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An efficient method is developed for pricing
American options on stochastic volatility/jump-
diffusion processes under systematic jump and
volatility risk. The parameters implicit in
deutsche mark (DM) options of the model and
various submodels are estimated over the pe-
riod 1984 to 1991 via nonlinear generalized least
squares, and are tested for consistency with
$/DM futures prices and the implicit volatility
sample path. The stochastic volatility submodel
cannot explain the “volatility smile” evidence of
implicit excess kurtosis, except under parame-
ters implausible given the time series properties
of implicit volatilities. Jump fears can explain
the smile, and are consistent with one 8 percent
DM appreciation “outlier” observed over the pe-
riod 1984 to 1991.

The central empirical issues in option pricing are what
distributional hypotheses are consistent with observed
option prices, and whether those distributional hy-
potheses are consistent with the properties of the un-
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derlying asset price. For foreign currency options, the evidence amassed
from time series analyses and from option prices regarding the con-
ditional and unconditional moments of exchange rate processes ap-
pears qualitatively in agreement. It is undisputed that volatility is time-
varying, as evinced in plots of implicit volatilities over time and in the
extensive literature on ARCH and GARCH models.1 Time series stud-
ies also indicate that the unconditional distribution of log-differenced
exchange rates is leptokurtic, and that there is an inverse relation-
ship between excess kurtosis and the length of the holding period.2

Conditional leptokurtosis has also been found in time series stud-
ies (e.g., fat-tailed residuals from ARCH/GARCH models), while the
“volatility smile,” or U-shaped pattern of implicit volatilities across dif-
ferent strike prices, indicates conditional leptokurtosis implicit in op-
tion prices.3 The evidence regarding unconditional and conditional
skewness is more mixed, with time series estimates sensitive to the
currency and period used. Studies of option prices have found evi-
dence of substantial positive implicit skewness in options on foreign
currencies during the period 1983 to 1985, but there is less evidence
during more recent periods.4

Different time series and option pricing models have been em-
ployed to capture these salient distributional features. Assorted sta-
tionary fat-tailed distributions such as the stable Paretian [Westerfield
(1977)], Student’s t [Rogalski and Vinso (1978)] and jump diffusions
[Akgiray and Booth (1988)] have improved on the unconditional dis-
tribution relative to a Gaussian benchmark. Foreign currency option
pricing equivalents include Borensztein and Dooley’s (1987) use of the
Cox and Ross (1976) pure-jump model, Jorion’s (1988) and Bates’s
(1994) use of Merton’s (1976) jump diffusion model, and McCul-
lough’s (1987) stable distribution model for log-differenced exchange
rates. ARCH/GARCH time series models used to capture the time-
varying variances and some—though not all—of the leptokurtosis
have stochastic volatility option pricing counterparts, such as Ches-

1 Bollerslev, Chou, and Kroner (1992) provide an excellent survey of the ARCH/GARCH literature,
including the applications to foreign exchange rates.

2 For instance, Hsieh (1988) estimated unconditional kurtosis of 12.8 for daily changes in the $/DM
exchange rates, while Meese (1986) estimated kurtosis of 4.2 for monthly returns.

3 Ben Khelifa (1991), Cao (1992), and Shastri and Wethyavivorn (1987) document the volatility smile
present in foreign current option prices. Model-specific daily esimtaes of implicit distributions in
Bates (1994) found excess kurtosis in options on DM and yen futures over the period 1984 to
1992.

4 Bodurtha and Courtadon (1987) document the tendency of an American option version of the
Black and Scholes model to overprice in- and at-the-money calls and underprice out-of-the-money
calls on foreign currencies during the period 1983 to 1985, indicating an implicit distribution
more positively skewed than the lognormal. Bates (1994), using a jump-diffusion model, found
substantial positive implicit skewness in options on deutsche mark futures during the period 1984
to 1986, but not from 1987 to 1992.
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ney and Scott (1989), Melino and Turnbull (1990), and Cao (1992).
More recent approaches in the time series literature have tended to
combine fat-tailed independent shocks and time-varying variances;
for instance the Student’s t/GARCH model of Baillie and Bollerslev
(1989) and the jump diffusion/ARCH model of Jorion (1988).

This article presents an exchange rate model that is potentially
compatible with observed option pricing moneyness and maturity
biases and with the distributional properties of log-differenced ex-
change rates. Extending the Fourier inversion option pricing method-
ology of Stein and Stein (1991) and Heston (1993), a tractable and
efficient model for pricing American options on combined stochas-
tic volatility/jump-diffusion processes in the presence of systematic
volatility and jump risk is developed. By nesting the two skewed and
leptokurtic distributions, which of the two better explains the skew-
ness and excess kurtosis implicit in option prices can be examined.

This article also develops methods for testing the consistency of
the distributions implicit in option prices with the underlying time se-
ries properties of exchange rates and implicit volatilities. In contrast
to previous work [see, e.g., Cao (1992), Chesney and Scott (1989), Jo-
rion (1988), and Melino and Turnbull (1990)], the essential orientation
of this article is to see whether the distributional anomalies implicit
in option prices are apparent in the underlying time series, rather
than examining whether non-Gaussian and nonindependent proper-
ties of the time series process are reflected in option prices. Since
the central issue is the consistency between options and time series,
either approach is, of course, valid. However, using implicit distribu-
tions potentially exploits a richer information set than that available
from time series analysis. For instance, implicit volatilities from option
prices should theoretically summarize all relevant information regard-
ing expected future volatilities, whereas univariate ARCH and GARCH
approaches can exploit only the subset of that information inferrable
from the past history of asset prices. Equally, option prices should
reflect any perceptions of low-frequency, large-amplitude jump risk,
whereas time series studies lack the power in the small samples typi-
cally available to reliably pick up any low-frequency jump component.

Two tests of the consistency between option prices and time se-
ries are developed. First, the compatibility of the stochastic volatility
process implicit in option prices with time series properties of im-
plicit volatilities is tested. The test includes the issue raised by Stein
(1989) and Campa and Chang (1995) as to whether the term structure
of implicit volatilities is consistent with observed mean reversion in
implicit volatilities. Broader distributional compatibilities (most impor-
tantly with regard to the volatility of volatility) can also be examined.
A careful distinction is drawn in the tests between the “risk neutral”
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distributions implicit in option prices qnd the actual distributions rel-
evant for time series analysis.

Second, the conditional distributions implicit in $/DM option prices
are tested for consistency with observed changes in log-differenced
$/DM futures prices. The test parallels standard tests of the forecasting
power of implicit volatilities for future volatility, while also allowing
examination of higher moments.

Section 1 presents the postulated stochastic volatility/jump-diffusion
process for the $/DM exchange rate, and discusses the methodology
for pricing American options when volatility risk and jump risk are
systematic. The Philadelphia Stock Exchange foreign currency options
data are discussed in Section 2, and implicit parameter estimates are
presented. Tests of compatibility with the underlying implicit volatil-
ities and $/DM futures prices are conducted in Section 3. Section 4
concludes.

1. A Proposed Stochastic Volatility/Jump-Diffusion Model

The following assumptions will be maintained throughout this article:
1. Markets are frictionless: there are no transactions costs or dif-

ferential taxes, trading can take place continuously, and there are no
restrictions on borrowing or selling short.

2. The instantaneous risk-free interest rate, r , and domestic/foreign
interest differential, b = r − r ∗, are known and constant.

3. The exchange rate, S ($/DM), follows a geometric jump diffusion
with the instantaneous conditional variance, Vt , following a mean-
reverting square root process:

dS/S = (µ− λk̄)dt +√V dZ + kdq

dV = (α − βV )dt + σv

√
V dZv

cov(dZ ,dZv) = ρdt

prob(dq = 1) = λdt, ln(1+ k) ∼ N (ln(1+ k̄)− 1
2δ

2, δ2) (1)

where µ is the instantaneous expected rate of appreciation of the
foreign currency, λ is the annual frequency of jumps, k is the random
percentage jump conditional on a jump occurring, and q is a Poisson
counter with intensity λ.

The postulated exchange rate process offers a rich and flexible dis-
tributional structure. Skewed distributions can arise either because of
correlations between exchange rate or volatility shocks, or because of
nonzero average jumps. Similarly, excess kurtosis can arise either from
volatile volatility or from a substantial jump component. Furthermore,
the two alternate explanations for skewness and excess kurtosis can
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be distinguished by holding period effects. Stochastic volatility implies
a direct relationship between the length of the holding period and
the magnitude of conditional skewness and excess kurtosis, whereas
jumps imply a strong inverse relationship.

