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Abstract. This paper discusses extensions of the implied diffusion approach of Dupire (1994) to asset processes
with Poisson jumps. We show that this extension yields important model improvements, particularly in the
dynamics of the implied volatility surface. The paper derives a forward PIDE (Partial Integro-Differential Equation)
and demonstrates how this equation can be used to fit the model to European option prices. For numerical pricing
of general contingent claims, we develop an ADI finite difference method that is shown to be unconditionally
stable and, if combined with Fast Fourier Transform methods, computationally efficient. The paper contains
several detailed examples from the S&P500 market.
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The standard Black-Scholes (1973) assumption of log-normal stock diffusion with constant
volatility is, as all market participants are keenly aware of, flawed. To equate the Black-
Scholes formula with quoted prices of European calls and puts, it is thus generally necessary
to use different volatilities (so-called implied volatilities) for different option strikes (K )
and maturities (T ). The phenomenon is often referred to as the volatility skew or smile
(depending on the shape of the mapping of implied volatility as a function of K and T )
and exists in all major stock index markets today. Before the crash of 1987, the S&P500
volatilities, for instance, formed a “smile” pattern, where deeply in- or out-of-the-money
options were characterized by higher volatilities than at-the-money options. The post-crash
shape of S&P500 implied volatilities, on the other hand, more resembles a “skew” or “sneer”,
where implied volatilities decrease monotonically with increasing strikes. Typically, the
steepness of the skew decreases with increasing option maturities. The existence of the
skew is often attributed to fear of large downward market movements (sometimes known
as “crash-o-phobia”).

Extensions of the Black-Scholes model that capture the existence of volatility smiles can,
broadly speaking, be grouped in three approaches. In the stochastic volatility approach
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(see, for instance, Heston (1993), Stein and Stein (1991), and Hull and White (1987)),
the volatility of the stock is assumed to be a mean reverting diffusion process, typically
correlated with the stock process itself. Depending on the correlation and the parameters of
the volatility process, a variety of volatility skews and smiles can be generated in this model.
Empirical evidence from time-series analysis generally shows some evidence of stochastic
volatility in stock prices (see e.g. Andersen, Benzoni, and Lund (1999) for a review and
many references). However, in order to generate implied Black-Scholes volatility skews in
a stochastic volatility model that are consistent with those observed in traded options, often
unrealistically high negative correlation between the stock index and volatility is required.
Also, from a computational perspective, stochastic volatility models are complicated to
handle as they are true multi-factor models; as such, one would typically need multi-
dimensional lattices to evaluate, say, American options. We notice that stochastic volatility
models do not allow for perfect option hedging by dynamic positions in the stock and the
money market account (which in absence of other traded contracts form an incomplete
market).

Another approach, originally suggested by Merton (1976), generates volatility skews and
smiles by adding discontinuous (Poisson) jumps to the Black-Scholes diffusion dynamics.
Again, by choosing the parameters of the jump process appropriately, this so-called jump-
diffusion model can generate a multitude of volatility smiles and skews. In particular, by
setting the mean of the jump process to be negative, steep short-term skews (which are
typical in practice) are easily captured in this framework. Indeed, several authors (e.g.
Das and Foresi (1996), Bates (1996), and Bakshi, Cao, and Chen (1997)) point out the
importance of a jump component when pricing options close to maturity. Like stochastic
volatility models, jump-diffusion models are challenging to handle numerically (an issue
we shall spend considerable time on in this paper) and result in stocks and bonds forming an
incomplete market.1 Some papers dealing with either empirical or theoretical issues related
to jump-diffusion models include Ait-Sahalia, Wang, and Yared (1998), Andersen, Benzoni,
and Lund (1999), Ball and Torous (1985), Bates (1991), Duffie, Pan, and Singleton (1999),
and Laurent and Leisen (1998).

The third approach to volatility smile modeling retains the pure one-factor diffusion
framework of the Black-Scholes model, but extends it by allowing the stock volatility be
a deterministic function of time and the stock price. This so-called deterministic volatil-
ity function (DVF) approach was pioneered by Dupire (1994), Derman and Kani (1994),
and Rubinstein (1994), and has subsequently been extended or improved by many au-
thors, including Andersen and Brotherton-Ratcliffe (1998), Andreasen (1997), Lagnado
and Osher (1997), Brown and Toft (1999), Jackwerth (1996), Chriss (1996), and many
others. The DVF approach has enjoyed a certain popularity with practitioners, at least
partly because of its simplicity and the fact that it conveniently retains the market com-
pleteness of the Black-Scholes model. Moreover, the existence of a forward equation
that describes the evolution of call option prices as functions of maturity and strike makes
it possible to express the unknown volatility function directly in terms of known option
prices. This again allows for efficient non-parametric fitting of the volatility function
and, in principle at least, a precise fit to quoted market prices. In contrast, stochastic
volatility models and jump-diffusion models are normally parameterized in a few param-
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eters and consequently subject to fitting errors that often are unacceptably large. While
convenient, the DVF model suffers from several serious drawbacks. For one, the mech-
anism by which the volatility smile is incorporated is clearly not realistic—few mar-
ket participants would seriously attribute the existence of the volatility smile solely to
time- and stock-dependent volatility. Indeed, there is much empirical literature reject-
ing DVF models and their implications for hedging and market completeness (e.g. Ait-
Sahalia, Wang, and Yared (1998), Andersen, Benzoni, and Lund al (1999), Buraschi
and Jackwerth (1998), and Dumas, Fleming, and Whaley (1997)). The weak empiri-
cal evidence is not surprising, as the DVF framework typically results in strongly non-
stationary implied volatilities, often predicting that the skew of implied volatilities will
vanish in the near future (see Section 4.1 for an example). In practice, however, volatility
skews appear quite stationary through time. Moreover, to fit DVF models to the often
quite steep short-term skew, the fitted implied volatility function must be contorted in
quite dramatic, and not very convincing, fashion. This has implications not only for the
pricing of exotics options, but also affects the hedge parameters for standard European
options.

As discussed in Andersen, Benzoni, and Lund (1999), Bates (1996), and Bakshi, Cao,
and Chen (1997), the most reasonable model of stock prices would likely include both
stochastic volatility and jump diffusion as in the models by Bates (1996) and Duffie, Pan,
and Singleton (1999). From the perspective of the financial engineer, such a model would,
however, not necessarily be very attractive as it would be difficult to handle numerically and
slow to calibrate accurately to quoted prices. Rather than working with such a “complete”
model, this paper more modestly assumes that stock dynamics can be described by a jump
diffusion process where the diffusion volatility is of the DVF-type. As we will show, this
combines the best of the two approaches: ease of modeling steep short-term volatility skews
(jumps) and accurate fitting to quoted option prices (DVF diffusion). In particular, by letting
the jump-part of the process dynamics explain a significant part of the volatility smile/skew,
we generally obtain a “reasonable”, stable DVF function, without the extreme short-term
variation typical of the pure diffusion approach.

The rest of this paper is organized as follows. In Section 1 we outline our process
assumptions and develop a general forward PIDE describing the evolution of European
call options as functions of strike and maturity. Paying special attention to the case of
log-normal jumps, this section also discusses the applications of the forward PIDE to the
problem of fitting the stock process to observable option prices. Section 2 illustrates the
proposed techniques by applying them to the S&P500 market. The section also discusses
certain hedging issues, and contains a brief general equilibrium analysis that provides a
link between the risk-neutral and objective probability measures, allowing us to sanity-
check our estimated risk-neutral S&P500 process parameters. In Section 3 we turn to the
development of efficient finite difference methods that allow for general option pricing
under the jump-diffusion processes used in this paper. We also discuss the application of
Monte Carlo methods. The pricing algorithms are tested in Section 4 on both European
and exotic options. Section 4 also attempts to quantify the impact of stock price jumps on
certain exotic option contracts. Finally, Section 5 contains the conclusions of the paper.
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1. Forward Equations for European Call Options

1.1. General Framework

Consider a stock S affected by two sources of uncertainty: a standard one-dimensional
Brownian motion W (t), and a Poisson counting process π(t) with deterministic jump
intensity λ(t). Specifically, we will assume that the risk-neutral evolution2 of S is given
by3:

d S(t)/S(t−) = (r(t) − q(t) − λ(t)m(t)) dt + σ (t, S(t−)) dW (t)

+ (J (t) − 1) dπ(t). (1)

where {J (t)}t≥0 is a sequence of positive, independent stochastic variables with, at most,
time-dependent density ζ(·; t). Also in (1), σ is a bounded time- and state-dependent local
volatility function; m is a deterministic function given by m(t) ≡ E[J (t) − 1]; and r and q
are the deterministic risk-free interest rate and dividend yield, respectively. We assume that
π , W , and J are all independent. In (1), t− is the usual notation for the limit t −|ε|, ε → 0.

