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Abstract

We study the SABR model of stochastic volatility [8]. This model is essentially an
extension of Dupire’s local volatility model, in which a suitable volatility parameter
is assumed to be stochastic. SABR model allows for a large variety of shapes of
volatility smiles, and it performs remarkably well in the swaptions and caps / floors
markets. We refine the results of [8] by constructing an accurate and efficient
asymptotic form of the probability distribution of forwards. We also discuss the
impact of boundary conditions at zero forward on the volatility smile. Our analysis
is based on a WKB type expansion for the heat kernel of a perturbed Laplace-
Beltrami operator on a suitable Riemannian manifold.
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1 Introduction

The SABR model [8] of stochastic volatility attempts to capture the dynamics of
smile in the interest rate derivatives markets which are dominated by caps / floors
and swaptions. It provides a parsimonious, accurate, intuitive, and easily imple-
mentable framework for pricing, risk management, and relative value in those mar-
kets. The model describes the dynamics of a single forward (swap or LIBOR) rate
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with stochastic volatility. The dynamics of the model is characterized by a func-
tion b (f) of the forward ratef which determines the general shape of the volatility
skew, a parameterv which controls the level of the volatility of volatility, and a
parameterρ which governs the correlation between the changes in the underlying
forward rate and its volatility. It is an extension of Black’s model: choosingv = 0
andb (f) = f reduces SABR to the lognormal Black model, whilev = 0 and
b (f) = 1 reduces it to the normal Black model.

The main reason why the SABR model has proven effective in the industrial
setting is that, even though it is too complex to allow for a closed form solution, it
has an accurate asymptotic solution. This solution, as well as its implications for
pricing and risk management of interest derivatives, has been described in [8].

In this paper we refine the results presented in [8]. Our way of thinking has
been strongly influenced by the asymptotic techniques which go by the names of
the geometric opticsor theWKB method, and, most importantly, by the classical
results of Varadhan [17], [18] (see also [16], [12] for more recent presentations and
refinements). These techniques allow one to relate the short time asymptotics of
the fundamental solution (or theGreen’s function) of Kolmogorov’s equation to the
differential geometry of the state space. From the probabilistic point of view, the
Green’s function represents the transition probability of the diffusion, and it thus
carries all the information about the process.

Specifically, letU denote the state space of ann-dimensional diffusion process
with no drift, and letGX (s, x), x,X ∈ U , denote the Green’s function. We also
assume that the process is time homogeneous, meaning that the diffusion matrix is
independent ofs. Then, Varadhan’s theorem states that

lim
s→0

s log GX (s, x) = −d (x,X)2

2
.

Hered (x,X) is the geodesic distance onU with respect to a Riemannian metric
which is determined by the coefficients of the Kolmogorov equation. This gives us
the leading order behavior of the Green’s function. To extract usable asymptotic
information about the transition probability, more accurate analysis is necessary,
but the choice of the Riemannian structure onU dictated by Varadhan’s theorem
turns out to be key. Indeed, that Riemannian geometry becomes an important book
keeping tool in carrying out the calculations, rather than merely fancy language.
Technically speaking, we are led to studying the asymptotic properties of the per-
turbed Laplace - Beltrami operator on a Riemannian manifold.

In order to explain the results of this paper we define a universal functionD (ζ):

D (ζ) = log

√
ζ2 − 2ρζ + 1 + ζ − ρ

1− ρ
,



4 P. Hagan, A. Lesniewski, and D.Woodward

whereζ is the following combination of today’s forward ratef , strikeF , and a
volatility parameterσ (which is calibrated so that the at the money options prices
match the market prices):

ζ =
v

σ

∫ f

F

du

b (u)
.

The functionD (ζ) represents a certain metric whose precise meaning is explained
in the body of the paper. The key object from the point of view of option pricing is
the probability distribution of forwardsPF (τ, f). Our main result in this paper is
the explicit asymptotic formula:

PF (τ, f) =
exp

{
−D (ζ)2 /2τv2

}

√
2πτ σb (K) (coshD (ζ)− ρ sinhD (ζ))3/2

(1 + . . . ) .

In order not to burden the notation, we have written down the leading term only;
the complete formula is stated in Section 5. To leading order, the probability distri-
bution of forwards in the SABR model is Gaussian with the metricD (ζ) replacing
the usual distance.

From this probability distribution, we can deduce explicit expressions for im-
plied volatility. The normal volatility is given by:

σn =
v (f − F )

D (ζ)
(1 + . . . ) ,

while the lognormal volatility is given by:

σln =
v log (f/F )

D (ζ)
(1 + . . . ) .

Precise formulas, including the subleading terms, are stated in Section 5.
We would like to mention that other stochastic volatility models have been

extensively studied in the literature (notably among them the Heston model [11]).
Useful presentations of these models are contained in [4] and [15]. We continue
our approach to volatility modelling in [9].

A comment on our style of exposition in this paper. We chose to present the
arguments in an informal manner. And while we believe that all the results of this
paper could be stated and proved rigorously as theorems, little would be gained
and clarity might easily get lost in the course of doing so.

The paper is organized as follows. In Section 2 we review the model and formu-
late the basic partial differential equation, the backward Kolmogorov equation. We
also introduce the Green’s and discuss various boundary conditions at zero. Section
3 is devoted to the description of the differential geometry underlying the SABR
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model. We show that the stochastic dynamics defining the model can be viewed as
a perturbation of the Brownian motion on a deformed Poincare plane. The elliptic
operator in the Kolmogorov equation turns out to be a perturbed Laplace-Beltrami
operator. This differential geometric setup is key to our asymptotic analysis of the
model which is carried through in Section 4. In Section 5 we derive the explicit
formulas for the probability distribution and implied volatility which we have dis-
cussed above. In Appendix A we review the derivation of the fundamental solution
of the heat equation on the Poincare plane. This solution is the starting point of
our perturbation expansion. Finally, Appendix B contains some useful asymptotic
expansions.

2 SABR model

In this section we describe the SABR model of stochastic volatility [8]. It is a two
factor model with the dynamics given by a system of two stochastic differential
equations. The state variables of the model can be thought of as the forward price
of an asset, and a volatility parameter. In order to derive explicit expressions for the
associated probability distribution and the implied volatility, we study the Green’s
function of the backward Kolmogorov operator.

