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7 Jump Diffusion

7.1 Why Jumps are Needed

In section 6, we indicated the possibility that jumps might explain why the
skew is so steep for very short expirations and why the very short-dated
term structure of skew is inconsistent with any stochastic volatility model.
Another indication that jumps might be necessary to explain the volatility
surface comes from Table 1. There, we see that there are bids of 0.05 for 750
strike puts and 925 strike calls with only two days to go! Given that volatility
is around 2% per day according to Figure 1 (2% daily is equivalent to roughly
32% annualized volatility), a 116 point move in the index corresponds to
roughly 5 standard deviations. The probability of a normally distributed
variable making such a move is about one in a million.

Just as strikingly, in table 2, we see that there is a 5 cent bid for options
45 points out-of-the-money which have almost expired. Recall that the final
payoff of SPX options is set at the opening of trading on the following day
(September 20 in this case). Historically, about 40% of the variance of
SPX is from overnight moves. Then a 45 point move corresponds to around
4.2 standard deviations. The probability of a normally distributed variable
making such a move is about one in a hundred thousand. And these 5 cent
bids are only bids; one might suppose that actual trades would take place
somewhere between the bid and the offer.

In fact, high bids for options that would require an extreme move to end
up in-the-money are just another manifestation of the extreme short-end
skew in the SPX market just prior to expiration. From the perspective of a
trader, the explanation is straightforward: large moves do sometimes occur
and it makes economic sense to bid for out-of-the-money options – at the
very least to cover existing risk.

It is easy to see why extreme short-end skews are incompatible with
stochastic volatility; if the underlying process is a diffusion and volatility of
volatility is reasonable, volatility should be near constant on a very short
timescale. Then returns should be roughly normally distributed and the
skew should be quite flat.

To make this concrete, in Figure 1, we superimpose observed implied
volatilities with the implied volatility smile generated by the Heston model
with the BCC parameters of Homework 1 (Bakshi, Cao, and Chen (1997)):

η = 0.39; ρ = −0.64; λ = 1.15
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Table 1: September 2002 expiration option prices as of September 18, 2002.
SPX is trading at 866.

Strike Call Bid Call Ask Put Bid Put Ask

750 114.00 118.00 0.05 0.25
775 89.00 93.00 0.10 0.45
780 84.00 88.00 0.10 0.45
790 74.10 78.10 0.15 0.45
800 64.20 68.20 0.15 0.40
810 54.40 58.40 - 1.00
820 44.70 48.70 0.25 1.25
825 39.90 43.90 0.45 1.45
830 35.20 39.20 0.75 1.75
840 26.20 30.20 1.75 2.30
850 18.00 21.50 3.00 4.60
860 10.90 13.00 5.50 7.40
870 5.90 8.90 10.00 12.90
875 4.50 4.80 12.50 16.00
880 2.95 4.10 15.90 19.40
885 1.95 2.95 19.80 23.30
890 1.10 1.50 23.60 27.60
900 0.40 0.80 32.60 36.60
905 0.05 1.00 37.40 41.40
910 - 0.50 42.20 46.20
915 - 0.30 47.10 51.10
920 0.05 0.50 52.10 56.10
925 0.05 0.25 57.10 61.10

43



Table 2: September 2002 expiration option prices as of Thursday September
19, 2002 at 4PM. SPX is trading at 843.

Strike Call Bid Call Ask Put Bid Put Ask

800 41.20 45.20 0.05 0.20
810 31.50 35.50 0.15 0.30
820 22.10 26.10 0.65 1.00
825 18.00 21.20 1.00 1.90
830 13.80 17.00 1.95 2.95
840 7.00 9.00 4.30 5.90
850 2.00 2.35 9.30 10.00
860 0.60 0.65 16.10 17.80
870 - 0.40 25.10 29.10
875 0.10 0.20 30.10 34.10
880 - 0.50 35.10 39.10
885 - 0.30 40.00 44.00
890 0.05 0.10 46.00 49.00

