
VT1,T2
t + dt – VT1,T2

t        . Let us buy (T2 – t)/(T2 – T1)e
r(T2 – t) VS of maturity T2 and sell

(T1 – t)/(T2 – T1)e
r(T1 – t) VS of maturity T1. This is done at no cost; our prof-

it and loss at time t ′ = t + dt is:

This position generates a profit and loss linear in VT1,T2
t + dt – VT1,T2

t       at low-
est order in dt, at zero initial cost. Thus the pricing drift of any forward FV
VT1,T2

t       is zero.2

We now specify a dynamics for the VS curve. Let us introduce 
ξT

t = Vt
T, T, the value of the variance for date T, observed at time t.

■■ A one-factor model. We are free to specify any dynamics on the ξT(t)
that complies with the requirement that ξT(t) be drift-less. However, for
practical pricing purposes, we would like to drive the dynamics of all of
the ξT(t) with a small number of factors. Here, we show how this can be
done by carefully choosing the volatility function of ξT(t).

Let us assume ξT(t) is lognormally distributed and that its volatility is a
function of T – t so that the model is translationally invariant through time:

where Ut is a Brownian motion. Let us choose the form ω(τ) = ωe–k1τ.
ξT(t) can be written as:

(1)

where Xt is an Ornstein-Ühlenbeck process:

whose dynamics reads:

ξT(t) is drift-less by construction. Knowing Xt, we can generate Xt + δ
through:

where xδ is a centred Gaussian random variable such that E[x2
δ] = (1 –

e–2k1δ)/(2k1).
Starting from known values for Xt and E[X2

t] at time t we can generate
the FV curve ξT(t + δ) at time t + δ by using the following relationship:
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Acommon feature of the recent breed of exotic options such as
Napoleons and reverse cliquets is that their price depends on as-
sumptions made for the joint dynamics of the underlying and its im-

plied volatilities. These fall into three categories:
■■ The dynamics of implied volatilities, and more specifically the term struc-
ture of the volatility of volatility.
■■ The forward skew.
■■ The spot/volatility correlation.

In a previous article (Bergomi, 2004), we analysed popular stochastic
volatility and jump/Lévy models and pointed out that, although these
models produce prices that include an estimation of the three effects list-
ed above, they impose structural constraints on how these features of the
joint dynamics of the spot and implied volatilities are related. Another of
their drawbacks is that they are based on a specification of the spot
process and they fail to take into account the fact that variance swaps
(VSs) should be considered as hedge instruments too, and be endowed
with their own dynamics.

This article is a natural continuation of our first one: here, we propose
a model that aims at pricing both standard exotic options and general op-
tions on variance in a consistent manner, and lets us independently set
requirements for:
■■ The dynamics of VS volatilities.
■■ The level of short-term forward skew.
■■ The correlation between the underlying and short and long VS volatilities.

The article is organised as follows. First, we set up a general framework
for the dynamics of forward variance swap variances (FVs). Then we spec-
ify a dynamics for the underlying that is consistent with that of variances.
In the next section, we specify a particular choice for the dynamics of for-
ward variances and the underlying. We then focus on practical features of
the model, such as the term structure of the volatility of volatility and the
term structure of the skew. Then a section focuses on pricing examples:
we consider a reverse cliquet, a Napoleon, an accumulator and a call on
variance. The concluding section summarises our work.

Modelling variances
A VS pays at maturity Vh

tT – VT
t, where Vh

tT is the annualised variance of the
spot, realised over the interval [t, T] and VT

t is the implied VS variance, ob-
served at time t for maturity T. Because VSs are statically replicable by
vanilla options, VT

t depends only on the implied volatilities seen at time t
for maturity T.1 Because of the definition of VT

t , the VS contract has zero
value at inception.

