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Implementation of the Low Discrepancy Sequences
QMC simulation

Quasi Monte Carlo simulation consists in approximating the integral
f[o 1 f(uw)du by % Zf\il f(u;) where {¢} are quasi-random numbers, that
means they are generated from low-discrepancy sequences. As we already
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have explained it, such sequences neither are random nor pseudo-random but
deterministic and successive values are not independent. However they sat-
isfy good properties of equidistribution on [0, 1]% and we have that SNFE) —

f[O,l]d f(u)du.

In the following sections we describe some low discrepancy sequences. We
explain their construction and discuss some of their properties, especially on
their discrepancy.

General references about the Quasi-Monte Carlo simulation are [2], [7], [3],

[6] or [4].

Implementation of the sequences is described in the implemented part. C'
codes can be found in the source part.

1 Tore-SQRT sequences

They are d-dimensional sequences, obtained by considering the multiples of
suitable irrational numbers modulo 1.

e Tore sequence

It is defined by :

& = ({n.a}) = ({n.aq}, ... {n.ay})

where a = (v, ..., aq) € R? such that (1,a4,...,aq) are linearly indepen-
dent on Q.
{z} = x — [z] denotes the fractional part of .

¢ SQRT sequence
It is a particular case of the Tore sequence with

a=(/pP1,---s\/Pd)

where (p1,...,pq) are the first d prime numbers.

If aq, ..., a4 are algebric, then the discrepancy satisfies:

Di(¢) =0 (nl) Ve >0

Click there to reach the implemented part: implementation.
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2 Van der Corput and Halton sequences

2.1 Van der Corput sequence

This is a one-dimensional sequence defined by the radical-inverse function

©p in base p:
R(n)

a;
pp(n) = Z Pl
i=0
where the coefficients a; are given by the digit expansion in base p of n :
R(n)
i=0

R(n) denotes the maximum index for which apg,) is not equals to 0. Its value
depends on n and p by the relation pf™ < n < pfM+1 that is:

o) =

Discrepancy of the Van der Corput sequence satisfies the following majora-

tion: 1 plog(pn) |
* plogipn) ogn
D=3 log(p) _O( n )

Remarks: (ref Article of Alan Jung and Silvio Galanti)

- For n < p, there is only one positive coefficient a in the decomposition in
base p, that is ag = n. Thus ¢,(n) = % and the sequence is increasing.

- There are cycles of length p in this sequence. Each subsequence of length
p (indices kp to (k + 1)p — 1) is increasing in magnitude proportionnaly to
power of 1/p, and covers uniformly the interval [0,1). Consequences of this
property will be studied for multidimensional sequences (especially Halton
sequence).

2.2 Halton sequence

The Halton sequence is a d-dimensional generalization of the Van Der Corput
sequence. Let (p1,...,pq) be the d first prime numbers, then &, is defined
by:

En = (90101 (TL), R cppd(n))
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where ¢, (n) is the Van der Corput sequence in base p;.
The Halton sequence satisfies :

sz log(pin) _ , (log"(n)
log(p:) n

d _ 7719 _pr—1
with a constant C° =[]} f—-.

This constant grows to infinity super-exponentially with dimension.
Click there to reach the implemented part: implementation.

2.3 Permuted (Generalized) Halton sequence

Orthogonal projections of points from the Halton sequence show non uniform
distribution for some dimensions (see Morokoff and Caflish [0], Jung 77?7 or
Bratley and Fox 7?777). This non-uniformity is due to cycles of length p; for
each one-dimensional sequence.

To break correlations between the inverse radical functions of different di-
mensions, we realize permutations of coefficients a;.

We consider (II,,,1 < ¢ < d) d permutations over {0,...,p;—1} such that
sz<0) =0.

Each term of the permuted Halton sequence is defined by:

Hpi(a0> NI Hpi(aR(”))
Di R(n)Jrl

7

Sp;(n) =

with n = Zf:(g) a;p'.
The global sequence is given by :

§n = (Spl (n)v R Spd(”))

There is no optimal choice for the permutations. We present 3 approaches
to modify the Halton sequence

e An algorithm was suggested by Braaten and Weller [1] for d < 16 with a
possible extension to a larger d (however with significant computation).

e Reverse-Radix Algorithm

An other algorithm (see Kocis and Whiten [5]) consists in reversing the bi-
nary digits of integers, expressed using a fixed number of base 2 digits and
removing any values that are too large.

This algorithm can be applied for very large values of dimensions.
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e Halton Sequence Leaped:

This other variant for the Halton sequence consists in using only every Lth
Halton number subject to the condition that L is a prime different from all
bases pi,...,pq (see Kocis and Whiten [5]).

3 Faure sequence

This is a d-dimensional sequence.

The Faure sequence is a permutation of the Halton sequence, but it uses
the same base r for each dimension. We choose r as the smallest odd prime
integer such that r > d.

Note that the k-th dimension of a d-dimensional Faure sequence is different
from the k-th dimension of a d’-dimensional Faure sequence as soon as the
base r is different.

