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Abstract

This paper shows how the fast Fourier Transform may be used to
value options when the characteristic function of the return is known
analytically.
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1 Introduction

The Black Scholes model and its extensions comprise one of the major devel-
opments in modern ¯nance. Much of the recent literature on option valua-
tion has successfully applied Fourier analysis to determine option prices, eg.
Bakshi and Chen [1], Scott [13], Bates [5], Heston [8], and Chen and Scott
[6]. These authors numerically solve for the delta and for the risk-neutral
probability of ¯nishing in-the-money, which can be easily combined with the
stock price and the strike price to generate the option value. Unfortunately,
this approach is unable to harness the considerable computational power of
the Fast Fourier Transform (FFT; Walker [14]), which represents one of the
most fundamental advances in scienti¯c computing. Furthermore, though the
decomposition of an option price into probability elements is theoretically at-
tractive as explained in Bakshi and Madan [2], it is numerically undesirable
due to discontinuity of the payo®s.
The purpose of this paper is to describe a new approach for numerically

determining option values, which is designed to use the FFT to value options
e±ciently. As is the case with all of the above approaches, our technique
assumes that the characteristic function of the risk-neutral density is known
analytically. Given any such characteristic function, we develop a simple
analytic expression for the Fourier transform of the option value or its time
value. We then use the FFT to numerically solve for the option price or
its time value. Our use of the FFT in the inversion stage permits real time
pricing, marking, and hedging using realistic models, even for books with
thousands of options.
To test the accuracy of our approach, we would like to use a model where

the option price is known analytically. To illustrate the potential power of
Fourier analysis, we would also like to use a model in which the density
function is complicated, while the characteristic function of the log price is
simple. Finally, we would like to use a model which is supported in a general
equilibrium and which is capable of removing the biases of the standard Black
Scholes model. All of these requirements are met by the Variance Gamma
(VG) model, which assumes that the log price obeys a one dimensional
pure jump Markov process with stationary independent increments. The
mathematics of this process are detailed in Madan and Seneta[11], while the
economic motivation and empirical support for this model is described in
Madan and Milne [10], and in Madan, Carr, and Chang [9] respectively.
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The outline of this paper is as follows. In section 2, we brie°y review
the current literature on the use of Fourier methods in option pricing. In
section 3, we present our approach for analytically determining the Fourier
transform of the option value and of the time value in terms of the charac-
teristic function of the risk-neutral density. Section 4 details the use of the
FFT to numerically solve for the option price or time value. In section 5,
we illustrate our approach in the VG model. Section 6 concludes.

2 Review of Fourier Methods in Option Pric-

ing

Consider the problem of valuing a European call of maturity T , written on the
terminal spot price ST of some underlying asset. The characteristic function
of sT = ln(ST ) is de¯ned by:

ÁT (u) = E [exp(iusT )] : (1)

In many situations this characteristic function is known analytically. A
wide class of examples arises when the the dynamics of the log price are given
by an in¯nitely divisible process of independent increments. The character-
istic function then arises naturally from the L¶evy Khintchine representation
for such processes. Among this class of processes, we have the process of in-
dependent stable increments (McCulloch [12]), the variance gamma process
(Madan, Carr, and Chang [9]), the inverse Gaussian Law (Barndor®-Nielsen
[3]), and a wide range of other processes proposed in Geman, Yor, and Madan
[7]. Characteristic functions have also been used in the pure di®usion context
with stochastic volatility (Heston [8]), and with stochastic interest rates in
Bakshi and Chen [1]. Finally, they have been used for jumps coupled with
stochastic volatility (Bates [5]) and for jumps coupled with stochastic interst
rates and volatility in Scott [13]). The solution methods can also be applied
to average rate claims and to other exotic claims (Bakshi and Madan [2]).
The methods are generally much faster than ¯nite di®erence solutions to par-
tial di®erential equations or integro-di®erential equations, which led Heston
[8] to refer to them as closed form solutions.
Assuming that the characteristic function is known analytically, many au-

thors (eg. Bakshi and Madan [2] and Scott [13]) have numerically determined
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the risk-neutral probability of ¯nishing in-the-money as:

Pr (ST > K) = ¦2 =
1

2
+
1

¼

1Z
0

Re

·
e¡iu ln(K)ÁT (u)

iu

¸
du:

Similarly, the delta of the option, denoted ¦1; is numerically obtained as:

¦1 =
1

2
+
1

¼

1Z
0

Re

·
e¡iu ln(K)ÁT (u¡ i)

iuÁT (¡i)
¸
du:

Assuming no dividends and constant interest rates r; the initial option value
is then determined as:

C = S¦1 ¡Ke¡rT¦2:

Unfortunately, FFT cannot be used to evaluate the integral, since the inte-
grand is singular at the required evaluation point u = 0: Given the consider-
able speed advantages of the FFT , we examine two alternative approaches
in the next section, which are both amenable to evaluation by the FFT .

