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Introduction
This part contains a general presentation to the Monte Carlo and Quasi-
Monte Carlo simulation methods. These two types of methods are used to
evaluate an integral as an expected value. We will consider the following
problem

I = Eµ[ψ(X)] =

∫

E

ψ(x)dµ(x)

where ψ is some function on E ∈ Rn over R and X = (X1, . . . , Xn) is a
n-dimensional vector of random variables with law µ.
The first section is devoted to Monte Carlo Simulation, principle of estima-
tion, variance reduction techniques and efficiency of the simulation.
In a second step, we give an introduction to Quasi-Monte Carlo methods.
The next section deals with the simulation of random variables. We present
some algorithms, especially for uniform and gaussian variables. Finally we
describe how to simulate diffusion processes. Such algorithms are necessary
to price financial options with simulation methods.
The last section details how to use simulation methods.

1 Monte Carlo simulation

This section contains an introduction to Monte Carlo methods. A first point
is devoted to the principle of simulation. In a second point, we are interested
in variance reduction techniques applied to increase efficiency of the simula-
tion. To compare various methods, we present a criterion of efficiency in a
third point.
For a more detailed review on these methods, the reader can refer for instance
to [9], [7], [5] or [2]. A reference for applications in Finance is [1].

1.1 Principle of the Monte Carlo Simulation

Monte Carlo Simulation is a general method for evaluating an integral as an
expected value. It is based on the Strong Law of Large Numbers (LLN) and
the Central Limit Theorem. It provides an unbiased estimator and the error
on the estimate is controlled within a confidence interval.
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We first recall these two limit theorems, and then we describe principle of
the simulation. The last point is devoted to some properties of the estimate.

1.1.1 Limit theorems

X denotes a n-dimensional random vector, ψ is some function on E ∈ Rn

over R.

• Strong Law of Large Numbers: This theorem shows that the mean
of ψ(xi) for a large sample converges to the expected value of ψ under an
integrability condition.
If xi are i.i.d (independent and identically distributed) to X and if E[|ψ(X)|] <
+∞ then

1

N

N∑
i=1

ψ(xi)
a.s−→ E[ψ(X)]

• Central Limit Theorem: This theorem shows that the mean estimator
converges in law to a gaussian standard distribution.
We note σ2 = V ar[ψ(X)].
If σ2 < +∞ then

√
N

σ

(
1

N

N∑
i=1

ψ(xi)− E[ψ(X)]

)
L−→ N (0, 1)

1.1.2 Estimation principle

• An unbiased estimator of I for N trials with the Standard Monte Carlo
method is defined by:

θN =
1

N

N∑
i=1

ψ(xi)

with xi i.i.d to µ.
Simulation of sample {xi} according to µ is explained in the section about
random variables simulation. It is important to remember that we need ran-
dom numbers, generated from pseudo-random numbers generators.

• From the Law of Large Numbers we have that θN
a.s−→ I.

• Variance of the estimator is given as:

σ2
N =

σ2

N
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and it is estimated by:

σ̃2
N =

1

N − 1

[
1

N

N∑
i=1

ψ2(xi)− θ2
N

]

Variance decreases to 0 when N → +∞. It means that the greater N is, the
more accurate the estimator is. The speed of convergence of θN to I is σ√

N
.

It is not dependent on the dimension n.

• From the Central Limit Theorem, we can define a confidence interval
IC = [A,B] for the threshold 1−2α. It is such that P (A < I < B) = 1−2α
and it is built as follows:

IC = [θN − zασN ; θN + zασN ]

where zα = Φ−1(1−α) and Φ−1 is the inverse cumulative distribution function
of the standard gaussian law.
For instance, if the threshold is chosen to 95% then α = 2, 5% and zα ≈ 1.96.

1.1.3 Properties

We briefly summarize some advantages and disadvantages of the Standard
Monte Carlo method.

• Advantages:
- This method does not require regularity or differentiability properties
for the function ψ. Thus we can implement it very easily if we are able
to generate the variable X according to µ.
- The estimator is unbiased, that is E[θN ] = I.
- Error on the estimate can be controlled by the Central Limit Theorem,
and we can built a confidence interval.
- Speed of convergence is independent on the dimension.

