
6. The LIBOR and Swap Market Models
(LFM and LSM)

There is so much they don’t tell. Is that why I became a cop?
To learn what they don’t tell?
John Jones in “Martian Manhunter: American Secrets” 1, DC Comics,
1992

6.1 Introduction

In this chapter we consider one of the most popular and promising families
of interest-rate models: The market models.

Why are such models so popular? The main reason lies in the agree-
ment between such models and well-established market formulas for two ba-
sic derivative products. Indeed, the lognormal forward-LIBOR model (LFM)
prices caps with Black’s cap formula, which is the standard formula employed
in the cap market. Moreover, the lognormal forward-swap model (LSM) prices
swaptions with Black’s swaption formula, which again is the standard formula
employed in the swaption market. Since the caps and swaptions markets are
the two main markets in the interest-rate-options world, it is important for
a model to be compatible with such market formulas.

Before market models were introduced, there was no interest-rate dynam-
ics compatible with either Black’s formula for caps or Black’s formula for
swaptions. These formulas were actually based on mimicking the Black and
Scholes model for stock options under some simplifying and inexact assump-
tions on the interest-rates distributions. The introduction of market models
provided a new derivation of Black’s formulas based on rigorous interest-rate
dynamics.

However, even with full rigor given separately to the caps and swaptions
classic formulas, we point out the now classic problem of this setup: The
LFM and the LSM are not compatible. Roughly speaking, if forward LIBOR
rates are lognormal each under its measure, as assumed by the LFM, forward
swap rates cannot be lognormal at the same time under their measure, as
assumed by the LSM. Although forward swap rates obtained from lognormal
forward LIBOR rates are not far from being lognormal themselves under the
relevant measure (as shown in some empirical works and also in Chapter 8
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of the present book), the problem still stands and reduces one’s enthusiasm
for the theoretical setup of market models, if not for the practical one.

In this chapter, we will derive the LFM dynamics under different measures
by resorting to the change-of-numeraire technique. We will show how caps
are priced in agreement with Black’s cap formula, and explain how swaptions
can be priced through a Monte Carlo method in general. Analytical approx-
imations leading to swaption-pricing formulas are also presented, as well as
closed-form formulas for terminal correlations based on similar approxima-
tions.

We will suggest parametric forms for the instantaneous covariance struc-
ture (volatilities and correlations) in the LFM. Part of the parameters in
this structure can be obtained directly from market-quoted cap volatilities,
whereas other parameters can be obtained by calibrating the model to swap-
tion prices. The calibration to swaption prices can be made computationally
efficient through the analytical approximations mentioned above.

We will derive results and approximations connecting semi-annual caplet
volatilities to volatilities of swaptions whose underlying swap is one-year long.
We will also show how one can obtain forward rates over non-standard pe-
riods from standard forward rates either through drift interpolation or via a
bridging technique.

We will then introduce the LSM and show how swaptions are priced in
agreement with Black’s swaptions formula, although Black’s formula for caps
does not hold under this model.

We will finally consider the “smile problem” for the cap market, and
introduce some possible extensions of the basic LFM that are analytically
tractable and allow for a volatility smile.

6.2 Market Models: a Guided Tour

Before market models were introduced, short-rate models used to be the main
choice for pricing and hedging interest-rate derivatives. Short-rate models are
still chosen for many applications and are based on modeling the instanta-
neous spot interest rate (“short rate”) via a (possibly multi-dimensional) dif-
fusion process. This diffusion process characterizes the evolution of the com-
plete yield curve in time. We have seen examples of such models in Chapters 3
and 4.

To fix ideas, let us consider the time-0 price of a T2-maturity caplet re-
setting at time T1 (0 < T1 < T2) with strike X and a notional amount of 1.
Caplets and caps have been defined in Chapter 1 and will be described more
generally in Section 6.4. Let τ denote the year fraction between T1 and T2.
Such a contract pays out the amount

τ(L(T1, T2)−X)+
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at time T2, where in general L(u, s) is the LIBOR rate at time u for matu-
rity s.

