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Talk Outline

What would we like the model to accomplish?

A review of dynamic aspects of popular classes of models

How to price / hedge in incomplete markets?

Stochastic  volatility - Heston

Jumps

Levy + stochastic vol. extensions

Conclusion - how could we improve on existing models?
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What do we need models for ?
• The case of cliquets (even ATM)

• The case of path-dep cliquets

• What is the delta of a call?

What do we require from a model ?
• That it correctly captures the joint dynamics of spot / implied vols

dynamics of ATM vols
dynamics of skew
spot / vol “correlation”

• That it fits today’s implied vols reasonably well

Different approaches to generating implied vols dynamics
• Specifying dynamics on implied vols directly

• Specifying ad-hoc dynamics on the spot

• Other techniques (BGM-like spec. on forward variances, etc..)
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Pricing in a general setting

Black-Scholes

• Delta is dP/dS. Delta strategy exactly generates payoff at maturity, with zero variance: there is just one price
for an option

• Variance of final P&L is finite only because trading occurs at discrete dates (daily).

Other settings

• When there are jumps, or if volatility is stochastic final P&L has finite variance, even if trading occurs
continuously.   How do we price/ hedge an option?

For a European option with payoff function f, the discounted P&L to the seller reads:

The pricing criterion used here is to minimize the variance of the final P&L. The function ∆ is obtained as the
solution of a stochastic control problem.  It is a function of  S, t, and may  depend on other “hidden” variables.

The price of the option is then set to:            :  “minimal risk” pricing.

Examples: two types of models

• Stochastic volatility

• Jumps / Levy processes
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Pricing in a general setting        Heston  1

Stochastic volatility - Heston

The Heston dynamics reads:

Imagine we have sold a European option.  Let                       and                       be the expectation and variance of the

final P&L, discounted at time t. They are solutions of the following coupled equations:
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Pricing in a general setting        Heston  2

Stochastic volatility - Heston

By (variationally) differentiating w.r.t.  ∆, we get (1) the optimal delta and (2) the pricing equation:

• Drift for spot is still financing cost - as in B.S.

• V0 is renormalized but - luckily - pricing equation keeps usual form.  Volatility degrees of freedom are partially hedged
with the stock  � impacts the drift for V.

• Variance of final P&L is now finite
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Pricing in a general setting         Jumps  1

Jumps

Now imagine that vol is not stochastic, but there is an additional jump process. Let J be the (random) magnitude of the
jumps and � their intensity.  The equations for m and W read:
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Pricing in a general setting         Jumps  2

Jumps

We get the delta

For small jumps:

Plug the expression for delta in the equation for  m   �   we get a pricing equation in which the historical drift of the spot
appears. This is to be expected as delta is different than dP/dS.

Is it reasonable to take a position on the stock and bet on a value of the historical drift? - the “optimal” delta may  not be
optimal, since jumps are probably  ill-specified with respect to the historical behavior of stock prices.

Let us then decide that the delta is dP/dS.  The historical drift of the spot disappears from the pricing equation which now
reads:

This holds for Levy processes as well.
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Static / dynamic behavior of models               Heston  1

Heston - static

•  Parameters:

•  Model is homogeneous:

•  Expansion in powers of vol of vol at order 1 yields:

Crossover is set by  mean-reversion time                      .  For maturities longer than     ,  increments of  ln(S) become stationary
and independent    �   skew decays as 1/T.  For short-term, no explosion of the skew.

• Variance Swap vol equals Log Swap vol:
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Static / dynamic behavior of models                        Heston  2

Heston - dynamic

     are calibrated on market smiles.  Daily fit of the S&P500 smile up to 1 year maturity -1/k is set equal to 6 months.
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Static / dynamic behavior of models                        Heston  3

Heston - dynamic

•   Parameters are determined by fitting implied vols every day.   Only k is kept constant.   Are their values in agreement with
their dynamics?   Look at following averages:

suggesting that

•   However look at graphs:

�    Dynamics of (short) implied vols is not in agreement with model’s anticipation

We may be asking too much from the vol of vol -  create a skew

-  drive dynamics of implied vols
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Static / dynamic behavior of models                        Heston  4

Heston - dynamic

•   Dynamics of implied vols:  look at variance swap variance

Term structure of variance of implied vols is controlled by k.   For maturities   T >> 1/k,   vols do not move.

In stationary regime

Variance of variance swap vol is:

 decays like 1/T for long maturities

We may need more than 1 factor on vol to control the term structure of the variance of implied vols.
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Static / dynamic behavior of models                        Heston  5

Heston - dynamic - forward smile

•   Look at forward smile

Set

•   Shape of forward smile is generated by:

- density of V at forward date

       - dependence of smile on value of inst. variance
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Static / dynamic behavior of models                        Jumps

Jumps

•   Skew decays like 1/T

•   Smile is static - implied vols  (as a function of moneyness) are frozen.

Forward smiles are the same as today’s smile.

•   Jumps / Levy processes are a neat trick for generating a skew without extra degrees of freedom

•   However, be careful about prices of very path-dependent options

Ex. variance swaps: should we use -  the Variance Swap vol?

-  the Log Swap vol?
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Static / dynamic behavior of models                        Levy

Levy processes and stochastic vol extensions (D. Madan, P. Carr et al.)

•   Pick your favorite Levy process

•   Replace physical time with the integral of some positive process:

• What kind of dynamics does this generate for implied vols?

1st order perturbation in skewness of ditribution of                 yields:

 

For short maturities

i.e.

 �    Structural constraint on the dynamics of the smile
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Static / dynamic behavior of models                        

Conclusion - how do we improve on existing models ?

•   Set priorities: - behavior of skew w.r.t. ATM vol - correlation with spot

- term stucture of variance of implied vols

- impact of misspecification of process for the spot

•   Need some kind of stoc. vol.  -  probably more than 1 factor needed

•   Modelling choices - directly modelling spot process has advantages

- no arbitrage in forward smiles

- process for the spot is under control

- delta is an explicit output of pricing model

•  Ultimately reliable prices and hedges  !!
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