• Disadvantages:
- We have to realize a lot of simulations to obtain an accurate estimator.
Therefore computing time can be very high.

1.2 Variance Reduction Techniques

We saw that a disadvantage of the standard Monte Carlo Simulation is its
required computing time. Thus we are now interested in Accelerated Monte
Carlo Simulation.
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To reduce computing time, we can use variance reduction techniques. The
principle is to rewrite the parameter I in order to express it in function of
a new random variable with smaller variance σ2. Then we need a smallest
number of iterations to obtain the same accuracy on the estimate. In the
next section, we present a criterion of efficiency used in order to compare
different accelerated methods.
We now briefly describe some of the major variance reduction techniques:
importance sampling, stratified sampling, control variate, antithetics vari-
ates, conditional sampling. A description of this techniques can be found in
[9].
Applying variance reduction techniques requiers some choices of parameters.
Then it is not always obvious to determine the better technique, neither to
implement it.

1.2.1 Conditional Sampling

This technique is based on the property of the conditional expectation.
If we note X = (Y, Z) then we have:

I =
∫ ∫

E
ψ(y, z)µ(y, z)dydz

=
∫ ∫

ψ(y, z)µZ|Y (z)µY (y)dydz
= EY [EZ [ψ(Y, Z)|Y ]]

This method can be applied if we are able to calculate the marginal law
µY (y) and the conditional expectation EZ [ψ(Y, Z)|Y ].
Then we just have to simulate yi i.i.d to Y and the estimator is expressed
by:

θN =
1

N

N∑
i=1

E[ψ(yi, Z)|yi]

and

σ2
N =

1

N
V ar [EZ [ψ(Y, Z)|Y ]]

Variance reduction with regard to standard Monte Carlo simulation is garan-
teed by the conditional Jensen inequality.
Applying this method leads in fact to reduce dimension of the initial model.
We can express I as

I = E[h(Y )]

where h is the function obtained with EZ [ψ(Y, Z)|Y ] and Y is a m-dimensional
vector with m < n.
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1.2.2 Importance Sampling

The basic idea of importance sampling consists in concentrating the distri-
bution of the sample points in the most contributive parts of the space. For
that, we introduce an new density ν which changes the initial density of X.

I =

∫

E

ψ(x)
µ(x)

ν(x)
dν(x) = Eν

[
ψ(X)

µ(X)

ν(X)

]

- We obtain the following estimator:

θN =
1

N

N∑
i=1

ψ(xi)
µ(xi)

ν(xi)

with xi i.i.d to ν.

- Variance of the estimator is expressed as:

σ2
N =

1

N
V arν

[
ψ(X)

µ(X)

ν(X)

]

- ν is named the importance function. It must verify that ν(x) > 0, ∀x ∈ E
such that ψ(x)µ(x) > 0. Otherwise the estimator we obtain is not unbiased.

Variance reduction with regard to standard Monte Carlo simulation is not
garanteed by this method. It depends on the choice of ν, which is not an
easy step. However, the minimum of the variance is reached for the following
importance density µ∗ called the optimal density.

µ∗ =
|ψ(x)|µ(x)∫ |ψ(y)|µ(y)dy

Usually this density is unknown and it contains the term I as soon as ψ > 0.

1.2.3 Stratified Sampling

For stratified sampling, we separate the space E into M disjoints subregions
(the strata) Ei. Each subintegral on Ei can be estimated separately by the
standard Monte Carlo method. The final estimator is obtained by a recom-
position of the different estimators.

I =
∑M

i=1

∫
Ei

ψ(x)µ(x)dx

=
∑M

i=1 Pi

∫
Ei

ψ(x)µ(x)
Pi

dx

=
∑M

i=1 PiIi
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- Each integral Ii is estimated by a standard simulation with Ni samples in
Ei. Pi denotes the weight of the stratum Ei.

θN =
M∑
i=1

Pi
1

Ni

Ni∑

k=1

ψ(xi
k)

with xi
k i.i.d to µ(x)

Pi
over Ei.

- Variance of the estimator is given by:

σ2
N =

M∑
i=1

P 2
i

Ni

V ar
[
ψ(X i)

]
=

M∑
i=1

P 2
i σ2

i

Ni

As for importance sampling, variance reduction is not garanteed by stratified
sampling. Accuracy of the estimate depends on the choice of the strata and
the sample size Ni on each of them.