Again to fix ideas, let us choose a specific short-rate model and assume
we are using the shifted two-factor Vasicek model G2++ given in (4.4). The
parameters of this two-factor Gaussian additive short-rate model are here
denoted by θ = (a, σ, b, η, ρ). Then the short rate rt is obtained as the sum
of two linear diffusion processes xt and yt, plus a deterministic shift ϕ that
is used for fitting the initially observed yield curve at time 0:

rt = xt + yt + ϕ(t; θ) .

Such model allows for an analytical formula for forward LIBOR rates F ,

F (t; T1, T2) = F (t;T1, T2; xt, yt, θ),

L(T1, T2) = F (T1; T1, T2; xT1 , yT1 , θ) .

At this point one can try and price a caplet. To this end, one can compute
the risk-neutral expectation of the payoff discounted with respect to the bank
account numeraire exp

(

∫ T2

0 rsds
)

so that one has

E

[

exp

(

−
∫ T2

0
rsds

)

τ(F (T1; T1, T2, xT1 , yT1 , θ)−X)+
]

.

This too turns out to be feasible, and leads to a function

UC(0, T1, T2, X, θ).

On the other hand, the market has been pricing caplets (actually caps) with
Black’s formula for years. One possible derivation of Black’s formula for
caplets is based on the following approximation. When pricing the discounted
payoff

E

[

exp

(

−
∫ T2

0
rsds

)

τ(L(T1, T2)−X)+
]

= · · ·

one first assumes the discount factor exp
(

−
∫ T2

0 rsds
)

to be deterministic and
identifies it with the corresponding bond price P (0, T2). Then one factors out
the discount factor to obtain:

· · · ≈ P (0, T2)τE
[

(L(T1, T2)−X)+
]

= P (0, T2)τE
[

(F (T1;T1, T2)−X)+
]

.

Now, inconsistently with the previous approximation, one goes back to assum-
ing rates to be stochastic, and models the forward LIBOR rate F (t;T1, T2)
as in the classical Black and Scholes option pricing setup, i.e as a (driftless)
geometric Brownian motion:

dF (t; T1, T2) = vF (t; T1, T2)dWt , (6.1)
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where v is the instantaneous volatility, assumed here to be constant for sim-
plicity, and W is a standard Brownian motion under the risk-neutral measure
Q.

Then the expectation

E
[

(F (T1; T1, T2)−X)+
]

can be viewed simply as a T1-maturity call-option price with strike X and
whose underlying asset has volatility v, in a market with zero risk-free rate.

We therefore obtain:

Cpl(0, T1, T2, X) := P (0, T2)τE(F (T1;T1, T2)−X)+

= P (0, T2)τ [F (0; T1, T2)Φ(d1(X, F (0; T1, T2), v
√

T1))

−XΦ(d2(X,F (0; T1, T2), v
√

T1))],

d1(X, F, u) =
ln(F/X) + u2/2

u
,

d2(X, F, u) =
ln(F/X)− u2/2

u
,

where Φ is the standard Gaussian cumulative distribution function.
From the way we just introduced it, this formula seems to be partly

based on inconsistencies. However, within the change-of-numeraire setup, the
formula can be given full mathematical rigor as follows. Denote by Q2 the
measure associated with the T2-bond-price numeraire P (·, T2) (T2-forward
measure) and by E2 the corresponding expectation. Then, by the change-
of-numeraire approach, we can switch from the bank-account numeraire
exp

(

∫ t
0 rsds

)

associated with risk-neutral measure Q to the bond-price nu-

meraire P (t, T2) and obtain

E

[

exp

(

−
∫ T2

0
rsds

)

τ(L(T1, T2)−X)+
]

= P (0, T2)E2[τ(L(T1, T2)−X)+].

