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1 Approximation Formulae of American op-

tions

In this section we present quasi-analytical solution for American options.

1.1 Barone-Adesi Whaley Approximation of the Amer-
ican Put

We now present MacMillan’s, or Barone-Adesi and Whaley’s approximation
formula (see MacMillan [6], Barone-Adesi and Whaley [8]). Let (Wt, t ≥ 0)
be a (Ft)-Brownian motion. Let r, δ and σ be three positive real numbers.
Again, we suppose that the price of the risky asset obeys the Black and
Scholes model under the risk neutral probability:

dSt = St ((r − δ)dt + σdWt) .

Let us denote by φ(x) := (K − x)+ the payoff function of the American Put.
Let

V0 := IE(e−rT φ(ST )),
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be the price at time 0 of the European Put option price with maturity T and
let

V ∗
0 := sup

τ∈T0,T

IE(e−rτφ(Sτ ))

be the price at time 0 of the American Put option price with maturity T .
For all smooth function f , let us recall the infinitesimal generator associated
with the Black-Scholes diffusion process:

Af(x) :=
σ2x2

2

∂2f(x)

∂x2
+ (r − δ)x

∂f(x)

∂x
.

Let us recall also that V0 = u(0, S0) where u(t, x) is the classical solution to




∂u

∂t
(t, x) + Au(t, x)− ru(t, x) = 0 in [0, T )× IR+.

u(T, x) = φ(x)
(1)

Suppose that there exists a nice solution u∗(t, x) (which means that one can
apply It?’s formula to u∗(t, St) and that the first derivative in x of u∗(t, x) is
uniformly bounded in (t, x) ∈ [0, T ]× IR+) to the variational inequality




max

(
φ(x)− u(t, x),

∂u

∂t
(t, x) + Au(t, x)− ru(t, x)

)
= 0, in [0, T )× IR+,

u(T, x) = φ(x)
(2)

It can be shown that V ∗
0 = u∗(0, S0). Besides, if

τ0 := inf{0 ≤ t ≤ T, u(t, St) = φ(St)},
then V ∗

0 = IE[e−rτ0φ(Sτ0)].
The quadratic method proposed by Barone-Adesi and Whaley is based on
exact solutions to approximations of the variational inequality (2).
Set v(x) := u∗(0, x) − u(0, x). One approximates v(x) owing to a one step
time discretization (of length T ) and a fully implicit method. Thus, the
approximation v̄ of v is solution to





−v̄(x) + T (Av̄(x)− rv̄(x)) ≤ 0 in IR+,

v̄(x) ≥ ψ̃(x) := (K − x)+ − u(0, x) in IR+,(
v̄(x)− ψ̃(x)

)
(−v̄(x) + T (Av̄(x)− rv̄(x))) = 0 in IR+.

(3)

There exists a continuous solution to (3) with a continuous first derivative:

v̄(x) =

{
λxα if x ≥ x∗,
ψ̃(x) otherwise,

(4)

where λ, α and x∗, which is assumed to be lower than K, are characterized
as follows:



14 pages 3

• the constant α is such that v(x) = xα is solution to

−v(x) + T (Av(x)− rv(x)) = 0

and such that limx→+∞ v(x) = 0 which implies that α must be negative.

• besides, as v̄ needs to be continuous with a continuous derivative, λ, α
and x∗ must solve the following system:

{
λ(x∗)α = φ(x∗)− u(0, x∗)
λα(x∗)(α−1) = −1− ∂u

∂x
(0, x∗).

Thus, we deduce that x∗ must be a solution to f(x) = 0 where

f(x) := |α| K − u(0, x)
∂
∂x

u(0, x) + 1 + |α| − x.

There exists a unique such x∗. Indeed, from the Black and Scholes formula

u(0, x) = Ke−rT N(−d2)− xe−δT N(−d1)

with

d1 :=
log

(
x
K

)
+

(
r − δ + σ2

2

)
T

σ
√

T
, d2 = d1−σ

√
T , N(d) :=

1√
2π

∫ d

−∞
e−x2/2dx,

it is easy to check that f(0) > 0, f(K) < 0 (since u(0, x) is a convex function),
and that f(x) is a decreasing function. Therefore, there exists a unique
solution to the equation f(x) = 0.

