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Abstract 

The delta hedging performance of deterministic local volatility models is poor, with most studies showing that 

even the simple constant volatility Black-Scholes model performs better. But when the local volatility model is 

extended to capture stochastic dynamics for the spot volatility process the hedge ratios change. Here we 

derive the local volatility hedge ratios that are consistent with a stochastic spot volatility and show that the 

stochastic local volatility model is equivalent to the market model for implied volatilities. We also quantify the 

hedging error that arises from residual hedging uncertainty and provide an empirical example based on a 

stochastic normal mixture diffusion model for asset returns. 
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I.  Introduction 

Before 1987 implied volatilities from market prices of equity index options were reasonably constant by strike 

and maturity, and so it was believed that pricing European options with the Black-Scholes (1973) model was 

sufficient for most purpose. However in the twenty or so years since the global equity crash the pattern of 

implied volatilities has changed dramatically, with a steeply negatively skewed implied volatility smile surface 

now typical in equity options and other non-constant implied volatility surfaces for other asset classes.1 To be 

consistent with the smile an intuitive choice was to allow the spot variance of the underlying process to be a 

process itself, possibly correlated with the underlying asset.2 This was the approach of Hull and White (1987) 

and Heston (1993), among others. By adding a new source of uncertainty to the model it was possible to fit 

the observed market options prices. But there was a cost. With two sources of uncertainty in the model, delta 

hedging was not enough and a market with only the underlying asset and a risk-free money market account 

was incomplete, since it was no longer possible to replicate the payoff of a simple European option. 

 

Then Dupire (1994), Derman and Kani (1994) and Rubinstein (1994) introduced the concept of local volatility 

by defining a unique ‘deterministic’ spot volatility consistent with observed market prices.3 Using Dupire’s 

equation it was possible to fit any continuous market smile exactly. Since no new source of uncertainty was 

necessary, delta hedging was possible and the market was complete. However, there were also problems. 

Several papers have tested the hedging performance of local volatility models and the general finding is that 

they could perform even worse than the Black-Scholes model. Hence, the usual conclusion is that the 

assumption of a deterministic spot volatility is too restrictive and that stochastic volatility models are more 

realistic. 

 

Stochastic and local volatility models have been regarded as two alternative and competing approaches to the 

same unobservable quantity, the volatility of the underlying asset. The former represents the spot variance as a 

diffusion or jump-diffusion process and the latter derives forward volatilities that are consistent with a ‘snap-

shot’ of implied volatility at a particular time. But while these approaches are not inconsistent with each other, 

interestingly the few attempts to unify them into a single theory have not been much developed by further 

research. The heart of the problem is the assumption of a deterministic spot volatility that is imposed by most 

local volatility models. However such assumption is not actually necessary for a local volatility model. This 

                                                       
1 Here we refer to the implied volatility smile for standard European options consistent with the Black and Scholes’ (1973) 
model. See Rubinstein (1994) for some empirical evidence on the behaviour of implied volatilities before and after 1987. 
2 We use the term ‘spot’ variance for the variance of the underlying asset price process. That is, the spot volatility is the 
diffusion coefficient in a geometric Brownian motion model for the underlying asset dynamics. Alternative terms are 
‘instantaneous’ or ‘process’ variance (and volatility).  
3 The spot volatility is said to be deterministic when it is a function of time and asset price level only. 
Forward volatility is a forecast of what the spot volatility will be at some future time. See Section II for more details on 
terminology and notation.  A deterministic spot volatility the forward volatility is a function of time and the underlying 
price only) 
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was recognized by Dupire (1996) and Kani, Derman and Kamal (1997). These authors define the local 

variance (i.e. the square of the local volatility) as the expectation of the future spot variance conditional on a 

given asset price level: 

 ]σ[σ 202 S)t(S))t(),t(S,t(E)S,t(LV == x  at time t0 < t (1) 

 

where E0 denotes the expectation conditional on a filtration ℑ0, which includes all information up to time t0, 

and x(t) = {x1, …, xn} is a vector of all other sources of uncertainty which influence the spot volatility process 

at time t under the risk-neutral probability.4 Therefore, even when the spot volatility is stochastic, the local 

volatility function is still a deterministic function of time t and asset level S in the future.5 Clearly this 

definition of local volatility is consistent with any univariate diffusion stochastic volatility model in the 

literature (e.g. Hull and White, 1987, and Heston, 1993) since x(t) can be any arbitrage-free set of processes 

consistent with options prices. Hence Dupire (1996) named model (1) the ‘unified theory of volatility’. 

 

So what is the problem with local volatility models? It is precisely the residual uncertainty from x(t) after 

taking the expectation in (1), and its influence on the spot volatility. This uncertainty is transferred to the local 

volatility surface itself. That is, although locally (i.e. at each calibration) the local volatility surface is indeed a 

deterministic function of t and S, over time that surface moves in an unpredictable manner, i.e. its dynamics 

are stochastic. The residual uncertainty from x(t) does not just disappear from the model. In effect, the 

assumption that the spot volatility is deterministic is inconsistent with any dynamics for local volatility. This 

explains the poor empirical results on the hedging performance of local volatility models. 

 

In this paper we develop a general model for stochastic local volatility. At each trading date, we assume that a 

parameterised deterministic local volatility model is calibrated to a smile surface from market prices of 

Europen calls and puts. We introduce stochastic dynamics for these parameters over time, and hence 

additional uncertainty into the spot volatility. We then show that the delta, gamma and theta of the stochastic 

local volatility model are equal to the equivalent deterministic local volatility hedge ratio plus and adjustment 

factor which depends on the degree of uncertainty in the local volatility parameters and on their correlation 

with the underlying price. We also show that the stochastic local volatility model is equivalent to the ‘market 

models’ of implied volatility that have recently been studied by Schonbucher (1999), Brace et al (2001), Ledoit 

et al (2002) and Daglish, Hull and Suo (2003).6 In particular, the two models have identical hedge ratios. Hence 

recent advances in both stochastic and local volatility have led to a unified model for the two approaches; the 

stochastic local volatility model that is introduced in this paper.  
                                                       
4 For the moment, assume x(t) is uncorrelated with S(t). Later we relax this assumption. 
5 The proof of this result can be found in the appendix of Kani, Derman and Kamal (1997). 
6 The use of observable variables, i.e. the implied volatilities, provokes comparison with the ‘market models’ of interest 
rates introduced by Brace et al, (1997) and Jamshidian (1997). 
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The remainder of this paper is as follows: Section II introduces stochastic local volatility (SLV); Section III 

derives the dynamics of the SLV price of a contingent claim; Section IV derives the new hedge ratios; Section 

V proposes a simple but intuitive method to estimate SLV parameters; Section VI proves the duality between 

the SLV model and the market model of implied volatilities; Section VII examines a particular SLV model that 

is based on the lognormal mixture local volatility model of Brigo and Mercurio (2001); and Section VIII 

summarizes and concludes. 

 

II.  From Deterministic Local Volatility to Stochastic Local Volatility 

The popular definition of local volatility that was based on the early work of Dupire (1994), Derman and Kani 

(1994) and Rubinstein (1994) assumes the underlying asset price process follows a geometric Brownian 

motion with deterministic spot volatility σ(t, S) – i.e. a deterministic function of t and S –  as:  

 SSdW)S,t(Sdt)qr(dS σ+−=   

 

According to this effective theory in the words of Kani, Derman and Kamal (1997) the local volatility σLV(t, S) is 

equal to the spot volatility σ(t, S) at any future time t and asset level S in the future. At the same time, Dupire 

(1994) showed that the local volatility function is uniquely determined from a surface of market prices f(T, K) 

of standard European options with different strikes and maturities, using the celebrated ‘Dupire’s formula’: 
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where r denotes the risk-free interest rate and q is the dividend yield (both assumed constant). Interestingly, 

this early definition of local volatility is consistent with the later definition given by (1) in that case that  σ(t, S) 

is not a function of x(t). Moreover, Dupire’s formula is consistent with the general ‘forward equation’ derived 

by Kani, Derman and Kamal (1997) and satisfied by all standard European options.  

 

However, direct computation of the local volatility function from Dupire’s formula using finite difference 

methods is problematic. The local volatility surface can be very irregular and sensitive to the interpolation 

methods used between quoted option prices and their extrapolation to boundary values, requiring some 

‘regularization method’ to obtain the smoothest possible fit to the implied volatility surface.7 Hence more 

recent work on local volatility has focussed on the use of parametric forms for local volatility functions. In 

this case the local volatility function is calibrated by changing parameters so that some distance metric 

                                                       
7 See Bouchouev and Isakov (1997, 1999) and Avallaneda et. al. (1997) amongst others.  
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between model prices and market prices is minimized and it may not fit quoted prices exactly.8 This is the case 

in virtually all the local volatility models studied in the literature. In these models, at any point in time t0 a set 

of values v(t0) = {v1(t0) , …, vn(t0)} for these parameters is calibrated to the current implied volatility surface 

and used to price and hedge all sort of options, under the assumption of a deterministic spot variance.9 The 

assumed underlying asset price process is then: 

 SSdW))t(;S,t(Sdt)qr(dS 0σ v+−=   for all t > t0 (2) 

 

where v(t0) is known at time t0. Since the spot volatility is still deterministic, from (1) it must equal the local 

volatility:10 

 ))t(;S,t())t(;S,t(LV 0
2

0
2 σσ vv =      for all t > t0 (3)  

 

From henceforth this is referred to as the ‘deterministic’ local volatility model (DLV), since it assumes a 

deterministic spot volatility.  