The above process for volatility has been used for pricing options
under two polar assumptions about interest rate processes. Bailey
and Stulz (1989) and Bossaerts and Hillion (1993) price stock index
and stock options using the Cox, Ingersoll, and Ross (1985) general
equilibrium production economy, which implies instantaneous con-
ditional variances and interest rates are proportional and follow the
square root process above. On the other hand, Hull and White (1988)
and Heston (1993) price options off the above stochastic volatility pro-
cess under the more tractable assumption of constant interest rates.
Since Scott (1993) finds that interest rate volatility has little impact on
short-term option prices such as those examined in this study, the
latter assumption of constant domestic and foreign interest rates will
be maintained in this study.

The square root variance process has two major advantages. First,
the model can allow for systematic volatility risk, whereas alternate
processes such as Hull and White (1987) have had to impose the as-
sumption of nonsystematic volatility risk to generate a tractable option
pricing model. If the true process is given by Equation (1), then in a
representative agent production economy [see Bates (1988)] the risk
neutral processes used in pricing options that incorporate the appro-
priate compensation for jump risk and volatility risk are given by

dS/S = (b − λ∗k̄∗)dt +√V dZ∗ + k∗dq∗

dV = [α − βV +8v ]dt + σv

√
V dZ∗v

cov(dZ∗,dZ∗v ) = ρdt

prob(dq∗ = 1) = λ∗dt, k ∼ (k̄∗,V ar (k∗)), (2)

where b is the continuously compounded domestic/foreign interest
differential, and starred variables represent the risk-adjusted versions
of the true variables, taking into account the pricing of jump risk and
volatility risk. In particular,

8v = cov

(
dV ,

d Jw
Jw

)
λ∗ = λ E

(
1+ 1 Jw

Jw

)
k̄∗ = k̄ + cov(k,1 Jw/ Jw)

E [1+1 Jw/ Jw ]
, (3)
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where Jw is the marginal utility of dollar wealth of the world-average
representative investor, 1 Jw/ Jw is the random percentage jump con-
ditional on a jump occurring, and d Jw/ Jw is the percentage shock in
the absence of jumps.5,6 As usual, time-separable isoelastic utility is
a convenient assumption to make at this stage, and implies that the
volatility risk premium, 8v = f (V ), depends only on V , ln(1 + k∗)
is normally distributed with the same variance δ2 as the actual jumps,
and λ∗ and k̄∗ are constant.7

A no-arbitrage constraint on the functional form of the volatility risk
premium 8v(V ) is that 8v(0) = 0.8 This restriction precludes mod-
eling the volatility risk premium as proportional to ln(V ) when the
log of volatility follows an Ornstein-Uhlenbeck process and necessi-
tated Hull and White’s (1987) assumption of nonsystematic volatility
risk (8v ≡ 0) for analytic tractability. In the case of the square root
volatility process, however, the volatility risk premium can plausibly
be modeled as proportional to the conditional variance Vt :9

8v(V ) = ξV . (4)

The result is that the risk neutral process for the instantaneous condi-
tional variance resembles the true process in form:

dV = (α − βV + ξV )dt + σv

√
V dZ∗v

≡ (α − β∗V )dt + σv

√
V dZ∗v . (5)

5 Issues of heterogenous international investors and deviations from purchasing power parity, which
would involve including additional state variables for the distribution of wealth across heteroge-
neous agents, are being ignored here. More precisely, such effects are assumed here to affect only
the foreign currency risk premium E (dS/S)− (r − r ∗) = µ− b, and therefore have no effect on
option prices. The potential general equilibrium effects of the omitted state variables on interest
rates and on volatility are ruled out by the imposed distributional assumptions. For an illustration
of the (limited) general equilibrium impact of investor heterogeneity on interest rates see Dumas
(1989).

6 The specification of the risk neutral process depends on the choice of numeraire. The above
specification of Equations (2) and (3) is the risk neutral process for the $/FC exchange rate S to
be used in generating dollar-denominated prices of foreign currency options. For foreign-currency
denominated option prices expressed in terms of the FC/$ exchange rates 1/S , it is necessary to
use the marginal utility of foreign-currency denominated wealth Jw∗ = S Jw when computing 8ν ,
λ∗, and k̄∗. An Ito’s lemma-based transformation of variables of the process in Equation (2) using
z ≡ S−1 is not correct, because of Siegel’s paradox.

7 The additional restriction that the process for optimally invested wealth follow a geometric stochas-
tic volatility/jump-diffusion process with constant parameters is also required.

8 See Ingersoll (1987, chap. 18) for a discussion of a similar issue with regard to the term structure
of interest rates.

9 Strict linearity of the volatility risk premium can be supported under log utility when exchange rate
volatility and market risk have a common component of a particular form. The linear specification
will not typically emerge under more general preferences (e.g., time-separable power utility) and
should be viewed for such preferences as an approximation to the true functional form. Cox,
Ingersoll, and Ross (1985) use a similar approximation when modeling the risk premium on
interest rates.
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Note, however, that the variance steady-state level (α/β∗) and rate of
mean reversion β∗ implicit in option prices are not the true levels, but
differ by an amount that depends on the volatility risk premium.

The second major advantage to the square root process for vari-
ance is that the process generates an analytically tractable method of
pricing options without sacrificing accuracy or requiring undesirable
restrictions (such as ρ = 0) on parameter values.10 European options
that can be exercised only at maturity are priced as the expected value
of their terminal payoffs under the risk neutral probability measure:

c = e−rT E ∗max(ST − X , 0)

= e−rT

[∫ ∞
X

ST p∗(ST )dST − X

∫ ∞
X

p∗(ST )dST

]
= e−rT (FP1 − XP2) (6)

where E ∗ is the expectation with respect to the risk-neutral proba-
bility measure; F = E ∗(ST ) = S0ebT is the forward price on foreign
currency; P2 = prob∗(ST > X ) is one minus the risk neutral distribu-
tion function; and P1 =

∫∞
X [ST /E ∗(ST )]p∗(ST )dST is also a probability

(since the integrand is nonnegative and the integral over [0,∞) is
one). For instance, the Garman and Kohlhagen (1983) variant of the
Black and Scholes formula for foreign currency options under the
assumption of constant-volatility geometric Brownian motion for the
exchange rate is

c = e−rT [F N (d1)− XN (d2)] (7)

where d1 = [ln(F/X )+ 1
2σ

2T ]/σ
√

T , and d2 = d1 − σ
√

T .11

The European option evaluation problem is to evaluate P1 and P2

under the distributional assumptions embedded in the risk neutral
probability measure. The difficulty is that the cumulative distribution
function for most distributions is messy and, in many cases, we do
not have any idea of what it looks like. Even the Black and Scholes

10 Hull and White (1988) develop an analytical approximation for pricing European options on the
square root stochastic volatility process that is quite accurate for small (and plausible) values of
σν . A jump-diffusion extension of this approximation was developed and used as an independent
check on the option pricing formulas given below.

11 The foreign currency options traded on the Philadelphia Stock Exchange trade up through the
Friday preceding the third Wednesday of the contract month—that Wednesday being the delivery
date for the underlying currency. Given the delay between the last trading day and the delivery
day, the correct Black and Scholes formula for PHLX European calls is

c = e−r (T+1t1)[F N (d1)− XN (d2)]

where T is the time until the Friday preceding the third Wednesday; 1t1 = 5/365 is the time
between the last trading day and the delivery day; F is the forward price for currency delivered
on the third Wednesday; d1 = [ln(F/X )+ 1

2σ
2T ]/σ

√
T ; and d2 = d1 − σ

√
T .
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model has a distribution related to the error function, which is non-
trivial to evaluate. When it comes to stochastic volatility models, the
distribution function is unknown. The difficulty in evaluating P1 and
P2 is responsible for a bias toward series solutions for pricing options.

