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Abstract

We study the SABR model of stochastic volatility [8]. This model is essentially an
extension of Dupire’s local volatility model, in which a suitable volatility parameter

is assumed to be stochastic. SABR model allows for a large variety of shapes of
volatility smiles, and it performs remarkably well in the swaptions and caps / floors
markets. We refine the results of [8] by constructing an accurate and efficient
asymptotic form of the probability distribution of forwards. We also discuss the
impact of boundary conditions at zero forward on the volatility smile. Our analysis
is based on a WKB type expansion for the heat kernel of a perturbed Laplace-
Beltrami operator on a suitable Riemannian manifold.
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1 Introduction

The SABR model [8] of stochastic volatility attempts to capture the dynamics of

smile in the interest rate derivatives markets which are dominated by caps / floors
and swaptions. It provides a parsimonious, accurate, intuitive, and easily imple-
mentable framework for pricing, risk management, and relative value in those mar-
kets. The model describes the dynamics of a single forward (swap or LIBOR) rate
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with stochastic volatility. The dynamics of the model is characterized by a func-
tion b (f) of the forward ratef which determines the general shape of the volatility
skew, a parameter which controls the level of the volatility of volatility, and a
parametep which governs the correlation between the changes in the underlying
forward rate and its volatility. It is an extension of Black’s model: choosing 0
andb(f) = f reduces SABR to the lognormal Black model, while= 0 and

b(f) = 1reduces it to the normal Black model.

The main reason why the SABR model has proven effective in the industrial
setting is that, even though it is too complex to allow for a closed form solution, it
has an accurate asymptotic solution. This solution, as well as its implications for
pricing and risk management of interest derivatives, has been described in [8].

In this paper we refine the results presented in [8]. Our way of thinking has
been strongly influenced by the asymptotic techniques which go by the names of
the geometric opticor the WKB methodand, most importantly, by the classical
results of Varadhan [17], [18] (see also [16], [12] for more recent presentations and
refinements). These techniques allow one to relate the short time asymptotics of
the fundamental solution (or tli&reen’s functiopof Kolmogorov's equation to the
differential geometry of the state space. From the probabilistic point of view, the
Green's function represents the transition probability of the diffusion, and it thus
carries all the information about the process.

Specifically, let/ denote the state space ofagimensional diffusion process
with no drift, and letGx (s, z), , X € U, denote the Green’s function. We also
assume that the process is time homogeneous, meaning that the diffusion matrix is
independent of. Then, Varadhan’s theorem states that

d(z, X)?

iliI(l] slogGx (s,x) = — 5

Hered (z, X) is the geodesic distance dhwith respect to a Riemannian metric
which is determined by the coefficients of the Kolmogorov equation. This gives us
the leading order behavior of the Green'’s function. To extract usable asymptotic
information about the transition probability, more accurate analysis is necessary,
but the choice of the Riemannian structurel¢wlictated by Varadhan’s theorem
turns out to be key. Indeed, that Riemannian geometry becomes an important book
keeping tool in carrying out the calculations, rather than merely fancy language.
Technically speaking, we are led to studying the asymptotic properties of the per-
turbed Laplace - Beltrami operator on a Riemannian manifold.

In order to explain the results of this paper we define a universal funtti@):

VT +C—p
1_ b

D(() = log p
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where( is the following combination of today’s forward rafe strike F', and a
volatility parametei (which is calibrated so that the at the money options prices

match the market prices):
C_E /f du
o Jp b(u)’

The functionD (¢) represents a certain metric whose precise meaning is explained
in the body of the paper. The key object from the point of view of option pricing is
the probability distribution of forward®r (7, f). Our main result in this paper is
the explicit asymptotic formula:

exp { =D (¢)? 270} 1
V217 ob (K) (cosh D (¢) — p sinh D (())3/2 (

In order not to burden the notation, we have written down the leading term only;
the complete formula is stated in Section 5. To leading order, the probability distri-
bution of forwards in the SABR model is Gaussian with the meiri@) replacing
the usual distance.

From this probability distribution, we can deduce explicit expressions for im-
plied volatility. The normal volatility is given by:

_wy-p)
"=

while the lognormal volatility is given by:

v log (f/F)
Oln D(C) (1+...).
Precise formulas, including the subleading terms, are stated in Section 5.

We would like to mention that other stochastic volatility models have been
extensively studied in the literature (notably among them the Heston model [11]).
Useful presentations of these models are contained in [4] and [15]. We continue
our approach to volatility modelling in [9].

A comment on our style of exposition in this paper. We chose to present the
arguments in an informal manner. And while we believe that all the results of this
paper could be stated and proved rigorously as theorems, little would be gained
and clarity might easily get lost in the course of doing so.

The paper is organized as follows. In Section 2 we review the model and formu-
late the basic partial differential equation, the backward Kolmogorov equation. We
also introduce the Green'’s and discuss various boundary conditions at zero. Section
3 is devoted to the description of the differential geometry underlying the SABR

PF(va):

1+ ...),
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model. We show that the stochastic dynamics defining the model can be viewed as
a perturbation of the Brownian motion on a deformed Poincare plane. The elliptic
operator in the Kolmogorov equation turns out to be a perturbed Laplace-Beltrami
operator. This differential geometric setup is key to our asymptotic analysis of the
model which is carried through in Section 4. In Section 5 we derive the explicit
formulas for the probability distribution and implied volatility which we have dis-
cussed above. In Appendix A we review the derivation of the fundamental solution
of the heat equation on the Poincare plane. This solution is the starting point of
our perturbation expansion. Finally, Appendix B contains some useful asymptotic
expansions.