To compute x∗, one can use a classical iterative method for nonlinear
equations.

Similarly, the American Put value at time t is

u∗(t, x) =

{
u(t, x) + A1(x/x∗)q2 if x > x∗
K − x otherwise

where

A1 = −x∗

q2

(1− e−δ(T−t)N(−d1(x
∗))

d1(x) =
log

(
x
K

)
+

(
r − δ + σ2

2

)
(T − t)

σ
√

T − t
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q2 =
−(N − 1)−

√
(N − 1)2 + 4M/h

2

M =
2r

σ2
, N =

2(r − δ)

σ2
, h = 1− exp−r(T−t)

and the critical price x∗ is solution of

K − x∗ = u(t, x∗)− (1− e−δ(T−t))N(−d1(x
∗))x∗

1

q2

Remark 1 Under the condition δ > 0 which guarantees that the American
Call option price is different from the European one, we proceed analogously
as above to compute the American Call value at time t,C∗(t, St). Thus,

C∗(t, x) =

{
C(t, x) + A2(x/x∗)q1 if x < x∗

x−K otherwise

where

A2 = −x∗

q1

(1− e−δ(T−t)N(−d1(x
∗))

q1 =
−(N − 1) +

√
(N − 1)2 + 4M/h

2

and the critical price x∗ is solution of

x∗ −K = C(t, x∗) + (1− e−δ(T−t)N(d1(x
∗))x∗

1

q1

1.2 MacMillan Approximation

The MacMillan’approximation formula [6] is the same of Whaley with the
exponent

q1 =
−(N − 1) +

√
(N − 1)2 + 8(1 + rθ)/(σ2θ)

2

q2 =
−(N − 1)−

√
(N − 1)2 + 8(1 + rθ)/(σ2θ)

2

where θ = T − t.
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1.3 Ho-Stapleton-Subrahmanyam Approximation of the
American Put

Let u∗(t, St) the value of the American Put option on a dividend-paying stock
with maturity T . Let u(t, x) the value of the European Put option, u2(t, St)
the value of a Put option which can be exercised at time T

2
and T .

The idea of this algorithm is to to look at a sequences of prices of american
options wich can be exercised only at discrete times taken on regular grid
with n steps. Then the authors conjecture that the convergence as n goes to
infinity is of the type

Pn = Pexp(−α

n
).

The Ho-Stapleton-Subrahmanyam approximation formula [9], which is a kind
of Richardson extrapolation, consists in approximating the American option
value by

u∗(t, x) =
[u2(t, x)]2

u(t, x)

with
u2(t, x) = η(Kw2 − xw1)

with η = 1 for a put option and η = −1 for a call option and where

w1 = e−δ T
2 N1(−ηd

′
1) + e−δT N2(ηd

′
1,−ηd

′′
1 ,−ρ)

w2 = e−r T
2 N1(−ηd

′
2) + e−rT N2(ηd

′
2,−ηd

′′
2 ,−ρ)

with N1 and N2 are, respectively, the standard cumulative univariate and
bivariate normal distribution, with parameters

d1
′ =

log
(

x
x∗1

)
+

(
r − δ + σ2

2

)
T
2

σ
√

T
2

, d2
′ = d1

′ − σ

√
T

2

d1
′′ =

log
(

x
K

)
+

(
r − δ + σ2

2

)
T

σ
√

T
, d2

′′ = d1
′′ − σ

√
T

and
ρ =

√
0.5

The critical stock price, x∗1, is obtained by solving the relationship

η(K − x∗1) = u(x∗1,
T

2
, K, r, δ, σ)
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with a classical iterative method for nonlinear equations.
The price of the european option u(x∗1,

T
2
, K, r, δ, σ) is computed with Black-

Sholes formula.
The estimated delta is obtained by differentiating to obtain

∂u∗

∂x
= u∗(2

∆2

u2

− ∆

u
)

where ∆2 = ∂u2

∂x
= −ηw1 and ∆ = ∂u

∂x
are the hedge ratios of the twice-

exercisable and the European option, respectively.