What has just been done, rather than assuming deterministic discount fac-
tors, is a change of measure. We have “factored out” the stochastic discount
factor and replaced it with the related bond price, but in order to do so we
had to change the probability measure under which the expectation is taken.
Now the last expectation is no longer taken under the risk-neutral measure
but rather under the T2-forward measure. Since by definition F (t; T1, T2) can
be written as the price of a tradable asset divided by P (t, T2), it needs follow
a martingale under the measure associated with the numeraire P (t, T2), i.e.
under Q2. As we have hinted at in Appendix A, martingale means “driftless”
when dealing with diffusion process. Therefore, the dynamics of F (t;T1, T2)
under Q2 is driftless, so that the dynamics
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dF (t; T1, T2) = vF (t;T1, T2)dWt (6.2)

is correct under the measure Q2, where W is a standard Brownian motion
under Q2. Notice that the driftless (lognormal) dynamics above is precisely
the dynamics we need in order to recover exactly Black’s formula, without
approximation. We can say that the choice of the numeraire P (·, T2) is based
on this fact: It makes the dynamics (6.2) of F driftless under the related
Q2 measure, thus replacing rigorously the earlier arbitrary assumption on the
F dynamics (6.1) under the risk-neutral measure Q. Following this rigorous
approach we indeed obtain Black’s formula, since the process F has the same
distribution as in the approximated case above, and hence the expected value
has the same value as before.

The example just introduced is a simple case of what is known as “log-
normal forward-LIBOR model”. It is known also as Brace-Gatarek-Musiela
(1997) model, from the name of the authors of one of the first papers where
it was introduced rigorously. This model was also introduced by Miltersen,
Sandmann and Sondermann (1997). Jamshidian (1997) also contributed sig-
nificantly to its development. At times in the literature and in conversations,
especially in Europe, the LFM is referred to as “BGM” model, from the ini-
tials of the three above authors. In other cases, colleagues in the U.S. called it
simply an “HJM model”, related perhaps to the fact that the BGM derivation
was based on the HJM framework rather than on the change-of-numeraire
technique. However, a common terminology is now emerging and the model
is generally known as “LIBOR Market Model”. We will stick to “Lognor-
mal Forward-LIBOR Model” (LFM), since this is more informative on the
properties of the model: Modeling forward LIBOR rates through a lognormal
distribution (under the relevant measures).

Let us now go back to our short-rate model formula UC and ask ourselves
whether this formula can be compatible with the above reported Black’s
market formula. It is well known that the two formulas are not compatible.
Indeed, by the two-dimensional version of Ito’s formula we may derive the Q2-
dynamics of the forward LIBOR rate between T1 and T2 under the short-rate
model,

dF (t;T1, T2; xt, yt, θ) =
∂F

∂(t, x, y)
d[t xt yt]′+ 1

2 d[xt yt]
∂2F

∂2(x, y)
d[xt yt]′, , Q2,

(6.3)
where the Jacobian vector and the Hessian matrix have been denoted by
their partial derivative notation. This dynamics clearly depends on the linear-
Gaussian dynamics of x and y under the T2-forward measure. The thus ob-
tained dynamics is easily seen to be incompatible with the lognormal dy-
namics leading to Black’s formula. More specifically, for no choice of the
parameters θ does the distribution of the forward rate F in (6.3) produced
by the short-rate model coincide with the distribution of the “Black”-like
forward rate F following (6.2). In general, no known short-rate model can
lead to Black’s formula for caplets (and more generally for caps).
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What is then done with short-rate models is the following. After setting
the deterministic shift ϕ so as to obtain a perfect fit of the initial term
structure, one looks for the parameters θ that produce caplet (actually cap)
prices UC that are closest to a number of observed market cap prices. The
model is thus calibrated to (part of) the cap market and should reproduce well
the observed prices. Still, the prices UC are complicated nonlinear functions
of the parameters θ, and this renders the parameters themselves difficult to
interpret. On the contrary, the parameter v in the above “market model”
for F has a clear interpretation as a lognormal percentage (instantaneous)
volatility, and traders feel confident in handling such kind of parameters.