2 SABR model

In this section we describe the SABR model of stochastic volatility [8]. It is a two
factor model with the dynamics given by a system of two stochastic differential
equations. The state variables of the model can be thought of as the forward price
of an asset, and a volatility parameter. In order to derive explicit expressions for the
associated probability distribution and the implied volatility, we study the Green’s
function of the backward Kolmogorov operator.

2.1 Underlying process

We consider a European option on a forward asset expifiygars from today.

The forward asset that we have in mind can be for instance a forward LIBOR rate,
a forward swap rate, or the forward yield on a bond. The dynamics of the forward
in the SABR model is given by:

dFt == O'tb (Ft) th, (l)
dO’t = UO'tdZt. (2)

Here F; is the forward rate process, abid andZ; are Brownian motions with
E[dWdZ;] = pdt, 3)

where the correlatiop is assumed constant. Note that we assume that a suitable
numeraire has been chosen so thias a martingale. The processis the stochas-

tic component of the volatility of;, andw is the volatility ofo; (the “volga™) which

is also assumed to be constant. The functi¢fi) is defined forf > 0, and is as-
sumed to be positive, monotone non-decreasing, and smooth. Two examples of
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which are particularly popular among financial practitioners, are functions of the
form:
b(z) =", whered0 < 3 < 1 (4)

(stochastic CEV model), or
b(z) =x+ a, wherea > 0 (5)

(stochastic shifted lognormal model).

The processr, is purely lognormal and thus; > 0 almost surely. Since,
depending on the choice 6fx), the process; can take on positive only or pos-
itive and negative values with non-zero probability, we should carefully study the
boundary behavior of the process (1)-(2), @sapproache®. To this end, we
extend the functiom (x) to all values ofr by setting

b(—x)=-b(z), forz <0. (6)

The so extendedl(x) is an odd functionb (—z) = —b (z), for all values ofr, and
thus the process (1)-(2) is invariant under the refleclipr> — F;. The state space
of the extended process is thus the upper half plane.

Our analysis uses an asymptotic expansion in the paranréferand we thus
require thaw>T" be small. In practice, this is an excellent assumption for medium
and longer dated options. Typical for shorter dated options are significant, discon-
tinuous movements in implied volatility. The SABR model should presumably be
extended to include such jump behavior of short dated options.

A special case of (1)-(2) which will play an important role in our analysis is
the case ob (x) = 1, andp = 0. In this situation, the basic equations of motion
have a particularly simple form:

dFt = O'tth, (7)
dUt = UUtdZt, (8)
with E [dW;dZ;] = 0.

2.2 Green’s function

Green’s functions arise in finance as the prices of Arrow-Debreu securities. We
consider the Arrow-Debreu security whose payoff at timés given by Dirac’s
delta functiond (Fr — F,or — X). The timet < T priceG = Grrx (t, f,0) of

this security is the solution to the following parabolic partial differential equation:

oG , 0%G 82G 282G> 0

—+%a2 (b(f) —— +2upb (f) -

ot af2 afoo " B0 ©)
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with the terminal condition:
GT,F,Z(tafva):5(f_F7U_E)7att:T' (10)

This equation should also be supplemented by a boundary condition at infinity such
that G is financially meaningful. Since the payoff takes place only if the forward
has a predetermined value in a finite amount of time, the value of the Arrow-Debreu
security has to tend to zero &sandX: become large:

GT,F,E (t, f, 0’) — 0, asF, Y — 0. (11)

ThusGr rx (t, f,0) is a Green’s function for (9). Once we have constructed
it, we can price any European option. For example, the grige: (¢, f, o) of a
European call option struck & and expiring at timé&’ can be written in terms of

Grrx (t, f,0) as
Crxc (b, f.0) = / (F = K)* Grops (t, f,0) dFdS, (12)

where, as usual,F' — K)" = max (F — K,0), and where the integration extends
over the upper half plang(F, %) € R? : ¥ > 0}.

Note that the process (1)-(2) is time homogeneous, and@hyss. (¢, f, o) is
a function of the time to expiry = T' — t only. Denoting

GF,Z (Ta fa U) = GT,F,E (tv f,O') 5

and
CK (Tafaa) = CT,K(tvfaa)a
we can reformulate (9)-(10) as the initial value problem:

and
GF,E<vaaa>:5(f_FaU_E)7atT:O' (14)
Introducing the marginal probability distribution
PF (7_7 f?g) = / GF,E (7—7 fv 0) dz? (15)
0
we can express the call price (12) as
Ci(rfoo) = [ (F=K) Pre(rf0)dF, (16)
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This formula has the familiar structure, and the focus of our analysis will be to
derive a useful expression fét- (7, f).

We will solve (13)-(14) and (15) by means of asymptotic techniques. In order
to set up the expansion, it is convenient to introduce the following variables:

s=7/T,z=f X=F, y=o0/v, Y =%X/v,
and the rescaled Green'’s function:
Kxy (s,z,y) = vTGx .y (T's,x,vy).

In terms of these variables, the initial value problem (13)-(14) can be recast as:

OK 1 s °K PK | O’K
s 2° (b () 022 " 20b (@) dzdy * oy? )’ (17)
K0,z,y)=0(x—X,y—-Y),
whereK = Kxy, and
e =v°T. (18)

It will be assumed thatis small and it will serve as the parameter of our expansion.
The heuristic picture behind this idea is that the volatility varies slower than the
forward, and the rates of variability gfando /v are similar. The timg" defines
the time scale of the problem, and thus a natural dimensionless time variable.
Expressed in terms of the new variables, our problem has a natural differential
geometric content which is key to its solution.