2.1 Underlying process

We consider a European option on a forward asset expiringT years from today.
The forward asset that we have in mind can be for instance a forward LIBOR rate,
a forward swap rate, or the forward yield on a bond. The dynamics of the forward
in the SABR model is given by:

dFt = σtb (Ft) dWt, (1)

dσt = vσtdZt. (2)

HereFt is the forward rate process, andWt andZt are Brownian motions with

E [dWtdZt] = ρdt, (3)

where the correlationρ is assumed constant. Note that we assume that a suitable
numeraire has been chosen so thatFt is a martingale. The processσt is the stochas-
tic component of the volatility ofFt, andv is the volatility ofσt (the “volga”) which
is also assumed to be constant. The functionb (f) is defined forf > 0, and is as-
sumed to be positive, monotone non-decreasing, and smooth. Two examples ofb,
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which are particularly popular among financial practitioners, are functions of the
form:

b (x) = xβ, where0 ≤ β ≤ 1 (4)

(stochastic CEV model), or

b (x) = x + a, wherea > 0 (5)

(stochastic shifted lognormal model).
The processσt is purely lognormal and thusσt > 0 almost surely. Since,

depending on the choice ofb (x), the processFt can take on positive only or pos-
itive and negative values with non-zero probability, we should carefully study the
boundary behavior of the process (1)-(2), asFt approaches0. To this end, we
extend the functionb (x) to all values ofx by setting

b (−x) = −b (x) , for x < 0. (6)

The so extendedb (x) is an odd function,b (−x) = −b (x), for all values ofx, and
thus the process (1)-(2) is invariant under the reflectionFt → −Ft. The state space
of the extended process is thus the upper half plane.

Our analysis uses an asymptotic expansion in the parameterv2T , and we thus
require thatv2T be small. In practice, this is an excellent assumption for medium
and longer dated options. Typical for shorter dated options are significant, discon-
tinuous movements in implied volatility. The SABR model should presumably be
extended to include such jump behavior of short dated options.

A special case of (1)-(2) which will play an important role in our analysis is
the case ofb (x) = 1, andρ = 0. In this situation, the basic equations of motion
have a particularly simple form:

dFt = σtdWt, (7)

dσt = vσtdZt, (8)

with E [dWtdZt] = 0.

2.2 Green’s function

Green’s functions arise in finance as the prices of Arrow-Debreu securities. We
consider the Arrow-Debreu security whose payoff at timeT is given by Dirac’s
delta functionδ (FT − F, σT − Σ). The timet < T priceG = GT,F,Σ (t, f, σ) of
this security is the solution to the following parabolic partial differential equation:

∂G

∂t
+

1
2
σ2

(
b (f)2

∂2G

∂f2
+ 2vρb (f)

∂2G

∂f∂σ
+ v2 ∂2G

∂σ2

)
= 0, (9)
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with the terminal condition:

GT,F,Σ (t, f, σ) = δ (f − F, σ − Σ) , at t = T. (10)

This equation should also be supplemented by a boundary condition at infinity such
thatG is financially meaningful. Since the payoff takes place only if the forward
has a predetermined value in a finite amount of time, the value of the Arrow-Debreu
security has to tend to zero asF andΣ become large:

GT,F,Σ (t, f, σ) → 0, asF, Σ →∞ . (11)

ThusGT,F,Σ (t, f, σ) is a Green’s function for (9). Once we have constructed
it, we can price any European option. For example, the priceCT,K (t, f, σ) of a
European call option struck atK and expiring at timeT can be written in terms of
GT,F,Σ (t, f, σ) as

CT,K (t, f, σ) =
∫

(F −K)+ GT,F,Σ (t, f, σ) dFdΣ, (12)

where, as usual,(F −K)+ = max (F −K, 0), and where the integration extends
over the upper half plane

{
(F, Σ) ∈ R2 : Σ > 0

}
.

Note that the process (1)-(2) is time homogeneous, and thusGT,F,Σ (t, f, σ) is
a function of the time to expiryτ = T − t only. Denoting

GF,Σ (τ, f, σ) ≡ GT,F,Σ (t, f, σ) ,

and
CK (τ, f, σ) ≡ CT,K (t, f, σ) ,

we can reformulate (9)-(10) as the initial value problem:

∂G

∂τ
=

1
2
σ2

(
b (f)2

∂2G

∂f2
+ 2vρb (f)

∂2G

∂f∂σ
+ v2 ∂2G

∂σ2

)
, (13)

and
GF,Σ (τ, f, σ) = δ (f − F, σ − Σ) , at τ = 0. (14)

Introducing the marginal probability distribution

PF (τ, f, σ) =
∫ ∞

0
GF,Σ (τ, f, σ) dΣ, (15)

we can express the call price (12) as

CK (τ, f, σ) =
∫ ∞

−∞
(F −K)+ PF (τ, f, σ) dF. (16)
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This formula has the familiar structure, and the focus of our analysis will be to
derive a useful expression forPF (τ, f).

We will solve (13)-(14) and (15) by means of asymptotic techniques. In order
to set up the expansion, it is convenient to introduce the following variables:

s = τ/T, x = f, X = F, y = σ/v, Y = Σ/v,

and the rescaled Green’s function:

KX,Y (s, x, y) = vTGX,vY (Ts, x, vy) .

In terms of these variables, the initial value problem (13)-(14) can be recast as:

∂K

∂s
=

1
2
εy2

(
b (x)2

∂2K

∂x2
+ 2ρb (x)

∂2K

∂x∂y
+

∂2K

∂y2

)
,

K (0, x, y) = δ (x−X, y − Y ) ,

(17)

whereK = KX,Y , and
ε = v2T. (18)

It will be assumed thatε is small and it will serve as the parameter of our expansion.
The heuristic picture behind this idea is that the volatility varies slower than the
forward, and the rates of variability off andσ/v are similar. The timeT defines
the time scale of the problem, and thuss is a natural dimensionless time variable.
Expressed in terms of the new variables, our problem has a natural differential
geometric content which is key to its solution.

Finally, let us write down the equations above for the special case ofb (x) = 1,
andρ = 0:

∂K

∂s
=

1
2
εy2

(
∂2K

∂x2
+

∂2K

∂y2

)
,

K (0, x, y) = δ (x−X, y − Y ) .

(19)

We will show later that this initial value problem has a closed form solution.