An optimal choice for the Ni under the condition
∑M

i=1 Ni = N is given
by:

Ni = N
Piσi∑M

j=1 Pjσj

where σi denotes the standard error on Ei.
In this case, the variance of the estimator is:

σ2
N =

1

N

[
M∑

j=1

Piσi

]2

Note that this choice can not be found a priori because parameters σi are
unknown. But it is possible to estimate these values with a first simulation
and to realize a fast optimal choice in a second step.

Remarks:
- Stratified sampling can be seen as a particular case for importance sampling
where the importance density is a decomposition of the initial density over
its support.
- Strata are usually built from intervals for each variable: bounds are defined
with values or quantiles in the distribution. It is necessary to be able to
simulate variable according to the law on each stratum.
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1.2.4 Control Variables

Principle of this method is to introduce an other model for which we have an
explicit solution and to estimate the difference between our first parameter
I and the new one.

I = E[ψ(X)]
= E[ψ(X)− ξ(X)] + E[ξ(X)]

where ξ is a function such that E[ξ(X)] = m is known.

An unbiased estimator of I with N trials is defined by:

θN =
1

N

N∑
i=1

(ψ(xi)− ξ(xi)) + m

with xi i.i.d to µ.
Variance of the estimator is given as:

σ2
N = 1

N
V ar[ψ(X)− ξ(X)]

= 1
N
{V ar[ψ(X)] + V ar[ξ(X)]− 2Cov(ψ(X), ξ(X))}

Variance reduction with regard to standard Monte Carlo simulation is not
garanteed by this method. To decrease the variance, functions ψ and ξ must
have a large positive correlation. It implies a specific choice for the control
variate ξ.

1.2.5 Antithetics Variables

Principle of antithetic variables is to introduce some correlations between the
terms of the estimate.
When simulation is done by the inverse cumulative distribution function (see
the section about random variable simulation), we use uniform numbers ui

on [0, 1]. For this method, we use each ui twice, as ui and 1 − ui. These
both variables have same law but are not independent. We note xi and x′i
the variables generated from ui and 1− ui respectively.

- An unbiased estimator of I with N trials is defined by:

θN =
1

2N

N∑
i=1

(ψ(xi) + ψ(x′i))
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with xi i.i.d to µ.

- Variance of the estimator is given as:

σ2
N =

1

2N
(V ar[ψ(X)] + Cov[ψ(X), ψ(X ′)])

The following theorem give sufficient conditions to obtain a variance reduc-
tion with this method.

Theorem: If ψ is a monoton, continue, derivable function then

(σant
N )2 ≤ 1

2
(σstd

N )2

Factor 1/2 is due to the sample size for the antithetic method: in fact, the
estimator contains 2N terms.

1.3 Efficiency of the Monte Carlo methods

We previously saw that Monte Carlo simulation requieres large sample size
to obtain an accurate estimate and thus computing time can be very high.
To accelerate the simulation, variance reduction techniques can be imple-
mented. But to measure their performance, we need to take into account
both the variance of the estimate and its computing time. In fact it is use-
less to decrease variance while increasing too much computing time because
of a more complicated algorithm. What is interesting is which accuracy in
what time we have for a given method. So we need a criterion which deter-
mines whether a variance reduction technique is better than an other one.

We introduce a criterion to compare the efficiency of the various simulation
methods, standard simulation or with variance reduction techniques. This
criterion takes into account the computing time required by the simulation
for each method.

• Efficiency of the method j with regard to the method i is defined by:

ε(i, j) =
σNi

(i)

σNj
(j)

√
tNi

(i)

tNj
(j)

where N, tN , σN respectively denote sample size, computing time and stan-
dard error of the estimate from N simulations. This value seems to be de-
pendent on sample sizes Ni and Nj, but it is not if we assume that computing
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time is proportional to the sample size, that is there exists a factor k such
that tNi

(i) = kiNi. This hypothesis is very realistic. Then:

ε(i, j) =
σi

σj

√
ki

kj

To obtain this formulation, we just use that σ2
N(i) = σ2(i)

Ni
where σ2(i) is the

variance of the estimated function for the method i.
k exprimes complexity of the algorithm for the considered method.

