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Implementation of the Pseudo-Random Numbers Generators

Monte Carlo simulation method consists in approximating E[ψ(X)] by
1
N

∑N
n=1 ψ(xn), where xn are i.i.d to X. Thus, as explained in the section

about simulation of random variables, we first need sequences of uniform in-
dependent numbers. These random numbers un can next be transformated
into variables xn with specific distributions.
Randomness is simulated by a pseudo-random number generator whose out-
put is assumed to be a sequence of independent and identically distributed
U(0, 1) random variables. An other approach for simulation concerns Quasi-
Monte Carlo simulation.

This part deals with the presentation of various pseudo-random generators.
We first introduce the notion of generator and the properties we require for a
good generator. The problem is not obvious and a bad generator can lead to
false results for a considered simulation. In the following sections, we briefly
describe different methods to construct random number generators: linear
methods, shift register methods and nonlinear methods. Literature about
Random Number Generator is abundant. We refer the reader to general ar-
ticles like [5], [4], [3], [7], [8] or [1]. Specific references will be given in the pre-
sentation. For a more complete bibliography, we suggest consulting the pages
http://www.iro.umontreal.ca/ lecuyer or http://www.random.mat.sbg.ac.at.
Implementation of the generators is described in the implemented part.

1 Introduction

We first give a definition for a pseudo-random number generator and some
properties about it.

1.1 Definitions

A pseudo-random number generator is a structure G = (S, s0, T, U,G) where
S is a finite set of states, s0 ∈ S is the initial state, the mapping T : S → S
is the transition function, U is a finite set of outputs symbols, and G : S → U
is the output function.
This definition was introduced by L’Ecuyer in [5] or [4] for instance.

Since S is finite, the sequence of states is periodic. The period is the smallest
positive integer ρ such that for some integer τ ≥ 0 and for all n ≥ τ, sρ+n =
sn. The smallest τ with this property is called the transcient. When τ = 0,
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the sequence is said to be purely periodic.

The resolution of a generator is the largest number x such that all out-
put values are multiples of x. It determines the maximal number of different
values we can obtain with the generator.

1.2 Good generators

We summarize in this point the properties required for a good random num-
bers generator.

• Large period length.
The applications of simulations require more and more random num-
bers and computers now allow more iterations steps than before. Thus
the random number generator must have a very large period.

Note that the period can be larger than the resolution x. In fact the
generator produces only x different values but not always in the same
order. For problems in dimension D ≥ 2, we are interested in the
period rather than the resolution.

• Good equidistribution properties and statistical independence of succes-
sive pseudorandom numbers.
Generated sequences should behave as sequences of independent ran-
dom variables, uniformly distributed over [0, 1]. The generator should
pass statistical tests for uniformity and independence. Several empiri-
cal statistical tests are detailed in Knuth [1] or in L’Ecuyer [4]. We just
enumerate the main ones: general tests like chi-square or Kolmogorov-
Smirnov tests; specific tests like equidistribution test, serial test, gap
test, partition test, permutation test, run test, collision test, test on
subsequence or correlation test. All these tests are empirical tests, i.e
a posteriori tests based on a realization of the generated sequence.
To increase its power, a given test can be replicated N times on disjoint
part of the sequence. It allows to test the local behaviour of generators.
This procedure is called multilevel-test.
But since generated sequences are deterministic, we can always find
a test the sequence will fail. L’Ecuyer introduced the notion of PT-
perfect (polynomial-time perfect) generator but no generator has been
proven PT-perfect until now.

Theoretical tests are a priori tests. They tell us in advance the prop-
erties of the full period of the sequence.
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• Little intrinsic structure.
Successive values produced by some of the described generators have a
lattice structure in any given dimension.
Let Tt = {Un = (un, . . . , un+t−1)/n ≥ 0}. The lattice structure means
that all the points of Tt lie in a family of equidistant parallel hyper-
plans. The smaller the distance between hyperplanes is, the better the
generator is, because this means thinner empty slices of space.
Lattice tests help to know the number of hyperplanes and the distance
between them.

• Efficiency, fast generation algorithm.
It is important, especially if we use many generators together or in
parallel, that the algorithm allows a fast generation of random numbers
and that it does not require too much memory space.

• Repeatability.
Being able to reproduce exactly the same sequence can be necessary
and very usefull for practical applications. Thus we do not use the
current time (computer clock) to initialize the generators.

• Portability
It means that the generator will produce exactly the same sequence
on different computers or with different compilers. This parameter is
important to obtain the same results if we realize simulations on various
machines

• Unpredictability
It means that we can not predict the next generated value by the algo-
rithm from the previous ones. This property is parlicularly important
for cryptographic applications.