1.4 Bunch-Johnson Approximation of the American
Put

The Bunch-Johnson approximation [4] is a modification of of Geske-Johnson
procedure [3]. Idea involved in their procedure is to construct a recursive
sequence of option’s prices Pn such that:
P1 = u(t, x) the value of the European Put and Pn is the value of an option
which can be only exercised at time tin = iT

n
. The sequence (Pn)n∈IN converges

to the American Put value. In case there is polynomial expansion of the price
in power of 1

n
, it is easy(Richardson extrapolation) to get the limiting price as

a linear combination of a set of Pn’s. For computing the limit, Geske-Johnson
use the Richardson extrapolation as follows:

u∗(t, x) = P3 +
7

2
(P3 − P2)− 1

2
(P2 − P1)

Bunch-Johnson prefer to use a two-points formula as follows:

u∗(t, x) = 2P2 − P1.

The estimated delta is obtained by differentiating to obtain

∂u∗

∂x
= 2∆2 −∆1

where ∆2 = ∂u2

∂x
and ∆1 = ∂u

∂x
are the hedge ratios of the twice-exercisable

and the European option, respectively.

1.5 Bjerksund-Stensland Approximation

The Bjerksund-Stensland method is based on a exercise strategy correspond-
ing to a flat boundary I (trigger price) [2]. The price of a call american
option is

C = αxβ − αφ(x, θ, β, I, I) + φ(x, θ, 1, I, I)
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−φ(x, θ, 1, K, I)−Kφ(x, θ, 0, I, I) + Kφ(x, θ, 0, K, I)

where
α = (I −K)I−β

β = (
1

2
− r − δ

σ2
) +

√
(
r − δ

σ2
− 1

2
)2 + 2

r

σ2

The function φ(x, t, γ,H, I) is given by

φ(x, t, γ, I, I) = eλxγ(N(d)− (
I

x
)kN(d− 2log(I/x)

σ
√

t
))

λ = (−r + γ(r − δ) +
1

2
γ(1− γ)σ2)t

d = −
log

(
x
H

)
+

(
r − δ + (γ − 1

2
σ2)

)
t

σ
√

t
and

k =
2(r − δ)

σ2
+ (2γ − 1)

and the trigger price I is defined as

I = B0 + (B∞ −B0)(1− eh(θ))

h(t) = −((r − δ)t + 2σ
√

t(
B0

B∞ −B0

))

B∞ = K(
β

β − 1
)

B0 = max(K,
r

δ
K)

If x ≥ I it is optimal to exercise the option immediately, and the value must
be equal to x−K.
If b = r− δ ≥ r it will never be optimal to exercise the American call option
before expiration, and the value can be found using the generalized Black-
Sholes formula.
The value of the american put is given by the put-call transformation.

C(x, K, θ, r, δ, σ) = P (K,x, θ, δ, r, σ)

The delta is computed with a finite difference method.
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1.6 Ju’s piecewise exponential approximation of the
exercise boundary

This method, described in [7], is based on the early exercise premium formula:

PA = PE + K(1− e−rT )− S(1− e−δT )−K
∫ T

0
re−rtN(d2(S,Bt, t))dt

+S
∫ T

0
δe−δtN(d1(S,Bt, t))dt

where

d1(x, y, t) =
log(x/y) + (r − δ + σ2/2)t

σ
√

t
,

d2(x, y, t) = d1(x, y, t)− σ
√

t,

PE is the Black and Scholes (1973) price of the European put option, and Bt

the exercise boundary at time t.

As the boundary appears only through log (S/Bt) in the definitions of d1

and d2, it is reasonable to approximate the function t → Bt by exponential
pieces.
The advantage of this approach is that the integrals

∫ t2
t1

re−rtN(d2(S,Bebt, t))dt
and

∫ t2
t1

δe−δtN(d1(S,Bebt, t))dt, involved in equation (1), can be evaluated
in closed form.
They become respectively I(t1, t2, S, B, b,−1, r) and I(t1, t2, S, B, b, 1, δ)
where I is defined by :

I(t1, t2, S, B, b, φ, ν) = e−νt1N(z1

√
t1 + z2√

t1
)− e−νt2N(z1

√
t2 + z2√

t2
)

+ 1
2
( z1

z3
+ 1)ez2(z3−z1)(N(z3

√
t2 + z2√

t2
)−N(z3

√
t1 + z2√

t1
))

+ 1
2
( z1

z3
− 1)e−z2(z3+z1)(N(z3

√
t2 − z2√

t2
)−N(z3

√
t1 − z2√

t1
)) with

z1 =
r − δ − b + φσ2/2

σ

z2 =
log (S/B)

σ

z3 =
√

z1
2 + 2ν

By convention, when t = 0, N(x
√

t + y√
t
) = 0.5 1{y=0} + 1{y>0}.

