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Premia 5

1 European Barrier Options

Suppose the underlying asset price evolves according to the Black and Scholes
model with continuous yield δ, i.e.

dSu = Su(bdu + σdBu), St = x

where b = r − δ, r being the spot rate. As usual, we set T as the maturity,
θ = T − t as the time to maturity and f(ST (x)) as a suitable function which
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will be used to determine the payoff: since we are going to study european
barrier call or put options, f turns out to be

f(ST (x)) = (ST (x)−K)+ or f(ST (x)) = (K − ST (x))+

respectively, where K stands for the exercise price.
We need also to introduce the barriers:

L,U : [t, +∞) −→ [0, +∞), with L(u) < U(u), ∀u.

Here, L denotes the lower barrier and U the upper one.
The payoff of a knock-out single or double barrier is given by f(ST (x))

provided that the underlying asset price S does not hit on the barrier(s)
during the time interval [t, T ]; if it does, a pre-specified cash rebate R is paid
out. Similarly, in a knock-in framework, the payoff is equal to f(ST (x)) if S
reaches the boundary and a cash rebate R is paid out if S stays beyond the
barrier(s) until the maturity T . In formulas, the price of a barrier option is
given by

F (t, x) = IE
(
G(S(x))

)

being G the following functional of all the path (Ss, t ≤ s ≤ T ):

G(S(x)) =





e−rθf(ST (x))1τ(x)>T + e−r(τ(x)−t)R1τ(x)≤T knock− out case

e−rθf(ST (x))1τ(x)≤T + e−rθR1τ(x)>T knock− in case

where τ denotes the hitting time on the barrier(s)1.
Concernig the associated delta, as usual it is given by

∆(t, x) =
∂

∂x
F (t, x).

We present here a Monte Carlo procedure allowing to numerically com-
pute the price and the associated delta of barrier options. As usual, one
generates a large number, say M , of independent paths which approximate
the underlying asset price S on the time interval [t, T ] and for each simulated
path one computes the associated value of G.

The price F and the delta ∆ of the option will be numerically evaluated
by averaging over the M samples:

F (t, x) ∼ 1

M

M∑

i=1

G(S(i)(x))

1See next sections for a more precise definition of τ .
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and

∆(t, x) ∼ F (t, x + ε)− F (t, x)

ε
∼ 1

Mε

M∑

i=1

[
G(S(i)(x + ε)−G(S(i)(x)

]

where ε stands for a constant close to zero2.
The paths S(i)(x)’s are generated as follows.
For a fixed positive integer N , set h = θ/N as the step size. The under-

lying stock price is then simulated at the times tk = t + hk, k = 1, 2, . . . , N :




S
(i)
t = x

S
(i)
t+hk = S

(i)
t+h(k−1) exp

{(
b− σ2

2

)
h + σ

√
hX

(i)
k

}
k = 1, 2, . . . , N

where (X
(i)
k )1≤k≤N,1≤i≤M is a set of independent standard gaussian random

variables.
Thus, in the Monte Carlo-Baldi algorithm, at step k, S

(i)
t+hk is generated,

by means of S
(i)
t+h(k−1). Now, one checks if S

(i)
t+hk has or has not reached

the boundary. In the first case, the simulation is stopped and the value
of the functional G can be then computed. Otherwise, one checks if S(i)

has crossed the barrier(s) during the time interval (t + h(k − 1), t + hk) by
means of an approximation ph

k of the conditional exit probability3, given the

observations S
(i)
t+h(k−1) and S

(i)
t+hk, as follows. A Bernoulli random variable

Y
(i)
k , with parameter ph

k, is generated. If Y
(i)
k = 1 then the boundary has

been reached by S(i), so that the simulation of the ith path is stopped and
the associated value of the functional G is then computed; otherwise, the
simulation is carried on and the step (k + 1) is considered, unless obviously
k = N .

In the same way, the paths {S(i)(x+ ε)}1≤i≤M are generated, {G(S(i)(x+
ε)}1≤i≤M computed and the delta can be approximated. It worth to remark
that in order to numerically compute the delta, the paths S(i)(x) and S(i)(x+

ε) have to be generated by means of the same sample of gaussian r.v.’s {X̂(i)
k }k

and bernoulli r.v.’s {Y (i)
k }k. Indeed, in the Monte Carlo approximation of the

derivative of a function, such as the delta, it has been shown4 that the error

2It is worth to observe that a too small value for ε does not give good results since it
is not hard to show that in the barrier option framework the variance of the estimator
diverges as ε → 0. Anyway, numerical tests have shown that ε = 0.01 provides good
outcomes for the delta, as it follows by comparing the obtained results with the values
exactly computed by closed formulas.

3The value of ph
k is actually exact in the single barrier framework studied by Ikeda and

Kunitomo.
4Such a property is clear and has been already remarked by several authors.
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decreases when the correlation of the samples involved in the simulation goes
to 1.

