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1 Summary

We introduce here the finite difference method for approximating the three types
of Partial Differential Equations: elliptic, parabolic and hyperbolic. We present
the principle of the method on the example of a simple elliptic equation, then we
shall focus our study on parabolic equations. The generalization to several space
dimensions is described in the case of the heat equation. If the spatial mesh is
not uniform, it might be more advisable to use the finite element method, or
the finite volume method, which we shall briefly introduce here also. Important
topics like stability convergence consistency and the maximum principle are
presented

At the end of the chapter we consider the special case of the Black and
Scholes equation for European and American options.

2 Finite differences

2.1 Introduction

Let us go back to the case of a rod heated at both ends, which we studied in
the Introduction to this book. The temperature ϕ of this rod, taken to be a line
segment of unit length, solves the variational problem:

−d
2ϕ

dx2 (x) + c(x)ϕ(x) = f(x), 0 < x < 1, (1)

ϕ(0) = g(0), ϕ(1) = g(1). (2)

If the function c takes positive values, this problem admits a unique solution.
If c is zero, the exact solution to (1)-(2) is given by

ϕ(x) =
∫ 1

0
G(x, y)f(y)dy + g(0) + x(g(1)− g(0)), (3)

where G is the Green function, defined by

G(x, y) = { (1− x)y, if 0 ≤ y ≤ x, (1− y)x, if x ≤ y ≤ 1. (4)

Apart from this particular case, and in any case when the problem is set in
dimension d ≥ 1, the solution cannot be computed explicitly, and a discretiza-
tion is required, so that we can give as accurate an approximation as possible.

Contrary to the finite element method, the finite difference method consists
in approximating the derivation operator by a discrete operator. This approach
is easily understood if we notice that, for small h, we have (for instance):

∂ϕ

∂xi
(x1, · · · , xd) '

1
h

[ϕ(x1, · · · , xi + h, · · · , xd)− ϕ(x1, · · · , xd)]. (5)
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This remark suggests that we “replace” all continuous derivative operators by
difference quotients (whence the name “difference”, “finite”coming from the
fact that the parameter h, though chosen arbitrarily small, has a fixed nonzero
value). The a posteriori justification of this approximation results from using
simple Taylor formulas.

We shall now study some examples of discrete operators obtained this in
way, then deduce a approximation to the one dimensional problem (1)-(2).

2.2 Examples of difference operators

We shall work in dimension d and, to simplify notations, we write ϕ for ϕ(x1, · · · , xd)
and ϕ(xi+h) for ϕ(x1, · · · , xi+h, · · · , xd). Let us introduce the following linear
operators

D+
i ϕ =

1
h

(ϕ(xi + h)− ϕ), (6)

D−i ϕ =
1
h

(ϕ− ϕ(xi − h)), (7)

Do
iϕ =

1
h

(ϕ(xi +
h

2
)− ϕ(xi −

h

2
)). (8)

The operator Do
i is called a “centered operator” in direction i, whereas the other

two are “non-centered”: forward for the first one, backward for the second one.
The very definition of the derivative shows that D+

i ϕ and D−i ϕ tend towards
∂ϕ
∂xi

when h goes to 0. For the centered operator, this stems from taking the
difference between the following two Taylor expansions:

ϕ(xi +
h

2
) = ϕ(xi) +

h

2
∂ϕ

∂xi
(xi + θ1(h)), lim

h→0
θ1(h) = 0, (9)

ϕ(xi −
h

2
) = ϕ(xi)−

h

2
∂ϕ

∂xi
(xi + θ2(h)), lim

h→0
θ2(h) = 0. (10)

We say these operators are consistent approximations to ∂ϕ
∂xi

. If furthermore
the error |Diϕ− ∂ϕ

∂xi
| thus committed is bounded, up to a constant, by hp, the

approximation is said to be consistent of order p.
approximations ? consistent

With a view towards solving our initial problem, we shall now define an
approximation for the second derivatives.

Proposition 1.1 If ϕ is 4 times continuously differentiable in the interval
[xi − h, xi + h],

Do
iD

o
iϕ = D+

i D
−
i ϕ = D−i D

+
i ϕ =

1
h2 [ϕ(xi + h)− 2ϕ+ ϕ(xi − h)] (11)

is a consistent, second order, approximation to ∂2ϕ
∂x2
i

.
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Proof First of all we have

Do
i (D

o
iϕ) = 1

h (Do
iϕ|xi+h

2
−Do

iϕ|xi−h2 ) = (12)

1
h (ϕ(xi+h)−ϕ

h − ϕ−ϕ(xi−h)
h ) = 1

h2 [ϕ(xi + h)− 2ϕ+ ϕ(xi − h)]. (13)

Next, an analogous computation shows that Do
iD

o
iϕ = D+

i D
−
i ϕ = D−i D

+
i ϕ,

which proves (11).
Now, if ϕ is of class C4 on [xi−h, xi + h], we can write the following Taylor

expansions

ϕ(xi + h) = ϕ+ h ∂ϕ∂xi + h2

2
∂2ϕ
∂x2
i

+ h3

6
∂3ϕ
∂x3
i

+ h4

24
∂4ϕ
∂x4
i

(ξ+), ξ+ ∈]xi, xi + h[(14)

ϕ(xi − h) = ϕ− h ∂ϕ∂xi + h2

2
∂2ϕ
∂x2
i

− h3

6
∂3ϕ
∂x3
i

+ h4

24
∂3ϕ
∂x4
i

(ξ−), ξ− ∈]xi − h, xi[,(15)

and adding them gives

Do
iD

o
iϕ =

∂2ϕ

∂x2
i

+
h2

24
[
∂4ϕ

∂x4
i

(ξ+) +
∂4ϕ

∂x4
i

(ξ−)]. (16)

By the mean value theorem, we deduce the existence of a number ξ ∈]xi−h, xi+
h[ such that

Do
iD

o
iϕ−

∂2ϕ

∂x2
i

=
h2

12
∂4ϕ

∂x4
i

(ξ), (17)

which shows that the consistency error |Do
iD

o
iϕ−

∂2ϕ
∂x2
i

| is bounded by Ch2, with

12C = sup
ξ∈]xi−h,xi+h[

|∂
4ϕ

∂x4
i

(ξ)|. So the approximation is consistent of order 2.

By combining in different ways the operators D+, D− and Do, it is possible
to construct approximations to a partial derivative of any arbitrary order; some
are better than others, meaning that their consistency order is higher.

2.3 Finite difference approximation

We partition the segment [0, 1] into N+1 intervals of length h = δx = 1/(N+1),
and we define the N + 2 subdivision points, or nodes, of this regular mesh by
xi = ih, i ∈ {0, ..., N + 1}.

The discrete problem will be to find an approximation ψi to ϕ(xi) at each
internal (i.e. xi, 1 ≤ i ≤ N) node of the mesh, since, by virtue of (2), the
solution is known at the ends x0 = 0 and xN+1 = 1 of the interval. These
different values ψi are solutions of the discrete problem

− 1
h2 [ψi+1 − 2ψi + ψi−1] + c(xi)ψi = f(xi), 1 ≤ i ≤ N, (18)

ψ0 = g(0), ψN+1 = g(1), (19)



56 pages 6

which we call a finite difference scheme for problem (1)-(2). If we denote by
Ψh the unknown vector with entries (ψ1, ..., ψN )T , this problem (18)-(19) can
be written in matrix form

AhΨh = bh, (20)

where the symmetric matrix Ah and the right hand side bh are given by

Ah =
1
h2


2 + c(x1)h2 −1 0
−1 2 + c(x2)h2 −1

. . .
−1 2 + c(xN−1)h2 −1

0 −1 2 + c(xN )h2

,

bh =


f(x1) + 1

h2 g(0)
f(x2)
. . .

f(xN−1)
f(xN ) + 1

h2 g(1)

.
More generally, we shall adopt the following definition:
Definition 1.2 Let Lϕ = 0 be a partial differential equation and let LhΨh =

0 be a finite difference scheme of the above kind for approximating this problem;
we shall call consistency error of the scheme the vector εh defined by

εh = Lhϕh, (21)

where ϕh is the projection on the mesh of the exact solution ϕ of the continuous
problem, i.e. if the mesh is formed by the N points xi, then ϕh is the vector
with entries (ϕ(x1), ..., ϕ(xN ))T . The scheme is said to be consistent if this
vector tends to 0 with h. This requires that we have defined a vector norm on
RN . Let us define, for example, the norm ||.||∞ defined by ||X||∞ =

N
sup
i=1

xi,

X = (x1, ..., xN )T . We shall say that the scheme is of order p in the l∞ norm
if there is a real positive constant C such that

||εh||∞ ≤ Chp. (22)

According to proposition 1.1, we deduce the following result:
Corollary 1.3 If the exact solution of problem (1)-(2) is of class C4 on

[0, 1], the scheme (18)-(19) is consistent of order 2.
Remark Still using only the 3 points xi−1, xi and xi+1, it is possible to con-

struct fourth order approximations to the first and second derivatives. Indeed,
show that, if ϕ is of class C6, then

ϕ′(xi+1) + 4ϕ′(xi) + ϕ′(xi−1) = 3
h [ϕ(xi+1)− ϕ(xi−1)] + 0(h4), (23)

ϕ”(xi+1) + 10ϕ”(xi) + ϕ”(xi−1) = 12
h2 [ϕ(xi+1)− 2ϕ(xi) + ϕ(xi−1)] + 0(h4),(24)
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By linearly combining the equations −ϕ”(xk) = fk, k ∈ {i + 1, i, i − 1}, this
enables us, for instance, to obtain the following scheme for the Laplacian in one
dimension,

− 12
h2 [ψi+1 − 2ψi + ψi−1] = f(xi+1) + 10f(xi) + f(xi−1). (25)

Show that this scheme is fourth order in the l∞ norm

Still regarding problem (1)-(2), two questions then arise:

• (Q1 ): does the discrete problem admit a unique solution?

