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mc_baldi_in

Input parameters:

• Number of iterations N

• Generator Type

• TimeStep Number M

• Increment inc

• Confidence Value

Output parameters:

• Price P

• Error Price σP

• Delta δ

• Error delta σδ

• Price Confidence Interval: ICP =[Inf Price, Sup Price]

• Delta Confidence Interval: ICδ =[Inf Delta, Sup Delta]

Description:
Computation for a Knock-In Barrier Option, Call or Put - Up or Down - In,
of its Price and its Delta with a Monte Carlo or Quasi-Monte Carlo method.
In the case of Monte Carlo simulation, the algorithm also provides an esti-
mation for the integration error and a confidence interval.

The underlying asset price evolves according to the Black and Scholes model,
that is:

dSu = Su((r − d)du + σdBu), St = s
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then

ST = s exp

(
(r − d− σ2

2
)θ

)
exp(σBθ)

where ST denotes the spot at maturity T , s is the initial spot, θ is the time
to maturity.
For the barriers we use the following notations:
L and U denote respectively the lower and upper barriers.

τL = inf{u > t; Su ≤ L(u)}

τU = inf{u > t; Su ≥ U(u)}
are the hitting time on the barriers.

Remarks: In PREMIA we only consider constant barriers. But follow-
ing algorithms could be adapted to time-dependent barriers.

The Price of a single barrier option at t is:

P = E [exp(−rθ)f(ST , K, R, τ)]

where f denotes the payoff of the option, R the rebate and τ the hitting time
on the barrier.
The Delta is given by:

δ =
∂

∂s
E[exp(−rθ)f(ST , K, R, τ)]

Estimators are expressed as:

P̃ =
1

N
exp(−rθ)

N∑

i=1

P (i)

where P (i) = f(ST (i), K, R, τ(i))

δ̃ =
1

N
exp(−rθ)

N∑

i=1

∂

∂s
P (i) =

1

N
exp(−rθ)

N∑

i=1

δ(i)

The values for P (i) and δ(i) are detailed for each option.

• Down-In Put: The payoff is (K − ST )+1τL≤T + R1τL>T .

• Up-In Put: The payoff is (K − ST )+1τU≤T + R1τU>T .
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• Down-In Call: The payoff is (ST −K)+1τL≤T + R1τL>T .

• Up-In Call: The payoff is (ST −K)+1τU≤T + R1τU>T .

Algorithm:

This algorithm is taken from [2] and allows to numerically compute the
price and the delta of single Knock-In Barrier Options with a Monte Carlo
method. The issue, as it is discussed in there, is to provide a good approxi-
mation of the first time τ at which the price of the underlying stock reaches
the barrier. If such a time is observed to be less or equal to the maturity, the
option is activated, its value being equal to a pre-specified rebate otherwise.
One could numerically determine the first time at which the stock price is
observed to cross the barrier by a crude simulation, i.e. through k∗ ·h, where
h stands for the time step increment and k∗ denotes the first step the under-
lying asset price has been outside the boundary (here, it is supposed that 0 is
the starting time). Numerical tests show that this method does not perform
well because the stock price is checked at discrete instants through simula-
tions and the barrier might have been hit without being detected, giving rice
to an over-estimation of the exit time and thus to a non trivial error for the
estimate of the option price.

The algorithm (there) from [1] allows to improve the performance of the
crude Monte Carlo method, by giving a careful estimation of τ as follows.
When the stock price is observed to stay inside the boundary either at step
k− 1 and k, an accurate approximation ph

k of the probability that the under-
lying asset price crosses the barrier during the time interval ((k − 1)h, kh)
is computed and a bernoulli r.v. with parameter ph

k is generated: if it is
observed to be equal to 1, then the process is supposed to have gone out, so
that the exit time can be approximated by kh, otherwise the (k + 1)th step
is considered, unless k = M , i.e. the maturity has been reached.