Heston (1993) pointed out that it is much easier to solve for the
moment generating functions associated with P1 and P2. Essentially
one can view the moment generating function as a contingent claim
to be solved using the standard contingent claims’ partial differential
equation under relatively easy boundary conditions; details are in the
Appendix. (The P ’s also solve the equation—subject, however, to dis-
continuous boundary conditions that preclude easy solutions.) Once
one has the moment generating function, there exist fast numerical
procedures for evaluating P1 and P2. The resulting moment generating
functions of ln(ST /S0) for the two probabilities P1 and P2 when ex-
change rates follow a combination stochastic volatility/jump-diffusion
process are given by

Fj (8 | V , T ) ≡ E [e8 ln(ST /S0) | Pj ] ( j = 1, 2)

= exp{Cj (T ;8)+ Dj (T ;8)V + λ∗T (1+ k̄∗)µj+1/2

× [(1+ k̄∗)8eδ
2(µj8+φ2/2) − 1]} (8)

where

Cj (T ;8) = (b − λ∗k̄∗)8T − αT

σ 2
v

(ρσv8− βj − γj )

−2α

σ 2
v

ln
[
1+ 1

2 (ρσv8− βj − γj )
1−eγj T

γj

]
, (9)

Dj (T ;8) = −2
µj8+ 1

28
2

ρσv8− βj + γj
1+eγj T

1−eγj T

, (10)

γj =
√
(ρσv8− βj )2 − 2σ 2

v (µj8+ 1

2
82), (11)

µ1 = + 1
2 , µ2 = − 1

2 , β1 = β∗ − ρσv , and β2 = β∗.
Given the above solutions for the moment generating functions, the

relevant tail probabilities Pj (8 | S0, T ) = prob∗(ST eb1t1 > X | Fj ) for
evaluating PHLX options can be determined numerically via Fourier
inversion of the complex-valued characteristic function Fj (i8 | S0, T ):

prob∗(ST eb1t1 > X | Fj ) = 1

2
+ 1

2π

∫ ∞
−∞

Fj (i8)e−i8x

i8
d8, (12)

where x ≡ ln(Xe−b1t1/S0) and 1t1 = 5/365 is the lag between the last
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trading day and the delivery day on PHLX options. By the properties of
characteristic functions, the integral is real-valued and the probability
can also be written as12

prob∗(ST eb1t1 > X | Fj ) = 1

2
+ 1

π

∫ ∞
0

imag[Fj (i8)e−i8x ]

8
d8. (13)

The probability density function of ln(ST /S0) under the risk neutral
probability measure has a similar form:

p∗(z) = 1

2π

∫ ∞
−∞

F2(i8)e
−i8z d8

= 1

π

∫ ∞
0

real [F2(i8)e
−i8z ] d8, (14)

where z ≡ ln(ST /S0).
The integrals in Equations (13) and (14) can be evaluated efficiently

via Gaussian quadrature. A Gauss-Kronrod rule based on IMSL subrou-
tine DQDNG that evaluated Fj (i8) at up to 87 points over a truncated
domain was found to be accurate to 10−8 times the spot exchange
rate (four orders of magnitude less than the minimum price change),
except for extreme and implausible jump parameters.13 Since pric-
ing call and put options of a common maturity and variance require
the same values of Fj (i8) regardless of the strike price/spot price ra-
tio, enormous efficiency gains can be realized by evaluating all such
options simultaneously.

The above procedure gives the price of a European option as a
function of state variables and parameters:

c(S ,V , T ;X , θ) = e−r (T+1t1)[FP1 − XP2] (15)

for θ = 〈λ∗, k̄∗, δ, α, β∗, σv , ρ〉. However, since the PHLX options on
foreign currency are American, it is important, in principle, to take
into account the extra value accruing from the ability to exercise the
options prior to maturity. This study uses the constant-volatility ana-
lytic approximation from Bates (1991) for jump diffusions, modified
for the 4 business day lag between early exercise of a PHLX option

12 The real part of F (i8) is an even function of 8, the imaginary part is an odd function. Inversion
formulas are discussed in Kendall, Ord, and Stuart (1987, vol. I, chap. 4).

13 Extreme values of k̄ (e.g., 30,000 percent) made F (i8) highly oscillatory, and reduced accuracy
to 10−5 × S , which is still an order of magnitude less than the minimum tick size. Accuracy
was measured by comparing option prices with those evaluated to 10−10 accuracy using IMSL’s
adaptive Gaussian quadrature subroutine DQDAGI for integrating functions over a semi-infinite
domain.
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and delivery of the underlying currency:

P(S ,V , T ;X ) ≈
{

p(S ,V , T ;X )+ XA1

(
S/X
y∗p

)q1

for S/X ≥ y∗p
e−r1t2(X − Seb1t2) for S/X < y∗p

(16)

C (S ,V , T ;X ) ≈
{

c(S ,V , T ;X )+ XA2

(
S/X
y∗c

)q2

for S/X < y∗c
e−r1t2(Seb1t2 − X ) for S/X ≥ y∗c

(17)

where1t2 is the delivery lag on early exercise (4/365 if Monday, 6/365
otherwise);

A1 = e−r1t2(1− y∗peb1t2)− p(y∗p ,V , T ; 1);
A2 = e−r1t2(y∗c eb1t2 − 1)− c(y∗c ,V , T ; 1);

q1 and q2 are the negative and positive roots to

1
2V q2+(b−λ∗k̄∗− 1

2V )q− r
1−e−rT +λ∗[(1+k̄∗)qe

1
2 q(q−1)δ2−1] = 0; (18)

V is the expected average variance over the lifetime of the option
conditional on no jumps:

V ≡ 1

T
E

∫ T

0
Vt dt = α

β∗
+
(

V0 − α

β∗

)
1− e−β∗T

β∗T
; (19)

y∗p , the critical spot price/strike price ratio for immediate exercise of
puts, is given implicitly by

e−r1t2(1−y∗peb1t2) = p(y∗p ,V , T ; 1)−
(

y∗p
q1

)
[e(b−r )1t2+ps(y

∗
p ,V , T ; 1)];

(20)
and y∗c , the critical spot price/strike price ratio for immediate exercise
of calls, is given by

e−r1t2(y∗c eb1t2−1) = c(y∗c ,V , T ; 1)+
(

y∗c
q2

)
[e(b−r )1t2−cs(y

∗
c ,V , T ; 1)].

(21)
Strictly speaking, the approximations for the early exercise premi-

ums were derived for constant-volatility jump diffusions. A compar-
ison with option prices computed via finite-difference methods (see
Table 1) revealed a maximal approximation error of around 0.01¢/DM
(one price tick) for in-the-money put options. The approximation er-
ror is substantially smaller for shorter-maturity put options and for
puts with different strike prices. Approximation error is negligible for
call options of all maturities considered, given U.S. interest rates sub-
stantially higher than German rates over most of the data sample.
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Since the data set considered below consists predominantly of short-
maturity at- and out-of-the-money options and contains relatively few
in-the-money puts, approximation error in the put early exercise pre-
mium was not felt to be of major concern.

2. Estimation

2.1 Data
Transactions data for deutsche mark foreign currency options were
obtained for January 1984 to June 1991 from the Philadelphia Stock Ex-
change. Prior to September 26, 1987, only options maturing in March,
June, September, or December were traded, with contract specifi-
cations geared to the corresponding IMM foreign currency futures
contracts in size (62,500 deutsche marks, half the size of the IMM fu-
tures contracts) and maturity (third Wednesday of the contract month).
Trading in contracts maturing the nearest other two months began on
September 27, 1987. The options are American, and could be exer-
cised at any time up to and including the Saturday preceding the third
Wednesday of the contract month.

Roughly 1 percent of the records mildly violated early exercise
constraints, presumably due to measurement error in matching up
the underlying futures price. Since discarding these data would bias
upward average in-the-money option prices, influencing the implicit
parameter estimation, these data were retained. There was also no
attempt to weed out thinly traded option contracts, apart from the
fact that those contracts by their nature received a low weighting in
the regressions. A few obviously erroneous data (0.1 percent of the
total data) were discarded.

