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7 Jump Diffusion

7.1 Why Jumps are Needed

In section 6, we indicated the possibility that jumps might explain why
the skew is so steep for very short expirations and why the very short-
dated term structure of skew is inconsistent with any stochastic volatility
model. Another indication that jumps might be necessary to explain the
volatility surface comes from Table 1. There, we see that there are bids
of 0.05 for 750 strike puts and 925 strike calls with only two days to go !
Given that volatility is around 2% per day according to Figure 1 (2% daily
is equivalent to roughly 32% annualized volatility), a 116 point move in the
index corresponds to roughly 5 standard deviations. The probability of a
normally distributed variable making such a move is about one in a million.

Just as strikingly, in table 2, we see that there is a 5 cent bid for options
45 points out-of-the-money which have almost expired. Recall that the final
payoff of SPX options is set at the opening of trading on the following day
(September 20 in this case). Historically, about 40% of the variance of
SPX is from overnight moves. Then a 45 point move corresponds to around
4.2 standard deviations. The probability of a normally distributed variable
making such a move is about one in a hundred thousand. And these 5 cent
bids are only bids; one might suppose that actual trades would take place
somewhere between the bid and the offer.

In fact, high bids for options that would require an extreme move to end
up in-the-money are just another manifestation of the extreme short-end
skew in the SPX market just prior to expiration. From the perspective of a
trader, the explanation is straightforward: large moves do sometimes occur
and it makes economic sense to bid for out-of-the-money options — at the
very least to cover existing risk.

It is easy to see why extreme short-end skews are incompatible with
stochastic volatility; if the underlying process is a diffusion and volatility of
volatility is reasonable, volatility should be near constant on a very short
timescale. Then returns should be roughly normally distributed and the
skew should be quite flat.

To make this concrete, in Figure 1, we superimpose observed implied
volatilities with the implied volatility smile generated by the Heston model
with the BCC parameters of Homework 1 (Bakshi, Cao, and Chen (1997)):

n=0.39; p=-0.64; A =1.15
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Table 1: September 2002 expiration option prices as of September 18, 2002.
SPX is trading at 866.

Strike Call Bid Call Ask Put Bid Put Ask

750 114.00 118.00 0.05 0.25
775 89.00 93.00 0.10 0.45
780 84.00 88.00 0.10 0.45
790 74.10 78.10 0.15 0.45
800 64.20 68.20 0.15 0.40
810 54.40 58.40 - 1.00
820 44.70 48.70 0.25 1.25
825 39.90 43.90 0.45 1.45
830 35.20 39.20 0.75 1.75
840 26.20 30.20 1.75 2.30
850 18.00 21.50 3.00 4.60
860 10.90 13.00 5.50 7.40
870 5.90 8.90 10.00 12.90
875 4.50 4.80 12.50 16.00
880 2.95 4.10 15.90 19.40
885 1.95 2.95 19.80 23.30
890 1.10 1.50 23.60 27.60
900 0.40 0.80 32.60 36.60
905 0.05 1.00 37.40 41.40
910 - 0.50 42.20 46.20
915 - 0.30 47.10 51.10
920 0.05 0.50 52.10 56.10
925 0.05 0.25 57.10 61.10
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Table 2: September 2002 expiration option prices as of Thursday September
19, 2002 at 4PM. SPX is trading at 843.

Strike Call Bid Call Ask Put Bid Put Ask

800 41.20 45.20 0.05 0.20
810 31.50 35.50 0.15 0.30
820 22.10 26.10 0.65 1.00
825 18.00 21.20 1.00 1.90
830 13.80 17.00 1.95 2.95
840 7.00 9.00 4.30 5.90
850 2.00 2.35 9.30 10.00
860 0.60 0.65 16.10 17.80
870 - 0.40 25.10 29.10
875 0.10 0.20 30.10 34.10
880 - 0.50 35.10 39.10
885 - 0.30 40.00 44.00
890 0.05 0.10 46.00 49.00

Figure 1: Graph of SPX implied volatilities on September 18, 2002. SPX is
trading at 866. Red points are offers and blue points are bids. The green
line is a non-linear fit to the data. The red line represents the Heston skew
with BCC parameters.
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7.2 Derivation of the Valuation Equation

As in Wilmott (1998), we assume the stock price follows the SDE
dS =uSdt+ocSdZ + (J—1)Sdg (40)
where the Poisson process

do — 0 with probability 1 — A(¢) dt
1= 1 with probability A\(¢) dt

When dg = 1, the process jumps from S to JS. We assume that the Poisson
process dq and the Brownian motion dZ are independent.