♣ Function exit-probability-in
/* Compute the probability that the spot has crossed the barrier during the
time interval */
For a constant barrier, we can compute exactly this probability through the
conditional law of a Brownian Bridge.
Probability that the spot crosses the barrier is the same that the maxi-
mum (minimum) of Bu over [tk, tk+1] conditionally to Bk and Bk+1 is greater
(smaller) than the barrier.
The law of the maximum (minimum) is given by: (see Lookback options)
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♣ Function MC-InBaldi-97

/* Value to construct the confidence interval */
For example if the confidence value is equal to 95% then the value zα used
to construct the confidence interval is 1.96. This parameter is taken into
account only for MC simulation and not for QMC simulation.

/*Initialisation*/
The variables giving the price, the delta and the corresponding variances are
initialised. The coefficients z, rloc, sigmaloc and sigmat are used in order
to generate the the underlying asset prices starting at s and s + ε, at the
discretisation times.
/* Maximum Size of the random vector we need in the simulation */
The size equals 2M . This parameter is used in case of QMC simulation.
Justification
/*Coefficient for the computation of the exit probability*/
The constant rap is used to compute the local probability of exit from the
barrier.

• /*MC sampling*/
Initialization of the simulation: generator type, dimension, size N of the
sample.
/* Test after initialization for the generator */
Test if the dimension of the simulation 2M is compatible with the selected
generator. (See remarks on QMC simulation, especially on dimension of
low-discrepancy sequences). For Monte Carlo simulation, we never have any
problem with the dimension because successive random numbes from gener-
ators are independent.
Definition of a parameter which exprimes if we realize a MC or QMC sim-
ulation. Some differences then appear in the algorithm for simulation of a
gaussian variable and in results in the simulation.

/* MC simulation */
/* Begin N iterations */

- In this cycle, at step i the paths ln S(i)(s) and ln S(i)(s + ε), starting at
s and s + ε, are simulated. Thus, it starts by initialising the variable time

giving the current value of the discretization time. Since the paths really
simulated are given by the logarithm of the underlying asset price starting
at s and s + ε, their current values are set in the variables lnspot and
lnspot_increment.
Notice that the process starting at ln(s + ε) is equal to the process starting
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at ln s added by ln(1 + ε/s), which is a constant denoted as increment.
/*Up and Down barrier at time */
Since the paths really simulated are given by the logarithm of the underlying
asset price, the considered barrier is the logarithm of the starting barrier l.
/*Inside = 0 if the path reaches the barrier*/
inside and inside_increment are boolean variables initialised to 1, switch-
ing to 0 when the corresponding path is observed to exit from the barrier.

-/*Simulation of the i-th path until its exit if it does*/
In this cycle, the processes are both simulated at the discretisation times kh,
whose current name is time, until k = M or the corresponding value of the
flag is changed, i.e. until inside= 0 or inside_increment= 0.
At each step k, a variable, called correction_active, is introduced in or-
der to ensure that both paths are generated by means of the same sample.
correction_active is firstly equal to 0 and its value switches to 1 whenever
a path is observed to exit whereas the other one does not behave in the same
way.
Values of the old and new simulated points and of the barrier are put in the
variables lastlnspot, lnspot, lastlnspot_increment, lnspot_increment,
lastbarrier, barrier respectively .

/* Simulation of a gaussian variable according to the generator type, that
is Monte Carlo. */
Call to the appropriate function to generate a standard gaussian variable.
See the part about simulation of random variables for explanations on this
point. We just recall that for a MC simulation, we use the Gauss-Abramovitz
algorithm.

/*Check if the i-th path has reached the barrier at time*/
- The variable upordown is defined to be equal to 0 if the considered barrier
is an upper one, upordown being equal to 1 in the case of a lower barrier.
- lnspot is compared with barrier: if the path is outside the barrier, the
corresponding value of inside is set equal to 0 and the exit time exit_time

set as the current time.
- Otherwise, we need to simulate whether lnspot has crossed the barrier
between time and time-1.

Rejection method : We take an uniform variable u and we compare it to the
exit probability p computed with the function exit-probability.

u < p means that the barrier was crossed, and then insideis set to 0.
u > p that the barrier was not crossed.
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If u was simulated, correction_active is set equal to 1, and thus u will not
be simulated an other time for the incremented path.