Under (1), the stock price dynamics consist of geometric Brownian motion with state-
dependent volatility, overlaid with random jumps of random magnitude S(J − 1). Notice
that when the jump probability λ approaches 0, (1) becomes identical to the diffusion
dynamics assumed in most previous work on volatility smiles (e.g. Dupire (1994), Ru-
binstein (1994), Derman and Kani (1994), Andersen and Brotherton-Ratcliffe (1998), and
Andreasen (1997)).

Using standard arguments (see e.g. Merton (1976)), it is easy to show that any European-
style contingent claim written on S will have a price F = F(t, S(t)) that satisfies the
backward partial integro-differential equation (PIDE)

Ft + (r(t) − q(t) − λ(t)m(t))SFS + 1
2 J 2(t, S)S2 FSS + λ(t)E[�F] = r(t)F, (2)

E [�F(t, S)] = E [F(t, J (t)S)] − F(t, S) =
∫ ∞

0
F(t, Sz)ζ(z; t) dz − F(t, S), (3)

subject to appropriate boundary conditions for F(T, S). In (2), subscripts are used to denote
partial differentiation (so Ft equals ∂ F/∂t , and so on).

In (2), r and q can be deduced from quoted stock forwards and bond prices. We wish
to derive the remaining terms in (2) from prices C(t, S; T, K ) of European call options,4

spanning all maturities T and strikes K . To this end, consider the following proposition:

Proposition 1 When S evolves according to (1), a European call option C(t, S; T, K )

satisfies the forward PIDE equation

−CT + (q(T ) − r(T ) + λ(T )m(T ))K CK + 1
2σ(T, K )2 K 2CK K

+ λ′(T )E ′[�′C] = q(T )C (4)
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subject to C(t, S(t); t, K ) = (S(t) − K )+. In (4), λ′(T ) = (1 + m(T ))λ(T ), and

E ′ [�′C(t, S; T, K )
] = (1 + m(T ))−1 E [J (T )C (t, S; T, K/J (T ))] − C(t.S; T, K )

=
∫ ∞

0
C(t, S; T, K/z)ζ ′(z; T ) dz − C(t, S; T, K ) (5)

where ζ ′ is a Radon-Nikodym transformed density given by ζ ′(z; T ) = z
1+m(T )

ζ(z; T ).

Proof. The proof is based on an application of the Tanaka-Meyer extension of Ito’s
lemma. See Appendix for details.

While not necessary for our purposes, we point out that it is also possible to extend (4)
to the case where volatility is stochastic.5 While our proof of (4) uses the Tanaka formula,
independent work of Pappalardo (1996) demonstrates that the forward equation can also be
constructed by integrating a jump-adjusted Fokker-Planck equation.6

In its most general form, equation (4) contains too many degrees of freedom to allow for
a unique process (1) consistent with quoted call option prices. For practical applications,
it is thus necessary to restrict, through parameterization, some of the terms in (4). For
instance, we could parameterize the local volatility function (σ ) directly and attempt to
construct the jump density ζ by solving the resulting series of inhomogeneous integral
equations. As the resulting equations belong to the class of Fredholm equations of the first
kind, their solution is, however, quite involved and would likely require regularization and
use of a priori information (see e.g. Press et al. (1992), Chapter 18). Instead, we prefer to
parameterize the jump process and imply (non-parametrically) the local volatility function
σ . We will discuss this technique in the following section.

1.2. The Case of State-Dependent Local Volatility and Log-Normal Jumps

As in Merton (1976), we now assume that the jump intensity λ is constant and that
ln J is normally distributed with constant mean µ and variance γ 2, such that E[J (t)] =
exp

(
µ + 1

2γ 2
)
. We will assume that the constant parameters µ, γ ,λ are all known, either

from a historical analysis, or, as discussed further in Section 2, from a best-fit procedure
applied to quoted option prices. To conveniently remove the dependence on r and q, in-
troduce x(u) = S(u)/F(t, u), u > t , where F(t, u) = S(t) exp

∫ u
t [r(τ ) − q(τ )] dτ is the

time t forward price of S delivered at time u. We note that, by standard theory,

C(t, S(t); T, K )

F(t, T )
e
∫ T

t
r(s) ds = Et

[
(x(T ) − k)+

]≡�(t; T, k), k ≡ K/F(t, T ). (6)

From Proposition 1, (6) and the assumption of log-normal jumps gives the forward PIDE

−�T + (λ′ − λ)k�k + 1
2 s(T, k)2k2�kk

+ λ′
(∫ ∞

−∞
�(t; T, ke−µ−γ z)ϕ(z − γ ) dz − �

)
= 0. (7)

where λ′ = λeµ+ 1
2 γ 2

, ϕ is a standard Gaussian density, and s(u, x(u)) ≡ σ(u, S(u)). It is
clear that if we know the function C(t, S; T, K ) and its derivatives for all T and K , then
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we can construct the local volatility function σ directly from (6)–(7).7 In reality, however,
only a limited set of call prices C(t, S; T, K ) is quoted in the market, making the inverse
problem ill-posed. A variety of regularization techniques can be applied to overcome this
problem, the simplest of which involves sufficiently smooth interpolation and extrapolation
of known data (see e.g. Andersen and Brotherton-Ratcliffe (1998), and Andreasen (1997)).
This technique, which effectively extends the input price set to cover all values of K and
T , will also be employed in this paper.8 An alternative approach assumes a specific form of
the local volatility function (e.g. a spline as in Coleman, Li, and Verma (1999)) and finds
an optimal9 fit to quoted option prices by large-scale iterative methods. The existence of
a forward equation (4) significantly improves the speed of such methods, as option prices
with different strikes and maturities can be priced in a single finite difference grid.10 Other
iterative approaches along these lines can be found, for example, in Lagnado and Osher
(1997) and Avallaneda et al. (1996). As a general comment, we point out that iterative
methods that are feasible in a pure diffusion setting may become prohibitively slow for
jump-diffusions due to the presence of integrals in the forward and backward equations.
To improve speed, one can imagine replacing the non-parametric specification of the local
volatility function with a parametric form and combining this with “bootstrapping” of the
forward equation; we will briefly discuss such a technique in Section 1.3.

To proceed, we first wish to transform (7) into an equation involving implied volatilities
rather than call prices. The former is normally much “flatter” as a function of K and T than
the latter and significantly simplifies interpolation and extrapolation procedures. For the
special case of s(u, x(u)) = ŝ where ŝ is a constant, we know from Merton (1976) that11

�(t, T, k) = M(t; T, k, ŝ) ≡
∞∑

n=0

A(n)�(dn) − k
∞∑

n=0

B(n)�(dn − vn), (8)

A(n) = e−λ′(T −t)[λ′(T − t)]n

n!
; B(n) = e−λ(T −t)[λ(T − t)]n

n!
;

vn =
√

ŝ2(T − t) + nγ 2; dn =
− ln k + (λ − λ′)(T − t)

+ n(µ + 1
2γ 2)

vn
+ 1

2
vn.

In (8), � denotes the standard cumulative normal distribution function. If s(u, x(u)) is not
constant, we can use (6) to define an implied Merton volatility ŝ(T, k) (not to be mistaken
for the usual Black-Scholes implied volatility) through the equation

M(t, T, k, ŝ(T, k)) = �(t; T, k), (9)

where the right-hand side is observed in the market.12 Equations (7) and (9) allow us to
express the local volatility s(T, k) as a function of implied Merton volatility ŝ(T, k):

Proposition 2 Defining k = K/F(t, T )andαn ≡
(

1 + nγ 2

ŝ(T,K )2(T −t)

)−1
, the local volatility

function σ(T, K ) = s(T, k) is given by the implied Merton volatility ŝ(T, k) in (8)–(9) as
follows:

s(T, k) =
√

num/den,
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num = √
T − t

∞∑
n=0

√
αn A(n)ϕ(dn)

[
ŝ

2(T − t)
+ (λ − λ′)kŝk + ŝT

]

+ λ′M
(

t, T, ke−µ− 1
2 γ 2

,
√

ŝ(k, T )2 + γ 2/(T − t)
)

− λE
[
J M(t, T, k/J, ŝ(T, k/J ))

]
,

den = 1
2 k2

√
T − t

∞∑
n=0

A(n)ϕ(dn)
√

αn

×
[

ŝkk + ŝ2
k

(
1 − αn

ŝ
− dn

√
αn(T − t)

)
+ 1

ŝ

(
αndnŝk + 1

k
√

T − t

)2
]

Proof. Follows from insertion of (9) into (7) and a number of manipulations.
We notice that when ŝ(T, k) is constant and equal to g, say, ŝ(T, k) = s(T, k) = g,

Proposition 2 reduces to

λE[J M(t, T, k/J, g)] = λ′M
(

t, T, ke−µ− 1
2 γ 2

,
√

g2 + γ 2/(T − t)
)

, (10)

a result that can be verified by direct computation and will be useful in the following. Also
notice that when λ → 0, Proposition 2 reduces to

s(T, k)2 = ŝ/(T − t) + 2ŝT

k2

(
ŝkk − ŝ2

k d0
√

T − t + 1
ŝ

(
d0ŝk + 1

k
√

T −t

)2
)

which is a known expression for the jump-free case (see Andersen and Brotherton-Ratcliffe
(1998), or Andreasen (1997)).