As in the stochastic volatility case, we derive a valuation equation by
considering the hedging of a contingent claim. We make the (unrealistic)
assumption at this stage that the jump size J is known in advance.

Whereas in the stochastic volatility case, the second risk factor to be
hedged was the random volatility, in this case, the second factor is the jump.
So once again, we set up a portfolio II containing the option being priced
whose value we denote by V(S,v,t), a quantity —A of the stock and a
quantity —A; of another asset whose value V; also depends on the jump.

We have

N=vV-AS-AV

The change in this portfolio in the time interval dt is given by

2 2
dll = {av + 102 SZa—V}dt—Al {% + 102 Szﬂ}dt

ot 2 052 o 2 052
oV oV, .
+{%—A1%—A}ds

FAV(IS,1) — V(S 1) — A(VA(JS, 1) — Vi(S, 1)) — A(J — 1)S} dg

where S¢(t) is the continuous part of S(¢) (adding back all the jumps that
occurred up to time t).
To make the portfolio instantaneously risk-free, we must choose

oo o

to eliminate dS terms, and

V(JS,t) =V (S,t) — A (Vi(JS,t) — Vi(S,t) —A(J —-1)S =0
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to eliminate dq terms. This leaves us with

oV 1, , O*V oy 1., ,0%°V
dll = {(‘3t+20 S&SQ}dt_Al{ﬁt +20 S 532 dt

= rlldt
= r(V-—AS—AV)dt

where we have used the fact that the return on a risk-free portfolio must
equal the risk-free rate r which we will assume to be deterministic for our
purposes. Collecting all V' terms on the left-hand side and all V; terms on
the right-hand side, we get

vV 4 1,2 g20%V v _ Vi 1.2 q20%V VL _
5 T 50 S g5 +18%% TV: o T 5055 + 1SS — Vi

5V — (J —1)S% Vi —(J—1)S%2

where we have defined 0V = V(JS,t) — V(S,1).

Continuing exactly as in the stochastic volatility case, the left-hand side
is a function of V' only and the right-hand side is a function of V; only. The
only way that this can be is for both sides to be equal to some function of
the independent variables S and ¢ which we will suggestively denote by —A.
We deduce that

ov 1 0?V ov

5 + 20’58524—7”585 rV
15)%

+ (S, 1) {V(JS, t)y—V(S,t)—(J — 1)5%} =0 (41)

To interpret A(S, t), consider the value P of an asset that pays $1 at time

T if there is no jump and zero otherwise. Our assumption that the jump
process is independent of the stock price process implies that

oP
0
oS
Also, we must have P(JS,t) = 0. Substituting into equation (41) gives
oP
— —rP = AS,t) P =
P NS P =0

Since P is independent of S, so must A be and the solution is P(t) =
exp {— ftT(r + A(t')) dt’ } We immediately recognize A(t) as the hazard
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rate of the Poisson process (the pseudo-probability per unit time that a jump
occurs). We emphasize pseudo-probability because this is in no sense the
actual probability (whatever that means) that a jump will occur: it is the
value today of a financial asset.

Uncertain jump size

To derive equation (41), we assumed that we knew in advance what the
jump size would be. Of course this is neither realistic nor practical. Jump-
diffusion models typically specify a distribution of jump sizes. How would
this change equation (41)?

It is easy to see that adding another jump with a different size would
require one more hedging asset in the replication argument. Allowing the
jump size to be any real number with some distribution would require an
infinite number of hedging assets. We see that in this case, the replication
argument falls apart: such jump-diffusion models have no replicating hedge.

This is the major drawback of jump-diffusion models: there is no repli-
cating portfolio and so there is no self-financing hedge even in the limit
of continuous trading. However, looking on the bright side, if we believe
in jumps (as we must given the empirical evidence), options are no longer
redundant assets which can be replicated using stocks and bonds and by
extension, option traders can be seen to have social value.