3 Two New Fourier Methods

In this section, we develop analytic expressions for the Fourier transform of
an option price and for the Fourier transform of the time value of an option.
Both Fourier transforms are expressed in terms of the characteristic function
of the log price.

3.1 The Fourier Transform of an Option Price

Let k denote the log of the strike price K, and let CT (k) be the desired value
of a T maturity call option with strike exp(k): Let the risk-neutral density
of the log price sT be qT (s): The characteristic function of this density is
de¯ned by:

ÁT (u) ´
1Z

¡1
eiusqT (s)ds: (2)
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The initial call value CT (k) is related to the risk-neutral density qT (s):by:

CT (k) ´
1Z
k

e¡rT
¡
es ¡ ek¢ qT (s)ds:

Note that CT (k) tends to S0 as k tends to ¡1, and hence the call pricing
function is not square integrable. To obtain a square integrable function, we
consider the modi¯ed call price cT (k) de¯ned by:

cT (k) ´ exp(®k)CT (k) (3)

for ® > 0: For a range of positive values for ®; we expect that cT (k) is square
integrable in k over the entire real line. We comment later on the choice of
®: Consider now the Fourier transform of cT (k) de¯ned by:

ÃT (v) =

1Z
¡1

eivkcT (k)dk: (4)

We ¯rst develop an analytical expression for ÃT (v) in terms of ÁT and
then obtain call prices numerically using the inverse transform:

CT (k) =
exp(¡®k)

2¼

1Z
¡1

e¡ivkÃT (v)dv =
exp(¡®k)

¼

1Z
0

e¡ivkÃ(v)dv: (5)

The second equality holds because CT (k) is real, which implies that the
function ÃT (v) is odd in its imaginary part and even in its real part. The
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expression for ÃT (v) is determined as follows:

ÃT (v) =

1Z
¡1

eivk
1Z
k

e®ke¡rT
¡
es ¡ ek¢ qT (s)dsdk

=

1Z
¡1

e¡rT qT (s)

sZ
¡1

¡
es+®k ¡ e(1+®)k¢ eivkdkds

=

1Z
¡1

e¡rT qT (s)
·
e(®+1+iv)s

®+ iv
¡ e(®+1+iv)s

®+ 1 + iv

¸
ds

=
e¡rTÁT (v ¡ (®+ 1)i)

®2 + ®¡ v2 + i(2®+ 1)v (6)

Call values are determined by substituting (6) into (5) and performing
the required integration. We note that the integration (5) is a direct Fourier
transform and lends itself to an application of the FFT . We also note that
if ® = 0; then the denominator vanishes when º = 0, inducing a singularity
in the integrand. Since the FFT evaluates the integrand at º = 0; the use of
the factor exp(®k) or something similar is required
We now consider the issue of the appropriate choice of the coe±cient

®. Positive values of ® assist the integrability of the modi¯ed call value
over the negative log strike axis, but aggravate the same condition for the
positive log strike axis. For the modi¯ed call value to be integrable in the
positive log strike direction, and hence for it to be square integrable as well,
a su±cient condition is provided by Ã(0) being ¯nite. From (6), we observe
that ÃT (0) is ¯nite provided ÁT (¡ (®+ 1)i) is ¯nite. From the de¯nition of
the characteristic function, this requires that:

E
£
S®+1T

¤
<1: (7)

In practice, one may determine an upper bound on ® from the analytical
expression for the characteristic function and the condition (7). We ¯nd that
one fourth of this upper bound serves as a good choice for ®:
We now consider the issue of the in¯nite upper limit of integration in (5).

