in
graphs for V and σ, mostly for extreme events. However, it is high even in
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more normal regimes. For example, daily variations of V and σ measured
from March 15, 1999, to September 10, 2001, have a correlation of 59%.

The recent past shows different behaviour: starting in summer 2003,
while at-the-money volatilities decreased, skews steepened sharply, an ef-
fect that the Heston model naturally generates. Figure 2 indeed shows that
during that period σ remains stable while V decreases.

Let us now turn to the dynamics of implied volatilities generated by the
model, as compared with the historical one. In the Heston model, the im-
plied volatility dynamics is determined, by construction, by that of S and V.

We can use daily values for the couple (S, V) to check whether their
dynamics is consistent with the model specification (2). Let us calculate
the following averages, which in theory should all be equal to one:

where brackets denote historical averages using daily variations.
From these numbers, we estimate that:

suggesting that calibration on market smiles overestimates the volatility of
volatility σ by 40%, while the value of the spot/volatility correlation ρ is
captured with acceptable accuracy.

Surprisingly, RS is notably different from one, showing that short implied
volatilities overestimated historical volatility by 13% on our historical sam-
ple, possibly accounting for the enduring popularity of dispersion trades.

It is possible that these global averages are excessively affected by ex-
treme events. Let us then look at running monthly averages. Figure 4 shows
the results for the six following quantities:

where brackets now denote running monthly averages. The sign of:

has been changed.
We see that even during normal market conditions, the difference be-

tween realised and implied quantities is substantial. For example, using
monthly running averages estimated on data from March 15, 1999, to Sep-
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price of a call option is an increasing and convex function of its implied
volatility, uncertainty in the value of future implied volatility increases the
option price.

As T1 is more distant, the distribution for V becomes stationary in the
Heston model. Thus forward smiles collapse on to a single curve for T1 >>
6 months, in our example. This is manifest in figure 5.

The graphs also show that the increased convexity with respect to
today’s smile is larger for strikes ξ > 100% than for strikes ξ < 100%.
This can be traced to the dependence of the skew on the level of at-
the-money volatility. Since the short-term skew is inversely proportion-
al to the at-the-money volatility, implied volatilities for strikes above
100% will move more than those for symmetrical strikes below 100%.
This is specific to the Heston model.

While the forward smile is a global measure of the distribution of im-
plied volatilities at a forward date, it is instructive to look at the distribu-
tion itself. Let T1 >> 1/k. The density of V has the following stationary form:

Using the parameter values listed above, we find that (2kV0/σ
2) –1 = –0.6,

that is, the density for V diverges for small values of V.
Thus even simple cliquets are substantially affected by the model spec-

ification. The practical conclusion for pricing is that, for short-term for-
ward-start options, the Heston model is likely to overemphasise low
at-the-money volatility/high skew scenarios.
■■ Local dynamics and delta. We here study the local dynamics of the
Heston model: how do implied volatilities move when the spot moves?
This sheds light on the model’s delta since its deviation from the Black-Sc-
holes value is related to the model’s expected shift in implied volatilities
when the spot moves.

In local volatility models, the motion of implied volatilities is driven by
the spot. From the expression of the local volatility (Dupire, 1994), with
the assumption of short maturity and weak skew, one can derive the fol-
lowing well-known relationship linking the skew to the dynamics of the
at-the-money volatility as a function of the spot:

showing that σ̂K = S moves ‘twice as fast’ as the skew.
In stochastic volatility models, while implied volatilities are not a func-

tion of S, they are correlated with S. This is what the second piece of the
delta in equation (4) hedges against. Conditional on a small move of the
spot δS, V moves on average by δV = (ρσ/S)δS.

Let us calculate the expected variation in σ̂F, for short and long matu-
rities:
■ For T << τ we use expressions (9), correct at order zero in T. At this
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tember 10, 2001, gives the following numbers:

corresponding to the following ratios:

again showing that, while the spot/volatility correlation ρ is well captured
by market smiles, the volatility of volatility σ is overestimated by roughly
a factor of two.

This means that the model is pricing in a volatility of volatility for one-
month at-the-money volatilities that is twice as large as its historical value:
future vega re-hedging costs are not properly priced-in. It also implies that
the delta:

is not efficient, as it over-hedges the systematic impact of spot on volatility.
The main results of our historical analysis are: σ and V are closely cor-

related; and the value of σ determined from calibration on market smiles
is larger by a factor of two than its historical value.

While the first of these could be solved by altering the model’s speci-
fication, the second is structural. Indeed, we have only one device in the
model – namely the volatility of volatility σ – to achieve two different ob-
jectives, one static, the other dynamic: create skewness in the distribution
of ln(S) so as to match market smiles, and drive the dynamics of implied
volatilities in a way that is consistent with their historical behaviour. It is
natural that we are unable to fulfil both objectives. We view this as a struc-
tural limitation of any one-factor stochastic volatility model.