 

Of course, in (3) the local volatility will be sensitive to the calibration, at time t0. So if at time t1 > t0 the model 

is re-calibrated, we have: 

 ))t(;S,t())t(;S,t(LV 1
2

1
2 σσ vv =      for all t > t1   

 

and this can of course differ from (3) as long as v(t1) ≠ v(t0). Thus the local volatility surface will be stochastic 

if the calibrated parameters v(t) are stochastic, a fact that has not been given much attention in the literature. 

 

We now define the spot variance as σ2(t, S(t); v(t)), i.e. a function of t, S and some stochastic vector of 

parameters v(t) = {v1(t), …, vn(t)}, calibrated at future time t. That is, we assume that all uncertainty on the 

random variables x(t) in (1) is captured by the parameters v(t) of a local volatility model. It is then only under 

the additional assumption that the parameters v(t) are constant and equal to v(t0) that we have the a 

deterministic local volatility model such as in (3) above. But if we relax such assumption and allow v(t) to 

evolve stochastically, from (1) we have: 

 [ ] ∫===
Ωt

d)S|(h);S,t(S)t(S))t();t(S,t(E)S,t( tLV vvvv 2202 σσσ    at time t0 (4)  

                                                       
8 See Dumas, Fleming and Whalley (1998), Brown and Randall (1999), McIntyre (2001), Brigo and Mercurio (2001,2002),  
Alexander (2004), and many others. 
9 Here we have assumed that a single set of parameters v(t) is calibrated to all available options simultaneously with 
reasonable accuracy. In practice, for a variety of reasons it may be difficult to fit both the smile and the term structure of 
implied volatilities with just a few parameters. So it is common practice to restrict the calibration to near the money 
options and to a few maturities. However, restricting the calibration to very few maturities neglects the importance of the 
term structure and can lead to the wrong local volatility surface. 
10 (3) is derived from (1) using x(t) ≡ v(t) = v(t0). 
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In (4), the expectation is conditional on a filtration ℑ0, which includes all information up to time t0. In 

particular the past history of S(t) and of every additional stochastic factor in the spot variance is included in ℑ0 

so that the local volatility surface is well-defined for every pair (t, S) with t > t0. The integration is over Ωt, the 

space of all arbitrage-free values for v(t) and v ∈ Ωt is a realization of v(t). 11  Finally ht(v|S) denotes the 

multivariate conditional density of the random variables v(t) at time t  for a given S and ℑ0.12  

 

The local volatility surface is then defined at a given time t0 conditional on some filtration ℑ0. Thus it can 

evolve over time and there is an implicit dependence of this surface on time t, underlying asset price S(t) and 

other variables v(t) and their past histories. That is, the local volatility is stochastic and we therefore call (4) the 

‘stochastic local volatility’ (SLV) model 

 

From (4) it is also clear that the local volatility and the spot volatility are not the same when v(t) is stochastic, 

which contrasts with the earlier definition. But, in Appendix A we show that, if the calibration of a 

deterministic local volatility model such as in (3) is accurate, (3) and (4) should produce the same local 

volatility surface so that: 

 [ ]S)t(S))t();t(S,t(E))t(;S,t( == vv 20
0

2 σσ      for all t > t0 (5) 

 

which is an important constraint to the permissible dynamics for v(t). In fact, applying a standard Taylor’s 

series expansion of σ2(t, S(t); v(t)), Appendix A also shows that: 

 [ ]S)t(S)t(v),t(vCov
vv

))t(~;S,t(
))t(~;S,t())t(;S,t( ji
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+= 00
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with [ ]S)t(S)t(E)t(~ == vv 0
0 . Hence, it follows that [ ]S)t(S)t(E)t( =≠ vv 0

0  . That is, there is no 

obvious relationship between the calibrated parameters at time t0, v(t0), and the future parameters v(t) unless 

the spot variance is either deterministic or a linear function of v(t), when the second term of (6) is zero. 

 

It is important to note that although the local volatility surface derived from a DLV model can fit the current 

smile, the assumption of a deterministic spot volatility is unrealistic. This can affect the price of exotics and 

other types of derivatives, and hedge ratios for all options. We shall discuss this in Section IV. Thus, in the 
                                                       
11 Note that, depending on the functional form assumed for the spot variance, some values for v(t) can introduce 
arbitrage opportunities if they violate at least one of the no-arbitrage conditions mentioned in Appendix B. Therefore, 
those values are excluded from Ωt in an arbitrage-free market. 
12 From probability theory, we know that ht(v|S) is related to the joint density of S and v by ht(v |S) = ht(v, S)/gt(S), where 
gt(S) is the unconditional density of S at time t. There is an extensive literature on the estimation of gt(S) – see Breeden 
and Litzenberger (1978) or Brunner and Hafner (2003) just to mention a few – but there is no easy way to calculate the 
joint density ht(v, S) unless we have a specific model for the spot variance. 
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same way stochastic volatility models have extended the Black-Scholes model to more realistic volatility 

processes, deterministic local volatility models must be extended to account for such variability in 

parameters.13 The next section formalises the stochastic local volatility model and derives the corresponding 

dynamics for the price of a contingent claim. These results will be used to derive new hedge ratios and to 

prove the duality between the SLV model and a ‘market model’ of stochastic implied volatility. 

 

III. Stochastic Local Volatility Price Dynamics 

Assume the asset price follows a geometric Brownian motion under the risk-neutral measure Q:14 

 Sn SdW)v,...v;S,t(Sdt)qr(dS 1σ+−=  (7) 

with continuous and adapted spot volatility satisfying the no-arbitrage conditions in Appendix B and, for all T 

> t0, ∫ ∞<
T

t
n dt)v,...v;S,t(

0

1
2σ almost surely. Also assume the continuously-compounded risk-free rate r and 

dividend yield q are constant, and that v(t) = [v1(t), v2(t), … vn(t)]T is an n x 1 vector of parameters of a 

deterministic local volatility (DLV) model such as in Section II, each of them stochastic and correlated with 

the asset price S and with each other. The spot volatility σ(t, S; v(t)) is therefore stochastic.  

 

Now assume the dynamics for each parameter vi in v(t) under the risk-neutral measure follow:15 

                                                       
13 An analogy with the Heath-Jarrow-Morton model for interest rates is enlightening. The spot variance and local 
variance can be seen as analogous to the spot interest rate and the forward rate in the HJM model, so that the local 
volatility surface is the analogue to the forward yield curve. See Kani et al (1997). 
14 We can use the risk-neutral measure whenever the numeraire is the money market account and all discounted tradable 
assets are martingales under that measure. It does not matter how many Brownians we have in the dynamics since it is 
always possible to create new forward-like contracts to hedge all Brownians. We can always introduce new tradable 
hedging instruments as long as they can be priced under some martingale measure. 
15 In (8) we allow all coefficients to depend on all variables in the model so that (8) can be as general as possible, 
including a variety of reasonable implementations for each parameter vi, e.g. arithmetic or geometric Brownian motions, 
mean-reverting, etc.  There is also an implicit dependence on the filtration ℑ0 at time t0. 
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 iiii dZ),S,t(dt),S,t(dv vv βα +=       

with iS,iSS,ii dW),S,t(dW),S,t(dZ vv 2ρ1ρ −+=   (8) 

 dt),S,t(dZdZ j,i

.s.a

ji vρ→     and     0
.s.a

Si dWdW →     for i, j ∈{1, 2…n}  

 

satisfying, almost surely, the usual regularity conditions and for all T > t0: 

 ∫ ∞<
T

t
i dt),S,t(

0

α v    and    ∫ ∞<
T

t
i dt),S,t(

0

2β v   

so that j,iρ ∈ [-1, 1] is the correlation between variations in vi and vj and S,iρ ∈ [-1, 1] is the correlation 

between variations in vi and S.  