With usual notations, a; are the coefficients of the r-adic decomposition of n

R(n)

n = Z a;r'
=0
We consider the following transformation 7" :

R(n) R(n)

. Qg bk
Tiw=) e TE) =) 5h

k=0 k=0

with by, = ZZR:(Z) C*a; mod r and C* denote binomial coefficients.
The coefficients b, are a permutation of the ay.
Precision ... and reference 77777

The Faure sequence is defined by using successive transformations 7*:

& = (0r(n), T, (n)), ..., T (pr(n))

where ¢, is the Van der Corput sequence in base r.

The discrepancy of the sequence satisfies :

* legd(n)
D) < c1E )

where C is a constant dependent on d and r : C' = i(%)d.

The constant C% tends to 0 with dimension.
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The Faure sequence exhibits cycles of length r but cycles are not composed
of increasing terms, except for the first dimension. For the same dimension,
the Faure sequence has generally a smaller base than the Halton one, thus
cycles are smaller too. Because we use the smallest prime number greater
than the dimension d and not the d-th prime number.

Click there to reach the implemented part: implementation.

4 Generalized Faure sequence

This is a d-dimensional sequence. Let r be the smallest odd prime integer,
such that » > d.

The digit expansion of n in base r is given by n = Zf:(g) a;(n)rt.
The Generalized Faure sequence is defined by :

R(n) 5(1;1 R(n) 'S(dl)c
& = Zrkil""’zrkh
k=0 k=0
with
R
&9 =3 ay(n), j<dk<R(n)
s=0

) = (C](g{i)OSkSR(n),OSSSR(n) and ¢¥) = AW Pi—1 where AU) is a lower trian-
gular inversible matrix such that (a;;) € F, and P = (C¥) for k < R(n),s <
R(n) is built with the binomial coefficients.

The discrepancy of the sequence satisfies:

log“(n)
n

Dy(§) < C(d,r)

where C(d,r) ~ 4 (57=>)"

2logr

Click there to reach the implemented part: implementation.

5 Nets and (t,s)-sequences

(t, s)-sequences are a group of sequences with a very regular distribution be-
haviour. Their points are placed into certain equally sized volumes of the
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unit cube for sequences of a fixed length. Chapter 4 of Niederreiter [7] well
describes theoretical aspects for such sequences. We just summarize in this
section some definitions and properties of those sequences.

Definitions

o An elementary interval E € I is defined as E = [[° [a:b™%, (a; +

1)b_di] where a;, d; > 0 are integers satisfying 0 < a; < b% for 1 < i < d.

e Let 0 <t < m be integers. A (¢, m,s)-net in base b is a point set P of
b™ points in I such that the number of points in F is equal to b’ for
every elementary interval F in base b with TI(E) = b'~™.

e Let ¢ > 0 be an integer. A sequence xg,x1,... of points in I® is a
(t, s)-sequence in base b if, for all integers £ > 0 and m > ¢, the point
set constituting of the z,, with kb™ < n < (k+ 1)b™ is a (t,m, s)-net
in base b.

Properties:

e Any (t,m, s)-net in base b is also a (u, m, s)-net in base b for integers
t<u<m.
The same property holds for (¢, s)-sequences.
Then smaller values of ¢ mean stronger regularity properties.

e The discrepancy of a (¢, m, s)-net P in base b with m > 0 satisfies:
NDy(P) < B(s,b)b'(log N)*! + O(b'(log N)*~?)
where

2logb

(5—11)! ( Lb/2) )5~! otherwise

(5=L)s=1 if either s =2 or b= 2,5 = 3,4
B(s,b) =

logb

e The discrepancy of the first N terms of a (¢, s)-sequence P in base b
satisfies:

NDy(P) < O(s,b)b' (log N)* + O(b' (log N)*71)

where

1(=L)s if either s =2 or b=2,5 = 3,4
C(s,b) =1

logb
: (Lll;/g 25)3 otherwise
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e For m > 2, a (0,m,s)-net in base b can only exist if s < b+ 1.
A (0, s)-sequence in base b can only exists if s < b.

Examples:

e The Van der Corput sequence is a (0, 1) sequence in base b. In fact, if
we consider the b™ points x,, with k0™ <n < (k+1)b™ (k> 0,m > 1),
every b-adic interval [ab™™, (a + 1)b~™] contains exactly one point x,,.

e The s-dimensional Sobol sequence is a (7, s)-sequence in base 2, where
T =Y deg(P) — s. It is called a LP,-sequence. Sobol sequence is
described in the next point.

e The s-dimensional Faure sequence in base r is a (0, s)-sequence where
r is the smallest prime integer greater or equal than s.

6 Sobol sequence

The Sobol sequence is a d-dimensional sequence in base 2 and it is a (7, d)-
sequence. It is one of the most used sequences for Quasi-Monte Carlo simula-
tion. It was first developped by Sobol [3] and it has been proved to have some
additional uniformity property under some initialization conditions (see [9]).
Its construction is based on primitive polynomials in the field Z, and XOR
operations.

Each dimension is a permutation of the Halton sequence with base 2 whenever
N = 2¢. These permutations are generated from irreductible polynomials in
Zo. But they allow for certain correlations to develop, then they can produce
regions where no points fall until N becomes very large.