The infinite series in Proposition 2 are all well-behaved and typically require the evaluation
of less than 5–6 terms before sufficient accuracy is achieved. For the result in Proposition
2 to be useful in practice, we only need efficient methods of computing the integral term

λE
[
J M(t, T, k/J, ŝ(T, k/J ))

] = λ′
∫ ∞

−∞
M
(
t, T, eγ (ω−v), ŝ(T, eγ (ω−v))

)
ϕ(v) dv

≡ I (T, ω)

where we have introduced a variable ω defined by k = eµ+γ 2+ωγ . As the function M(·)
does not vanish for ω − v → −∞, we proceed to separate out the part of the integrand that
correspond to some (guessed) constant volatility g. That is, we define

ξ(x; t, T ) = M
(
t, T, eγ x , ŝ(T, eγ x )

)− M
(
t, T, eγ x , g

)
and can now write

I (T, ω) = λ′ ∫∞
−∞ M

(
t, T, eγ (ω−v), g

)
ϕ(v) dv + λ′ ∫∞

−∞ ξ(ω − v; t, T )ϕ(v) dv

= λ′M
(

t, T, ke−µ− 1
2 γ 2

,
√

g2 + γ 2/(T − t)
)

+λ′ ∫∞
−∞ ξ(ω − v; t, T )ϕ(v) dv

(11)
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where we have used (10). We are now left with the problem of computing numerically

c(T, ω) =
∫ ∞

−∞
ξ(ω − v; t, T )ϕ(v) dv

which can be interpreted as convolution ξ ∗ϕ of the two functions ξ and ϕ. This suggests
the introduction of discrete Fourier transform (DFT) methods. Specifically, assume that we
are interested in evaluating c(T, ω) as a function of ω on an equidistant grid ωi = ω0 + i�,
i = 0, 1, . . . , N − 1, where N is an even number and � some positive constant. We will
assume that the grid is wide enough to ensure that ξ(ω0; t, T ) and ξ(ωN−1; t, T ) are close
to zero.13 Writing ξ(ωi ; t, T ) = ξi and ϕ(i�) = ϕi , the convolution can be approximated
by

c(T, ωi ) ≈ �

N/2∑
j=−N/2+1

ξi− jϕj (12)

where we account for negative indices by assuming that both ξ and ϕ are periodic with
period N (a necessary assumption in DFT). The summation in (12) is, conveniently, the
definition of the convolution operator in the theory of DFT. Using 〈·〉 to denote discrete
Fourier transforms, it is well-known that

〈c〉i/� = 〈ξ〉i 〈ϕ〉i

where the index i runs over N different frequencies. 〈ϕ〉 can be constructed analytically
(the Fourier transform of a Gaussian density is another Gaussian density), whereas 〈ξ〉 can
be computed efficiently using Fast Fourier Transformation (FFT). Forming the complex
product of 〈ξ〉 and 〈ϕ〉 and transforming back by inverse FFT gives us c. Notice that the
algorithm above gives the values of c for all N values of ω on the grid simultaneously. If N =
2p for some integer p, FFT is of computational order O(N log2 N ). The algorithm above
is thus also of order O(N log2 N ), a significant improvement over a direct implementation
of (12) (O(N 2) to evaluate c at all N values of ω). In general, we need to run the algorithm
above for different values of T in some pre-defined grid. With M different values of T , the
total effort of computing the convolution integrals becomes O(M N log2 N ).

1.3. A Parametric Bootstrapping Technique

While the approach discussed in the previous section is very fast, it relies quite heavily on
inter- and extrapolation methods and on input prices being smooth and regular. To make
this method work, it is generally necessary to pre-condition market quotes carefully, as will
be discussed in detail in the next section. Before proceeding to this, we will briefly discuss
a more robust bootstrapping that works with a discrete set of option prices. Suppose in
particular that we want hit a range of option prices with the maturities:

0 = T0 < T1 < · · · < TN .
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First, we choose a distribution of the jumps. As in the previous section, one could for
example assume that J is log-normal with best-fitted parameters µ, λ, γ . For each interval
]Ti , Ti+1] let the local volatility be given by σ(t, S) = g(S; ai ) where g is some function
defined by its parameter vector ai . Starting with i = 0 we now repeatedly solve (7) over
the interval ]Ti , Ti+1] for changing values of the parameters ai , until an optimal fit to the
observed option prices is obtained. A good choice for updating the parameter vector ai

is the Levenberg-Marquardt routine described in Press et al. (1992). Once the optimal ai

is found we proceed to the next time step. If we wish to find a perfect fit to the observed
option prices each parameter vector ai must have a dimension that is at least as high as the
number of quoted option prices with maturity Ti+1.

One would think that the updating and the numerical solution of the PIDEs would prohibit
the practical application of this algorithm, but this is not the case. Using the numerical PIDE
solution algorithm that we present below we are typically able to fit to a 10 × 10 grid of
observed option prices in about 15 seconds on a Pentium PC.

2. Fitting the Local Volatility Function: An Example From the S&P500 Market

In this section we illustrate the theory of the previous section by an example based on data
from the S&P500 index. We will use the method outlined in Section 1.2 and consequently
assume that jumps are log-normal with constant parameters (µ, γ, λ). In April 1999, the
bid-offer implied Black-Scholes volatilities of European call options on the S&P500 index
were as shown in Table 1. With a constant interest rate of r = 5.59% and a constant
dividend yield of q = 1.14% the bid-offer spreads correspond to bid and offer option price
spreads from mid as given in the second column of Table 1.

2.1. Jump Parameter Fitting

To determine the jump parameters, we first do a best fit (in a least-squares sense) of the
Merton model (8) to the mid implied Black-Scholes volatilities of Table 1. The resulting
best-fit parameters are

σ = 17.65%, λ = 8.90%, µ = −88.98%, γ = 45.05%.

Measured in terms of implied Black-Scholes volatilities, the total RMS error in the fit
to the options is Table 2 is 0.014 with the largest difference for any option being 0.037.
Interestingly, the best-fit continuous volatility σ is close to what one obtains by time- series
estimation on historical S&P500 data (for instance, using the past 10 year’s time-series of
daily S&P500 returns we get a historical volatility of approximately 15.0%). The mean
jump in return is m = −54.54%. This number, and the estimated jump intensity λ, are
higher than what one would expect from time-series data, and either indicate that the market
currently perceives the chance of a big crash to be higher than normal or, more likely, that
the jump parameters include significant elements of risk aversion (“market price of risk”).
Indeed, all parameters above are estimated in the market risk-neutral measure, and, with
the exception of the diffusion volatility, do not generally equal the objective (“historical”)
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parameters. The relationship between the risk-neutral and objective probability measures
is governed by the jump-extended Girsanov Theorem (see Bjork, Kabanov, Runggaldier
(1997)). Working in a general equilibrium framework, the link between the two probability
measures can be characterized in terms of the utility of a representative agent. Section 2.3
contains a brief analysis along these lines, and demonstrates that the parameters estimated
above are actually quite reasonable.

2.2. Local Volatility Fitting

To construct a local volatility surface that fits the input volatilities of Table 1, we first convert
the bid and offer implied volatilities of Table 1 into a grid of implied Merton volatilities
(as in (9)). We then generate a smooth surface of these volatilities that lies inside the
bid and offer spread, and extrapolate to the unobservable corners of the volatility grid.
The smoothing/extrapolation procedure used is described in detail in Andreasen (1997);
it involves numerically solving an optimization problem with quadratic objective function
and linear constraints. The resulting grid of Merton volatilities is given in Table 2. As
expected from the relatively tight fit of the constant-volatility Merton model, the implied
Merton volatilities are fairly, but not perfectly, flat.