Note that as the modulus of Át is bounded by E
£
S®+1T

¤
, which is independent
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of v, it follows that:

jÃT (v)j2 ·
E
£
S®+1T

¤
(®2 + ®¡ v2)2 + (2®+ 1)2v2 ·

A

v4

for some constant A; or that:

jÃ(v)j <
p
A

v2
:

It follows that we may bound the integral of the upper tail by:

1Z
a

jÃ(v)j dv <
p
A

a
: (8)

This bound makes it possible to set up a truncation procedure. Speci¯cally,
the integral of the tail in computing the transform of (5) is bounded by

p
A=a

and hence the truncation error is bounded by:

exp(¡®k)
¼

p
A

a

which can be made smaller than " by choosing:

a >
exp(¡®k)

¼

p
A

"
:

3.2 Fourier Transform of Out-Of-The-Money Option
Prices

The last section multiplied call values by an exponential function to obtain
a square integrable function whose Fourier transform is an analytic function
of the characteristic function of the log price. Unfortunately, for very short
maturities, the call value approaches its non-analytic intrinsic value causing
the integrand in the Fourier inversion to be highly oscillatory, and therefore
di±cult to numerically integrate. The purpose of this section is to introduce
an alternative approach which works with only time values. Again letting
k denote the log of the strike and S0 denote the initial spot price, we let
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zT (k) be the T maturity put price when k < ln(S0); and we let it be the T
maturity call price when k > ln(S0): For any unimodal probability density
function, the function zT (k) is peaked at k = ln(S0) and is declines in both
directions as k tends to positive or negative in¯nity. In this subsection, we
develop an analytic expression for the Fourier transform of zT (k) in terms of
the characteristic function of the log of the terminal stock price.
Let ³T (v) denote the Fourier transform of zT (k):

³T (v) =

1Z
¡1

eivkzT (k)dk: (9)

The prices of out-of-the-money options are obtained by inverting this trans-
form:

zT (k) =
1

2¼

1Z
¡1

e¡ivk³T (v)dv: (10)

For ease of notation, we will derive ³T (v) assuming that S0 = 1 (one may
always scale up to other values later). We may then de¯ne zT (k) by:

zT (k) = e
¡rT

1Z
¡1
[(ek ¡ es)1s<k;k<0 + (es ¡ ek)1s>k;k>0]qT (s)ds: (11)

The expression for ³T (v) follows on noting that:

³T (v) =

0Z
¡1

dkeivke¡rT
kZ

¡1

(ek ¡ es)qT (s)ds+ (12)

1Z
0

dkeivke¡rT
1Z
k

(es ¡ ek)qT (s)ds:

Reversing the order of integration in (12) yields:
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³T (v) =

0Z
¡1

dse¡rT qT (s)

1Z
s

(e(1+iv)k ¡ eseivk)dk + (13)

1Z
0

dse¡rT qT (s)

sZ
0

(eseivk ¡ e(1+iv)k)dk:

Performing the inner integrations, simplifying, and writing the outer integra-
tion in terms of characteristic functions, we get:

³T (v) = e
¡rT

·
1

1 + iv
¡ e

rT

iv
¡ ÁT (v ¡ i)

v2 ¡ iv
¸
: (14)

Although there is no issue regarding the behavior of zT (k) as k tends to
positive or negative in¯nity, the time value at k = 0 can get quite steep as
T ! 0, and this can cause di±culties in the inversion. The function zT (k)
approximates the shape of a Dirac delta function near k = 0 when maturity
is small (see Figure 1), and thus the transform is wide and oscillatory.
It is useful in this case to consider the transform of sinh(®k)zT (k) as this

function vanishes at k = 0. De¯ne:

°T (v) =

1Z
¡1

eivk sinh(®k)zT (k)dk (15)

=

1Z
¡1

eivk
e®k ¡ e¡®k

2
zT (k)dk

=
³T (v ¡ i®)¡ ³T (v + i®)

2

Thus, the time value is given by:

zT (k) =
1

sinh(®k)

1

2¼

1Z
¡1

e¡ivk°T (v)dv:

The value of ® can be chosen to control the steepness of the integrand near
zero.
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4 Option Pricing Using the FFT

The FFT is an e±cient algorithm for computing the sum:

w(k) =
NP
j=1

e¡i
2¼
N
(j¡1)(k¡1)x(j) for k = 1; ¢ ¢ ¢ ;N; (16)

where N is typically a power of 2. The algorithm reduces the number of
multiplications in the required N summations from an order of N2 to that
of N ln2(N); a very considerable reduction. We present in this section the
details for writing the integration (5) as an application of the summation
(16).
Using the Trapezoid rule for the integral on the right side of (5) and

setting vj = ´(j ¡ 1); an approximation for C(k) is:

CT (k) t
exp(¡®k)

¼

NX
j=1

e¡ivjkÃT (vj)´: (17)
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The e®ective upper limit for the integration is now:

a = N´: (18)

We are mainly interested in at-the-money call values C(k); which corre-
spond to k near 0: The FFT returns N values of k and we employ a regular
spacing of size ¸; so that our values for k are:

ku = ¡b+ ¸(u¡ 1); for u = 1; ¢ ¢ ¢ ; N: (19)