Only a subset of the full data set was used in this study. First,
only trades on Wednesdays were considered, yielding a weekly fre-
quency panel data set. Daily sampling would place extreme demands
on computer memory and time, and would involve issues of model-
ing day-of-the-week volatility effects that I do not wish to explore at
this time. Second, only morning trades (9 A.M. to 12 P.M. EST) were
considered—a trade-off between shortening the interval for greater
synchronicity and lengthening it to get more observations.14 Third,
only options with March/June/September/December maturities and
with 6 months or less to maturity were used—for a maximum of two
option maturities per day. The resulting data set consists of 19,689
transactions (11,952 calls; 7,737 puts) on 372 Wednesday mornings

14 Fifty percent of the daily trades over the period 1984 to 1991 took place between 9 A.M. and 12 P.M.
The greatest activity was between 9 A.M. and 10:30 A.M., when U.S. and European markets were
open simultaneously.
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over the period January 4, 1984, to June 19, 1991; an average of 53
trades per morning. Not all Wednesdays are included, owing to data
collection problems at the Philadelphia Stock Exchange during Febru-
ary 1985, November 1985, and September 1988.15

Other data needed in pricing foreign currency options include
the underlying asset price, a risk-free discount rate, and the domes-
tic/foreign interest rate differential. Transaction prices for IMM for-
eign currency futures were obtained from the Chicago Mercantile Ex-
change, and the nearest preceding futures price of comparable or
shorter maturity was used as the underlying asset price—provided
the lapsed time was less than 5 minutes. Otherwise the option record
was discarded. The futures data appeared of higher quality than the
Telerate time-stamped spot exchange rate quotes provided by the
Philadelphia Stock Exchange. Daily 3-month Treasury bill yields were
used for the risk-free discount rate. The daily domestic/foreign inter-
est rate differential was inferred and interpolated from synchronously
recorded spot rates and 1- and 3-month forward rates, using covered
interest parity and adjusting for weekend and end-of-month effects
on the maturity of the forward contract.16

2.2 Unconstrained implicit parameter estimation
methodology

Implicit parameters were initially estimated on the panel data set of
call and put prices for all observed strike prices and at most two quar-
terly maturities on Wednesday mornings over the period January 4,
1984, to June 19, 1991. The option pricing residual was defined as

ei,t ≡
(

O

S

)
i,t

− O

(
1,Vt , Ti,t ;

(
X

S

)
i,t

, θ

)
(22)

where t is an index over 372 Wednesday mornings within the speci-
fied period; i is an index over transactions (calls and puts of assorted
strike prices and at most two quarterly maturities) on a given Wednes-
day morning; (O/S)i,t is the observed call or put option price/spot
price ratio for a given transaction, using an implicit spot from a syn-
chronous futures transaction; and O(·) is the theoretical American op-
tion price/spot price ratio given the contractual terms of the option
(call/put, time to maturity Ti,t , strike price/spot price ratio (X/S)i,t )
and given Wednesday morning’s instantaneous variance Vt , interest

15 An oddity of the Philadelphia Stock Exchange database is that prior to September 28, 1984, every
record appears twice. The duplicate data were discarded.

16 I am indebted to Sandy Grossman for providing the interest and exchange rate data.
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rate rt and interest differential bt = rt − r ∗t , and the time-invariant
parameters θ of the model.

For the full stochastic volatility/jump-diffusion model, θ was the set
of jump and stochastic volatility parameters: θ = 〈λ∗, k̄∗, δ, α, β∗, σv , ρ〉.
The following subcases of the general model were also estimated, in
order to see which features of the generalized model were important
in explaining option pricing deviations from benchmark Black-Scholes
prices:

1. Black-Scholes model (BS), American option version, with the
same implicit volatility for all maturities on a given day; estimated
parameters: {Vt }.

2. Deterministic volatility model (DV), allowing daily a downward
or upward sloping term structure of implicit volatilities (depending on
whether Vt ≷ α/β∗); estimated parameters: {Vt }, α, β∗.

3. Deterministic volatility/jump-diffusion model (DVJD), allowing
implicit skewness and excess kurtosis inversely related to option ma-
turity; estimated parameters: {Vt }, λ∗, k̄∗, δ, α, β∗.

4. Stochastic volatility model (SV), allowing skewness and excess
kurtosis directly related to option maturity; estimated parameters:
{Vt }, α, β∗, σv , ρ.

5. Stochastic volatility/jump-diffusion model (SVJD), allowing mixed
maturity effects on skewness and excess kurtosis; estimated parame-
ters: {Vt }, λ∗, k̄∗, δ, α, β∗, σv , ρ.

Note that the average Wednesday morning realizations of the in-
stantaneous conditional variance {Vt } must also be estimated. In-
tradaily movements in spot variance were ignored in the estimation
procedure.

The first three models are inherently ad hoc, in that the restriction
that the estimated realizations {Vt } be drawn from the postulated (de-
generate) distribution has not been imposed and is obviously violated.
Nonzero parameter estimates are being generated cross-sectionally off
the observed moneyness and maturity biases of the option prices rel-
ative to Black-Scholes, and not off the time series properties of {Vt }.
The separate case in which Vt estimates are constrained by the pos-
tulated diffusion will be examined below.

Central to estimating implicit parameters is identifying why hy-
pothesized and observed options transactions prices deviate. Bid-ask
bounce in transactions with the market specialist suggests that resid-
uals are independent to a first approximation, with moneyness- and
maturity-related heteroskedasticity. Imperfect synchronization with the
appropriate underlying futures prices equally suggests independent,
heteroskedastic residuals. The pooling error introduced by using a
common spot variance for all transactions on a given Wednesday
morning introduces more complex intradaily serial and cross-correla-
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tions in residuals that are beyond the scope of this article.
A major issue for implicit parameter estimation is, however, specifi-

cation error. Any parsimonious time series model imposes a structure
on option prices that can capture only some of the features of the true
data-generating process. Specification error implies that option pricing
residuals of comparable moneyness and maturity will be contempo-
raneously correlated, and serially correlated as well if the conditional
risk-neutral distribution evolves gradually over time in fashions not
captured by the model. Furthermore, no-arbitrage constraints on op-
tion prices imply contemporaneous correlations across residuals of
different strike prices and maturities. For instance, put-call parity for
the European component of American option prices implies positively
correlated residuals between calls and puts of identical moneyness
and maturity in the presence of specification error. Consequently, im-
plicit parameter estimation via nonlinear ordinary least squares (NL-
OLS) would yield misleadingly low estimated standard errors. A fur-
ther problem when transactions data are used is that NL-OLS places
too much weight on the substantially redundant information provided
by heavily traded near-the-money options and virtually ignores the
less actively traded in- and out-of-the-money options.17

Consequently, implicit parameters were estimated using a nonlinear
generalized least squares (NL-GLS) methodology modeled on Engle
and Mustafa (1992) that takes into account the heteroskedasticity, con-
temporaneous correlation, and serial correlation properties of option
residuals. The residuals were sorted by call/put, maturity, and mon-
eyness criteria into 40 groups,18 and were assumed to include both
group-specific and idiosyncratic shocks:{

ei,t = εI ,t + σIηi,t for i ∈ GI

εI ,t = ρI εI ,t−1 + υI ,t
(23)

where I is an index across the set of groups {GI }; υI ,t is a mean-
zero, normally distributed shock term common to all option prices
in group I at time t , with Et−1υtυ

′
t = Σ for positive semidefinite Σ;

and ηi,t ∼ N (0, 1) is an idiosyncratic shock to transaction i at time t ,

17 An earlier version of this article that used NL-OLS estimation appeared in December 1993 as NBER
working paper no. 4596, under the same title. Estimates in that article differed substantially from
those presented below, in two areas. First, the heavy weight on near-the-money options resulted
in implicit jump parameter estimates that were statistically but not economically significant, and
had little relevance for the volatility smile. Second, parameter estimation using options and time
series data effectively gave extremely heavy weight to fitting the options, and downweighted time
series plausibility.

18 The criteria were (1) whether the transaction involved a call or a put; (2) whether the quarterly
maturity was short-term (roughly 0 to 3 months) or medium-term (3 to 6 months); and (3) which
of 10 alternatives characterized the strike price/futures price ratio: < 0.94, [0.94, 0.96), [0.96, 0.98),
[0.98, 0.99), [0.99, 1), [1, 1.01), [1.01, 1.02), [1.02, 1.04), [1.04, 1.06), or ≥ 1.06.
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uncorrelated with υI ,t .
The appropriate loss function for implicit parameter estimation is

max
{Vt },θ

ln Loptions = 1
2

∑
t −Nt ln(2π)− ln |Ωt |

− (et − Et−1et )
′Ω−1

t (et − Et−1et ) (24)

where Ωt is the covariance matrix for the vector of residuals et on a
given day, given Equation (23). Since there can be up to 400 trans-
actions per Wednesday morning, computational efficiency is substan-
tially increased by using an orthogonalizing transformation for day-
and group-specific residuals:{

ēI ,t ≡ 1
NI ,t

∑NI ,t

i=1 eI ,t for ei,t ∈ GI

ui,t ≡ ei,t − ēI ,t , i = 1, . . . ,NI ,t − 1,
(25)

where NI ,t is the number of transactions in group I on date t . Under
this transformation, Equation (24) can be rewritten as

max
{Vt },θ

ln Loptions = C − 1
2

∑
t {Nt ln(2π)+ ln |Mt |

+ (ν t − Et−1ν t )
′M−1

t (ν t − Et−1ν t } (26)

where

C ≡ 1

2
6t ln |Mt | − ln |Ωt | = 6t6I ln(max(NI ,t , 1)) is a constant;

ν ′t ≡ 〈ē′t ,u′1,t , . . . ,u′Gt ,t 〉;
ē′t = 〈ē1,t , . . . , ēGt ,t 〉 is the vector of group-average residuals;

u′I ,t = 〈u1,t , . . . ,uNI ,t−1,t 〉 is the vector of deviations from
group-average for group I ;

Mt ≡ Et−1(ν t − Et−1ν t )(ν t − Et−1ν t )
′ is the block-diagonal

covariance matrix; and Gt ≤ 40 is the number of
groups observed on date t .