The Merton volatilities can now be interpolated and extrapolated in (T, k) space, as
discussed in Andersen and Brotherton-Ratcliffe (1998). Here we use a two-dimensional
tensor-spline (Dierckx (1995)) which guarantees smoothness in both T - and k-directions,
and conveniently allows for closed-form computations of the derivatives needed in the
formula in Proposition 2. Figure 1 shows the resulting instantaneous local volatilities
σ(t, S). The local volatility surface is, essentially, U-shaped and quite stationary through
time. For comparison, Figure 2 shows the local volatilities obtained by fitting a pure
diffusion (DVF) model to the data in Table 1. Not surprisingly, Figure 2 shows that the
local volatilities of the DVF model need to be steep and highly non-stationary in order to
fit the S&P500 data. The impact of this non-stationarity on option prices will be examined
in Section 4.

2.3. General Equilibrium Analysis

As discussed earlier, the jump parameters listed in Section 2.1 are estimated under the
risk-neutral probability measure. To gauge whether the parameters are reasonable, we here
briefly wish to demonstrate that our extreme-appearing parameter values are in fact not
inconsistent with general equilibrium theory. Indeed, it is well-known that economic theory
that moving from the objective probability measure to the risk-neutral probability measure
results in higher jump intensity, lower mean jump, and unchanged continuous volatility.
The latter is, of course, required for the two probability measures to be equivalent and
constitutes a necessary condition for absence of arbitrage.

One can use the analysis in Naik and Lee (1990) to deduce that if the market has a
representative agent that maximizes expected additive separable power utility of future
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Figure 1. Local diffusion volatilities for the S&P500 index, April 1999. Local volatilities for jump-diffusion
model when fitted to S&P500 option prices. First axis is future spot relative to current spot and second axis is
time in years. The local volatilities are generated on a 150 × 256 grid. Jump parameters are λ = 8.90%, µ =
−88.98%, γ = 45.05%. The interest rate and dividend yield are 5.59% and 1.14%, respectively.

consumption, then the risk-neutral parameters of the jump-diffusion model are linked to the
historical parameters through the relations

σ = σh, λ = λhe−(1−β)(µh+γ 2
h /2), µ = µh − (1 − β)γ 2

h , γ = γh,

where subscript h indicates parameters under the objective measure, and 1 − β is the
(constant) relative risk aversion of the representative agent. Obviously, if the representative
agent is risk-averse and the mean jump is negative, then the jump intensity and the magnitude
of the mean jump will both increase under the risk-neutral measure.

To use the results above in a quantitative analysis, we need estimates of the historical
jump intensities and means. Unfortunately, standard empirical analysis is of little help here
as the historical sample size of significant stock index jumps is extremely limited. As we
are here mainly interested in a rough “sanity” check of our parameters, we instead simply
note that the 20th century has experienced two large jumps in the S&P500 index (1929 and
1987) each of a magnitude of approximately −30%. If we condense this information into
a historical jump intensity of about 2% and a mean jump of −30% and use our estimate of
γh = γ = 0.4505 (which implies that µh = −0.4582), then given our implied risk-neutral



244 ANDERSEN AND ANDREASEN

Figure 2. DVF local volatilities for the S&P500 index, April 1999. Local volatilities for pure diffusion model
when fitted to S&P500 option prices. First axis is future spot reative to current spot and second axis is time in
years. The local volatilities are generated on a 150 × 256 grid. The interest rate and dividend yield are 5.59% and
1.14%, respectively.

jump parameters, a best-fit14 solution for the relative risk-aversion is

1 − β∗ = 3.39

This level of risk-aversion is by no means excessive and falls well in line with other estimates
of the relative risk-aversion. This best-fit relative risk-aversion correspond to the risk-neutral
jump-parameters

λ∗ = 6.70%, µ∗ = −114.6%, m∗ = −64.89%.

These parameters are quite close to our implied risk-neutral jump parameters indicating that
the “best-fit” solution is reasonable. Naik and Lee’s analysis shows that the equilibrium
expected excess return of the stock over the risk-free rate is given by

αh − r = (1 − β)σ 2
h + (mhλh − mλ)

Using historical parameters of σh = 0.15, λh = 0.02, mh = −0.30 and our implied risk-
neutral jump parameters combined with our best-fit relative risk-aversion we get an expected
excess return of around 11.9%, which again is not inconsistent with empirical data.
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2.4. Hedging

As discussed earlier, the jump-diffusion model implies that the stock index and the money-
market account do not together form a complete market. Indeed, for most jump-diffusion
processes, an infinite number of options must be traded for the market to be complete.
This feature of the model is perhaps unattractive to many who are used to the easy “delta”
hedges of the Black-Scholes economy. Ignoring jump risk, however, is fraught with peril
as it is well-known that the Black-Scholes hedges fall apart in environments with rapid
movements of the underlying assets (case in point: during the 1987 crash the “portfolio
insurance” put-option delta hedges put on by many major banks failed miserably). In some
sense, our jump-diffusion framework allows one to charge for such potential hedge failures
in a way that is consistent with the market. That said, we shall now demonstrate that often
significant parts of the jump risk can be eliminated by adding just a few option positions
to a standard delta hedge. Specifically, let us consider a derivatives portfolio V marked in
a Merton model with jump parameters (µ, λ). Let us assume that interest rates and stock
dividends are 0 and that the historical jump parameters are (µh, λh). Using n stocks to
hedge V , the evolution of the mark-to-market value of the total position satisfies (time and
stock dependence suppressed for brevity)

d(v + nS) = [
Vt + (αh − λhmh)SVs + 1

2σ 2S2VSS
]

dt + VSσ SdWh + �V dπ

+ n [(αh − λhmh)Sdt + σ SdWh + �Sdπ ]

where αh is the excess stock return, Wh is a Brownian motion under the historical (“real-
life”) probability measure, and σ is the constant stock volatility. Setting n = −VS (“delta”)
and using the backward equation (2), we get

d(V + nS) = λ(mSVs − E[�V ])dt + (�V − VS�S)dπ.

As this equation demonstrates, the delta-hedged portfolio V is not risk-free, but is exposed
to jumps in the Poisson process π . To hedge away some of this risk, consider now adding
φ call options C to the hedge. After adjusting n = −VS −φCS to stay delta neutral, we get

d(V + nS + φC) = λ(mS(VS + φCS) − E[�V + φ�C])dt +
(�V + φ�C − (VS + φCs)�S)dπ.

φ can be set according to many criteria, but consider the obvious

φ = − Eh[�V + VS�S]

Eh[�C + CS�S]
, (13)

where Eh[·] denotes expectation under the objective probability measure. With this choice,
Eh[�(V + nS + φC)] = 0, i.e. we have hedged away the mean portfolio jump. The
hedge can be improved further by adding more options, for instance by using the standard
principle of mean-variance optimization.

To test the efficiency of the hedging strategy outlined above, consider a portfolio consisting
of a short position in a 2-year at-the-money call option and a long position in a 5-year at-
the-money call option. Using the model parameters from Section 2.1, the figure below
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Figure 3. Performance of various hedges for sample portfolio. Performance of various hedges for portfolio
consisting of a short position in a 2-year at-the-money call and a long position in a 5-year at-the-money call.
x-axis is stock price, relative to the current price. y-axis is the change in portfolio value. The option hedges
consist of 1-year call options, with holdings optimized to minimize variance subject to the mean jump in the total
position to equal 0. Strikes used for the three option hedges in the figure are (as a percentage of current stock
price): {1}, {0.9, 0.95, 1.0, 1.05, 1.1}, and {0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2}.

shows the stock price sensitivity of the portfolio hedged a) by a delta-hedge only; and b) by
a delta-hedge supplemented by various 1-year call option positions. The option positions
have been found by minimizing the variance of the overall positions, subject to the mean
portolio jump being 0.

As the figure shows, inclusion of just a single 1-year at-the-money call option removes
significant portions of the jump risk.

3. Numerical Methods for Option Pricing in the Jump-Diffusion Model

So far we have spent most of our efforts calibrating the jump-diffusion model to the market
for European call options. For our model to be useful in practice, we need to consider
numerical methods to efficiently price general contingent claims satisfying the backward
PIDE (2). A related problem is the numerical solution of the forward equation (4) or
(7), which would typically be required in iterative calibration methods (see discussion in
Sections 1.2 and 1.3).