Now consider the FV VT1,T2
t       defined as:

where T1, T2 > t.
To write a pricing equation for an option on VT1,T2

t       we first need to
know the cost of entering a trade whose payout at time t + dt is linear in

V
T t V T t V

T Tt
T T t

T
t
T

1 2

2 1
2 1

2 1
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Smile dynamics II
In an article published in Risk in September 2004, Lorenzo Bergomi highlighted how traditional
stochastic volatility and jump/Lévy models impose structural constraints on the relationship
between the forward skew, the spot/volatility correlation and the term structure of the volatility
of volatility. Here, he proposes a model that enables them to be controlled separately and also
prices options on realised variance consistently. He presents pricing examples for a reverse
cliquet, a Napoleon, an accumulator and an option on variance

1 As well as on how dividends are modelled and assumptions on interest rate volatility
2 The drift-less nature of forward VS variances had been noticed before (see Dupire, 1996)



and expression (1).
Thus, by choosing an exponentially decaying form for ω(τ) the model

becomes Markovian: all ξT(t) are functions of just one Gaussian factor Xt.
■■ A two-factor model. To achieve greater flexibility in the range of term
structures of volatilities of volatilities that can be generated, we prefer to
work with two factors. We then write:

where Wt is a Brownian motion. Its correlation with Ut is ρ. We can run
through the same derivation as above. ξT(t) now reads:

(2)

As in the one-factor case, if Xt, Yt, E[X 2
t], E[Y 2

t ] and E[XtYt] are known
at time t, they can be generated at time t + δ through the following 
relationships:

and:

where, in the right-hand terms, the second component is, respectively, the
variance of xδ, the variance of yδ and the covariance of xδ and yδ. Starting
from time t = 0 we can easily generate a FV curve at any future time t by
simulating two Gaussian factors. We choose k1 > k2 and call Xt the short
factor and Yt the long factor.
■■ A discrete structure. Instead of modelling the set of all instantaneous
forward variances, it may be useful to set up a tenor structure and model
the dynamics of forward variances for discrete time intervals, in a way that
is analogous to Libor market models.

In the fixed-income world, this is motivated by the fact that forward
Libor rates are the actual underliers over which options are written. In our
case, it is motivated by the fact that we want to control the skew for a
given time scale.

Let us define a set of equally spaced dates Ti = t0 + i∆, starting from t0,
today’s date. We will model the dynamics of FVs defined over intervals of
width ∆: define ξi(t) = V t0

t  
+ i∆, t0 + (i + 1)∆ for t ≤ t0 + i∆. ξi(t) is the value at

time t of the FV for the interval [t0 + i∆, t0 + (i +1)∆].
ξi(t) is a random process until t = t0 + i∆.When t reaches t0 + i∆, the VS

variance for time interval [t, t + ∆] is known and is equal to ξi(t = t0 + i∆).
We model the ξi in the same way as their continuous counterparts:

(3)
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where we use the same recursions as above for Xt, Yt, E[X2
t], E[Y2

t] and
E[XtYt].

While this set-up for the dynamics of the ξi is reminiscent of the Libor
market models used in fixed income, there are as yet no market quotes
for prices of caps/floors and swaptions on forward variances, on which to
calibrate volatilities and correlations for the ξi.
■■ An N-factor model. We may generally write:

where ωi and ρ(Zi, Zj) are chosen at will. Later in this article, we will com-
pare pricing results obtained in the two-factor model with those obtained
in an N-factor model for which ωi = ω, a constant, and the correlation struc-
ture of the Zi is:

(4)

where θ, ρ0, β ∈ [0, 1].
It should be noted that, when pricing an option of maturity T, in con-

trast with the two-factor model, the number of factors driving the dynam-
ics of variances in the N-factor model is proportional to T, thus the pricing
time will grow like T2.

Specifying a joint dynamics for the spot
■■ A continuous setting. We could use the dynamics of instantaneous for-
ward variances specified in equation (2) and write the following lognor-
mal dynamics on the underlying:

with correlations ρSX and ρSY between Z and, respectively U and W. This
yields a stochastic volatility model whose differences with standard mod-
els are:
■■ It has two factors.
■■ It is calibrated by construction to the term structure of VS volatilities.

In such a model, the level of forward skew is determined by ρSX, ρSY ,
ρ, ω, k1, k2 and θ with no way of controlling it separately, just like in stan-
dard stochastic volatility models.
■■ A discrete setting. Here we achieve our objective of controlling the
forward skew – or, in other words, the skewness of the spot process for
time scale ∆ – by using the discrete tenor structure defined above and the
dynamics of forward variances given by expression (3).