• (Q2 ): is the method convergent, that is does it hold that

||Ψh − ϕh||∞ → 0, when h→ 0? (26)

It is easy to give an affirmative answer to the first question, since a simple
computation shows that the matrix Ah is positive definite; indeed, if X =
(x1, ..., xN ) ∈ RN , we have

XTAhX = x2
1 + (x2 − x1)2 + ...+ (xN − xN−1)2 + x2

N + h2
N∑
i=1

c(xi)x2
i , (27)

and this quantity is positive, because of the positiveness assumption on c, and
can only be zero if all the xi are zero.

The answer to the second question is also positive. This stems from the
consistency of the scheme and from stability results due to the monotonicity of
the matrix Ah. We shall not prove these results here, as we reserve this stability
study for the case of parabolic and hyperbolic problems, which are the main goal
of this Chapter. The results for the case of elliptic operators, such results are
proved in Ciarlet (1988), to which we refer the reader .

Remark 1.4 Since the matrix Ah is symmetric and positive definite, several
methods are possible for actually solving system (20: Choleski’s method, the
Gauss-Seidel or conjugate gradient algorithms. Because the matrix is diagonally
dominant, Jacobi’s method also converges.

Remark 1.5 The above study can be generalized to elliptic operators in
dimension larger than one. For example, in the case of the Laplacian with
Dirichlet boundary conditions on a rectangular domain in the plane,

−∆ϕ = f in Ω =]0, L1[×]0, L2[, (28)
ϕ = g on Γ = ∂Ω, (29)

the mesh is made up of small elementary rectangles of length hi along each axis
xi, i ∈ {1, 2}, and, in 2 dimensions, the scheme can be written, for the internal
node of the mesh with index (i, j) :

− 1
(h1)2 [ψi+1,j − 2ψi,j + ψi−1,j ]−

1
(h2)2 [ψi,j+1 − 2ψi,j + ψi,j−1] = f(ih1, jh2),

(30)
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where ψij ' ϕ(ih1, jh2). The matrix of the resulting linear system is again
symmetric and positive definite; it is pentadiagonal and block-tridiagonal, with
each diagonal block itself a tridiagonal matrix. We shall have the opportunity
to come back to this point when we treat the heat equation in 2 dimensions.
This scheme is called a “5 points scheme” for the Laplacian (cf. figure VII.1).

the 5 points scheme for the Laplacian

Remark 1.6 A last remark to conclude: how can we handle Neumann
boundary conditions? Mathematically, the answer is much less clear than it was
for the finite element method, for which this type of boundary conditions was
taken into account naturally by the variational formulation. It can be useful, for
more complicated operators than the mere Laplacian, to combine this variational
formulation to “ad-hoc” quadrature formulas, so as to find the “right scheme”
near the boundary [Lucquin-Pironneau (1997)].

For the one-dimensional problem

−ϕ”(x) = f(x), 0 < x < 1, (31)
−ϕ′(0) = g(0), ϕ′(1) = g(1), (32)

we can for instance propose, keeping the same notation as above, the following
approximation of the boundary condition

ψ0 − ψ1 = hg(0), ψN − ψN−1 = hg(1). (33)

However, the accuracy of the global scheme is only h near the boundary.
By a clever linear combination (determined thanks to Taylor’s formula) in-

volving additional interior nodes, it is possible to improve the accuracy of the
boundary condition approximation.

For large problem in several space dimensions it is not advisable to use a direct
method like Choleski’s au Gauss’; one of the best iterative scheme available is
described in Appendix A: conjugate gradient with BPX preconditionning;

3 Finite difference schemes for linear evolution
problems

The main goal of this Chapter is to define an approximation for parabolic and
hyperbolic problems, then study its properties. In this type of equations, one
of the variables, called the “time variable”, is singled out, contrary to elliptic
equations. The other variables will be called space variables; they lie in the
whole of Rd or in a domain in Rd. Such problems are called evolution problems
in time, as the solution at time t ≥ 0 is determined from values at time t = 0,
which we call “initial conditions”.

We shall define a numerical approximation, using finite differences for the
time variable, for these evolution problems, and we shall assume that their space
dependence is limited to linear partial differential operators.
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3.1 Introduction

Let us consider the following Cauchy problem

∂ϕ

∂t
(t) = A(ϕ(t)), 0 ≤ t ≤ T, (34)

ϕ(t = 0) = ϕ0, (35)

where A is a differential operator, assumed linear and independent of the t vari-
able; for example, A can be the Laplacian, possibly with boundary conditions
(if it does not act on the whole space). It is clear that a possible solution ϕ of
problem (34)-(35) also depends on a space variable x that we have deliberately
left out of the equations, on the one hand to simplify the notation, but mostly
to emphasize the role of the time variable.

Let us assume that this problem has a classical solution (t→ ϕ(t)) in some
function space, and let us then denote by S(t) the operator defined by

S(t)ϕ0 = ϕ(t), (36)

where ϕ(t) is the solution at time t of problem (34)-(35).
The approximation using finite differences in time of this problem consists

in partitioning the interval under consideration [0, T ] into M subintervals of
length k = ∆t = T/M , then, given an approximation ψn of ϕ(tn), tn = nδt, in
defining an approximation ψn+1 of the exact solution

ϕ(tn+1) = S(k)ϕ(tn) (37)

of problem (34)-(35) at the next time step as

ψn+1 = G(k)ψn, (38)

where G(k) is the “discretized in space counterpart” of the operator S(k), in
particular meaning that it depends on a space discretization parameter denoted
by h = δx, assumed to be as small as we wish. In the same way, what we denote
by ψn is actually a vector, each of whose entries corresponds to its value at a
node of the mesh, but, as for the continuous problem, we have not displayed
this spatial dependence explicitly.

Naturally, this iterative construction procedure requires the knowledge of
the approximate solution at the initial time, and we shall simply define it as

ψ0 = ϕ(t = 0) = ϕ0. (39)

What are the properties of such a scheme? How can we measure the error?
Building upon the definition of consistency given in the previous Section, we
shall first answer the second question.
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3.2 Consistency of scheme

By analogy with the notation used in definition 1.2, we denote by L the con-
tinuous operator

L =
∂

∂t
−A, (40)

and we define the discrete operator Lk (k = δt) on sequences Ψk = (ψn)n≥0,
ψ0 = ϕ0 in the following way: LkΨk is the sequence defined by

LkΨk =
(

(LkΨk)n
)
n≥1, (LkΨk)n =

ψn −G(k)ψn−1

k
, (41)

since according to (38), we have:

ψn − ψn−1

k
− G(k)ψn−1 − ψn−1

k
= 0. (42)

Let us note that this operator also depends on the space discretization step
h = δx that implicitly occurs in the discrete operator G(k).

More generally, let L be a partial differential operator depending on time and
space. We shall take the following definition for a Cauchy problem associated
with this operator:

Definition 2.1 Let ϕ be the solution of a Cauchy problem associated with
operator Lϕ = 0) and let Ψk (k = δt) be that of the associated discrete problem
LkΨk = 0 (with the above notation, and assuming that both these problems
have a unique solution). We shall call consistency error the quantity

Ek = Lkϕk, (43)

where ϕk is the projection on the mesh of the exact solution ϕ of problem
(34)-(35). This consistency error is a vector Ek =

(
εn
)
n≥1, each of whose

components depends on h = δx and on k = δt. The scheme is called consistent
if for all n, εn → 0, as k → 0 and h→ 0, for a given choice of norm ||.|| in space.
If moreover we have,

∀n, ||εn|| = 0(kp) +O(hq), (44)

the scheme is said to be of order p in time and q in space (for this norm).

We note that, by virtue of (41) and (37), we have:

εn =
S(k)−G(k)

k
ϕ(tn−1). (45)

The notion of consistency enables us to measure the error produced by approx-
imating the continuous operator by a discrete operator. It can be computed
on the exact solution of the continuous problem, thanks to a Taylor expansion.
However, this will not be enough to let us prove the convergence of the scheme.
Another notion is required, that of stability, which we shall now define.
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3.3 Stability of scheme

By an immediate induction from (38)-(39), we obtain

ψn = G(k)nψ0, (46)

i.e. the approximate solution at time tn is defined as a function of the initial
condition through the operator G(k)n.