Very little material has been published in the finance literature on numerical methods for
PIDEs of the type occurring in jump-diffusion models. A few exceptions include Amin
(1993), Zhang (1993), and Andreasen and Gruenewald (1996). The methods suggested
in the two first papers are essentially multinomial trees, i.e. explicit methods. Explicit
methods generally suffer from instability problems as well as poor convergence in the time-
domain. As is well-known from the finite difference literature, implicit methods typically
exhibit better precision, convergence and stability properties than explicit methods and are
preferable for option pricing problems. The paper by Andreasen and Gruenewald presents
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such an implicit method that solves the pricing PIDE on a single Crank-Nicholson finite
difference grid, with each time-step involving the inversion of a non-sparse matrix. In the
constant-parameter setting of Andreasen and Gruenewald, the matrix inversion turns out
to be computationally feasible. In our setting with time- and price-dependent volatility
functions, another approach is needed. In the following subsection we describe an accurate
and efficient solution technique that can be used under our model assumptions.

3.1. The FFT-ADI Finite Difference Method

We first notice that after appropriate logarithmic transformations the PIDEs considered so
far in this paper ((2), (4), and (7)) can all be written in the form:

0 = ∂ F

∂t
+
[
−r + a

∂

∂x
+ 1

2 b2 ∂2

∂x2

]
F + λ

∫ +∞

−∞
ς(t, x − y)F(t, y) dy − λF (14)

where15 ς(t, ·) is a density function, and r = r(t), a = a(t, x), b = b(t, x), λ = λ(t).
Defining

D ≡ −r + a
∂

∂x
+ 1

2 b2 ∂2

∂x2

and using the convolution operator ∗ we can write (14) in the more compact form

0 = ∂ F

∂t
+ DF − λF + λς∗F. (15)

Interpreting F(t) = F(t, ·) we can discretize (15) in the time-dimension as follows:

0 = �t−1 (F(t + �t) − F(t)) + D [θC F(t) + (1 − θC)F(t + �t)]

+ λ(−1 + ς∗) [θJ F(t) + (1 − θJ )F(t + �t)]

where θC , θJ ∈ [0, 1] are constants. Rearranging yields

[1/�t − θC D − θJ λ(−1 + ς∗)]F(t) = [1/�t + (1 − θC)D

+ (1 − θJ )λ(−1 + ς∗)]F(t + �t). (16)

There are various ways of arranging (16) for numerical solution. The most obvious,
corresponding to a standard Crank-Nicolson finite difference scheme, θC = θJ = 1/2, is
not practically feasible because after discretizing the x-space into N points inversion of a
full N × N matrices is required, a computationally costly procedure of order N 3 per time
step. Note that full matrix inversion has to be performed at every step since the parameters
vary in both time and state. The state-dependent parameters also preclude use of Fourier
transform techniques to solve the inversion problem. Explicit schemes, θC = θJ = 0, are
computationally feasible but potentially unstable and suffer from the drawback that their
convergence in the time domain are only of O(�t), unlike Crank-Nicolson schemes that
have precision of O(�t2). When using FFT techniques to handle the convolution integral,
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the computational order of the explicit scheme is O(N log2 N ) per time step. Schemes of
the type θC = 1/2, θJ = 0 are stable and efficient but accuracy is lost due to the asymmetric
treatment of the continuous and jump part. Numerical experiments show that biases are
introduced in the solution, particularly for long dated options.

In our experience, the best numerical solution method is an ADI (Alternating Directions
Implicit) method where each time-step in the grid is split into two half-steps. For the first
half-step we set θC = 1, θJ = 0, which gives us[

1

�t/2
− D

]
F(t + �t/2) =

[
1

�t/2
− λ + λς∗

]
F(t + �t). (17a)

In a discrete grid this can be solved by first computing the convolution ς∗F(t + �t) in
discrete Fourier space, where

〈ς∗F(t + �t)〉 = 〈ς〉〈F(t + �t)〉.
If we observe that 〈ς〉 only needs to be computed once, the computational cost associated
with the convolution part of (17a) is one FFT and one inverse FFT, i.e. O(N log2 N ). We
further note that the discrete version of the differential operator D is a tri-diagonal matrix.
Consequently, once the RHS of (17a) is obtained by FFT methods, then the system (17a)
can be solved at a cost of O(N ). Hence, the total cost of solving (17a) is O(N log2 N ).

For the second half-step we set θC = 0, θJ = 1, whereby[
1

�t/2
+ λ − λς∗

]
F(t) =

[
1

�t/2
+ D

]
F(t + �t/2). (17b)

Letting y = [2/�t + D] F(t + �t/2), now take the Fourier transform of (17b) to arrive at

(2/�t + λ)〈F(t)〉 − λ〈ς〉〈F(t)〉 = 〈y〉 ⇒ 〈F(t)〉 = 〈y〉/ (2/�t + λ − λ〈ς〉) . (18)

We can now transform the equation back to obtain F(t). All in all this requires one
tri-diagonal matrix multiplication, one FFT and one inverse FFT, i.e. a procedure with a
computational burden of O(N log2 N ).

To formally specify the discrete scheme described in (17a–b) we define the operators

δx f (x) = 1

2�x
[ f (x + �x) − f (x − �x)] ,

δxx f (x) = 1

(�x)2
[ f (x + �x) − 2 f (x) + f (x − �x)] ,

D̄ f (x) = [−r + aδx + 1
2 b2δxx

]
f (x); ς̄∗ f (x) =

∑
j

qj (x) f ( j�x),

qj (x) =
∫ ( j+1/2)�x

( j−1/2)�x
ς(x − y) dy.

We can then write the discrete version of (17a–b) as[
2/�t − D̄

]
F(t + �t/2) = [

2/�t − λ + λς̄∗] F(t + �t), (19a)[
2/�t + λ − λς̄∗] F(t) = [

2/�t + D̄
]

F(t + �t/2). (19b)

The following proposition describes some important properties of the scheme (19a–b).
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Proposition 3 The following properties hold for the scheme (19a–b):

(i) The scheme is unconditionally stable in the von Neumann sense.

(ii) For the case of deterministic parameters, the numerical solution of the scheme is locally
accurate to order O(�t2 + �x2).

(iii) If M is the number of time steps and N is the number of steps in the spatial direction,
the computational burden is O(M N log2 N ).

Proof. (iii) was shown above. (i) and (ii) are shown in Appendix.
The presence of jumps increases the magnitude of the first-order derivative in the PDE

relative to the no-jump case. This again can potentially cause oscillations for certain types
of option payouts; see Zvan, Forsyth, and Vetzal (1998) for details. While we have not
experienced any such difficulties, we point out that they can be remedied if necessary
by evaluating first-order derivatives using an upwind scheme (Zvan, Forsyth, and Vetzal
(1998)), at the cost of reducing the convergence order in the x-domain to O(�x).

3.2. Refinements

While the scheme described by (19a–b) is attractive in that it is unconditionally stable and
only requires O(N log2 N ) operations per time step, a direct application suffers from certain
drawbacks. Specifically, accurate representation of the convolution integral will generally
require a very wide grid. Since the FFT algorithm only accepts uniform step length in
the x-direction, the precision of the numerical solution in areas of interest might suffer.
To overcome this, we here define an algorithm that assumes linearity of the option price
outside a grid of size equal to a number of standard deviations of the underlying process.
The linear part can conveniently be solved in closed-form16 whereas the inner grid is solved
using the FFT-ADI-algorithm described in (19a–b) above.

We split the function in two parts:17

F = F1x∈(x,x̄) + F1x /∈(x,x̄) ≡ G + H,

On x ∈ (x, x̄), G solves

0 = ∂G

∂t
+ DG + λ(ς∗ − 1)F = ∂G

∂t
+ DG − λG + λς∗[G + H ].

If we assume that H is linear in ex we can write

H(t, x) ∼= [
gl(t)e

x + hl(t)
]

1x<x + [
gu(t)e

x + hu(t)
]

1x>x̄ ,

where gl , hl , gu , hu are deterministic functions. This means that we can write

ς∗ H(t, x) ∼= gl(t)e
x (1 + m(t)) Pr′(x + ln J (t) < x)

+ hl(t) Pr(x + ln J (l) < x)

+ gu(t)e
x (1 + m(l)) Pr′(x + ln J (l) > x̄)

+ hu(t) Pr(x + ln J (t) > x̄) (20)
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where Pr(·) denotes probability under the distribution defined by ς and Pr′(·) denotes
probability under the distribution described by the Radon-Nikodym transformed density:
ς ′(t, x) = ς(t, x)ex/(1 + m(t)). In the Merton (1976) case of log-normal jumps these
probabilities can be computed in closed-form as Gaussian distribution functions. If the
distribution of the jumps is non-parametric, the probabilities can be calculated by simple
numerical integration over the densities ς, ς ′.