Figure 1: Graph of SPX implied volatilities on September 18, 2002. SPX is
trading at 866. Red points are offers and blue points are bids. The green
line is a non-linear fit to the data. The red line represents the Heston skew
with BCC parameters.
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7.2 Derivation of the Valuation Equation

As in Wilmott (1998), we assume the stock price follows the SDE

dS = µS dt + σS dZ + (J − 1)S dq (43)

where the Poisson process

dq =

{
0 with probability 1− λ(t) dt
1 with probability λ(t) dt

When dq = 1, the process jumps from S to JS. We assume that the Poisson
process dq and the Brownian motion dZ are independent.

As in the stochastic volatility case, we derive a valuation equation by
considering the hedging of a contingent claim. We make the (unrealistic)
assumption at this stage that the jump size J is known in advance.

Whereas in the stochastic volatility case, the second risk factor to be
hedged was the random volatility, in this case, the second factor is the jump.
So once again, we set up a portfolio Π containing the option being priced
whose value we denote by V (S, v, t), a quantity −∆ of the stock and a
quantity −∆1 of another asset whose value V1 also depends on the jump.

We have
Π = V −∆ S −∆1 V1

The change in this portfolio in the time interval dt is given by

dΠ =

{
∂V

∂t
+

1

2
σ2 S2∂2V

∂S2

}
dt−∆1

{
∂V1

∂t
+

1

2
σ2 S2∂2V1

∂S2

}
dt

+

{
∂V

∂S
−∆1

∂V1

∂S
−∆

}
dSc

+ {V (JS, t)− V (S, t)−∆1(V1(JS, t)− V1(S, t))−∆(J − 1)S} dq

where Sc(t) is the continuous part of S(t) (adding back all the jumps that
occurred up to time t).

To make the portfolio instantaneously risk-free, we must choose

∂V

∂S
−∆1

∂V1

∂S
−∆ = 0

to eliminate dS terms, and

V (JS, t)− V (S, t)−∆1(V1(JS, t)− V1(S, t))−∆(J − 1)S = 0
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to eliminate dq terms. This leaves us with

dΠ =

{
∂V

∂t
+

1

2
σ2 S2∂2V

∂S2

}
dt−∆1

{
∂V1

∂t
+

1

2
σ2 S2∂2V1

∂S2

}
dt

= r Π dt

= r(V −∆S −∆1V1) dt

where we have used the fact that the return on a risk-free portfolio must
equal the risk-free rate r which we will assume to be deterministic for our
purposes. Collecting all V terms on the left-hand side and all V1 terms on
the right-hand side, we get

∂V
∂t

+ 1
2
σ2 S2 ∂2V

∂S2 + rS ∂V
∂S
− rV

δV − (J − 1)S ∂V
∂S

=
∂V1

∂t
+ 1

2
σ2 S2 ∂2V1

∂S2 + rS ∂V1

∂S
− rV1

δV1 − (J − 1)S ∂V1

∂S

where we have defined δV ≡ V (JS, t)− V (S, t).
Continuing exactly as in the stochastic volatility case, the left-hand side

is a function of V only and the right-hand side is a function of V1 only. The
only way that this can be is for both sides to be equal to some function of
the independent variables S and t which we will suggestively denote by −λ.
We deduce that

∂V

∂t
+

1

2
σ2 S2∂2V

∂S2
+ rS

∂V

∂S
− rV

+ λ(S, t)

{
V (JS, t)− V (S, t)− (J − 1)S

∂V

∂S

}
= 0 (44)

To interpret λ(S, t), consider the value P of an asset that pays $1 at time
T if there is no jump and zero otherwise. Our assumption that the jump
process is independent of the stock price process implies that

∂P

∂S
= 0

Also, we must have P (JS, t) = 0. Substituting into equation (44) gives

∂P

∂t
− rP − λ(S, t) P = 0

Since (by assumption) P is independent of S, so must λ be and the solution

is P (t) = exp
{
− ∫ T

t
(r + λ(t′)) dt′

}
. We immediately recognize λ(t) as the
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hazard rate of the Poisson process (the pseudo-probability per unit time that
a jump occurs). We emphasize pseudo-probability because this is in no sense
the actual probability (whatever that means) that a jump will occur: it is
the value today of a financial asset.

