
408 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

}
}
du=(*df)(u); Now all the housekeeping, sigh.
if (fu <= fx) {

if (u >= x) a=x; else b=x;
MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, x,fx,dx)
MOV3(x,fx,dx, u,fu,du)

} else {
if (u < x) a=u; else b=u;
if (fu <= fw || w == x) {

MOV3(v,fv,dv, w,fw,dw)
MOV3(w,fw,dw, u,fu,du)

} else if (fu < fv || v == x || v == w) {
MOV3(v,fv,dv, u,fu,du)

}
}

}
nrerror("Too many iterations in routine dbrent");
return 0.0; Never get here.

}

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 55; 454–458. [1]

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), p. 78.

10.4 Downhill Simplex Method in
Multidimensions

With this section we begin consideration of multidimensional minimization,
that is, finding the minimum of a function of more than one independent variable.
This section stands apart from those which follow, however: All of the algorithms
after this section will make explicit use of a one-dimensional minimization algorithm
as a part of their computational strategy. This section implements an entirely
self-contained strategy, in which one-dimensional minimization does not figure.

The downhill simplex method is due to Nelder and Mead [1]. The method
requires only function evaluations, not derivatives. It is not very efficient in terms
of the number of function evaluations that it requires. Powell’s method (§10.5) is
almost surely faster in all likely applications. However, the downhill simplex method
may frequently be the best method to use if the figure of merit is “get something
working quickly” for a problem whose computational burden is small.

The method has a geometrical naturalness about it which makes it delightful
to describe or work through:

A simplex is the geometrical figure consisting, in N dimensions, of N + 1
points (or vertices) and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is a triangle. In three dimensions it is a tetrahedron,
not necessarily the regular tetrahedron. (The simplex method of linear programming,

10.4 Downhill Simplex Method in Multidimensions 409

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

simplex at beginning of step

reflection

reflection and expansion

contraction

multiple
contraction

(a)

(b)

(c)

(d)

high
low

Figure 10.4.1. Possible outcomes for a step in the downhill simplex method. The simplex at the
beginning of the step, here a tetrahedron, is shown, top. The simplex at the end of the step can be any one
of (a) a reflection away from the high point, (b) a reflection and expansion away from the high point, (c)
a contraction along one dimension from the high point, or (d) a contraction along all dimensions towards
the low point. An appropriate sequence of such steps will always converge to a minimum of the function.

described in §10.8, also makes use of the geometrical concept of a simplex. Otherwise
it is completely unrelated to the algorithm that we are describing in this section.) In
general we are only interested in simplexes that are nondegenerate, i.e., that enclose
a finite inner N -dimensional volume. If any point of a nondegenerate simplex is
taken as the origin, then the N other points define vector directions that span the
N -dimensional vector space.

In one-dimensional minimization, it was possible to bracket a minimum, so that
the success of a subsequent isolation was guaranteed. Alas! There is no analogous
procedure in multidimensional space. For multidimensional minimization, the best
we can do is give our algorithm a starting guess, that is, an N -vector of independent
variables as the first point to try. The algorithm is then supposed to make its own way

410 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

downhill through the unimaginable complexity of an N -dimensional topography,
until it encounters a (local, at least) minimum.

The downhill simplex method must be started not just with a single point, but
with N + 1 points, defining an initial simplex. If you think of one of these points
(it matters not which) as being your initial starting point P0, then you can take
the other N points to be

Pi = P0 + λei (10.4.1)

where the ei’s are N unit vectors, and where λ is a constant which is your guess
of the problem’s characteristic length scale. (Or, you could have different λ i’s for
each vector direction.)

The downhill simplex method now takes a series of steps, most steps just moving
the point of the simplex where the function is largest (“highest point”) through the
opposite face of the simplex to a lower point. These steps are called reflections,
and they are constructed to conserve the volume of the simplex (hence maintain
its nondegeneracy). When it can do so, the method expands the simplex in one or
another direction to take larger steps. When it reaches a “valley floor,” the method
contracts itself in the transverse direction and tries to ooze down the valley. If there
is a situation where the simplex is trying to “pass through the eye of a needle,” it
contracts itself in all directions, pulling itself in around its lowest (best) point. The
routine name amoeba is intended to be descriptive of this kind of behavior; the basic
moves are summarized in Figure 10.4.1.

Termination criteria can be delicate in any multidimensional minimization
routine. Without bracketing, and with more than one independent variable, we
no longer have the option of requiring a certain tolerance for a single independent
variable. We typically can identify one “cycle” or “step” of our multidimensional
algorithm. It is then possible to terminate when the vector distance moved in that
step is fractionally smaller in magnitude than some tolerance tol. Alternatively,
we could require that the decrease in the function value in the terminating step be
fractionally smaller than some tolerance ftol. Note that while tol should not
usually be smaller than the square root of the machine precision, it is perfectly
appropriate to let ftol be of order the machine precision (or perhaps slightly larger
so as not to be diddled by roundoff).

Note well that either of the above criteria might be fooled by a single anomalous
step that, for one reason or another, failed to get anywhere. Therefore, it is frequently
a good idea to restart a multidimensional minimization routine at a point where
it claims to have found a minimum. For this restart, you should reinitialize any
ancillary input quantities. In the downhill simplex method, for example, you should
reinitialize N of the N + 1 vertices of the simplex again by equation (10.4.1), with
P0 being one of the vertices of the claimed minimum.