In summary, the algorithm can be splitted in two cicles:

• the ”i-cicle”, for i = 1, 2, . . . ,M , giving the ith simulated path S(i), the
value G(S(i)) and thus the partial sum of the samples of the functional
G up to the ith simulation;

• the ”k-cicle”, for k = 1, 2, . . . , N , inside the ”i-cicle”, through which
the ith path is simulated at times tk = t + hk, giving the eventual exit
and the value of S

(i)
T , if it is useful for determining the functional G.

At the end of the ”i-cicle”, one can average over the M obtained values
G(S(i)).

In the following, we give the details of the simulation procedure for the
ith path, i.e. what we have called the ”k-cicle”, specializing on the cases of
single or double barrier options and on the knock-out or knock-in framework.

1.1 Single Barrier Options

Let L denote the lower barrier and let

τL = inf{u > t ; Su ≤ L(u)}
be the hitting time on the barrier. Similarly, if U denotes the upper barrier,

τU = inf{u > t ; Su ≥ U(u)}
stands for the hitting time on U . The price of a single barrier call or put
option is written in terms of τL and τU .

We recall that f(ST (x)) = (ST (x) − K)+ or f(ST (x)) = (K − ST (x))+

according to the case of a call or a put option, respectively.

1.1.1 Down-Out Call/Put Options

The price of the option is F (t, x) = IE
(
G(S(x))

)
, where

G(S(x)) = e−rθf(ST (x))1τL(x)>T + e−r(τL(x)−t)R1τL(x)≤T .

For i = 1, 2, . . . , M , the ith path S(i) is simulated and G(S(i)) is evaluated
as follows.

One sets S
(i)
t = x and computes L(t). For k = 1, 2, . . . N , S

(i)
t+hk is simu-

lated and L(t + hk) is computed, where h = θ/N .

♠ If S
(i)
t+hk ≤ L(t + hk) then
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• one sets G(S(i)) = e−rhkR;

• the (i + 1)th path is considered, unless i = M .

♠ If S
(i)
t+hk > L(t + hk) then

• the conditional exit probability ph
k, given the simulated points at times

t + h(k − 1) and t + hk, is computed:

ph
k = exp

{
− 2

σ2h

[
(ln S

(i)
t+h(k−1)−L(t+h(k−1)))(ln S

(i)
t+hk−L(t+h(k−1)))

−(ln S
(i)
t+h(k−1) − L(t + h(k − 1)))(L(t + hk)− L(t + h(k − 1)))

]}
;

• a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated and:

– if Y
(i)
k = 1 then

∗ one sets G(S(i)) = e−rhkR;

∗ the (i + 1)th path is considered, unless i = M ;

– if Y
(i)
k = 0 then

∗ if k < N then the step (k + 1) is considered;

∗ if k = N then (T = t + hN so that) one sets G(S(i)) =

e−rθf(S
(i)
T ).

1.1.2 Up-Out Call/Put Options

The price of the option is F (t, x) = IE
(
G(S(x))

)
, where

G(S(x)) = e−rθf(ST (x))1τU (x)>T + e−r(τU (x)−t)R1τU (x)≤T ,

For i = 1, 2, . . . , M , the ith path S(i) is simulated and G(S(i)) is evaluated
as follows.

One sets S
(i)
t = x and computes U(t). For k = 1, 2, . . . N , S

(i)
t+hk is simu-

lated and U(t + hk) is computed, where h = θ/N .

♠ If S
(i)
t+hk ≥ U(t + hk) then

• one sets G(S(i)) = e−rhkR;

• the (i + 1)th path is considered, unless i = M .

♠ If S
(i)
t+hk < U(t + hk) then
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• the conditional exit probability ph
k, given the simulated points at times

t + h(k − 1) and t + hk, is computed:

ph
k = exp

{
− 2

σ2h

[
(U(t+h(k−1))−ln S

(i)
t+h(k−1))(U(t+h(k−1))−ln S

(i)
t+hk)

+(U(t + h(k − 1))− ln S
(i)
t+h(k−1))(U(t + hk)− U(t + h(k − 1)))

]}
;

• a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated and:

– if Y
(i)
k = 1 then

∗ one sets G(S(i)) = e−rhkR;

∗ the (i + 1)th path is considered, unless i = M ;

– if Y
(i)
k = 0 then

∗ if k < N then the step (k + 1) is considered;

∗ if k = N then (T = t + hN so that) one sets G(S(i)) =

e−rθf(S
(i)
T ).

1.1.3 Down-In Call/Put Options

The price of the option is F (t, x) = IE
(
G(S(x))

)
, where

G(S(x)) = e−rθf(ST (x))1τL(x)≤T + e−rθR1τL(x)>T .

For i = 1, 2, . . . , M , the ith path S(i) is simulated and G(S(i)) is evaluated
as follows.

One sets S
(i)
t = x and computes L(t). For k = 1, 2, . . . N , S

(i)
t+hk is simu-

lated and L(t + hk) is computed, where h = θ/N .