 

Together (7) and (8) provide the full specification of the SLV model. Note that here we actually model the 

stochastic parameters of a DLV model. The advantage of this approach is that it relates nicely to the extant 

literature on local volatility, addressing the typical parameter instability and its consequence for pricing and 

hedging of derivatives. To simplify notation, henceforth the dependence of the α’s, β’s and ρ’s on t, S and v 

are omitted when they are clear from the context.16   

 

Now define the local volatility price for a contingent claim as fL = fL(t, S(t); v(t)ℑ0), calibrated at time t0 < t 

(i.e. v(t0) is included in the filtration ℑ0). Since v(t) contains the future parameters of a DLV model for any t > t0, 

the price fL must satisfy locally the Black-Scholes pde for all t > t0:17 
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where S ∈ ℜ+ is a realization of S(t), v ∈ Ωt is a realization of v(t) and the filtration ℑ0 has been omitted for 

convenience. Note that (9) holds locally, i.e. assuming the DLV model is re-calibrated at each time t. However, 

since the calibrated parameters are likely to be different at each re-calibration, we assume v(t) is stochastic and 

defined such as in (8) above. Hence, that uncertainty will affect the actual dynamics of the claim price fL, given 

in the following theorem. The proof of the theorem as well as of most results in this paper is available in 

Appendix A. 

 

                                                       
16 As before, formally v ∈ Ωt is a realization of v(t), where Ωt is the space of arbitrage-free values for v(t). 
17 Within a deterministic local volatility model, v(t) is assumed constant, hence fL can be expressed as a function of t and S  
only. Then, (12) follows from a standard application of Ito’s lemma and risk-neutrality argument. 
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Theorem 1  

Under assumptions (7) and (8) and satisfying all no-arbitrage conditions above, the evolution of the model 

price fL(t, S(t); v(t)|ℑ0) at every time t, t0 < t < T,  under the risk-neutral probability is given by: 

 ∑
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satisfying the regularity conditions: 
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almost surely, and the coefficients of (8) must satisfy the following drift condition at every t: 
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Proof: See appendix A. 

 

Therefore, when the parameters v(t) of a deterministic local volatility model are stochastic, the claim price has 

a multi-factor dynamics including one Brownian motion from the underlying asset price dynamics (7) and 

another Brownian motion for each stochastic parameter vi in the model. This result has important implications 

for hedging, the focus of the next section. 

 

IV. Hedging with Local Volatility revisited 

Since the stochastic local volatility (SLV) model (7) and (8) introduces new sources of randomness, perfect 

hedging is complex and would require a combination of several traded options. For instance, Kani, Derman 

and Kamal (1997) define a ‘volatility gadget’ as a small portfolio of traded options, combined in such a way 

that it would be possible to hedge any specific region from the local volatility surface. Then, by combining 

these gadgets a multitude of hedging possibilities are available to the volatility trader. In this paper, however, 

we do not focus on perfect hedging. Instead, here we show that the uncertainty about the local volatility 

surface in the future – in terms of its parameters – can explain the poor hedging performance that has been 

reported in the literature on local volatility models.  

 

Dumas et al (1998) and McIntyre (2001) find that delta hedges derived from local volatility models perform 

worse than even the simple Black-Scholes (1973) delta hedge, but Coleman et al (2001) find the opposite for 

long hedging periods. More importantly, Hagan et al (2002) claim that local volatility deltas will be inaccurate 

since these models fail to capture proper dynamics of the implied volatility. However readers should be very 

cautious of these findings. The deltas that were applied in these papers did not include an adjustment for the 
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possible movement in local volatility over time. In common with the majority of research literature in this 

field, the local volatility models studied were incomplete in this respect.  

 

For instance, Dumas et al (1998) assume and test several different parametric or semi-parametric forms for the 

local volatility function. They calibrate the parameters to S&P 500 index options prices on a particular date, 

repeating this on a weekly basis and hence compare the hedging performance of the local volatility models 

with that of the Black-Scholes model. Their conclusion is that Black-Scholes hedge ratios appear to be more 

reliable than those obtained from the local volatility models they tested. However, they do not explore the 

impact of the instability of the local volatility surface (as implied from the instability of the calibrated 

parameters) on the hedge ratios. This could be the main reason for their disappointing conclusion. Indeed we 

now show that the hedge ratios derived from such a view of volatility are biased, and the intuition behind that 

bias is the implicit and unrealistic assumption of a static local volatility surface.  

 

The next theorem shows that the SLV model requires an adjustment for the deterministic local volatility 

(DLV) hedge ratios. In this theorem, δL = ∂fL/∂S, γL = ∂2fL/∂S2 and ΘL = ∂fL/∂t  are the DLV hedge ratios 

calculated at time t0 < t using a calibrated local volatility surface, i.e. for a given v(t0).  

 

Theorem 2 

Under the SLV model (7) and (8) the first and second order sensitivities of the claim price fL(t, S; v|ℑ0) at 

time t0 with respect to S, and the first order sensitivity to time t, are given by: 
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Proof: See Appendix A. 

 

The intuition behind Theorem 2 is as follows: because the vector v(t) is stochastic the local volatility surface 

also evolves stochastically; thus a correction term must be added to hedge ratios to account for correlation 

between movements of each vi and the asset price S. In effect we can split each hedge ratio into two parts: a 

sensitivity derived from the standard ‘deterministic’ view of local volatility (i.e. calibrated to the smile at a 

particular time) and a correction factor due to the dynamics of the local volatility parameters v(t). 
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From Theorem 2 it follows that not only is the traditional delta hedging not perfect but it is also invalid unless 

we use the correct delta given by (12-a). Moreover, as shown in Appendix A, it is possible to quantify the 

hedging error under the assumption of a deterministic spot volatility: 
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βΛ   for some T > t0 (13) 

 

Then, from (13) we imply that the hedging error ΛDLV is the sum of Ito’s stochastic integrals, each of them 

with zero expected value but non-zero variance, so that: 
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Note that the only possibility to have Var[ΛDLV] = 0 above (i.e. perfect hedging) is if βi = 0 or ∂fL/∂vi = 0 for 

all i, which clearly requires a deterministic spot volatility. Hence, whilst the delta hedge strategy can be 

unbiased (zero expected hedging error), it cannot be perfect when the spot volatility is stochastic.  

 

Likewise, it is also possible to quantify the hedging error using the correct delta from Theorem 2 (also derived 

in Appendix A): 
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which, again, is the sum of Ito’s stochastic integrals so that: 
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The delta hedge strategy is again unbiased but not perfect. However, there is an important distinction to be 

made here. The hedging error ΛDLV can be written in terms of ΛSLV by replacing dZi from (8). That is: 
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so that the variances are related by: 
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where we have used the fact that dWS and dWi are uncorrelated by definition.18 Therefore, although using the 

correct delta (12-a) does not resolve all uncertainty in the model, it should at least reduce the total variance of 

the hedging error, improving the overall hedging performance. 

 

Finally, all results above are based on the assumption that (7) and (8) are a good approximation of reality. In 

particular, the underlying asset price is assumed to follow a continuous process as in (7). Hence, if for instance 

the price process is discontinuous (with jumps), the expressions for the hedging error above may not hold and 

the delta hedge strategy may be even biased with non-zero expected value for the hedging error. 

 

V. Model Estimation 

This section considers how the model parameters in (8) can be estimated in practice. Proper estimation of the 

model will entail advanced econometric and optimisation techniques: it involves a calibration over a time 

series of cross-sectional option prices for several strikes and maturities simultaneously. This is beyond the 

scope of the present paper. Nevertheless, we would like to illustrate a practical example of the model in 

Section VII. Here we propose a ‘quick-and-dirty’ approach that splits the problem into two parts: the 

calibration of the deterministic local volatility model on a snap-shot of option prices for each day separately, 

and a daily time series analysis of calibrated parameters. 

 

In the following theorem we assume a parametric local volatility model has been calibrated at m points in time 

{t1, …., tm} prior to time t0.  We analyse the time series of the calibrated parameters and in particular the m × 

(n + 1) matrix X = [∆S ∆v1 ∆v2 … ∆vn]m of variations in each of the risk factors, i.e. the asset price S and the 

model parameters vi (i = 1, …, n). Hence we obtain an estimate of the sample covariance matrix XTX/m. The 

elements of this matrix are then used to approximate the correction factors for the SLV delta and gamma in 

Theorem 2 as follows: 

 

Theorem 3 

Given a time series of calibrated deterministic local volatility surfaces up to time t0 the correction factors for 

the delta and gamma in Theorem 2 may be approximated as follows: 
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18 Equation (15) may not be exactly true since the α’s,  β’s and ρ’s are also functions of S and v. 
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where the α’s, β’s and ρ’s in (8) are assumed constant. These approximations are accurate provided the 

following no-arbitrage condition is satisfied: 
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where λ is the market price of risk. 

 

Proof: See Appendix A. 

   

Here we assume that sample moments approximate population moments, and this is perhaps rather strong. 

Nevertheless Theorem 3 provides a pragmatic method to adjust local volatility hedge ratios so that they do 

account for our uncertainty about the future calibrated parameters. But it is only an approximation. While it is 

quite standard to assume the spot variance is constant over a small time-step ∆t, it is clearly poor to 

approximate it by the historical variance over the sample. So any application of Theorem 3 should be 

considered with care and justified only when its arbitrage-free condition is at least approximately satisfied.  

