
22 pages Intro /Doc /Kernel /Interface /Contents 1

Premia Kernel
version 5

C. Martini, A.Zanette

July 3, 2002

Contents

1 Models and Options 2
1.1 Options . 2
1.2 Models . 4
1.3 Accessing to Models and Options objects 4

2 Pricing methods 5
2.1 Subdirectories of pricing methods 5
2.2 Pricing method files . 6
2.3 The master file (e.g. bs1d std.c) 11
2.4 Shared routines . 13

3 Dynamical tests 14

4 The VAR system 15
4.1 Input-Output of a VAR . 17
4.2 Initialization . 18

5 Numerical functions 19

6 Computation time information 21

Architecture

Even if it is written in C (even ANSI C), the kernel of Premia is strongly
object-oriented. Premia relies on 3 basic objects: models, options, and
pricing methods. All the types of Premia are defined in optype.h.

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 2

1 Models and Options

By model, we mean the modeling of the financial environment (underlying
of the option, interest rate for options on securities. . .). For instance the
type of the Black-Scholes model defines the spot value, the current date, the
instantaneous interest rate, the volatility, the trend (or yet historical drift)
or the underlying.
The options directly correspond to the contingent claim itself. For instance,
the parameters of a Call option will be its strike, maturity, exercise feature.

1.1 Options

The options are grouped by families, every family corresponding to a subdi-
rectory of the directory OPT . This directory bears the family name (ex:
STD) and contains in a systematic manner a .c and a .h which bear the same
name (ex: std.c et std.h). The .h file contains the definition of the type of
the options of the family, the .c contains input (Get), output (Show) and
check (Check) functions for this type. All the other files of the directory are
.c files, each corresponding to a precise option. They bear the name of the
option at hand (ex: CallEuro.c). They contain an instance of the type of the
family, and also an initialization function (Init).
Notice that we distinguish between a European Call and an American Call
(i.e. there are two files).
To allow some kind of automatic treatment for the options of different fam-
ilies, we also designed a kind of super-type (or yet class) Option : every
instance of a specific type (like STD) is wrapped in an instance of this type.
The type Option is the following:

typedef struct Option{

Label ID;

Label Name;

void* TypeOpt;

int (*Get)(int user, Planning*,struct Option*);

int (*Show)(int user,Planning*,struct Option*);

int (*Check)(int user,Planning*,struct Option*);

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 3

int (*Init)(struct Option*);

} Option;

ID will store the name of the family (e.g. STD), Name the option’s name
(e.g. CallEuro), TypeOpt is a universal pointer which will point to the in-
stance of the specific type we discussed above. The other pointers will store
the addresses of the functions described above. user is only a flag which is
intended to manage the input/output stuff (file or screen, etc. . .). Planning*
is related to the possibility of iterating every scalar variable in the fields of
TypeOpt*, Option* points to itself.
For every instance of a specific type of option, the wrapping instance of the
super-type is automatically created by the macro MAKEOPT(X) (in op-
type.h). This macro is intended also to avoid conflicting names between two
options of different families which bear the same name (e.g. CallDownOu-
tEuro in lim and also limdisc . Indeed the new super-object is created
under the name directoryname optionname (ex: std CallEuro).
The master file of the directory (e.g. std.c) contains an array of all the
options of the directory:

extern Option OPT(CallEuro);

extern Option OPT(CallSpreadAmer);

extern Option OPT(CallSpreadEuro);

extern Option OPT(DigitAmer);

extern Option OPT(DigitEuro);

extern Option OPT(PutAmer);

extern Option OPT(PutEuro);

extern Option OPT(CallAmer);

Option*OPT(family)[]=

{

&OPT(CallEuro),

&OPT(PutEuro),

&OPT(CallSpreadEuro),

&OPT(DigitEuro),

&OPT(CallAmer),

&OPT(PutAmer),

&OPT(CallSpreadAmer),

&OPT(DigitAmer),

NULL

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 4

};

The above macro OPT(X) expands in TYPEOPT_X where TYPEOPT is a
macro defined in directoryname.h (e.g. std.h) which itself expands in direc-
toryname:

#define TYPEOPT STD

In fact the name of the type of a given option family is imposed, it is TYPEOPT.
Notice also that the name of the array of options is also imposed, it is
OPT(family).