♠ If S
(i)
t+hk ≤ L(t + hk) then

• S(i) is generated at time T :

S
(i)
T = S

(i)
t+hk exp

{(
b− σ2

2

)
h(N − k) + σ

√
h(N − k)X̂

(i)
k

}

where X̂
(i)
k is a further standard gaussian random variable;

• one sets G(S(i)) = e−rhkf(S
(i)
T );

• the (i + 1)th path is considered, unless i = M .

♠ If S
(i)
t+hk > L(t + hk) then
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• the conditional exit probability ph
k, given the simulated points at times

t + h(k − 1) and t + hk, is computed:

ph
k = exp

{
− 2

σ2h

[
(ln S

(i)
t+h(k−1)−L(t+h(k−1)))(ln S

(i)
t+hk−L(t+h(k−1)))

−(ln S
(i)
t+h(k−1) − L(t + h(k − 1)))(L(t + hk)− L(t + h(k − 1)))

]}
;

• a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated and:

– if Y
(i)
k = 1 then

∗ S(i) is generated at time T :

S
(i)
T = S

(i)
t+hk exp

{(
b− σ2

2

)
h(N − k) + σ

√
h(N − k)X̂k

}

where X̂
(i)
k is a further standard gaussian random variable;

∗ one sets G(S(i)) = e−rhkf(S
(i)
T );

∗ the (i + 1)th path is considered, unless i = M .

– if Y
(i)
k = 0 then

∗ if k < N then the step (k + 1) is considered;

∗ if k = N then one sets G(S(i)) = e−rθR.

1.1.4 Up-In Call/put Options

The price of the option is F (t, x) = IE
(
G(S(x))

)
, where

G(S(x)) = e−rθf(ST (x))1τU (x)≤T + e−rθR1τU (x)>T .

For i = 1, 2, . . . , M , the ith path S(i) is simulated and G(S(i)) is evaluated
as follows.

One sets S
(i)
t = x and computes U(t). For k = 1, 2, . . . N , S

(i)
t+hk is simu-

lated and U(t + hk) is computed, where h = θ/N .

♠ If S
(i)
t+hk ≥ U(t + hk) then

• S(i) is generated at time T :

S
(i)
T = S

(i)
t+hk exp

{(
b− σ2

2

)
h(N − k) + σ

√
h(N − k)X̂

(i)
k

}

where X̂
(i)
k is a further standard gaussian random variable;
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• one sets G(S(i)) = e−rhkf(S
(i)
T );

• the (i + 1)th path is considered, unless i = M .

♠ If S
(i)
t+hk < U(t + hk) then

• the conditional exit probability ph
k, given the simulated points at times

t + h(k − 1) and t + hk, is computed:

ph
k = exp

{
− 2

σ2h

[
(U(t+h(k−1))−ln S

(i)
t+h(k−1))(U(t+h(k−1))−ln S

(i)
t+hk)

+(U(t + h(k − 1))− ln S
(i)
t+h(k−1))(U(t + hk)− U(t + h(k − 1)))

]}
;

• a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated and:

– if Y
(i)
k = 1 then

∗ S(i) is generated at time T :

S
(i)
T = S

(i)
t+hk exp

{(
b− σ2

2

)
h(N − k) + σ

√
h(N − k)X̂

(i)
k

}

where X̂
(i)
k is a further standard gaussian random variable;

∗ one sets G(S(i)) = e−rhkf(S
(i)
T );

∗ the (i + 1)th path is considered, unless i = M .

– if Y
(i)
k = 0 then

∗ if k < N then the step (k + 1) is considered;

∗ if k = N then (T = t+hN so that) one sets G(S(i)) = e−rθR.

1.2 Double Barrier Options

The price of a double barrier call or put option is written in terms of first
time the underlying asset price hits on the barriers:

τ = inf{u > t ; Su ≤ L(u) or Su ≥ U(u)} ≡ τL ∧ τU .

Again we recall that f(ST (x)) = (ST (x)−K)+ or f(ST (x)) = (K − ST (x))+

according to the case of a call or a put option, respectively.
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1.2.1 Knock-Out Call/Put Options

The price of the option is F (t, x) = IE
(
G(S(x))

)
, where

G(S(x)) = e−rθf(ST (x))1τ(x)>T + e−r(τ(x)−t)R1τ(x)≤T .

For i = 1, 2, . . . , M , the ith path S(i) is simulated and G(S(i)) is evaluated
as follows.

One sets S
(i)
t = x and computes L(t) and U(t). For k = 1, 2, . . . N , S

(i)
t+hk

is simulated and L(t + hk), U(t + hk) are computed, where h = θ/N .

♠ If S
(i)
t+hk ≤ L(t + hk) or S

(i)
t+hk ≥ U(t + hk) then

• one sets G(S(i)) = e−rhkR;

• the (i + 1)th path is considered, unless i = M .