At time t = Ti the VS volatility σ̂VS for maturity Ti + ∆ is known. It is
given by:

To be able to specify the spot process over the interval [Ti, Ti + ∆], we
make two more assumptions:
■■ that the spot process over the time interval [Ti, Ti + ∆] is homogeneous:
the distribution of STi + ∆/STi

does not depend on STi
. The reason for this

requirement is that we want to decouple the short forward skew and the
spot/volatility correlation. Imposing this condition makes the skew of ma-
turity ∆ independent on the spot level. Thus the prices of cliquets with pe-
riod ∆ will not depend on the level of spot/volatility correlation.
■■ that the at-the-money-forward (ATMF) skew (dσ̂K/d ln K)|F for maturity
Ti + ∆ be a deterministic function of σ̂VS or σ̂ATMF. In this article, we im-
pose that it is constant or proportional to σ̂ATMF. Other specifications for
the dependence of the ATMF skew on σ̂VS or σ̂ATMF are easily accommo-
dated in our framework.

There are many processes available for fulfilling these objectives – note
that we also need to correlate the spot process with that of forward vari-
ances ξi for j > i. We could use a Lévy process, especially one that has an
expression in terms of a subordinated Brownian motion.3 Here we decide
to use a constant elasticity of variance (CEV) form of local volatility. Over

σ ξ�
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3 For example, the variance gamma and normal inverse Gaussian processes



the five-year volatility. Figure 1 displays the term structure of the volatili-
ties of VS volatilities generated by the two-factor model with a flat initial
VS term structure at 20% volatility using these parameter values. We graph:

for a range of values of τ from one month to five years. We have picked
∆t = 1 month. The value of ω is chosen so that, over the interval of ∆t = 1
month, the volatility of the one-month VS volatility is 120%.

We also display the term structure generated by the N-factor model
using the following parameters:

These values are chosen so that, for ∆t = 1 month, the term structure of
the two-factor model is matched. Now let us measure volatilities over a
time interval of one year, instead of one month (see figure 2).

They are very different. Although both models would yield similar prices
for options on VS variances observed one month from now, they would
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the interval [Ti, Ti + ∆] the dynamics of St reads:

(5)

where σ0(σ̂VS), β(σ̂VS) are functions of σ̂VS = √ξi
__

(Ti)
___

calibrated so that the
VS volatility of maturity Ti + ∆ is σ̂VS and the condition on the ATMF skew
is fulfilled. rt and qt are, respectively, the interest rate and the repo, inclu-
sive of dividend yield. Note that instead of – or in addition to – control-
ling the skew we could have controlled the convexity of the smile near
the money. This would be relevant in the forex or fixed-income world. In
this article, we restrict our attention to the skew.

This completely specifies our model and the pricing algorithm. We can
write the corresponding pricing equation as:

where i0(t) is such that t ∈ [Ti0
, Ti0

+ ∆[, ωi is the volatility of the ξi and ρij
is their correlations.

In the N-factor model, ωi = ω and ρij = ρ(Zi, Zj). In the two-factor model,
the dynamics of the ξi is driven by the processes X and Y. The pricing
equation can then be written more economically as:

where ρSX and ρSY are, respectively, the correlation between Brownian mo-
tions Ut and Zt and the correlation between Wt and Zt. σ(···, S) is a short-
hand notation for:

Pricing
We now turn to using the model for pricing, focusing on the two-factor
model. In what follows, we choose as time scale ∆ = 1 month. By con-
struction, the model is calibrated at time t0 to the FV curve for all maturi-
ties t0 + i∆. We specify, in this order:
■■ values for k1, k2, ω, ρ, θ
■■ a value for the ATMF skew
■■ values for ρSX and ρSY.

These steps are discussed in the next three sections.
■■ Setting a dynamics for implied VS volatilities. Our aim is to price
options whose price is a very non-linear function of volatility; as we roll
towards the option’s maturity, the maturity of the volatilities we are sensi-
tive to shrinks as well. We thus need to be able to control the term struc-
ture of the volatilities of volatilities, be they ATMF or VS volatilities. In our
framework, it is more natural to work with VS volatilities. In our model,
the dynamics of VS volatilities is controlled by k1, k2, ω, ρ and θ. As there
is currently no active market for options on forward ATM or VS volatility,
these parameters cannot be calibrated on market prices. Thus their values
have to be chosen so that the level and term structure of volatility of volatil-
ity are reasonably conservative when compared with historically observed
volatilities of implied volatilities.4

Here we choose the following values:

(6)

so that the volatility of volatility for a one-month horizon is about 120%
for the one-month VS volatility, 45% for the one-year volatility and 25% for
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4 Dealers trading Napoleons and reverse cliquets typically accumulate a negative gamma
position on volatility. Ideally, bid and offer term structures of volatility of volatility will be
used for pricing
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price differently options on VS variances observed in one year. In the two-
factor model, volatilities of volatility will tend to decrease as the time scale
over which they are measured increases, due to the mean-reverting nature
of the driving processes. In the N-factor model, by contrast, they increase:
this is due to the fact that forward variances are lognormal. The term struc-
ture would be unchanged if forward variances were normal.
■■ Setting the short forward skew. We calibrate the dependence of σ0
and β to σ̂VS, so that the one-month ATMF skew has a constant value –
say, 5%. We use the 95–105% skew:

instead of the local derivative (dσ̂K)/(d ln K). This defines the functions
σ0(σ̂VS) and β(σ̂VS). This calibration is easily done numerically; we can also
use analytical approximations.5

If needed, individual calibration of σ0(σ̂VS) and β(σ̂VS) can be performed
for each interval [Ti, Ti + ∆]. Typically the same calibration will be used
for all intervals except the first one, for which a specific calibration is per-
formed so as to match the short vanilla skew. Here we use the same cal-
ibration for all intervals. Figure 3 shows functions σ0(σ̂VS) and β(σ̂VS) for
the case of a constant 95–105% skew equal to 5%.

The level of 95–105% skew can either be selected by the trader or cho-
sen so that the market prices of call spread cliquets of period ∆ (here one
month) are matched.
■■ Setting correlations between the spot and short/long factors – the
term skew. ρSX and ρSY cannot be chosen independently, since X and Y
have correlation ρ. We use the following parametrisation:

with χ ∈ [–1, 1]. ρSX and ρSY control both the correlation between spot
and short and long VS volatilities, and the term structure of the skew of
vanilla options. They can be chosen, calibrated to the market prices of call
spread cliquets of a period larger than ∆, or calibrated to the vanilla skew
for the maturity of the option considered. The dependence of the term
skew on ρSX and ρSY is made explicit in the following section.

In the N-factor model, we need to specify correlations between the spot
process and all forward variances, in a manner that is consistent with cor-
relations of variances, a non-trivial task that we leave outside the scope of
this article.
■■ The term skew. To shed light on how our model generates skew, we
derive an approximate expression for the ATMF skew as a function of ma-

ρ ρ ρ χ ρ ρSY SX SX= + − −1 12 2

σ σ
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1

10
% %

ln
− ≅ −

d

d K
K

F

turity, for the case of a flat term structure of VS volatilities, at order one in
both ω and the skew (dσ̂K/d ln K)|F at time scale ∆, which we denote
Skew∆. Given the skewness ST of the distribution of ln (ST/FT), the ATMF
skew is given at first order in ST by (Backus et al, 1997):

(7)

where FT is the forward for maturity T.
Consider a maturity T = N∆ and let us calculate the second and third

moments of ln (ST /FT) = ΣN
i = 1ri where returns ri are defined as:

While returns are not independent, they are uncorrelated. Thus, assuming
that ∆ is small, so that the drift term in E[ri] is negligible with respect to
the random term:

Let us work at the lowest order in ∆. To derive an expression of the
third moment at order one in ω and S∆, we can use the following ap-
proximations:

Let us denote as ξ the constant value of the VS volatilities at time zero.
We get, at order one in ω:

where ζ(x, N) is defined by:

Since we have set the short skew to a value that is independent on
the level of variance, expression (7) shows that the skewness of ri is
constant. Thus:

where S∆ is the skewness at time scale ∆. We then get:
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the implied volatility of the three-year one-month ATM cliquet is 20%.
The values for ρSX and ρSY are ρSX = –70%, ρSY = –35.7% (χ = –50%).

At order zero in S∆ and ω:

hence the following expression for ST = MT
3/(M

T
2)

3
2:

Using equation (7) again, we finally get the expression of SkewN∆ at
order one in Skew∆ and ω:

(8)

This expression is instructive as it makes apparent how much of the
skew of maturity T is contributed on the one hand by the intrinsic skew-
ness of the spot process at time scale ∆ and on the other hand by the
spot/volatility correlation.