Ju suggests to make the Richardson extrapolation P̂A = 9P3

2
− 4P2 + P1

2

between the prices P1, P2 and P3 obtained respectively for one, two and three
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exponential pieces. The coefficients of the exponential functions are obtained
by checking the smooth fit conditions. For instance, in the case of two pieces
: B21e

b21t during [T/2, T ] and B22e
b22t during [0,T/2], these conditions are :

K −B21e
b21T/2 = PE(B21e

b21T/2, K, T/2) + K(1− e−rT/2)

+B21e
b21T/2(1− e−δT/2)

−KI(0, T/2, B21e
b21T/2, B21e

b21T/2, b21,−1, r)

+B21e
b21T/2I(0, T/2, B21e

b21T/2, B21e
b21T/2, b21, 1, δ)

−1 = −e−δT/2N(−d1(B21e
b21T/2, K, T/2))− (1− e−δT/2)

−K
∂I

∂S
(0, T/2, B21e

b21T/2, B21e
b21T/2, b21,−1, r)

+I(0, T/2, B21e
b21T/2, B21e

b21T/2, b21, 1, δ)

+B21e
b21T/2 ∂I

∂S
(0, T/2, B21e

b21T/2, B21e
b21T/2, b21, 1, δ)

K −B22 = PE(B22, K, T ) + K(1− e−rT )−B22(1− e−δT )

−KI(0, T/2, B22, B22, b22,−1, r)

+B22I(0, T/2, B22, B22, b22, 1, δ)

−KI(T/2, T, B22, B21, b21,−1, r)

+B22I(T/2, T, B22, B21, b21, 1, δ)

−1 = −e−δT N(−d1(B22, K, T ))− (1− e−δT )

−K
∂I

∂S
(0, T/2, B22, B22, b22,−1, r)

+I(0, T/2, B22, B22, b22, 1, δ)

+B22
∂I

∂S
(0, T/2, B22, B22, b22, 1, δ)

−K
∂I

∂S
(T/2, T, B22, B21, b21,−1, r)

+I(T/2, T, B22, B21, b21, 1, δ)

+B22
∂I

∂S
(T/2, T, B22, B21, b21, 1, δ)

These systems are solved numerically thanks to the Newton-Raphson al-
gorithm with initial values Mc Millan’s critical price and 0 for the computa-
tion of B21 and b21, and the obtained values of B21 and b21 for the calculus
of B22 and b22.
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1.7 Carr’s method of randomization of the maturity

In order to approximate the price of the american put option with determinis-
tic maturity T , Carr [1] suggests to randomize the maturity and consider
the american put option with maturity τ1 + τ2 + ... + τn where τ1, ..., τn are
random variables I.I.D. according to the exponential distribution with pa-
rameter λ = n/T and independent of the Brownian motion governing the
stock dynamics Sx

t = x exp(σWt + (r − δ − σ2

2
)t). For 1 ≤ k ≤ n, let P (k)

denote the price of the option with maturity τ1 + ... + τk. The expressions
for P (k) are obtained inductively by dynamic programmation.

We first deal with P (1). Conditionaly on {τ1 > t}, τ1− t is an exponential
variable with parameter λ independent of the events occured before time t
and the price of the randomized american put option is P (1)(Sx

t ). This option
is rationally exercised if and only if Sx

t ≤ s1 where s1 = sup{x : P (1)(x) =
(K − x)+}. Hence for x ≥ s1,

P (1)(x) = E
(
e−r(τ1∧νs1 )(K − Sx

τ1∧νs1
)+

)

where νs1 = inf{t : Sx
t ≤ s1}. If D(t, x) denotes the price of the Down and

Out Put with barrier s1, rebate K−s1 and maturity t, integration according
to the exponential distribution of τ1 yields

∀x ≥ s1, P (1)(x) =
∫ +∞

0
λe−λtD(t, x)dt.