♠ If S
(i)
t+hk > L(t + hk) and S

(i)
t+hk < U(t + hk) then

• the conditional exit probability ph
k, given the simulated points at times

t + h(k − 1) and t + hk, is computed:

if S
(i)
t+h(k−1) + S

(i)
t+hk > L(t + h(k − 1)) + U(t + h(k − 1)) then

ph
k = exp

{
− 2

σ2h

[
(U(t+h(k−1))−ln S

(i)
t+h(k−1))(U(t+h(k−1))−ln S

(i)
t+hk)

+(U(t + h(k − 1))− ln S
(i)
t+h(k−1))(U(t + hk)− U(t + h(k − 1)))

]}
;

if S
(i)
t+h(k−1) + S

(i)
t+hk < L(t + h(k − 1)) + U(t + h(k − 1)) then

ph
k = exp

{
− 2

σ2h

[
(ln S

(i)
t+h(k−1)−L(t+h(k−1)))(ln S

(i)
t+hk−L(t+h(k−1)))

−(ln S
(i)
t+h(k−1) − L(t + h(k − 1)))(L(t + hk)− L(t + h(k − 1)))

]}
;

• a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated and:

– if Y
(i)
k = 1 then

∗ one sets G(S(i)) = e−rhkR;

∗ the (i + 1)th path is considered, unless i = M ;

– if Y
(i)
k = 0 then

∗ if k < N then the step (k + 1) is considered;

∗ if k = N then (T = t + hN so that) one sets G(S(i)) =

e−rθf(S
(i)
T ).
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1.2.2 Knock-In Call/Put Options

The price of the option is F (t, x) = IE
(
G(S(x))

)
, where

G(S(x)) = e−rθf(ST (x))1τ(x)≤T + e−rθR1τ(x)>T .

For i = 1, 2, . . . , M , the ith path S(i) is simulated and G(S(i)) is evaluated
as follows.

One sets S
(i)
t = x and computes L(t) and U(t). For k = 1, 2, . . . N , S

(i)
t+hk

is simulated and L(t + hk), U(t + hk) are computed, where h = θ/N .

♠ If S
(i)
t+hk ≤ L(t + hk) or S

(i)
t+hk ≥ U(t + hk) then

• S(i) is generated at time T :

S
(i)
T = S

(i)
t+hk exp

{(
b− σ2

2

)
h(N − k) + σ

√
h(N − k)X̂

(i)
k

}

where X̂
(i)
k is a further standard gaussian random variable;

• one sets G(S(i)) = e−rhkf(S
(i)
T );

• the simulation of the (i + 1)th path is considered, unless i = M .

♠ If S
(i)
t+hk > L(t + hk) and S

(i)
t+hk < U(t + hk) then

• the conditional exit probability ph
k, given the simulated points at times

t + h(k − 1) and t + hk, is computed:

if S
(i)
t+h(k−1) + S

(i)
t+hk > L(t + h(k − 1)) + U(t + h(k − 1)) then

ph
k = exp

{
− 2

σ2h

[
(U(t+h(k−1))−ln S

(i)
t+h(k−1))(U(t+h(k−1))−ln S

(i)
t+hk)

+(U(t + h(k − 1))− ln S
(i)
t+h(k−1))(U(t + hk)− U(t + h(k − 1)))

]}
;

if S
(i)
t+h(k−1) + S

(i)
t+hk < L(t + h(k − 1)) + U(t + h(k − 1)) then

ph
k = exp

{
− 2

σ2h

[
(ln S

(i)
t+h(k−1)−L(t+h(k−1)))(ln S

(i)
t+hk−L(t+h(k−1)))

−(ln S
(i)
t+h(k−1) − L(t + h(k − 1)))(L(t + hk)− L(t + h(k − 1)))

]}
;

• a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated and:

– if Y
(i)
k = 1 then
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∗ S(i) is generated at time T :

S
(i)
T = S

(i)
t+hk exp

{(
b− σ2

2

)
h(N − k) + σ

√
h(N − k)X̂k

}

where X̂k is a further standard gaussian random variable;

∗ one sets G(S(i)) = e−rhkf(S
(i)
T );

∗ the (i + 1)th path is considered, unless i = M .

– if Y
(i)
k = 0 then

∗ if k < N then the step (k + 1) is considered;

∗ if k = N then (T = t+hN so that) one sets G(S(i)) = e−rθR.