• The value of ε(i, j) can not be calculated, unless we know variances σ2(i)
and σ2(j). This is not the case in general: when we estimate I = E[ψ(X)]
we don’t know the parameter σ2 = V ar[ψ(X)] too. But we can obtain an
estimation of this efficiency within the Monte Carlo simulation.

ε̃(i, j) =
σ̃Ni

(i)

σ̃Nj
(j)

√
tNi

(i)

tNj
(j)

and
lim

Ni,Nj→+∞
ε̃(i, j) = ε(i, j)

where σ̃Ni
is the estimated standard error for the estimator with the method i.

• The method j is considered to be more efficient than the method i if
ε(i, j) ≥ 1. We obviously have ε(i, i) = 1.
For instance, if ε(i, j) = 3, it means that method i requires 9(= 32) times
more time than method j to obtain the same accuracy. In other words, with
the same computing time, standard error for method j is 3 times smaller
than the one of method i.
The higher ε(i, j) is, the more efficient is the method j with regard to the
method i.

• To compare different methods, the criterion of efficiency can be used as
follows:
We can choose a reference method i and compare several other methods with
regards to i. For example, choose i as the standard Monte Carlo method.
If ε(i, j) < ε(i, k), then the method k is more efficient than the method j.
Note that generally we only have estimations for efficiencies. We have to
analyse results carefully, by taking into account sufficient large sample sizes
to obtain good convergence of the estimates.
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2 Quasi Monte Carlo Simulation

A first method to estimate the integral
∫

ψ(x)dx by simulation is to use se-
quences {xi} of random variables obtained from (pseudo) random numbers
generators and to give an approximation by 1

N

∑N
i=1 ψ(xi). This approach is

described in the Monte Carlo Simulation part and Pseudo-random numbers
generators are discussed in a special part (Pseudo random generator).

We are now interested in another way to realize simulation. It deals with the
Quasi-Monte Carlo Methods. We first have to rewrite I by

∫
[0,1]d

f(u)du =

E[f(U)] with U uniform over [0, 1]d. Instead of using random number se-
quences {ui}, we introduce the notion of low-discrepancy sequences {ξi}.
Such sequences neither are random nor pseudo-random but deterministic and
successive values are not independent. However they satisfy good properties
of equidistribution on [0, 1]d and we have that

1

N

N∑
i=1

f(ξi) →
∫

[0,1]d
f(u)du

We first present theoretical aspect of those sequences and justification of their
use in simulation through the Koksma-Hlawka formula. Various low discrep-
ancy sequences are described in an other part low discrepancy sequences. We
explain their construction and discuss some of their properties, especially on
their discrepancy.
General references about the Quasi-Monte Carlo simulation are [3], [8], [10],
[6] or [4]. This list is not exhaustive. Specific references will be given in the
following sections.
Description for the implemented sequences is given in the implemented part.
C codes can be found in the source part.

2.1 Discrepancy, Variation, Koksma-Hlawka formula

To present low discrepancy sequences, we need to introduce some notations
and definitions, especially the discrepancy and the variation.

Notations:
We note [|0, x|] = {y = (y1, . . . , yd) ∈ [0, 1]d, y < x} ; we consider that y ≤ x
if and only if for all j = 1, . . . , d : yj ≤ xj.
Π(x) denotes the volume of [|0, x|]. Π(x) = x1 × · · · × xd.
We note Id = [0, 1]d the closed d-dimensional unit cube.
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For ξ = (ξn)n≥1 a sequence in Id and x ∈ Id, we note :

Dn(ξ, x) =
1

n

n∑
i=1

1[|0,x|](ξi)− Π(x)

Definitions:

• A sequence (ξn)n ≥ 1 is said to be equidistributed on [0, 1]d if

∀x ∈ [0, 1]d, lim
n→+∞

1

n

n∑
i=1

1[|0,x|](ξi) = Π(x)

• The value D∗
n(ξ) defined as:

D∗
n(ξ) = supx∈Id |Dn(ξ, x)|

is called the star discrepancy for the first n terms of the ξ sequence.
The discrepancy is a very important notion for Quasi-Monte Carlo
simulation. It measures how a given set of points is distributed in
Id = [0, 1]d. It can be viewed as a quantitative measure for the deviation
from the uniform distribution.