Uncertain jump size

To derive equation (44), we assumed that we knew in advance what the
jump size would be. Of course this is neither realistic nor practical. Jump-
diffusion models typically specify a distribution of jump sizes. How would
this change equation (44)?

It is easy to see that adding another jump with a different size would
require one more hedging asset in the replication argument. Allowing the
jump size to be any real number with some distribution would require an
infinite number of hedging assets. We see that in this case, the replication
argument falls apart: such jump-diffusion models have no replicating hedge.

This is the major drawback of jump-diffusion models: there is no repli-
cating portfolio and so there is no self-financing hedge even in the limit
of continuous trading. However, looking on the bright side, if we believe
in jumps (as we must given the empirical evidence), options are no longer
redundant assets which may be replicated using stocks and bonds and by
extension, option traders can be seen to have genuine social value.

To extend equation (44) to the case of jumps of uncertain size, we assume
that the risk-neutral process is still jump-diffusion with jumps independent
of the stock price. Under the risk-neutral measure, the expected return of
any asset is the risk-free rate. Taking expectations of equation (43), we find
that

E[dS] = r S dt = µ S dt + E[J − 1] S λ(t) dt

It follows that the risk-neutral drift is given by µ = r + µJ with

µJ = −λ(t)E[J − 1]

Just as in the derivation of the Black-Scholes equation, we must have
E[dV ] = r V dt. Applying Itô’s Lemma and taking expectations under the

47



risk-neutral measure gives

E[dV ] = r V dt

=

{
∂V

∂t
+ r S

∂V

∂S
+

1

2
σ2 S2∂2V

∂S2

}
dt

+λ(t)E[V (JS, t)− V (S)] dt + µJ S
∂V

∂S
dt

Rearranging, we obtain the following equation for valuing financial assets
under jump-diffusion:

∂V

∂t
+

1

2
σ2 S2∂2V

∂S2
+ rS

∂V

∂S
− rV

+ λ(t)

{
E [V (JS, t)− V (S, t)]− E [J − 1] S

∂V

∂S

}
= 0 (45)

Once again for emphasis, the expectations in equation (45) are under
the risk neutral measure. In order to value derivative assets, we concern
ourselves only with the values that the market assigns to claims that pay in
the event of a jump; actual probabilities don’t enter at all.

8 Characteristic Function Methods

Unlike the partial differential equations (PDEs) we are used to solving in
derivatives valuation problems, equation (45) is an example of an partial
integro-differential equation (PIDE). The integration over all possible jump-
sizes introduces non-locality. Such equations can be solved using extensions
of numerical PDE techniques but the most natural approach is to use Fourier
transform (characteristic function) methods.

First, we review Lévy processes.

8.1 Lévy Processes

With constant hazard rate λ, the logarithmic version of the jump-diffusion
process (43) for the underlying asset is an example of a Lévy Process.

Definition. A Lévy process is a continuous in probability, cadlag stochastic
process x(t), t > 0 with independent and stationary increments and x(0) = 0.
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It turns out that any Lévy process can be expressed as the sum of a
linear drift term, a Brownian motion and a jump process. This plus the in-
dependent increment property leads directly to the following representation
for the characteristic function.

