
Introduction

Unlike European options, American options cannot be valued by closed-form formulae and
require the use of numerical methods. There are two main numerical approaches: one is
the probabilistic approach, based on the approximation of diffusions by Markov chains,
the other is the analytic approach related to the discretization of variational inequalities.
In this survey, we will concerned with the pricing of American options on one or two stocks
in the Black-Scholes setting for which various numerical methods have been developed.
We recall here the connections between the modern theory of American options with the
optimal stopping and variational inequalities theories.

1 The value function of American options

1.1 The model

We will consider American options written on two dividend-paying stocks. Let Si
t (i = 1, 2)

be the stock-price at time t of the stock i which satisfies the following stochastic differential
equation:

dSi
t

Si
t

= (r − δi)dt +
2∑

j=1

σijdW j
t i = 1, 2(1)

where, under the so-called risk neutral probability measure which will be denoted by P , W
is a standard 2-dimensional Brownian motion. The nonnegative constant r is the interest
rate and the nonnegative constants δi are the dividend rate of the stock i.
The matrix Σ = (σij)1≤i,j≤n is assumed to be invertible.
An American option with maturity T is defined by a continuous nonnegative adapted
process (Zt)0≤t≤T satisfying E( sup

0≤t≤T
Zt) < ∞, where Zt stands for the payoff of the option

when exercise occurs at time t. We will be concerned with payoff processes given by
Zt = ψ(St) where ψ is a continuous nonnegative function satisfying

∃M > 0 ∀x ∈]0,∞[2 ψ(x) + ||∇ψ(x)|| ≤ M(1 + ||x||)(2)

We recall the proposition which gives the value function of an American option (see
e.g. Jaillet et al. Proposition 2.2) and highlights the connection with Optimal Stopping
Theory.

Proposition 1.1 The value at time t of an American option with maturity T and payoff
function ψ is given by U(t, St) where

U(t, x) = sup
τ∈T0,T−t

E(e−rτψ(S0,x
τ ))

= E(e−rτ∗ψ(S0,x
τ∗ ))
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where T0,T−t is the set of all stopping times with values in [0, T − t]. and

τ ∗ = inf{u ∈ [0, T − t] | C(t + u, S0,x
u ) = ψ(S0,x

u )}.
Recall that τ ∗ is the smallest optimal stopping time.

Remark 1.1 The process
(
e−rtU(t, Sx

t )
)

0≤t≤T
is the Snell envelope of the process

(
e−rtψ(Sx

t )
)

0≤t≤T

for any x ∈ R2.

For Probabilistic methods, see Tree Methods

1.2 Exercise region

We introduce the following set:

E = {(t, x) ∈ [0, T [×Rn | U(t, x) = ψ(x)}.
Clearly, it is never optimal to exercise prior to maturity out of E where the payoff due
to the option’s sale is greater than the one due to the exercise. Moreover, the smallest
optimal stopping times τ ∗ satisfies

τ ∗ = inf{u ≥ 0 | (t + u, Su) ∈ E} ∧ (T − t).

Definition 1.1 The coincidence set E is called the exercise region of the American option.

1.3 Variational inequalities and American options

The purpose of this subsection is to derive the variational inequality satisfied by the value
function U . Actually, it is convenient to make the change of variable Xt = log(St) in
equation 1. We have

dX i
t = (r − δi − 1

2

2∑

j=1

σ2
ij)dt +

2∑

j=1

σijdW j
t i = 1, 2(3)

Jaillet-Lamberton-Lapeyre have studied in the Black-Scholes diffusion case the American
option value by the method of variational inequalities based on the work of Bensoussan-
Lions. The viscosity solutions theory introduced by Crandall and P.L Lions is also a
means to characterize the option value.
Introduce the parabolic operator L by:

LU =
∂U

∂t
+AU

where

AF =
1

2

2∑

i,j=1

aij
∂2F

∂xi∂xj

+
2∑

i=1

(r − δi − 1

2

2∑

j=1

σ2
ij)

∂F

∂xi

− rF
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where the matrix A = (aij)1≤i,j≤2 equals Σ∗Σ.
Formally, the function V is the solution in a certain weak sense of the following obstacle
problem on [0, T [×R2

{
max(LU, ψ − U) = 0

U(T, .) = ψ
(4)

Let us recall what we understand by solution of problem (4).

1.3.1 Variational Inequality

In order to write the variational form of problem (4), we introduce some weighted Sobolev
spaces. Let m be a nonnegative integer and let 1 ≤ p ≤ ∞ and 0 < γ < ∞. Wm,p,γ(R2)
will denote the space of all functions u in Lp(R2, e−γ|x|dx) whose weak derivatives of all
orders ≤ m exist and belong to Lp(R2, e−γ|x|dx). We will write Hγ (resp. Vγ) instead
of W 0,2,γ(R2) (resp. W 1,2,γ(R2)) and the inner product on Hγ will be denoted by (., .)γ.
Moreover, define

|u|γ =
(∫

R2
|u(x)|2e−γ|x| dx

) 1
2

= (u, u)
1
2
γ

and

||u||γ =

(
|u|2γ +

2∑

i=1

| ∂u

∂xi

|2γ
) 1

2

.

We define a bilinear form on Vγ in the following way:

aγ(u, v) =
2∑

i=1

(∫ ∂u

∂xi

∂v

∂xi

e−γ|x| dx− γ
∫ ∂u

∂xi

v
xi

|x|e
−γ|x| dx

)
+ ρ

∫
uve−γ|x| dx

With these notations, a function u defined on [0, T [×R2 is in L2([0, T ]; Vγ) if

∫ T

0
||u(t, .)||2γ dt < ∞.

Theorem 1.1 below states that the function U equals the unique solution of the variational
inequality (5) (see Bensoussan-Lions and Jaillet-Lamberton-Lapeyre).

Theorem 1.1 Assume ψ ∈ W 1,p,γ(R2) with p > 2.

1- There is one and only one function u satisfying u ∈ L2([0, T ]; Vγ) and ∂u
∂t
∈ L2([0, T ]; Hγ)

such that:




u(T, x) = φ(x)
u ≥ φ a.e in [0, T [×R2

∀v ∈ Vγ, ( v ≥ ψ → −(∂u
∂t

, v − u)γ + aγ(u, v − u) ≥ 0
(5)

2- The function U is equal to the solution of (5).

Remark 1.2 If ψ satisfies (2) then we can find γ > 0 such that ψ belongs to W 1,p,γ(R2)
with p > 2. Hence, theorem 1.1 is valid in our context.
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1.3.2 Viscosity solution

First, we present the notation used in this section and recall the definition of viscosity
solution suitable for our obstacle problem. We denote by C1,2([0, T ] × Rn) the set of
functions once continuously differentiable in t and twice continuously differentiable in x.

Definition 1.2 A function u : [0, T ]×R2 → R is a viscosity subsolution (resp. superso-
lution) of (4) if u is upper (resp. lower) semicontinuous such that
1) u(T, .) ≤ (resp. ≥) ψ.
2) for every w ∈ C1,2(]0, T [×R2), if (t0, x0) ∈]0, T [×R2 is a local maximum (resp. mini-
mum) of u− w then

max(
∂w

∂t
(t0, x0) +Aw(t0, x0), ψ(x0)− u(t0, x0)) ≤ (resp. ≥) 0

A viscosity solution is both a viscosity subsolution and supersolution of (4).

We have the following result:

Proposition 1.2 The function V is the unique viscosity solution of (4).

For the numerical analysis of our equation, see Finite Difference Methods
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