To extend equation (41) to the case of jumps of uncertain size, we need
to introduce an additional assumption. The usual assumption due to Mer-
ton (1976) is that if jumps are uncorrelated with the market, jump risk is
diversifiable and should not be rewarded. Suppose we delta-hedge with A
of stock (no other assets) with

v

A=
08

Then the change in the hedge portfolio over the time interval dt is given by

OV 1, 207V oV
dIl = {E +50°S W} dt + {V(JS, )= V(S,t)—(J 1)5%} dg
(42)

No reward for jump risk translates into the requirement that the risk-neutral
expectation of equation (42) be zero. This gives the following equation for
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valuing financial assets under jump-diffusion:

oV 1, ,0°V 9V
o T 7 S triag Y
oV

+ A {E V(JS,t) — V(S,8)] —E[J —1] s%} —0 (43)

The assumption that jumps are uncorrelated with the market is clearly
untenable in the case of the short-dated SPX skew: SPX is the market.
Nevertheless, despite this reservation, we will continue with our analysis.

7.3 Lévy Processes

With constant hazard rate A, the logarithmic version of the jump-diffusion
process (40) for the underlying asset is an example of a Lévy Process.

Definition. A Lévy process is a continuous in probability, cadlag stochastic
process x(t), t > 0 with independent and stationary increments and x(0) = 0.

It turns out that any Lévy process can be expressed as the sum of a
linear drift term, a Brownian motion and a jump process. This plus the in-
dependent increment property leads directly to the following representation
for the characteristic function.

The Lévy-Khintchine Representation

If z; is a Lévy process, and if the Lévy density u(&) is suitably well-behaved at
the origin, its characteristic function ¢7(u) = E [e"*7] has the representation

or(u) = exp {z’uwT - %uQ T + T/ (€™ — 1] p(&) d{} (44)

To get the drift parameter w, we impose that the risk-neutral expectation of
the stock price be the forward price. With our current assumption of zero
interest rates and dividends, this translates to imposing that

¢r(—i) = E[e™] =1

Here, [pu(£)dé = X, the Poisson intensity or mean jump arrival rate also
known as the hazard rate.
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Example 1: Black-Scholes

The characteristic function for a exponential Brownian motion with volatility
o is given by

¢r(u) = E [e"T] = exp {—%u(u - i)aQT}

We can get this result by performing the integration explicitly or directly
from the Lévy-Khintchine representation.
Example 2: Heston

The Heston process is very path-dependent; increments are far from inde-
pendent and it is not a Lévy process. However, we have already computed
its characteristic function. From Section 3.2, we see that the characteristic
function of the Heston process is given by

or(u) = exp{C(u, T)v+ D(u,T) v}
with C'(u,T) and D(u,T) as defined there.

Example 3: Merton’s Jump-Diffusion Model

This is the case we are really interested in here. The jump-size J is assumed
to be lognormally distributed with mean log-jump a and standard deviation
0 so that the stock price follows the SDE

dS = pSdt + oS dZ + (e*™¢ —1)S dg

with € ~ N(0,1). Then

(€)= @exp{—%}

By applying the Lévy-Khintchine representation (44), we see that the
characteristic function is given by

¢r(u) = exp qiuwl — Leor + T/ [ —1] A exp _E-o) d§
' 2 V21?2 262
1 ; 252
= exp {iuwT — §u2 2T +N\T <ezua—u 52/2 1 } (45)
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To get w, we impose ¢r(—i) = 1 so that
1 2 a+62/2
exp wT+§0T+)\T<e —1) =1

which gives
w= _%02 - A <6a+62/2 — 1)

Unsurprisingly, we get the lognormal case back when we set a = 6 = 0.

7.4 Solving the Valuation Equation

Unlike the partial differential equations (PDEs) we are used to solving in
derivatives valuation problems, equation (43) is an example of an partial
integro-differential equation (PIDE). The integration over all possible jump-
sizes introduces non-locality. Such equations can be solved using extensions
of numerical PDE techniques but the most natural approach is to use Fourier
transform methods.

It turns out (see Carr and Madan (1999) and Lewis (2000)) that it is quite
straightforward to get option prices by inverting the characteristic function
of a given stochastic process (if it is known in closed-form).

The formula we will use is a special case of formula (2.10) of Lewis (as
usual we assume zero interest rates and dividends):

C(S,K,T) = S — \/S_K% /0 T Rele ey (u—if2)]  (46)

u
u? + 1
with £ = In (%) A proof of this formula is given in Appendix A.

7.5 Implied Volatility Term Structure and Skew

Equation (46) allows us to derive an elegant implicit expression for the
Black-Scholes implied volatility of an option in any model for which the
characteristic function is known.