We now get the following system

[2/�t − D]G(t + �t/2) = (2/�t − λ)G(t + �t) + λς∗G(t + �t)
+λς∗ H(t + �t)
, [2/�t + λ − λς∗]G(t)

= [2/�t + D]G(t + �t/2) + λς∗ H(t),

(21)

where terms of the type ς∗G are handled numerically by FFTs and terms of the type ς∗ H
are handled by (20). The assumption of linearity of H amounts to stating that the functions
gl , gu, hl , hu can be obtained from the asymptotes of a function defined by

r f = ft + (r(t) − q(t)) fx (22)

subject to the same boundary conditions as (13). Over a discrete time-step (22) has the
closed-form solution

f (t, x) = e−r�t f (t + �t, x + (r(t) − q(t))�t). (23)

(23) together with the boundary conditions define gl , gu, hl , hu .
The scheme described above scheme can be used for most applications, including barrier

options and options with Bermudan or American style exercise.

3.3. A Numerical Example

In this section we give a quick example of the practical performance of the method that
has been outlined in the previous section. Table 3 below compares Merton’s (1976) exact
formula for European puts and calls (equation (8)) with the prices generated by the algorithm
(19a–b), refined as discussed in the previous section. To stress the algorithm, the jump
parameters have been set to fairly extreme values:

r = 0.05, q = 0.02, σ = 0.15, λ = 0.1, γ = 0.4, S(0) = 100, K = 100

The number of time steps is set to half the number of x-steps. Also, due to the usage of the
FFT algorithm, the number of x-steps have been set to multiples of 2.

Table 3 also lists CPU times and the experimental convergence order of the method, the
latter computed as the average slope of a log-log plot of absolute error against the time step.
It is clear form the table that the convergence of the algorithm is smooth and approximately
of order 2 in the number of time- and x-steps—a little higher for short-dated options and a
little lower for long-dated options. This experimentally confirms the second statement of
Proposition 3. In order to obtain accuracy to one basis point, Table 3 shows that generally
512 steps in the x-direction are necessary. CPU time for such a calculation is less than 1
second on a 400 MHz Pentium PC.
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Table 3. Prices of European calls and puts using ADI-FFT PIDE solver.

T = 0.01, µ = −1.08 T = 0.01, µ = 0.92 T = 1, µ = −1.08

x-steps Put Call Put Call Put Call CPU Time
32 0.5330 0.5577 0.4324 0.4570 7.4882 10.3924 0.01
64 0.5512 0.5759 0.5612 0.5858 7.6711 10.5683 0.02
128 0.5552 0.5798 0.5929 0.6175 7.7101 10.6057 0.06
256 0.5561 0.5807 0.5995 0.6241 7.7193 10.6145 0.21
512 0.5563 0.5809 0.6011 0.6257 7.7216 10.6167 0.90
1024 0.5564 0.5810 0.6015 0.6261 7.7222 10.6172 6.88

Closed-form 0.5564 0.5810 0.6016 0.6262 7.7224 10.6174 0.00
Conv. Order 2.05 2.05 2.07 2.07 2.05 2.06 NA

T = 1, µ = 0.92 T = 10, µ = −1.08 T = 10, µ = 0.92

x-steps Put Call Put Call Put Call CPU Time
32 10.1666 12.9430 17.8984 39.9230 28.8594 41.4292 0.01
64 12.0254 14.8927 17.9780 39.4001 27.3118 46.3351 0.02
128 12.4263 15.3146 17.9972 39.2688 27.4585 48.1286 0.06
256 12.5051 15.3985 18.0018 39.2362 27.5255 48.6093 0.21
512 12.5239 15.4185 18.0030 39.2280 27.5420 48.7293 0.90
1024 12.5284 15.4234 18.0033 39.2260 27.5461 48.7593 6.88

Closed-form 12.5299 15.4250 18.0034 39.2253 27.5474 48.7693 0.00
Conv. Order 2.12 2.12 2.01 2.00 1.98 1.90 NA

Note: European put and call option prices of Merton model computed using FFT-ADI method with
different number of state space steps on the main grid. The number of time steps is set to half the
number of x- steps. CPU times are in seconds. The process parameters are r = 0.05, q = 0.02,
σ = 0.15, λ = 0.1, γ = 0.4, S(0) = 100.0, K = 100.0.

3.4. Monte Carlo Simulation

The finite-difference method outlined in the previous sections is primarily useful for options
with mild path-dependency (such as American options and barrier options), but is difficult
to apply to options than depend more strongly on the path of the underlying stock. For such
options, Monte Carlo simulation methods are generally useful (see Boyle et al. (1997) for
a good review). Once the methods in Section 1 have been applied to determine the local
volatility function, the SDE (1) can be simulated directly in an Euler scheme. For each time
step one would determine whether there is a jump or not by randomizing over the jump
probability (λ�t) and then subsequently randomize over the jump distribution to determine
the size of the jump. This procedure, however, is computationally inferior to other methods
that explicitly exploit the independence of the jumps and the Brownian motion. One such
procedure is described below.18

Let {τj }j=1,2,... be the arrival times of the Poisson process π . We know that {τj+1 −
τj }j=1,2,... are mutually independent with distribution given by

Pr(τj+1 − τj > s) = exp

(
−
∫ τj +s

τj

λ(u) du

)

For each path we wish to simulate we use this to draw the arrival times for the particular
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path up to our time horizon that we are considering. We then construct an increasing
simulation time line that includes the jump times and our time horizon, say {ti }i=0,1,.... The
price process is now simulated as

S(ti ) = F(0, ti )ex(ti ),

x(ti ) = − ∫ ti
0 λ(u)m(u) du − 1

2

i−1∑
k=0

σ(tk, x(tk))
2(tk+1 − tk)

+∑i−1
k=0 σ(tk, x(tk))

√
tk+1 − tkε(tk) +∑i

k=1 1tk∈{τj } ln J (tk)

(24)

and {ε(ti )}i=0,... is a sequence of independent standard normal random variables, and
{J (τj )}j=1,2,... is a sequence of independent random variables drawn according to the
marginal distributions {ς(τj ; ·)}j=1,2,....

The simulation scheme described by (24) is O(
√

�t) convergent to the true stochastic
differential equation and ensures that simulated stock prices have expectations equal to
their forwards. Higher order accuracy simulation schemes can be constructed using the
Taylor-expansion techniques described in Kloeden and Platen (1992).

4. Option Pricing: Numerical Tests

In this section we will combine the calibration results from Section 2 with the pricing
algorithm of Section 3. First, we investigate what evolution of the volatility smile is
implied in the model. Second, we price a range of standard option contracts. Throughout,
we compare the results of the jump-diffusion model to the results of the DVF model. Both
the DVF and jump-diffusion calibrations were tested for accuracy by numerically pricing
all call options in the input set (Table 1); in all cases, the computed prices were within the
bid-offer spreads.

4.1. Evolution of Volatility Skew

To illustrate the differences between the pure diffusion model and the jump-diffusion model,
it is illuminating to investigate the volatility skews that the two models generate at future
dates and stock price levels. In Table 4 we show the implied Black-Scholes volatilities
for 1-year call options at different times and future levels of the underlying index in the
jump-diffusion model.

Table 4 shows that the volatility skew of the jump-diffusion model is surprisingly stable
over time and stock price levels. This is not the case for the fitted DVF model, as is
obvious from Table 5 below. In particular, we notice that the future implied volatility skews
of the fitted pure diffusion model are highly non-stationary and tend to flatten out as time
progresses. In a few cases, the implied volatility surface even turns into a smile or otherwise
becomes non-monotonic in the strike.
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Table 6. S&P500 option prices: Jump-diffusion versus pure diffusion.