Finally, let us write down the equations above for the special caségf= 1,
andp = 0:

0K 1 , (K 0K

R 2 (22 )

os 2 ox?  Oy? (19)
K(O,.’L’,y) = 5(1‘—X,y—Y) .

We will show later that this initial value problem has a closed form solution.

2.3 Boundary conditions atx = 0

The problem as we have formulated it so far is not complete. Since the value of the
forward rate should be positivewe have to specify a boundary condition for the
Green'’s function at = 0. Three commonly used boundary conditions are [7]:

!Recent history shows that this is not always necessarily the case, but we regard such occurances
as anomalous.
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e Dirichlet (or absorbing) boundary conditionWe assume that the Green'’s
function, denoted by()f?yy (s,z,y), vanishes at = 0,

KRy (5,0,y) =0. (20)

e Neumann (or reflecting) boundary conditiowe assume that the derivative
of the Green’s function at = 0, normal to the boundary (and pointing
outward), vanishes. L&t ¥ y- (s, z,y) denote this Green’s function; then

0

55 KXy (5,0,9) = 0. (22)

¢ Robin (or mixed) boundary conditioithe Green'’s function, which we shall
denote byK)ng (s,z,y), satisfies the following condition. Given> 0,

0
(- 2 +0) Ky (0.0 =0, 22)

In this paper we will be concerned with the Dirichlet and Neumann boundary
conditions only. Our task is tremendously simplified by the fact that the differential
operator in (17) is invariant under the reflection— —xz of the upper half plane.

This allows one to construct the desired Green’s functions by means of the method
of images. LetKxy (s,z,y) denote now the solution to (17) which ignores any
boundary condition at = 0. Then, one verifies readily that

K)?,Y (vaay) :KX7Y (Saxay) _KX,Y (37_$ay)a (23)

and
K%,Y (S7x7y) :KX,Y (va’y) +KX,Y (S’*xay) (24)

are the solutions to the Dirichlet and Neumenn problem, respectively.
Observe that the Green'’s functions corresponding to these different boundary
conditions obey the followingonditioning inequalities

KP <K <KV, (25)

Since the Dirichlet boundary condition corresponds to the stochastic process being
killed at the boundary, the total mass of the Green'’s function is less than one:

/K)[(),Y (s,z,y)dedy < 1. (26)

This is sometimes referred to as the Green’s function wite@boundary condition
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The remaining probability is a Dirac’s delta functiorzat= 0. On the other hand,
for the free and Neumann boundary conditions,

/ Kxy (s,2,y) do dy = / Ky (s,2,y) dedy = 1, (27)

and so they arbona fideprobability distributions.

2.4 Solving the initial value problem

It is easy to write down a formal solution to the initial value problem (17). Let
denote the partial differential operator

_ Lo (w2 2 » &
L= 5Y (b () 922 + 2pb (x) 920y + oy (28)

supplemented by a suitable boundary conditioncat 0. Consider the one-
parameter semigroup of operators

U (s) =exp(seL). (29)

ThenU solves the following initial value problem:

oU

— =¢L

s eLU,
U(0)=1,

and thus the Green’s functidiix y (s, z,y) is the integral kernel of/ (s):
Kxy (s,2,y) =U(s) (z,5 X,Y). (30)

In order to solve the problem (17) it is thus sufficient to construct the semigroup
U (s) and find its integral kernel. Keeping in mind that our goal is to find an explicit
formula for Kx y (s, x,y), the strategy will be to represehtas the sum

L=1Ly+V, (31)
whereL is a second order differential operator with the property that
Uy (s) = exp (seLg) (32)

can be represented in closed form. The oper&tdurns out to be a differential
operator of first order, and we will treat it as a small perturbation of the operator
Ly. The semigroufy (s) can now be expressed in termslaf (s) andV as

U(s) =Q(s) Uo (s). (33)
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Here, the operatd® (s) is given by the well known regular perturbation expansion:

Q-1+ Y | et (V) e (V) dsy .. ds,, (34)

1<n<oo Y 05815 ..sn<se
wheread;, is the commutator witlLg:
a“dLo (V) = LoV — VL. (35)

We will use the first few terms in the expansion above in order to construct an
accurate approximation to the Green’s functiog y (s, z,y):

Q(s) = T4V + 3 (s2)? (adey (V) + V) +0 ((s2)°) . (36)

We shall disregard the convergence issues associated with this series, and use it
solely as a tool to generate an asymptotic expansion.

3 Stochastic geometry of the state space

In solving our model we find that the SABR model in the special gase 0,

b(x) = 1 is Brownian motion on the Poincare plane. Generally, whe# 0, or

b(x) # 1, the model amounts to Brownian motion on a two dimensional manifold,
the SABR plangperturbed by a drift term. In this section we summarize a number
of basic facts about the differential geometry of the state space of the SABR model.
The fundamental geometric structure is that of the Poincare plane. We will show
that the state space of the SABR model can be viewed as a suitable deformation of
the Poincare geometry.

3.1 SABR plane

We begin by reviewing the Poincare geometry of the upper half plane which will
serve as the standard state space of our model. For a full (and very readable)
account of the theory the reader is referred to e.g. [1].

ThePoincare plandgalso known as the hyperbolic or Lobachevski plane) is the
upper half planél® = {(z,y) : v > 0} equipped with the Poincare line element

dx? + dy?
ds? = L2V (37)
Yy
This line element comes from the metric tensor given by

1
— 0

h=1| Y 1 . (38)
0

y2
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The Poincare plane admits a large group of symmetries. We introduce complex
coordinates ofl?, = = x + iy (the defining condition then reads:z > 0), and
consider a Moebius transformation

, az+b
= — 39
T ard (39)
wherea, b, ¢, d are real numbers withid — bec = 1. We verify easily the following

two facts.
e Transformation (39) is a biholomorphic maplét onto itself.
e The Poincare metric is invariant under (39).