2 Parisian Barrier Options

Suppose the underlying asset price evolves according to the Black and Scholes
model with continuous yield δ, i.e.

dSu = Su(bdu + σdBu), St = x

where b = r − δ, r being the spot rate. As usual, we set T as the maturity,
θ = T − t as the time to maturity and f(ST (x)) as a suitable function which
will be used to determine the payoff: since we are going to study parisian
call or put barrier options, f turns out to be

f(ST (x)) = (ST (x)−K)+ or f(ST (x)) = (K − ST (x))+

respectively, where K stands for the exercise price.
We need to introduce the lower barrier L and the upper barrier U :

L,U : [t, +∞) −→ [0, +∞), with 0 ≤ L(u) < U(u), ∀u.

and a positive constant D which will play the role of a delay.
The payoff of a knock-out single or double parisian barrier option is given

by f(ST (x)) provided that the underlying asset price S does not stay above
the upper barrier or below the lower one uninterruptedly for longer than a
pre-specified time length D; if it does, it is nullified. Similarly, in the knock-
in framework the payoff is equal to f(ST (x)) if S stays beyond the barrier(s)
uninterruptedly for longer than D; otherwise, the value is set equal to 0. In
formulas, the price of a parisian barrier option is given by

F (t, x) = IE
(
G(S(x))

)
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being G the following functional of the path (Su, t ≤ u ≤ T ):

G(S(x)) =





e−rθf(ST (x))1HD(x)>T knock− out case

e−rθf(ST (x))1HD(x)≤T knock− in case

where HD denotes the first time at which the underlying asset price has been
observed to stay beyond the barrier(s) uninterruptedly for longer than D:

HD = inf{u > t ; (u− gu)1Su(x) is outside the barrier(s) ≥ D}

gu being the final time up to u when the underlying asset price S hits on the
boundary, gu = u otherwise5.

We present here a Monte Carlo procedure allowing to numerically com-
pute the price F (t, x) of parisian barrier options. As usual, one generates a
large number, say M , of independent paths which approximate the under-
lying asset price S on the time interval [t, T ] and for each simulated path
one computes the associated value of G. The price of the option will be
numerically evaluated by averaging over the M samples:

F (t, x) ∼ 1

M

M∑

i=1

G(S(i)(x)).

The paths S(i)’s are generated as follows.
For a fixed positive integer N , set h = θ/N as the step size. The under-

lying stock price is then simulated at the times tk = t + hk, k = 1, 2, . . . , N :




S
(i)
t = x

S
(i)
t+hk = S

(i)
t+h(k−1) exp

{(
b− σ2

2

)
h + σ

√
hX

(i)
k

}
k = 1, 2, . . . , N

where (X
(i)
k )1≤k≤N,1≤i≤M is a set of independent standard gaussian random

variables.
Thus, in the Monte Carlo-Parisian algorithm, at step k, S

(i)
t+hk is gener-

ated, by means of S
(i)
t+h(k−1).

If k = 0, one sets ĝ
(i)
t = t and Ĥ

(i)
D = 0, where ĝ(i) and Ĥ

(i)
D stand for the

approximation of g and HD respectively.
When k ≥ 1, one checks if S

(i)
t+hk has or has not reached the boundary.

In the latter case, one sets ĝ
(i)
t+hk = t + hk, Ĥ

(i)
D = 0 and the simulation is

carried on, unless k = N . Otherwise, the algorithm behaves in two different
ways according to the position of the path S(i) at time t + h(k − 1):

5See next sections for a more precise definition of HD and gu.
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– if S
(i)
t+h(k−1) has not breached the barrier(s), ĝ

(i)
t+hk is updated by a suitable

instant between6 t + h(k − 1) and t + hk;

– if also S
(i)
t+h(k−1) has breached the barrier(s), one checks if S(i) has crossed

the boundary during the time interval (t + h(k − 1), t + hk) by means of an
approximation ph

k of the conditional exit probability7, given the observations

S
(i)
t+h(k−1) and S

(i)
t+hk, as follows. A Bernoulli random variable Y

(i)
k , with pa-

rameter ph
k, is generated. If Y

(i)
k = 1 then the boundary has been reached by

S(i), so that ĝ
(i)
t+hk = t + hk and the simulation is carried on; otherwise, the

value of g
(i)
t+hk is not changed.

Thus, Ĥ
(i)
D = t + hk − g

(i)
t+hk is computed. As soon as Ĥ

(i)
D > D the

simulation of the ith path is stopped and the associated value of the functional
G is then computed; otherwise, the simulation is carried on and the step
(k + 1) is considered, unless obviously k = N .

In summary, the algorithm can be splitted in two cicles:

• the ”i-cicle”, for i = 1, 2, . . . ,M , giving the ith simulated path S(i), the
value G(S(i)) and thus the partial sum of the samples of the functional
G up to the ith simulation;

• the ”k-cicle”, for k = 1, 2, . . . , N , inside the ”i-cicle”, through which
the ith path is simulated at times tk = t + hk, giving an approximation
Ĥ

(i)
D of H

(i)
D and the value of S

(i)
T , if it is useful for determining the

functional G.

At the end of the ”i-cicle”, one can average over the M obtained values
G(S(i)).

In the following, we give the details of the simulation procedure for the
ith path, i.e. what we have called the ”k-cicle”, specializing on the cases of
single or double parisian barrier options and on the knock-out or knock-in
framework.