Stability will force these operators to remain bounded when k = δt → 0,
n→∞, with the product nδt remaining bounded by the final time T . The idea
is that there can be no growth over time: the approximate solution must remain
bounded, despite the accumulation of discretization and roundoff errors.

Definition 2.2 The scheme (38)-(39) is said to be stable if G(k)n remains
uniformly bounded for all k = δt, n satisfying:

0 ≤ k ≤ k∗, 0 ≤ nk ≤ T ; (47)

or, in other words, if there exists a positive constant Cst(T ) such that

∀n, ∀k ∈]0, k∗], 0 ≤ nk ≤ T, we have: ||[G(k)]n|| ≤ Cst(T ), (48)

for a given choice of norm in space.

We shall come back later, on concrete examples, to the practical way of
checking stability. We shall now see how this notion is an essential features in
the convergence of the scheme.

3.4 Convergence of scheme

The question we now ask is the following: in what sense will the approximate
solution Ψk = (ψn)n≥0 (k = δt) defined by (38)-(39) “tend” towards the exact
solution of the initial problem (34)-(35) when the space step h = δx and the
time step k = δt both go to 0? The answer lies in the following theorem, usually
called the “Lax Equivalence Theorem”.

Theorem 2.3 If scheme (38)-(39) is stable and consistent, then it is con-
vergent, that is the the error en = ϕ(tn) − ψn at time tn goes to zero when
the time and space steps both go to 0 (for the norm used in definitions 2.1 and
2.2), with the constraint 0 ≤ nδt ≤ T.

Proof Let us denote by Ek the error “vector” whose index n entry is the error
en. By the definition of ψ0, we have e0 = 0. Furthermore, since LkΨk = 0, we
obtain, with notation as in (43),

LkEk = Lkϕk = Ek, (49)

and this means, according to (41), that

(
LkEk

)n =
en −G(k)en−1

k
= εn, (50)
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or that:
en = G(k)en−1 + kεn. (51)

By an immediate induction, it follows that:

en = [G(k)]ne0 + k

n∑
i=1

[G(k)]n−iεi; (52)

then, as the error at the initial time e0 is zero, we obtain the following estimate,
for all integers n and all time steps k = δt satisfying the constraint 0 ≤ nk ≤ T ,

||en|| ≤ nk Cst max
i∈{1,...,n}

|εi|, (53)

because of the stability condition (48). We deduce that

||en|| ≤ TCst max
i∈{1,...,n}

|εi|, (54)

and because the scheme is consistent, this goes to 0 with the space and time
steps.

Remark 2.4 All the above estimates are for a given choice of norm in space,
and for a discretization scheme (finite differences, finite elements,...) yet to be
determined.

Remark 2.5 We could also consider the case of an equation of the type
Lϕ = f , with a source term f depending only on time; this would not change
the above stability analysis, since this additional term would only affect the
consistency error. The convergence theorem remains valid in that case.

Now that we have defined all these notions, we shall apply them to the study
of some classical examples for the approximation of certain “model” evolution
problems, starting with the example of the heat equation.

4 The heat equation

We present and analyze here several schemes to approximate the heat equation,
using finite differences in both time and space. We start our study with the case
of only one space variable in the whole space Rd:

∂ϕ

∂t
− ∂2ϕ

∂x2 = 0, x ∈ R, 0 < t ≤ T, (55)

ϕ(x, 0) = ϕ0(x). (56)

This problem is mathematically well-posed, and has a number of properties
(Brezis, 1987), among them the maximum principle that we state without proof:

if ϕ0 ≥ 0, then 0 ≤ ϕ(., t) ≤ sup
x∈R

ϕ0. (57)

We shall denote by ψni ' ϕ(xi, tn) the approximate solution taken at time
tn = nδt (n ∈ {0, . . . ,M}, Mδt = T ) and at point xi = iδx (i ∈ Z). To simplify
the notation we shall frequently write (k, h) for (δt, δx).
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4.1 An explicit scheme

We approximate the continuous operator

L =
∂

∂t
− ∂2

∂x2 (58)

by the operator discretized in space and time, denoted by L̄ for simplicity’s sake,
defined on sequences ψ̄ = (ψni )i∈Z,n∈{0,...,M} by:

L̄ψ̄ =
(

(L̄ψ̄)ni
)
i∈Z+,n∈{1,...,M}, ∀i ∈ Z, ∀n ∈ {0, ...,M − 1},

(L̄ψ̄)n+1
i =

ψn+1
i − ψni

k
−
ψni+1 − 2ψni + ψni−1

h2 . (59)

Then the discrete problem is written as:

L̄ψ̄ = 0, (60)
∀i ∈ Z, ψ̄0

i = ϕ0(xi). (61)

This scheme is fully explicit, i.e. given the approximate solution at step n
(ψni known, ∀i ∈ Z), we obtain the approximate solution at step n+ 1 from the
very simple relation

∀i ∈ Z, ψn+1
i = ψni +

k

h2 (ψni+1 − 2ψni + ψni−1), (62)

which shows, in particular, that problem (60)-(61) admits a unique solution.
This scheme is called the forward Euler scheme.

4.1.1 Convergence in the l∞ norm in space

As far as the consistency error is concerned, we have the following result:
Proposition 3.1 If the solution of the continuous problem (55)-(56) is C2

in time and C4 in space, then the scheme (59)-(61) is consistent and of order
1 in time and 2 is space (for the norm ||.||∞ in space).

Proof The consistency error is defined as ε̄ = L̄ϕ̄ = L̄ϕ̄ − Lϕ, where ϕ̄ is
the projection on the mesh of the exact solution ϕ at each node of the mesh in
both time and space. It is a doubly indexed sequence ε̄ = (εni )i∈Z+,n∈{1,...,M}
defined by:

εn+1
i = [ϕ(xi,tn+1)−ϕ(xi,tn)

k − ∂ϕ
∂t (xi, tn)] (63)

−[ϕ(xi+1,t
n)−2ϕ(xi,tn)+ϕ(xi−1,t

n)
h2 − ∂2ϕ

∂x2 (xi, tn)]. (64)

The consistency error is thus the sum of two errors, the first one linked to the
discretization of the time derivative operator, and the second one, relative to
the spatial derivative, that has already been estimated in proposition 1.1. A
simple Taylor expansion up to second order now gives, because of ({ref1.10):

εn+1
i =

k

2
∂2ϕ

∂t2
(xi, τn)− h2

12
∂4ϕ

∂x4 (ξi, tn), (65)
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with τn ∈]tn, tn+1[ and ξi ∈]xi−1, xi+1[. Thus, modulo the smoothness hypothe-
ses in the statement of the theorem, we deduce that there exists two positive
constants C1 and C2 such that, for all indices i ∈ Z et n ∈ {0, ...,M − 1}, we
have

|εn+1
i | ≤ C1k + C2h

2, (66)

which shows that the scheme is consistent, of first order in time and second
order in space; the above constant are defined by:

C1 = sup
(x,t)∈R×[0,T ]

∂2ϕ

∂t2
(x, t), C2 = sup

(x,t)∈R×[0,T ]

∂4ϕ

∂x4 (x, t). (67)

Let us now study the stability of the scheme in the l∞ norm in space. Let
us set:

λ =
k

h2 ≥ 0 ; (68)

equality (62) then becomes

∀i ∈ Z, ψn+1
i = λψni+1 + (1− 2λ)ψni + λψni−1, (69)

i.e. ψn+1
i is a linear combination of ψni+1, ψni and ψni−1. We then note that, if

the following condition is satisfied

0 ≤ λ =
k

h2 ≤
1
2
, (70)

all the coefficients of this linear combination are positive, and their sum is 1, so
that

∀i ∈ Z, |ψn+1
i | ≤ ||Ψn||∞, (71)

if we denote by Ψn the vector in RZ
+

whose entries are ψni . By an immediate
induction, we obtain

∀n ≥ 0, ||Ψn||∞ ≤ ||Ψ0||∞, (72)

and this proves the l∞ stability of the scheme.
We have just proved the following result:
Proposition 3.2 Under condition (70), scheme (59)-(61) is stable for the

norm ||.||∞ in space.

Propositions 3.1 and 3.2 completed by theorem 2.3 allow us to conclude
that scheme (59)-(61) is convergent under condition (70).

Remark 3.3 By an immediate induction, we note that, if Ψ0 is positive
(meaning that all its components are positive), then this is also true for vec-
tor Ψn, still assuming hypothesis (70). We find here a discrete version of the
maximum principle (57) seen at the beginning of this Section.