1.2 Models

It is almost the same story for the models (subdirectories of the directory
Model . The type model is:

typedef struct Model{

Label ID;

Label Name;

void* TypeModel;

int (*Get)(int user, Planning*,struct Model*);

int (*Show)(int user,Planning*,struct Model*);

int (*Check)(int user,Planning*,void*);

int (*Init)(void*);

} Model;

The only difference is that there is only a single instance (and therefore
no array) of the type defined in directoryname.h (e.g. bs1d.h, which is
in the file directoryname.c along with the corresponding initialization func-
tion. The macros corresponding to OPT(X) and MAKEOPT(X) are MOD(X) and
MAKEMOD(X).

1.3 Accessing to Models and Options objects

In the main file Premia 5.c the above objects are first declared as extern

ones, next they are stored in two arrays models and families. We need here
of course to expand explicitly the macros OPT and MOD since we are neither
in a subdirectory of Opt nor Mod .

extern Model BS1D_model;

extern Model BS2D_model;

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 5

Model*models[]=

{

&BS1D_model,

&BS2D_model,

NULL

};

extern Family STD_family;

extern Family LIM_family;

extern Family LIMDISC_family;

extern Family DOUBLIM_family;

extern Family PAD_family;

extern Family STD2D_family;

Family *families[]=

{

&STD_family,

&LIM_family,

&LIMDISC_family,

&DOUBLIM_family,

&PAD_family,

&STD2D_family,

NULL

};

where the type Family is

typedef Option* Family[MAX_OPT];

2 Pricing methods

2.1 Subdirectories of pricing methods

The pricing methods are grouped by families which are defined as a combi-
nation of a given model and a given option family. Each family is stored in
a subdirectory of the corresponding model directory, the name of which is
modelname optionfamilyname (e.g. bs1d std in the bs1d directory stores all
the algorithms pertaining to the pricing of standard options within the bs1d
model).
Every such directory contains a masterfile with name modelname optionfamilyname.c,
a header file modelname optionfamilyname.h (which mostly includes the

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 6

files modelname.h and optionfamilyname.h and therefore the corresponding
macros TYEMOD and TYPEOPT).
All the other files (but one, see later) are .c files, each corresponding to a
precise pricing method. Every such files bears the name of the method (with
a prefix which indicates the nature of the algorithm: fd , tr , mc , ap , cf)
and defines an object of type PricingMethod which stores all the param-
eters and address of the pricing method itself.
The last file of the directory is a file modelname optionfamilyname test.c
which stores a DynamicalTest object which is pertaining to the simulation
of a dynamical delta-hedge of any option of the family within the model at
hand, using the prices and hedge ratios given by one of the pricing methods
of the directory.

2.2 Pricing method files

Every pricing method is coded in a single C file which bears the method
name: methodename.c (ex: Tree CoxRossRubinstein.c). The structure of
such a file is two-fold: in a first part, where there is nothing mandatory re-
garding input-output parameters, names, etc. . . , the pricing function itself
is coded. There maybe one or more functions within this part, the only
constraint is to declare everything as static in order to avoid conflicting
names between different routines. In this part the functions and/or objects
of mathtools.c, random.c, numfunc.c maybe used, also some flags or macros
of error msg.c and optype.h. These files are in the directory Common
or Common\Math but the header files are included in the file model-
name optionfamilyname.h, which is itself included at the first line of every
pricing method.
This first part of the file may look like:

#include "bs1d_std.h"

static int CoxRossRubinstein_79(int am,double s,NumFunc_1 *p,double t,double r,

double divid,double sigma,int N, double *ptprice,double *ptdelta)

{

int i,j;

double u,d,h,pu,pd,a1,stock,upperstock;

double *P,*iv;

/*Price, intrisic value arrays*/

P=(double *)malloc((N+1)*sizeof(double));

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 7

if (P==NULL)

return MEMORY_ALLOCATION_FAILURE;

iv=(double *)malloc((2*N+1)*sizeof(double));

if (iv==NULL)

return MEMORY_ALLOCATION_FAILURE;

/*Up and Down factors*/

h=t/(double)N;

a1= exp(h*(r-divid));

u = exp(sigma*sqrt(h));

d= 1./u;

/*Risk-Neutral Probability*/

pu=(a1-d)/(u-d);

pd=1.-pu;

if ((pd>=1.) || (pd<=0.))

return NEGATIVE_PROBABILITY;

pu*=exp(-r*h);

pd*=exp(-r*h);