2 Linear Methods

A first group of pseudo-random numbers generators corresponds to linear
methods. The principle is based on a linear recurrence relation to compute
the next value from the previous ones. First of all we describe the simplest
of them: the Linear Congruential Generator based on a recurrence of order
1. The others linear generators are based on a variant of it: recurrence of
order k and combination between generators.
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2.1 Linear Congruential Generators (LCG)

The state at step n is an integer xn and the transition function T is defined
by the recurrence :

xn = (axn−1 + c) mod m

where m > 0, a > 0 and c are integers called the modulus, the multiplier and
the additive constant respectively. The set S is {0, . . . , m− 1}.
The output function G is defined by G(x) = x/m. The output is:

un = G(xn) =
xn

m
∈ [0, 1]

The maximal period for a LCG is m. It is reached if and only if c is relatively
prime to m, a − 1 is a multiple of p for every prime factor p of m and if m
is a multiple of 4, then a− 1 is also a multiple of 4.

• When c = 0, this generator is called a multiplicative linear congruential
generator (MLCG). The recurrence relation is given by :

xn = (axn−1) mod m

The maximal period for a MLCG is m− 1, since 0 is an absorbing state.
You can jump ahead from xn to xn+ν with the relation :

xn+ν = aνxn mod m = (aν mod m)xn mod m

• Properties of this method:
- The modulus m and the period are bounded in terms of the word length of
the machine,
- Such generators produce a lot of regularity in sequences,
- And an unfavorable lattice structure.

2.2 Multiple Recursive Generator (MRG)

The recurrence relation for a MRG is defined by :

xn = (a1xn−1 + · · ·+ akxn−k) mod m

where the order k and the modulus m are positive integers, while the coeffi-
cients a1, . . . , ak are in {−(m− 1), . . . , m− 1}.
Let Zm = {0, 1, . . . , m − 1}. The state at step n of the MRG is the vector
sn = (xn, . . . , xn−k+1) ∈ Zk

m.
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The output function is defined by un = G(sn) = xn/m, which gives a value
in [0, 1].
We define the characteristic polynomial P of the MRG by :

P (z) = zk − a1z
k−1 − · · · − ak

The maximal period of a MRG is ρ = mk − 1. It is reached if and only if m
is prime and P is a primitive polynomial over Zk

m.

The resolution of a MRG is 1/m. It means that only m different values
are produced by this generator but not always in the same order (the period
is greater than m).

For large values of k, the disadvantages incurred by the lattice structure
become less pronounced.

2.3 Combined LCGs and MRGs (CMRG)

To increase the period length and improve the statistical behavior of a gen-
erator, an idea is to combine different generators. Well known combination
methods are :

1. Shuffling one sequence with another one or with itself.
The principle is to shuffle the outputs to remove low-order serial cor-
relations. The shuffling algorithm is due to Bayes and Durham.
The first step is to fill up a table t[ ] of size d with the first output
values from the generator.
Then each time we need a new random number, we generate an index
j and use the value t[j]. Finally we replace it by the next value from
the generator.
The choice of the index j can be made with an other generator or with
the same one.
Nevertheless, effects of the shuffle procedure are not wellknown from
the theoretical point of view.

2. Adding several integer sequences modulo some integer m0, or adding
sequences in [0, 1] modulo 1, or adding binary fraction bitwise modulo
2.
We consider J MRGs defined by :

xj,n = (aj,1xj,n−1 + · · ·+ aj,kxj,n−k) mod mj
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for j = 1, . . . , J , assumed to be purely periodic with period ρj and the
moduli mj to be pairwise relatively prime.
We define two combinations

zn = (
J∑

j=1

δjxj,n) mod m1 ; un =
zn

m1

and

ωn = (
J∑

j=1

δj
xj,n

mj

) mod 1

where δ1, . . . , δJ are arbitrary integers such that δj and mj have no
common factor.

Results :
The sequences {un} and {ωn} have period length ρ = lcm(ρ1, . . . , ρJ).
We can find coefficients ai independent of δj such that the sequence ωn

satisfies the relation :

xn = (a1xn−1 + · · ·+ akxn−k) mod m ; ωn =
xn

m

Resolution of such CMRG is 1/m.

In [6], L’Ecuyer suggests some values for the parameters which lead to satis-
fying properties for the generators.

2.4 Matrix LCGs and MRGs

To simulate a sequence of independent random vector variables with the
uniform distribution on I l, LCGs and MRGs can be generalized. Then we
consider recurrence relations for vectors with matrix coefficients.

- Matrix method:
Xn+1 = XnA mod M

where A is a l × l matrice and Un = Xn

M
for each coordinate of Xn. The

generator is full-period if the matrice A is non singular modulo M , that is
gcd(det(A),M) = 1.