Remark 3.4 The stability condition (70) we found is seen here as a sufficient
condition for stability. Is is also necessary? To answer this question, we shall
study stability in a different context. This is what we do in the next Section.
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4.1.2 Von Neumann stability

To make the practical study of stability simpler, we shall change (59)-(60) into
a “continuous” in space version written as:

∀x ∈ R, ψn+1(x)− ψn(x)
k

− ψn(x+ h)− 2ψn(x) + ψn(x− h)
h2 = 0. (73)

Let us denote by ψ̂ the Fourier transform of ψ defined by:

ψ̂(ξ) =
∫ +∞

−∞
e−iξxψ(x)dx. (74)

Let us recall that:
ˆ̂
ψ = 2πψ, ||ψ̂||2 =

√
2π ||ψ||2, (75)

if we denote by ||.||2 the norm in the space L2(R); the second property is called
“Plancherel’s theorem”. Let us Fourier transform equation (73); after using a
change of variables to observe that∫ +∞

−∞
e−iξxϕ(x+ h)dx = eiξh

∫ +∞

−∞
e−iξyϕ(y)dy, (76)

we obtain

ψ̂n+1(ξ) = ψ̂n(ξ) +
k

h2 (eihξψ̂n(ξ)− 2ψ̂n(ξ) + e−ihξψ̂n(ξ)). (77)

This relation can be written

ψ̂n+1(ξ) = a(ξ)ψ̂n(ξ), (78)

where the factor a(ξ), called the amplification factor, is the real number defined
by:

a(ξ) = 1 +
k

h2 (eihξ − 2 + e−ihξ) = 1− 4
k

h2 sin2 hξ

2
. (79)

By an immediate induction, we obtain

ψ̂n(ξ) = [a(ξ)]nψ̂0(ξ) = [a(ξ)]nϕ̂0(ξ). (80)

If the following condition is satisfied

||a||∞ = sup
ξ∈R
|a(ξ)| ≤ 1, (81)

we have, by using Plancherel’s relation

||ψn||2 =
1√
2π
||ψ̂n||2 ≤

1√
2π
||ϕ̂0||2 = ||ϕ0||2, (82)

which proves the stability of the scheme for the norm ||.||2. Condition (81) thus
appears as a sufficient condition for the stability of scheme (73) in the norm
||.||2. Is the condition necessary?

Before we answer this question, let us try and link this condition with the
one we found previously. We remark that a(ξ) is always less than 1, so that
(81) is equivalent to ∀ξ ∈ R, a(ξ) ≥ −1, and this relation is equivalent to (70).
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graph of function A(t) = a(ξ), t = hξ

On figure4.1.2, we have plotted the graph of the function A(t) = a(ξ), t = hξ,
for three different values of the ratio k/h2: the curve with diamond-shaped
symbols corresponds to k/h2 = 1/4, that with crosses corresponds to the limit
case k/h2 = 1/2, and last the solid line curve corresponds to k/h2 = 1. As
the theoretical study predicts, condition (81) is not satisfied in the last case,
whereas it is satisfied in the other cases.

We shall now prove the following result, in a slightly more general framework
than is needed for the scheme (73):

Proposition 3.5 A scheme of the type ψn = G(k)nϕ0 (k = δt), where the
Fourier transform of the operator G(k) is a multiplication operator by a scalar
function a, is stable in the L2(R) norm (we also say “von Neumann stable”) if
and only if the following stability condition, called “von Neumann condition”,
is satisfied:

∃C ≥ 0,∃(δt)∗, such that: ∀δt ∈]0, (δt)∗], ∀ξ ∈ R, |a(ξ)| ≤ 1 + Cδt. (83)

To prove this result, we shall use a lemma that we present here in the general
vector case (i.e. in Rd with d ≥ 1), because we will find it useful later. Before
we do that, we shall recall some definitions and results from matrix algebra
[Ciarlet (1988), Lascaux-Théodor (1987), Schatzman (1991)].

Let B be a matrix with real or complex entries, of size d×d, and let B∗ = B̄T

be its transconjugate matrix; we say B is a normal matrix if it commutes with
B∗, i.e. if BB∗ = B∗B. Real symmetric matrices are normal. The spectral
radius of matrix B, denoted by ρ(B), is the largest modulus of all the eigenvalues
of B. For any vector norm, it is possible to define a matrix norm, called the
subordinate matrix norm to this vector norm, through the relation:

||B|| = sup
x∈Rd,x6=0

||Bx||
||x||

; (84)

for such a matrix norm, we have:

∀B, ρ(B) ≤ ||B||. (85)

In particular, the matrix norm subordinate to the Euclidean norm ||.||2 is defined
by:

||B||2 =
√
ρ(BB∗). (86)

If the matrix B is normal, its Euclidean norm is equal to its spectral radius.
After these reminders, we now state the following classical result, a proof of

which can be found, for example, in Lascaux (1976), Richtmyer-Morton (1967).

Lemma 3.6 Let F be the operator defined over L2(Rd) by: ∀U ∈ Rd,
F (U) = AU , where, for all ξ ∈ Rd, A(ξ) is a matrix; this linear operator
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has norm (we write L2
d for L2(Rd) )

||F ||L(L2
d
,L2
d
) = sup

ξ∈R
||A(ξ)||2. (87)

Proof of Proposition 3.5 Let us consider a scheme of the form ψn = G(k)nϕ0,
written, after Fourier transform, as ψ̂n = F (ϕ̂0), where the operator F is the
multiplication operator by the scalar function an. If we use first Plancherel’s
Theorem and then Lemma 3.6 in the scalar case (i.e. d = 1), we deduce

||[G(k)]n||L(L2(Rx),L2(Rx)) = ||F ||L(L2(Rξ),L2(Rξ)) = ||an||∞ = ||a||n∞, (88)

with the notation: ||a||∞ = supξ∈R |a(ξ)|.
Let us assume that the scheme is stable in L2(R). By definition, the norms

of the operators G(k)n, as operators from L2(R) into L2(R), remain bounded
independently of n, for all integers n and for time steps k = δt ∈]0, k∗] satisfying
the constraint nk ≤ T . There exists a positive constant C1 (we may assume
C1 > 1) such that ||a||n∞ ≤ C1. This holds in particular for the integer n = n0,
where n0 is half the integer part of the ration T/k ≥ 1. Thus, we have

||a||∞ ≤ C
2 kT
1 ≤ 1 +

C
2 k
∗
T

1 − 1
k∗

k, (89)

or (83) with C = (C2k∗/T
1 − 1)/k∗.

Conversely, if a satisfies condition (83), then

||a||n∞ ≤ (1 + Ck)n ≤ (eCk)n ≤ eCT , (90)

for all integers n and all time steps k = δt such that nk ≤ T , which proves the
L2 stability of the scheme and ends the proof.

Remark 3.7 The term Cδt in (83) allows an exponential growth in time
of the numerical solution (while noting that this growth is actually limited by
the fact that the definition of stability is only concerned with solutions in finite
time T ).

In general, this condition is often replaced by the more restrictive condition
(81), called “strict von Neumann condition”; this is true, in particular, if we
know that the exact solution has no exponential behavior in time, as is precisely
the case here. Under this condition, the scheme in proposition (59) is “strictly
stable”: the numerical solution does not grow faster than the exact solution,
and we have stability in the limit case T = +∞. From a practical point of view,
it is also preferable to use condition (81); indeed, even though the theoretical
condition (83) is true in the limit δt→ 0, because the discretization steps have
a nonzero finite value, the numerical solution may grow appreciably during the
time iterations, harming the effective stability of the scheme.

However, there are situations (Richtmyer-Morton (1967)) where the condi-
tion (83) is theoretically indispensable; this would for instance be the case if
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equation (55) featured a dissipation term like bϕ discretized explicitly (i.e. by
bψni at point xi).

One shows easily that the scheme (73) is always consistent, of order 1 in
time and 2 in space, and this eventually allows us to state the final convergence
result, whose proof is analogous to that of theorem 2.3.

Theorem 3.8 Under the stability condition (70), the scheme (73) is con-
vergent for the L2(R) norm; it is of order 1 in time and 2 in space.

Remark 3.9 This Fourier transform method is an undeniably practical tool
to study the stability of schemes, that also gives necessary and sufficient stability
conditions: we shall use it as often as possible. However, its major drawback
is that it is difficult to generalize to the case of a boundary value problem,
and that it is limited to partial differential equations with constant coefficients
discretized on a uniform mesh.

Remark 3.10 The stability condition (70) imposes a particularly severe
constraint on the time step, since it must be of the order of the square of the
space step (and even less!), and this means that in order to reach a given final
time T , we shall have to iterate the algorithm a large number of times, which
leads to prohibitive computer times. This fully explicit scheme, even though
it is very simple to program, is thus not a very good scheme. We shall now
propose others, and study their properties somewhat more rapidly.

4.2 Towards implicit schemes

When using scheme (59)-(61) to determine the approximate solution at step
n + 1 from that at step n, the Laplacian was computed at time step n. This
had the advantage of making the programming at each time step quite simple,
but made it very costly because of condition (70) on the time step. Conversely,
what happens if the Laplacian is taken at time step n+ 1?