The Sobol sequence is defined by:

&, = (aOVO(l) @D aR(n)V&ZL); aVp @@ aR<n>V}§?3L>)

where the Vi(j ) are direction numbers (expressed as binary fraction) obtained
from d different primitive polynomials and a; denote the coefficients of the
digit expansion of n in base b = 2, given by: n = Zfi(g) a;2".

@ represents the bitwise exclusive OR operator (XOR). For explanation

about XOR operation or primitive polynomials, we refer the reader to the
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To implement this sequence, we use an other expression for £, depending
only on the previous point and one direction number. This principle is de-

The discrepancy of the sequence satisfies:

D) < 18 L g (

n n

(log n)dH)

t(d) . . . .
where Cy = m grows superexponentially with dimension,

and for K > 0, Klggkl’fgdd <t(d) < dlio—gg;l + O(dloglogd). t(d) grows superlin-

early with dimension.

e Definition of the constants V:
- For each j < d we first choose a primitive polynomial P(j) with degree
s(J):

P(j) = 2*D 4 bz @D o p by gz +

and we select s(j) odd integers cl(j ) such that
<2t 0 < i< s())

The choice for constants cz(-j ) is not a easy step. Sobol’ article 77771

some explanations about this problem.

- Once we have chosen P(j) and the cgj ) for i < s(7), we use the coefficients

b; through the recurrence relation :

@ 2°0) Y

Cz('j) = lecz(z)l D 2252@@2 D 2S(j)_lbS(j)*lcz('i)s(j) i—s(j

()
) P Giss)
to determine the cgj) for i > s(j).

- Finally we calculate V' by:

o)

J) _
Vi T 91

e Uniformity property: An additional uniformity property of the sequence
is called by Sobol the property A.

- We define a binary segment of length 2° as a set of points P, whose sub-
scripts satisfy the inequality 12° <i < (I +1)2® where [ =0,1,....
1

We divide up the s-dimensional unit cube I* by the planes z; = 3 into 2°
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multidimensional small cubes, which represent binary parallelepipeds.

- Property A: If in any binary segment of length 2° of the sequence P, ..., P;, . ..

all the points belong to different small cubes, then we say that the sequence
satisfies property A.

Sobol [9] proved a sufficient and necessary condition on the direction num-
bers so that the property A is verified. A table of good numerical values for
V' is given for a dimension s < 16.

- Property A’: The property A can be extended to the property A’ de-
fined as follows.

We divide up the s-dimensional unit cube I° by the planes x; = %, %, % into
225 multidimensional small cubes. If in any binary segment of the sequence
Py, ..., P, ... of length 22¢, all the points belong to different small cubes,

then we say that the sequence possesses the property A’.

- Remark about the link between property A or A’ and the dimension s:
Note that the property A (resp. A’) holds for subsequences of length 2°
(resp. 2%). In practice if s increases, it becomes difficult to verify the condi-

tion because we need to simulate at least 2 (2%%) points.

Click there to reach the implemented part: implementation.

7 Niederreiter sequence

The Niederreiter sequence is a s-dimensional (¢, s)-sequence in base b whose

theoretical aspects are described in Niederreiter [7]. It is defined as:
R(n) (1) R(n)  (s)
o yn,j yn,j
o=\ D i 2
=0 =0
with n = S ¢, (n)b" and
=Y o) €F,
r=0

C = (cﬁ) is called the generator matrix of the i-th coordinate. An algo-
rithm to compute the values is given in Niederreiter [7]. Inititialization of
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the (cﬁ) is done at the beginning of the simulation.

The discrepancy of the sequence satisfies:

Do —o (=)

n

Construction of the cg?: (in the next version)
The method is based on the formal Laurent series.

Remark: If b is a prime power and s an arbitrary dimension such that s < b,
we can choose P, ..., Ps as the linear polynomials P;(z) = = — b; where
by, ...,bs are distinct elements of F,. Then the Niederreiter sequence is a
(0, s)-sequence in base b and we have for 1 > i > s and j > 1:

A =0if0<r<j—1

c%) = (r/j — )b, ifr > 5 — 1

Click there to reach the implemented part: implementation.

8 General remarks on low discrepancy sequences

e Quasi-random numbers combine the advantage of a random sequence
that points can be added incrementally, with the advantage of a lattice
that there is no clumping of points.

e For large dimension s, the theoretical bound (log N)*/N may only be
meaningful for extremly large values of N. The bound in Koksma-
Hlawka inequality gives no relevant information until a very large num-
ber of points is used.

Low discrepancy sequences are very useful for low dimension. In high
dimension s, a lattice can only be refined by increasing the number of
points by a factor 2°.

e Orthogonal projections: if a d-dimensional sequence is uniformly dis-
tributed in /¢, then two-dimensional sequences formed by pairing coor-
dinates should also be uniformly distributed. The appearance of non-
uniformity in these projections is an indication of potential problems
in using a quasi-random sequence for integration. This problem is de-
velopped in Morokoff and Caflish [6]. We will see that procedures like
scrambling permutation can be suggested to improve the uniformity
property while preserving the discrepancy.
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