The Lévy-Khintchine Representation

If xt is a Lévy process, and if the Lévy density µ(ξ) is suitably well-behaved at
the origin, its characteristic function φT (u) ≡ E [eiuxT ] has the representation

φT (u) = exp

{
iuωT − 1

2
u2 σ2T + T

∫ [
eiuξ − 1

]
µ(ξ) dξ

}
(46)

To get the drift parameter ω, we impose that the risk-neutral expectation of
the stock price be the forward price. With our current assumption of zero
interest rates and dividends, this translates to imposing that

φT (−i) = E [exT ] = 1

Here,
∫

µ(ξ) dξ = λ, the Poisson intensity or mean jump arrival rate also
known as the hazard rate.

8.2 Examples of characteristic functions for specific
processes

Before proceeding to solve equation (45) for a particular specification of
the jump process, we exhibit some examples of characteristic functions for
processes with which we are already familiar.

Example 1: Black-Scholes

The characteristic function for a exponential Brownian motion with volatility
σ is given by

φT (u) = E
[
eiuxT

]
= exp

{
−1

2
u(u + i)σ2T

}

We can get this result by performing the integration explicitly or directly
from the Lévy-Khintchine representation.
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Example 2: Heston

The Heston process is very path-dependent; increments are far from inde-
pendent and it is not a Lévy process. However, we have already computed
its characteristic function. From Section 3.2, we see that the characteristic
function of the Heston process is given by

φT (u) = exp {C(u, T ) v̄ + D(u, T ) v}

with C(u, T ) and D(u, T ) as defined there.

Example 3: Merton’s Jump-Diffusion Model

Finally, this is the case we are really interested in. The jump-size J is
assumed to be lognormally distributed with mean log-jump α and standard
deviation δ so that the stock price follows the SDE

dS = µS dt + σS dZ + (eα+δε − 1)S dq

with ε ∼ N(0, 1). Then

µ(ξ) =
λ√
2πδ2

exp

{
−(ξ − α)2

2δ2

}

By applying the Lévy-Khintchine representation (46), we see that the
characteristic function is given by

φT (u) = exp

{
iuωT − 1

2
u2 σ2T + T

∫ [
eiuξ − 1

] λ√
2πδ2

exp

{
−(ξ − α)2

2δ2

}
dξ

}

= exp

{
iuωT − 1

2
u2 σ2T + λT

(
eiuα−u2δ2/2 − 1

)}
(47)

To get ω, we impose φT (−i) = 1 so that

exp

{
ωT +

1

2
σ2T + λT

(
eα+δ2/2 − 1

)}
= 1

which gives

ω = −1

2
σ2 − λ

(
eα+δ2/2 − 1

)

Unsurprisingly, we get the lognormal case back when we set α = δ = 0.
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Alternatively, we can get the characteristic function for jump-diffusion di-
rectly by substituting φT (u) = eψ(u) T into equation (45). With y ∼ N(α, δ),
we obtain

ψ(u) = −1

2
u(u + i)σ2 − λ

{
E

[
eiuy − 1

]
+ iuE [ey − 1]

}

= −1

2
u(u + i)σ2 − λ

{(
eiuα−u2 δ2/2 − 1

)
+ iu

(
eα+δ2/2 − 1

)}

which gives an expression for φT (u) identical to the one already derived in
equation (47).

8.3 Computing Option Prices From the Characteristic
Function

It turns out (see Carr and Madan (1999) and Lewis (2000)) that it is quite
straightforward to get option prices by inverting the characteristic function
of a given stochastic process (if it is known in closed-form).

The formula we will use is a special case of formula (2.10) of Lewis (as
usual we assume zero interest rates and dividends):

C(S,K, T ) = S −
√

SK
1

π

∫ ∞

0

du

u2 + 1
4

Re
[
e−iukφT (u− i/2)

]
(48)

with k = ln
(

K
S

)
. A proof of this formula is given in Appendix A.

8.4 Computing Implied Volatility

Equation (48) allows us to derive an elegant implicit expression for the
Black-Scholes implied volatility of an option in any model for which the
characteristic function is known.

