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Premia 5
In terms of PDE’s, the problem of evaluating a barrier option can be

viewed in the following way: one has to solve the Black-Scholes equation in
a (possibly time-dependent) domain. On the boundary of this domain, one
sets the rebate as Dirichlet condition (on one side for single barrier options,
and on both sides for double barriers).

If the barrier does not depend on time, and the spot is away from the
barrier, then finite-difference methods typically perform well. However, if the
spot is close to the barrier, the discontinuity due to the incompatibility be-
tween the initial condition (payoff) and the boundary condition (rebate) typ-
ically results in loss of accuracy. Moreover, if the barrier is time-dependent,
an important issue is how to design the mesh, since shifts between the nodes
and the barrier will produce errors. There are works in this direction (see [6]
for instance), but it is clear that in this case the finite-difference approach
is inappropriate. Let us emphasize that time-dependent barriers appear in
pratice in several instances, e.g. when the rebate is actualized, or when it is
expressed as X(t, S) = const where X is a some state variable.

An alternative approach is a space-time finite-element method. The tradi-
tional implementations of finite-element methods in parabolic problems typi-
cally involves finite difference in time combined with finite elements in space.
However, in the one-dimensional setting and for piecewise linear elements,
this would not be different from finite difference. In contradistinction, the
space-time finite element method involves trapezoidal elements: the nodes
sit on lines t = ti and they are unequally placed in space. In this way, they
can be set to match the barrier exactly (up to first order) at each time.
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Moreover, the mesh can be refined near the barrier. These two features pro-
vide a simple and natural solution to solve the losses in accuracy described
above. The element we choose are piecewise linear in reduced barycentric
space-time coodinates, leading to a simple tridiagonal scheme that reduces
to that of the finite-difference method when the mesh is straight. Is is solved
using the usual LU factorization method.

Historically, this method was introduced by Bonnerot and Jamet ([1] [2])
for the Stefan problem, where its flexibility proved to be useful to follow the
evolution of the free boundary.

1 The finite element method

The purpose is to discretize the Black-Scholes equation set is logarithmic
variable: 
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together with the Dirichlet boundary conditions steming from the rebate on
one (resp. both) side(s), and the payoff on the other side.

As is customary in finite element methods, one first needs to get a weak
integral formulation of (1). First of all, one fixes [xmin, xmax] as localization
interval for the problem, and one sets, say, ∀t ∈ [0, T ], u(t, xmin) = (K−exmin),
u(t, xmax) = 0 as boundary conditions. This corresponds to an up-out put
option with rebate 0.

It is known that the localized solution is close to the actual solution when
xmin is small and xmax is large compared to some relevant scale of the problem.

Now, let us multiply (1) by a regular test function φ(t, x) that vanishes
on {x = xmin} and {x = xmax}, and integrate on the set Cn = [tn, tn+1] ×
[xmin, xmax]. After some integration by part, one gets easily:
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Let k = ∆t = tn+1 − tn denote the time step and N be an integer. We
consider a mesh made up of rows of quadrilateral elements Kn

i with vertices
P n

i , P n
i+1, P n+1

i+1 , P n+1
i (see figure 1). For any point P ∈ Kn

i , we use the
coordinates (ξ, η) ∈ [0, 1]2 defined by

ξ =
t− tn

k
(3)
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η =
x− xn+ξ

i

xn+ξ
i+1 − xn+ξ

i

, (4)

where xn+ξ
i = (1 − ξ)xn

i + ξxn+1
i . If P = (t, x) ∈ Kn

i has coordinates (ξ, η),
we shall write P = (t, x) = xn+ξ

i+η and un
i = u(xn

i ).

To every function ψ defined in Kn
i one can associate ψ̂ defined in [0, 1]2

such that ψ̂(ξ, η) = ψ(t, x). We now introduce quadrature rules for both the
volume and boundary integrals appearing in (2). Let us denote by IKn

i
(ψ)

the integral

IKn
i
(ψ) =

∫
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i
ψ(t, x)dt (5)

=
∫
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= 1
4

∑4
s=1 ψ̂Ĵin(Ps), (7)
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and (Ps)1≤s≤4 denote the vertices of the square [0, 1]2. Let us also denote by
Itn the boundary integral

Itn(ψ) =
∫ xn

i+1

xn
i

ψ(tn, x)dx (9)

= (
xn

i+1−xn
i

2
)(ψ(tn, xn

i ) + ψ(tn, xn
i+1)). (10)

With these notations in hand, (2) now reads
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(11)

We shall now test relation (11) with functions φin whose restriction to
each element Kn

i belongs to the space

{φ(t, x) | φ̂(ξ, η) = α0 + α1ξ + α2η + α3ξη }, (12)

(where αi are arbitrary constants) and uniquely defined by the property

φin(P k
j ) = δijδk,n+1. (13)
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This choice leads to a fully implicit scheme.
Now, the choice

φin(P k
j ) = δij((1− θ)δk,n + θδk,n+1) (14)

(θ ∈ [0, 1]) leads to a so-called θ-scheme.
Note that the functions ψin assume the following form: ψ̂in(ξ, η) = ξ(1−η)

in Kn
i , ψ̂in(ξ, η) = ξη in Kn

i−1, ψ̂in = 0 elsewhere. Thus the summation in
(11) is restricted to only two indices i.

As easily checked, the Jacobian term Jin is given by

Ĵin = k(xn+ξ
i+1 − xn+ξ

i ) in Kn
i (15)

For (t, x) ∈ Kn
i one easily computes:
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i

(16)
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i

. (17)

In a similar way, one gets for (t, x) ∈ Kn
i−1:
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)
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and

∂xψ̂in = ξ
1

xn+ξ
i − xn+ξ

i−1

(19)

Now one simply applies the quadrature rules (5), (9) to evaluate all terms
in (11). Since this is a straightforward computation, we simply give the
resulting scheme. For simplicity, we treat the totally implicit scheme, the
general θ- scheme being a straightforward extension of this case.
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for all i = 1, · · · , N − 1, and u0 = (K − exmin), uN = 0.
As noted above, this is a tridiagonal scheme that reduces to the finite-

difference scheme when the mesh is rectangular. Hence it represents no
additional computational cost in comparison to finite differences, whereas
allowing much more flexibility in te choice of the mesh.



5 pages 5

References

[1] R. Bonnerot, P. Jamet, A second-order finite element method for the
one-dimensional Stefan problem, Int. J. Num. Meth. Eng., Vol. 8, pp.
811-820 (1974). 2

[2] R. Bonnerot, P. Jamet, Numerical solution of the Eulerian equations
of compressible flow by a finite element method which follows the free
boundary and the interfaces, J. Comp. Physics, Vol. 18, pp. 25-45 (1975).
2
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