When ω = 0, the skew decays as 1/T, as expected for a process of in-
dependent increments. The fact that volatility is stochastic and correlated
with the spot alters this behaviour. Inspection of the definition of function
ζ in equation (8) shows that for N∆ >> 1/k1, 1/k2, ζ(x, N) ∝ 1/N, so that
SkewN∆ ∝ 1/N, again what we would expect.

Equation (8) also shows how ρSX and ρSY can naturally be used to con-
trol the term structure of the skew.

Figure 4 shows how the approximate skew in equation (8) compares
with the actual skew. We have chosen the following values: ∆ =1 month,
the one-month 95%/105% skew is 5%, ω = 2.827, ρ = 0, θ = 30%, k1 = 6,
and k2 = 0.25. The spot/volatility correlations are: ρSX = –70%, ρSY = –35.7%
(χ = –50%). Even though ω and Skew∆ are both large, the agreement is
very satisfactory.

The two contributions to SkewN∆ in equation (8) are illustrated in figure
5. ‘Intrinsic’ denotes the first piece and ‘spot/vol correlation’ denotes the sec-
ond piece in equation (8). While the contribution of Skew∆ to SkewN∆ is mo-
notonically decreasing, the contribution of the spot/volatility correlation is
not, as it starts from zero at short time scales. Depending on the relative mag-
nitude of both terms, the term structure of the skew can be non-monotonic.

We have derived expression (8) for the case of a flat VS term structure
but the general case poses no particular difficulty.

Pricing examples
Here, we use our model to price a reverse cliquet, a Napoleon, an accu-
mulator and a call on realised variance, and analyse the relative contribu-
tion of forward skew, volatility-of-volatility and spot/volatility correlation
effects to prices. We use zero interest rates and dividend yield.

For the sake of comparing prices, we need to specify how we calibrate
model parameters. While it is natural to calibrate to the vanilla smile when
pricing options that can be reasonably hedged with a static position in
vanilla options, it is more natural to calibrate to call spread cliquets and
ATM cliquets when pricing Napoleons and reverse cliquets, which have a
high sensitivity to forward volatility and skew.

These products are also very sensitive to volatility of volatility. They are
usually designed so that their price at inception is small but increases sig-
nificantly if implied volatility decreases.6 As there is as yet no active mar-
ket for options on variance, we use the volatility-of-volatility parameter
values listed in (6).

Unless forward skew is turned off, the constant 95–105% one-month
skew is calibrated so that the price of a three-year 95–105% one-month
call spread cliquet has a constant value, equal to its price when volatility
of volatility is turned off and the one-month 95–105% skew is 5%, which
is equal to 191.6%.

In all cases the level of the flat VS volatility has been calibrated so that
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A. Model prices

Model Reverse cliquet Napoleon Accumulator
Black-Scholes 0.25% 2.10% 1.90%
With forward skew 0.56% 2.13% 4.32%
With volatility of volatility 2.92% 4.71% 1.90%
Full 3.81% 4.45% 5.06%
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5. The two contributions to the 95–105% skew
in equation (8)

6 See figure 1 in Bergomi (2004)

B. Model prices

Model Reverse cliquet Napoleon Accumulator
Full – correlations halved 3.10% 4.01% 5.04%
Full – proportional skew 3.05% 4.30% 4.15%



The corresponding term skew is that of figure 4.
In addition to the Black-Scholes price, we calculate three other prices

by switching on either the one-month forward skew (σ̂95% – σ̂105% ≠ 0, ω
= 0) or the volatility of volatility (σ̂95% – σ̂105% = 0, ω ≠ 0) or both (full).
These prices are listed in table A. We give the definition of each product
and comment on pricing results in the following paragraphs.
■■ Reverse cliquet. Here we consider a globally floored locally capped
cliquet, which pays once at maturity:

The maturity is three years, returns ri are observed on a monthly basis
(N = 36), r –

i = min(ri, 0) and the value of the coupon is C = 50%.
Notice that corrections to the Black-Scholes price are by no means

small, the contribution of volatility of volatility being the largest. The
fact that volatility of volatility makes the reverse cliquet more expensive
is expected: this option, as well as the Napoleon, is in essence a put on

max ,0
1

C ri
i

N

+






−

=
∑

volatility (Bergomi, 2004).
To understand why forward skew increases the price, consider first that,

in the four cases listed above, E[ΣN
i = 1 r–

i ] is constant, by calibration on the
ATM cliquet. Next consider the last period of the reverse cliquet. The final
payout is a function of the final return; it is a call spread whose low and
high strikes are, respectively, –C + Σi < N r–

i – if it is negative – and zero.
When forward skew is turned on, the implied volatility of the ATM strike
is unchanged, by calibration, while the implied volatility for lower strikes
increases, making the call spread more expensive. The same argument
holds for returns prior to the last one.
■■ Napoleon. The maturity is still three years and the option pays at the
end of each year a coupon given by:

where ri are the 12 monthly returns observed each year. Here we use
C = 8%. 