 

The main issue here is that normally other volatility models – local volatility and stochastic volatility models – 

never take account of the uncertainty on the calibrated parameters. Thus whilst the hedge ratio adjustments in 

Theorem 3 are only an approximation to the exact values stated in Theorem 2, the historical covariance matrix 

might at least identify the sign of these adjustments. Section VII applies these approximations within the 

context of a particular local volatility model and investigates whether the adjusted deltas are indeed more 

accurate than the ‘standard’ DLV deltas.  

 

VI.  Implied Volatility Dynamics  

Recent work of Dupire (2003) derives a general relationship between local volatilities and Black-Scholes 

implied volatilities, in which implied volatilities are nothing but weighted averages of local volatilities:19 
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γσ
θ  at time t0 (16) 

 

where θM(T,K) is the Black-Scholes implied volatility for strike K and maturity T implied from market prices at 

time t0, σLV is the local volatility given by (4),  γBS is the Black-Scholes gamma of the option and gt(S) is the 

                                                       
19 The proof is provided in Appendix A. 
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unconditional density of S at time t, t0 < t < T. 20  Since implied volatilities are also known to evolve 

stochastically over time, Equation (16) raises the question of duality between a stochastic local volatility model 

and a stochastic implied volatility model. That duality motivates the present section. 

 

Equation (16) also indicates which options are more relevant to the calibration of the local volatility 

parameters. Since gamma is the only variable depending on strike and maturity in the right-hand side of (16), 

options with high gamma will have the greatest impact on the calibration. But, for standard European options, 

the gamma is higher near the money and close to maturity. Hence, any calibration which does not take into 

account at least those options is flawed. Such a requirement is particularly important for the selection of 

maturities, refuting the common practice of restricting the calibration to fewer maturities when the model fails 

to fit the term structure of implied volatilities.21  

 

We now derive an explicit relationship between the dynamics of the local volatility price for a standard 

European option and the evolution of the associated implied volatility. For a vanilla European option with 

strike K and maturity T, the local volatility price of this option at time t when the asset price is S is denoted by 

fL(K, T; t, S, v). Similarly, when the Black-Scholes (BS) implied volatility is θ, we denote the BS price of this 

option at time t when the asset price is S by fBS(K, T; t, S, θ). We define the market implied volatility θM = θM (K, 

T; t, S) as that θ such that the Black-Scholes model price equals the observed market option price.22 Since 

market prices are observable, market implied volatilities are observable.  

 

Now assume that the local volatility model is calibrated to an implied volatility surface at each time t. Then the 

local implied volatility θ = θ(K, T; t, S, v) is defined by equating the local volatility price to the BS price:23  

)),S,t;T,K(,S,t;T,K(f),S,t;T,K(f BSL vv θ=     (17) 

 

The following results are derived using local implied volatilities and not market implied volatilities. That is, we 

seek the relationship between a stochastic local volatility function and the associated local implied volatilities 

on the assumption that the SLV model can fit market options prices on any day with acceptable accuracy.  

 

To prove the theorem of this section, we need two lemmas that focus on the sensitivities of the local implied 

volatility surface θ(K, T; t, S, v) to changes in t, S and v.24 These depend on the dynamics of the implied 

                                                       
20 The unconditional risk-neutral probability of S(t) is discussed by Breeden and Litzenberger (1978), Jackwerth (1999) 
and Brunner and Hafner (2003), among others. 
21 An explicit local volatility model for the term structure of implied volatilities is introduced by Alexander (2004). 
22 It should not matter whether we use calls or puts, since the implied volatility is the same due to the put-call parity. 
23 Note that both the local implied volatility and the local volatility price are conditional on the filtration ℑ0. 
24 The sensitivities to K and T are intuitive but since these are not central to the main theorem we relegate these results to 
the appendix C. 
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volatility surface and they cannot be derived from a snap-shot of the surface alone. Many authors have 

performed empirical investigations of the sensitivity to S (see Derman and Kamal, 1997; Skiadopoulos et al, 

1999; Alexander, 2001; Cont and da Fonseca, 2001; Fengler et al, 2003 and others).  In this paper, however, we 

will focus on a theoretical approach. That is, we assume that the parameters of a local volatility model evolve 

stochastically as specified in (8) and we derive the implied volatility dynamics that are consistent with this.  

 

Lemma 1  

Denote the BS model price sensitivities by δBS = ∂fBS/∂S; γBS = ∂2fBS/∂S2; ΘBS = ∂fBS/∂t ; ΥBS = ∂fBS/∂θ; κBS = 

∂2fBS/∂θ2; and ΩBS = ∂2fBS/∂S∂θ. For the SLV model price the deterministic sensitivities (i.e. for a fixed v(t)) are 

denoted δL = ∂fL/∂S, γL = ∂2fL/∂S2 and ΘL = ∂fL/∂t .25 Then the local implied volatility function θ(K, T; t, S, v) 

has sensitivities to t, S and v given by: 
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Proof: Differentiate (17) with respect to t, S and each vi and apply the chain rule in the right-hand side 

whenever necessary. For instance: 
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and so forth. ■ 

                                                       
25 Note that in the SLV model, the sensitivities δL, γL and ΘL are not the local volatility hedge ratios delta, gamma and 
theta. See Section IV.  
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Lemma 2  

Any local implied volatility θ(K, T; t, S, v) for an European option with strike K and maturity T, must satisfy 

the following: 
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Proof: See Appendix A. 

 

Lemma 2 describes the dynamics of implied volatility that are consistent with any parametric local volatility 

model. Note that the pde in Lemma 2 has no partial derivative on the elements of v.  But of course θ(K, T; t, S, 

v) is not independent of v because it depends on the spot volatility σ(t, S; v). In effect, equation (16) must be a 

solution of Lemma 2 if we replace the risk neutral density gt(S) by the model density gL,t(S), discussed in 

Appendix B. Besides, clearly the implied volatility surface can move over time even when local volatility 

parameters are constant over time, which is the implicit assumption in most local volatility models. Thus 

whilst these models are not inconsistent with movement in implied volatilities over time, the permissible 

movements in implied volatility are very restricted.  

 

The next theorem now states the general relationship between the stochastic local volatility model and the 

dynamics of implied volatility. The corollary to this theorem is interesting because it shows that the SLV 

model is equivalent to the dynamic model for implied volatilities introduced by Schonbucher (1999). 

 

Theorem 4  

Under assumptions (7) and (8) the dynamics of θ = θ(K, T; t, S, v), the local implied volatility for a European 

option with strike K and maturity T, are given by: 
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with: 
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and all partial derivatives of θ as in Lemma 1. 

 

Proof: See Appendix A. 

 

Theorem 4 shows how the dynamics of each implied volatility are derived from the same stochastic local 

volatility model (7) and (8). Thus we know the dynamics of the entire implied volatility surface that are 

consistent with the SLV model. These dynamics are governed by the same stochastic factors as those driving 

the local volatility and the option price. Finally, clearly the options prices consistent with these implied 

volatilities must satisfy all no-arbitrage conditions mentioned in Appendix B. 

 

Note that there is a very interesting singularity on the drift of θ when t → T, when it seems to explode, as 

reported by Schonbucher (1999). However, from Theorem 4, we learn that this is not a problem as long as the 

following condition holds for all T, T > t > t0: 
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In effect, when T → t0, i.e. just before expiry, we can assume the integrand of (19) is constant so that, after 

replacing d1 and d2 and cancelling (T – t0) whenever possible, (19) converges in probability to: 
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since the Black-Scholes vega ΥBS → 0 close to expiry.  

 

That is, at expiry the deterministic local volatility delta must converge in probability to the BS delta and there 

should be no sensitivity to the parameters v. Note that both limits are sensible. At expiry, both deltas should 

be either 0 or 1 depending on whether the option is out-of-the-money or in-the-money respectively, and there 

is no time value in the price of the option, hence no sensitivity to volatility, which is the only variable 

depending on v in this model. 

 

Such behaviour imposes a severe constraint on the dynamics of implied volatilities before expiry and 

resembles the drift of a Brownian bridge. In effect, as already pointed out by Dupire (2003), the density of the 

implied volatility consistent with (16) is equivalent to the density of the Brownian bridge from (S, t0) to (K, T), 

which concords with our findings.26 

 

Finally, note that ψ in Theorem 4 is related to the covariance between implied volatility and asset price 

movements and η2 is the annualised variance of implied volatility. Yet, in general it is possible to re-write (18) 

using only uncorrelated Brownian motions, as shown below. 