M−1
t has a simple analytic form except for the group-average com-

ponent, and involves inverting at most a 40 × 40 positive definite
matrix per day.19 The conditional expectation of ν t was computed
using Et−1ēI ,t = (ρI )

nēI ,t−n and Et−1ui,t = 0, where n is the number
of weeks since the last Wednesday for which observations in group

19 The diagonal terms of [EuI ,t u′I ,t ]
−1 for NI ,t > 1 are 1/σ 2

I , while the off-diagonal elements are 2/σ 2
I .

The diagonal terms of Et−1(ēt − Et−1ēt )(ēt − Et−1ēt )
′ are 6I ,I + σ 2

I /NI ,t , while the off-diagonal
elements are 6I , J .
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I were observed.20 For n > 4 the conditional expectation was set to
zero.

Parameters were estimated via sequential maximization of Equa-
tion (26) over 〈{Vt }, θ〉 and 〈Σ, {σI }, {ρI }〉, iterated to convergence,
with assorted parameter transformations used to increase efficiency
or to constrain the parameter space.21 Goldfeld, Quandt, and Trotter’s
quadratic hill-climbing method (GQOPT software, GRADX method)
was used for estimating jump-diffusion parameters, while Powell and
Davidon-Fletcher-Powell algorithms were used for estimating covari-
ances and correlations. First and second derivatives of the loss func-
tion were computed numerically, coded to eliminate irrelevant compu-
tations.22 Estimates of implicit parameters on the full data set generally
took 3 to 5 days on a dedicated Hewlett-Packard Apollo 735 work-
station, depending upon which model was used.

2.3 Results
Several interesting features emerge from the estimates of the stochas-
tic volatility/jump-diffusion model and assorted submodels shown in
Table 2. The deterministic volatility (DV) model’s relaxation of the
Black-Scholes assumption of a flat term structure of implicit volatil-
ities substantially improved the fit of 0- to 3-month near-the-money
call and put options, by up to 0.015 percent of the underlying spot
exchange rate (roughly one price tick). The fit for 3- to 6-month calls
tended to worsen, by up to 0.005 percent, while mixed effects were
observed for 3- to 6-month puts. The tendency for the term struc-
ture of implicit volatilities to be upward (downward) sloping for low
(high) short-term implicit volatilities was qualitatively consistent with
the postulated volatility mean reversion. NL-GLS estimates of the half-
life of volatility shocks based essentially on the average slope of the
term structure of implicit volatilities ranged from 6.4 to 10.6 months,
depending on whether jumps were not or were included.

Allowing for skewed and/or leptokurtic distributions via the de-
terministic volatility/jump-diffusion (DVJD), stochastic volatility (SV),

20 In principle a better forecast can be constructed for missing observations (n > 1) based on
covariances with other groups’ average residuals. However, the constantly varying set of groups
represented on any given day precluded this alternate approach.

21 The Cholesky factorization of 6 was estimated to ensure positive definite Mt . Nonnegativity
constraints on spot variances, 1+k̄∗, δ, α, α/β∗, and σν , were imposed through log transformations,
while |ρ| < 1 was imposed through an inverse cumulative normal transformation of 1

2 (1+ρ). The
major increase in estimation efficiency resulted from using the log of the minimum spot variance
ln[min{Vt } + Vjump ] instead of λ∗ as one of the parameters, analogous to Bates (1991).

22 In particular, ∂(ln L)/∂Vt , ∂2(ln L)/∂(Vt )
2, and ∂2(ln L)/(∂Vt∂θi) required perturbation of date t

options only, with subsequent propagation effects given serial correlation. The cross-derivatives
∂2SSE/(∂Vs∂Vt ) = 0 for |s − t | > 4 (given truncation of serial correlation effects after four lags),
and required perturbing date s and date t options only for |s − t | ≤ 4.
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and stochastic volatility-jump-diffusion (SVJD) specifications further
improved the models’ ability to fit option prices. The major impact
was on in- and out-of-the-money 0- to 3-month call and put options,
the fit for which improved by up to 0.015 percent. Slightly positive
implicit skewess was estimated for all three models: positive corre-
lation between exchange rate and volatility shocks and/or positive-
mean jumps. Similarly, parameter estimates from all models (substan-
tial jump components and/or substantially volatile volatility) implied
substantial implicit excess kurtosis. Based on the relative fits of the
nonnested DVJD and SV models, the variation of higher implicit mo-
ments across different maturities is better characterized by the direct
relationship implied by stochastic volatility models than by the strong
inverse relationship characteristic of jump models.23

The estimated instantaneous conditional (or “spot”) variances Vjump

+Vt were generally very close for all models, where Vjump = λ∗{[ln(1+
k̄∗) − 1

2δ
2]2 + δ2} is the (constant) variance per year attributable to

jumps. However, the sample path for spot variance estimated un-
der the SVJD model involved a reflection off the minimum value of
Vjump = (0.072)2 (see Figure 1), whereas the path estimated under
the SV model never approached the reflecting barrier at Vt = 0. More
comparable to standard Black-Scholes implicit variances is the ex-
pected average variance

EV = Vjump + w(T )Vt + [1− w(T )]
α

β∗
(27)

for w(T ) = (1−e−β∗T )/β∗T ∈ (0, 1). The expected average variance is
a maturity-dependent weighted average of the spot variance Vjump+Vt

and the steady-state variance Vjump+α/β∗. Given estimated slow mean
reversion, the estimated expected average variance for 0- to 6-month
options was close to the spot variance and is consequently not shown.

Despite the improved fit relative to Black-Scholes, the conditional
standard errors of the stochastic volatility/jump-diffusion model shown
in Table 3 are still large. Freely parameterized option pricing mod-
els involving daily parameter reestimation typically yield substantially
lower overall root mean squared error, on the order of 0.04 percent
of the underlying asset price; examples include the constrained cubic
spline and Merton (1976) jump-diffusion models in Bates (1991, 1994).
While ad hoc, such models do satisfy option-specific, no-arbitrage
constraints and therefore generate theoretically valid option prices

23 Bates (1994) finds that implicit excess kurtosis in DM and yen futures options tended to increase
as option maturities decreased, but not as fast as predicted by Merton’s (1976) jump-diffusion
model.

87



The Review of Financial Studies / v 9 n 1 1996

Figure 1
Instantaneous conditional (spot) volatility implicit in deutsche mark options, 1984–1991
Spot volatility is defined as (Vjump + Vt )

1
2 , where Vjump is the variance attributable to the time-

invariant jump component. The steady-state variance is Vjump +α/β∗. Expected average variances
(roughly the Black-Scholes implied variances) are a maturity-dependent weighted average of spot
and steady-state variances.

consistent with some underlying distribution. The implications are
that specification error is large relative to other sources of error, and
that the postulated model fails to capture major changes in implicit
distributions over time.

Further evidence of parametric instability is revealed in implicit
parameter estimates over two-year subsamples; see Table 4. The major
problem is that the postulated one-factor model for expected average
variances in Equation (27) fails to capture the evolution over time
of the term structure of implicit volatilities across short-term (0 to 3
month) and medium-term (3 to 6 month) maturities. Whereas the term
structure was essentially flat in 1984 to 1985, as indicated by a long
half-life to volatility shocks, steeper term structures were observed in
subsequent years. Evolutions in other moments were also observed;
implicit distributions were substantially positively skewed over the
period 1984 to 1987, but were essentially symmetric over the period
1988 to 1991. Substantial implicit excess kurtosis was present in all
biannual subsamples.