2.3 Boundary conditions atx = 0

The problem as we have formulated it so far is not complete. Since the value of the
forward rate should be positive1, we have to specify a boundary condition for the
Green’s function atx = 0. Three commonly used boundary conditions are [7]:

1Recent history shows that this is not always necessarily the case, but we regard such occurances
as anomalous.
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• Dirichlet (or absorbing) boundary condition. We assume that the Green’s
function, denoted byKD

X,Y (s, x, y), vanishes atx = 0,

KD
X,Y (s, 0, y) = 0. (20)

• Neumann (or reflecting) boundary condition. We assume that the derivative
of the Green’s function atx = 0, normal to the boundary (and pointing
outward), vanishes. LetKN

X,Y (s, x, y) denote this Green’s function; then

∂

∂x
KN

X,Y (s, 0, y) = 0. (21)

• Robin (or mixed) boundary condition. The Green’s function, which we shall
denote byKR

X,Y (s, x, y), satisfies the following condition. Givenη > 0,

(
− ∂

∂x
+ η

)
KR

X,Y (s, 0, y) = 0. (22)

In this paper we will be concerned with the Dirichlet and Neumann boundary
conditions only. Our task is tremendously simplified by the fact that the differential
operator in (17) is invariant under the reflectionx → −x of the upper half plane.
This allows one to construct the desired Green’s functions by means of the method
of images. LetKX,Y (s, x, y) denote now the solution to (17) which ignores any
boundary condition atx = 02. Then, one verifies readily that

KD
X,Y (s, x, y) = KX,Y (s, x, y)−KX,Y (s,−x, y) , (23)

and
KN

X,Y (s, x, y) = KX,Y (s, x, y) + KX,Y (s,−x, y) (24)

are the solutions to the Dirichlet and Neumenn problem, respectively.
Observe that the Green’s functions corresponding to these different boundary

conditions obey the followingconditioning inequalities:

KD ≤ K ≤ KN . (25)

Since the Dirichlet boundary condition corresponds to the stochastic process being
killed at the boundary, the total mass of the Green’s function is less than one:

∫
KD

X,Y (s, x, y) dx dy < 1. (26)

2This is sometimes referred to as the Green’s function with afree boundary condition.
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The remaining probability is a Dirac’s delta function atx = 0. On the other hand,
for the free and Neumann boundary conditions,

∫
KX,Y (s, x, y) dx dy =

∫
KN

X,Y (s, x, y) dx dy = 1, (27)

and so they arebona fideprobability distributions.

2.4 Solving the initial value problem

It is easy to write down a formal solution to the initial value problem (17). LetL
denote the partial differential operator

L =
1
2
y2

(
b (x)2

∂2

∂x2
+ 2ρb (x)

∂2

∂x∂y
+

∂2

∂y2

)
(28)

supplemented by a suitable boundary condition atx = 0. Consider the one-
parameter semigroup of operators

U (s) = exp (sεL) . (29)

ThenU solves the following initial value problem:

∂U

∂s
= εLU,

U (0) = I,

and thus the Green’s functionKX,Y (s, x, y) is the integral kernel ofU (s):

KX,Y (s, x, y) = U (s) (x, y;X,Y ) . (30)

In order to solve the problem (17) it is thus sufficient to construct the semigroup
U (s) and find its integral kernel. Keeping in mind that our goal is to find an explicit
formula forKX,Y (s, x, y), the strategy will be to representL as the sum

L = L0 + V, (31)

whereL0 is a second order differential operator with the property that

U0 (s) = exp (sεL0) (32)

can be represented in closed form. The operatorV turns out to be a differential
operator of first order, and we will treat it as a small perturbation of the operator
L0. The semigroupU (s) can now be expressed in terms ofU0 (s) andV as

U (s) = Q (s) U0 (s) . (33)
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Here, the operatorQ (s) is given by the well known regular perturbation expansion:

Q (s) = I +
∑

1≤n<∞

∫

0≤s1≤...sn≤sε
es1adL0 (V ) . . . esnadL0 (V ) ds1 . . . dsn, (34)

whereadL0 is the commutator withL0:

adL0 (V ) = L0V − V L0. (35)

We will use the first few terms in the expansion above in order to construct an
accurate approximation to the Green’s functionKX,Y (s, x, y):

Q (s) = I + sεV +
1
2

(sε)2
(
adL0 (V ) + V 2

)
+ O

(
(sε)3

)
. (36)

We shall disregard the convergence issues associated with this series, and use it
solely as a tool to generate an asymptotic expansion.

3 Stochastic geometry of the state space

In solving our model we find that the SABR model in the special caseρ = 0,
b (x) = 1 is Brownian motion on the Poincare plane. Generally, whenρ 6= 0, or
b (x) 6= 1, the model amounts to Brownian motion on a two dimensional manifold,
theSABR plane, perturbed by a drift term. In this section we summarize a number
of basic facts about the differential geometry of the state space of the SABR model.
The fundamental geometric structure is that of the Poincare plane. We will show
that the state space of the SABR model can be viewed as a suitable deformation of
the Poincare geometry.

3.1 SABR plane

We begin by reviewing the Poincare geometry of the upper half plane which will
serve as the standard state space of our model. For a full (and very readable)
account of the theory the reader is referred to e.g. [1].

ThePoincare plane(also known as the hyperbolic or Lobachevski plane) is the
upper half planeH2 = {(x, y) : y > 0} equipped with the Poincare line element

ds2 =
dx2 + dy2

y2
. (37)

This line element comes from the metric tensor given by

h =




1
y2

0

0
1
y2


 . (38)
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The Poincare plane admits a large group of symmetries. We introduce complex
coordinates onH2, z = x + iy (the defining condition then readsImz > 0), and
consider a Moebius transformation

z′ =
az + b

cz + d
, (39)

wherea, b, c, d are real numbers withad− bc = 1. We verify easily the following
two facts.

• Transformation (39) is a biholomorphic map ofH2 onto itself.

• The Poincare metric is invariant under (39).

As a consequence, the Lie group

SL (2,R) =
{(

a b
c d

)
: a, b, c, d ∈ R, ad− bc = 1

}
(40)

acts holomorphically and isometrically onH2. This symmetry group plays very
much the same role in the hyperbolic geometry as the Euclidean group in the usual
Euclidean geometry of the planeR2.

Let d (z, Z) denotes the geodesic distance between two pointsz, Z ∈ H2,
z = x + iy, Z = X + iY , i.e. the length of the shortest path connectingz andZ.
There is an explicit expression ford (z, Z):

cosh d (z, Z) = 1 +
|z − Z|2

2yY
, (41)

where|z − Z| denotes the Euclidean distance betweenz andZ. In particular, if
x = X, thend (z, Z) = |log (y/Y )|.

Sincedet (h) = y−4, the invariant volume element onH2 is given by

dµh (z) =
√

det (h) dxdy

=
dxdy

y2
.