 

Corollary 1  

Assuming the vector  dW = [dW1, dW2 … dWn] has positive definite correlation matrix Σ, the dynamics of the 

local implied volatility from Theorem 4 can also be expressed in terms of uncorrelated Brownian motions as: 
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satisfying the same regularity conditions of Theorem 4 and dWSdWj* = dW i*dWj* = 0 for all i ≠ j almost 

surely, and: 
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where Ai,j are the elements of the Cholesky decomposition A of the correlation matrix Σ with: 

                                                       
26 More information about the asymptotic relationship between local volatility and Black-Scholes implied volatility can be 
found in Berestycki, Busca and Florent (2002). 
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Proof: See Appendix A. 

 

Apart from minor differences in notation, (20) is precisely the same as equation (2.7) from Schonbucher (1999) 

for the dynamics of a stochastic implied volatility with the drift term given by equation (3.7). 27,28 This is an 

interesting result since Schonbucher models stochastic implied volatilities directly, yet here we assume a 

stochastic local volatility. Nevertheless there is an important distinction to be made. Whereas Schonbucher 

models the implied volatility for a given strike K and maturity T, the dynamics (20) hold for all strikes and 

maturities simultaneously. In the former, an implied volatility diffusion is defined for each strike K and 

maturity T. So if there are options for k strikes and m maturities in the market, the market model specifies mk 

diffusions, one for each traded option. On the other hand, if on every day a conditional local volatility model 

fits the smile surface with a few parameters, say n << mk, then the SLV model has reduced the probability 

space from mk + 1 random variables to only n + 1, including the asset price S.  

 

But naturally if the ‘market models’ of stochastic implied volatilities are equivalent to the SLV model, they 

should produce the same hedge ratios as in Theorem 2. In fact, the ‘market model’ (MM) delta is related to the 

BS delta by the chain rule: 
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Then, using Lemma 1 we have: 
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which is exactly the same as (12-a). 
                                                       
27 We believe there was a typo in equation (3.3) from Schonbucher (1999) for the variance of implied volatility, where the 
term γ2 appears to be missing. Many thanks to Hyungsok Ahn of Commerzbank, London for drawing our attention to 
this. 
28 It also possible to derive dynamics consistent with the implied volatility diffusion models of Brace et al (2001), Ledoit et 
al. (2002) and Daglish, Hull and Suo (2003). The former extends the BGM interest rate model to account for smiles and 
skews, the second models implied volatilities for fixed moneyness and time to maturity, while the latter models implied 
variances for fixed strike and maturity. 
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Corollary 2 

The correlation between the local implied volatility and asset price movements is given by:  
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Proof: The correlation follows from (7) and (20): 
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We have used the absolute value |η| to stress that the denominator of (21) is strictly positive. For instance, 

when ωj = 0 for all j, the denominator is |ψ| and the correlation is ±1, depending on the sign of ψ. In effect, 

perfect correlation can be true only when ωj = 0 for all j, i.e. when: 

(a) βi = 0 for all i, when the vector v is no longer stochastic; or 

(b) ρi,S = 1 for all i, when the vector v is a deterministic function of S and t; or 

(c) ∂fL/∂vi  = 0 for all i, when there is no need for the vector v. 

Note that in all three cases (a) – (c) above, the dynamics (7) and (8) collapse to a deterministic local volatility 

model, hence the perfect correlation with S. That is, the local volatility is deterministic if and only if variations 

in implied volatility and asset price are perfectly correlated, i.e. when implied volatilities are also deterministic. 

 

 

VII. An Application: Normal Mixture Local Volatility 

In this section we investigate how relevant the correction term in (12-a) may be in the context of normal 

mixture diffusion (NMD) local volatility models, introduced by Brigo and Mercurio (2001). Naturally we could 

have chosen any other parametric local volatility model, but we believe the NMD models are more illustrative 

since their parameters have an economic interpretation and they are easy to calibrate using the analytical 

solution for the normal mixture option price. 

 

In the NMD model, the asset returns probability density is defined as a linear combination of normal densities: 

 ∑=
=

n

i
iii ),;x()x(g

1

2σµφλ  (22) 

 

where each normal density φ can have different means and variances and the weights λi sum to 1. Brigo and 

Mercurio (2001) show that there is a unique deterministic spot volatility function consistent with (22) and that 

the local volatility option price is given by a mixture of Black-Scholes prices: 
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In (23), τ is the time to expiry, v denotes the vector of parameters {λi, µi, σi2} for all i, and each fBS refers to the 

Black-Scholes price assuming the asset returns density is normal with mean µi and variance σi2. To avoid 

arbitrage opportunities, as specified in Appendix B, the drift of all normal densities in (22) must satisfy the 

following drift condition: 

 )τ)exp(()µexp(λ
1

qr
n

i
ii −=∑

=
. (24) 

 

To simplify the analysis, here we adopt the smallest version of (22) consistent with the equity skew. This 

requires only two normal densities with different means and variances in the mixture: 

 ),)sqr(;x()(),)sqr(;x()x(g LLHH τστφλ1τστλφ 22 +−−++−=  (25) 

 

where the ‘shifts’ on the drift sH and sL are related from (24): 
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In this case, there are only four model parameters to calibrate: the weight λ, the shift sH (with sL given as above) 

and two volatilities σH and σL. Then for a given v = {λ, sH, σH, σL}, the local volatility price of a European 

option is:29 

 ),sq,r,,K,S(f)(),sq,r,,K,S(f);q,r,,K,S(f LLBSHHBSNM στλ1στλτ −−+−=v . (26) 

 

Intuitively, we can interpret model (26) as a weighted average over two possible future outcomes: a ‘crash’ 

market with low weight λ, strongly negative drift r – q + sH and high volatility σH; and a ‘normal’ market with 

high weight 1 – λ, positive drift r – q + sL and lower volatility σL. 

 

Despite its simplicity, model (26) is very powerful for fitting equity skews. Figure 1 shows the typical 

calibration result on S&P 500 index options, where we have used all the available June 2004 call options 

between 1060 and 1190 (26 strikes) on 10/06/2004 and minimised the root-mean-square-error (RMSE) of 

fitted implied volatilities.30 

                                                       
29 ‘Shifting’ the mean of each normal density is equivalent to shifting the dividend q in the Black-Scholes pricing formula. 
30  We have used only one maturity in this exercise because the NMD model (26) cannot fit several maturities 
simultaneously, i.e. it is not appropriate to model the term structure of implied volatilities (see also Alexander, 2004). This 
problem may also jeopardise the calibration since there may be several solutions for v(t) consistent with a given smile. 
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Figure 1: June 2004 S&P 500 implied volatilities on 10/06/2004, calibrated with (26).  
Model parameters: λ = 5.23%, sH = -1.29, σH = 39.36% and σL = 7.01%. RMSE = 0.5837%. 
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However, even for a simple model such as (26), the calibration of v is not trivial. It requires a non-linear 

constrained (0 < λ < 1 and σH, σL > 0) minimization of a given objective function by changing four (possibly 

correlated) parameters simultaneously. Several minimization algorithms could be used, but gradient-based 

methods are problematic since they require a 4x4 Hessian matrix of a highly non-linear objective function. In 

fact we have found that convergence problems are common because the optimum can be heavily influenced 

by the particular choice of starting values. Instead, here we use a simple and intuitive grid-based approach 

where at each iteration we reduce the size of the range of possible values for each parameter. The method is 

similar to the one-dimensional bisection algorithm except that here it is used in a four-dimensional grid. The 

advantage of this approach is that it always finds a local optimum within a pre-specified region, although not 

necessarily the global optimum.  

 

We have calibrated (26) to each day separately on a time series of prices of the June 2004 S&P 500 options, 

from 02/01/2004 to 15/06/2004 (111 business days) with strikes in the region of 10% around the S&P 500 

index level. Table 1 reports the calibrated parameters during just the last 20 business days.31 The RMSE 

remains below 1% in the whole sample except for the last three days in Table 1. This shows that calibrated 

prices will remain well within the normal bid-ask spread, but very close to the expiry date the quoted prices for 

far ITM and OTM options can be very unreliable as they correspond to sale quotes.32 Hence it is sensible to 

reduce the range of strikes for very short maturity options. For instance, for 10/06/2004, Table 1 reports a 

RMSE of 1.198%, twice as big as the RMSE in figure 1. The difference is due to the range of strikes. In Table 

1, all strikes from 1025 to 1190 (30 strikes) have been used while in figure 1 we have used only 26 strikes.  

                                                       
31 We have constrained 5% < λ < 10% to improve the convergence properties of the algorithm. 
32 In this application, we used the arithmetic average of bid and ask option prices rather than the close price. 
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Table 1: Calibrated parameters for S&P 500 call options expiring in 19/06/2004 and calibrated with (26). 