Parameter instability explains the apparent puzzle in Table 3 that
average pricing errors for short-term in-the-money calls and out-of-
the-money puts diverge in sign, whereas put-call parity (for the Eu-
ropean portion of the option prices) implies that the pricing errors
should be comparable in sign and magnitude. The divergent average
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moneyness biases for calls versus puts reflects the fact that calls were
relatively heavily traded in the first half of the 1984 to 1991 period,
while puts were more heavily traded in the second half. Synchronous
call and put residuals are typically comparable in sign and magnitude.

3. Tests of Consistency with the Underlying Time Series

3.1 Tests of consistency with the time series properties of
implicit volatilities

As noted by Cox, Ingersoll, and Ross (1985), the transition density of
y = 2cVt+1t conditional on Vt is noncentral χ2(4α/σ 2

v , 2cVt e−β1t ),
where c−1 ≡ 1

2σ
2
v (1 − e−β1t )/β and β is the actual rate of mean

reversion of the volatility process (as distinct from the risk-adjusted
parameter β∗ implicit in option prices):

p(y | Vt ) = e−
1
2 (y+3)y

1
2 v−1

2
1
2 v

∞∑
j=0

( 1
4 y3) j

0( 1
2v + j) j !

(28)

where ν ≡ 4α/σ 2
v ,3 ≡ 2cVt e−β1t , and 0(·) is the gamma function.

However, the noncentral χ2 density function has infinite value at
2cVt+1t = 0 when the reflecting barrier is attainable ( 1

2ν < 1), yielding
nonsensical results when the sample path {Vt } is among the param-
eters to be estimated. Consequently, the applications below use the
transition density of the monotonic transformation ln(Vt+1t ), which
has finite density everywhere:

p(ln Vt+1t | Vt ) = e−
1
2 (e

z+3)(ez )
1
2 v

2
1
2 v

∞∑
j=0

( 1
4 ez3) j

0( 1
2v + j) j !

, (29)

where ez = 2cVt+1t .
Maximum likelihood estimates of the parameters {α, β, σv} using

the time series of implicit instantaneous conditional volatilities {Vt }
diverge substantially from the parameters {α, β∗, σv} estimated cross-
sectionally from option prices, as is shown in Table 5 (SV and SVJD
models). In particular, the volatility of variance parameter σv implicit
in option prices is substantially higher than the supposedly identical
parameter estimated off the time series properties of {Vt }. The pa-
rameters α and β affecting the drift are estimated with less precision;
nevertheless, there is a significant deviation.

Given noisy option prices, however, the above two-step estimation
procedure does not constitute a formal test of the hypothesis of iden-
tical {α, σv} parameters for option prices and time series. Under the
assumptions that option residuals are appropriately modeled by Equa-
tion (23) and are independent of volatility realizations, the appropriate
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loss function for testing hypotheses is

ln L({Vt }, θ, β) = ln Loptions + ln L{V } (30)

where ln Loptions({Vt }, θ) is the function of option pricing residuals
given in Equation (26), and ln L{V } = 6t ln p(ln(2cVt ) | α, β, σv;Vt−1)

is the log-likelihood of an estimated {Vt } sample path given p(·) from
Equation (29).

The likelihood function was again estimated by sequential maxi-
mization over process and covariance parameters, iterated to conver-
gence. The joint hypothesis of identical {α, σv} parameters for options
and time series was tested using a likelihood ratio test:

Unconstrained parameter estimates:
〈{{Vt }, λ∗, k̄∗, δ, α, β∗, σv , ρ}options, {α, β, σv}time series〉

Constrained parameter estimates:
〈{{Vt }, λ∗, k̄∗, δ, α, β, β∗, σv , ρ}options & time series〉

The effects of imposing the constraint that spot variance estimates
be plausible are shown in Table 5, models SVC and SVJDC, and in Fig-
ure 2. Constraining the volatility process brought the volatility of vari-
ance parameter σv more in line with the time series behavior of {V c

t },
and smoothed the estimated sample paths of {V c

t }. In fact, constrained
estimation actually increased the joint log-likelihood of the stochastic
volatility/jump-diffusion model. The unconstrained {Vt } sample path
estimated from options (SVJD model) without regard for time series
plausibility was in fact highly unlikely for low (and low-volatility) val-
ues of Vt , for which transition densities were nearly degenerate.

Nevertheless, both the stochastic volatility and the stochastic volatil-
ity/jump-diffusion models indicate substantial inconsistency between
option prices and the underlying implicit volatility process. The con-
straint of identical {α, σv} parameters in the options and resulting {Vt }
time series data for the SV model is strongly rejected, based on two
criteria: (1) the worsening of the joint log-likelihood (120,733 versus
120,807—p-value < 10−16); and (2) the inconsistency of the con-
strained {V c

t } implicit parameters {α, σv} and the constrained sample
path {V c

t } (log-likelihood 243 versus 175—p-value < 10−16). The lat-
ter criterion also yields rejection of the SVJDC model (log-likelihood
of 225 versus 215—p-value = 6×10−5). A comparison of the SVC and
SVJDC models indicates that the implicit jump component continues
to be strongly significant (p-value < 10−16).

The rejections indicate that the stochastic volatility model is con-
sistent with the “volatility smile” evidence of implicit leptokurtosis
only for extreme and implausible levels of the volatility of variance.
The implausibility of the high σv estimated under the SV model is
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Figure 2
Unconstrained and constrained spot volatilities implicit in deutsche mark options, 1984–
1991
Spot volatilities were estimated using the stochastic volatility/jump-diffusion model. Constrained
estimates involved likelihood-based endogenous smoothing that reflected estimated volatility
process parameters.

particularly evident when one compares the unconditional gamma
distribution of {Vt } implicit in option prices with the sample distribu-
tion of {Vt } (Figure 3). A high volatility of variance implies frequent
reflections off zero and substantial clustering of implicit instantaneous
variances near 0, contrary to what is observed. The SVJDC model by
contrast is more compatible with a plausible stochastic variance pro-
cess, and attributes the implicit leptokurtosis to a jump component of
substantial amplitude and biannual frequency similar to that estimated
for the deterministic volatility/jump-diffusion model in Table 2.

Previous studies have argued that the term structure of implicit
volatilities is inconsistent with the time series properties of implicit
volatilities.24 Particular attention has been drawn to the discrepancy
between the long half-life to volatility shocks implicit in the term
structure of implicit volatilities relative to observed faster mean rever-
sion in implicit volatilities. In this model, the term structure of implicit
expected average variances for 0- to 3-month versus 3- to 6-month
options depends on the parameters α and β∗; see Equation (27). Since
the expected average variance is roughly the implicit variance from

24 Stein (1989) makes this argument with regard to implicit volatilities from S&P 100 options, while
Campa and Chang (1995) examine interbank foreign currency options.
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Figure 3
Theoretical and sample histograms for spot variances, 1984–1991, stochastic volatility
(SV) model

the Black-Scholes model,25 the question is whether the 〈α, β∗〉 param-
eters implicit in option prices are consistent with the 〈α, β〉 parameters
estimated from the AR(1) time series model for implicit variances.

The two sets of parameters do in fact diverge in unconstrained pa-
rameter estimation. However, the parameters can in principle diverge
because of a volatility risk premium. Furthermore, the subsample es-
timates reported in Table 4 suggest that the full-sample estimates of
〈α, β∗〉 were heavily influenced by the unusual term structure of im-
plicit spot variances during the 1984 to 1985 period. Subsequent sub-
sample estimates from 1986 to 1991 appear more compatible with the
time series behavior of spot implicit variances in terms of the steady-
state level and the rate of reversion toward that level.