As a consequence, the Lie group

SL(2,R):{<Z Z); a,b,c,d € R, ad—bc:l} (40)

acts holomorphically and isometrically d@*. This symmetry group plays very
much the same role in the hyperbolic geometry as the Euclidean group in the usual
Euclidean geometry of the plafie.

Let d(z, Z) denotes the geodesic distance between two paints € H?,
z=ux+1y, Z =X + 1Y, i.e. the length of the shortest path connectirand Z.
There is an explicit expression fdr(z, Z):

|z - 2I*

coshd(z,Z2) =1+ Sy

(41)

where|z — Z| denotes the Euclidean distance betweeand Z. In particular, if
x =X, thend (z,2Z) = |log (y/Y)|.
Sincedet (h) = y~4, the invariant volume element d¥ is given by

dup, (z) = +/det (h) dzdy
dxdy (42)
y2
The state space associated with the general SABR model has a somewhat more

complicated geometry. LevI? denote the upper half plangz,y) : y > 0},
equipped with the following metrig:

1 P
1 2 (z)?  y*b(2)
__ | v*b(2) Y
g 12 Cop 1 . (43)
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This metric is a generalization of the Poincare metric: the case ef 0 and
b(x) = 1 reduces to the Poincare metric. In fact, the metigthe pullback of the
Poincare metric under a suitable diffeomorphism. To see this, we chopsé,
and define a map, : M? — H? by

%(z):(ﬁ(/jﬂ)_py), y> (44)

wherez = (z,y). The JacobialV ¢, of ¢, is

_ P
Vo, (2 ( \/ﬁ b(x V1-0? ) ; (45)

1

and sog,h = g, whereg; denotes the pullback af,. The manifoldM? is thus
isometrically diffeomorphic with the Poincare plane. A consequence of this fact is
that we have an explicit formula for the geodesic distangce Z) on M?:

coshd (z,Z) = coshd (¢p, (2), ¢p (Z))

+ du 2
) e ey @
- 21—-p*)yY ’

wherez = (z,y) andZ = (X,Y) are two points oM. In the following, we will
suppress the subscript as the choice of will be clear from the context. Since
det (g) = y~%b (x) 2, the invariant volume element dvi2 is given by

dup, (z Vdet (g) dxdy

dxdy (47)
b(x)y*

It will be convenient to use invariant notation. Let = z, 22 = y, and let
0, = 0/0z", n = 1, 2, denote the corresponding partial derivatives. We denote
the components af ! by ¢#¥, and usg;—! andg to raise and lower the indices:
2y = g’ " = g"o, = 0/0z,, where we sum over the repeated indices.
Explicitly,

ot = 2 (b (2)2 91 + pb () ag) ,
9% =42 (pb (z) 0y + 0s).
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Consequently, the initial value problem (17) can be written in the following geo-
metric form:
0 I
%KZ (s,2) = 558 0Kz (s,2),
Kz(0,2)=6(z—2) .

(48)

3.2 Brownian motion on the SABR plane

It is no coincidence that the SABR model leads to the Poincare geometry. Recall
[12] that the Brownian motion on the Poincare plane is described by the following
system of stochastic differential equations:

dX; = Y, dW,, (49)
dY; = YidZ,, (50)

with the two Wiener processég; andZ; satisfying
E [dWdZy] = 0. (51)

Comparing this with the special case of the SABR model (7)-(8), we see that (7)-(8)
reduces to (49)-(50) once we have made the following identifications:

X = Fv2t7 (52)
1

Yi = = o2, (53)
v

and used the scaling properties of a Wiener process:

dWUQt =0 th,
dZUQt =7 dZt

Note that the system (49)-(50) can easily be solved in closed form: its solution
is given by

t 2
X, = X + Yo/ exp <Zs - 5’2> AW, (54)
0
t2
Y; = Ypexp (Zt - 2) : (55)

Let us now compare the SABR dynamics with that of the diffusion on the
SABR plane. In order to find the dynamics of Brownian motion on the SABR
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plane we use the fact that there is a mapping (namely, (44))J°cihto H?. Using
this mapping and Ito’s lemma yields the following system
AX, = J¥Pb(X0) Y (X0) di -+ Yib (X)W, (56)
dY; = Y,dZ;, (57)
with the two Wiener processég; andZ; satisfying
E [dW,dZ;] = pdt. (58)

Note that this is not exactly the SABR model dynamics. Indeed, one can regard
the SABR model as the perturbation of the Brownian motion on the SABR plane
by the drift term—3 Y;?b (X;) V' (X;) dt.

As in the case of the Poincare plane, it is possible to represent the solution to
the system (56)-(57) explicitly:

X du t 82
Ny [ exp (7= 2 aw, 59
/XO ot p< 2) (59)

t2
Y; = Yyexp <Zt — 2> . (60)

Parenthetically, we note that, within Stratonovich’s calculus, (56)-(57) can be
written as

dX; = Yib(Xy) o AWy,
dY;, = Y, 0 dZ,.

Therefore, the stochastic differential equations of the SABR model, if interpreted
according to Stratonovich, describe the dynamics of Brownian motion on the SABR
plane.