/*Intrisic value initialisation*/

upperstock=s;

for (i=0;i<N;i++)

upperstock*=u;

stock=upperstock;

for (i=0;i<2*N+1;i++)

{

iv[i]=(p->Compute)(p->Par,stock);

stock*=d;

}

/*Terminal Values*/

for (j=0;j<=N;j++)

P[j]=iv[2*j];

/*Backward Resolution*/

for (i=1;i<=N-1;i++)

for (j=0;j<=N-i;j++)

{

P[j]=pu*P[j]+pd*P[j+1];

if (am)

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 8

P[j]=MAX(iv[i+2*j],P[j]);

}

/*Delta*/

*ptdelta=(P[0]-P[1])/(s*u-s*d);

/*First time step*/

P[0]=pu*P[0]+pd*P[1];

if (am)

P[0]=MAX(iv[N],P[0]);

/*Price*/

*ptprice=P[0];

free(P);

free(iv);

return OK;

}

The second part of the file consists of two functions and one object (with
its initialization function) which are designed to connect the previous stuff
to the software. First there is a wrapping function, with a mandatory name
and parameter list, which calls the suitable pricing functions of the previous
part with the parameters of the objects option, model at hand, and also the
PricingMethod object parameters (this last one comes later on). In our case
this could be:

int CALC(TR_CoxRossRubinstein)(void *Opt,void *Mod,PricingMethod *Met)

{

TYPEOPT* ptOpt=(TYPEOPT*)Opt;

TYPEMOD* ptMod=(TYPEMOD*)Mod;

double r,divid;

r=log(1.+ptMod->R.Val.V_DOUBLE/100.);

divid=log(1.+ptMod->Divid.Val.V_DOUBLE/100.);

return

CoxRossRubinstein_79(ptOpt->EuOrAm.Val.V_BOOL,ptMod->S0.Val.V_PDOUBLE,

ptOpt->PayOff.Val.V_NUMFUNC_1,ptOpt->Maturity.Val.V_DATE-ptMod->T.Val.V_DATE,

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 9

r,divid,ptMod->Sigma.Val.V_PDOUBLE,Met->Par[0].Val.V_INT,

&(Met->Res[0].Val.V_DOUBLE),&(Met->Res[1].Val.V_DOUBLE));

}

The macro CALC(X) expands in modelname optionfamilyname X, its main
purpose is to avoid conflicting names between different modules. The return
value of this function should be zero if everything is OK, something else
otherwise. It is possible to make use of the error messages stuff discussed
before by returning the adequate flag. The somewhat heavy way of accessing
the fields of the objects *Opt, *Mod, and *Met will be discussed later.

The second function is a little test function which returns zero if the
option *Opt may be priced with the pricing routine, anything else otherwise.
Note that this function, with a mandatory name and format, also takes the
object *Mod as argument: this is required for instance in the case of pricing
methods which does not handle forward-starting options in the Asian or
Lookback families. Notice also that it will be applied only to the options of
the family optionfamilyname.

int CHK_OPT(TR_CoxRossRubinstein)(void *Opt, void *Mod)

{

Option* ptOpt=(Option*)Opt;

TYPEOPT* opt=(TYPEOPT*)(ptOpt->TypeOpt);

return OK;

}

The CHK_OPT(X) macro expands in CHK OPT modelname optionfamilyname X.
In our example every option may be priced with this routine, so the body of
the function is empty. Here is another example for a closed formula:

int CHK_OPT(CF_Call)(void *Opt, void *Mod)

{

return strcmp(((Option*)Opt)->Name,"CallEuro");

}

or yet for a routine which applies only to American options:

int CHK_OPT(FiniteDifference_Psor)(void *Opt)

{

Option* ptOpt=(Option*)Opt;

TYPEOPT* opt=(TYPEOPT*)(ptOpt->TypeOpt);

if ((opt->EuOrAm). Val.V_BOOL==AMER)

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 10

return OK;

return WRONG;

}

The last component of the file is the object PricingMethod itself. The
routine should be accessed normally through this object, which therefore
contains all the required information. the type PricingMethod is the
following (in optype.h):

/*Pricing Methods*/

typedef struct PricingMethod{

Label Name;

VAR Par[MAX_PAR];

int (*Compute)(void*,void*,struct PricingMethod*);