4.2.1 Study of the fully implicit scheme

The operator L defined by (58) is now approximated by the operator L̄, discrete
in time and space, that is defined on sequences ψ̄ = (ψni )i∈Z+,n∈{0,...,M−1} by

L̄ψ̄ =
(

(L̄ψ̄)ni
)
i∈Z+,n∈{1,...,M}, (91)

∀i ∈ Z, ∀n ∈ {0, ...,M − 1}, (92)

(L̄ψ̄)n+1
i =

ψn+1
i − ψni

k
−
ψn+1
i+1 − 2ψn+1

i + ψn+1
i−1

h2 , (93)

where h still denotes the space step and k is the time step. The resulting
scheme L̄ψ̄ = 0 is said to be implicit because, when we know the approximate
solution at time tn, the solution at the next time step (given by relation (91)) is
not determined in a simple way, since it requires solving a non diagonal linear
system. We shall come back to this point in more details when we treat the case
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of the heat equation in a bounded domain in R. Before we do that, we shall
study the stability properties of such a scheme.

Analogously to (73), the “continuous in space” version of this scheme is
written as:

∀x ∈ R, ψn+1(x)− ψn(x)
k

− ψn+1(x+ h)− 2ψn+1(x) + ψn+1(x− h)
h2 = 0,

(94)
which enables us to study its von Neumann stability. The Fourier transform ψ̂
of ψ is now a solution of

ψ̂n+1(ξ) = ψ̂n(ξ) +
k

h2 (ψ̂n+1(ξ)eihξ − 2ψ̂n+1(ξ) + e−ihξψ̂n+1(ξ)) ; (95)

in other words
ψ̂n+1(ξ) = b(ξ)ψ̂n(ξ), (96)

where the amplification factor b(ξ) is now defined by:

b(ξ) =
1

1 + 4 k
h2 sin2 hξ

2

. (97)

We notice that
∀h ≥ 0, ∀k ≥ 0, 0 ≤ b(ξ) ≤ 1, (98)

which allows us to obtain by induction and Plancherel’s theorem the following
inequalities

||ψn||L2 ≤ ||ψn−1||L2 ≤ ... ≤ ||ψ1||L2 ≤ ||ϕ0||L2 , (99)

showing that the scheme is stable, without any restrictive condition on the time
step; we say the scheme is unconditionally stable. We have just proven

Proposition 3.11 The fully implicit scheme is unconditionally von Neu-
mann stable.

On figure VII.3, we have plotted the graph of the function B(t) = b(ξ),
t = hξ, for the three values of the ration k/h2 already considered in figure VII.2:
the curve with the diamond shaped symbols corresponds to k/h2 = 1/4, that
with crosses is the limit case k/h2 = 1/2, and the solid line curve corresponds
to k/h2 = 1. Relation (98) is satisfied in all three cases.

Remark By doing a Taylor expansion around point (x, tn+1), one can show
that the consistency error is the same as that of the explicit scheme.

This scheme, called the backward Euler scheme is very robust, but it is still
only of first order in time. We shall now try and construct other stable schemes,
hopefully more accurate, by using a linear combination with the explicit scheme.

graph of function B(t) = b(ξ), t = hξ
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4.2.2 Theta schemes

Let θ be a fixed parameter in [0, 1]; we define the θ-scheme by

ψn+1
i − ψni

k
−D+

i D
−
i

(
θΨn+1 + (1− θ)Ψn)

)
= 0, (100)

where Ψn denotes the vector in RZ
+

with entries ψni , and where D+ and D−

are non-centered operators in space defined on sequences U = (ui)i∈Z+ of RZ
+

by a relation analogous to definitions (6) and (7) for functions, that is:

D+
i U =

1
h

(ui+1 − ui), D−i U =
1
h

(ui − ui−1); (101)

by analogy with (11), we have obviously:

D+
i D
−
i U = D−i D

+
i U =

ui+1 − 2ui + ui−1

h2 . (102)

For θ = 0, this scheme is the explicit scheme, whereas for θ = 1, it is the
implicit scheme. We shall see that θ = 1/2 plays a particular role: in that case
the scheme is called the Crank-Nicolson scheme.

By Fourier transform in space, the scheme ∀x ∈ R,

ψn+1(x)− ψn(x)
k

− θ ψ
n+1(x+ h)− 2ψn+1(x) + ψn+1(x− h)

h2 (103)

−(1− θ) ψ
n(x+ h)− 2ψn(x) + ψn(x− h)

h2 = 0, (104)

becomes
ψ̂n+1(ξ) = c(ξ)ψ̂n(ξ), (105)

and the amplification factor c(ξ) is now equal to:

c(ξ) =
1− 4(1− θ) kh2 sin2 hξ

2

1 + 4θ k
h2 sin2 hξ

2

. (106)

graph of C(t) = c(ξ), t = hξ, for θ = 1/2

We notice that for all real values of ξ we have c(ξ) ≤ 1, so that the scheme is
von Neumann stable if and only if: ∀ξ ∈ R, c(ξ) ≥ −1. This last property may
be written

∀ξ ∈ R, 2− 4(1− 2θ)
k

h2 sin2 hξ

2
≥ 0, (107)

and this relation is always satisfied for θ ≥ 1/2 (but this is not a necessary and
sufficient condition).

graph of C(t) = c(ξ), t = hξ, for θ = 1/4
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We thus have
Proposition 3.12 For θ ≥ 1/2, the θ-scheme is unconditionally von Neu-

mann stable.

graph of C(t) = c(ξ), t = hξ, for θ = 1/8

On figures 4.2.2,4.2.2,4.2.2, we have plotted the graph of the function C(t) =
c(ξ), t = hξ, for the same three values of the ratio k/h2 considered in figures
VII.2 and VII.3 above (the symbol captions are the same as on those figures),
for three different values of the parameter θ: first for θ = 1/2, then for θ = 1/4,
and last for θ = 1/8. Figures VII.4 and VII.6 confirm the theoretical results;
for θ = 1/4, the scheme is stable if k/h2 ≤ 1, and this is precisely the case on
figure VII.5.

Let us now show a consistency property peculiar to the Crank-Nicolson
scheme, as all the others have the same accuracy characteristics as the above
schemes.

Proposition 3.13 If the solution of the continuous problem (55)-(56) is
sufficiently smooth (C3 in time and C4 in space), the Crank-Nicolson scheme
(θ = 1/2) is consistent of order 2 in time and space.

Proof The proof follows from a Taylor expansion of the exact solution ϕ of
(55)-(56) at point xi = ih in space and tn + k/2 (tn = nk) in time.

For simplicity’s sake, let us denote by ϕ̃(xi, .) the function of the sole time
variable defined by the following difference quotient:

ϕ̃(xi, t) =
ϕ(xi+1, t)− 2ϕ(xi, t) + ϕ(xi−1, t)

h2 . (108)

According to proposition 1.1, we already know that if ϕ is of class C4 in space,
we have for any time t:

ϕ̃(xi, t) =
∂2ϕ

∂x2 (xi, t) + 0(h2). (109)

The consistency error ε̄ = L̄ϕ̄, where ϕ̄ is the projection of the exact solution
ϕ at each of the nodes of the mesh in time and space, is a doubly indexed
sequence ε̄ = (εni )i∈Z+,n∈{1,...,M} that cab be defined by

εn+1
i = [ϕ(xi,tn+1)−ϕ(xi,tn)

k − ∂ϕ
∂t (xi, tn+1/2)] (110)

−[ 1
2 ( ϕ̃(xi, tn+1) + ϕ̃(xi, tn) ) − ∂2ϕ

∂x2 (xi, tn+1/2)], (111)

since (Lϕ)(., tn+1/2) = 0. The consistency error is thus the sum of two errors
εn+1
i = (εt)n+1

i + (εx)n+1
i , one

(εt)n+1
i =

ϕ(xi, tn+1)− ϕ(xi, tn)
k

− ∂ϕ

∂t
(xi, tn+1/2), (112)
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linked to the discretization of the time derivative operator, whereas the other

(εx)n+1
i =

1
2

[ ϕ̃(xi, tn+1) + ϕ̃(xi, tn) ] − ∂2ϕ

∂x2 (xi, tn+1/2), (113)

is linked to the discretization of the spatial operator.
Let now u be any function of the t variable, assumed of class C3; we have

the Taylor expansions:

u(t+ k) = u(t+
k

2
) +

k

2
∂u

∂t
(t+

k

2
) +

k2

8
∂2u

∂t2
(t+

k

2
) +O(k3), (114)

u(t) = u(t+
k

2
)− k

2
∂u

∂t
(t+

k

2
) +

k2

8
∂2u

∂t2
(t+

k

2
) +O(k3). (115)

If we apply these expansions to u = ϕ(xi, .), we obtain by subtracting that:

(εt)n+1
i = O(k2). (116)

According to (109), the error εx can be written as

(εx)n+1
i =

1
2

[
∂2ϕ

∂x2 (xi, tn+1) +
∂2ϕ

∂x2 (xi, tn) ] − ∂2ϕ

∂x2 (xi, tn+1/2) + O(h2). (117)

Then it suffices to apply (114) to the function u = ∂2ϕ
∂x2 (xi, .) to deduce that

(εt)n+1
i = O(k2) +O(h2), (118)

and this ends the proof.

Remark 3.14 If equation (55) has a source term f that only depends on
time, this term only occurs in the consistency error, and not in stability (cf.
remark 2.5). In order to keep second order accuracy in time, we must consider
the scheme

ψn+1
i − ψni

k
−D+

i D
−
i (θΨn+1 + (1− θ)Ψn)) =

f(tn+1) + f(tn)
2

, (119)

because
f(tn+1) + f(tn)

2
= f(tn +

k

2
) +O(k2), (120)

and this is again true by (114).