3.3 Laplace-Beltrami operator on the SABR plane

Recall that the Laplace-Beltrami operathy on a Riemannian manifoldA with
metric tensoy is defined by

) of
- __ "/ pyv _—J

where f is a smooth function oM. It is a natural generalization of the familiar
Laplace operator to spaces with non-Euclidean geometry. Its importance for prob-
ability theory comes from the fact that it serves as the infinitesimal generator of
Brownian motion on such spaces (see e.g. [5], [6], [12]).
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In the case of the Poincare plane, the Laplace-Beltrami operator has the form:

0? 0?
A=y = +-=—). 62
As anticipated by our discussion in Section 3.2, this operator is closely related to
the operatot. in the special case @f(x) = 1, p = 0. In fact, in this case,

L= %Ah, (63)

and thus the problem (19) turns out to be the initial value problem the heat equation
onH?:
oKz, 1
=—eApL K
O 5 ERn 7, (64)
Kz(0,2)=6(z—2)

The key fact is that the Green’s function for this equation can be represented in
closed form,

e—sa/8\/§ o0 ue—u2/258

Kl (s, 2) =
2(5:%) (27r35)3/2 Y2 Ja(z,z) \/coshu — coshd (z, Z)

du. (65)

This formula was originally derived by McKean [14] (see also [12] and references
therein). We have added the superscfipgb indicate that this Green’s function
is associated with the Poincare metric. In Appendix A we outline an elementary
derivation of this fact.

Let us now extend the discussion above to the general case. We note first
that, except for the case 6fx) = 1, the operatop*d,, does not coincide with
the Laplace-Beltrami operatak, on M? associated with the metric (43). It is,
however, easy to verify that

1 0 af
u — _ . w2
00uf = Rgf Vdet g 8x”< detg g )8:0“
_ 1 2,50 Of
=A,f — 1_p2ybb 31’
and thus
_1, 1 24/ 0
L_2 973 1_p2ybbax



SABR Model of Stochastic Volatility 17

whereL is essentially the Laplace-Beltrami operator:

Lo = 54y, (66)

andV (z) is lower order:
= —— _ 7
1% Ny yb ()b () p (67)

Let us first focus on the Laplace-Beltrami operalgr. The key property of the
Laplace-Beltrami operator is its invariance under a diffeomorphism. In particular,
this implies that

Ag=¢ 1oAyo, (68)
and, hence, the heat equation
oK 1
E = 5 EAgK.

onM? can be solved in closed form! The Green’s functigf (s, z) of this equa-
tion is related to (65) by

K, (s,2) = det (Vo (2)) K} 7 (5,9 (2)) - (69)
Explicitly,
—56/8 [e'e) —u2/255
K (s,2) = - V2 / e du, (70)
(2mse)®? /1= 02 Y2h(X) Js +/coshu — coshd

wheres = § (2, Z) is the geodesic distance (46) b. This is the explicit repre-
sentation of the integral kernel of the operalfr(s).

4  Asymptotic expansion

In principle, we have now completed our task of solving the initial value problem
(19). Indeed, its solution is given by

Kz (572) :Q(S) K% (S’Z)v (71)

whereQ (s) is the perturbation expansion given by (34). In order to produce clear
results that can readily be used in practice we perform now a perturbation expan-
sion on the expression above. Our method allows one to calculate the Green'’s
function of the model to the desired order of accuracy.
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Let us start with the Green’s functidii’. (s, z) which is defined on the Poincare
plane. In Appendix B we derived an asymptotic expansion (104) for the heat kernel
on the Poincare plane. After rescaling as in (93), we arrive at

1 d?
K& (s,2) = oz &P 5] X

d 1 /fdcothd — 1 9
Smhd<1—8<d2 +1) A+O(/\)>,

where we have introduced a new variable,

A = se. (72)

We can now extend the expression to the general Green'’s furf€tjd, z). Using
(69) or (70) we find thak}, (s, z) has the following asymptotic expansion:

K% (8, Z) =

1 52)
ex —_— X
2mA/1 — p2Y2h (X) P < 2X

o 1 (dcothd —1 9
Sinh6<1_8<52 +1>>\+O(/\ )).

To complete the calculation in the case of genéfal) we need to take into ac-
count the contribution to the Green’s function coming from perturbdtiatefined
in (67). Let us define the function:

q(z,7Z) =sinhd (z, Z) Vi(z,2)
:_2 ybt' (x 3/2 < xbL oy — Y)) (73)

From (104) and (105),
Kz (s,z) =T+ AV)K% (s, 2)

0 74
(Kz(s,z)—l—)\lqhd(%f(z( ))7 (74)

1
V12 Y% (X

which yields the following asymptotic formula for the Green’s function:

Ky (s,2) ! ( ‘52) o
S,2) = ex [ —_—
g 21— 2 Y2 (X) D\ 2x) Vsinns 75)
o 1 dcothé—1 dcothd—1 9
(1_smh<sq_<8+ 862 20sinho q>A+O(A )>'

In a way, this is the central result of this paper. It gives us a precise asymptotic
behavior of the Green'’s function of the SABR modelas: 0.
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5 Volatility smile

We are now ready to complete our analysis. Given the explicit form of the approx-
imate Green'’s function, we can calculate (via another asymptotic expansion) the
marginal probability distribution. Comparing the result with the normal probabil-
ity distribution allows us to find the implied normal and lognormal volatilities, as
functions of the model parameters. We conclude this section by deriving explicit
formulas for the case of the CEV mode{z) = z” and the shifted lognormal
modelb (z) = = + a.