Substituting the characteristic function for the Black-Scholes process into
(48) gives

CBS(S, K, T ) = S −
√

SK
1

π

∫ ∞

0

du

u2 + 1
4

Re
[
e−iuke−

1
2(u2+ 1

4)σ2
BST

]

Then, from the definition of implied volatility, we must have
∫ ∞

0

du

u2 + 1
4

Re
[
e−iuk

(
φT (u− i/2)− e−

1
2(u2+ 1

4)σ2
BST

)]
= 0 (49)
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Equation (49) gives us a simple but implicit relationship between the im-
plied volatility surface and the characteristic function of the underlying stock
process. In particular, we may efficiently compute the structure of at-the-
money implied volatility and the at-the-money volatility skew in terms of
the characteristic function (at least numerically) without having to explicitly
compute option prices.

8.5 Computing the At-the-money Volatility Skew

Assume φT does not depend on spot S and hence not on k. (This is the case
in all examples we have in mind.) Then differentiating (49) with respect to
k and evaluating at k = 0 gives

∫ ∞

0

du

{
u Im [φT (u− i/2)]

u2 + 1
4

+
1

2

∂wBS

∂k

∣∣∣∣
k=0

e−
1
2(u2+ 1

4)wBS(0,T )

}
= 0

Then, integrating the second term explicitly we get

∂σBS

∂k

∣∣∣∣
k=0

= −e
σ2

BST

8

√
2

π

1√
T

∫ ∞

0

du
u Im [φT (u− i/2)]

u2 + 1
4

(50)

Example 1: Black-Scholes

Im [φT (u− i/2)] = Im
[
e−

1
2(u2+1/4)σ2T

]
= 0

Then, in the Black-Scholes case,

∂σBS(k, T )

∂k

∣∣∣∣
k=0

= 0 ∀T > 0

Example 2: Merton’s Jump-Diffusion Model (JD)

Write
φT (u) = e−

1
2
u(u+i)σ2T eψ(u)T

with ψ(u) = −λiu
(
eα+δ2/2 − 1

)
+ λ

(
eiuα−u2δ2/2 − 1

)

Then
Im [φT (u− i/2)] = e−

1
2(u2+ 1

4)σ2T Im
[
eψ(u−i/2)T

]
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8.6 How jumps impact the volatility skew

By substituting the jump-diffusion characteristic function (47) into our ex-
pressions (49) and (50) for the implied volatility and ATM volatility skew
respectively, we can investigate the impact of jumps on the volatility surface
for various numerical choices of the parameters.

Figure 2: The 3 month volatility smile for various choices of jump-diffusion
parameters.
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Figure 3: The term structure of ATM variance skew for various choices of
jump-diffusion parameters.
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Table 3: Parameters used to generate Figures 2 and 3.

Color σ λ α δ

Solid orange 0.2 0.5 -0.15 0.05
Dashed green 0.2 1.0 -0.07 0.00
Long-dashed blue 0.2 1.0 -0.07 0.05

8.6.1 The Decay of Skew Due to Jumps

We can see from Figure 2 that the volatility skew decays very rapidly in
a jump-diffusion model beyond a certain time to expiration. To estimate
this characteristic time, we note that prices of European options depend
only on the final distribution of stock prices and if the jump size is of the
order of only one standard deviation σ

√
T , a single jump has little impact

on the shape of this distribution. If there are many small jumps, returns
will be hard to distinguish from normal over a reasonable time interval. We
compute the characteristic time T ∗ by equating

−
(
eα+δ2/2 − 1

)
≈ σ

√
T ∗

8.6.2 Skew behavior under jump-diffusion as T → 0

Consider the value of an option under jump-diffusion with a short time ∆T
to expiration. Because the time to expiration is very short, the probability of
having more than one jump is negligible. Because the jump is independent
of the diffusion, the value of the option is just a superposition of the value
conditional on the jump and the value conditional on no jump. Without loss
of generality, suppose the stock price jumps down from S to JS when the
jump occurs. Then