Again, we notice that volatility of volatility accounts for most of the
price. Forward skew seems to have no sizeable impact, though this is not
generic; its magnitude and sign depend on the coupon size. While the pay-
out is still a call spread as a function of the final return, both strikes lie
below the money. Also, in contrast to the case of the reverse cliquet, 
E[min

i   ri] is not constant in the four cases considered.
■■ Accumulator. The maturity is again three years with one final payout,
given as a function of the 36 monthly returns ri by:

where floor = –1% and cap = 1% – a standard product.
The largest contribution comes from forward skew. Notice that switch-

ing on the volatility of volatility in the case when there is no forward
skew has no material impact on the price while it does when forward
skew is switched on. To understand this, observe that, in Black-Scholes,
when both strikes are priced with the same volatility, a 99–101% one-
month call spread has negligible vega. However, when the call spread
is priced with a downward sloping skew, it acquires positive convexity
with respect to volatility shifts.
■■ Effect of spot/volatility correlation – decoupling of the short
forward skew. In standard stochastic volatility models, changing the
spot/volatility correlation changes the forward skew and thus the price
of cliquets. In this model, because of the specification chosen for the
spot dynamics in equation (5), changing the spot/volatility correlation
does not change the value of one-month cliquets. It only alters the 
term skew.

Prices quoted above have been calculated using ρSX = –70% and ρSY =
–35.7%. Figure 4 shows that, with these values the three-year 95–105%
skew is 1.25%.

Let us now halve the spot/volatility correlation: ρSX = –35% and ρSY
= –18% (χ = –19.2%). The three-year 95–105% skew is now 0.75% – al-
most halved. The implied volatility of the three-year cliquet of one-month
ATM calls remains 20% and the price of a 95–105% one-month call spread
cliquet is unchanged, at 191.6%. The new prices appear on the first line
of table B. The difference with prices on the fourth line of table A mea-
sures the impact of the term skew, all else – in particular cliquet prices
– being kept constant. The fact that prices decrease when the spot/volatil-
ity correlation is less negative is in line with the shape of the Black-Sc-
holes vega as a function of the spot value.7

■■ Making other assumptions on the short skew. Here, we want to
highlight how a different model for the short skew alters prices, using the
three payout examples studied above. We now calibrate functions σ0(σ̂VS)
and β(σ̂VS) so that, instead of being constant, the 95–105% skew for ma-
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volatilities of forward variances in the N-factor model are larger than in
the two-factor model.

Finally, in addition to the effects discussed above, prices of calls on
variance have to be adjusted to take into account bid/offer spreads on the
VS hedge. These can be approximately included by shifting the level of
volatility of volatility (Leland, 1985).

Conclusion
We have proposed a new model that, in contrast to popular stochastic
volatility and jump/Lévy models, gives us the flexibility to independently
control:
■■ The term structure of the volatility of volatility.
■■ The short-term skew.
■■ The correlation of spot and volatilities.

This model consistently prices general exotic options and options on
variance or volatility. We achieve this by choosing a time scale ∆, specify-
ing how the forward skew for maturity ∆ depends on the level of volatil-
ity, and modelling the dynamics of VS variances. The model can be
simultaneously calibrated on the short vanilla skew, the long vanilla skew,
an ATM cliquet and a call spread cliquet of period ∆, while letting us spec-
ify freely the dynamics of forward variances as well as how the short for-
ward skew depends on volatility.

By directly controlling the short forward skew we are able to adjust
the amount of skewness of the distribution of ln(ST) generated on the
one hand by the intrinsic skewness of the process at short time scales,
and the spot/volatility correlation on the other hand. Handling this issue
appropriately is, in our view, an essential task in the design of models
that accurately capture the three effects mentioned above.