Date # of Strikes λ sH σH σL RMSE 
17/05/2004 23 6.084% -1.828  31.099% 13.787% 0.571% 
18/05/2004 24 5.996% -1.664  24.310% 13.539% 0.568% 
19/05/2004 24 5.654% -1.777  22.017% 13.051% 0.598% 
20/05/2004 28 5.772% -1.679  22.873% 13.078% 0.539% 
21/05/2004 29 6.187% -1.425  39.249% 12.928% 0.668% 
24/05/2004 29 6.011% -1.614  30.977% 12.696% 0.826% 
25/05/2004 34 6.231% -1.399  12.437% 11.065% 0.508% 
26/05/2004 34 5.195% -1.634  13.334% 10.873% 0.525% 
27/05/2004 33 6.231% -1.385  13.054% 10.060% 0.537% 
28/05/2004 31 5.308% -1.617  13.271% 10.383% 0.477% 
01/06/2004 33 5.073% -1.764  14.004% 11.426% 0.638% 
02/06/2004 32 5.117% -1.656  23.287% 11.264% 0.707% 
03/06/2004 34 5.938% -1.809  13.256% 12.301% 0.721% 
04/06/2004 32 5.928% -1.381  34.757% 10.676% 0.680% 
07/06/2004 30 5.073% -1.250  27.607% 10.292% 0.670% 
08/06/2004 30 6.563% -1.182  35.637% 7.714% 0.844% 
09/06/2004 32 5.156% -1.348  36.722% 8.767% 0.645% 
10/06/2004 30 5.469% -1.376  43.366% 6.530% 1.198% 
14/06/2004 31 5.078% -3.039  51.677% 9.238% 1.142% 
15/06/2004 28 5.000% -1.620  45.590% 7.512% 1.930% 

 

The standard deviations and correlations of the calibrated parameters in 15/06/2004, based on all 111 

business days are reported in Table 2. In particular, we are interested in the first column of Table 2, which 

reports the correlation between variations in model parameters and the underlying asset price. Notably ∆S is 

not significantly correlated with ∆λ and ∆σH but, on the other hand, there is significant negative correlation 

with ∆σL and positive correlation with ∆sH, justifying the adjustments in Theorem 2 at least for these two 

parameters.  
 

Table 2: Standard deviations and correlations of calibrated parameters in 15/06/2004. Standard deviations are 

reported in the diagonal and the correlations in the remaining cells of the matrix. 

 ∆S ∆sH ∆σH ∆σL ∆λ 
∆S 8.4748     
∆sH  0.3961 0.2784    
∆σH -0.0044 0.0748 0.1301   
∆σL -0.5696 -0.6174 -0.2555 0.0075  
∆λ 0.0216 0.4188 -0.3970 -0.1786 0.0105 

 

The empirical correlations in Table 2 are consistent with the expected dynamics of implied volatilities. In 

particular there is a strong negative correlation between the low volatility, which pertains about 95% of the time 

(i.e. in ordinary market circumstances) and the asset price. This negative correlation is consistent with the 
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negative skew that is ordinarily observed in equity index markets.33 Hence Table 2 indicates that movements 

in kurtosis are broadly uncorrelated with changes in S (since λ and σH are directly linked to the kurtosis of the 

risk neutral distribution, i.e. they affect the probability mass in the tails of the distribution) but movements in 

skewness are strongly correlated with movements in S (it is widely understood that skewness in the risk-

neutral distribution is the main reason for the observed skew shape in the implied volatility surface from 

equity index options). The positive correlation between changes in the ‘extreme market’ shift sH and changes 

in the asset price in Table 2 implies that the range of the equity skew increases when the price jumps down 

and decreases when the price jumps up. This finding agrees with the conclusions drawn by Alexander (2001) 

from a principal component analysis of implied volatilities.  

 

The approximation in Theorem 3 is now used to calculate the adjusted normal mixture deltas as: 

 ∑
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where vi ∈ v = {λ, sH, σH, σL} and:  
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The partial derivatives ∂fNM/∂vi can be calculated via finite differences on the model price (26).34 Consider the 

options on 19/04/2004, about two months before expiry. On that particular day values v = {5.986%, -0.8827, 

46.92%, 11.85%} were estimated. Table 3 reports first each ∂fNM/∂vi and then three different deltas calculated 

with the implied volatility from model price (26), i.e. the Black-Scholes δBS, the deterministic NM delta δNM 

and the stochastic NM delta, i.e. the adjusted delta δSNM. Only the last of these deltas allows the local volatility 

surface the move over time.  

 

Whilst only pertaining to a single day in our sample, Table 3 and Figure 2, which plots the three deltas as a 

function of K/S, exhibit the typical relationship between the deltas. This basic pattern remains valid 

throughout the sample. First note that the (deterministic) normal mixture delta is always greater than the 

Black-Scholes delta except for very high strikes. Due to the linearity of the NM price (26) with respect to the 

BS price, it can be easily shown that the following results hold for standard European calls and puts: 
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33  If volatility is uncorrelated with price, uncertainty in volatility makes both tails of the price density heavier 
symmetrically. But if volatility is negatively correlated with price, it increases when the price falls, so the lower tail of the 
price density will be heavier than the upper tail – i.e. the price density will have a negative skew. 
34 Of course there is an analytical solution for each of these partial derivatives, but we believe the use of finite differences 
here is sufficient. 
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and using (17):  
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Then, using Lemma 1 and the chain rule for K, we have: 
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  (28) 

 

Table 3: Model sensitivities and deltas on 19/04/2004. 

K/S ∂fNM/∂sH ∂fNM/∂σH ∂fNM/∂σL ∂fNM/∂λ  δBS δNM δSNM 
0.850 -4.2200 9.4064 0.3221 67.2277 0.9298 0.9754 0.9482 
0.865 -4.5678 9.5158 1.0867 76.0776 0.9183 0.9730 0.9422 
0.880 -4.9017 9.5470 3.1620 85.3422 0.9047 0.9697 0.9347 
0.895 -5.2044 9.5030 7.9920 94.7180 0.8883 0.9640 0.9241 
0.910 -5.4454 9.3886 17.6661 103.6394 0.8678 0.9531 0.9071 
0.925 -5.5796 9.2097 34.3699 111.2146 0.8408 0.9330 0.8793 
0.940 -5.5512 8.9732 59.2067 116.2743 0.8041 0.8985 0.8356 
0.955 -5.3074 8.6866 90.8152 117.5989 0.7540 0.8445 0.7722 
0.970 -4.8191 8.3575 124.6884 114.2964 0.6875 0.7684 0.6882 
0.985 -4.0997 7.9940 154.0023 106.1866 0.6045 0.6715 0.5872 
1.000 -3.2115 7.6037 171.9162 93.9860 0.5088 0.5600 0.4773 
1.015 -2.2531 7.1941 174.2344 79.1812 0.4079 0.4433 0.3684 
1.030 -1.3336 6.7720 160.9930 63.6187 0.3108 0.3321 0.2702 
1.045 -0.5439 6.3439 136.1684 49.0062 0.2252 0.2351 0.1890 
1.060 0.0634 5.9154 105.8220 36.5196 0.1560 0.1574 0.1274 
1.075 0.4774 5.4915 75.8359 26.6748 0.1044 0.1000 0.0840 
1.090 0.7196 5.0765 50.2877 19.4128 0.0686 0.0606 0.0556 
1.105 0.8292 4.6739 30.9559 14.3189 0.0454 0.0355 0.0379 
1.120 0.8482 4.2867 17.7438 10.8511 0.0310 0.0206 0.0274 
1.135 0.8129 3.9171 9.4980 8.5011 0.0222 0.0121 0.0211 
1.150 0.7498 3.5668 4.7609 6.8721 0.0168 0.0076 0.0173 

 

  

Now, since the Black-Scholes vega ΥBS is always positive, we have that the deterministic NM delta will be 

greater than the BS delta whenever ∂θ/∂K is negative and vice-versa. But ∂θ/∂K is simply the slope of the 

smile surface in the strike metric and this is clearly negative in equity index options, except perhaps for deep 

OTM call/ITM put options.35 Hence, as is clearly seen in Figure 2, the NM deltas are consistently higher than 

BS deltas. This ‘over hedging’ is a well-documented feature of local volatility models, and has been attributed 

to the supposedly poor hedging performance. However, this analysis only applies to the deterministic local 

volatility deltas. 
                                                       
35 In effect, note that the relationship (28) is virtually independent of v since ∂θ/∂K can be approximated from an 
interpolated implied volatility surface based on observed market option prices. See Appendix C for more information 
about the estimation of ∂θ/∂K. 
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Figure 2: Comparison between deltas from different models on 19/04/2004. 
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The stochastic NM deltas, in turn, can be greater than or less than the BS deltas depending on the strike of the 

option. From Table 2, we know that the parameters that are most correlated with movements in the 

underlying asset price are sH and σL, hence we expect most of the adjustment in delta to result from the terms 

Cov(∆S, ∆sH) * ∂fNM/∂sH and Cov(∆S, ∆σL) * ∂fNM/∂σL in Theorem 3. We have Cov(∆S, ∆sH) > 0 and Cov(∆S, 

∆σL) < 0, and there are good reasons to expect these signs, so the second adjustment is negative but the first 

one can be positive or negative, depending on the sign of ∂fNM/∂sH. In Table 3, this is negative except for far 

OTM call options, so the adjustment in delta due to stochastic local volatility will be downwards, except when 

K/S is much greater than 1. This downward adjustment of the stochastic NM deltas means they can be greater 

than or less than the BS deltas, as is clear from Figure 2.  

