
3 pages 1

Source | Model | Option

| Model_Option | Help on tr methods | Archived Tests

tr_dermankani

Input parameters:

• StepNumber N

Output parameters:

• Price

• Delta

This algorithm is taken from [1]. It gives a solution to the problem of
pricing Barrier Options with a Tree method. The issue, as it is discussed
there, is to provide the tree algorithm with a better value of the barrier than
the crude approximation with the nearest level in the tree: indeed the spacing
of the tree grid in the space direction is of order

√
h so that the naive barrier-

version of the CRR algorithm, for instance, can not yield a convergence order
better than

√
h. Numerical tests ([1]) show that this is definitely too crude.

The idea of the algorithm as discussed there is to take as a price value for
the node just above the barrier (let us denote this level S0d

eta0) the linear
interpolation between the price in case the barrier is exatcly at the level of
the node (“modified barrier” mod = S0d

eta0-the price of the option is then
given by the rebate by definition of the contract) and the price in case the
barrier is at the level of the node below (“effective barrier” eff = S0d

eta0+1):

C =
(L− eff)

(mod− eff)
C (L = mod) +

(mod− L)

(mod− eff)
C (L = eff)

This is a CRR tree with a modification of the backward expectation formula
at the critical mesh breaching the barrier.

/*Price, intrinsic value arrays*/
This is a flat tree so we store the intrinsic values in an array iv to avoid

recomputation at each node.

3 pages 2

/*Up and Down factors*/
Exactly those of CRR.

/*Risk-Neutral Probability*/
Same remark.

/*Number of down moves just before breaching the barrier*/
Here we compute the value of the integer eta0 above. Note that it may be
0, ie the barrier is breached at the first mesh of the tree. This requires a

particular handling of the calculation of the delta.

/*Weights for the linear interpolation at the critical node*
/*Node above the barrier*/

Here we compute the above weights pl = (L−eff)
(mod−eff)

/*Intrinsic value initialization*/
We start the indexing from above. The index of the critical node is N+eta0

. There is no need to compute the intrinsic values for the nodes below.

/*Terminal Values*/
npoints is the index of the critical node among the values of the

underlying at maturity. We store the value of the option at the effective
barrier eff in P[npoints+1] .

/*Backward Resolution*/
We begin with the case eta0>0 where the first mesh does not breach the
barrier. In this case there are 3 stages: first the barrier is active, then

(backward) the barrier is strictly below the lower node of the tree and the
algorithm is exactly that of a CRR tree.

/*First part-the barrier is active*/
Every two steps in time the lower mesh of the tree (with root node index

npoints breaches the barrier (odd=1) or not (odd=0). In the breaching case,
the computation

P[j]=pu*P[j]+ pd*P[j+1];

if (am)

P[j]=MAX(iv[i+2*j],P[j]);

for j = npoints computes the value C (L = eff). Notice that we use here
the value P[npoints+1] computed before. Then we implement the

interpolation in:
P[npoints]=pl*rebate+one_minus_pl*P[npoints]

Next if necessary we store the value of the rebate in P[npoints+1]

3 pages 3

/*Second part-the barrier is strictly below the tree*/
From now on this is the standard CRR algorithm (cf. Routine

tr coxrossrubinstein c).

/*Delta*/

/*First time step*/

/*eta0=0, the first mesh breaches the barrier*/
/*The barrier is always active*/

Then in order to compute the delta we stop the above First part algorithm
at the first time step. We store the price value at the node (2h, S0) in

flat_price.

/*For the delta*/
Here we store the value at the node (h, u ∗ S0) in up_price.

/*First Time Step*/
Since the first mesh breaches the barrier we use the interpolation formula.

/*Price*/

/*Delta*/
The delta is computed as a finite-difference approximation, at time h,

between the value of the price at node (h, u ∗ S0) and at node (h, S0). The
value of the price at this last node is the interpolation between the price at

the nodes (0, S0) and the nodes (2h, S0).

/*Memory Desallocation*/

References

[1] E.DERMAN I.KANI D.ERGENER I.BARDHAN. Enhanced numerical
methods for options with barriers. Financial Analyst Journal, pages 65–
74, Nov-Dec 95 1995. 1