• A sequence (ξ) is said to be a low-discrepancy sequence if its discrepancy

satisfies DN = O( (log N)d

N
) or if it is asymptotically better than the one

of a random sequence obtained from the law of iterated logarithm as
O(( log log N

N
)

1
2 ).

• The variation of a function f on Id in the sens of Vitali is defined by :

V d(f) = sup
p∈P (Id)

∑
A∈p

|∆(f, A)|

where P (Id) is the set of all partitions of Id into subintervals, p ∈ P (Id)
denotes a partition and A ∈ p a subinterval.
∆(f,A) is the alternative sum of the values of f at the vertices of A.

V d(f) =

∫

[0,1]d

∣∣∣∣
∂df

∂u1 . . . ∂ud

∣∣∣∣ du1 . . . dud

if partial derivative is continuous on Id.
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• The variation of f on Id in the sense of Hardy and Krause is defined
by :

V (f) =
d∑

r=1

∑

1≤i1<···<ir≤d

V r(f ; i1, . . . , ir)

where V r denotes the variation in the sense of Vitali on the restric-
tion of f to the r dimensional face {(x1, . . . , xd) ∈ Id/xk = 1 ifk 6∈
{i1, . . . , ir}}

2.2 Estimation

Construction of the estimator is based on the Koksma-Hlawka formula.
• Koksma-Hlawka inequality:
If f has bounded variation V (f) on Id in the sense of Hardy-Krause, then
for any ξ1, . . . , ξn ∈ [0, 1]d, we have:

∀n ≥ 1,

∣∣∣∣∣
1

n

n∑
i=1

f(ξi)−
∫

[0,1]d
f(u)du

∣∣∣∣∣ ≤ V (f)D∗
n(ξ)

• Properties of the estimator:
- This formula gives an a priori deterministic bound for the error in the ap-
proximation of

∫
[0,1]d

f(x)dx by 1
n

∑n
i=1 f(ξi).

This error is expressed in term of the discrepancy of the sequence (indepen-
dent of f) and the variation of the function f (independent of n). Neverthe-
less it is often difficult to calculate even to estimate the variation of f .
Through the Koksma-Hlawka inequality, we understand the need to have se-
quences with discrepancy DN as small as possible.

- In opposition to Monte Carlo simulation, Quasi-Monte Carlo doesn’t pro-
vide an confidence interval for the estimator. We cannot compute empirical
variance of the sample because succesive terms are not independent. This is
due to the construction of the low-discrepancy sequence.
- An other difference in comparison with Monte Carlo is that the convergence
rate for QMC simulation depends on the dimension n of the considered model
through discrepancy Dn. Values of discrepancy are given in the description
part about low discrepancy sequences.

3 Simulation of random variables

To realize a Monte Carlo simulation, we need a sample of N random vari-
ables xi i.i.d according to a same density, as described in the first section. In
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this section, we present some general methods to obtain this random sample.
First, we recall how to generate random numbers and then we detail the in-
verse method. The third point is devoted to simulation of gaussian variables.
Simulation of several other random variables is described in Rubinstein [9].

3.1 Simulation of uniform variables

Simulation of most of the random variables requiers uniform variables over
[0, 1], that is random numbers.
Simulation of random numbers is well described in the two parts: Pseudo
random generator and low discrepancy sequences.

Remarks:
- Pseudo random generators deal with Monte Carlo simulation, while low
discrepancy sequences with Quasi-Monte Carlo Simulation.
- To obtain independent random numbers for a multi-dimensional Quasi-
Monte Carlo simulation, it is necessary to consider a multi-dimensional low-
discrepancy sequence. In return, you can take successive values from the
same pseudo-random generator for a multi-dimensional Monte Carlo estima-
tion, there is theoretically no problem with independence.

An uniform variable over [a, b] is obtained as a + (b− a)u where u is uniform
over [0, 1].

3.2 Inverse method

Inverse method is a general approach to generate a variable X according to
a given law. For some distributions, it is the easiest way for simulation.
Simulation of a variable X with probability density function f and cumulative
distribution function F can be made by the following way:
- First, simulate a variable u uniformly distributed on [0, 1], that is a random
number (from one of the pseudo-random numbers generators or one of the
quasi-random number generators).
- And finally take x = F−1(u).
Applying this method supposes that the inverse cumulative distribution F−1

is well-known.