 

The extensive literature on the hedging performance of deterministic local volatility models has focused on 

the deterministic delta δL (or δNM in this example). But from Corollary 2 we know that the use of a 

deterministic spot volatility implies a correlation of ±1 between variations in implied volatilities and asset price, 

which is not supported by empirical evidence.36  Figure 3 shows a typical example from the FTSE 100 index 

call options market. The correlations have been calculated on the daily first differences of the index and 60 

interpolated time series of 1-month fixed moneyness (K/S) implied volatilities from 02/01/1998 to 

01/10/1999 (a total of 442 business days). Clearly there is strong negative correlation, but it is far from perfect, 

with a minimum of −0.76 for near the money options, and reducing monotonically in absolute value for far 

                                                       
36 To be fair, these tests could still be valid if the parameters were stochastic but uncorrelated with S, i.e. βi ≠ 0 and ρi,S = 
0 for all i, when the correlation (21) is less than perfect but the correction term in (12-a) is not necessary. 
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ITM and OTM options. This provides empirical evidence of idiosyncratic dynamics for implied volatility and 

justifies our approach in this paper, by introducing new sources of uncertainty to the SLV model. 

 

Figure 3: Correlation between daily first differences of the FTSE 100 index and  
1-month fixed moneyness call options implied volatilities. 
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VIII. Summary and Conclusions 

Two approaches to modelling the Black-Scholes implied volatility smile or skew surface have developed 

separately even though potential links between them were identified by Dupire (1996) and Kani, Derman and 

Kamal (1997). In the intervening years most research on stochastic volatility has specified a univariate 

diffusion or jump-diffusion for the spot variance or volatility of the underlying asset. Likewise, most research 

on local volatility models has assumed a deterministic spot volatility function for the underlying asset price 

diffusion at a particular point in time, with no reference to the dynamic evolution of volatility. Both 

approaches are incomplete, the former capturing the dynamic properties of volatility but only in a one-

dimensional space, the latter focussing on the multi-dimensional aspects of volatility but ignoring its time-

evolution. However recent developments of multivariate diffusions for implied volatility have extended the 

stochastic volatility approach to be consistent with the cross-section of implied volatilities as well as their 

dynamics. To be consistent with this view, the deterministic local volatility model, which implies only a 

deterministic evolution for implied volatility, requires generalization.  

 

Following Dupire (1996) and Kani, Derman and Kamal (1997) we regard the deterministic local volatility 

model as merely a special case of a more general stochastic local volatility model. That is, we define local 

volatility as the square root of the conditional expectation of future spot variance in terms of n + 1 stochastic 

risk factors, viz. the underlying price plus n parameters of the local volatility surface. Hence we explicitly 

model the stochastic evolution of a locally deterministic volatility surface over time. We have proved that this 
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general stochastic local volatility model is equivalent to the market model for implied volatilities that was 

introduced by Schonbucher (1999). This important ‘duality’ result has shown that the stochastic and local 

volatility approaches can be unified within a single general framework. It is only when these approaches take a 

restricted view on volatility that they appear to be different.  

 

Several results on the behaviour of implied volatility, which have previously been proved only in the context 

of specific models, are here proved within this general framework. Moreover, we provide an important insight 

to the correct derivation of local volatility hedge ratios. Deterministic local volatility models fail to capture 

dynamics of implied volatilities and as a result the hedge ratios derived from these models are incorrect. 

Hence some standard critiques of local volatility models no longer apply. Indeed, from the equivalence of the 

implied volatility market model and the general stochastic local volatility model, we show that these models 

have identical hedge ratios.  

 

An empirical example of a stochastic local volatility model with local volatilities given by the lognormal 

mixture local volatility model of Brigo and Mercurio (2001) specifies the evolution of the model parameters as 

the SP500 index price changes. Contrasting the stochastic local volatility hedge ratios with the standard 

‘deterministic’ local volatility hedge ratios, the latter were shown to be incorrect because the movements in the 

implied volatility surface were far from perfectly correlated with movements in the underlying. The extant 

literature on the hedging performance of local volatility models has thus been testing an unrealistic and 

incomplete model, and this explains the surprising conclusions that have been drawn.  
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Appendix A: Mathematical Proofs  
 

Here we provide formal proofs for most of the mathematical results in this paper. 

  

Proof of Equation (5)  

Suppose a deterministic local volatility (DLV) model has been calibrated at time t0 assuming: 

 SSdW))t(;S,t(Sdt)qr(dS 0σ v+−=   for all t > t0  

 

while the underlying asset process actually follows: 

 SSdW))t(;S,t(Sdt)qr(dS vσ+−=   for all t > t0  

 

with v(t) stochastic. Now define the delta-hedged portfolio Π = fL – δLS where fL = fL(t, S; v(t0)) is the value of 

a standard European option and δL is the option delta consistent with the DLV model. Then, from a standard 

application of Ito’s lemma and the Black-Scholes pde (9), we have: 

 ( ) ( ) dtS))t(;S,t())t(;S,t(dtrqSdtdSdfd LLL γσσΠδΠ 2
0

22
2

1 vv −+=+−=   

 

where γL is the option gamma consistent with the DLV model. Next, integrating over t ∈ [t0, T], the total 

hedging error (hence the total pricing error) is: 

 ( )∫ −=
T

t
LdtS))t(;S,t())t(;S,t(

0

γσσΛ 2
0

22
2

1 vv   

 

which is stochastic since S and v(t) are stochastic. Thus, conditioning on S and taking expectation we have: 

 [ ] [ ]( )∫ ∫ −=
∞T

t
L dSdtS))t(;S,t(S))t(;S,t(EE
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which must be zero for any arbitrary T > t0 if options are fairly priced by the model, thus: 

 [ ]S))t(;S,t(E))t(;S,t( vv 20
0

2 σσ =  (A-1) 

 

Finally, since the expectation in (A-1) is precisely the general definition (4) for the local volatility, we conclude 

that the local volatility surface σ2(t, S; v(t0)) calibrated by a DLV model is correct if options prices are fitted 

properly, i.e. the expected pricing error E0[Λ] is zero. ■ 
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Proof of Equation (6) 

Define [ ]S)t(E)t(~ vv 0
0 = . Then, a standard Taylor’s series expansion of σ2(t, S; v(t)) gives: 
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and taking the expectation at time t0 conditional on S we have: 
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where the first order term cancels out in the expectation. Finally, replacing (A-1) we conclude the proof. Note 

that the covariance above refers to the portion of v(t) that is uncorrelated with S. Hence if v(t) is deterministic 

the second order term above also cancels out.  ■  

 

Proof of Equations (13) and (14) 

This proof of the hedging error is similar to the proof of equation (5) above, except that it uses the dynamics 

(10) for the claim price from Theorem 1. The dynamics of the delta-hedged portfolio Π = fL – δLS is: 
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so that, replacing δL = ∂fL/∂S (i.e. the deterministic local volatility delta), the total hedging error is: 
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where we have used the definition for dZi from (8). Therefore, under the assumption of a deterministic spot 

volatility, the hedging error is the sum of stochastic integrals related to all the uncertainty around the local 

volatility parameters.  

 

Instead, if we had used the correct delta from (12-a) and followed the same argument as above, the total 

hedging error associated with the delta-hedged portfolio Π = fL – δSLVS would be: 
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which is stochastic if the correlation between S and at least one parameter vi  is less than perfect, i.e. ρi,S ≠ ±1. 