This gives us log strike levels ranging from ¡b to b where:

b =
N¸

2
: (20)

Substituting (19) into (17) yields:

CT (ku) t exp(¡®ku)
¼

NP
j=1

e¡ivj(¡b+¸(u¡1))ÃT (vj)´; for u = 1; ¢ ¢ ¢ ; N: (21)

Noting that vj = (j ¡ 1)´; we write:

CT (ku) t
exp(¡®ku)

¼

NX
j=1

e¡i¸´(j¡1)(u¡1)eibvjÃT (vj)´: (22)

To apply the fast Fourier transform, we note from (16) that:

¸´ =
2¼

N
: (23)

Hence if we choose ´ small in order to obtain a ¯ne grid for the integration,
then we observe call prices at strike spacings that are relatively large, with few
strikes lying in the desired region near the stock price. We would therefore
like to obtain an accurate integration with larger values of ´ and for this
purpose, we incorporate Simpson's rule weightings into our summation. With
Simpson's rule weightings and the restriction (23), we may write our call price
as:

C(ku) =
exp(¡®ku)

¼

NX
j=1

e¡i
2¼
N
(j¡1)(u¡1)eibvjÃ(vj)

´

3
(3 + (¡1)j ¡ ±j¡1); (24)
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where ±n is the Kronecker delta function that is unity for n = 0 and zero
otherwise. The summation in (24) is an exact application of the FFT. One
needs to make the appropriate choices for ´ and ®: The next section takes
up these issues in the context of the Variance Gamma (VG) option pricing
model used to illustrate our approaches.
The use of the FFT for calculating out-of-the-money option prices is

similar to (24). The only di®erences are that we replace the multiplication
by exp(¡®ku) with a division by sinh(®k) and the function call to Ã(v) is
replaced by a function call to °(v) de¯ned in (15).

5 The FFT for VG Option Pricing

The VG option pricing model is described in detail in Madan, Carr, and
Chang [9], who document that this process e®ectively removes the smile
observed when plotting Black Scholes implied volatilities against strike prices.
The VG process is obtained by evaluating arithmetic Brownian motion with
drift µ and volatility ¾ at a random time given by a gamma process having a
mean rate per unit time of 1 and a variance rate of º: The resulting process
Xt(¾; µ; º) is a pure jump process with two additional parameters µ and º
relative to the Black Scholes model, providing control over skewness and
kurtosis respectively. The resulting risk-neutral process for the stock price is

St = S0 exp(rt+Xt(¾; µ; º) + !t); t > 0; (25)

where by setting ! = (1=º) ln(1 ¡ µº ¡ ¾2º=2); the mean rate of return on
the stock equals the interest rate r.
Madan, Carr, and Chang [9] show that the characteristic function for the

log of ST is:

ÁT (u) = exp(ln(S0 + (r + !)T )
¡
1¡ iµºu+ ¾2u2º=2¢¡T=º : (26)

To obtain option prices, one can analytically invert this characteristic func-
tion to get the density function, and then integrate the density function
against the option payo®. Madan, Carr, and Chang [9] provide a closed form
formula for both the density function and the option price. Alternatively, the
Fourier transform of the distribution functions can be numerically inverted
as reviewed in section 1. Finally, the Fourier transform of the modi¯ed call
can be numerically inverted without using FFT. In this last case, one must
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set the damping coe±cient, ®: To accomplish this, we evaluate the term
ÁT (¡(®+ 1)i) in (7) as:

ÁT (¡(®+ 1)i) = exp(ln(S0 + (r + !)T )(1¡ µº(®+ 1)¡ ¾2(®+ 1)2º=2)¡T=º:

For this expression to be ¯nite, we must have that:

® <

s
µ2

¾4
+

2

¾2º
¡ µ

¾2
¡ 1:

Generally, we anticipate in our estimates that the expectation of S2T is ¯nite
and that this upper bound is above unity. A value of ® above unity and well
below the upper bound performs well.
For our FFT methods, we found that setting the spacing ´ = 0:25 deliv-

ers the speedup of the FFT without compromising the accuracy delivered by
other methods However, as a quality control, we recommend selective check-
ing of the FFT output against other methods. We used N = 4096 points in
our quadrature, implying a log strike spacing of 8¼=4096 = :00613 or a little
over half a percentage point, which is adequate for practice. For the choice
of the dampening coe±cient in the transform of the modi¯ed call price, we
used a value of ® = 1:5: For the modi¯ed time value, we used ® = 1:10:
We evaluated option prices using the FFT to invert the modi¯ed call price