Fwd starting call spread Bermudan 80% put Asian 120% call

Option Jump- Pure Diffusion Jump- Pure Diffusion Jump- Pure Diffusion
Maturity Diffusion (DVF) Diffusion (DVF) Diffusion (DVF)

1.0 8.79 8.73 3.06 3.02 0.46 0.46
2.0 7.68 7.40 5.40 5.07 2.18 2.12
3.0 7.28 6.79 7.22 6.61 4.35 4.19
4.0 6.87 6.32 8.70 7.90 6.50 6.26
5.0 6.49 5.88 9.93 8.96 8.50 8.22
6.0 6.09 5.51 10.94 9.78 10.30 10.00
7.0 5.73 5.15 11.76 10.43 11.92 11.62
8.0 5.43 4.85 12.45 10.97 13.40 13.11
9.0 5.16 4.59 13.05 11.42 14.71 14.43
10.0 4.91 4.35 13.55 11.81 15.88 15.63

Note: Exotic option prices (in % of current spot) for the jump-diffusion and DVF models. Both
models are fitted to the S&P500 data in Section 2. The call spread prices refer to the prices of
forward starting 100-120 strike 1-year call option spreads, i.e. the prices in 4th row and 2nd and 3rd

columns of the table is today’s percentage price of an option that pays (S(4)/S(3) − 100%)+ −
(S(4)/S(3) − 120%)+ at year 4. The Bermudan option prices are the prices of put options with
a strike of 80% of initial spot, with the right to exercise once every month. The Asian call prices
refer to the prices of 120% strike call options on the arithmetic monthly average. Forward starting
and Asian option prices were computed from 100,000 simulations. The simulation standard error
is everywhere less than 1% of the option price. The Bermudan option prices were computed using
the FFT-ADI method on a grid of size 128 × 256.

4.2. Prices of Exotic Options

The different evolution of the implied volatility skew in the jump-diffusion and DVF models
obviously will have consequences for the pricing of exotic options that, unlike European puts
and calls, depend on the full dynamics of the stock price, rather than just the distribution
at a single point in time. Options that fall in this category include compound options
and barrier options, but also most near-“vanilla” contracts, including American/Bermudan
options, forward starting options, and Asian options. Table 6 below report the prices of
some of these contracts in the jump-diffusion and DVF models fitted to the S&P500 data
in Section 2.

It is obvious from the results in Table 6 that the jump-diffusion and DVF models return
significantly different prices for Bermudan and forward starting options, and that this dif-
ference grows as the maturity is increased. The differences in the Asian option prices are
smaller but still significant.

5. Conclusion

This paper has presented a framework for adding Poisson jumps to the standard DVF
(Deterministic Volatility Function) diffusion models of stock price evolution. We have
developed a forward PIDE (Partial Integro-Differential Equation) for the evolution of call
option prices as functions of strike and maturity, and shown how this equation can be used
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in an efficient calibration to market quoted option prices. To employ the calibrated model to
pricing of various exotic options, we have developed an efficient ADI (Alternating Direction
Implicit) finite-difference technique with attractive stability and convergence properties.

Applying our calibration algorithm to the S&P500 market results in a largely constant
diffusion volatility overlaid with a significant jump component. For the S&P500 market,
we find diffusion volatilities around 15–20% and, working in the risk-neutral probability
measure, a 9% (annual) chance of an index drop averaging around 50%. In light of the
current internet stock debacle, it is possible that the market objectively assigns such high
probabilities of large crashes, but the fairly extreme values of the risk-neutral jump param-
eters more likely reflects risk premia relative to historical parameters. Indeed, a general
equlibrium analysis reveals that the historical jump process implied by the risk-neutral jump
parameters is quite reasonable. In any case, numerically fitting a jump-diffusion model to
the S&P500 market is both easier and more robust than fitting a DVF model: lacking the
jump component to handle the significant short-term skew in S&P500 volatilities, the latter
model requires very steep and highly time-dependent local volatilities to match market
prices.

As the paper demonstrates, the evolution of the volatility smile in a DVF model fitted to
S&P500 data is highly non-stationary and often counterintuitive. The jump-diffusion model,
on the other hand, produces almost perfect stationary S&P500 volatility skews. Despite
giving virtually identical prices for European options, the two models differ significantly
in their pricing of a range of standard exotic option contracts.

While this paper has mainly focused on equities, we point out that the developed method-
ology works equally well for FX rates. As most FX markets exhibit volatility smiles,
rather than skews, calibration to such market will typically result in less directional jump
processes, with the mean jump being closer to 0 than is the case for stocks.

6. Appendix

Proof of Proposition 1. Consider a twice differentiable function H(S(t)). With stock
price dynamics as in (1), the evolution of H(S(t)) is given by the Doleans-Dade-Meyer
extension to Ito’s lemma (see e.g. Krishnan (1984), p. 184):

d H(S(t)) = HS(S(t−))(r(t) − q(t) − λ(t)m(t))S(t−)dt

+ 1
2 HSS(S(t−))σ (t, S(t−))2S(t−)2dt

+ Hs(S(t−))σ (t, S(t−))S(t−)dW (t)

+ [H(J (t)S(t−)) − H(S(t−))] dπ(t) (A.1)

Now, set H(S(t)) = (S(t) − K )+ for a fixed positive number K . While this function is
not differentiable in the usual sense, let us nevertheless proceed formally as in (A.1):

d(S(t) − K )+ = 1S(t−)>K (r(t) − q(t) − λ(t)m(t))S(t−)dt

+ 1
2δ(S(t−) − K )σ (t, K )2 K 2dt

+ 1S(t−)>K σ(t, S(t−))S(t−)dW (t)

+ [
(J (t)S(t−) − K )+ − (S(t−) − K )+

]
dπ(t) (A.2)
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where 1A denotes the indicator function for the set A and δ(·) is Dirac’s delta function.
(A.2) can, in fact, be justified rigorously by the Tanaka-Meyer formula (see Karatzas and
Shreve (1991), p. 218) and is equivalent to the integral representation

(S(T ) − K )+ = (S(t) − K )+ +
∫ T

t
1S(v−)>K (r(v) − q(v) − λ(v)m(v))S(v−) dv

+
∫ T

t

1
2δ(S(v−) − K )σ (v, K )2 K 2 dv

+
∫ T

t
1S(v−)>K σ(v, S(v−))S(v−) dW (v)

+
∫ T

t

[
(J (v)S(v−) − K )+ − (S(v−) − K )+

]
dπ(v). (A.3)

In (A.3), the term 1
2

∫ T
t δ(S(v−) − K )σ (v, K )2 K 2 dv is normally called the local time

at K over the time interval [t, T ].
By standard pricing theory, the time t price of a T -maturity European call option struck

at K is

C(t, S(t); T, K ) = e−
∫ T

t
r(v) dv Et

[
(S(T ) − K )+

]
, (A.4)

where, as before, Et [·] denotes risk-neutral expectation conditional on the information
revealed up to time t . Assuming sufficient regularity for an application of Fubini’s theorem
(interchange of time integration and expectation), (A.3) and (A.4) yield

C(t, S(t); T, K )e
∫ T

t
r(v) dv = (S(t) − K )+ +∫ T

t
(r(v) − q(v)

− λ(v)m(v)Et
[
1S(v)>K S(v)

]
dv

+
∫ T

t

1
2 Et [δ(S(v) − K )] σ(v, K )2 K 2 dv

+
∫ T

t
Et
[
(J (v)S(v)−K )+−(S(v)−K )+

]
λ(v) dv, (A.5)

where we have used the martingale property of the stochastic integral over W (t); the fact
that S(t) and S(t−) are identically distributed; and the independence of W , J , and π .

In (A.5) the expectation of the Dirac delta function equals the stock price density, and
hence, from a standard result in Breeden and Litzenberger (1978),

Et [δ(S(v) − K )] = e
∫ v

t
r(u) duCK K (t, S(t); v, K ).

Moreover, it is easily verified that

C(t, S(t); v, K )e
∫ v

t
r(u) du = Et

[
1S(v)>K (S(v) − K )

]
= Et

[
1S(v)>K S(v)

]+ K e
∫ v

t
r(u) duCK (t, S(t); v, K ).
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Inserting these results into (A.5) and differentiating with respect to T yields

CT (t, S(t); T, K ) = (−q(T ) − λ(T )m(T ))C(t, S(t); T, K )

+ 1
2σ(T, K )2 K 2CK K (t, S(t); T, K )

− (r(T ) − q(T ) − λ(T )m(T ))K CK (t, S(t); T, K )

+ λ(T )e−
∫ T

t
r(u) du Et

[
(J (T )S(T ) − K )+

]
− λ(T )e−

∫ T

t
r(u) du Et

[
(S(T ) − K )+

]
. (A.6)

By the independence assumption and (A.4),

e−
∫ T

t
r(u) duEt

[
(J (T )S(T )−K )+

] = e−
∫ T

t
r(u) du Et

[
J (T ) (S(T ) − K/J (T ))+

]
=
∫ ∞

−∞
zC (t, S(t); T, K/z) ζ(z; T ) dz

= (1 + m(T ))

∫ ∞

0
C (t, S(t);T, K/z) ζ ′(z; T ) dz.

where ζ ′(z; T ) ≡ zζ(z; T )/ (1 + m(T )) is a probability density function as J (T ) > 0
(a.s.), 1 + m(T ) > 0, and E [J (T )/ (1 + m(T ))] = 1.