- Multiple Recursive Matrix Method:

Xn = (A1Xn−1 + · · ·+ AkXn−k) mod M

where (A1, . . . , Ak) are l × l matrix and Xn is a l-dimensional vector.
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2.5 Multiply-with-Carry Generator (MWC)

We consider a generator based on the following recurrence relations :

xn = (a1xn−1 + · · ·+ akxn−k + cn−1) mod b

cn = (a1xn−1 + · · ·+ akxn−k + cn−1) div b

un =
xn

b

The state at step n is sn = {xn, . . . , xn+k−1, cn}. xn ∈ Zb, cn ∈ Z.

3 Shift-Register or Digital Methods

The principle is to take several successive values of a MRG xn defined by
xn+k =

∑k−1
j=0 ajxn+j mod m, to construct each output value un. We have:

un =
L∑

j=1

xns+j−1m
−j

where s and L ≤ k are two positive integers.
s is called the step size and L the number of digits in the m-digit expansion.
If L = s, the sequence is called digital multistep sequence.

If the polynomial Pk connected with xn is primitive, then the period length
for un is mk − 1.
The state at step n is the vector sn = (xns, . . . , xns+k−1). The output values
are multiple of m−L (it is the resolution) instead of m−1 for linear generators.
A particular case for digital sequences is the Tausworthe Generator described
in the next point.

3.1 Linear Feedback Shift Register (LFSR) or Taus-
worthe Generator

The resolution m−L allows to choose a smaller value for m and to keep a
large period. LFSR is a special case for Digital Sequence where m = 2. It
was introduced by Tausworthe.
In this case {xn} is a sequence of bits and the un are constructed by juxta-
posing L bits from this sequence.
We consider Pk equal to zk− zk−r− 1. Then, the recurrence relation is given
by:

xn = (xn−r + xn−k) mod 2
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and the output un are obtained by splitting up the sequence xn into con-
secutive blocks of length L and then by interpreting each block as the digit
expansion in base m of a number.

un =
L∑

j=1

xns+j−12
−j

with s ≤ r and 2r > k.
The period length is:

ρ =
mk − 1

gcd(L,mk − 1)

• Combination: Better structural properties are obtained by combination
of several recurrences of this type.
Let J LFSR generators, with recurrence relations {xj,n} and primitive charac-
teristic polynomial Pj(z) of degree kj, and output sequence {uj,n}. Assumed
that the step size sj and the period length ρj = 2kj − 1 have no common
factor.
Then we define un as a bitwise exclusive-or (XOR) of u1,n, . . . , uj,n that is

un = u1,n ⊕ · · · ⊕ uJ,n

Results : If the polynomials P1(z), . . . , PJ(z) are pairwise relatively prime,
the period length ρ of the combined sequence {un} is ρ = lcm(ρ1, . . . , ρJ).
When the ρj are relatively prime, then ρ =

∏J
j=1 ρj.

It is equivalent to consider the combination of the J LFSR generators or
a LFSR generator based on a recurrence relation with characteristic polyno-
mial P (z) =

∏J
j=1 Pj(z).

• Shift Register generators satisfy the following properties:
- Fast algorithm,
- The period is not bounded in terms of the word length of the machine,
- They produce a not so bad lattice structure. Nevertheless there exists a
lattice structure in spaces of formal series,
- Strong uniformity property.
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3.2 Generalized Feedback Shift Register (GFSR)

The GFSR can be viewed as a different way to implement a LFSR generator.
It is based on parallel MRG xn,j or on a matrix MRG.

un =
L∑

j=1

xn,jm
−j

Its implementation requires more memory than for the LFSR but may lead
to a faster generator.

3.3 Equidistribution Properties

Shift Register Generators verify strong uniformity properties, which can be
made explicit in terms of the theory of nets and (t, s) sequences, (see Quasi
Monte Carlo methods).
Linear Shift Register Generators have a lattice structure in a space of formal
series. This structure can be analyzed via the notion of equidistribution.
To understand the meaning of the lattice structure, we introduce the follow-
ing definitions.

Definitions:
The cube I t is partitioned into 2tl cubic cells of equal size and we consider
the set Tt = {Un = (un, . . . , un+t−1)/n ≥ 0, s0 ∈ {0, 1}k}

• Tt (or Un) is (t, l)-equidistributed if all the cells of I t contain exactly
the same number of points. We note lt the largest value of l ≤ L for
which the sequence is (t, l)-equidistributed. It is called the resolution
in dimension t.

• Maximally equidistributed (ME) generator
A generator is called ME if the resolution lt reaches its largest possible
value in all dimensions.