4.3 A three level scheme

Let us go back to the simple example of the explicit scheme. The question we
ask is the following: couldn’t we improve the discretization in time by taking a
second order approximation of the operator ∂

∂t ?
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A rather natural choice consists for example in considering the Richardson
scheme:

∀n ≥ 1,
ψn+1
i − ψn−1

i

2k
−
ψni+1 − 2ψni + ψni−1

h2 = 0. (121)

As above, we require at the initial time: ψ0
i = ϕ(xi), ∀i. It is clear that we

cannot use (61) to define the approximate solution at the next step; we shall
then use a first order scheme, of the explicit type, to compute Ψ1.

Proposition 3.15 Richardson’s scheme is, modulo enough smoothness for
the solution of (55)-(56), second order in time and space; unfortunately, it is
always unstable.

Proof We leave it as an exercise to the reader to compute the consistency
error of this scheme. Let us study the von Neumann stability. Again using the
Fourier transform, we have:

ψ̂n+1(ξ) = d(ξ)ψ̂n(ξ) + ψ̂n−1(ξ), (122)

with
d(ξ) = −8

k

h2 sin2 hξ

2
. (123)

Equation (122) can be written in matrix form

X̂n+1(ξ) = A(ξ)X̂n(ξ), (124)

where we denote by Xn the vector with entries (ψn+1, ψn)T , and A the
amplification matrix:

A(ξ) =
[
d(ξ) 1

1 0

]
. (125)

Since A is symmetric its eigenvalues are real. They are solutions of the char-
acteristic equation λ2 − λd(ξ) − 1 = 0. But the product of the roots is −1, so
there must exists values of ξ for which one of the eigenvalues has absolute value
strictly larger than 1 (they cannot both have absolute value 1, because for λ = 1
or −1, the above characteristic polynomial is not identically zero). We deduce
that there are ξ values for which the spectral radius of A(ξ) is strictly larger
than 1, and since this matrix is normal, this contradicts the stability condition
of the following Lemma (we cannot find a positive bounded constant C such
that (126) holds): Richardson’s scheme is thus always unstable.

For systems, we have the stability result summed up in the following way:

Lemma 3.16 A necessary condition for a scheme whose Fourier transform
is written in the form (124) to be stable is that there exists two positive constants
C and k∗ such that:

∀ξ ∈ R, ∀k ∈]0, k∗[, ρ(A(ξ)) ≤ 1 + Ck. (126)

If the matrix A(ξ) is normal for all ξ, this von Neumann condition is a sufficient
stability condition.



56 pages 24

Proof We sketch the proof which is analogous to that of proposition 3.5.
Using Lemma 3.6 in the case d = 2 and Plancherel’s theorem, we show, thanks
to the following relations

[ρ(A(ξ))]n = ρ[(A(ξ))n] ≤ ||(A(ξ))n||2, (127)

that (126) is a necessary for a scheme whose Fourier transform is written in the
form (124) to be stable. Conversely, if the matrix A(ξ) is normal, we have

||(A(ξ))n||2 ≤ ||A(ξ)||n2 = [ρ(A(ξ)]n; (128)

if moreover condition (126) is satisfied, we have, for all integers n such that
nk ≤ T ,

||(A(ξ))n||2 ≤ (1 + Ck)n ≤ eCT , (129)

which proves that the scheme is stable.

Remark 3.17 As we already said about the scalar case in Remark 3.7, the
condition (126) on the spectral radius of the matrix A is usually replaced by the
more restrictive condition

∀ξ ∈ R, ρ(A(ξ)) ≤ 1, (130)

called strict von Neumann condition.

One can find in Richtmyer-Morton (1967) other sufficient stability condi-
tions; we state, without proof, the two main results, starting with the case of
diagonalizable matrices. Let us recall that, given a matrix P whose columns are
the components of a set of vectors, the Gram determinant of this set, denoted
by ∆2, is the determinant of the matrix P ∗P ; a necessary and sufficient con-
dition for the vectors in this set to be linearly independent is that this Gram
determinant be strictly positive.

Let us still consider schemes whose Fourier transform is written in the form
(124) with a non necessarily normal matrix A; we have:

Theorem 3.18 If the matrix A is diagonalizable and if there exists a con-
stant δ > 0 such that

∀δt ∈]0, (δt)∗[, ∀ξ, ∆(ξ) ≥ δ > 0, (131)

where ∆2(ξ) is the Gram determinant of the normalized eigenvectors of the
matrix A(ξ), then the von Neumann condition is a necessary and sufficient
stability condition.

Theorem 3.19 If the elements of the matrix A are bounded for all δt ∈
]0, (δt)∗[ and for all ξ, and if all the eigenvalues λi(ξ), i ∈ {1, ..., N} of A(ξ),
except possibly one of them, are inside the unit disk, i.e.

∀δt ∈]0, (δt)∗[, ∀ξ, |λ1(ξ)| ≤ 1, (132)
∀i ∈ {2, ..., N},∀δt ∈]0, (δt)∗[, ∀ξ, |λi(ξ)| ≤ γ < 1, (133)

then the scheme is stable.
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4.4 Taking boundary conditions into account

4.4.1 Statement of the problem

In this Section we shall be concerned with discretizing the heat equation in
a single space variable belonging to a bounded interval Ω =]0, L[ in R, with
Dirichlet boundary conditions:

∂ϕ
∂t −

∂2ϕ
∂x2 = 0, x ∈ Ω =]0, L[, 0 < t ≤ T, (134)

ϕ(x, 0) = ϕ0(x), (135)
ϕ(x, t) = g(x, t), for x = 0 and x = L (136)

We shall assume that the initial condition ϕ0 satisfies the boundary conditions
(136) at t = 0 i.e. ϕ0(x) = g(x, 0) at the points x = 0 and x = L.

The difference with what we did previously lies in the way we treat the
boundary conditions (136). The space step is now equal to h = δx = L/(N+1),
and that means that at any time tn, there are N unknowns that are the values
ψni of the approximate solution at the internal vertices xi = ih, i ∈ {1, . . . , N}
of the mesh; these values solve a “discretized” version, as described above, of
equation (134). At both ends of the intervals, the solution is required to satisfy
the boundary conditions (136), i.e.

ψni = g(xi, tn), for i = 0 and i = N + 1. (137)

Two questions now arise:

• — how to analyze the consistency and the stability of the scheme, so as
to ensure its convergence, as was the case in the whole space?

• — how to solve the discrete problem from a practical point of view?

We shall answer both questions successively for concrete schemes. As far as
the first question is concerned, since the discrete solution satisfies the continuous
boundary conditions at each node of the space-time mesh, the consistency error
of the global scheme is that of the scheme used to discretized (134). There only
remains to analyze its stability: this is what we shall now undertake.

The second question will be studied in section 3.5.

4.4.2 Stability by energy inequalities

Because we are in a bounded spatial domain, we can no longer use the Fourier
transform to study stability. We shall first study the stability of the continuous
problem, whence we shall deduce a method for the discrete problem. We assume,
for simplicity’s sake that the Dirichlet condition is homogeneous, i.e. g = 0.

At the continuous level, let us multiply equation (134) by ϕ, integrate the
resulting equation over Ω, and integrate by parts; we obtain

1
2
d

dt

(∫
Ω
ϕ2(x, t)dx

)
+
∫

Ω
(
∂ϕ

dx
)2(x, t)dx = 0, (138)
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which shows, since the second term is non-negative, that:

1
2
d

dt

(∫
Ω
ϕ2(x, t)dx

)
≤ 0. (139)

In other words, the norm in L2(R) of ϕ(., t) decreases when time increases,
because we have:

∀t ≥ 0, ||ϕ(., t)||L2(R) ≤ ||ϕ0||L2(R). (140)

This inequality, called energy inequality, shows the “stability in time” of the
solution of the continuous problem (it also shows its uniqueness!). Let us note
that inequality (140) is also valid for an homogeneous Neumann problem.

Remark 3.20 Let us point out that in the case of an non-homogeneous
Dirichlet boundary condition, we obtain the same conclusion, after “lifting”
(as we did for finite elements) the boundary condition, so as to reduce to a
homogeneous problem.

We shall show on the example of the Crank-Nicolson scheme, how to copy
closely this argument at the discrete level, so as to prove an energy inequality
of the type

∀n ≥ 0, nδt ≤ T, ||Ψn||l2 ≤ ||Ψ0||l2 , (141)

where we have set:

Ψn = (ψn0 , ..., ψ
n
N+1), ||Ψn||l2 =

N+1∑
i=0

(ψni )2. (142)

It is indeed clear, according to (46) and (48), that (141) proves the stability
of the scheme for the l2 norm in space.

The scheme we shall study is defined by (100) with θ = 1/2 and (137), i.e.