We have concentrated here on the dynamics of short-term volatilities.
Space prevents us from examining the crucial issue of the term structure
of the volatility of volatilities, which is controlled by the correlation func-
tion of V.
■■ Forward-start options. Here we consider a one-period forward call
option that pays:

at date T1 + θ, for different values of moneyness ξ. From the model-gen-
erated price of the forward-start option we imply Black-Scholes volatilities
to get what is called the forward smile σ̂(ξ).

Figure 5 shows the forward smile calculated using the following typi-
cal values: V = V0 = 0.1, σ = 1, ρ = –0.7 and k = 2, for two values of θ: 0.25
(three months) and one (one year). Today’s smile (T1 = 0) is also plotted
for reference. 

Note that forward smiles are more convex than today’s smile: since the
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order, F and S can be identified. The expression for σF gives:

Looking at the expression for the skew, we notice that:

(12)

This shows that, locally, the shift in implied volatilities expected by the
Heston model when the spot moves is identical to that of a local volatili-
ty model. Thus the deltas of vanilla options for strikes near-the-money will
be the same in both models – at order one in σ. This result is generic and
holds for all stochastic volatility models.
■ For T >> τ we use expressions (10), correct at order one in 1/T. We get,
keeping only terms linear in σ:

Comparing with the expression of the skew in equation (10), we see that:

The at-the-money-forward volatility slides along the smile and the Heston
model behaves like a sticky-strike model: implied volatilities for fixed strikes
do not move as the spot moves. Thus the deltas of vanilla options for strikes
near the forward will be equal to their Black-Scholes deltas – again at order
one in σ. The possible extension to other stochastic volatility models is left
for future work.

These results are obtained for the Heston model at first order in σ and
are relevant for equity smiles. If ρ is small, as is the case for currency smiles,
the contribution from terms of order σ2 dominates, altering the conclu-
sions: for example, the similarity to local volatility models for short matu-
rities will be lost.

Dynamic properties – jump/Lévy models
■■ Jump/Lévy models. Here, we consider jump models for which the size
of the relative jump experienced by the spot does not depend on the spot
level. Such models are homogeneous: implied volatilities are a function of
moneyness σ̂(K, S) = σ̂(K/S).

The spot is the only degree of freedom in the model. As it moves, the
smile experiences a translation along with it: for a fixed moneyness, im-
plied volatilities are frozen. This has two consequences:
■ Forward smiles do not depend on the forward date and are the same as
today’s smile: a graph similar to figure 5 would show all smiles collapsing
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on to a single curve. When pricing a cliquet, this is equivalent to giving all
forward-start options the same smile cost.
■ The deltas for vanilla options are model-independent and can be read
off the smile directly. The delta for strike K is given by:

where ∆BS
K  and VegaBS

K  are the Black-Scholes delta and vega of the vanilla
option of strike K calculated with its implied volatility σ̂K.

In jump/Lévy models, increments of ln(S) are independent, so the skew-
ness of ln(ST) scales like 1/√T, and, at first order in the skewness, the skew
decreases as 1/T, too fast in comparison with market smiles.

Stochastic volatility models generate a smile by starting with a process
for ln(S), which is Gaussian at short time scales, and making volatility sto-
chastic and correlated with the spot process. In contrast, jump/Lévy models
generate a smile without additional degrees of freedom by starting with a
process for ln(S) at short time scales with sufficient embedded skewness and
kurtosis so that both are still large enough at longer time scales to generate
a smile, even though they scale like 1/√T and 1/T, respectively.

In the next section, we use the example of variance swaps to illustrate
how the behaviour of jump/Lévy models at short time scales affects the
price of very path-dependent options.
■■ Variance swaps. A variance swap (VS) is a now standard option that
pays at maturity the realised variance of the spot, measured as the sum of
squared returns observed at discrete dates – usually daily.

If the observations are frequent enough, the price PVS is just the dis-
counted expected variance by construction:

We now introduce the log swap volatility σ̂LS(T). This is the implied
volatility of the log swap, which is the European-style payout –2ln(S). This
profile, when delta-hedged, generates a gamma profit and loss that is equal6

to the squared return of the spot between two re-hedging dates. Because
this statically replicates the payout of a VS, VSs are usually priced using
σ̂LS(T). In the Black-Scholes model, with the limit of very frequent obser-
vations, σ̂LS = σ̂VS = σ.

The value of σ̂LS(T) is the implied volatility of a European-style payout;
it is thus model-independent and is derived from the market smile. For eq-
uity smiles, σ̂LS(T) usually lies higher than the at-the-money volatility. For
example, in early March of this year, because of the high skew/low volatil-
ity context, the one-year σ̂VS for the Eurostoxx 50 index was about four
points higher than the at-the-money volatility, which was around 18%.

In the Heston model, direct calculation yields σ̂VS(T) = σ̂LS(T). This self-
consistency can be shown to hold for all diffusive models.