2.1 Single Parisian Barrier Options

Let L denote the lower barrier and U the upper one. Let gu be the final time
up to u when the barrier is crossed. More in details, in the down parisian
barrier option framework, set

gu = sup{s ≤ u ; Ss = L(s)};
6See next sections for the formula giving ĝ

(i)
t+hk.

7The value of ph
k is actually exact in the single barrier framework when the barrier is

exponential w.r.t. the time variable (this is the case studied by Ikeda and Kunitomo for
standard barrier options).
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as for the up parisian barrier option case,

gu = sup{s ≤ u ; Ss = U(s)}.

If Ss > L(s) or Ss < U(s) for any s ≤ u, put gu = u. We can now define
the first time HD at which the underlying asset price S has been observed to
stay beyond the barrier uninterruptedly for longer than D: for down parisian
barrier options,

HD = inf{u > t ; (u− gu)1Su(x)≤L(u) ≥ D} (1)

and for up parisian barrier options,

HD = inf{u > t ; (u− gu)1Su(x)≥U(u) ≥ D} (2)

The price of a single parisian barrier call or put option is written in terms
of HD.

We recall that f(ST (x)) = (ST (x) − K)+ or f(ST (x)) = (K − ST (x))+

according to the case of a call or a put option, respectively.
In the following, the maps Φh

L, Φh
U : {1, . . . , N}×{(ξ, η) ∈2 ; ξ 6= η} −→,

are defined as8:

Φh
L(k, ξ, η) =

ln L(t + hk)− ξ

η − ξ
;

Φh
U(k, ξ, η) =

ln U(t + hk)− ξ

η − ξ
.

2.1.1 Down Call/Put Parisian Options

The price of the option is F (t, x) = IE
(
G(S(x))

)
, where

G(S(x)) =





e−rθf(ST (x))1HD>T Down-Out Case;

e−rθf(ST (x))1HD≤T Down-In Case,

8In the sequel, the maps Φh
L, Φh

U will be evaluated on the triple (k, ln S
(i)
t+hk, ln S

(i)
t+h(k+1))

subject to the constraints

ln S
(i)
t+hk > L(t + hk), ln S

(i)
t+h(k+1) ≤ L(t + h(k + 1))

and
ln S

(i)
t+hk < U(t + hk), ln S

(i)
t+h(k+1) ≥ U(t + h(k + 1))

respectively, so that Φh
L(k, ln S

(i)
t+hk, lnS

(i)
t+h(k+1)) > 0 and Φh

U (k, ln S
(i)
t+hk, ln S

(i)
t+h(k+1)) >

0, at least for small values of h.
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HD being defined through (1).
For i = 1, 2, . . . , M , the ith path S(i) is simulated and G(S(i)) is evaluated

as follows.
One sets S

(i)
t = x, computes L(t) and puts

ĝ
(i)
t = t, Ĥ

(i)
D = 0.

For k = 1, 2, . . . N , S
(i)
t+hk is simulated and L(t + hk) is computed, where

h = θ/N .

♠ If S
(i)
t+hk > L(t + hk), one sets

ĝ
(i)
t+hk = t + hk.

♠ If S
(i)
t+hk ≤ L(t + hk) then

• if S
(i)
t+h(k−1) > L(t + h(k − 1)), one sets

ĝ
(i)
t+hk = t + hk + Φh

L(k − 1, ln S
(i)
t+h(k−1), ln S

(i)
t+hk);

• if S
(i)
t+h(k−1) ≤ L(t + h(k − 1)) then

– the conditional exit probability ph
k, given the simulated points at

times t + h(k − 1) and t + hk, is computed:

ph
k = exp

{
− 2

σ2h

[
(ln S

(i)
t+h(k−1)−L(t+h(k−1)))(ln S

(i)
t+hk−L(t+h(k−1)))

−(ln S
(i)
t+h(k−1) − L(t + h(k − 1)))(L(t + hk)− L(t + h(k − 1)))

]}
;

– a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated
and:

∗ if Y
(i)
k = 1 one sets

ĝ
(i)
t+hk = t + hk;

∗ if Y
(i)
k = 0, the value of ĝ

(i)
t+hk is not changed.

Once ĝ
(i)
t+hk has been updated, Ĥ

(i)
D is computed as

Ĥ
(i)
D = t + hk − ĝ

(i)
t+hk.

Now, the algorithm differs according to the down-out or down-in frame-
work as follows.
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• Down-Out Call/Put Parisian Options

– If Ĥ
(i)
D ≥ D then

∗ one sets G(S(i)) = 0;

∗ the (i + 1)th step is considered, unless i = M ;

– if Ĥ
(i)
D < D then

∗ if k < N , the (k + 1)th step is considered;

∗ if k = N , (t + hk ≡ T so that) one sets G(S(i)) = e−rθf(S
(i)
T ).