3.2 Tests of consistency with the time series properties of
futures prices

A further test of the stochastic volatility and stochastic volatility/jump-
diffusion models is their consistency or inconsistency with observed
realizations of exchange rates and foreign currency futures prices.
To examine this, the actual (as opposed to risk-neutral) futures price

25 In principle, there are Jensen’s inequality biases relevant to the choice of implicit volatilities
versus implicit variances and to the choice of the moneyness of the options used in computing
implicit volatilities. These biases do not appear empirically important for plausible σν and jump
parameters.
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process was parameterized as follows:

dF/F = [c0 + c1(r1 − r ∗t )+ cvVt − λk̄] dt +√Vt dZ + k dq

dV = (α − βV )dt + σv

√
V dZv

cov(dZ ,dZv) = ρ dt

prob(dq = 1) = λdt, ln(1+ k) ∼ N (ln(1+ k̄)− 1
2δ

2, δ2). (31)

The inclusion of interest differentials in the instantaneous conditional
mean nests two alternative hypotheses: that the futures price follows
a martingale (c0 = c1 = cv = 0), and that the underlying spot ex-
change rate follows a martingale (c0 = cv = 0, c1 = −1). The inclusion
of the instantaneous variance allows for instantaneous “GARCH-in-
mean” interactions between volatility and the futures price, although
higher moments are also affected in discrete time. The resulting prob-
ability density of the log-differenced futures price conditional on in-
stantaneous variance Vt is

p

[
ln

(
Fn

Fn−1

)
| Vn−1

]
= 1

2π

∫ ∞
−∞

exp{C (i8,1tn)+ D(i8,1tn)Vn−1

+ λ1tn[(1+ k̄)i8e−δ
2(82+i8)/2 − 1]

− i8 ln(Fn/Fn−1)}d8 (32)

where

C (8;1t) = [c0 + c1(rt − r ∗t )− λk̄]81t − α1t

σ 2
v

(ρσv8− β − γ )

−2α

σ 2
v

ln
[
1+ 1

2 (ρσv8− β − γ ) 1−eγ1t

γ

]
(33)

D(8,1t) = −2(cv − 1
2 )8−82

ρσv8− β + γ 1+eγ1t

1−eγ1t

(34)

γ =
√
(ρσv8− β)2 − 2σ 2

v [
1

2
82 + (cv − 1

2
)8]. (35)

The log-likelihood function is therefore

ln L{F } =
∑

n
ln p

[
ln

(
Fn

Fn−1

)
| Vn−1

]
. (36)

The stochastic volatility parameters {α, σv , ρ}, the jump variance δ2,
and the set of instantaneous variance realizations {Vt } should theo-
retically be common to both the option prices and the futures price
process. To test for bias in implicit variance forecasts, however, the
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instantaneous variance was modeled as a linear transform of the in-
stantaneous variance realization implicit in option prices:

Vt = cv0 + cv1V options
t , cv0 ≥ 0 (37)

where the coefficients cv0 and cv1 were estimated. The actual (as
opposed to risk-neutral) jump parameters were also estimated, as
were the influences of interest differentials and instantaneous volatil-
ity. Since option prices provide no direct information about the true
rate of variance mean reversion, β was initially treated as a free pa-
rameter to be estimated from futures data. Parameters were estimated,
first treating jump volatility δ as a free parameter, and subsequently
constraining it to the value implicit in option prices. The former is
more comparable methodologically with time series studies such as
Akgiray and Booth (1988) and Jorion (1988), who have found high-
frequency, low-amplitude exchange rate jump components of little
significance for 1- to 6-month option prices. Estimation of the latter
constrains jump amplitudes to values relevant at typical option ma-
turities, permits explicit testing of that constraint, and is of course
theoretically correct.

The futures data were short-maturity (typically 0 to 3 month) noon
quotes on Wednesdays for which there were options data available.
The typical time interval was 1 week, although there were five occa-
sions in which missing options data resulted in a longer time interval.
To avoid maturity shifts, the futures contract maturity was the short-
est maturity such that futures contracts with identical delivery dates
existed at the next available Wednesday.26 One-month Eurocurrency
interest rates were used for the interest differential.

Maximum-likelihood estimates of the parameters are presented in
Table 6A. As has been found elsewhere, estimates of the conditional
mean suggest that it is the spot exchange rate rather than the futures
price that follows a martingale, although neither hypothesis can be
rejected in this single-currency regression.27 No statistically significant
jump component was found. The hypothesis that implicit volatilities
provide no useful information in forecasting future volatilities was
strongly rejected for {V options

t } sample paths estimated from both the

26 For example, June 1984 options on March 5, 1984, were used to predict the March 1984 futures
price transition from March 5 to March 12. On March 12, June 1984 options were used to predict
the June 1984 futures price transition from March 12 to March 19.

27 See Hodrick (1987) and Froot and Thaler (1990) for surveys of the extensive literature on rejections
of uncovered interest parity, which is equivalent to rejection of the hypothesis that the futures
price follows a martingale. The strongest rejections of uncovered interest parity have been within
a multicurrency framework [e.g., Hsieh (1984)].
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SV and SVJD models. Whether the implicit spot variance was an unbi-
ased assessment of spot variance for forming future volatility forecasts
(typically over a 1-week holding period) was more ambiguous. How-
ever, implicit variances were definitely closer to unbiased forecasters
of future volatility than implicit volatilities from stock and stock index
options.28 Scott (1992) and Bates (1994) also find near unbiasedness
for implicit volatilities from deutsche mark spot and futures options,
respectively.29

The future price process was also estimated conditional on the
constrained 〈{Vt }, α, β, σv , ρ〉 stochastic volatility parameter estimates
from Table 5—that is, using time series properties of implicit volatili-
ties to constrain β to “plausible” levels. Using smoothed instantaneous
variances {Vt } and associated implicit parameters had relatively little
impact on forecasts of the future distribution of log-differenced fu-
tures prices, as indicated by essentially unchanged log likelihoods
(Table 6B). The implicit variances still had substantial informational
content; the hypothesis of unbiasedness could not be rejected for the
constrained stochastic volatility model, but was borderline significant
for the constrained SVJDC models.

The constrained SVJDC model differs predominantly from the un-
constrained SV and SVJD models in its attribution of the volatility smile
to an infrequent substantial jump component. It is, however, difficult
to test the plausibility of these parameters on a 71

2 -year database, given
the jump diffusion model lacks power. The hypothesis of no jumps is
as plausible (p-value of 0.117) as the hypothesis that jump standard
deviations δ are of the magnitude implicit in option prices (p-value
of 0.121). The point estimates reflect the fact that one jump was in
fact observed over the 1984 to 1991 period: an 8% DM appreciation
“outlier” during the week including the Plaza Agreement (September
18–25, 1985). Furthermore, subsample estimates over the 1984 to 1985
period indicate that option prices anticipated a jump.30 While unlikely
that only one jump would be observed over 71

2 years given the bian-
nual frequency implicit in option prices, the actual jump frequency
λ can in principle deviate from the implicit jump frequency λ* either
because of a jump risk premium, or because of the maturity mismatch

28 Canina and Figlewski (1993), Day and Lewis (1992), and Fleming (1992) examine implicit volatil-
ities from S&P 100 index options, while Lamoureux and Lastrapes (1993) examine implicit volatil-
ities from 10 stock options.

29 Scott (1992) also finds near unbiasedness for PHLX pound and Swiss franc implicit variances,
but finds that yen implicit variances are bad forecasters. The last result is also true for implicit
volatilities from yen futures options [Bates (1994)].

30 Further corroborative evidence of this anticipation is in the moneyness biases observed by Bo-
durtha and Courtadon (1987). See also Bates (1994) for related evidence in deutsche mark futures
options.
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Table 7
Summary statistics for log-differenced weekly exchange rates

Period January 1974– January 1984–
December 1985 June 1991

Series $/DM exchange $/DM futures price
rate (Jorion 1988)

Number of observations 626 385

Mean (percent per annum) 0.7 5.8

Standard deviation (percent, annualized) 10.2 12.3

Skewness .251 .321

Excess kurtosis 3.29 1.00

H0: no jumps Rejected at 1% level Not rejected

$/DM futures prices were Wednesday noon transaction prices for the shortest 0 to 3-month
maturity available that did not involve a maturity shift. Skewness and excess kurtosis for log-
differenced $/DM futures prices excluding the 8% DM appreciation observed during the week
of the Plaza Agreement (September 18–25, 1985) were .098 and .08, respectively.

between the 0- to 6-month option maturities and the predominantly
weekly holding period of the log-differenced futures prices.

The absence of a statistically significant jump component in the
$/DM futures price over the period 1984 to 1991 is inconsistent with
previous time series studies of the $/DM exchange rate. Akgiray and
Booth (1988) and Jorion (1988) both found statistically significant
jump components, while Bollerslev, Chou, and Kroner (1992) cite
other studies that have found fat-tailed residuals in the $/DM exchange
rate even after adjusting for ARCH/GARCH effects. However, Table 7
indicates that the distribution of the $/DM exchange rate has changed,
with less excess kurtosis for weekly returns over the 1984 to 1991 pe-
riod than was the case from 1974 to 1985. Furthermore, the estimated
unconditional skewness and excess kurtosis were entirely attributable
to the single Plaza Agreement outlier.