Substituting the characteristic function for the Black-Scholes process into
(46) gives

du

241
u® + 7

. 1 1
Re e—zuk€—§ (“2+Z)UQBST:|

1 oo
Cs(S, K. T) = § — VIR~ /
™ Jo
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Then, from the definition of implied volatility, we must have

| Re [ (oruif2) AT —0 )

2 1
u® + 7

Equation (47) gives us a simple but implicit relationship between the im-
plied volatility surface and the characteristic function of the underlying stock
process. In particular, we may efficiently compute the structure of at-the-
money implied volatility and the at-the-money volatility skew in terms of
the characteristic function (at least numerically).

7.5.1 The at-the-money volatility skew

Assume ¢ does not depend on spot S and hence not on k. (This is the case
in all examples we have in mind.) Then differentiating (47) with respect to
k and evaluating at k = 0 gives

/OOO " {uIm [pr(u —i/2)] n Owps

1
u2+% 2 Ok

e—% (w+3)wns(0.7) } =0
k=0

Then, integrating the second term explicitly we get

= 6# ZL / du u Im [¢T(U 1_ 7’/2>] (48)
k=0 VT Jo u?+ g

1
Example 1: Black-Scholes

8035

ok

Im [pr(u —i/2)] = Im [e_%(“2+1/4)"2T =0
Then, in the Black-Scholes case,

Oops(k,T)

= T
ok 0 VI'>0

k=0

Example 2: Merton’s Jump-Diffusion Model (JD)

Write
o) = o~ oo guCoT

with () = —\iu (ea+62/2 _ 1) I\ <€z‘ua—u252 2 1)
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Then o
Im [pr(u — i/2)] = e 2 (¥ +3)7°T Iy [e¥w=i/2T]

To get the very short time behavior of this expression, we can consider the
limit A — 0. In that limit, noting that Im [e¥7(“="/?)] = 0 when A = 0, we
have

Im [ri/2] ~ A%Im [btui/2T]

A=0
= =\T {u (eo‘+52/2 — 1) + highly oscillatory terms }

Substituting this expression into equation (48), we get

80_BS = —ILLJTG U2BSST EL /OO du —U/2 e_%(u2+1/4)U2T
o |, vl
+ higher order terms
RN o AP N 0
o

where 1y = —A(e®t°/2 — 1) is the adjustment to the risk-neutral drift for
jumps.

Intuition

Whilst the above derivation has the virtue of resulting from a systematic
approach, a more direct approach proves more intuitive.

Consider the value of an option under jump-diffusion with a short time
AT to expiration. Because the time to expiration is very short, the prob-
ability of having more than one jump is negligible. Because the jump is
independent of the diffusion, the value of the option is just a superposition
of the value conditional on the jump and the value conditional on no jump.
Without loss of generality, suppose the stock price jumps down from S to
JS when the jump occurs. Then

Ci(S,K,AT) ~ (1 —\AT)Cps(Se’’T K, AT) + AT C(JS, K, AT)
= Cps(Se™AT K, AT) + O(AT) (49)

where J is the size of the jump, C;(.) represents the value of the option
under jump diffusion and p; = —A\(e*T%/2 — 1) is the adjustment to the
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risk-neutral drift for jumps. Here, we neglected the second term in equation
(49) by assuming that the mean jump is downwards and the probability of
the option being in-the-money is negligibly small after the jump.
We want to compute
80' BS

Ok

k=0
To do this note that

80] . 8035 i 8035 80’35
ok Ok Oops Ok

SO
8035

Ok

_[0C,  0Cgs] (9Cks\
Lok ok

k=0 OBS

k=0
Now, for an at-the-money option,

9Cps

OBS

zi AT

k=0 V 2T

and from equation (49)

1 [GCJ 8035}

S

ok ok

N (AL !
N(+0m 5 AT)+N( 5 AT)

1 NJ\/—
———— VAT
Vam o

k=0

Q

Then, for small AT,
Jops

ok

~ P (50)

k=0 oBS

as required.

We see that in a jump-diffusion model, if the mean jump-size is suffi-
ciently large relative to its standard deviation, the at-the-money variance
skew is given directly by twice the jump compensator p ;.

Example 3: Stochastic Volatility plus Stock Price Jumps (SVJ)

Since jumps generate a steep short-dated skew which dies quickly with time
to expiration and stochastic volatility models don’t generate enough skew
for very short expirations but more or less fit for longer expirations, it is
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natural to try to combine stock price jumps and stochastic volatility in one
model.

