
4 pages 1

Source | Model | Option

| Model_Option | Help on mc methods | Archived Tests

mc_baldi_out

This algorithm is taken from [1] and allows to numerically compute the
price and the delta of single Knock-Out Barrier Options with a Monte Carlo
method. The issue, as it is discussed in there, is to provide a good approxi-
mation of the first time τ at which the price of the underlying stock reaches
the barrier. If such a time is observed to be less or equal to the maturity,
the option is nullified, being equal to a pre-specified rebate, and is activated
otherwise. One could numerically determine the first time at which the stock
price is observed to cross the barrier by a crude simulation, i.e. through k∗ ·h,
where h stands for the time step increment and k∗ denotes the first step the
underlying asset price has been outside the boundary (here, it is supposed
that 0 is the starting time). Numerical tests show that this method does not
perform well because the stock price is checked at dicrete instants through
simulations and the barrier might have been hit without being detected, giv-
ing rice to an over-estimation of the exit time and thus to a non trivial error
for the estimate of the option price.

The algorithm (there) from [1] allows to improve the performance of the
crude Monte Carlo method, by giving a careful estimation of τ as follows.
When the stock price is observed to stay inside the boundary either at step
k− 1 and k, an accurate approximation ph

k of the probability that the under-
lying asset price crosses the barrier during the time interval ((k − 1)h, kh)
is computed and a bernoulli r.v. with parameter ph

k is generated: if it is
observed to be equal to 1, then the process is supposed to have gone out, so
that the exit time can be approximated by kh, otherwise the (k + 1)th step
is considered, unless k = N , i.e. the maturity has been reached.

/*Initialisation*/
The variables giving the price, the delta and the corresponding variances
are initialised. The coefficients rloc, sigmaloc and sigmat are used in

order to generate the the underlying asset prices starting at s and s + ε, at
the discretisation times.

4 pages 2

/*Coefficient for the computation of the exit probability*/
The constant rap is used to compute the local probability of exit from the

barrier.

/*MC sampling*/
In this cicle, at step i the paths ln S(i)(s) and ln S(i)(s + ε), starting at s
and s + ε, are simulated. Thus, it starts by initialising the variable time

giving the current value of the discretization time. Since the paths really
simulated are given by the logarithm of the underlying asset price starting

at s and s + ε, their current values are set in the variables lnspot and
lnspot_increment. Notice that the process starting at ln(s + ε) is equal to

the process starting at ln s added by ln(1 + ε/s), which is a constant
denoted as increment.

/*Barrier at time */
Since the paths really simulated are given by the logarithm of the

underlying asset price, the considered barrier is the logarithm of the
starting barrier l.

/*Inside = 0 if the path reaches the barrier*/
inside and inside_increment are boolean variables initialised to 1,

switching to 0 when the corresponding path is observed to exit from the
barrier.

/*Simulation of the i-th path until its exit if it does*/
In this cicle, the processes are both simulated at the discretisation times

kh, whose current name is time, until k = N or the corresponding value of
the flag is changed, i.e. until inside= 0 or inside_increment= 0. At each

step k, a variable, called correction_active, is introduced in order to
ensure that both paths are generated by means of the same sample.
correction_active is firstly equal to 0 and its value switches to 1

whenever a path is observed to exit whereas the other one does not behave
in the same way.

The value of the old and new simulated points and of the barrier are put in
the variables lastlnspot, lnspot, lastlnspot_increment,
lnspot_increment, lastbarrier, barrier respectively .

/*Check if the i-th path has reached the barrier at time*/
The variable upordown is defined to be equal to 0 if the considered barrier
is an upper one, upordown being equal to 1 in the case of a lower barrier.

First of all, lnspot and lnspot_increment are compared with barrier: if
the path is outside the barrier, the corresponding value of inside and

4 pages 3

inside_increment is set equal to 0 and the exit times turns out to be
equal to time. Moreover, in such a case the corresponding price of the
sample, price_sample and price_sample_increment, is set equal to

rebate, discounded by \exp(-r*time).
Otherwise, the exit time is estimated by making use of check_barrierout,

which works as follows.
Suppose upordown=0, i.e. an upper barrier framework.

If the condition “If (*inside)” is true, then inside= 1, i.e. the path has
never gone out, so that in particular lnspot and lastlnspot are both

below the upper barrier. Thus the local exit probability ph
k is computed,

correction_active is set equal to 1 and a bernoulli r.v. with parameter
ph

k is considered: a uniform r.v. uniform is generated and if
(uniform< ph

k)then (the path has gone out, so that) inside is set equal to
0, the exit time estimated throgh time and price_sample set equal to

rebate, discounded by \exp(-r*time).
The same procedure is applied to the path starting at s + ε: if

inside_increment= 1 , then lnspot_increment and
lastlnspot_increment are both observed to stay below the barrier and a
uniform r.v. is needed; since the paths have to be simulated by means of
the same sample, such a uniform r.v. must be taken as the same uniform

previously used, if it has been generated. Thus, if the condition
“!*correction_active” is true, which means that

correction_active 6= 1, a new uniform r.v. is considered; whereas if it is
false, i.e. the correction has been yet activated, uniform does not change
and turns out to be the same one which has been previously generated.

Finally, notice that, since ε > 0, lnspot< lnspot_increment and
lastlnspot< lastlnspot_increment, so that correction_active has to

be firstly activated to the path starting at s.
If upordown= 1, correction_active has to be firstly activated to the path
starting at s + ε, so that check_barrierout is applied by changing the role

to inside, lnspot and lastlnspot and to inside_increment,
lnspot_increment and lastlnspot_increment respectively.

At the end of the while-cicle, if inside and/or inside_increment are not
changed, then the path has not reached the boundary: the option is

activated and price_sample and/or price_sample_increment can be
computed as usual.

/*Delta*/
The delta of the sample is computed (recall that increment= ln(1 + ε/s) so

that ε ∼ increment*s:that is why the variation of the price sample is
divided by increment*s).

4 pages 4

/*Sum*/
The partial sums of the observed price_sample and delta_sample are

computed.

/*Sum of Squares*/
The partial sums of the squares of the observed price_sample and

delta_sample are computed and will be used to evaluate the empirical
variances.

/*Price*/
The price is numerically computed by averaging over the M observed
price_sample. The variable pterror_price is such that the interval

(ptprice− pterror_price, ptprice+ pterror_price) represents the 95%
confidence interval for ptprice.

/*Delta*/
The delta is computed according to the case of a put or call option. The

variable pterror_delta is such that the interval (ptdelta−
pterror_delta, ptdelta+ pterror_delta) represents the 95% confidence

interval for ptdelta.

References

[1] P.BALDI L.CARAMELLINO M.G.IOVINO. Pricing general barrier op-
tions: a numerical approach using sharp large deviations. To appear in
Mathematical Finance (1999), 1999. 1