4. Summary and Conclusions

This article has generated model-specific estimates of the distributions
implicit in deutsche mark options, and has tested the compatibility of
those distributions with the distributions estimated from time series
of implicit volatilities and $/DM futures prices. There was substantial
qualitative agreement between implicit and time series-based distribu-
tions, most notably with regard to implicit volatilities as forecasts of
future volatility. The volatility smile evidence of implicit excess kur-
tosis could be explained by the stochastic volatility model only under
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parameters that were implausible given the time series properties of
implicit volatilities. By contrast, the attribution of the implicit excess
kurtosis to fears of infrequent substantial jumps yielded plausible im-
plicit jump parameters that were substantially consistent with the 8
percent jump in the $/DM exchange rate observed during the week
of the Plaza Agreement. Given a fundamental lack of power when
testing for infrequent substantial jumps using time series data, how-
ever, the hypothesis of no jumps was as plausible as the hypothesis
that jump magnitudes matched those implicit in option prices.

Specific deficiencies of the postulated stochastic volatility/jump-
diffusion model were also noted, suggesting potential areas of im-
provement for the next generation of models. The major issue is pa-
rameter instability—most notably with regard to the term structure of
implicit volatilities. The postulated one-factor model for expected av-
erage variances does a poor job in capturing the evolution over time
of implicit volatilities from multiple option maturities. There is there-
fore substantial scope for improvement from using multifactor rather
than single-factor models of stochastic volatility. Evolution in implicit
skewness is also apparent, from substantially positive over the period
1984 to 1987 to essentially zero over the period 1988 to 1991. By con-
trast, the implicit excess kurtosis underlying the volatility smile has
been a persistent feature in all subsamples. Identification of alternate
fat-tailed distributions that better match the profile of excess kurtosis
across different option maturities is also desirable.

The extensions proposed above are premised on the presumed
existence of a stable data-generating process underlying observed ex-
change rates and option prices. This assumption of stability is driven
by econometric necessity rather than a priori reasoning; there is no
reason to believe market participants do in fact maintain the same con-
ditional distributions regarding future exchange rate realizations. The
evidence of parameter instability suggests that option pricing models
based solely on more and more complicated descriptions of the un-
derlying asset price process may ultimately face the same limitations
as their corresponding discrete-time ARCH/GARCH counterparts. The
ultimate research agenda may therefore be to identify those omitted
“fundamentals” that are showing up as parameter shifts in current
option pricing models.

Appendix

Analytical solutions for moment generating functions
As noted above, the price of a European call can be written as

c = e−rT (FP1 − XP2) (A1)
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where F = E ∗(ST ) = S0ebT is the forward price on the asset; P2 =
prob∗(ST > X ) is one minus the risk-neutral distribution function; and
P1 =

∫∞
X [ST /E ∗(ST )]p∗(ST )dST is also a probability.

The moment generating function F2(8 | s0,V0, T ) associated with
the log of the terminal asset price sT ≡ ln(ST ) under the risk-neutral
probability measure,

F2(8 | s0,V0, T ) ≡ E ∗e8sT = e−rT E ∗[erT e8sT ], (A2)

can be viewed as the current price of a contingent claim that pays off
erT+8s at time T . The price of a related contingent claim G(s0,V0, T ;8)
that pays off e8s must satisfy the standard condition for contingent
claims prices:

E ∗dG = rG dt . (A3)

Since G = e−rT F2, a simple transformation of variables indicates
that F2 must solve the related condition E ∗dF2 = 0. For the stochastic
volatility/jump-diffusion process considered above, this implies that
F2 solves

−FT + (b − λ∗k̄∗ − 1
2V )Fs + (α − β∗V )FV

+ 1
2V (Fss + 2ρσvFsV + σ 2

v FV V )

+ λ∗E [F (s + γ ∗,V )− F ] = 0 (A4)

γ ∗ ≡ ln(1+ k∗) ∼ N (ln(1+ k̄∗)− 1
2δ

2, δ2),

subject to the moment generating function boundary condition

F2|T=0 = e8s . (A5)

A related problem is discussed in Ingersoll (1987, chap. 18) with
regard to pricing bonds. Using a similar methodology, the solution is

F2(8; s0,V0, T ) = exp{8s0 + C2(T ;8)+ D2(T ;8)V0

+ λ∗T [(1+ k̄∗)8e
1
2 δ

2(82−8) − 1]}. (A6)

C2 and D2 solve two ordinary differential equations,

DT = 1
2σ

2
v D2 + (ρσv8− β∗)D + 1

2 (8
2 −8),D|T=0 = 0 (A7)

CT = (b − λ∗k̄∗)8+ αD, C |T=0 = 0 (A8)
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and have the solutions

C2(T ;8) = (b − λ∗k̄∗)8T − αT

σ 2
v

(ρσv8− β∗ − γ2)

−2α

σ 2
v

ln
[
1+ 1

2 (ρσv8− β∗ − γ2)
1−eγ2T

γ2

]
(A9)

D2(T ;8) = 8−82

ρσv8− β∗ + γ2
1+eγ2T

1−eγ2T

, (A10)

where

γ2 =
√
(ρσv8− β∗)2 + σ 2

v (8−82). (A11)

Solving for P1 =
∫∞

X [ST /E ∗(ST )]p∗(ST )dST is slightly trickier be-
cause it is not the probability function of the risk-neutral probability
measure. However,

G = e−rT FP1 = Se(b−r )T P1 (A12)

is the price of a contingent claim that pays off ST at time T conditional
on ST > X , and 0 otherwise. Consequently, G solves the standard
condition of Equation (A3). Since

dG

G
= −(b − r )dt + dS

S
+ dP

P
+
(

dS

S

)(
dP

P

)
(A13)

and E ∗(dS/S) = bSdt , P1 must satisfy

E ∗
[
dP + dS

S
dP

]
= 0. (A14)

Writing P1 = P1(s,V , T ) as a function of the log of the asset price and
using Equation (A14) yields the integro-differential equation

−PT +
(

b − λ∗k̄∗ + 1

2
V

)
Ps + (α − β∗V + ρσνV )PV

+ 1

2
V (Pss + 2ρσνPsV + σ 2

ν PV V )

+ λ∗E {eγ ∗ [P(s + γ ∗,V )− P ]} = 0 (A15)

γ ∗ ≡ ln(1+ k∗) ∼ N

(
ln(1+ k̄∗)− 1

2
δ2, δ2

)
.

The moment generating function F1(8; s0,V0, T ) underlying P1 must
of course also solve the same equation subject to the moment generat-
ing function boundary condition of Equation (A5). Using the property
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of normal distributions

Eez f (z) = ez̄+ 1
2σ

2
z E f (z∗) for z ∼ N (z̄ , σ 2

z )

z∗ ∼ N (z̄ + σ 2
z , σ

2
z )

(A16)

the equation can be written as

FT =
(

b − λ∗k̄∗ + 1

2
V

)
Fs + [α − (β∗ − ρσν)V ]FV

+ 1

2
V (Fss + 2ρσνFsV + σ 2

ν FV V )

+ λ∗(1+ k̄∗)E {[F (x + γ ∗∗,V )− F ]} (A17)

γ ∗∗ ∼ N (ln(1+ k̄∗)+ 1

2
δ2, δ2),

which is of the same form as Equation (A4), with modified parameters.
The resulting solution for the moment generating function is

F1(8; s0,V0, T ) = exp{8s0 + C1(T ;8)+ D1(T ;8)V0

+ λ∗T (1+ k̄∗)[(1+ k̄∗)8e
1
2 δ

2(82+8) − 1]} (A18)

where

C1(T ;8) = (b − λ∗k̄∗)8T − αT

σ 2
ν

(ρσv8− β∗ + ρσν − γ1)

− 2α

σ 2
ν

ln

[
1+ 1

2
(ρσν8− β∗ + ρσν − γ1)

1− eγ1T

γ1

]
(A19)

D1(T ;8) = −8−82

ρσν8− β∗ + ρσν + γ1
1+eγ1T

1−eγ1T

(A20)

and

γ1 =
√
(ρσν8− β∗ + ρσν)2 − σ 2

ν (8+82). (A21)
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