The above identity together with another application of (A.4) reduces (A.6) to the result
in Proposition 1.

Proof of Proposition 3. We first consider the von Neumann stability. Inserting u1(t, x) =
ϑ−t

1 eikx into (19a) and u2(t, x) = ϑ−t
2 eikx and (19b), where ϑ1, ϑ2 are complex numbers,

yields

ϑ ≡ ϑ
�t/2
1 · ϑ

�t/2
2 =

[
2/�t + (−r + aδx + 1

2 b2δxx
]

eikx[
2/�t − (−r + aδx + 1

2 b2δxx )
]

eikx

· 2eikx/�t − λeikx + λ
∑

j qj (x)eik j�x

2eikx/�t + λeikx − λ
∑

j qj (x)eik j�x

The von Neumann criterion (Mitchell and Griffiths (1980), p. 38) for stability requires that
|ϑ | ≤ 1 for all integers k. Straightforward calculations show that ϑ = A(k) · B(k), where

A(k) =
2

�t − r − b2

�x2 (1 − cos k�x) + i a
�x sin k�x

2
�t + r + b2

�x2 (1 − cos k�x) − i a
�x sin k�x

,

B(k) =
2/�t − λ

(
1 −∑

j qj (x)cos k j�x
)

+ iλ
∑

j qj (x)sin k j�x

2/�t + λ
(

1 −∑
j qj (x)cos k j�x

)
− iλ

∑
j qj (x)sin k j�x

.

A geometric argument shows that |A(k)| ≤ 1 when r ≥ 0 for all k. Noting that∑
j

qj (x)cos k j�x ≤
∑

j

qj (x) = 1,
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another geometric argument demonstrates that also |B(k)| ≤ 1 for all k. In total, we
conclude that the scheme is unconditionally stable.

Turning to the issue of precision, we first note that

F(s) =
[ ∞∑

n=0

(s − t)n

n!

(
∂

∂t

)n
]

F(t) = e(s−t) ∂
∂t F(t).

At the same time we have that

0 =
[

∂

∂t
+ D + λ(ς∗ − 1)

]
F

These two properties together with the fact that, in the case of deterministic parameters, the
operators D and ς∗ commute imply that we can write

e− �t
2 D F(t + �t/2) = e

�t
2 λ(ς∗−1)F(t + �t), e

�t
2 λ(ς∗−1)F(t) = e

�t
2 D F(t + �t/2).

Expanding the exponentials yields[
1 − 1

2�t D + 1
2 (�t/2)2 D2

]
F(t + �t/2) =[

1 + 1
2�tλ(ς∗ − 1)

+ 1
2 (�t/2)2λ2(ς∗ − 1)2

]
F(t + �t) + O(�t3),[

1 − 1
2�tλ(ς∗ − 1) + 1

2 (�t/2)2λ2(ς∗ − 1)2
]

F(t)

= [
1 + 1

2�t D + 1
2 (�t/2)2 D2

]
F(t + �t/2) + O(�t3).

We now note that for arbitrary analytic functions f , we have that

D f (x) = D f (x) + O(�x2), ς∗ f (x) = ς∗ f (x) + O(�x2).

Inserting this gives us the two equations[
1 − 1

2�t D
]

F(t + �t/2) = [
1 + 1

2�tλ(ς∗ − 1)
]

F(t + �t)

+ 1
2 ( 1

2�t)2
(
−D

2
F(t + �t/2) + λ2(ς∗ − 1)2 F(t + �t)

)
+ O(�t�x2 + �t3),[

1 − 1
2�tλ(ς∗ − 1)

]
F(t) = [

1 + 1
2�t D

]
F(t + �t/2)

+ 1
2 ( 1

2�t)2
(

D
2
F(t + �t/2) − λ2(ς∗ − 1)2 F(t)

)
+ O(�t�x2 + �t3).

Substituting the first equation into the second equation yields[
1 − 1

2�tλ(ς∗ − 1)
]

F(t) = [
1 + 1

2�t D
] [

1 − 1
2�t D

]−1

× [
1 + 1

2�tλ(ς∗ − 1)
]

F(t + �t)

+ [1 + 1
2�t D

] [
1 − 1

2�t D
]−1 1

2 ( 1
2�t)2

(
−D

2
F(t + �t/2)+

λ2(ς∗ − 1)2 F(t + �t)
)

+ 1
2 ( 1

2�t)2
(

D
2
F(t + �t/2) − λ2(ς∗ − 1)2 F(t)

)
+ O(�t�x2 + �t3)

where the term [1 − 1
2�t D]−1 should be interpreted in the sense of matrix inversion. We
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now use the two observations[
1 − 1

2�t D
]−1 = 1 + O(�t); F(t + �t) = F(t) + O(�t)

to conclude that[
1 − 1

2�tλ(ς∗ − 1)
]

F(t) = [
1 + 1

2�t D
] [

1 − 1
2�t D

]−1 [
1 + 1

2�tλ(ς∗ − 1)
]

× F(t + �t) + O(�t�x2 + �t3) (A.7)

(A.7) is just another way of writing (19a–b). Hence, we can conclude that the local
truncation error of the scheme (19a–b) is O(�t�x2 + �t3), and thereby that the local
accuracy of the scheme is of order O(�t2 + �x2).

Notes

1. The degree of incompleteness is higher in a jump-diffusion model than in a stochastic volatility model.
Whereas stochastic volatility models can be made complete by the introduction of one (or a few) traded
options, a jump-diffusion model typically requires the existence of a continuum of options for the market to
be complete.

2. As discussed in Section 1, the risk-neutral measure is not necessarily unique for jump-diffusions of the type
(1). If the measure is not unique, i.e. we work in an incomplete market with only a finite set of options traded
on S, (1) should be interpreted as being valid for some explicit choice of measure. By fitting the parameters
of (1) to market prices, this choice of measure effectively becomes the market measure.

3. Note that integration over the Poisson differential dπ is to be interpreted as a Stieltjes integral (see for instance
Krishnan (1984), p. 155).

4. The payoff of a European call option at maturity is C(T, S; T, K ) = (S − K )+.

5. In particular, we would just replace σ 2(T, K ) with Et

[
σ 2(T ) | S(T ) = K

]
.

6. We thank George Skiadopoulos for making us aware of Luca Pappalardo’s working paper.

7. We notice that (6) is not invertible (in the sense that σ 2(·) ≥ 0 exists) for arbitrary choices of the constant
jump parameters.

8. On a philosophical note, we point out that this assumption effectively leads to a complete market: the jump
component can be hedged by taking a position in a continuum of call options with equal maturity and with
strikes spanning the interval [0, ∞[. In practice, this type of “hedge” is, of course, not realistic.

9. Typically the norm minimized is a weighted sum of the least-squares aggregate price error and a regularity
term measuring the smoothness of the local volatility function.

10. Surprisingly, many papers (including most of the ones cited here) suboptimally use the backward PDE to
compute the prices of the call options to which the model is fitted. In effect, each iteration in the search
algorithm involves solving one PDE per option in the target set (rather than just a single PDE, which would
be the case if the forward equation was used).

11. For a quick derivation of this result, see Andreasen and Gruenewald (1996).

12. As discussed in Footnote 7, (9) will not have a meaningful solution ŝ for arbitrary choices of the jump
parameters. Clearly, we would require that the chosen parameters satisfy M(t, T, k, 0) < (�t; T, k) for all
relevant T and k.

13. If this is not the case, we can either extend the grid or evaluate the contributions to the integral outside the
range of ω by extrapolation methods.

14. In the sense of minimizing the RMS of relative errors on the risk-neutral parameters λ and µ.

15. For the standard backward PIDE (2) we have x = ln S, a = r − q − λm − 1
2 σ 2, b = σ .

16. This technique of approximating the option value outside the main grid as a linear function and computing it
in closed-form was also used in Andreasen (1998).
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17. Here 1A denotes the indicator function on the set A.

18. If the jump intensity is constant, one can also a) first draw the number of jumps for a particular path by sampling
the Poisson distribution directly; and then b) simulate the location on the time-line of these jumps. Step b) is
simple as jump-times are uniformly distributed on the simulation horizon when conditioned on the number of
jumps.
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