Restarts should never be very expensive; your algorithm did, after all, converge
to the restart point once, and now you are starting the algorithm already there.

Consider, then, our N -dimensional amoeba:

10.4 Downhill Simplex Method in Multidimensions 411

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

#include <math.h>
#include "nrutil.h"
#define TINY 1.0e-10 A small number.
#define NMAX 5000 Maximum allowed number of function evalua-

tions.#define GET_PSUM \
for (j=1;j<=ndim;j++) {\
for (sum=0.0,i=1;i<=mpts;i++) sum += p[i][j];\
psum[j]=sum;}

#define SWAP(a,b) {swap=(a);(a)=(b);(b)=swap;}

void amoeba(float **p, float y[], int ndim, float ftol,
float (*funk)(float []), int *nfunk)

Multidimensional minimization of the function funk(x) where x[1..ndim] is a vector in ndim
dimensions, by the downhill simplex method of Nelder and Mead. The matrix p[1..ndim+1]
[1..ndim] is input. Its ndim+1 rows are ndim-dimensional vectors which are the vertices of
the starting simplex. Also input is the vector y[1..ndim+1], whose components must be pre-
initialized to the values of funk evaluated at the ndim+1 vertices (rows) of p; and ftol the
fractional convergence tolerance to be achieved in the function value (n.b.!). On output, p and
y will have been reset to ndim+1 new points all within ftol of a minimum function value, and
nfunk gives the number of function evaluations taken.
{

float amotry(float **p, float y[], float psum[], int ndim,
float (*funk)(float []), int ihi, float fac);

int i,ihi,ilo,inhi,j,mpts=ndim+1;
float rtol,sum,swap,ysave,ytry,*psum;

psum=vector(1,ndim);
*nfunk=0;
GET_PSUM
for (;;) {

ilo=1;
First we must determine which point is the highest (worst), next-highest, and lowest
(best), by looping over the points in the simplex.
ihi = y[1]>y[2] ? (inhi=2,1) : (inhi=1,2);
for (i=1;i<=mpts;i++) {

if (y[i] <= y[ilo]) ilo=i;
if (y[i] > y[ihi]) {

inhi=ihi;
ihi=i;

} else if (y[i] > y[inhi] && i != ihi) inhi=i;
}
rtol=2.0*fabs(y[ihi]-y[ilo])/(fabs(y[ihi])+fabs(y[ilo])+TINY);
Compute the fractional range from highest to lowest and return if satisfactory.
if (rtol < ftol) { If returning, put best point and value in slot 1.

SWAP(y[1],y[ilo])
for (i=1;i<=ndim;i++) SWAP(p[1][i],p[ilo][i])
break;

}
if (*nfunk >= NMAX) nrerror("NMAX exceeded");
*nfunk += 2;
Begin a new iteration. First extrapolate by a factor −1 through the face of the simplex
across from the high point, i.e., reflect the simplex from the high point.
ytry=amotry(p,y,psum,ndim,funk,ihi,-1.0);
if (ytry <= y[ilo])

Gives a result better than the best point, so try an additional extrapolation by a
factor 2.
ytry=amotry(p,y,psum,ndim,funk,ihi,2.0);

else if (ytry >= y[inhi]) {
The reflected point is worse than the second-highest, so look for an intermediate
lower point, i.e., do a one-dimensional contraction.
ysave=y[ihi];
ytry=amotry(p,y,psum,ndim,funk,ihi,0.5);
if (ytry >= ysave) { Can’t seem to get rid of that high point. Better

contract around the lowest (best) point.for (i=1;i<=mpts;i++) {

412 Chapter 10. Minimization or Maximization of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside N
orth A

m
erica).

if (i != ilo) {
for (j=1;j<=ndim;j++)

p[i][j]=psum[j]=0.5*(p[i][j]+p[ilo][j]);
y[i]=(*funk)(psum);

}
}
*nfunk += ndim; Keep track of function evaluations.
GET_PSUM Recompute psum.

}
} else --(*nfunk); Correct the evaluation count.

} Go back for the test of doneness and the next
iteration.free_vector(psum,1,ndim);

}

#include "nrutil.h"

float amotry(float **p, float y[], float psum[], int ndim,
float (*funk)(float []), int ihi, float fac)

Extrapolates by a factor fac through the face of the simplex across from the high point, tries
it, and replaces the high point if the new point is better.
{

int j;
float fac1,fac2,ytry,*ptry;

ptry=vector(1,ndim);
fac1=(1.0-fac)/ndim;
fac2=fac1-fac;
for (j=1;j<=ndim;j++) ptry[j]=psum[j]*fac1-p[ihi][j]*fac2;
ytry=(*funk)(ptry); Evaluate the function at the trial point.
if (ytry < y[ihi]) { If it’s better than the highest, then replace the highest.

y[ihi]=ytry;
for (j=1;j<=ndim;j++) {

psum[j] += ptry[j]-p[ihi][j];
p[ihi][j]=ptry[j];

}
}
free_vector(ptry,1,ndim);
return ytry;

}

CITED REFERENCES AND FURTHER READING:

Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308–313. [1]

Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391–398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1–§10.3) how to minimize a function of one variable. If we
start at a point P in N -dimensional space, and proceed from there in some vector