• Down-In Call/Put Parisian Options

– If Ĥ
(i)
D ≥ D then

∗ S(i) is generated at time T :

S
(i)
T = S

(i)
t+hk exp

{(
b− σ2

2

)
h(N − k) + σ

√
h(N − k)X̂

(i)
k

}

where X̂
(i)
k is a further standard gaussian random variable;

∗ one sets G(S(i)) = e−rθf(S
(i)
T );

∗ the (i + 1)th path is considered, unless i = M .

– if Ĥ
(i)
D < D then

∗ if k < N , the (k + 1)th step is considered;

∗ if k = N , one sets G(S(i)) = 0.

2.1.2 Up Call/Put Parisian Options

The price of the option is F (t, x) = IE
(
G(S(x))

)
, where

G(S(x)) =





e−rθf(ST (x))1HD>T Down-Out Case;

e−rθf(ST (x))1HD≤T Down-In Case,

HD being defined through (2).
For i = 1, 2, . . . , M , the ith path S(i) is simulated and G(S(i)) is evaluated

as follows.
One sets S

(i)
t = x, computes U(t) and puts

ĝ
(i)
t = t, Ĥ

(i)
D = 0.
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For k = 1, 2, . . . N , S
(i)
t+hk is simulated and U(t + hk) is computed, where

h = θ/N .

♠ If S
(i)
t+hk < U(t + hk), one sets

ĝ
(i)
t+hk = t + hk.

♠ If S
(i)
t+hk ≥ U(t + hk) then

• if S
(i)
t+h(k−1) < U(t + h(k − 1)), one sets

ĝ
(i)
t+hk = t + hk + Φh

U(k − 1, ln S
(i)
t+h(k−1), ln S

(i)
t+hk);

• if S
(i)
t+h(k−1) ≥ U(t + h(k − 1)) then

– the conditional exit probability ph
k, given the simulated points at

times t + h(k − 1) and t + hk, is computed:

ph
k = exp

{
− 2

σ2h

[
(ln S

(i)
t+h(k−1)−U(t+h(k−1)))(ln S

(i)
t+hk−U(t+h(k−1)))

−(ln S
(i)
t+h(k−1) − U(t + h(k − 1)))(U(t + hk)− U(t + h(k − 1)))

]}
;

– a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated
and:

∗ if Y
(i)
k = 1 one sets

ĝ
(i)
t+hk = t + hk;

∗ if Y
(i)
k = 0, the value of ĝ

(i)
t+hk is not changed.

Once ĝ
(i)
t+hk has been updated, Ĥ

(i)
D is computed as

Ĥ
(i)
D = t + hk − ĝ

(i)
t+hk

Now, the algorithm differs according to the down-out or down-in framework
as follows.

• Up-Out Call/Put Parisian Options

– If Ĥ
(i)
D ≥ D then

∗ one sets G(S(i)) = 0;
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∗ the (i + 1)th step is considered, unless i = M ;

– if Ĥ
(i)
D < D then

∗ if k < N , the (k + 1)th step is considered;

∗ if k = N , (t + hk ≡ T so that) one sets G(S(i)) = e−rθf(S
(i)
T ).

• Up-In Call/Put Parisian Options

– If Ĥ
(i)
D ≥ D then

∗ S(i) is generated at time T :

S
(i)
T = S

(i)
t+hk exp

{(
b− σ2

2

)
h(N − k) + σ

√
h(N − k)X̂

(i)
k

}

where X̂
(i)
k is a further standard gaussian random variable;

∗ one sets G(S(i)) = e−rθf(S
(i)
T );

∗ the (i + 1)th path is considered, unless i = M .

– if Ĥ
(i)
D < D then

∗ if k < N , the (k + 1)th step is considered;

∗ if k = N , one sets G(S(i)) = 0.

2.2 Double Parisian Options

Let L denote the lower barrier and U the upper one. Let gu be the final time
up to u when the barriers are crossed:

gu = sup{s ≤ u ; Ss = L(s) or Ss = U(s)};
if L(s) < Ss < U(s) for any s ≤ u, put gu = u. We can now define the first
time HD at which the underlying asset price S has been observed to stay
beyond the barrier uninterruptedly for longer than D:

HD = inf{u > t ; (u− gu)1Su(x)≤L(u) or Su(x)≥L(u) ≥ D}.
The price of a double parisian barrier call or put option is written in

terms of HD.
We recall that f(ST (x)) = (ST (x) − K)+ or f(ST (x)) = (K − ST (x))+

according to the case of a call or a put option, respectively.
In the following, the maps Φh

L,U : AL,U ⊂ {1, . . . , N} × {(ξ, η) ∈2 ; ξ 6=
η} −→, is defined as:

Φh
L,U(k, ξ, η) =





Φh
L(k, ξ, η), if η < ln L(t + hk);

Φh
U(k, ξ, η), if η > ln U(t + hk),
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where Φh
L and Φh

U has been defined in the previous section, i.e.9

Φh
L,U(k, ξ, η) =





ln L(t + hk)− ξ

η − ξ
, if η < ln L(t + hk);

ln U(t + hk)− ξ

η − ξ
, if η > ln U(t + hk).