VAR Res[MAX_PAR];

int (*CheckOpt)(void*,void*);

int (*Check)(int user, Planning*,void*);

int (*Init)(struct PricingMethod*);

} PricingMethod;

The field Check is intended to check possible constrains between the input
parameters of the routine. The functions written in chk.c in Common may
be used for that purpose. In our case the last part of our file may look like:

static int MET(Init)(PricingMethod *Met)

{

static int first=1;

if (first)

{

Met->Par[0].Val.V_INT2=100;

first=0;

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 11

}

return OK;

}

PricingMethod MET(TR_CoxRossRubinstein)=

{

"TR_CoxRossRubinstein",

{{"StepNumber",INT2,100,ALLOW},

{" ",END,0,FORBID}},

CALC(TR_CoxRossRubinstein),

{{"Price",DOUBLE,100,FORBID},

{"Delta",DOUBLE,100,FORBID},

{" ",END,0,FORBID}},

CHK_OPT(TR_CoxRossRubinstein),

CHK_tree,

MET(Init)

};

Notice that the names of the initialization function and method object are
mandatory. For the generation of the documentation system and
hyperlinks, the name of the routine should be that of the C
file (without the extension) . The macro MET(X) expands in model-
name optionfamilyname X.
The input (Get), output (Show) and check (Check) functions for the type
PricingMethod are in method.c in the directory Common .

2.3 The master file (e.g. bs1d std.c)

This file begins with a function which checks the compatibility of the param-
eters of the object *Mod and *Opt. For instance it checks that the current
date is before maturity. It returns zero if everything is OK:

int MOD_OPT(ChkMix)(Option *Opt,Model *Mod)

{

TYPEOPT* ptOpt=(TYPEOPT*)(Opt->TypeOpt);

TYPEMOD* ptMod=(TYPEMOD*)(Mod->TypeModel);

int status=OK;

if ((ptOpt->Maturity.Val.V_DATE)<=(ptMod->T.Val.V_DATE))

{

Fprintf(TOSCREENANDFILE,"Current date greater than maturity!\n");

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 12

status+=1;

};

return status;

}

The macro MOD_OPT(X) expands in modelname optionfamilyname X. The
name of the function is mandatory.

The next item is an array of the pricing methods of the directory:

extern PricingMethod MET(CF_Call);

extern PricingMethod MET(CF_Put);

[...]

extern PricingMethod MET(TR_BBSR);

PricingMethod* MOD_OPT(methods)[]={

&MET(CF_Call),

&MET(CF_Put),

[...]

&MET(TR_BBSR),

NULL

};

Next comes an object of type Pricing which essentially points to the pre-
vious objects. The access to the routines of the directory should be made
through this last one. The type Pricing (in optype.h) is defined as:

typedef struct Pricing{

Label ID;

PricingMethod** Methods;

DynamicTest* Test;

int (*CheckMixing)(Option*,Model*);

} Pricing;

In every master file of a pricing methods directory the instance of this type
should be the following:

extern DynamicTest MOD_OPT(test);

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 13

Pricing MOD_OPT(pricing)={

ID_MOD_OPT,

MOD_OPT(methods),

&MOD_OPT(test),

MOD_OPT(ChkMix)

};

Note that the object MOD_OPT(test) of type DynamicTest is defined
in the file modelname optionfamilyname test.c (e.g. bs1d std test.c), as we
shall see later.

2.4 Shared routines

The feature ’one routine-one file’ of course has its limitations. If within the
same family (directory) of pricing methods a same function is used in several
files it should be defined (not declared, but defined) with the keyword static

in the file modelname optionfamilyname .h. This happens for instance in the
bs1d std family for which the file bs1d std.h is the following:

#ifndef _BS1D_STD_H

#define _BS1D_STD_H

#include "bs1d.h"

#include "std.h"

#include "mathtools.h"

#include "random.h"

#include "numfunc.h"

#include "transopt.h"

static double Nd1(double s,double r,double divid,

double sigma,double T,double K)

{

double d1=(log(s/K)+(r-divid+0.5*sigma*sigma)*T)/(sigma*sqrt(T));

return N(d1);

}

#endif

In the more exceptional case where a routine or function may be used in
pricing method files across different directories, it should be declared in a

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 14

global way in the file transopt.h and defined, also in a global way and not as
a static function, in one file method.c. For instance: In CF Call.c:

int Call_BlackScholes_73(double s,double k,double t,double r,

double divid,double sigma,double *ptprice,double *ptdelta)

instead of static int Call . . . The file transopt.h could then be:

#ifndef _TRANSOPT_H

#define _TRANSOPT_H

int Call_BlackScholes_73(double s,double k,double t,double r,

double divid,double sigma,double *ptprice,double *ptdelta);

[..]