(42)

The state space associated with the general SABR model has a somewhat more
complicated geometry. LetM2 denote the upper half plane{(x, y) : y > 0} ,
equipped with the following metricg:

g =
1√

1− %2




1
y2b (x)2

− ρ

y2b (x)

− ρ

y2b (x)
1
y2


 . (43)
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This metric is a generalization of the Poincare metric: the case ofρ = 0 and
b (x) = 1 reduces to the Poincare metric. In fact, the metricg is the pullback of the
Poincare metric under a suitable diffeomorphism. To see this, we choosep > 0,
and define a mapφp :M2 → H2 by

φp (z) =

(
1√

1− %2

(∫ x

p

du

b (u)
− ρy

)
, y

)
, (44)

wherez = (x, y). The Jacobian∇φp of φp is

∇φp (z) =




1√
1− %2 b (x)

− ρ√
1− %2

0 1


 , (45)

and soφ∗ph = g, whereφ∗p denotes the pullback ofφp. The manifoldM2 is thus
isometrically diffeomorphic with the Poincare plane. A consequence of this fact is
that we have an explicit formula for the geodesic distanceδ (z, Z) onM2:

cosh δ (z, Z) = cosh d (φp (z) , φp (Z))

= 1 +

(∫ x
X

du

b (u)

)2

− 2ρ (y − Y )
∫ x
X

du

b (u)
+ (y − Y )2

2 (1− ρ2) yY
,

(46)

wherez = (x, y) andZ = (X, Y ) are two points onM2. In the following, we will
suppress the subscriptp, as the choice ofp will be clear from the context. Since
det (g) = y−4b (x)−2, the invariant volume element onM2 is given by

dµh (z) =
√

det (g) dxdy

=
dxdy

b (x) y2
.

(47)

It will be convenient to use invariant notation. Letz1 = x, z2 = y, and let
∂µ = ∂/∂zµ, µ = 1, 2, denote the corresponding partial derivatives. We denote
the components ofg−1 by gµν , and useg−1 andg to raise and lower the indices:
zµ = gµνz

ν , ∂µ = gµν∂ν = ∂/∂zµ, where we sum over the repeated indices.
Explicitly,

∂1 = y2
(
b (x)2 ∂1 + ρb (x) ∂2

)
,

∂2 = y2 (ρb (x) ∂1 + ∂2) .
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Consequently, the initial value problem (17) can be written in the following geo-
metric form:

∂

∂s
KZ (s, z) =

1
2

ε ∂µ∂µKZ (s, z) ,

KZ (0, z) = δ (z − Z) .
(48)

3.2 Brownian motion on the SABR plane

It is no coincidence that the SABR model leads to the Poincare geometry. Recall
[12] that the Brownian motion on the Poincare plane is described by the following
system of stochastic differential equations:

dXt = YtdWt, (49)

dYt = YtdZt, (50)

with the two Wiener processesWt andZt satisfying

E [dWtdZt] = 0. (51)

Comparing this with the special case of the SABR model (7)-(8), we see that (7)-(8)
reduces to (49)-(50) once we have made the following identifications:

Xt = Fv2t, (52)

Yt =
1
v

σv2t, (53)

and used the scaling properties of a Wiener process:

dWv2t = v dWt,

dZv2t = v dZt.

Note that the system (49)-(50) can easily be solved in closed form: its solution
is given by

Xt = X0 + Y0

∫ t

0
exp

(
Zs − s2

2

)
dWs, (54)

Yt = Y0 exp
(

Zt − t2

2

)
. (55)

Let us now compare the SABR dynamics with that of the diffusion on the
SABR plane. In order to find the dynamics of Brownian motion on the SABR



SABR Model of Stochastic Volatility 15

plane we use the fact that there is a mapping (namely, (44)) ofM2 intoH2. Using
this mapping and Ito’s lemma yields the following system

dXt =
1
2
Y 2

t b (Xt) b′ (Xt) dt + Ytb (Xt) dWt, (56)

dYt = YtdZt, (57)

with the two Wiener processesWt andZt satisfying

E [dWtdZt] = ρdt. (58)

Note that this is not exactly the SABR model dynamics. Indeed, one can regard
the SABR model as the perturbation of the Brownian motion on the SABR plane
by the drift term−1

2 Y 2
t b (Xt) b′ (Xt) dt.

As in the case of the Poincare plane, it is possible to represent the solution to
the system (56)-(57) explicitly:

∫ Xt

X0

du

b (u)
= Y0

∫ t

0
exp

(
Zs − s2

2

)
dWs, (59)

Yt = Y0 exp
(

Zt − t2

2

)
. (60)

Parenthetically, we note that, within Stratonovich’s calculus, (56)-(57) can be
written as

dXt = Ytb (Xt) ◦ dWt,

dYt = Yt ◦ dZt.

Therefore, the stochastic differential equations of the SABR model, if interpreted
according to Stratonovich, describe the dynamics of Brownian motion on the SABR
plane.

3.3 Laplace-Beltrami operator on the SABR plane

Recall that the Laplace-Beltrami operator∆g on a Riemannian manifoldM with
metric tensorg is defined by

∆gf =
1√

det g

∂

∂xµ

(√
det g gµν ∂f

∂xν

)
, (61)

wheref is a smooth function onM. It is a natural generalization of the familiar
Laplace operator to spaces with non-Euclidean geometry. Its importance for prob-
ability theory comes from the fact that it serves as the infinitesimal generator of
Brownian motion on such spaces (see e.g. [5], [6], [12]).
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In the case of the Poincare plane, the Laplace-Beltrami operator has the form:

∆h = y2

(
∂2

∂x2
+

∂2

∂y2

)
. (62)

As anticipated by our discussion in Section 3.2, this operator is closely related to
the operatorL in the special case ofb (x) = 1, ρ = 0. In fact, in this case,

L =
1
2

∆h, (63)

and thus the problem (19) turns out to be the initial value problem the heat equation
onH2:

∂KZ

∂s
=

1
2

ε∆h KZ ,

KZ (0, z) = δ (z − Z)
(64)

The key fact is that the Green’s function for this equation can be represented in
closed form,

Kh
Z (s, z) =

e−sε/8
√

2

(2πsε)3/2 Y 2

∫ ∞

d(z,Z)

ue−u2/2sε

√
coshu− cosh d (z, Z)

du . (65)

This formula was originally derived by McKean [14] (see also [12] and references
therein). We have added the superscripth to indicate that this Green’s function
is associated with the Poincare metric. In Appendix A we outline an elementary
derivation of this fact.