5.1 Marginal transition probability

We first integrate the asymptotic joint density over the terminal volatility variable
Y to find the marginal density for the forwasd

PX (37'7;73/):/ KZ(sz)dY
0
1

o0 dY 752/2/\ 5

= — e -
2101 — p2b(X) Jo  Y? sinh §

| 1) B 1+5coth5—1_5coth5—1 \
sinhe 17 \3 862 25sinho ¢ '

(76)

X

Here the metrid (z, Z) is defined implicitly by (46). We evaluate this integral
asymptotically by using Laplace’s method (steepest descent). This analysis is car-
ried out in Appendix B.2. The key step is to analyze the arguriieot the expo-

nent

6(Y) =5 8(=2), 77)

in order to find the poinky where this function is at a minumum. Let us introduce

the notation:
1 [* du
L
YyJx b(u)

Sinceyb (u) is basically the rescaled volatility at forwatd 1/ represents the
average volatility bewteen today’s forwardand at option’s strikeX. In other
words, ¢ represents how “easy” it is to reach the strike Some algebra shows
that the minimum of (77) occurs & = Y, (¢, y), where

Yo=yv(?—2pC+1. (78)
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Also, let D ({) denote the value of (z, Z) with Y = Y}. Explicitly,

2 _ —
D(¢) = log Y° Q’fjpl te=p (79)

The analysis in Appendix B.2 shows that the probability distributior:fisrGaus-
sian in this minimum distance, at least to leading order. Specifically, it is shown
there that to withirO (\?),

Py ) 1 1 D? L+ yb' (x) D

s,,1y) = exp{ ——— —t
A b (X) 12 TP T 2 23/1—p2 1
1 7 1-—DcothD yb' ()

516 D JI— 21
31— p?sinh D b (x) D
31— p?sin <1+ y (@) )

§ I D 2y/1—p?1
+O()\2)},

+A

(80)

oL yb' (z) (€ —p)

4 \J1-p2I

where

I(¢)=vV¢*—2p¢+1 (81)

=cosh D ({) — p sinh D (¢) .

Let us rewrite this expression in terms of the original variables:

1 1 D2 Ub/(f)D
P = - Y =21
F (T, f,0) \/%Ub(F)IS/QeXp{ 27—1,2}{ +2v 1—p21
17 1—DcothD ob'(f)

sT6 T D ool
LBl-gshD (o (D | b))
8 I D 20y/1—p21 doy/1—p2 1 ‘

+70?

(82)

This is the desired asymptotic form of the marginal probability distribution.

5.2 Implied volatility

As the final step of our analysis, we shall derive, in the spirit of [10] explicit formu-
las for the equivalent normal volatility,, and the equivalent lognormal volatility
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om- TO this order, we compare (82) with the normal distribution function:

2
nF(ﬁfaUn)_\/%TU eXp{—(sz;g)}- (83)

The analysis is straightforward but somewhat tedious, and we defer it to Appendix
B.3. The result of our calculations is the following asymptotic formuladgin
terms of the SABR parameters:

Likewise, comparing (82) with the lognormal distribution function

x (log (v/X))* Ay}
3 2P| Ty~ |
2rAX3y; 2)y; 8

we obtain the asymptotic relationship:

5.3 Impact of boundary conditions at zero forward
5.4 Explicit models

Let us consider the special case of a stochastic CEV mod¢l, = f°, with
0<pB<1.IfpB=1,then

IRV
(= glog yab (84)
ForO0 < 5 <1,
v fB—FB
S — 85
¢=- ) (85)
Consequently,

Another popular model is shifted lognormal model,f) = f + a, where

a > 0. Then
v f+a

-9 86
¢ Sl (86)

and thus

A Heat equation on the Poincare plane

In this appendix we present an elementary derivation of the explicit representation
of the Green’s function for the heat equationléh This explicit formula has been
known for a long time (see e.g. [14]), and we include its construction here in order
to make our calculations self-contained.
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A.1 Lower bound on the Laplace-Beltrami operator

We shall first establish a lower bound on the spectrum of the Laplace-Beltrami
operator on the Poincare plane. tét= L? (H?, du;) denote the Hilbert space of
complex functions o> which are square integrable with respect to the measure
(42). The inner product on this space is thus given by:

— dxdy
@n) = [ FEwE Y.
H2 Y
It is easy to verify that the Laplace-Beltrami operafoy is self-adjoint with re-
spect to this inner product.
Consider now the first order differential operafpion H defined by

(87)

S 0 1 d
Q—Z<yay‘z)+yaz' (88)
Its hermitian adjoint with respect to (87) is
0 1 0
[ A R
and we verify readily that
1 1
it T T — _A, — =
5 (QQ+Q1Q) = —an -7 (90)
This implies that
1 1 1
_ - = T z T z
(@] - 209) = 5 (2QQ@) + 5 (21QTQP) + 7 (2])
1 1 1
— (ot T Z -
= (Qlejele) + 2 (Q2lQe) + ; (2/0)
1
>
> 1 (2/9)

where we have used the fact th{dt|¥) > 0, for all functions¥ € H. As a con-
sequence, we have established that the spectrum of the opetajpis bounded
from below by%! This fact was first proved in [14].

A.2 Construction of the Green’s function

Let us now consider the the following initial value problem:

0
%Gz (s,2) =ApLGz(s,2), (91)

Gz(0,2) =Y?% (2 - 2),
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wherez, Z € H2. In addition, we require that
Gz (s,z) — 0, asd(z,Z)— oo. (92)

Note that, up to the factor df? in front of the delta function and a trivial time
rescaling, this is exactly the initial value problem (64):

Gy (s,2) =Y?Kyz (2s/¢,2). (93)

The Green'’s functiori 7 (s, 2) is also referred to as the heat kefneh H2. The

reason for inserting the factor af? in front of § (z — Z) is that the distribution
Y26 (2 — Z) is invariant under the action (39) of the Lie gro§i (2, R). In fact,

we verify readily that

Y25 (s — 7) = % 5 (coshd (2, Z) — 1).