3.3 Simulation of Gaussian standard variables

First of all, we present two direct methods to generate standard Gaussian
variable: Box-Muller transformation and Gauss-Abramowitz method. The
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third point is interested in simulating gaussian variable with the inverse
method.
These methods are implemented in PREMIA. You can reach algorithms with
links C Code.

• Box-Muller transformation: C Code
If (u, v) is uniformly distributed on [0, 1]2 then x and y defined by:

x =
√−2 log u sin(2πv)

y =
√−2 log u cos(2πv)

are distributed as independent standard gaussians.

From two uniform random numbers, we obtain two simulations of a
standard gaussian variable.

• Gauss Abramowitz method: C Code
This simulation of a Gaussian standard variable is based on a rejection
method (see Rubinstein).
If (u, v) is uniformly distributed on [−1, 1]2 such that R2 = u2 + v2 <
1the unit disk then x and y defined by:

x =
√

−2 log R2

R2 u

y =
√

−2 log R2

R2 v

are distributed as independent standard gaussians.

As for the Box-Muller method, from two uniform random numbers,
we obtain two simulations of a standard gaussian variable.

Remark on the rejection principle: We need to simulate a point uni-
formly inside the unit circle. The easiest is to simulate (u, v) uniformly
on [−1, 1]2 until the point falls in the circle (until we don’t reject it),
that is (u, v) such that u2 + v2 < 1.
This method is efficient because the rejection rate is rather small. It
equals the square area over the unit disk area, that is 4

π
∼ 1, 3.

• Remarks: Such methods require two independent random numbers
to obtain two gaussian variables.
- They can be used when random numbers are generated from pseudo-
random generators, because there is no problem of independence be-
tween u and v. It deals with the case of Monte Carlo simulation.
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- These methods must not be used when random numbers u and v
are generated from two successive values of a one-dimensional low-
discrepancy sequence, because values are not independent in this case.
To apply one of these algorithms for Quasi Monte Carlo simulation,
you should generate u and v independently, that is necessary from two
different sequences or a two-dimensional sequence. In PREMIA, in the
case of Quasi-Monte Carlo simulation, gaussian variables are generated
with an inverse method (described in a next point).

• Inverse method for Gaussian standard variables
The inverse cumulative distribution Φ−1 for a gaussian standard vari-
able has not an explicit form. Thus to use the inverse method to sim-
ulate gaussian variable we need an approximation of Φ−1. We present
two approaches.
- Function Inverse-erf (C Code)
We consider x uniform on [0, 1].
If x > 0.5, let t =

√
−2 log(1− x), then we have the aproximation:

Φ−1(x) ' t− c0 + t(c1 + tc2)

(1 + t(d1 + t(d2 + td3)))

If x ≤ 0.5, let t =
√
−2 log(x) and then:

Φ−1(x) ' c0 + t(c1 + tc2)

(1 + t(d1 + t(d2 + td3)))
− t

with the following constants:

c0 = 2.515517;
c1 = 0.802853;
c2 = 0.010328;

d1 = 1.432788;
d2 = 0.189269;
d3 = 0.001308;

- Moro Method. (Function Inverse-erf-Moro. C Code)
For x uniform on [0, 1], r = Φ−1(x) is obtained as follows:
Let u = x− 0.5.
If |u| < 0.42 then:

r = u

∑3
n=0 anu2n

1 +
∑3

n=0 bnu2(n+1)
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else let z = log(− log(1− x)), and compute:

r =
8∑

n=0

cnz
n

If u > 0 take r.
And if u < 0 take −r.

The considered constants are given by:

a0 = 2.50662823884,
a1 = −18.61500062529,
a2 = 41.39119773534,
a3 = −25.44106049636;

b0 = −8.47351093090,
b1 = 23.08336743743,
b2 = −21.06224101826,
b3 = 3.13082909833;

c0 = 0.337475482276147,
c1 = 0.9761690190917186,
c2 = 0.1607979714918209,
c3 = 0.0276438810333863,
c4 = 0.0038405729373609,
c5 = 0.0003951896511919,
c6 = 0.0000321767881768,
c7 = 0.000002888167364,
c8 = 0.0000003960315187;

Remark: For Quasi-Monte Carlo simulation in PREMIA, we use an inverse
method to simulate gaussian variables. See previous remark on independence
in direct methods for gaussian simulation.