Suppose we add a simple Merton-style lognormally distributed jump pro-
cess to the Heston process. By substitution into the valuation equation, it
is easy to see that the characteristic function for this process is just the
product of Heston and jump characteristic functions. Denoting the jump
intensity (or hazard rate) by \;, we obtain

¢T(u) _ eC’(u,T) +D(u,T) v elp(u)T

with ¥(u) = — A iu (e‘”‘sz/Z — 1)+/\J <6"“a*“252/2 — 1> and C(u,T), D(u,T)
are as before.

Again, we may substitute this functional form into equations (47) and
(48) to get the implied volatilities and at-the-money volatility skew respec-
tively for any given expiration.

Figure 2 plots the at-the-money variance skew corresponding to the
Bakshi-Cao-Chen SVJ model fit together with the sum of the Heston and
jump-diffusion at-the-money variance skews with the same parameters (see
Table 3). We see that (at least with this choice of parameters), not only does
the characteristic function factorize but the at-the-money variance skew is
additive. One practical consequence of this is that the Heston parameters
can be fitted fairly robustly using longer dated options and then jump pa-
rameters can be found to generate the required extra skew for short-dated
options. Figure 3 plots the at-the-money variance skew corresponding to the
SVJ model vs the Heston model skew for short-dated options, highlighting
the small difference.

However in the SVJ model, after the stock price has jumped, the volatil-
ity will stay unchanged because the jump process is uncorrelated with the
volatility process. This is inconsistent with both intuition and empirically
observed properties of the time series of asset returns; in practice, after a
large move in the underlying, implied volatilities always increase substan-
tially (i.e. they jump). Not only that, but as we shall see, the extreme
short-end skew still can’t be explained with reasonable parameters.

7.5.2 Fitting the Volatility Surface

There are only 4 parameters in the jump-diffusion model: the volatility o,
Ay, a and ¢ so it’s not in principle difficult to perform a fit to option price
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Figure 2: The green line is a graph of the at-the-money variance skew in the
SVJ model with BCC parameters vs time to expiration. The dashed blue
line represents the sum of at-the-money Heston and jump-diffusion skews
with the same parameters.
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Figure 3: The green line is a graph of the at-the-money variance skew in
the SVJ model with BCC parameters vs time to expiration. The dashed red
line represents the at-the-money Heston skew with the same parameters.
0.2 0.4 0.6 0.8 1

-0. 025}

-0. 05}

-0. 075}

-0. 1}

-0.125}

-0. 15j

92



Table 3: Various fits of jump-diffusion style models to SPX data. JD means
Jump Diffusion and SVJ means Stochastic Volatility plus Jumps.

Author(s) Model A n p v AJ a )
AA JD NA NA NA 0.032 0.089 -0.8898 0.4505
BCC SVJ 2.03 0.38 -0.57 0.04 0.61 -0.09 0.14
M SVJ 1.0 08 -0.7 0.04 0.5 -0.15 0
DPS SVJ 3.99 027 -079 0.014 0.11 -0.12 0.15
Author(s) Reference Data from

AA Andersen and Andreasen (2000)  April 1999

BCC Bakshi, Cao, and Chen (1997) June 1988 — May 1991
M Matytsin (1999) 1999

DPS Duffie, Pan, and Singleton (2000) November 1993

data. The SVJ model obviously fits the data better because it has more
parameters and it’s not technically that much harder to perform the fit.

Various authors (for example Andersen and Andreasen (2000) and Dulffie,
Pan, and Singleton (2000)) have fitted JD and SVJ models to SPX data.
Their results are summarized in Table 3.

Note first that these estimates all relate to different dates so in principle,
we can’t expect the volatility surfaces they generate to be the same shape.
Nevertheless, the SPX volatility skew doesn’t really change much over time
so it does make some sense to compare them.

We can’t help but notice the extreme size of the mean downward jump
in the Andersen-Andreasen estimate! It is given by e*t¥*/2 — 1 = —54.54%.
Do we really believe that the market is pricing options as if there is an 8.5%
probability per year of a —55% jump in asset prices? Or is it more reasonable
to expect a —10% jump with a 40% probability? The implications for option
pricing are clearly very different. For example, consider the value of a short-
dated option that pays $1 if the market hits a barrier level set at 50% of the
current stock price. For pretty much any sensible volatility, if we believe in
average —10% jumps, this option is almost worthless. However, if we believe
in —55% jumps, the option has real value given by the probability of a jump
over the life of the option.