When dealing with several caplets involving different forward rates, differ-
ent structures of instantaneous volatilities can be employed. One can select a
different v for each forward rate by assuming each forward rate to have a con-
stant instantaneous volatility. Alternatively, one can select piecewise-constant
instantaneous volatilities for each forward rate. Moreover, different forward
rates can be modeled as each having different random sources W that are
instantaneously correlated. Modeling correlation is necessary for pricing pay-
offs depending on more than a single rate at a given time, such as swaptions.
Possible volatility and correlation structures are discussed in Sections 6.3.1
and 6.9. The implications of such structures as far as caplets and caps are
concerned are discussed in Section 6.4, and their consequences on the term
structure of volatilities as a whole are discussed in Section 6.5.

As hinted at above, the model we briefly introduced is the market model
for “half” of the interest-rate-derivatives world, i.e. the cap market. But what
happens when dealing with basic products from the other “half” of this world,
such as swaptions? Swaptions are options on interest-rate swaps. Interest
rate swaps and swaptions have been defined in Chapter 1 and will be again
described in Section 6.7. Swaptions are priced by a Black-like market formula
that is, in many respects, similar to the cap formula. This market formula
can be given full rigor as in the case of the caps formula. However, doing so
involves choosing a numeraire under which the relevant forward swap rate
(rather than a particular forward LIBOR rate) is driftless and lognormal.
This numeraire is indeed different from any of the bond-price numeraires
used in the derivation of Black’s formula for caps according to the LFM. The
obtained model is known as “lognormal (forward) swap model” (LSM) and
is also referred to as the Jamshidian (1997) market model or “swap market
model”.

One may wonder whether the two models are distributionally compatible
or not, similarly to our previous comparison of the LFM with the shifted two-
factor Vasicek model G2++. As before, the two models are incompatible. If
we adopt the LFM for caps we cannot recover the market formula given by
the LSM for swaptions. The two models (LFM and LSM) collide. We will
point out this incompatibility in Section 6.8.
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There are some recent works investigating the “size” of the discrepancy
between these two models, and we will address this issue in Chapter 8 by
comparing swap-rates distributions under the two models. Results seem to
suggest that the difference is not large in most cases. However, the problem
remains of choosing either of the two models for the whole market.

When the choice is made, the half market consistent with the model is
calibrated almost automatically, see for example the cap calibration with the
LFM in Section 6.4. But one has still the problem of calibrating the chosen
model to the remaining half, e.g. the swaption market in case the LFM is
adopted for both markets.

Brace, Dun and Barton (1998) indeed suggest to adopt the LFM as central
model for the two markets, mainly for its mathematical tractability. We will
stick to their suggestion, also due to the fact that forward rates are somehow
more natural and more representative coordinates of the yield-curve than
swap rates. Indeed, it is more natural to express forward swap rates in terms
of a suitable preselected family of LIBOR forward rates, rather than doing
the converse.

We are now left with the problem of finding a way to compute swaption
prices with the LFM. In order to understand the difficulties of this task, let
us consider a very simple swaption. Assume we are at time 0. The underlying
interest-rate swap (IRS) starts at T1 and pays at T2 and T3. All times are
equally spaced by a year fraction denoted by τ , and we take a unit notional
amount. The (payer) swaption payoff can be written as