Let us now extend the discussion above to the general case. We note first
that, except for the case ofb (x) = 1, the operator∂µ∂µ does not coincide with
the Laplace-Beltrami operator∆g onM2 associated with the metric (43). It is,
however, easy to verify that

∂µ∂µf = ∆gf − 1√
det g

∂

∂xν

(√
det g gµν

) ∂f

∂xµ

= ∆gf − 1√
1− ρ2

y2bb′
∂f

∂x
,

and thus

L =
1
2

∆g − 1

2
√

1− ρ2
y2bb′

∂

∂x

= L0 + V,
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whereL0 is essentially the Laplace-Beltrami operator:

L0 =
1
2
∆g , (66)

andV (x) is lower order:

V = − 1

2
√

1− ρ2
y2b (x) b′ (x)

∂

∂x
. (67)

Let us first focus on the Laplace-Beltrami operator∆g. The key property of the
Laplace-Beltrami operator is its invariance under a diffeomorphism. In particular,
this implies that

∆g = φ−1 ◦∆h ◦ φ, (68)

and, hence, the heat equation

∂K

∂s
=

1
2

ε∆gK.

onM2 can be solved in closed form! The Green’s functionKg
Z (s, z) of this equa-

tion is related to (65) by

Kg
Z (s, z) = det (∇φ (Z))Kh

φ(Z) (s, φ (z)) . (69)

Explicitly,

Kg
Z (s, z) =

e−sε/8
√

2

(2πsε)3/2
√

1− %2 Y 2b (X)

∫ ∞

δ

ue−u2/2sε

√
coshu− cosh δ

du , (70)

whereδ = δ (z, Z) is the geodesic distance (46) onM2. This is the explicit repre-
sentation of the integral kernel of the operatorU0 (s).

4 Asymptotic expansion

In principle, we have now completed our task of solving the initial value problem
(19). Indeed, its solution is given by

KZ (s, z) = Q (s)Kg
Z (s, z) , (71)

whereQ (s) is the perturbation expansion given by (34). In order to produce clear
results that can readily be used in practice we perform now a perturbation expan-
sion on the expression above. Our method allows one to calculate the Green’s
function of the model to the desired order of accuracy.
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Let us start with the Green’s functionKh
Z (s, z) which is defined on the Poincare

plane. In Appendix B we derived an asymptotic expansion (104) for the heat kernel
on the Poincare plane. After rescaling as in (93), we arrive at

Kh
Z (s, z) =

1
2πλY 2

exp
(
− d2

2λ

)
×

√
d

sinh d

(
1− 1

8

(
d coth d− 1

d2
+ 1

)
λ + O

(
λ2

))
,

where we have introduced a new variable,

λ = sε. (72)

We can now extend the expression to the general Green’s functionKg
Z (s, z). Using

(69) or (70) we find thatKg
Z (s, z) has the following asymptotic expansion:

Kg
Z (s, z) =

1

2πλ
√

1− ρ2Y 2b (X)
exp

(
− δ2

2λ

)
×

√
δ

sinh δ

(
1− 1

8

(
δ coth δ − 1

δ2
+ 1

)
λ + O

(
λ2

))
.

To complete the calculation in the case of generalb (x) we need to take into ac-
count the contribution to the Green’s function coming from perturbationV defined
in (67). Let us define the function:

q (z, Z) = sinh δ (z, Z) V δ (z, Z)

= − yb′ (x)

2 (1− ρ2)3/2 Y

(∫ x

X

du

b (u)
− ρ (y − Y )

)
.

(73)

From (104) and (105),

KZ (s, z) = (I + λV ) Kg
Z (s, z)

=
1√

1− ρ2 Y 2b (X)

(
KZ (s, z) + λ

q

sinh δ

∂

∂δ
KZ (s, z)

)
,

(74)

which yields the following asymptotic formula for the Green’s function:

KZ (s, z) =
1

2πλ
√

1− ρ2 Y 2b (X)
exp

(
− δ2

2λ

)√
δ

sinh δ
×

(
1− δ

sinh δ
q −

(
1
8

+
δ coth δ − 1

8δ2
− δ coth δ − 1

2δ sinh δ
q

)
λ + O

(
λ2

))
.

(75)

In a way, this is the central result of this paper. It gives us a precise asymptotic
behavior of the Green’s function of the SABR model, asλ → 0.
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5 Volatility smile

We are now ready to complete our analysis. Given the explicit form of the approx-
imate Green’s function, we can calculate (via another asymptotic expansion) the
marginal probability distribution. Comparing the result with the normal probabil-
ity distribution allows us to find the implied normal and lognormal volatilities, as
functions of the model parameters. We conclude this section by deriving explicit
formulas for the case of the CEV modelb (x) = xβ and the shifted lognormal
modelb (x) = x + a.

5.1 Marginal transition probability

We first integrate the asymptotic joint density over the terminal volatility variable
Y to find the marginal density for the forwardx:

PX (s, x, y) =
∫ ∞

0
KZ (s, z) dY

=
1

2πλ
√

1− ρ2 b (X)

∫ ∞

0

dY

Y 2
e−δ2/2λ

√
δ

sinh δ
×

(
1− δ

sinh δ
q −

(
1
8

+
δ coth δ − 1

8δ2
− δ coth δ − 1

2δ sinh δ
q

)
λ

)
.

(76)

Here the metricδ (z, Z) is defined implicitly by (46). We evaluate this integral
asymptotically by using Laplace’s method (steepest descent). This analysis is car-
ried out in Appendix B.2. The key step is to analyze the argumentY of the expo-
nent

φ (Y ) =
1
2

δ (z, Z)2 , (77)

in order to find the pointY0 where this function is at a minumum. Let us introduce
the notation:

ζ =
1
y

∫ x

X

du

b (u)
.