(termed VGFFTC) and using it to invert the modi¯ed time value (termed
VGFFTTV). We used 160 strike levels at 4 combinations of parameter set-
tings and compared the CPU times with those required by the following three
other methods:

1. VGFIC - Fourier inversion of the modi¯ed call price without using FFT

2. VGPS - Computing delta and the risk-neutral probability of ¯nishing
in-the-money

3. VGP. - the analytic formula in Madan, Carr, and Chang [9].

The results are presented in Table 1.
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TABLE 1
CPU TIMES FOR VG PRICING

CASE 1 CASE 2 CASE 3 CASE 4

¾ :12 :25 :12 :25
º :16 2:0 :16 2:0
µ ¡:33 ¡:10 ¡:33 ¡:10
t 1 1 :25 :25

V GFFTC 6:09 6:48 6:72 6:52
V GFFTTV 11:53 11:48 11:57 11:56
V GFIC 29:90 23:74 23:18 22:63
V GPS 288:50 191:06 181:62 197:97

V GP 22:41 24:81 23:82 24:74

We see from Table 1 that both FFT methods are considerably faster than
the other methods, computing 160 option prices in around 6:5 seconds and
11:5 seconds respectively. The analytical method of Madan, Carr, and Chang
[9] has a speed that is broadly comparable to that of direct Fourier inversion
without invoking the fast Fourier transform. By far the slowest method is
the practice of solving for the probability of ¯nishing in-the-money and for
the delta. Additionally we note that this method is not only slow but also
inaccurate with substantial errors in case 4.
For a more detailed analysis of case 4 we evaluate the option prices in

this case for strikes ranging from 70 to 130 in steps of a dollar with the
spot set at $100, the interest rate at :05 and the dividend yield at :03: At
the strikes of 77; 78; and 79 the prices reported by V GPS were respectively
¡:2425, ¡:2299, and 1:5386: The correct price reported by all the other meth-
ods, V GP , V GFIC, and the time value (TV ) approach were in agreement
to four decimal places and were respectively :6356, :6787, and :7244: For a
more detailed evaluation of the pricing errors, we computed for the remain-
ing strikes the mean errors and their standard deviations. The errors were
measured as deviations from the analytical formula V GP . This mean and
standard deviation is for V GPS, :0005658 and :0057. The corresponding
values for the modi¯ed call price are :0001196 and :0041 while for the time
value approach we have :000006059 and :0002662: Hence we observe that
the time value approach is an order of magnitude lower in its pricing errors
compared with V GFIC which is considerably better than V GPS. Figure 2

14



70 80 90 100 110 120 130
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
Pricing errors analytical less VGPS, modified call and time value

Strike

E
rr

o
rs

Analytical less VGPS *

Analytical less modified call -

Analytical less time value -.

p=100, r=.05, q=.03, sig=.25, nu=2.0, th=-.10, t=.25

Figure 2: Pricing Errors in Case 4 of Table 1.

below presents a graph of the pricing errors excluding the troublesome strikes
for V GPS: The primary di±culty with V GPS comes from the behavior of
the term iu in the denominator, for values of u near zero.

6 Summary and Conclusion

We analytically developed two Fourier transforms in terms of the character-
istic function of the log of the terminal stock price. The ¯rst is the Fourier
transform of the modi¯ed call price written as a function of log strike, where
the modi¯cation involves multiplying by an exponential. The second is the

15



Fourier transform of the modi¯ed time value, where the modi¯cation involves
multiplying by the hyperbolic sine function. Fourier inversion using the FFT
yields the modi¯ed call price and the modi¯ed time value respectively. We
illustrate our methods for the VG option pricing model and ¯nd that the
use of the FFT is considerably faster than most available methods and fur-
thermore, the traditional method described in Heston [8], Bates [5], Bakshi
and Madan [2], and Scott [13] can be both slow and inaccurate. By focusing
attention on delta claims the traditional method sacri¯ces the advantages of
the continuity of the call payo® and inherits in its place the problemmatic
discontinuity of these claims. Thus, we recommend the use of the V GFFT
and in general the use of the FFT whenever the characteristic function of
the underlying uncertainty is available in closed form.
We anticipate that the advantages of the FFT are generic to the widely

known improvements in computation speed attained by this algorithm and is
not connected to the particular characteristic function or process we chose to
analyse. We have observed similar speed improvements when we work with
generalizations of the V Gmodel introduced in Geman, Madan, and Yor [7],
where a considerable variety of processes are developed with closed forms for
the characteristic function of the log price.
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