[P (T1, T2)τ(F2(T1)−K) + P (T1, T3)τ(F3(T2)−K)]+ ,

where in general we set Fk(t) = F (t; Tk−1, Tk). Recall that the discount
factors P (T1, T2) and P (T1, T3) can be expressed in terms of F2(T1) and
F3(T2), so that this payoff actually depends only on the rates F2(T1) and
F3(T2). The key point, however, is the following. The payoff is not additively
“separable” with respect to the different rates. As a consequence, when you
take expectation of such a payoff, the joint distribution of the two rates F2

and F3 is involved in the calculation, so that the correlation between the two
rates F2 and F3 has an impact on the value of the contract. This does not
happen with caps. Indeed, let us go back to caps for a moment and consider
a cap consisting of the T2- and T3-caplets. The cap payoff as seen from time
0 would be

exp

(

−
∫ T2

0
rudu

)

τ(F2(T1)−K)+ + exp

(

−
∫ T3

0
rudu

)

τ(F3(T2)−K)+ .

This time, the payoff is additively separated with respect to different rates.
Indeed, we can compute
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E

[

exp

(

−
∫ T2

0
rudu

)

τ(F2(T1)−K)+

+exp

(

−
∫ T3

0
rudu

)

τ(F3(T2)−K)+
]

= E

[

exp

(

−
∫ T2

0
rudu

)

τ(F2(T1)−K)+
]

+E

[

exp

(

−
∫ T3

0
rudu

)

τ(F3(T2)−K)+
]

= P (0, T2)τE2 [

(F2(T1)−K)+
]

+ P (0, T3)τE3 [

(F3(T2)−K)+
]

.

In this last expression we have two expectations, each one involving a sin-
gle rate. The joint distribution of the two rates F2 and F3 is not involved,
therefore, in the calculation of this last expression, since it is enough to know
the marginal distributions of F2 and F3 separately. Accordingly, the terminal
correlation between rates F2 and F3 does not affect this payoff.

As a consequence of this simple example, it is clear that adequately mod-
eling correlation can be important in defining a model that can be effectively
calibrated to swaption prices. When the number of swaptions to which the
model has to be calibrated is large, correlation becomes definitely relevant. If
a short-rate model has to be chosen, it is better to choose a multi-factor
model. Multi-dimensional instantaneous sources of randomness guarantee
correlation patterns among terminal rates F that are clearly more general
than in the one-factor case. However, producing a realistic correlation pat-
tern with, for instance, a two-factor short-rate model is not always possible.

As far as the LFM is concerned, as we hinted at above, the solution is
usually to assign a different Brownian motion to each forward rate and to
assume such Brownian motions to be instantaneously correlated. Manipulat-
ing instantaneous correlation leads to manipulation of correlation of simple
rates (terminal correlation), although terminal correlation is also influenced
by the way in which average volatility is distributed among instantaneous
volatilities, see Section 6.6 on this point.

Choosing an instantaneous-correlation structure flexible enough to ex-
press a large number of swaption prices and, at the same time, parsimonious
enough to be tractable is a delicate task. The integrated covariance matrix
need not have full rank. Usually ranks two or three are sufficient, see Brace
Dun and Barton (1998) on this point. We will suggest some parametric forms
for the covariance structure of instantaneous forward rates in Section 6.9.

Brace (1996) proposed an approximated formula to evaluate analytically
swaptions in the LFM. The formula is based on a rank-one approximation
of the integrated covariance matrix plus a drift approximation and works
well in specific contexts and in non-pathological situations. More generally,
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a rank-r approximation is considered in Brace (1997). See again Brace, Dun
and Barton (1998) for numerical experiments and results.

The rank-one approximated formula is reviewed in Section 6.11, while the
rank-r approximation is reviewed in Section 6.12. There are also analytical
swaption-pricing formulas that are simpler and still accurate enough for most
practical purposes. Such formulas are based on expressing forward swap rates
as linear combinations of forward LIBOR rates, to then take variance on both
sides and integrate while freezing some coefficients. This “freezing the drift
and collapsing all measures” approximation is reviewed in Section 6.13 and
has also been tested by Brace, Dun and Barton (1998). Given its importance,
we performed numerical tests of our own. These are reported in Section 8.2
of Chapter 8, and confirm that the formula works well.