Sinceyb (u) is basically the rescaled volatility at forwardu, 1/ζ represents the
average volatility bewteen today’s forwardx and at option’s strikeX. In other
words,ζ represents how “easy” it is to reach the strikeX. Some algebra shows
that the minimum of (77) occurs atY0 = Y0 (ζ, y), where

Y0 = y
√

ζ2 − 2ρζ + 1 . (78)



20 P. Hagan, A. Lesniewski, and D.Woodward

Also, letD (ζ) denote the value ofδ (z, Z) with Y = Y0. Explicitly,

D (ζ) = log

√
ζ2 − 2ρζ + 1 + ζ − ρ

1− ρ
. (79)

The analysis in Appendix B.2 shows that the probability distribution forx is Gaus-
sian in this minimum distance, at least to leading order. Specifically, it is shown
there that to withinO

(
λ2

)
,

PX (s, x, y) =
1√
2πλ

1
yb (X) I3/2

exp
{
−D2

2λ

} {
1 +

yb′ (x) D

2
√

1− ρ2 I

+λ

[
−1

8
+

7
16

1−D cothD

D

yb′ (x)√
1− ρ2 I

+
3
8

1− ρ2

I

sinhD

D

(
1 +

yb′ (x) D

2
√

1− ρ2 I

)

+
1
4

yb′ (x) (ζ − ρ)√
1− ρ2 I

]
+ O

(
λ2

)
}

,

(80)

where

I (ζ) =
√

ζ2 − 2ρζ + 1
= coshD (ζ)− ρ sinhD (ζ) .

(81)

Let us rewrite this expression in terms of the original variables:

PF (τ, f, σ) =
1√
2πτ

1
σb (F ) I3/2

exp
{
− D2

2τv2

} {
1 +

σb′ (f) D

2v
√

1− ρ2 I

+τv2

[
−1

8
+

7
16

1−D cothD

D

σb′ (f)

v
√

1− ρ2 I

+
3
8

1− ρ2

I

sinhD

D

(
1 +

σb′ (f) D

2v
√

1− ρ2 I

)
+

σb′ (f) (ζ − ρ)

4v
√

1− ρ2 I

]}
.

(82)

This is the desired asymptotic form of the marginal probability distribution.

5.2 Implied volatility

As the final step of our analysis, we shall derive, in the spirit of [10] explicit formu-
las for the equivalent normal volatilityσn and the equivalent lognormal volatility
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σln. To this order, we compare (82) with the normal distribution function:

nF (τ, f, σn) =
1√

2πτ σn

exp

{
−(x−X)2

2τσ2
n

}
. (83)

The analysis is straightforward but somewhat tedious, and we defer it to Appendix
B.3. The result of our calculations is the following asymptotic formula forσn in
terms of the SABR parameters:

Likewise, comparing (82) with the lognormal distribution function

√
x

2πλX3y2
l

exp

(
−(log (x/X))2

2λy2
l

− λy2
l

8

)
,

we obtain the asymptotic relationship:

5.3 Impact of boundary conditions at zero forward

5.4 Explicit models

Let us consider the special case of a stochastic CEV model,b (f) = fβ, with
0 < β ≤ 1. If β = 1, then

ζ =
v

σ
log

f

F
. (84)

For0 < β ≤ 1,

ζ =
v

σ

fβ − F β

(1− β)
. (85)

Consequently,
Another popular model is shifted lognormal model,b (f) = f + a, where

a > 0. Then

ζ =
v

σ
log

f + a

F + a
, (86)

and thus

A Heat equation on the Poincare plane

In this appendix we present an elementary derivation of the explicit representation
of the Green’s function for the heat equation onH2. This explicit formula has been
known for a long time (see e.g. [14]), and we include its construction here in order
to make our calculations self-contained.
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A.1 Lower bound on the Laplace-Beltrami operator

We shall first establish a lower bound on the spectrum of the Laplace-Beltrami
operator on the Poincare plane. LetH = L2

(
H2, dµh

)
denote the Hilbert space of

complex functions onH2 which are square integrable with respect to the measure
(42). The inner product on this space is thus given by:

(Φ|Ψ) =
∫

H2

Φ(z)Ψ (z)
dxdy

y2
. (87)

It is easy to verify that the Laplace-Beltrami operator∆h is self-adjoint with re-
spect to this inner product.

Consider now the first order differential operatorQ onH defined by

Q = i

(
y

∂

∂y
− 1

2

)
+ y

∂

∂x
. (88)

Its hermitian adjoint with respect to (87) is

Q† = i

(
y

∂

∂y
− 1

2

)
− y

∂

∂x
, (89)

and we verify readily that

1
2

(
QQ† + Q†Q

)
= −∆h − 1

4
. (90)

This implies that

(Φ| −∆hΦ) =
1
2

(
Φ|QQ†Φ

)
+

1
2

(
Φ|Q†QΦ

)
+

1
4

(Φ|Φ)

=
1
2

(
Q†Φ|Q†Φ

)
+

1
2

(QΦ|QΦ) +
1
4

(Φ|Φ)

≥ 1
4

(Φ|Φ) ,

where we have used the fact that(Ψ|Ψ) ≥ 0, for all functionsΨ ∈ H. As a con-
sequence, we have established that the spectrum of the operator−∆h is bounded
from below by1

4 ! This fact was first proved in [14].

A.2 Construction of the Green’s function

Let us now consider the the following initial value problem:

∂

∂s
GZ (s, z) = ∆h GZ (s, z) ,

GZ (0, z) = Y 2δ (z − Z) ,
(91)
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wherez, Z ∈ H2. In addition, we require that

GZ (s, z) → 0, asd (z, Z) →∞. (92)

Note that, up to the factor ofY 2 in front of the delta function and a trivial time
rescaling, this is exactly the initial value problem (64):

GZ (s, z) = Y 2KZ (2s/ε, z) . (93)

The Green’s functionGZ (s, z) is also referred to as the heat kernel3 onH2. The
reason for inserting the factor ofY 2 in front of δ (z − Z) is that the distribution
Y 2δ (z − Z) is invariant under the action (39) of the Lie groupSL (2,R). In fact,
we verify readily that

Y 2δ (z − Z) =
1
π

δ (cosh d (z, Z)− 1) .

Now, since the initial value problem (92) is invariant underSL (2,R), its solu-
tion must be invariant and thus a function ofd (z, Z) only. Letr = cosh d (z, Z),
and writeGZ (s, z) = ϕ (s, r). Then the heat equation in (92) takes the form

∂

∂s
ϕ (s, r) =

(
r2 − 1

) ∂2

∂r2
ϕ (s, r) + 2r

∂

∂r
ϕ (s, r) . (94)

We have established above that the operator−∆h is self-adjoint on the Hilbert
spaceH, and its spectrum is bounded from below by1

4 . Therefore, we shall seek
the solution as the Laplace transform

ϕ (s, r) =
∫ ∞

1/4
e−sλL (λ, r) dλ (95)

which yields the following ordinary differential equation:

(
1− r2

) d2

dr2
L (λ, r)− 2r

d

dr
L (λ, r) + λL (λ, r) = 0. (96)

We write
λ = ν (ν + 1) ,

where

ν = −1
2
± i

√
λ− 1

4

= −1
2
± iω,

3It is the integral kernel of the semigroup of operators generated by the heat equation.
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and recognize in (96) the Legendre equation. Note that, as a consequence of the
inequalityλ ≥ 1

4 , ω is real andRe ν = −1
2 .