CJ(S, K, ∆T ) ≈ (1− λ∆T ) CBS(SeµJ∆T , K, ∆T ) + λ∆T C(JS,K, ∆T )

= CBS(SeµJ∆T , K, ∆T ) + O(∆T ) (51)

where J is the size of the jump, CJ(.) represents the value of the option
under jump diffusion and µJ = −λ(eα+δ2/2 − 1) is the adjustment to the
risk-neutral drift for jumps. Here, we neglected the second term in equation
(51) by assuming that the mean jump is downwards and the probability of
the option being in-the-money is negligibly small after the jump.
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We want to compute the at-the-money variance skew

∂σ2
BS

∂k

∣∣∣∣
k=0

To do this note that

∂CJ

∂k
=

∂CBS

∂k
+

∂CBS

∂σBS

∂σBS

∂k

so
∂σBS

∂k

∣∣∣∣
k=0

=

[
∂CJ

∂k
− ∂CBS

∂k

] (
∂CBS

σBS

)−1
∣∣∣∣∣
k=0

Now, for an at-the-money option,

∂CBS

σBS

∣∣∣∣
k=0

≈ S√
2π

√
∆T

and from equation (51)

1

S

[
∂CJ

∂k
− ∂CBS

∂k

]∣∣∣∣
k=0

≈ −N

(
+

µJ∆T

σ
√

∆T
− 1

2
σ
√

∆T

)
+ N

(
−1

2
σ
√

∆T

)

≈ − 1√
2π

µJ

σ

√
∆T

Then, for small ∆T ,
∂σ2

BS

∂k

∣∣∣∣
k=0

≈ −2 µJ (52)

We see that in a jump-diffusion model, if the mean jump-size is suffi-
ciently large relative to its standard deviation, the at-the-money variance
skew is given directly by twice the jump compensator µJ .

To see how well these approximate computations explain Figures 2 and
3, the characteristic time T ∗ and the time zero skew ψ0 for each choice of
parameters are presented in Table 4.

Summarizing the results, we note that the jump compensator (or ex-
pected move in the stock price due to jumps) drives the skew in the short-
expiration limit while the decay of ATM skew is driven by the expected jump
size.
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Table 4: Interpreting Figures 2 and 3.

Color σ λ α δ T∗ ψ0

Solid orange 0.2 0.5 -0.15 0.05 0.69 -0.133
Dashed green 0.2 1.0 -0.07 0.00 0.34 -0.135
Long-dashed blue 0.2 1.0 -0.07 0.05 0.33 -0.133

9 Stochastic Volatility plus Jumps

9.1 Stochastic Volatility plus Jumps in the Underlying
Only (SVJ)

Since jumps generate a steep short-dated skew that dies quickly with time to
expiration and stochastic volatility models don’t generate enough skew for
very short expirations but more or less fit for longer expirations (see Lecture
2), it is natural to try to combine stock price jumps and stochastic volatility
in one model.

Suppose we add a simple Merton-style lognormally distributed jump pro-
cess to the Heston process. By substitution into the valuation equation, it
is easy to see that the characteristic function for this process is just the
product of Heston and jump characteristic functions. Denoting the jump
intensity (or hazard rate) by λJ , we obtain

φT (u) = eC(u,T ) v̄+D(u,T ) v eψ(u)T

with ψ(u) = −λJ iu
(
eα+δ2/2 − 1

)
+λJ

(
eiuα−u2δ2/2 − 1

)
and C(u, T ), D(u, T )

are as before.
Again, we may substitute this functional form into equations (49) and

(50) to get the implied volatilities and at-the-money volatility skew respec-
tively for any given expiration.

Figure 4 plots the at-the-money variance skew corresponding to the
Bakshi-Cao-Chen SVJ model fit together with the sum of the Heston and
jump-diffusion at-the-money variance skews with the same parameters (see
Table 5). We see that (at least with this choice of parameters), not only does
the characteristic function factorize but the at-the-money variance skew is
almost additive. One practical consequence of this is that the Heston param-
eters can be fitted fairly robustly using longer dated options and then jump
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parameters can be found to generate the required extra skew for short-dated
options. Figure 5 plots the at-the-money variance skew corresponding to the
SVJ model vs the Heston model skew for short-dated options, highlighting
the small difference.