These crazy parameter estimates simply reflect the fact that the jump-
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Figure 4: Graph of SPX ATM variance skew vs. time to expiration in the
jump-diffusion model with Andersen-Andreasen (orange line) and the SVJ
model with Matytsin parameters (blue line). The green points represent
empirical variance skews from the Andersen-Andreasen paper and the red
points empirical variance skews from September 17, 2002.

diffusion model is totally misspecified: a closer analysis reveals that volatility
surface implied by a jump-diffusion model just doesn’t look like the empiri-
cally observed implied volatility surface.

7.5.3 Fits versus Reality

Figure 4 plots the at-the-money variance skews corresponding to the Andersen-
Andreasen and Matytsin fits and superimposes empirically observed skews
from September 17, 2002 and from the Andersen-Andreasen paper. Just
looking at the graph, we see that the SVJ model with Matytsin parameters
fits better than the jump-diffusion model with Andersen-Andreasen param-
eters. Also, we note that the short-dated skews from September 17, 2002
are pretty consistent with longer-dated skews from the Andersen-Andreasen
paper and so also consistent with our claim that volatility skew is relatively
stable over time.

Most strikingly however, just looking at the empirical skews, we see that

2
00

CL P

— —1.1lorsoast—0

and neither the JD nor the SVJ models fit even approximately in that limit.
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From equation (50), in the JD model, the variance skew at ¢t = 0 should
be given by
Do
ok

and in the SVJ model, there would be an additional term pn/2. In fact, it’s
easy to see that there is no sensible choice of jump-diffusion parameters that
could fit the short-dated skew. To achieve that we would need

R =2y =2\ (ea+52/2 — 1)
k=0

2 (ea+52/2 . 1) — o\ (E[J] - 1)~ —1

For example, it is easy to see that we must have A > 0.5. If we do put

= 0.5, we get E[J] = 0. This corresponds to a 40% chance per annum
of the stock market going to zero! Alternatively, we can set E[J] to a more
reasonable 0.9 to find A = 10 which corresponds roughly to a —10% jump
every month.

7.5.4 Skew Decay in a Jump-Diffusion Model

The volatility skew decays very rapidly in a jump-diffusion model beyond a
certain time to expiration. To estimate this characteristic time, note that
prices of European options depend only on the final distribution of stock
prices and if the jump size is of the order of only one standard deviation
oVT, a single jump has little impact on the shape of this distribution. If
there are many small jumps, returns will be hard to distinguish from normal
over a reasonable time interval. We compute the characteristic time by

equatin
4 § +62/2
— (eo‘ — 1) ~oVT

With Bakshi, Cao and Chen parameters, we obtain that the characteris-
tic time beyond which we expect the skew to be flat is around 2 months
(consistent with the extra blip in the skew in Figure 3) and with Andersen-
Andreasen parameters, the characteristic time is over 9 years, consistent
with Figure 4. Now we see why Andersen and Andreasen have that crazy
jump size estimate: without that their skew would decay far too fast to
remotely fit the implied volatility surface even for longer-dated options.
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7.6 Stochastic volatility with Simultaneous Jumps in
Stock Price and Volatility (SVJJ)

Adding a simultaneous upward jump in volatility to jumps in the stock price
allows us to maintain the clustering property of stochastic volatility models:
recall that “large moves follow large moves and small moves follow small
moves”. Interestingly, as noted by Matytsin (1999) for example, this exten-
sion also generates extreme short-dated implied volatility skews consistent
with observation.

7.7 Testing for Jumps

A recent paper by Carr and Wu (2002) studies the behavior of SPX op-
tion prices as time to expiration approaches zero and concludes that there
is strong evidence in the options market for the existence of a jump compo-
nent in the risk-neutral price process. They conclude that there must also
be jumps in the statistical (historical) price process (otherwise Girsanov’s
Theorem would induce no jumps in the risk-neutral process).

8 Some Applications of Jumps

8.1 Merton’s Model of Default

As we have come to expect, Wilmott (1998) gives an excellent introduction
to the modelling of default risk. There are two broad types of default-risk
model used by practitioners: so-called structural models and so-called re-
duced form models. I found the following useful description by JabairuStork
on Wilmott.com:

“A structural model (of firm default) postulates that default occurs when
some economic variable (like firm value) crosses some barrier (like debt
value), typically using a contingent claims model to support this assertion
and to find the probability of default. Both H-W and Creditgrades are
models of this form.”

“A reduced form model models default as a random occurrence - there
is no observable or latent variable which triggers the default event, it just
happens. The Duffie-Singleton model is a reduced form model. These models
are easy to calibrate, but because they lack any ability to explain why default
happens, I think they make most people nervous. Basically, you estimate an
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intensity for the arrival of default (possibly as a function of time, possibly
as a stochastic process, possibly as a function of other things.)”