In jump/Lévy models, however, σ̂VS is usually lower than σ̂LS and even
lower than σ̂ATM. For example, with the limit of frequent jumps of small
amplitude, the following relationship can be derived, at first order in the
skewness:

where σ̂K = F is the volatility for a strike equal to the forward.
The question then is: to price VSs, should we use σ̂VS or σ̂LS or yet an-

other volatility? To understand the difference, imagine hedging the profile
–2ln(S) with the Black-Scholes delta calculated with an implied volatility
σ̂. If there are no dividends, the delta is independent of the volatility, equal
to –2/S. The gamma portion of the gamma/theta profit and loss realised
during ∆t, stopping at third-order terms in ∆S reads:

Introducing the volatility σ, given by σ2∆t = E[(∆S/S)2], and the skew-
ness S∆t of ∆S/S, we can write the expectation of this profit and loss as:
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Let us examine the scaling behaviour of these expressions. The depen-
dence of volatility and skew on T is what we would expect. More interest-
ing is the dependence on λ. Combining both equations yields the following:

Thus, for short maturities, the skew is approximately inversely proportional
to the at-the-money-forward volatility.

This result is interesting in that it is general for the class of models con-
sidered: it depends neither on the choice of Lévy process nor on the process
for λ. Thus, affecting time with a stochastic scale factor allows implied
volatilities to move but with a fixed dependence of the short-term skew on
the level of at-the-money forward volatility. As noted earlier, this feature is
also shared by the Heston model, for very different reasons. To get differ-
ent behaviour, we would need to make the parameters of the Lévy process
λ-dependent, probably losing the analytical tractability of the model.

Conclusion
As mentioned in the introduction, we believe that analysing and control-
ling the dynamics of implied volatilities is a central issue in the construc-
tion of models for pricing the recent breed of exotic structures as well as
general path-dependent options that cannot be hedged statically.

We have studied some aspects of the dynamic properties of implied
volatilities for two of the most popular classes of models: stochastic volatil-
ity and jump/Lévy models. We have also pointed out some of the structur-
al implications of choosing a particular type of driving process for the spot.

It is our assessment that, in addition to the spot process, at least an-
other driving process is needed to model the implied volatility dynam-
ics, and presumably more than one if our objective is to correctly match
the term-structure of the volatility of volatilities. To avoid the inconsis-
tencies noted in the analysis of the dynamic properties of the Heston
model, such a model would have ‘state variables’, calibrated to market
smiles, whose dynamics is priced-in, and ‘structural parameters’, either
calibrated to the historical dynamics of implied volatilities, or chosen by
the trader. Within the set of model parameters, it would then be very use-
ful to be able to precisely identify those governing static features and
those governing dynamic features of the model-generated smiles. In this
respect, associating stochastic volatility with Lévy processes seems a
promising avenue of research. ■

Lorenzo Bergomi is head of quantitative research in the equity
derivatives department at Société Générale. He is based in Paris. 
Email: lorenzo.bergomi@sgcib.com
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Let us take the limit ∆t → 0.
■ In stochastic volatility models, as ∆t → 0, returns become Gaussian and
S∆t → 0. Thus the profit and loss generated by delta-hedging the log swap
profile is exactly the realised variance. This explains why σ̂LS and σ̂VS are
the same.
■ In jump/Lévy models, because S∆t ∝ 1/√∆t

__
, the third-order term contri-

bution tends to a finite constant as ∆t → 0. Delta-hedging the log swap
profile generates an additional contribution from third-order terms.7

For equity smiles S is negative. Delta-hedging the log swap profile then
generates, in addition to the realised variance, a spurious positive profit
and loss. Thus, the VS should be priced using a volatility lower than σ̂LS:
σ̂VS < σ̂LS.

If real underliers behaved according to the jump/Lévy model specifi-
cation, we should price VSs using σ̂VS. The daily returns of the Eurostoxx
50 index show, however, that S∆t is a number of order one. Using a daily
volatility of 2% gives an estimation of the contribution of the third-order
term about 50 times smaller than that of the second-order term, in sharp
contrast with the model’s estimation.

The conclusion for the pricing of VSs is that it will be more appropriate
to use σ̂LS. More generally, we have to be aware of the fact that, once their
parameters are calibrated to market smiles, jump/Lévy models will predict
excessive skews at short time scales; this behaviour is structural.
■■ Stochastic volatility extensions to jump/Lévy models. A simple way
of adding dynamics to implied volatilities in a jump/Lévy model is to make
the flow of time stochastic: replace t with a non-decreasing process τt and
evaluate the Lévy process L at τ. This is a particular case of a subordinat-
ed process. If the characteristic functions of both Lt and τt are known, then
the characteristic function of Lτ is also known and an inverse Laplace trans-
form yields European-style option prices. Carr et al (2003) choose τt as the
integral of a Cox-Ingersoll-Ross process:

What is the dynamics of implied volatilities in such a model? Here, we
look at short-term options. The shape of the smile for maturity T is deter-
mined by the distribution of ln(ST). Given the variance V and the skew-
ness S of a distribution for ln(ST), perturbation at first order in S gives
(Backus et al, 1997):

(13)

(14)

where F is the forward of maturity T.
Because λt is a continuous process, for short maturities LτT ≈ LλT. In

other words, λ acts as a pure scale factor on time. Since the cumulants of
L all scale linearly with time, we have:

Plugging these expressions in equations (13) and (14), we get the fol-
lowing form for the at-the-money-forward volatility and skew, for short
maturities:
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