Figure 4: The green line is a graph of the at-the-money variance skew in the
SVJ model with BCC parameters vs time to expiration. The dashed blue
line represents the sum of at-the-money Heston and jump-diffusion skews
with the same parameters.
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Figure 5: The green line is a graph of the at-the-money variance skew in
the SVJ model with BCC parameters vs time to expiration. The dashed red
line represents the at-the-money Heston skew with the same parameters.
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However in the SVJ model, after the stock price has jumped, the volatil-
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ity will stay unchanged because the jump process is uncorrelated with the
volatility process. This is inconsistent with both intuition and empirically
observed properties of the time series of asset returns; in practice, after a
large move in the underlying, implied volatilities always increase substan-
tially (i.e. they jump).

9.2 Some Empirical Fits to the SPX Volatility Surface

There are only 4 parameters in the jump-diffusion model: the volatility σ,
λJ , α and δ so it’s not in principle difficult to perform a fit to option price
data. The SVJ model obviously fits the data better because it has more
parameters and it’s not technically that much harder to perform the fit.

Various authors (for example Andersen and Andreasen (2000) and Duffie,
Pan, and Singleton (2000)) have fitted JD and SVJ models to SPX data.
Their results are summarized in Table 5.

Table 5: Various fits of jump-diffusion style models to SPX data. JD means
Jump Diffusion and SVJ means Stochastic Volatility plus Jumps.

Author(s) Model λ η ρ v̄ λJ α δ

AA JD NA NA NA 0.032 0.089 -0.8898 0.4505
BCC SVJ 2.03 0.38 -0.57 0.04 0.61 -0.09 0.14
M SVJ 1.0 0.8 -0.7 0.04 0.5 -0.15 0
DPS SVJ 3.99 0.27 -0.79 0.014 0.11 -0.12 0.15

Author(s) Reference Data from

AA Andersen and Andreasen (2000) April 1999
BCC Bakshi, Cao, and Chen (1997) June 1988 – May 1991
M Matytsin (1999) 1999
DPS Duffie, Pan, and Singleton (2000) November 1993

Note first that these estimates all relate to different dates so in principle,
we can’t expect the volatility surfaces they generate to be the same shape.
Nevertheless, the shape of the SPX volatility surface doesn’t really change
much over time so it does make some sense to compare them.
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9.3 Stochastic volatility with Simultaneous Jumps in
Stock Price and Volatility (SVJJ)

As we noted earlier in Section 9.1, it is unrealistic to suppose that the instan-
taneous volatility wouldn’t jump if the stock price were to jump. Conversely,
adding a simultaneous upward jump in volatility to jumps in the stock price
allows us to maintain the clustering property of stochastic volatility models:
recall that “large moves follow large moves and small moves follow small
moves”.

In Matytsin (1999) and Matytsin (2000), Andrew Matytsin describes a
model that is effectively SVJ with a jump in volatility: jumps in the stock
price are accompanied by a jump v 7→ v + γv in the instantaneous volatility.
In that case, the characteristic function is

φT (u) = exp
{

Ĉ(u, T ) v̄ + D̂(u, T ) v
}

(53)

with C(u, T ) and D(u, T ) given by

Ĉ(u, T ) = C(u, T ) + λJ T
[
eiuα−u2δ2/2I(u, T )− 1− i u

(
eα+δ2/2 − 1

)]

D̂(u, T ) = D(u, T )

where

I(u, T ) =
1

T

∫ T

0

eγvD(u,T )dt

= − 2γv

p+p−

∫ −γvD(u,T )

0

e−zdz

(1 + z/p+)(1 + z/p−)

and
p± =

γv

η2
(β − ρηui± d)