Making use of the integration by parts formula and of the Black and Scholes
P.D.E. satisfied by D(t, x) : { ∀ (t, x) ∈ (0, +∞)× [s1, +∞), Dt = σ2x2

2
Dxx +

(r − δ)xDx − rD
∀x ≥ s1, D(0, x) = (K − x)+, one gets the following O.D.E.:

∀x ≥ s1,
σ2x2

2
P (1)

xx (x) + (r− δ)xP (1)
x (x)− rP (1)(x) = λ(P (1)(x)− (K − x)+).

(5)
The boundary conditions are limx→+∞ P (1)(x) = 0 and the smooth fit con-
ditions : limx↘s1 P (1)(x) = (K − s1), limx↘s1 P (1)

x (x) = −1. Taking expecta-
tions in It’s formula gives E(e−rτ1P (1)(Sx

τ1
)) = P (1)(x)

+ E
( ∫ τ1

0 e−rs(λ(P (1)(Sx
s )− (K −Sx

s )+) + (δSx
s − rK)1{Sx

s≤s1})ds
)
. As by Fu-

bini’s theorem, E
(
λ

∫ τ1
0 e−rs(P (1)(Sx

s )−(K−Sx
s )+)ds

)
=

∫ +∞
0 λe−λt

∫ t
0 λe−rsE(P (1)(Sx

s )−
(K − Sx

s )+)dsdt
=

∫ +∞
0 e−λsλe−rsE(P (1)(Sx

s )− (K − Sx
s )+)ds

= E(e−rτ1(P (1)(Sx
τ1

) − (K − Sx
τ1

)+)) the early exercice premium formula
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holds for the american put option with randomized maturity P(1)(x) =

E
(
e−rτ1(K − Sx

τ1
)+

)
+ E

( ∫ τ1
0 e−rs(rK − δSx

s )1{Sx
s≤s1}ds

)
The price p(1)(x)

of the european put option with random maturity τ1 satisfies the O.D.E. :

∀x > 0,
σ2x2

2
p(1)

xx (x) + (r − δ)xp(1)
x (x)− (r + λ)p(1)(x) = λ(K − x)+.

with boundary condition limx→+∞ p(1)(x) = 0. Since the r.h.s. is nil for
x ≥ K, by computation of p(1)(K) one gets

∀x ≥ K, p(1)(x) =
(

x

K

)γ−ε

p(1)(K) =
(

x

K

)γ−ε

(qKR− q̂KD),

where R = λ
λ+r

, D = λ
λ+δ

, γ = 1
2

+ δ−r
σ2 , ε =

√
γ2 + 2(λ + r)/σ2 and

p =
ε− γ

2ε
, q = 1− p, p̂ =

ε− γ + 1

2ε
, and q̂ = 1− p̂.

To compute p(1)(x) for x ≤ K, Carr makes use of the call-put parity p(1)(x) =
c(1)(x) + KR − xD. Since the O.D.E. satisfied by the price c(1)(x) of the
european call option with random maturity τ1 is homogeneous for x ≤ K,
one gets c(1)(x) = (x/K)γ+ε(p̂KD − pKR). After calculation of the present
value of interests less dividends received below the critical price s1 before τ1

b1(x) =
(

x

s1

)γ−ε( qKr

λ + r
− q̂s1δ

λ + δ

)
,

equation (1.7) writes P(1)(x) = { p (1) (x) + b(1)(x) if s0 = K ≤ x
KR− xD + c(1)(x) + b(1)(x) if s1 ≤ x ≤ s0

K − x if x ≤ s1.
The critical price s1 is obtained from the value-matching condition K− s1 =
KR− s1D + c(1)(s1) + b(1)(s1). Without dividends, D = 1 and this equation
has an explicit solution. If δ 6= 0, it is solved numerically by an iterative
method.