Merton’s model is the simplest possible example of a reduced form model.
It supposes that there some probability A(¢) per unit time of the stock price
jumping to zero (the hazard rate) whereupon default occurs. Jumps are
independent of the stock price process. Then, contingent claims must satisfy
equation (43) with E[J] = 0. It is particulary straightforward to value a call
option because for a call, V(SJ,t) = 0. Substitution into equation (43)
gives:

1 2
%—Z —1—50282% +rsg—g — 7V =\ {V—Sg—g} =0 (51)
We immediately recognize equation (51) as the Black-Scholes equation with
a shifted interest rate r + A. Its solution is of course the Black-Scholes
formula with this shifted rate.

The meaning of this shifted rate is particularly clear if we assume no
recovery (in the case of default) on the issuer’s bonds so that B(JS,t) = 0.
Then, the risky bond price B(t,T) must also satisfy equation (51) with the
solution .

B(t7 T) . tf(r(s)+)\(s))ds
We identify the shifted rate r + A with the yield (risk-free rate plus credit
spread) of a risky bond. The situation is a little more complicated (but not
too much more) if we allow some recovery R on default.

Intuition

It may at first seem surprising that the Black-Scholes formula could be a
solution of an equation that has a jump to zero (the so-called jump to ruin)
in it. There is an economic reason for this however.

Recall that the derivation of the Black-Scholes formula involves the con-
struction of a replicating portfolio for a call option involving just stock and
risk-free bonds. Suppose instead, we were to construct this portfolio using
stock and risky bonds. So long as there is no jump to ruin, the derivation
goes through as before and the portfolio is self-financing. If there is a jump
to ruin, assuming no recovery on the bond, both the bond and the stock
jump to zero — the portfolio is still self-financing!
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Figure 5: 3 month implied volatilities from the Merton model assuming a
stock volatility of 20% and credit spreads of 100bp (orange), 200bp (green)
and 300bp (magenta).
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What would happen if we were to hedge a short call option position
using stock and risk-free bonds following the standard Black-Scholes hedging
recipe (as most practitioners actually do)? We would be long stock and short
risk-free bonds and in the case of default, the call would end up worthless,
the stock would be worthless and we would get full recovery on our risk-free
bonds. In other words, on default, we would have a windfall gain. On the
other hand, relative to hedging with risky bonds, we would forego the higher
carry (or yield).

Implications for the Volatility Skew

All issuers of stock have some probability of defaulting. There is a very active
credit derivative market (see DefaultRisk.com for background) which prices
default-risk. Black-Scholes implied volatilities are computed by inserting the
risk-free rate into the Black-Scholes formula. However, as we just showed,
in Merton’s model, call option prices are correctly obtained by substituting
the risky rate into the Black-Scholes formula. This induces a skew which
can become extremely steep for short-dated options on stocks whose issuers
have high credit spreads.

In Figure 5, we graph the implied volatility for various issuer credit
spreads assuming that options are correctly priced using the Merton model.
We see that the downside skew that the model generates can be extreme.
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8.2 Capital Structure Arbitrage

Capital structure arbitrage is the term used to describe the current fashion
for arbitraging equity claims against fixed income and convertible claims.
At its most sophisticated, practitioners build elaborate models of the capital
structure of a company to determine the relative values of the various claims -
in particular, stock, bonds and convertible bonds. At its simplest, the trader
looks to see if equity puts are cheaper than credit derivatives and if so buys
the one and sells the other. To understand this, we review put-call parity.

Put-Call Parity

We saw above that in the Merton model, the value of an equity call option is
given by the Black-Scholes formula for a call with the risk-free rate replaced
by the risky-rate. What about put options? To make the arguments above
work, the put option would need to be worthless after the jump to ruin
occurs. That would be the case if the put in question were to be written
by the issuer of the stock. In that case, when default occurs, assuming zero
recovery, the put options would also be worth nothing. So the Black-Scholes
formula for a put with the risk-free rate replaced by the risky-rate does value
put options written by the issuer.

What about put options written by some default-free counterparty (for
example an exchange)? When default occurs, this put option should be
worth the strike price. We already know how to value a call written by a
default-free counterparty; by definition, the issuer of a stock cannot default
on a call on his own stock so the value of a call written by the issuer of the
stock equals the value of a call written by a default-free counterparty. We
obtain the value of a put by put-call parity: using risk-free bonds in the
case of the default-free counterparty and risky bonds in the case of the risky
counterparty.