Now, since the initial value problem (92) is invariant undédr (2, R), its solu-
tion must be invariant and thus a functiondfz, Z) only. Letr = coshd (z, Z),
and writeGz (s, z) = ¢ (s,r). Then the heat equation in (92) takes the form

ﬁ (s 7")—(7'2—1)a—2 (s 7“)—i—27“2 (s,7) (94)
gs ¥ \>" = gr2 P\ grf )

We have established above that the operatdy;, is self-adjoint on the Hilbert
spaceH, and its spectrum is bounded from beIowfxyTherefore, we shall seek
the solution as the Laplace transform

s.7r) = 006_5)\ r
o (5,7) /1/4 L(\r)dA (95)

which yields the following ordinary differential equation:

d? d
1—7r%) —1L —2%r—1L L =0.
(1=7%) 25 L (A7) =20 L (A7) + AL (A7) =0 (96)
We write
A=v(v+1),
where
1. 1
V——§i’l/ )\_Z
_ 1,
=5 w,

31t is the integral kernel of the semigroup of operators generated by the heat equation.
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and recognize in (96) the Legendre equation. Note that, as a consequence of the
inequalityA > 1, wis real andRe v = —1.

In the remainder of this appendix, we will use the well known properties of the
solutions to the Legendre equation, and follow Chapters 7 and 8 of Lebedev’s book
on special functions [13]. The general solution to (96) is a linear combination of the
Legendre functions of the first and second Kingls; />4, (1) andQ_y /o1, (1),
respectively:

1
L <4 +w?, 7”) = AuP 19100 (1) + BuQ 12140 (1) - (97)
As d — 0 (which is equivalent to — 1),
Q_1/2+iw (coshd) ~ const logd, (98)

which would imply thaty (s, cosh d) is singular at = 0, for all values ofs > 0.
Since this is impossible, we conclude tliat = 0. Note that, on the other hand,

P71/2+iw (1) =1, (99)
i.e. P_y /24, (coshd) is non-singular atl = 0.
We will now invoke the Mehler-Fock transformation of a function

Flw) = / T () Peyjpi (1) dr, (100)

0 = [ F@ P et () do. (101

In particular, (99) implies that the Mehler-Fock transformodi- — 1) is 1, and
thus (remember that we need to dividle- — 1) by 7):

A, = x tanh (7w) .
2m

Now, the Legendre function of the first kinkl_, /»,,, (r) has the following
integral representation:

sin (wu)

v/coshu — cosh d

P_1 /24, (coshd) = Q coth (mu)/ du, (202)
d

™

which is valid for all reatv. Therefore

1 1 &0 sin (wu
L<+w2, coshd>:/ (wu) du,
4 V272 Jqs +/coshu — coshd
“Strictly speaking, we will deal with distributions rather than functions. A rigor oriented reader
can easily recast the following calculations into respectable mathematics.
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and we can easily carry out the integration in (95) to obtain
6—8/4\/5 00 ue—u2/4s
Gz(s,2)=—=5
(47rs)3/ d(z,2) \/coshu — coshd (z, Z)
This is McKean'’s closed form representation of the Green'’s function of the heat
eqguation on the Poincare plane [14].

Going back to the original normalization conventions of (64) yields formula
(65).

du.  (103)

B Some asymptotic expansions

In this appendix we collect a number of asymptotic expansions used in this paper.

B.1 Asymptotics of the McKean kernel

We shall establish a short time asymptotic expansion of the McKean k&pn@l, z)

which plays a key role in the analysis of the Green’s function of the SABR model.
In the right hand side of (103) we substitute= \/4sw + d? :

e~5/4\/2 o d?/4s o e " dw

Am3/2\/s 0 \/cosh v4sw + d2 — coshd .

Expanding the integrand in powersoyields

Gz (s,z) =

1 d
V/cosh VAsw + @2 — coshd  V sinhd

1 dcothd — 1 3/2
(m— A \/2sw+0<s ))

Integrating term by term ovev we find that

—s/4 42
&
Gz (s,2) = 1 exp <—43> X

s

X

d 1 dcothd —1 9
sinhd (1_4 d? s+0(s )>’

and we thus obtain the following asymptotic expansion of the McKean kernel:

1 d?
Gz (s,z)= T &P (—4(9) X

d 1 (dcothd —1 9
‘/sinhd<1_4<d2 +1>s+0(s)>,

(104)
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Taking the derivative of7; (s, z) with respect ofd (z, Z) in the expansion
above, we find that

%) 1 d?
% GZ (8 Z) % exp <—43> X

d _£+1_d00thd+0()
sinh d 2s 2d 5

(105)

B.2 Laplace’s method

Next we review the Laplace method (see e.g. [3], [2]) which allows one to evaluate
approximately integrals of the form:

/ f(u w/e du. (106)

We use this method in order to evaluate the marginal probability distribution for
the Green'’s function.

In the integral (106)¢ is a small parameter, anfl(u) and ¢ (u) are smooth
functions on the interval, c0)°. We also assume that(u) has a unique mini-
mumuy inside the interval withy” (ug) > 0. The idea is that, as— 0, the value
of the integral is dominated by the quadratic approximatiof te) aroundu.

More precisely, we have the following asymptotic expansione As 0,

o(w)/e g 2T€  —g(uo)/e
/ flu )
f" (uo) ™ (uo) f (uo)
{f(uo)+e T Ry (107)

[ (u0) ¢ (up) n 56 (uo)® f (uo)
2¢" (uo)” 240" (up)”

+O(e2)}.