More generally, to evaluate swaptions and other payoffs with the LFM one
has usually to resort to Monte Carlo simulation. Once the numeraire is chosen,
one simulates all forward rates involved in the payoff by discretizing their
joint dynamics with a numerical scheme for stochastic differential equations
(SDEs).

Notice that each forward rate is driftless only under its associated mea-
sure. Indeed, for example, while F2 is driftless under Q2 (recall (6.2)), it is
not driftless under Q1. The dynamics of F2 under Q1 is derived below and
leads to a process that we need to discretize in order to obtain simulations,
whereas in the driftless case (6.2) the transition distribution of F is known to
be lognormal and no numerical scheme is needed. This point is discussed in
detail again in Section 6.10. As an introductory illustration, consider again
the above swaption payoff, now discounted at time 0, and take its risk-neutral
expectation:

E

{

exp

(

−
∫ T1

0
rudu

)

[P (T1, T2)τ(F2(T1)−K)

+P (T1, T3)τ(F3(T2)−K)]+
}

= · · ·

Take P (·, T1) as numeraire, which corresponds to choose the T1-forward-
adjusted measure Q1. One then obtains:

· · · = P (0, T1)E1 [P (T1, T2)τ(F2(T1)−K) + P (T1, T3)τ(F3(T2)−K)]+ .

It is known that F1 is driftless under the chosen measure Q1, while F2 and
F3 are not. For example, take for simplicity the one-factor case, so that

dF2(t) = v2F2(t)dWt, (6.4)

where W is now a standard Brownian motion under Q2. Then if Z is a
standard Brownian motion under Q1, it can be shown that the change-of-
numeraire technique leads to
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dF2(t) =
v2
2F 2

2 (t)τ
1 + τF2(t)

dt + v2F2(t)dZt. (6.5)

Now it is clear that, as we stated above, the no-arbitrage dynamics (6.5) of
F2 under Q1 is not driftless, and moreover its transition distribution (which
is necessary to perform exact simulations) is not known, contrary to the Q2

driftless case (6.4).
In order to price the swaption, it is the Q1 dynamics of F2 that matters,

so that we need to discretize the related equation (6.5) in order to be able
to simulate it. Numerical schemes for SDEs are available, like the Euler or
Milstein scheme, see also Appendix A. Alternative schemes that guarantee
the (weak) no-arbitrage condition to be maintained in discrete time and not
just in the continuous-time limit have been proposed by Glasserman and
Zhao (2000).

Whichever scheme is chosen, Monte Carlo pricing is to be performed by
simulating the relevant forward LIBOR rates. While path-dependent deriva-
tives can be priced by this approach in general, as far as early-exercise (e.g.
American-style or Bermudan-style) products are concerned, the situation is
delicate, since the joint dynamics of the LFM usually does not lead to a re-
combining lattice for the short rate, so that it is not immediately clear how
to evaluate a Bermudan- or American-style product with a tree in the LFM.

Usually, ad-hoc techniques are needed, such as Carr and Yang’s (1997)
who provide a method for simulating Bermudan-style derivatives with the
LFM via a Markov chain approximation, or Andersen’s (1999) who approxi-
mates the early exercise boundary as a function of intrinsic value and “still-
alive” nested European swaptions. However, a general method for combining
backward induction with Monte Carlo simulation has been proposed recently
by Longstaff and Schwartz (2000), and this method is rather promising, es-
pecially because of its generality. We briefly review all these methods in
Chapter 10.

Several other problems remain, like for example the possibility of includ-
ing a volatility smile in the model. We will address the smile problem for
the cap market by proposing both the CEV dynamics suggested by An-
dersen and Andreasen (2000) with possibly shifted distributions, and the
shifted “lognormal-mixture” dynamics model illustrated in Brigo and Mer-
curio (2000a, 2000b, 2001b).