In the remainder of this appendix, we will use the well known properties of the
solutions to the Legendre equation, and follow Chapters 7 and 8 of Lebedev’s book
on special functions [13]. The general solution to (96) is a linear combination of the
Legendre functions of the first and second kinds,P−1/2+iω (r) andQ−1/2+iω (r),
respectively:

L

(
1
4

+ ω2, r

)
= AωP−1/2+iω (r) + BωQ−1/2+iω (r) . (97)

As d → 0 (which is equivalent tor → 1),

Q−1/2+iω (cosh d) ∼ const log d , (98)

which would imply thatϕ (s, cosh d) is singular atd = 0, for all values ofs > 0.
Since this is impossible, we conclude thatBω = 0. Note that, on the other hand,

P−1/2+iω (1) = 1, (99)

i.e. P−1/2+iω (cosh d) is non-singular atd = 0.
We will now invoke the Mehler-Fock transformation of a function4:

f̃ (ω) =
∫ ∞

1
f (r) P−1/2+iω (r) dr , (100)

f (r) =
∫ ∞

0
f̃ (ω) P−1/2+iω (r) ω tanh (πω) dω . (101)

In particular, (99) implies that the Mehler-Fock transform ofδ (r − 1) is 1, and
thus (remember that we need to divideδ (r − 1) by π):

Aω =
1
2π

tanh (πω) .

Now, the Legendre function of the first kindP−1/2+iω (r) has the following
integral representation:

P−1/2+iω (cosh d) =
√

2
π

coth (πω)
∫ ∞

d

sin (ωu)√
coshu− cosh d

du, (102)

which is valid for all realω. Therefore

L

(
1
4

+ ω2, cosh d

)
=

1√
2π2

∫ ∞

d

sin (ωu)√
coshu− cosh d

du ,

4Strictly speaking, we will deal with distributions rather than functions. A rigor oriented reader
can easily recast the following calculations into respectable mathematics.
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and we can easily carry out the integration in (95) to obtain

GZ (s, z) =
e−s/4

√
2

(4πs)3/2

∫ ∞

d(z,Z)

ue−u2/4s

√
coshu− cosh d (z, Z)

du. (103)

This is McKean’s closed form representation of the Green’s function of the heat
equation on the Poincare plane [14].

Going back to the original normalization conventions of (64) yields formula
(65).

B Some asymptotic expansions

In this appendix we collect a number of asymptotic expansions used in this paper.

B.1 Asymptotics of the McKean kernel

We shall establish a short time asymptotic expansion of the McKean kernelGZ (s, z)
which plays a key role in the analysis of the Green’s function of the SABR model.

In the right hand side of (103) we substituteu =
√

4sw + d2 :

GZ (s, z) =
e−s/4

√
2

4π3/2
√

s
e−d2/4s

∫ ∞

0

e−w dw√
cosh

√
4sw + d2 − cosh d

.

Expanding the integrand in powers ofs yields

1√
cosh

√
4sw + d2 − cosh d

=

√
d

sinh d
×

(
1√
2sw

− d coth d− 1
4d2

√
2sw + O

(
s3/2

))
.

Integrating term by term overw we find that

GZ (s, z) =
e−s/4

4πs
exp

(
−d2

4s

)
×

√
d

sinh d

(
1− 1

4
d coth d− 1

d2
s + O

(
s2

))
,

and we thus obtain the following asymptotic expansion of the McKean kernel:

GZ (s, z) =
1

4πs
exp

(
−d2

4s

)
×

√
d

sinh d

(
1− 1

4

(
d coth d− 1

d2
+ 1

)
s + O

(
s2

))
,

(104)
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Taking the derivative ofGZ (s, z) with respect ofd (z, Z) in the expansion
above, we find that

∂

∂d
GZ (s, z) =

1
4πs

exp
(
−d2

4s

)
×

√
d

sinh d

(
− d

2s
+

1− d coth d

2d
+ O (s)

)
.

(105)

B.2 Laplace’s method

Next we review the Laplace method (see e.g. [3], [2]) which allows one to evaluate
approximately integrals of the form:

∫ ∞

0
f (u) e−φ(u)/ε du. (106)

We use this method in order to evaluate the marginal probability distribution for
the Green’s function.

In the integral (106),ε is a small parameter, andf (u) andφ (u) are smooth
functions on the interval[0, ∞)5. We also assume thatφ (u) has a unique mini-
mumu0 inside the interval withφ′′ (u0) > 0. The idea is that, asε → 0, the value
of the integral is dominated by the quadratic approximation toφ (u) aroundu0.

More precisely, we have the following asymptotic expansion. Asε → 0,

∫ ∞

0
f (u)e−φ(u)/ε du =

√
2πε

φ′′ (u0)
e−φ(u0)/ε×

{
f (u0) + ε

[
f ′′ (u0)
2φ′′ (u0)

− φ(4) (u0) f (u0)
8φ′′ (u0)

2

−f ′ (u0) φ(3) (u0)
2φ′′ (u0)

2 +
5φ(3) (u0)

2 f (u0)
24φ′′ (u0)

3

]
+ O

(
ε2

)
}

.

(107)

To generate this expansion, we first expandf (u) andφ (u) in Taylor series around
u0 to orders2 and4, respectively (keep in mind that the first order term in the
expansion ofφ (u) is zero). Then, expanding the regular terms in the exponential,
we organize the integrand ase−φ′′(u0)(u−u0)2/2ε times a polynomial inε. In the
limit ε → 0, the integral reduces to calculating moments of the Gaussian measure;
the result is (107). It is straightforward to compute terms of order higher than1 in ε,
even though the calculations become increasingly complex as the order increases.

5It can be an arbitrary interval.



SABR Model of Stochastic Volatility 27

Finally, let us state a slight generalization of (107), which we use below. In the
integral (106), we replacef (u) by f (u) + εg (u). Then, asε → 0,

∫ ∞

0
[f (u) + εg (u)]e−φ(u)/ε du =

√
2πε

φ′′ (u0)
e−φ(u0)/ε×

{
f (u0) + ε

[
g (u0) +

f ′′ (u0)
2φ′′ (u0)

− φ(4) (u0) f (u0)
8φ′′ (u0)

2

−f ′ (u0) φ(3) (u0)
2φ′′ (u0)

2 +
5φ(3) (u0)

2 f (u0)
24φ′′ (u0)

3

]
+ O

(
ε2

)
}

.