In the limit γv → 0, we have I(u, T ) → 1 and by inspection, we retrieve the
SVJ model. Also, in the limit T → 0, I(u, T ) → 1 and in that limit, the
SVJJ characteristic function is identical to the SVJ characteristic function.
Alternatively, following the heuristic argument of section 8.6.2, the short-
dated volatility skew is a function of the jump compensator only and this
compensator is identical in the SVJ and SVJJ cases. Intuitively, when the
stock price jumps, the volatility jumps but this has no effect in the T → 0
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limit because by assumption, an at-the-money option is always out-of-the-
money after the jump and its time is zero no matter what the volatility
is.

On the other hand, in the T → ∞ limit, the skew should increase be-
cause the effective volatility of volatility increases due to (random) jumps in
volatility.

By substituting the SVJJ characteristic function (53) into equation (50)
for the implied volatility skew with the BCC parameters plus a variance jump
of γv = 0.1, we obtain the graphs shown in Figures 6 and 7. We note that
the term structure of volatility skew is in accordance with our intuition. In
particular, adding a jump in volatility doesn’t help explain extreme short-
dated volatility skews. However relative to stochastic volatility and SVJ
models, it does reduce the volatility of volatility required to fit longer-dated
volatility skews even if that comes at the expense of a seemingly even more
unreasonable estimate for the average stock price jump.

Figure 6: The orange line is a graph of the at-the-money variance skew in
the SVJJ model with BCC parameters vs time to expiration. The short-
dashed blue and long-dashed green lines are SVJ and Heston skew graphs
respectively with the same parameters.
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Figure 7: This graph is a short-expiration detailed view of the graph shown
in Figure 6.
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A Proof of Equation (48)

A covered call position has the payoff min[ST , K] where ST is the stock
price at time T and K is the strike price of the call. Consider the Fourier
transform of this covered call position G(k, τ) with respect to the log-strike
k ≡ log (K/F ) defined by

Ĝ(u, τ) =

∞∫

−∞

eiukG(k, τ) dx

Denoting the current time by t and expiration by T , and setting interest
rates and dividends to zero as usual, we have that

1

S
Ĝ(u, T − t) =

∞∫

−∞

eiukE
[
min[exT , ek)+]|xt = 0

]
dk

= E




∞∫

−∞

eiuk min[exT , ek)+] dk

∣∣∣∣∣∣
xt = 0




= E




xT∫

−∞

eiukek dk +

∞∫

xT

eiukexT dk

∣∣∣∣∣∣
xt = 0




= E
[

e(1+iu)xT

1 + iu
− e(1+iu)xT

iu

∣∣∣∣ xt = 0

]
only if 0 < Im[u] < 1!

=
1

u(u− i)
E

[
e(1+iu)xT

∣∣ xt = 0
]

=
1

u(u− i)
φT (u− i)

by definition of the characteristic function φT (u). Note that the transform
of the covered call value exists only if 0 < Im[u] < 1. It is easy to see that
this derivation would go through pretty much as above with other payoffs
though it is key to note that the region where the transform exists depends
on the payoff.

To get the call price in terms of the characteristic function, we express
it in terms of the covered call and invert the Fourier transform, integrating
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along the line Im[u] = 1/21. Then

C(S, K, T ) = S − S
1

2π

∫ ∞+i/2

−∞+i/2

du

u(u− i)
φT (u− i) e−iku

= S − S
1

2π

∫ ∞

−∞

du

(u + i/2)(u− i/2)
φT (u− i/2) e−ik(u+i/2)

= S −
√

SK
1

π

∫ ∞

0

du

u2 + 1
4

Re
[
e−iukφT (u− i/2)

]

with k = ln
(

K
S

)
.

1That’s why we chose to express the call in terms of the covered call whose transform
exists in this region. Alternatively, we could have used the transform of the call price and
Cauchy’s Residue Theorem to do the inversion.
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