ψn+1
i − ψni

k
− 1

2
D+
i D
−
i

(
Ψn+1 + Ψn

)
= 0, i ∈ {1, ..., N}, (143)

ψni = 0, for i = 0 and i = N + 1. (144)

Proposition 3.21 The Crank-Nicolson scheme (144)-(144) is uncondition-
ally stable for the l2 norm in space

As in the continuous case, the proof rests on an “discrete integration by
parts formula” that we shall prove first.

Lemma 3.22 Let U = (ui)i∈{0,...,N} and V = (vi)i∈{0,...,N} be two sequences
indexed by {0, ..., N}; then:

N∑
i=1

D+
i U vi = −

N+1∑
i=1

uiD−i V +
1
h

(uN+1vN+1 − u1v0). (145)
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In particular, if v0 = vN+1 = 0, we have:

N∑
i=1

D+
i U vi = −

N+1∑
i=1

uiD−i V. (146)

Proof Let us expand the left hand side of (34.54); we obtain successively

N∑
i=1

D+
i Uvi =

1
h

N∑
i=1

(ui+1 − ui)vi =
1
h

(
N∑
i=1

ui+1vi −
N∑
i=1

uivi) (147)

=
1
h

(
N+1∑
i=2

uivi−1 −
N∑
i=1

uivi) =
1
h

[
N+1∑
i=1

ui(vi−1 − vi)− u1v0 + uN+1vN+1](148)

= −
N+1∑
i=1

uiD−i V +
1
h

(−u1v0 + uN+1vN+1), (149)

which proves (145) and ends the proof of the Lemma, (146) being a particular
case of the above equality.

Proof of Proposition 3.21 Let us multiply equation (144) by ψn+1
i + ψni and

sum over all indices i ∈ {1, ..., N}; we obtain:

N∑
i=1

(ψn+1
i )2 − (ψni )2

k
− 1

2

N∑
i=1

D+
i

(
D−i (Ψn+1 + Ψn)

)
(ψn+1
i + ψni ) = 0. (150)

By virtue of the boundary conditions (144) satisfied by Ψn and Ψn+1, we can
apply the relation (146) to the sequences V = Ψn+1 + Ψn and U = (ui)i, ui =
D−i (Ψn+1 + Ψn), which gives us:

N∑
i=1

D+
i

(
D−i (Ψn+1 + Ψn)

)
(ψn+1
i + ψni ) = −

N+1∑
i=1

(
D−i (Ψn+1 + Ψn)

)2 ≤ 0.

(151)
We thus deduce from (150) that

N∑
i=1

(ψn+1
i )2 − (ψni )2

k
≤ 0, (152)

or
N∑
i=1

(ψn+1
i )2 ≤

N∑
i=1

(ψni )2. (153)

According to (144), we have, using notation as in (142):

∀n ≥ 0, ||Ψn+1||l2 ≤ ||Ψn||l2 , (154)
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which gives, by an easy induction, a slightly stronger result than (141), since
it allows the case T = +∞; the l2 stability of the scheme is thus proven.

We shall now show in detail, on an example, the practical solution of the
scheme.

4.5 Practical solution of the implicit scheme

The discrete problem associated with problem (134)-(136) is particularly simple
to solve if the scheme is explicit; we shall thus look at the implicit case, and
to make the right hand side simpler, we shall consider the example of the fully
implicit scheme defined by the discrete operator (91). The scheme we study can
be written more generally (f = 0 in our example):

ψn+1
i − ψni

k
−
ψn+1
i+1 − 2ψn+1

i + ψn+1
i−1

h2 = fn+1
i , i ∈ {1, ..., N}, (155)

ψn+1
i = g(xi, tn+1), for i = 0 and i = N + 1, (156)

which means that X = (ψn+1
1 , ..., ψn+1

N )T solves the linear system

AX = b, (157)

where the matrix A is defined by

A =


2c+ 1 −c ... 0
−c 2c+ 1 −c 0
0 −c 2c+ 1 ...

... ...
... 0 −c 2c+ 1

, c =
k

h2 > 0, (158)

and the right hand side b is given by:

b =


kfn+1

1 + ψn1 + cg(x0, t
n+1)

kfn+1
2 + ψn2
...

kfn+1
N−1 + ψnN−1

kfn+1
N + ψnN + cg(xN+1, t

n+1)

. (159)

We can easily show, as we did in Section 1.3, that the matrix A is symmetric
and positive definite, which proves that the linear system (157), and thus the
scheme (155)-(156) has one and only one solution.

We have at our disposal numerous methods enabling us to actually solve
system (157); we shall give details for that based on the LU factorization of the
matrix, which is particularly simple here, as A is tridiagonal.

We shall decompose A as a product of two matrices, a lower triangular one,
L, and an upper triangular one, U , with unit diagonal; because of the sparse
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structure of A, these two matrices L and U have only two nonzero diagonals.
We thus have:

A = LU, L =


d1 0
l1 d2

l2 d3
...

0 lN−1 dN

, U =


1 u1 0

1 u2
...
1 uN−1

0 1

.

 (160)

The nonzero elements of these matrices are given by:

Li,i−1 = li−1, Lii = di, Ui,i+1 = ui, Uii = 1. (161)

With this notation, we have the following relations:

Aii = 2c+ 1 = (LU)ii = Li,i−1Ui−1,i + LiiUii = ui−1li−1 + di, (162)
Ai,i−1 = −c = (LU)i,i−1 = Li,i−1Ui−1,i−1 = li−1, (163)
Ai,i+1 = −c = (LU)i,i+1 = Li,iUi,i+1 = diui. (164)

Once the matrices L and U have been computed, it is easy to solve system
(157) in two consecutive steps, the first step, called “forward solve”, where we
solve the lower triangular system Lz = b, then the second step, called “backward
solve”, where we solve the upper triangular system UX = z. The algorithm is
now the following, if we denote by Xi the entries of X and by bi those of the
right hand side b:

4.5.1 LU factorization algorithm

0 Set d1 = 2c+ 1, z1 = b1/d1, u1 = −c/d1
1 Loop over i = 2, . . . , N (factorization and forward solve)

li−1 = −c
di = 2c+ 1− ui−1li−1
ui = −c/di
zi = (bi − li−1zi−1)/di

2 Initialization of the backward solve by setting XN = zN
3 Loop over j = N − 1, N − 2, . . . , 1 (backward solve)

Xi = zi − uiXi+1.

computed solution at different time steps

comparison of two schemes: k = 5.10−5

We give in an Appendix to this Chapter the Fortran program to solve the
heat equation (134)-(136) on ]0, 1[, in the homogeneous case (i.e. for g = 0),
using two different schemes: the explicit scheme, and the implicit scheme using
the LU method as described above. The initial condition is ϕ0(x) = x(1x).

Figure VII.7 plots the solution computed by the explicit scheme at different
time steps: the initial time, on the curve with diamond symbols, then the time
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steps T = 0.01 and T = 0.1, shown on the curves with square and cross symbols
respectively. The space mesh has 100 nodes, the critical time step kc for the
explicit scheme is k = 5.1 10−5, and we have taken k = 10−6. For clarity’s
sake, we have not plotted on this figure the results obtained using the implicit
scheme; let us just note that, for this latter scheme, we have obtained exactly
identical results with only k = 10−3!

We have compared, on figures VII.8 and VII.9, the solutions at time T = 0.01
obtained with, either the explicit scheme (curve with diamond symbols), or the
implicit scheme (curve with square symbols); the time step is the same for both
schemes. Figure VII.8 corresponds to a time step k = 5.10−5 < kc, whereas
k = 6.10−5 > kc on figure VII.9: the stability results are quite striking, as the
explicit scheme “explodes” in the second case (take note that the scales on both
figure are different).

comparison of two schemes: k = 6.10−5

4.6 Two dimensional case

Let us consider, for example, the heat equation in a square ]0, L[2 of R2, with a
positive viscosity coefficient µ and homogeneous Neumann boundary conditions:

∂ϕ

∂t
− µ(

∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

) = f in ]0, L[2×]0, T [, (165)

ϕ(x, 0) = ϕ0(x) in ]0, L[2, (166)
∂ϕ

∂n
(x, t) = 0 on ∂(]0, L[2)×]0, T [. (167)

The domain is partitioned into small elementary cells of size h = 1/(N + 1) in
each direction, and the Laplacian is approximated at an internal mesh point by
the five points scheme (30). If we use a fully implicit scheme in time, this gives
us:

∀i, j ∈ {1, ..., N}, 1
k

[ψn+1
ij − ψnij ]−

µ

h2 [ψn+1
i+1,j − 2ψn+1

i,j + ψn+1
i−1,j(168)

+ψn+1
i,j+1 − 2ψn+1

i,j + ψn+1
i,j−1] = fn+1

ij , (169)

where ψnij is an approximation of the exact solution ϕ at the node (ih, jh) and
at time t = nk.