Denoting the value of a risk-free put, call and bond by F,,Cy and By and
the value of risky claims on the issuer of the stock by P, C; and By (I for
issuer), we obtain

Py, = Cy+ KBy— S (from put-call parity with risk-free bonds)
= Cr+ KBy — S (risk-free and issuer-written calls have the same value)
= P+S—KB;+ KBy — S (from put-call parity with risky bonds)
= P+ K(By— By)
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As we would expect, the risk-free put is worth more than the risky put.
The excess value is equal to the difference in risky and risk-free bond prices
(times the strike price). With maturity-independent rates and credit spreads
for clarity and setting ¢ = 0, we obtain

BQ — B[ = B_TT (1 — G_AT)

which is just the discounted probability of default in the Merton model. In
words, the extra value is the strike price times the (pseudo-) probability that
default occurs. This payoff is also more or less exactly the payoff of a default
put in the credit derivatives market.

The Arbitrage

Referring back to Figure 5, we see that the downside implied volatility skew
can be extreme for stocks whose issuers have high credit spreads. Equity
option market makers (until recently at least) made do with heuristic rules to
determine whether a skew looked reasonable or not; implied volatility skews
of the magnitude shown in Figure 5 seemed just too extreme to be considered
reasonable. Taking advantage of the market maker’s lack of understanding,
the trader buys an equity option on the exchange at a “very high” (but of
course insufficiently high) implied volatility and sells a default put on the
same stock in the credit derivatives market locking in a risk-free return.

8.3 The Baseball Trade

The baseball trade takes its name from the familiar “three strikes and you're
out” rule. It is one of the most model-dependent structures ever traded. Its
terms are as follows:

e We establish an initial range for the stock price (95 to 105 say).

o [f the stock price has exited the range at any reset point, we reset the
barriers to be equidistant from the new stock price.

e We repeat this procedure until the third time the stock price exits a
range whereupon the trade expires worthless.

e [f the stock price is still within one of the specified ranges at maturity,
the trade pays $1.
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In fact, this structure was popular for a while in the FX markets where
jumps are uncommon. In equity markets however, where jumps are common,
the extreme model-dependence is poisonous.

To see this, suppose we were to value it using a jump-diffusion model with
Andersen-Andreasen parameters as in Table 3. The diffusion component of
the process would have rather low volatility and the probability of having
more than one jump in one year say is negligible. If and when a jump occurs,
the new range is set around the point reached not around the old range. If
the original range is sufficiently wide the probability of this claim paying $1
at the end is very high.

On the other hand, if we value the same trade using a local volatility
model where the local volatilities are calibrated to return jump-diffusion
model European option prices, the volatility will be that much higher and
the probability of not getting $1 that much greater.
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A Proof of Equation (46)

A covered call position has the payoff min[Sy, K] where Sy is the stock
price at time 7" and K is the strike price of the call. Consider the Fourier
transform of this covered call position G(k, ) with respect to the log-strike
k =log (K/F) defined by

o0

~

G(u,7) = /ei“kG(k,T) dx

—0o0

Denoting the current time by ¢ and expiration by 7', and setting interest
rates and dividends to zero as usual, we have that

1 I
EG(U, T—-1) = / e"*E [min[e"”, e") ]|z, = 0] dk
= E /ei“k minfe*?, )T dk| 2, = 0
: xT o
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| 1+ w
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u(u — 1) [e ‘ 7= 0)
— rlu— i)
= —_— u —
wlu—1i) "
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by definition of the characteristic function ¢r(u). Note that the transform
of the covered call value exists only if 0 < Im[u] < 1. It is easy to see that
this derivation would go through pretty much as above with other payoffs
though it is key to note that the region where the transform exists depends
on the payoff.

To get the call price in terms of the characteristic function, we express
it in terms of the covered call and invert the Fourier transform, integrating
along the line Im[u] = 1/2'. Then

1 oco+14/2 du

K T — Q- o s —iku
C(S,K,T) S 527T i W@ =) or(u—i)e
1 [ du . .
= - 5— — /2 —ik(u+i/2)
Sk b /_Oo i) —i) T i2e

- S—\/S_K% /OOO d -Re [e " or (u—i/2)]

U
2 1
u® + 7

with £k = In (%)

!That’s why we chose to express the call in terms of the covered call whose transform
exists in this region. Alternatively, we could have used the transform of the call price and
Cauchy’s Residue Theorem to do the inversion.
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