Even though the choice of the time scale ∆ is natural for many pay-
outs – for example, Napoleons and reverse cliquets – it is more arbitrary
for other options, for example, options on variance. It would be useful
to have scaling relationships relating parameter sets for different values
of ∆ so that some model features remain unchanged, for example, the
skew of vanillas or the implied forward skew of cliquets. This is left for
future work.

As of today there are no market prices for caps/floors/swaptions on
forward variances. Choosing a value for the parameters governing the
dynamics of forward variances is thus a trading decision. It is the hope
of the author that the liquidity of options on volatility and variance in-
creases so that we will soon be able to trade the smile of the volatility
of volatility! ■

Lorenzo Bergomi is head of quantitative research in the equity
derivatives department at Société Générale. He wishes to thank
members of his team for helpful suggestions. Email:
lorenzo.bergomi@sgcib.com

turity ∆ is proportional to the ATMF volatility for maturity ∆.
We have calibrated the proportionality coefficient so that the three-

year cliquet of one-month 95–105% call spreads has the same value as
before. The flat VS volatility is still chosen so that the implied volatility
of the three-year cliquet of a one-month ATM call is 20%. Prices are list-
ed on the second line of table B.

The accumulator is now sizeably cheaper. One can check that, in Black-
Scholes, the value of a symmetrical call spread as a function of ATM volatil-
ity, when the skew is kept proportional to the ATM volatility, is almost a
linear function of volatility – in contrast with the case when volatilities are
shifted in parallel fashion, where it is a convex function of volatility – thus
suggesting why volatility of volatility has much less impact than in the con-
stant skew case.
■■ Option on realised variance. Here we consider a call option that pays
at maturity:

where volatility σ̂K is the strike and σ2
h is the annualised variance measured

using daily log returns. We assume there are 250 daily observations in a
year, equally spaced. The variance of the distribution of σ2

h has two sources:
■■ The dynamics of VS variances.
■■ The fact that observations are discrete. In the case where VS variances
are static, it is the only contribution and it is determined by the distribu-
tion of spot returns, in particular its kurtosis, which depends on assump-
tions made for the short-maturity smile – in our context, the value of β. In
the general case, it affects short-maturity options most noticeably.

Prices are expressed as implied volatilities calculated with the Black-
Scholes formula with zero rate and repo. The underlying is the VS vari-
ance for the maturity of the option, whose initial value is given by the VS
term structure observed at the pricing date.

In our model, daily returns are generated by the stochastic local volatil-
ity function form in equation (5). Their conditional kurtosis is a function
of β, a parameter we use to control the short-term skew. The prices of op-
tions on variance will thus depend on assumptions we make for the skew
at time scale ∆. Figure 6 shows implied volatilities of call options on vari-
ance, using a flat term structure of VS volatilities at 20%, the same corre-
lations as in the examples above (ρSX = –70%, ρSY = –35.7%), for the two
cases σ̂95% – σ̂105% = 5% and σ̂95% – σ̂105% = 0%.

Figure 6 illustrates how assumptions for the forward skew affect the
distribution of returns significantly and thus the price of options on vari-
ance, mostly for short options. The shortest maturity in the graph corre-
sponds to options with a maturity of one month (20 days). Since we have
taken ∆ =1 month, the distribution of σ2

h does not depend on the dynam-
ics of variances ξi – it only depends on β.

Note that, in our model, VS volatilities for maturities shorter than ∆ are
not frozen. Instead of being driven by equation (3), their dynamics is set
by the value of β.
■■ Using the N-factor model. It is instructive to compare prices of op-
tions on realised variance generated by the two-factor and N-factor mod-
els. As figures 1 and 2 illustrate, even though the dynamics of VS
volatilities in both models are similar for the short term, they become
different for longer horizons.

Here we price the same option on variance considered above using the
N-factor model of forward variances. Parameter values for the dynamics
of forward variances are the same as those used in figures 1 and 2. We
have taken no forward skew (σ̂95% – σ̂105% = 0). Also, to make prices com-
parable with those obtained in the two-factor model, we have taken zero
correlation between spot and forward variances. Implied volatilities for
both models are shown in figure 7.

Because ∆ = 1 month, for the shortest maturity considered – 20 days
– the implied volatilities for both models coincide. For longer maturi-
ties, the fact that implied volatilities are higher in the N-factor model is
in agreement with figure 2, which shows that, for longer horizons, the
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