That is, the delta hedge will not be perfect.  ■  

 

Proof of Equation (16) 

The proof of (16) is similar to the proof of (5), but assuming a constant spot volatility θ(K,T) for each option (i.e. 

a different implied volatility for each strike K and maturity T) such as in the Black-Scholes model: 

 SSdW)T,K(Sdt)qr(dS θ+−=   for all t > t0  

 

Hence, following the same steps as above, the expected total hedging error is: 
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where θ(T,K) is not a function of t and S, and E0[Λ] = 0 if θ = θM(T,K), the market implied volatility, so that: 
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Finally, using [ ]S))t(;S,t(E)S,t(LV v202 σσ =  from (4), we conclude the proof.  ■ 

 

Proof of Theorem 1 

From Ito’s lemma, the dynamic of the claim price fL(t, S; v), defined as a function of t, S and a set of 

parameters v, under the risk-neutral measure, is: 
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Using (7) and (8): 
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Then, using the Black-Scholes pde (9) and since under the risk-neutral probability the drift of fL must be the 

risk-free rate – to satisfy condition (9-c) – the following drift condition must hold: 
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Now, in order to fL be a proper Ito’s process, the variance of each Ito’s stochastic integral in fL must be 

bounded almost surely for every finite time T > t0. This requires: 
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2β  from Section III, it is easy to show that: 
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Proof of Theorem 2 

When S(t) and v(t) are correlated, we can express each vi(t) as a function of t, S and Wi so that from Ito’s 

lemma: 
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and equating coefficients with (8): 
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Then, the chain rule gives the first order price sensitivity, delta, as: 
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Note that using the claim price dynamics of Theorem 1 it can be readily verified that the same delta can be 

derived using a delta-hedged portfolio Π = fL – δSLV S, with dynamics dΠ = dfL – δSLV(dS + qSdt). Similarly it 

is easy to show that (15-b) and (15-c) hold for gamma and theta using: 

 ( ));S,t(
dS
d

SLVSLV vδγ =               ( ));S,t(f
dt
dΘ LSLV v=    ■ 

 

Proof of Theorem 3 

In the physical measure, dynamics (7) can be written as: 

 P
SSdW);S,t(Sdt)q(dS vσµ +−=  (A-2a) 

 

with the associated Girsanov transformation: 
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−
= is the market price of risk and σ(t, S; v) is assumed constant over the infinitesimal time-

step dt. Now if we assume (A-2a) and (A-2b) also hold over a small time-step ∆t, the (observable) discrete price 

process under the physical measure can be described as:37 
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Using (A-3) and (A-4), the elements of XTX/m are approximately: 
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37 This is not true for long time-steps, when the volatility cannot be assumed constant over ∆t, and so the Girsanov 
transformation may not apply. However, over sufficiently small time-steps, e.g. daily, this should not be a problem. 
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It follows that: 
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Now, consider the expected value of ∆vi. From (A-4): 
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Finally, replacing each approximation into Theorems 1 and 2, we derive the approximations for the no-

arbitrage condition and for the delta and gamma, concluding the proof. ■ 

 

Proof of Lemma 2: 

From the Black-Scholes differential equation we have: 
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Since fL(t, S; v) = fBS(t, S; θ) by the definition of the local implied volatility θ in (17), we have: 
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Then, using Lemma 1: 
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and since ΥBS is strictly positive for finite τ > 0, we can divide by ΥBS concluding the proof.             ■ 

 

Proof of Theorem 4: 

From Ito’s lemma and using (7) and (8), the dynamics of θ(K, T; t, S, v) are given by: 
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Using Lemma 1, the drift expands to: 
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Using Theorem 1 and Lemmas 1 and 2, this re-arranges to: 
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with τ > 0 and θ > 0. Now, defining ψ and η2 as: 
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it is easy to show that the drift simplifies to: 
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Finally, in order to θ be a proper Ito’s process, we must have: 
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Proof of Corollary 1: 

Since A is the Cholesky decomposition of Σ, we have AAT = Σ so that: 

 dtAAdtdWdW
k

k,jk,ij,iji 





∑== Σ   

and ∑=
j

*
jj,ii dWAdW   

 

Substituting dZi from (8) into (18) and using the above, the diffusion term in (18) becomes: 

 ∑ ∑ −
∂
∂

+
j i

*
jj,iS,ii

i
S dWA

v
dW 2ρ1βθψ      

 

But since Ai,j = 0 for all i < j, the diffusion term simplifies to: 

 ∑+
j

*
jjS dWdW ωψ      with    ∑

∂
∂

−=
=

n

ji i
j,iS,iij v

A θρ1βω 2   

 

Finally, from (8): 

 ( ) dtdtdZdZ jijiSjSiSjSiji ,,
2

,
2
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and considering the variance of dθ we have: 

 dtdddt
j

j 







∑+== 222 ωψθθη . ■ 
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Appendix B: No Arbitrage Conditions 

Whatever the functional form we assume for the spot volatility σ(t, S; v) in (7), the underlying risk-neutral 

density consistent with (7), say gL,t (S), must satisfy the following conditions: 

 0≥)S(g t,L  for all S ≥ 0     and     1
0

=∫
∞

dS)S(g t,L  (B-1a)  

 dS)S(g)S,t(Gef t,L
)tt(r

L ∫=
∞

−−

0

0    for every t > t0 (B-1b)  

where G(t, S) is the value of any tradable asset at some time t > t0. Conditions (B-1a) define gL,t(S) as a proper 

probability density function of S, while (B-1b) requires Q to be a martingale measure.  

 

Although rather obvious, these conditions add an important constraint when pricing options. For instance, if 

C(K,T; t, S) is the price of a vanilla European call at time t with K ≥ 0 and T > t, then these conditions imply: 38 

 { }0;KeSmax)S,t;T,K(CS )tT(r −−−≥≥  (B-2a) 

 S)S,t;T,(C =0      and       0=
∞→

)S,t;T,K(Clim
K

 (B-2b) 

 01 ≤
∂

∂
≤−

K
)S,t;T,K(C

  and   02

2

≥
∂

∂
K

)S,t;T,K(C
 (B-2c) 

 

Whilst (B-2a) and (B-2b) are intuitive, (B-2c) tells an interesting story. It requires the call option price to be a 

convex and monotonically decreasing function of K, otherwise there will be an arbitrage opportunity.  

 

Finally, Brunner and Hafner (2003) also prove two more necessary but not sufficient conditions for no 

arbitrage on the term structure of call prices. For T1,T2 ∈ (t, T), T1 < T2, they require: 

 )S,t;T,Ke(C)S,t;T,K(C )TT(r
12

12 −−≥  (B-3a) 

 { }( ) 00
0

12
12

12 ≥∫ −−
∞

−−−− dS)Se(g)S(ge;KSmax )TT(r
T,LT,L

)TT(r  (B-3b)  

 

In effect, even when gL,t(S) is a martingale measure satisfying (B-1a) and (B-1b), there is an arbitrage 

opportunity between different maturities if either (B-3a) or (B-3b) is violated – e.g. using a calendar spread 

arbitrage strategy.  

 

Finally note that we have been careful to distinguish between the model risk-neutral density gL,t(S) (i.e. 

consistent with a certain local volatility model) and the market risk-neutral density gt(S) (i.e. consistent with 

                                                       
38 See Carr (2001) and Brunner and Hafner (2003). 
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observed market options prices). Clearly whilst we expect these two densities to share similar properties, they 

are unlikely to be the same, since parametric local volatility models can only approximate observed options 

prices in general. Nevertheless, a valid calibration of the local volatility surface must satisfy all conditions 

outlined above, hence the definition that Ωt denotes the space of permissible arbitrage-free values for v(t).  
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Appendix C: Implied Volatility Sensitivities to K and T. 

The sensitivities to K and T are intuitive and easy to derive since prices are quoted for many discrete pairs (K, 

T). These can be estimated directly, using finite differences based on any reasonable interpolation method for 

market implied volatility surfaces.39 For instance, for a given time t and asset price S interpolate the market 

implied volatilities using a functional form of the type:40 

 ε)tT(
S
Klnb)tT(b)tT(b

S
Klnb

S
Klnbb)S,t;T,K(ln M +−+−+−+






++= 5

2
43

2

210θ  (C-1) 

 

This is a second-order Taylor expansion of the log implied volatility about moneyness, ln (K/S) and time to 

expiry (T – t).41 Now ∂θ/∂K and ∂θ/∂T and higher order sensitivities follow from simple differentiation, 

assuming ∂ε/∂K = ∂ε/∂T = 0 almost surely:  
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Alternatively, the sensitivities to K and T may be estimated from local implied volatilities. Differentiating (17) 

yields: 
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where ∂fBS/∂θ, ∂fBS/∂K and ∂fBS/∂T are the partial derivatives of the Black-Scholes price based on the local 

implied volatility θ. So to calculate (C-4) and (C-5), we only need to estimate the partial derivatives of the 

model price fL with respect to K and T, which should not be difficult, especially if we have an analytical 

solution for fL such as in Section VII. If the local volatility has been properly calibrated, the sensitivities 

derived from (C-4) and (C-5) should be approximately the same as those derived from (C-2) and (C-3).  

                                                       
39 Smoothing the implied volatility surface is advisable since market quotes for option prices are discrete by definition 
and liable to problems such as stale prices (poor liquidity), bid-ask spreads that include hedging costs and so forth. See 
Andersen and Brotherton-Radcliffe (1997), Avellaneda et al. (1997), Bouchouev and Isakov (1997, 1999) among others. 
40 Note that the coefficients b1, b2, …, b5 of (C-1) must satisfy all no-arbitrage conditions mentioned in Appendix B. 
41 The coefficients could normally be estimated using a standard regression technique such as ordinary least squares. 
Clearly different versions of model (C-1) may produce quite different sensitivities to K and T depending on how smooth 
the fitted implied volatility surface is. This example is only illustrative. 