To generate this expansion, we first expgra) and¢ (u) in Taylor series around

ug to orders2 and4, respectively (keep in mind that the first order term in the
expansion ofp (u) is zero). Then, expanding the regular terms in the exponential,
we organize the integrand as¢” (u0)(u=u0)*/2¢ times a polynomial ire. In the

limit e — 0, the integral reduces to calculating moments of the Gaussian measure;
the resultis (107). Itis straightforward to compute terms of order higheritirag

even though the calculations become increasingly complex as the order increases.

5It can be an arbitrary interval.
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Finally, let us state a slight generalization of (107), which we use below. In the
integral (106), we replacg (u) by f (u) + €g (u). Then, ag — 0,

= —b)/e gy — | _2T€  —b(uo)/e
/0 [f (u) + €g (u)]e du 7 (o) e X

f" (o) 6™ (uo) f (uo)

{f (uo) + € | g (uo) + 20" (ug) 8¢ (UO)Z
[ (u0) 9P (ug) | 56 (ug)? f (uo) 2 }
20" (ug)? " 24¢"" (ug)® FOE)
(108)

This formula follows immediately form (107).
We shall now apply this formula in order to evaluate the integral (76). We find
easily that the minimunyy of the function

DY) =5 0(2,2)?

is given by

Yo=yvV(—2p(+1,

c=1 / " du
yJx b(u)
Also, we letD (¢) denote the value of (z, Z) with Y = Yj:

JETIETT ¢
1—p .

where

D () = log

and
I(Q)=+v¢*—2pC+1.

Let us now evaluate the various terms on the right hand side of (108). Note that
the second derivative” (Yy) of ¢ (Y') with respect tdV” is

D

//
Vo) —
¢ (Yo) (1—p?)y2Isinh D’

where we have suppressed the argungentD (¢) andI (¢). Likewise,

3D

®3) - _
¢ (Yo) (1—p?)y3I%?sinh D’
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and
3 (1 — Dcoth D) 12D

) (v,) =
¢ ( 0) (1 _ /32)2 y4I2 sinh? D + (1 _ p2) y413 sinh D °
Finally, in order to conform with the notation in (108), let us define

o 5
JY) = sinh & (1 ~ sinho q) ’

) (1 dcothd — 1 6coth5—1>

Y) = - _ _
9V) =\ Gms \st s 95 sinh 0

Then, after some manipulations we find that

B D yb' (z) D
T =V D (HW> ,

, D\ ¥ (2)(C—p)
f(¥o)=— <SinhD> 2(1— p2)3/212 ’

/| D 1 —DcothD 3yb (x) D
1 Y — 1 A St
(%) sinh D 2 (1 — p?) y2ID sinh D < +2 1—p21

D \Y* V(@) (C—p)
* (sinhD) (1— p2)3/2 yI3’

1 D DcothD —1 2yb (x) D
Y)=—2 4/ e T L 2t I
9(¥) =3 s,inhD<+ D? (* 1

Putting everything together we find that

and

and

Px (s,z,y) ! ! e D 1+ y (@) D

= X _— A —
XTI = b (X) 132 TP 2 2/1—p2 1
1 7 1—DcothD yb' ()

57 16 D Vi-p2 1

%1—p2sinhD <1+ yb' (z) D )
2

+A

" yb' (z) (C = p)
4 \1-p21

as stated in Section 5.

+O(>\2)},
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B.3 Normalizing the SABR distribution

In this appendix, we shall relate the normal cumulative distribution function

o 1 o (2 — X)?
/ nx (8,2, yn) df = / exp { dx
% V2my2 Jz 2sy32
Y (109)
Lo (2=X
= —er 5
2 V252

whereerfc (u) denotes the standard complementary error function,

2 oo 2
erfc (u) = — e “dr,
7

to the cumulative distribution function d®x (s, x,y):

o] 1 © 1 D2
Px (s,x,y)dx = / ex {—}x
/5; X my)dr= e X . PR P o
b D 1 7 1—DcothD v
g @b LT < LAC)
21 —p21 8 16 D 1= p2 1
1 — p?sinh D / D / —
431-p7sin L (z) L @) €C=n |1 4.
8 I D 2\/1—p21 4y/1—p2 1
We have temporarily placed a tilde over today’s forwardh order not to confuse
it with the integration variable. We now substitute a new variable in the integral

above, L
n=nta=p (5 [ 555).

and note that the Jacobian has a simple and helpful form:
dh 1
dz yb(z) 1
In particular, the functiod = h () is invertible, and we can write = = (h). This
yields

>0.

o0 B 1 o B2\ b(z(h)
/a PX(S’x’y)dx\/ﬁyb(X)/hmeXp{ QA} i)
{Hyy(x(h))h A[ 1 7 1-hcothh ybf (z(h))
2

1-p2i(h) 37 16 h V1—p2i(h)
31— p?sinhh <1+ be/ (x () h ) A (h))j((h)” o,

T8Ik 1—p2i(h) ) 41— p2i(h)
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where

i(h) =1({)=coshh — psinhh,
j(h)=(—p=sinhh — pcoshh.

Inspection of the integral on the right hand side of the equation above shows that
in order to calculate it to withi®(\?), we need to Taylor expand thi@ (1) terms

in the integrand out to ordeéin i around0, and we replace th® (\) terms by

their value ath = 0. The result is the equality:

/f)o Px (s,z,y) dx

1 NG P, (X

= o h(%)exp{ 2)\}{1+<2+2 %1_p2+b(X)>h
2—3P2 2 11 / / 1 h?

+<— 1 +y°b(X)b" (X) +yb (X)(p+yb (X)) <1+2>>

I—p
_ 2 /
+/\[2 3p —pyb<X>”dh+....

8 4,/1 = p2

We now suppress the tilde, and rewrite the last equation in the equivalent form:
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