- The same algorithm is applied to the incremented path with only one
difference: if u was already simulated for the spot path, we use the same
value, else we now generate u.

/*Inside=0 means that the payoff does not nullify
Inside=1 means that the payoff is equal to the rebate*/
- We introduce the variable time-now which defines at what time we quit
the previous cycle. lnspot and lnspot_increment were both simulated until
this time.
time-now is theoretically the same that time at the exit of the cycle, but
if k = M we have that M ∗ h is not exactly t because of computing error
whithin iterations.
- We now compute price_sample and price_sample_increment for this
cycle.
The ith path has been generated until its exit, if it has done, or k = M , so
that the price provided by the sample can be computed.
If inside= 0 then the boundary has been reached at exit_time
If this is not the case, the following property is used:

IE0,s[e
−rtf(St)1τ≤t] = IE0,s

[
e−rt′ 1τ≤tIEt′,St′ [e

−r(t−t′)f(St)]
]

where f(x) denotes (x−K)+ or (K − x)+ according to the case of a call or
put option respectively. Since IEu,Su [e−r(t−u)f(St)], with u < t and Su > 0
denotes the price of a standard call/put option (without barriers), it can
be exactly computed by means of closed formulas (Black and Scholes), so
that price_sample is set equal to this quantity evaluated in time_now and
exp(lnspot).

Instead if inside is equal to 1, i.e. the path has never gone out, price_sample
becomes equal to the rebate, denoted as rebate, discounted by \exp(-r*t).
- By using a similar procedure, price_sample_increment is computed.

- /*Delta*/
The delta of the sample δ(i) is computed (recall that increment= ln(1+ε/s)
so that ε ∼ increment*s:that is why the variation of the price sample is
divided by increment*s).

- /*Sum*/
The partial sums of the observed price_sample and delta_sample are com-
puted.
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-/*Sum of Squares*/
The partial sums of the squares of the observed price_sample and delta_sample

are computed and will be used to evaluate the empirical variances.

/* End N iterations */

• /*Price*/
The price estimator is:

P =
1

N

N∑

i=1

P (i)

The error estimator is σP with :

σ2
P =

1

N − 1

(
1

N

N∑

i=1

P (i)2 − P 2

)

• /*Delta*/
The delta is computed according to the case of a put or call option.

δ =
1

N

N∑

i=1

δ(i)

The error estimator is σδ with:

σ2
δ =

1

N − 1

(
1

N

N∑

i=1

δ(i)2 − δ2

)

• /* Price Confidence Interval */
The confidence interval is given as:

ICP = [P − zασP ; P + zασP ]

with zα computed from the confidence value.

• /* Delta Confidence Interval */
The confidence interval is given as:

ICδ = [δ − zασδ; δ + zασδ]

with zα computed from the confidence value.

/* QMC simulation */
We just give a description of the points which differ from MC simulation.
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Otherwise algorithm follows the same steps.
/* Begin N iterations */

/* index is used to select value in the random vector */
We use the variable index to keep successive random values in the simulated
vector.
/* Simulation of a uniform vector of size simulation-dim*/
/* For QMC simulation, we have to simulate the full vector at the beginning
of each cycle i even if we will not use all the values in the case where we
reach the barrier before maturity */
Independent uniform variables are necessary to simulate the path and the
crossing of the barrier, then we need the next point for each dimension of a
multi-dimensional low-discrepancy at each step i.
/* The first uniform value will be used to generate a gaussian variable */

/*Simulation of i-th path until its exit if it does*/
/* Simulation of a gaussian variable according to the QMC generator.*/
/* Uniform value comes from the uniform vector generated at the beginning
of each cycle i*/
We recall that we use an inverse function for QMC simulation. We use the
first coordinate of the selected low-discrepancy sequence.

The algorithm goes on as for a MC simulation, except for simulation of
the crossing of the barrier: we keep the next (with index) uniform value in
the vector previously obtained.

We don’t compute variance and confidence interval because they don’t
work for QMC simulation.
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