We now turn to P (k), k ≥ 2. Conditionally on t < τk, τk − t is an ex-
ponential variable with parameter λ; the price of the american put option
with maturity τ1 + ... + τk is P (k)(Sx

t ) and the exercise price is sk = sup{x :
P (k)(x) = (x−K)+}. Hence for x ≥ sk, the option is equivalent to the euro-
pean Down and Out option with barrier sk, rebate K − sk, payoff P (k−1)(x)
and random maturity τk. Hence P (k) satisfies the O.D.E. analogous to (5)

∀x ≥ sk,
σ2x2

2
P (k)

xx (x) + (r− δ)xP (k)
x (x)− rP (k)(x) = λ(P (k)(x)−P (k−1)(x)).
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with boundary conditions limx→+∞ P (k)(x) = 0 and the smooth fit condi-
tions : limx↘sk

P (k)(x) = (K − sk), limx↘sk
P (k)

x (x) = −1. Since λ = n
T
,

this formulation shows that the randomization approach is equivalent to the
approximation of the free boundary problem satisfied by the price of the
american put option by a scheme implicit in the discretized time variable
and with no discretization in space (semi-discretization or method of lines).
By computations similar to the one made for P (1) one obtains P (k) in terms
of the exercice prices s1, ..., sk. The continuity conditions give an equation
that links s1, ..., sk−1 and sk. This equation can be solved explicitly when
δ = 0 or numerically otherwise to get sk.

Considering that the error is a smooth function of the time discretization
parameter T/n, Carr suggests to make a three point Richardson extrapola-
tion.

1.8 Broadie and Detemple’s LBA and LUBA approx-
imations

1.8.1 Lowerbound Approximation (LBA)

Broadie and Detemple have developped a new methode for pricing standard
american options in [5]. This methode is based on the price of a european
up and out call option with strike K,barrier L and rebate (L−K).

This option price is given by the following formula :

C(x, L) = (L−K)[λ
2φ

σ2 N(d0) + λ
2φ

σ2 N(d0 + 2f
√

T
σ

)]

+x.e−δT [N(d−1 (L)− σ
√

T )−N(d−1 (K)− σ
√

T )]

−λ−2 r−δ

σ2 L.e−δT [N(d+
1 (L)− σ

√
T )−N(d+

1 (K)− σ
√

T )]
−K.e−rT [N(d−1 (L))−N(d−1 (K))

−λ1−2 r−δ

σ2 [N(d+
1 (L))−N(d+

1 (K))]]
Where :
b = δ − r + 1

2
σ2

f =
√

b2 + 2r.σ2

φ = 1
2
(b− f)

α = 1
2
(b + f)

λ = x
L

d0 = log(λ)−f(T )

σ
√

T

d+
1 (x) = log(λ)−log(L)+log(x)+b.T

σ
√

T
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d−1 (x) = −log(λ)−log(L)+log(x)+b.T

σ
√

T

Since the call up and out with rebate (L − K) corresponds to exercise
at the minimum of the hitting time of the boundary L and the maturity T ,
its price is smaller than the price of the American call option. Therefore,
C l = maxL C(x, L) provides a lower bownd for the price of the American
call.

So the lower bound is :

C l(x) = max
L

C(x, L)

To obtain the approximation from this bound, Broadie and Detemple
apply a coefficient λ1, which they have obtained after a linear regression
uppon 10 parameters on 2500 options.

The Lower bound approximation is :

Clba = λ1.C
l

1.8.2 Lower and Upperbound Approximation (LUBA)

This approximation depends on the lower bound C l, and an upperbound
Cu. It was developped by Broadie and Detemple in [5]. First, Broadie and
Detemple define a function L∗ as follows :

∀t ∈ [0, T ] let L∗t the solution of lim
x↗L

∂Ct(x, L)

∂L
= 0

This function is a lower bound for the optimal exercise boundary.
From the optimal exercise boundary B, we can compute the price of the

american call option using the early exercise premium formula :

V (x,B) = c(x)+
∫ T
s=0 [δ.x.e−δ.sN(d2(x,Bs, s))

−r.K.e−r.sN(d3(x, Bs, s))]ds

With :
c(x) the european call option price

d2(x,Bs, s) =
log( x

Bs
)+(r−δ+ 1

2
σ2)(s)

σ
√

s

d3(x,Bs, s) = d2(x,Bs, s)− σ
√

s
Broadie an Detemple show that since the boundary L∗ is under the op-

timal exercise boundary B, Cu(x) = V (x, L∗) is an upper bound of the price
of the American call.
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To obtain the approximation using both the lowerbound C l and the up-
perbound Cu, Broadie and Detemple apply a coefficient λ2 which they have
obtained by making a regression uppon 14 parameters on 2500 options.

The lower and upperbound approximation for the call option price is :

Cluba = λ2C
l + (1− λ2)C

u
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