The price of the option is F (t, x) = IE
(
G(S(x))

)
, where

G(S(x)) =





e−rθf(ST (x))1HD>T , Knock-Out Case

e−rθf(ST (x))1HD≤T , Knock-In Case

For i = 1, 2, . . . , M , the ith path S(i) is simulated and G(S(i)) is evaluated
as follows.

One sets S
(i)
t = x, computes L(t), U(t), and puts

ĝ
(i)
t = t, Ĥ

(i)
D = 0.

For k = 1, 2, . . . N , S
(i)
t+hk is simulated and L(t + hk), U(t + hk) are

computed, where h = θ/N .

♠ If S
(i)
t+hk > L(t + hk) and S

(i)
t+hk <≥ U(t + hk), one sets

ĝ
(i)
t+hk = t + hk.

♠ If S
(i)
t+hk ≤ L(t + hk) then

• if S
(i)
t+h(k−1) > L(t + h(k − 1)), one sets

ĝ
(i)
t+hk = t + hk + Φh

L,U(k − 1, ln S
(i)
t+h(k−1), ln S

(i)
t+hk);

• if S
(i)
t+h(k−1) ≤ L(t + h(k − 1)) then

9In the sequel, the map Φh
L,U will be evaluated on the triple (k, ln S

(i)
t+hk, ln S

(i)
t+h(k+1))

subject to the constraints

ln S
(i)
t+hk > L(t + hk), ln S

(i)
t+h(k+1) ≤ L(t + h(k + 1))

or
ln S

(i)
t+hk < U(t + hk), ln S

(i)
t+h(k+1) ≥ U(t + h(k + 1)),

so that Φh
L,U (k, ln S

(i)
t+hk, ln S

(i)
t+h(k+1)) > 0, at least for small values of h.
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– the conditional exit probability ph
k, given the simulated points at

times t + h(k − 1) and t + hk, is computed:

ph
k = exp

{
− 2

σ2h

[
(ln S

(i)
t+h(k−1)−L(t+h(k−1)))(ln S

(i)
t+hk−L(t+h(k−1)))

−(ln S
(i)
t+h(k−1) − L(t + h(k − 1)))(L(t + hk)− L(t + h(k − 1)))

]}
;

– a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated
and:

∗ if Y
(i)
k = 1 one sets

ĝ
(i)
t+hk = t + hk;

∗ if Y
(i)
k = 0, the value of ĝ

(i)
t+hk is not changed.

♠ If S
(i)
t+hk ≥ U(t + hk) then

• if S
(i)
t+h(k−1) < U(t + h(k − 1)), one sets

ĝ
(i)
t+hk = t + hk + Φh

L,U(k − 1, ln S
(i)
t+h(k−1), ln S

(i)
t+hk);

• if S
(i)
t+h(k−1) ≥ U(t + h(k − 1)) then

– the conditional exit probability ph
k, given the simulated points at

times t + h(k − 1) and t + hk, is computed:

ph
k = exp

{
− 2

σ2h

[
(ln S

(i)
t+h(k−1)−U(t+h(k−1)))(ln S

(i)
t+hk−U(t+h(k−1)))

−(ln S
(i)
t+h(k−1) − U(t + h(k − 1)))(U(t + hk)− U(t + h(k − 1)))

]}
;

– a Bernoulli random variable Y
(i)
k , with parameter ph

k, is generated
and:

∗ if Y
(i)
k = 1 one sets

ĝ
(i)
t+hk = t + hk;

∗ if Y
(i)
k = 0, the value of ĝ

(i)
t+hk is not changed.

Once ĝ
(i)
t+hk has been updated, Ĥ

(i)
D is computed as

Ĥ
(i)
D = t + hk − ĝ

(i)
t+hk.

Now, the algorithm differs according to the knock-out or knock-in framework
as follows.
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• Knock-Out Double Call/Put Parisian Options

– If Ĥ
(i)
D ≥ D then

∗ one sets G(S(i)) = 0;

∗ the (i + 1)th step is considered, unless i = M ;

– if Ĥ
(i)
D < D then

∗ if k < N , the (k + 1)th step is considered;

∗ if k = N , (t + hk ≡ T so that) one sets G(S(i)) = e−rθf(S
(i)
T ).

• Knock-In Double Call/Put Parisian Options

– If Ĥ
(i)
D ≥ D then

∗ S(i) is generated at time T :

S
(i)
T = S

(i)
t+hk exp

{(
b− σ2

2

)
h(N − k) + σ

√
h(N − k)X̂

(i)
k

}

where X̂
(i)
k is a further standard gaussian random variable;

∗ one sets G(S(i)) = e−rθf(S
(i)
T );

∗ the (i + 1)th path is considered, unless i = M .

– if Ĥ
(i)
D < D then

∗ if k < N , the (k + 1)th step is considered;

∗ if k = N , one sets G(S(i)) = 0.
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