• collision-free (ME-CF) generator
A ME generator with the additional property that for L ≥ l > lt and
all t, none of the 2tl cells contains more than a single point is called a
ME-CF generator.

ME-CF generators have their sets of points Tt very evenly distributed in I t.

In [2], L’Ecuyer makes explicit some numerical values in order to obtain
ME and ME-CF generators.
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4 Nonlinear Methods

Nonlinear methods are the last type of pseudo-random number generators
we will present here.
The advantage of nonlinear methods is that they do not produce a lattice
structure and their outputs behave much like ‘truly’ random numbers, even
over the entire period.

We are interested in two approaches :

1. Keep the transition function T linear but use a nonlinear function G
to produce the output.

2. Use a nonlinear transition function T .

We give an example of the first case, called the ICG and a few examples of
the second one.

4.1 Inversive Congruential Generators (ICG)

We consider a full-period MRG sequence {xn} with prime modulus m and
we replace the output function un = xn

m
by :

zn = (x̃n+1x̃
−1
n ) mod m

un =
zn

m

where x̃i is the ith non-zero value in xn and x̃−1
n is the inverse of x̃n mod m.

4.2 Inverse Generators

Those methods are well-described in Niederreiter [8].
• Recursive inverse generator
This generator is based on the recursion:

xn+1 = axn + b mod m

where x is such that xx = 1 mod m if x 6= 0 and x = 0 if x = 0.
The output value is given by:

un =
xn

m

If m is prime and if x2 − bx− a is a primitive polynomial over Fm them the
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period length is ρ = m.

• Explicit Inverse Congruential Generator
This method is due to Eichermann and Herrmann. It is based on the recur-
sion:

xn = an + c mod m = (an + c)m−2 mod m

The output value is given by:

un =
zn

m

If m is prime, the period length is ρ = m.
This algorithm satisfies the s-dimensional serial test for all s ≤ m−2. It has
an optimal behaviour under the lattice test. It verifies a strong nonlinearity
property like the Recursive Inverse Generator.

• These generators satisfy the following properties:
- No nontrivial lattice structure is observed,
- Strong nonlinearity property,
- The s-dimensional serial test is satisfied, for s ≤ d where d is a specific
value.
- A large choice of parameters is allowed.
The main disadvantage of those both inverse generators is that a calculation
of one random number takes O(log m) multiplication in Fm so the algorithm
is not fast.

• Digital Inverse Generator
In order to find a faster inversive generator than the recursive inverse or the
explicit inverse ones, a new method called Digital Inverse Method has been
recently studied.
For a more detailed description, you can refer to [8].
For a precision k, let Fq be the finite field of order q = 2k and F ∗

q the multi-
plicative group of non zero elements of Fq.
Then we consider the recursion:

γn+1 = αγn + β

with α ∈ F ∗
q , β ∈ Fq, γ0 ∈ Fq

and we define the digital inversive pseudorandom number by:

un =
k∑

j=1

c(j)
n 2−j
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with cn = (c
(1)
n , . . . , c

(k)
n ) ∈ Zk

2 the coordinate vector of γn relative to the
ordered basis B.

The period length is ρ = m if and only if x2 − βx− α is an IMP polynomial
over Fq. In particular ρ = m if the polynomial is primitive.

4.3 Quadratic Congruential Generators

The transformation T is quadratic instead of linear. We consider the recur-
rence:

xn = (ax2
n−1 + bxn−1 + c) mod m

un =
xn

m
where a, b, c and xn ∈ Zm.
If m is a power of 2, the generator has full period ρ = m if and only if a is
even, (b− a) mod 4 = 1 and c is odd.

4.4 Blum, Blum & Shub generator (BBS)

The transformation T is quadratic. We consider the recurrence relation:

xn = x2
n−1 mod m , x0 = x2 mod m

with x ∈ N and gcd(x,m) = 1. Let m = pq be a Blum integer, that is such
that p, q are two distinct primes both congruent to 3 modulo 4.
This generator is conjectured to be Polynomial-time perfect.

5 Use of the Random Number Generators

In this section, we summarize some remarks about the different groups of
random number generators in order to compare them and to find an adapted
method for different kinds of simulations.

- LCG and Shift Register generators have strong uniformity properties but
their lattice structure can make them unsuitable in many applications.
MRCG, MRMM and combined generators have a very large period.
The period length for Shift Register generator is not bounded in terms of the
word length of the machine.
- Inversive generators provide true randomness with reference to the s-dimensional
serial test and a lack of lattice structure. The most promissing method seems
to be the digital inverse method, which combines nonlinear method advan-
tage and fast algorithm.
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