#endif

3 Dynamical tests

Within every directory of pricing methods there should be a single file mod-
elname optionfamilyname test.c which contains the simulation of a dynami-
cally delta-hedged selling of an option of the family until maturity, in discrete
time.
The situation is almost the same as for a pricing method, except that there is
no check on the option (i.e. the dynamical test should work for every option
of the family). The type DynamicTest (in optype.h) is the following:

/*Dynamic Tests*/

typedef struct DynamicTest {

Label Name;

VAR Par[MAX_PAR];

int (*Simul)(void*,void*,PricingMethod *Met,struct DynamicTest *);

VAR Res[MAX_PAR];

int (*Check)(int user, Planning*,void*);

int (*Init)(struct DynamicTest*, Option*);

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 15

} DynamicTest ;

The Get, Show and Check utilities for this type are in the file test.c in
Common .

4 The VAR system

For the purpose of easily modifying and also iterating the various parameters
which come into play either through a model, an option, a pricing method,
we have designed a somewhat elaborated type which is the following:

typedef struct VAR{

Label Vname;

int Vtype;

union {

int V_INT;

int V_INT2;

double V_DOUBLE;

long V_LONG;

double V_PDOUBLE;

double V_SPDOUBLE;

double V_RGDOUBLE051;

double V_DATE;

double V_RGDOUBLE;

double V_RGDOUBLE12;

int V_BOOL;

int V_PADE;

int V_RGINT13;

int V_GENER;

double V_RGDOUBLE14;

struct NumFunc_1* V_NUMFUNC_1;

struct NumFunc_2* V_NUMFUNC_2;

struct PtVar* V_PTVAR;

struct DoubleArray* V_DOUBLEARRAY;

} Val;

int Viter;

} VAR;

Vname stores the name of the parameter, Vtype is a flag which describes its
type (which may be a user created type), Val stores its value. The various

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 16

keys of access to this union are all of the form V Vtype for clarity’s sake.
The last field Viter is a flag which describes the state of the parameter
regarding iteration and also whether the parameter is meaningful for the
current session: ALLOW means it can be iterated, FORBID that it can not,
ALREADYITERATED that is has already been selected for iteration during the
current session, IRRELEVANT means that the parameter is not meaningful for
the current session so that it should not be considered by the program.
If the parameter is selected for iteration (input stage), its address is stored
in the first field of an object of type Iterator which is designed to keep all
the information relevant to the iteration of this parameter. It will also store
the minimum, maximum value of the iteration and the sampling size. The
type Iterator is the following:

typedef struct Iterator{

VAR* Location;

VAR Min;

VAR Max;

VAR Default;

int StepNumber;

} Iterator;

The field Default will keep the initial value of the parameter (which is de-
fined within the Init function of the object it belongs to) in order to reset
the parameter at the end of the session. The maximum value for the field
StepNumber is (in optype.h):

#define MAX_ITER 1000

The function (in var.c)

int LowerVar(int user,VAR *x, VAR*y);

allows the checking of consistency between the minimum and maximum val-
ues set by the user. During the current session the list of all the param-
eters selected for iteration is stored in an object of type Planning :

typedef struct Planning{

Iterator Par[MAX_ITERATOR];

int VarNumber;

char Action;

int NumberOfMethods;

} Planning;

where MAX_ITERATOR is set in optype.h:

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 17

#define MAX_ITERATOR 3

and VarNumber keeps the number of parameters currently selected for iter-
ation. The flag NumberOfMethods stores the index of the method at hand
in case of a comparison between pricing methods, the flag Action is set to
TOSCREEN during the input stage, its other possible values are TOFILE and
TOSCREENANDFILE, NAMEONLYTOFILE, VALUEONLYTOFILE for the output stage.
If a parameter is selected for iteration, its field Viter will be set to the index
of the Iterator array of the object Planning. This way there is a two-ways
channel between this object and the parameter at hand. This is also the
reason why the values of ALLOW,. . . , are negative.
The function (in var.c):

void NextValue(int count,Iterator* pt_iterator)

deals with the iteration operation of the parameter corresponding to the
*pt_iterator object.
Other utilities (in var.c) are devoted to the management of a Planning ob-
ject:

void ResetPlanning(Planning *pt_plan);

void ShowPlanning(int user,Planning *pt_plan);

void ShrinkPlanning(int index,Planning*pt_plan);

int ChkStepNumber(int user,Iterator *pt_iterator,int step);