3.4 Simulation of gaussian vectors

Simulation of a N -dimensional Gaussian vector Γ with zero mean and a co-
variance matrix C is done by the following way:
- First we compute the lower triangulary matrix A obtained with the Cholesky
decomposition of C, that is such that C = AAt. We have :

Aii =
√

Cii −
∑i−1

k=1(Aik)2

Aji =
Cij−

Pi−1
k=1 AikAjk

Aii
for j = i + 1, . . . , N



23 pages 18

- Then we generate N independent gaussian standard variables gi with one
of the methods previously described. We note G = (g1, . . . , gN).
- Finally we compute Γ = AG. Γ is distributed as N (0, C).

Remark: this method will be used in case of simulation of correlated brow-
nian motions, for instance to price options in a two dimensional Black and
Scholes model.

3.5 Approximation of the cumulative distribution func-
tion Φ

We now give two approximations for the cumulative distribution function Φ
of a gaussian standard variable. It is very often used to compute price or
delta for various options.

• Standard algorithm
Let t = 1

1+px
, then we have:

Φ(x) =

{
1− 1√

2π
exp(−x2

2
)(b1t + b2t

2 + b3t
3 + b4t

4 + b5t
5) if x ≥ 0

1√
2π

exp(−x2

2
)(b1t + b2t

2 + b3t
3 + b4t

4 + b5t
5) if x < 0

with the following constant values:

p = 0.2316419;
b1 = 0.319381530;
b2 = −0.356563782;
b3 = 1.781477937;
b4 = −1.821255978;
b5 = 1.330274429;

• Moro algorithm
The approximation is given by:
For x ≥ 0

Φ(x) =





0.5 + x
( P2

n=0 anx2n

1+
P3

n=1 bnx2n

)
when 0 ≤ x ≤ 1.87

1−
( P2

n=0 cnxn

1+
P3

n=0 dnxn

)16

when 1.87 < x < 6

1 when x ≥ 6

For x < 0, use the formula Φ(x) = 1−Φ(−x) where Φ(−x) is computed
with the previous formula.
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In the approximation, we use the following constants:

a0 = 0.0398942270991,
a1 = 0.020133760596,
a2 = 0.002946756074,

b1 = 0.217134277847,
b2 = 0.018576112465,
b3 = 0.000643163695,

c0 = 1.398247031184,
c1 = −0.360040248231,
c2 = 0.02271976588,

d0 = 1.460954518699,
d1 = −0.305459640162,
d2 = 0.038611796258,
d3 = −0.003787400686,

The second approximation is more accurate than the first one.

4 Simulation of Diffusions

This section is especially devoted to simulation of diffusion processes. Refer-
ence to these de Olivier Faure et livre Lapeyre. It is necessary to know how
to simulate such processes, particularly for path-dependent options pricing.
We first present the easiest diffusion process: Brownian motion. After that
we consider diffusion in Black and Scholes model and then general diffusion
processes for which we need an approximation scheme.

4.1 Simulation of Brownian Motion

• Definition: A Brownian motion is a continuous adapted process B =
{Bt,Ft; 0 ≤ t < ∞}, defined on some probability space (Ω,F , P ), with the
properties that B0 = 0 a.s and for 0 ≤ s < t, the increment Bt − Bs is
independent of Fs and is normally distributed with mean zero and variance
t− s.

• Simulation of Bt:
Simuation of Bt is an easy step because we have that L(Bt) = N (0, t)
- first generate a gaussian standard variable g
- and then compute Bt as

√
tg
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• Simulation (discretization) of a Brownian trajectory, 0 ≤ t ≤ T :
We now detailed two approaches for simulationg a Brownian path: the For-
ward one and the Backward one. Typically, for path-dependent options we
have to simulate B over T = {tk; k = 0, . . . , M, t0 = 0, tM = T}.