(108)

This formula follows immediately form (107).
We shall now apply this formula in order to evaluate the integral (76). We find

easily that the minimumY0 of the function

φ (Y ) =
1
2

δ (z, Z)2

is given by
Y0 = y

√
ζ2 − 2ρζ + 1 ,

where

ζ =
1
y

∫ x

X

du

b (u)
.

Also, we letD (ζ) denote the value ofδ (z, Z) with Y = Y0:

D (ζ) = log

√
ζ2 − 2ρζ + 1 + ζ − ρ

1− ρ
.

and
I (ζ) =

√
ζ2 − 2ρζ + 1 .

Let us now evaluate the various terms on the right hand side of (108). Note that
the second derivativeφ′′ (Y0) of φ (Y ) with respect toY is

φ′′ (Y0) =
D

(1− ρ2) y2I sinhD
,

where we have suppressed the argumentζ in D (ζ) andI (ζ). Likewise,

φ(3) (Y0) = − 3D

(1− ρ2) y3I2 sinhD
,
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and

φ(4) (Y0) =
3 (1−D cothD)

(1− ρ2)2 y4I2 sinh2 D
+

12D
(1− ρ2) y4I3 sinhD

.

Finally, in order to conform with the notation in (108), let us define

f (Y ) =

√
δ

sinh δ

(
1− δ

sinh δ
q

)
,

and

g (Y ) =

√
δ

sinh δ

(
1
8

+
δ coth δ − 1

8δ2
− δ coth δ − 1

2δ sinh δ
q

)
.

Then, after some manipulations we find that

f (Y0) =

√
D

sinhD

(
1 +

yb′ (x) D

2
√

1− ρ2 I

)
,

f ′ (Y0) = −
(

D

sinhD

)3/2 b′ (x) (ζ − ρ)

2 (1− ρ2)3/2 I2
,

f ′′ (Y0) =

√
D

sinhD

1−D cothD

2 (1− ρ2) y2ID sinhD

(
1 +

3yb′ (x) D

2
√

1− ρ2 I

)

+
(

D

sinhD

)3/2 b′ (x) (ζ − ρ)

(1− ρ2)3/2 yI3
,

and

g (Y ) = −1
8

√
D

sinhD

(
1 +

D cothD − 1
D2

(
1 +

2yb′ (x) D√
1− ρ2 I

))
.

Putting everything together we find that

PX (s, x, y) =
1√
2πλ

1
yb (X) I3/2

exp
{
−D2

2λ

} {
1 +

yb′ (x) D

2
√

1− ρ2 I

+λ

[
−1

8
+

7
16

1−D cothD

D

yb′ (x)√
1− ρ2 I

+
3
8

1− ρ2

I

sinhD

D

(
1 +

yb′ (x) D

2
√

1− ρ2 I

)

+
1
4

yb′ (x) (ζ − ρ)√
1− ρ2 I

]
+ O

(
λ2

)
}

,

as stated in Section 5.
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B.3 Normalizing the SABR distribution

In this appendix, we shall relate the normal cumulative distribution function
∫ ∞

x̃
nX (s, x, yn) df =

1√
2πy2

n

∫ ∞

x̃
exp

{
−(x−X)2

2sy2
n

}
dx

=
1
2
erfc

(
x̃−X√

2sy2
n

)
,

(109)

whereerfc (u) denotes the standard complementary error function,

erfc (u) =
2√
π

∫ ∞

u
e−x2

dx ,

to the cumulative distribution function ofPX (s, x, y):
∫ ∞

x̃
PX (s, x, y) dx =

1√
2πλ yb (X)

∫ ∞

x̃

1
I3/2

exp
{
−D2

2λ

}
×

{
1 +

yb′ (x) D

2
√

1− ρ2 I
+ λ

[
−1

8
+

7
16

1−D cothD

D

yb′ (x)√
1− ρ2 I

+
3
8

1− ρ2

I

sinhD

D

(
1 +

yb′ (x) D

2
√

1− ρ2 I

)
+

yb′ (x) (ζ − ρ)

4
√

1− ρ2 I

]}
dx.

We have temporarily placed a tilde over today’s forwardx, in order not to confuse
it with the integration variable. We now substitute a new variable in the integral
above,

h = h (x) = D

(
1
y

∫ x

X

du

b (u)

)
,

and note that the Jacobian has a simple and helpful form:

dh

dx
=

1
yb (x) I

> 0 .

In particular, the functionh = h (x) is invertible, and we can writex = x (h). This
yields

∫ ∞

x̃
PX (s, x, y) dx =

1√
2πλ yb (X)

∫ ∞

h(x̃)
exp

{
−h2

2λ

}
b (x (h))√

i (h)
×

{
1 +

yb′ (x (h))h

2
√

1− ρ2 i (h)
+ λ

[
−1

8
+

7
16

1− h cothh

h

yb′ (x (h))√
1− ρ2 i (h)

+
3
8

1− ρ2

i (h)
sinhh

h

(
1 +

yb′ (x (h))h

2
√

1− ρ2 i (h)

)
+

yb′ (x (h)) j (h)

4
√

1− ρ2 i (h)

]}
dh,
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where

i (h) = I (ζ) = coshh− ρ sinhh ,

j (h) = ζ − ρ = sinhh− ρ coshh .

Inspection of the integral on the right hand side of the equation above shows that
in order to calculate it to withinO(λ2), we need to Taylor expand theO (1) terms
in the integrand out to order2 in h around0, and we replace theO (λ) terms by
their value ath = 0. The result is the equality:
∫ ∞

x̃
PX (s, x, y) dx

=
1√
2πλ

∫ ∞

h(x̃)
exp

{
−h2

2λ

} {
1 +

(
ρ

2
+

yb′ (X)

2
√

1− ρ2
+ b′ (X)

)
h

+

(
−2− 3ρ2

4
+ y2b (X) b′′ (X) + yb′ (X)

(
ρ + yb′ (X)

)
(

1 +
1√

1− ρ2

))
h2

2

+λ

[
2− 3ρ2

8
− ρyb′ (X)

4
√

1− ρ2

]}
dh + . . . .

We now suppress the tilde, and rewrite the last equation in the equivalent form:
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