4.1 Input-Output of a VAR

The following functions manage the input-output of a VAR:

int Fprintf(int user,const char *s,...);

int FprintfVar(int user,const char s[],VAR *x);

int PrintVar(Planning *pt_plan,int user,VAR*);

int ScanVar(Planning *pt_plan,int user,VAR*);

int ChkVar(Planning *pt_plan,VAR *x);

int GetParVar(Planning *pt_plan,int user,VAR *x);

int ShowParVar(Planning *pt_plan,int user,VAR *x);

int ChkParVar(Planning *pt_plan,VAR *x);

Fprintf is only a redefinition of fprintf which takes into account the user

flag we discussed above (TOSCREEN,. . .).FprintfVar does what you think it
does. PrintVar is more elaborated since it displays in a suitable way the
fields of the adequate Iterator object in case the VAR has been selected for
iteration. ScanVar displays the value of a VAR and prompt the user either

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 18

to agree with the current value, modify it or (if possible) iterate. ChkVar

checks that the current value of a VAR pertains to its Vtype: this allows the
definition of constrained types (the range [0, 1] for a correlation factor for
instance). Lastly the ..ParVar functions are list versions of the above ones.

4.2 Initialization

One of the main interest of the VAR system is to allow the definition of new
types (see above). Each type should be indexed by a flag in optype.h:

/*Vtype*/

#define FIRSTLEVEL 20

/*FirstClass*/

#define END 0

#define INT 1

#define DOUBLE 2

#define LONG 3

#define PDOUBLE 4

#define DATE 5

#define RGDOUBLE 6

#define BOOL 7

#define PADE 8

#define RGDOUBLE12 9

#define INT2 10

#define RGINT13 11

#define SPDOUBLE 12

#define RGDOUBLE051 13

#define GENER 14

#define RGDOUBLE14 15

/*SecondClass*/

#define NUMFUNC_1 20

#define NUMFUNC_2 21

#define PTVAR 22

#define DOUBLEARRAY 23

/*This last should be less than MAX_TYPE:*/

#define MAX_TYPE 30

PDOUBLE, for instance, is intended for strictly positive double. The maximum
of user-defined types in this way is MAX_TYPE. Some VAR does not store their

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 19

values (for instance in case of arrays of doubles) directly in the field Val, but
in another field of a structure to which the field Val should point: they are
called second-level VARs, of course they require a peculiar treatment in the
above Input-Output routines.

The 3 arrays (in var.c)

static char **formatV;

int **true_typeV;

static char **error_msgV;

WHICH MUST BE INITIALIZED BEFORE ANY USE OF
THE VAR SYSTEM by the function

int InitVar(void);

with the corresponding desallocation function:

int ExitVar(void);

allow to deal with the various types at the input and output stages. formatV
contains the formatting string of the ’true type’ behind Vtype, which is itself
in the array true_typeV. The values for the type PDOUBLE for instance are:

formatV[PDOUBLE]="%lf";

true_typeV[PDOUBLE]=DOUBLE;

error_msgV[PDOUBLE]="Should be greater than 0!";

The last thing to do to implement the type PDOUBLE is to write the adequate
check in ChkVar:

case PDOUBLE:

status=(x->Val.V_PDOUBLE<0.); /* PDOUBLE>=0.*/

break;

5 Numerical functions

Numerical functions are implemented through the types (in optype.h):

/*NumericalFunctions*/

typedef struct NumFunc_1{

double (*Compute)(VAR*,double);

VAR Par[MAX_PAR];

int (*Check)(int user,Planning*,void*);

} NumFunc_1;

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 20

typedef struct NumFunc_2{

double (*Compute)(VAR*,double,double);

VAR Par[MAX_PAR];

int (*Check)(int user,Planning*,void*);

} NumFunc_2;

where the suffix _1 or _2 correspond to the number of arguments of the
Compute field after the parameter VAR which should be the field Par of the
structure. Typically the payoffs of one-dimensional options will be imple-
mented as NumFunc_1, those of two-dimensional or path-dependent claims as
NumFunc_2. The field Par stores some parameters upon which the function
may depend, like the strike for a Call or a Put payoff. The field Check is
intended to check possible constrains between the parameters of Par: for
instance the strikes K1 and K2 of a CallSpread should verify K1 ≤ K2.