- Forward Simulation of Bt over T is given by:

B(0) = 0,
B(tk+1) = B(tk) +

√
tk+1 − tkgk,

where (g1, . . . , gM) are independent gaussian standard variables.
If we use a discretization with evenly spaced intervals of size h = T

M
, we have:

B(0) = 0,

B(tk+1) = B(tk) +
√

hgk,

- Backward simulation with Brownian Bridge
This other method is based on the following property for Brownian bridge:

L(Bu, s < u < t|Bs = x,Bt = y) = N
(

t− u

t− s
x +

u− s

t− s
y,

(t− u)(u− s)

t− s

)

and particularly

L(B t+s
2
|Bs = x,Bt = y) = N

(
x + y

2
,
(t− s)

4

)

This scheme consists in simulating B in a different order than with increasing
times tk.

B(0) = 0,

B(T ) =
√

Tg1,

B(T
2
) = B(0)+B(T )

2
+

√
T
4
g2,

B(T
4
) =

B(0)+B(T
2

)

2
+

√
T
8
g3,

B(3T
4

) =
B(T

2
)+B(T )

2
+

√
T
8
g4,

...

where (g1, . . . , gM) are independent gaussian standard variables.

For this algorithm, we have to choose M as a power of 2. The first step
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is directly for 0 to T . Intermediates steps are filled by taking successive sub-
divisions of the time intervals into halves.
It can be adapted with subdivisions of different length by considering the
conditional law of brownian bridge between s and t.

- Remarks on this two schemes for MC and QMC simulations:
We need a vector of size M of independent gaussian variables.
For MC, these M variables can be simulated from the same pseudo ran-
dom numbers generator. However, for a QMC simulation we need to use a
M -dimensional low-discrepancy sequence to keep independence property.

4.2 Simulation of diffusion in Black and Scholes model

In the Black and Scholes model (reference), underlying asset price St follows
the diffusion:

dSt = rStdt + σStdBt

and then the price is a geometric Brownian process:

St = S0 exp

((
r − σ2

2

)
t + σBt

)

In this particular case for which we have an explicit solution of the diffusion
process, simulation of price paths is based on simulation of Brownian motion
described in the last section.
As for Brownian path simulation, we present the forward and backward ap-
proaches.

• Forward simulation:
With scheme T for the discretization, we have:

Stk+1
= Stk exp

(
(r − σ2

2
)(tk+1 − tk) + σBtk+1−tk

)

and for a discretization with evenly spaced intervals of size h, we simply have:

Stk+1
= Stk exp

(
(r − σ2

2
)h + σ

√
hgk

)

• Backward simulation:
To construct this scheme, we use Backward simulation for Brownian path
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described int the previous point. To expressed this scheme, we note yt =

log St, that is yt = y0 +
(
r − σ2

2

)
t + σBt.

yT = y0 + (r − σ2

2
)T + σ

√
Tg1,

yT
2

= y0+yT

2
+ σ

√
T
4
g2,

yT
4

=
y0+y T

2

2
+ σ

√
T
8
g3,

y 3T
4

=
y T

2
+yT

2
+ σ

√
T
8
g4,

...

Without problem, we endly take Stk = exp ytk

4.3 Simulation of diffusion: Euler and Milshtein scheme

We consider the general diffusion process:

dXt = b(Xt)dt + σ(Xt)dBt

If we don’t have any explicit solution for Xt (like for Black and Scholes
model), we have to use approximation schemes with a discretization of the
process. The both most known schemes are Euler and Milshtein. They both
take into account a discretization T of length h.

• The Euler approximation scheme for this diffusion is expressed as:

Xtk+1
= Xtk + b(Xtk)h + σ(Xtk)(Btk+1

−Btk)

Simulation is obtained with a forward algorithm by:

Xtk+1
= Xtk + b(Xtk)h + σ(Xtk)

√
hgk

for k = 0, . . . ,M − 1.

• The Milshtein approximation scheme for this diffusion is given by:

Xtk+1
= Xtk +

(
b(Xtk)− 1

2
σ′(Xtk)σ(Xtk)

)
h + σ(Xtk)(Btk+1

−Btk)
+1

2
σ′(Xtk)σ(Xtk)(Btk+1

−Btk)
2

Simulation is obtained with a forward algorithm by:

Xtk+1
= Xtk+

(
b(Xtk)−

1

2
σ′(Xtk)σ(Xtk)

)
h+σ(Xtk)

√
hgk+

1

2
σ′(Xtk)σ(Xtk)hg2

k

for k = 0, . . . ,M − 1.
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