The field *Compute may point to a function of the file numfunc.c in the
directory Common . The check function in the same way may be one of
the functions of chk.c.
The implementation of a CallSpread payoff may thus look like (file call-
spreadeuro.c in Opt/Std):

static NumFunc_1 callspread=

{

CallSpread,

{{"Strike 1",PDOUBLE,100,ALLOW},

{"Strike 2",PDOUBLE,110,ALLOW},

{" ",END,0,FORBID}

},

CHK_callspread

};

where the function CallSpread is defined in numfunc.c:

double CallSpread(VAR *param,double spot)

{

double strike1=(*param).Val.V_PDOUBLE,strike2=(*(param+1)).Val.V_PDOUBLE;

return MAX(0.,spot-strike1)-MAX(0.,spot-strike2);

}

and also the function CHK_callspread in chk.c:

int CHK_callspread(int user, Planning *pt_plan,void* dum)

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 21

{

NumFunc_1* payoff=(NumFunc_1*)dum;

int status=OK;

status+=ChkParVar(pt_plan,payoff->Par);

if (payoff->Par[1].Val.V_PDOUBLE<payoff->Par[0].Val.V_PDOUBLE)

{

Fprintf(TOSCREENANDFILE,"%s: lower than %s\n",

payoff->Par[1].Vname,payoff->Par[0].Vname);

status+=1;

}

return status;

}

6 Computation time information

In order to get a basic information regarding the computation time of a
routine, we have designed the following structure:

/*Time Info*/

typedef struct TimeInfo{

Label Name;

VAR Par[MAX_PAR];

VAR Res[MAX_PAR];

int (*Check)(int user, Planning *, struct TimeInfo *);

int (*Init)(struct TimeInfo*);

} TimeInfo;

There is a single instance of this type which is in timeinfo.c in Common :

TimeInfo computation_time_info=

{

"No Computation Time Information",

{{"Choice",INT,100,FORBID},

{"AveragingTimeWidth",INT,100,FORBID},

{"NumberOfRuns",LONG,100,FORBID},

{" ",END,0,FORBID}},

{ {"MeanTime(ms)",DOUBLE,100,FORBID},

{" ",END,0,FORBID}},

Chk_TimeInfo_OK,

Biblio C Source

22 pages Intro /Doc /Kernel /Interface /Contents 22

Init

};

The corresponding Get, Show, Check and initialization function are in the
same file.

Since many processes may be at work at the same time on your computer
it is not that easy to get a meaningful result by a plain call to some kind
of difftime function. A more robust result is obtained by averaging over
several trials. The number of trials is the parameter AveragingTimeWidth of
the Par field. Lastly the computation time of a given routine may be smaller
than the unit of time measurement of the computer (typically for a closed
formula). In such a case you will get a nil computation time regardless of
the averaging procedure. So it may be necessary to measure a big enough
number of trials instead of a single one as a elementary input to the averaging
stuff. This is the parameter NumberOfRuns. The corresponding code, in the
function Action(...) of the file tools.c is the following:

if (pt_time_info->Par[0].Val.V_INT==OK)

{

averaging=pt_time_info->Par[1].Val.V_INT;

number_of_runs=pt_time_info->Par[2].Val.V_INT;

diff_time=0.;

for (i=0;i<averaging;i++)

{

start=clock();

for (j=0;j<number_of_runs;j++)

error=(pt_method->Compute)(pt_option->TypeOpt,

pt_model->TypeModel,pt_method);

finish=clock();

diff_time+=((double)finish-(double)start)/(double)CLOCKS_PER_SEC;

}

pt_time_info->Res[0].Val.V_DOUBLE=diff_time/(double)averaging;

}

Biblio C Source

	Models and Options
	Options
	Models
	Accessing to Models and Options objects

	Pricing methods
	Subdirectories of pricing methods
	Pricing method files
	The master file (e.g. bs1d_std.c)
	Shared routines

	Dynamical tests
	The VAR system
	Input-Output of a VAR
	Initialization

	Numerical functions
	Computation time information