At the initial time, we set ∀i, j, ψ0
ij = ϕ0(ih, jh). The Neumann condition

on the boundary of the domain are discretized in the following way:

∀j ∈ {1, ..., N}, ψn0j = ψn1j , ψnN−1,j = ψnN,j (170)
∀i ∈ {1, ..., N}, ψni0 = ψni1, ψni,N−1 = ψniN . (171)

The N2 equations included in (168 can be written in matrix form

AX = b, (172)
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where the matrix A is pentadiagonal, block tridiagonal, with each of the blocks
a N ×N square matrix;

A =


A1 B 0 · · · · · · 0
B A2 B 0 · · · 0
0 B A2 B 0 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 B A2 B
0 · · · · · · 0 B A1

, B =


b 0 · · · 0
0 b 0 · · ·
· · · · · · · · · · · ·
0 · · · 0 b

 ;

(173)
the diagonal blocks are written

A1 =


a1 b 0 · · · 0
b a2 b 0 0
· · · · · · · · · · · · · · ·
0 0 b a2 b
0 · · · 0 b a1

, A2 =


a2 b 0 · · · 0
b a3 b 0 0
· · · · · · · · · · · · · · ·
0 0 b a3 b
0 · · · 0 b a2

, (174)

with
ai =

1
k

+ (1 + i)
µ

h2 , b = − µ

h2 . (175)

To solve the system (172), we could use the Choleski algorithm, or the precon-
ditioned conjugate gradient method. The successive over-relaxation method,
although slower, is simpler to program and does not require storing the matrix;
we shall briefly recall its principle.

The Gauss-Seidel algorithm for solving a linear system Ax = f of size N×N
is an iterative method, where the approximate solution at step m+ 1, denoted
by xm+1, is computed from that at the previous step by the relation:

xm+1
i = [fi −

∑
j<i

Aijx
m+1
j −

∑
j>i

Aijx
m
j ]/Aii. (176)

We note that in this computation, only the entries of the vector xm with j > i
are used, and none of the previous entries, so that it is not necessary to store
2 vectors xm and xm+1: only one vector x is sufficient. As the computation
proceeds, the entries of this vector, that are those of xm at the outset, get
replaced by those of the vector xm+1. We can thus suppress the index m. Last,
the scheme can be improved by introducing a positive relaxation parameter ω,
so that the successive over-relaxation algorithm can schematically be written
as:

loop over m
loop over i

x∗i ← (fi −
∑
j 6=i

Aijxj)/Aii), (177)

xi ← xi + ω(x∗i − xi) ; (178)
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end of the loops

A reasonable choice for the relaxation parameter, in the case of the heat
equation, is to take ω on the order of 1.7.

4.7 Explicit Runge-Kutta schemes

4.7.1 Introduction

Among the possible choices for explicit schemes, let us point out the Runge-
Kutta schemes, frequently used in the approximation of ordinary differential
equations. For example, the second order method for solving dϕ/dt(t) = F (ϕ(t), t)
can be written as

1
k

[ψn+1 − ψn] = F (ψn+1/2, (n+ 1/2)k), ψn+1/2 = ψn +
k

2
F (ψn, nk), (179)

which is justified by noting that:

ϕ(tn+1/2) = ϕ(tn) +
k

2
F (ϕ(tn), tn) +O(k2). (180)

This scheme is second order, i.e. the consistency error is in O(k2).
We can apply this type of schemes to the solution of the heat equation

(55)-(56), because if we discretize this equation only in the space variables, for
example by writing the scheme (with obvious notation):

∂ψi
∂t

(t)−D+
i D
−
i ψ(t) = 0, (181)

we obtain a system of ordinary differential equations only depending on the t
variable. The second order Runge-Kutta scheme (181) can then be written:

1
k

[ψn+1
i − ψni ] = D+

i D
−
i (Ψn+1/2), ψ

n+1/2
i = ψni +

k

2
D+
i D
−
i (Ψn), (182)

still denoting by Ψn the vector with entries ψni . Let us analyze the von Neu-
mann stability of this scheme. By a Fourier transform, we obtain, setting
λ = (2k/h2) sin2(hξ/2) ≥ 0, and with ξ being the dual variable to the space
variable x:

ψ̂n+1(ξ) = ψ̂n(ξ)− 2λψ̂n+ 1
2 (ξ), ψ̂n+ 1

2 (ξ) = (1− λ)ψ̂n(ξ), (183)

which gives eventually:

ψ̂n+1(ξ) = ψ̂n(ξ) [ 1− 2λ(1− λ) ]. (184)

The above polynomial in λ being always positive, it will be strictly less than 1,
for all ξ, if and only if the stability condition k < h2/2 is satisfied.

Under this stability condition, we thus obtain a convergent scheme of second
order in time and space. It is of course possible to extend this analysis to higher
order Runge-Kutta schemes.
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4.7.2 Runge–Kutta methods.

We recall the definition of a Runge–Kutta method for an ordinary differential
equation.

Consider the ordinary differential equation

dy

dt
(t) = f(t, y(t)). (185)

The Euler scheme is defined by

ȳhk+1 = ȳhk + hf(kh, ȳhk ). (186)

When the function f is Lipschitz, the convergence rate of the Euler scheme is of
order h: there exists a constant C such that, for all time step h < 1 such that
T/h is an integer, there holds

max
k=0,T/h

|y(kh)− yhk | ≤ Ch.

A scheme is said of order R if

max
k=0,T/h

|y(kh)− yhk | ≤ ChR.

One can construct schemes of order R > 1 when the function f is of class
Cm([0, T ]×R2) with m large enough. For example, one can derive such schemes
from Taylor formula applied to y((k + 1)h) − y(kh). That procedure makes
appear the successive derivatives of the function f , which may lead to large
computation times (generally, the computation of ∂f

∂x (x) requires more oper-
ations than the computation of f(x)), or to numerically unstable algorithms
(the upper bound of f ′(x) may be much larger than the upper bound of f(x)).
Runge–Kutta methods are constructed to avoid the successive derivatives of f in
the discretization scheme. For example, suppose that f is of class C3([0, t]×R2),
and seek constants a1, a2, p1, p2 such that the scheme

ȳhk+1 = ȳhk + h
{
a1f(kh, ȳhk ) + a2f(kh+ p1h, ȳ

h
k + p2hf(kh, ȳhk ))

}
(187)

is of second order. Make a Taylor expansion of ȳhk+1 − ȳhk make it coincide up
to the order 2 with the value at time (k + 1)h of the solution to the differential
equation with initial condition at time kh equal to ȳhk :

ȳhk +
∫ (k+1)h

kh

f(s, y(s))ds ' ȳhk + hf(kh, ȳhk )

+
1
2
h2
(
∂f

∂t
(kh, ȳhk ) + f(kh, ȳhk )

∂f

∂y
(kh, ȳhk )

)
.

By identification, one deduces

a1 + a2 = 1

a2p1 = a2p2 =
1
2
.
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For example, one can choose a1 = a2 = 1
2 et p1 = p2 = 1.

More generally, the principle is as follows:

ȳhk+1 = ȳhk + h

Q∑
i=0

aiFi(kh, ȳhk )

with

F0(t, y) = f(t, y)
F1(t, y) = f(t+ p1h, y + p2hF0(t, y))
F2t, y) = f(t+ p2, y + p3F0(t, y) + p4hF1(t, y)), · · ·

The method of 4th order is often used in practice:

yhk+1 = ȳhk +
1
6
h(F0(kh, ȳhk ) + 2F1(kh, ȳhk ) + 2F2(kh, ȳhk ) (188)

+ F3(kh, ȳhk )), (189)

with

F0(t, y) := f(t, y)

F1(t, y) := f

(
t+

h

2
, y +

h

2
F0(t, y)

)
F2(t, y) := f

(
t+

h

2
, y +

h

2
F1(t, y)

)
F3(t, y) := f (t+ h, y + hF2(t, y)) .

We now come back to the solving of differential systems of the type

d

dt
uδ(t, xi) +Aδuδ(t, xi) = 0. (190)

In option models, the use of a Runge–Kutta method is likely to recommend
since the solution is smooth. Such a method is explicit, and thus is conditionally
stable. On the other hand, the order of convergence in time can be high, for
example if one uses a 4th order method. Consequently, h does not need to be
chosen very small. In definitive, such an explicit method may be more efficient
than an implicit method which, as we have seen, requires the resolution of a
linear system at each time step.

5 Finite Differences for a convection equation

We leave the framework of parabolic equations to take on that of hyperbolic
equations, starting with the study of convection equations, that frequently occur
in practice. Let Ω be a subset of Rd and let u = (u1, u2, ..., ud) be a given vector
field defined on Ω; we seek a function ϕ satisfying the partial differential equation

∂ϕ

∂t
+ u · ∇ϕ = f in Ω×]0, T [, (191)
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with the initial condition

ϕ(x, 0) = ϕ0(x), ∀x ∈ Ω ; (192)

we recall the notation:

u · ∇ϕ =
d∑
i=1

ui
∂ϕ

∂xi
. (193)

What are the possible boundary conditions for such a problem? It is clear that
since the spatial derivative is only of first order, we cannot prescribe the function
ϕ on the whole boundary Γ of Ω (to convince oneself of that fact, it suffices, in
one dimension, to compute explicitly the exact solution).

For simplicity’s sake, we shall assume that the velocity field u is independent
of the variable t. Let us denote by n the exterior normal to Γ and denote by
Γ− the part of the boundary where the velocity field u is incoming i.e.:

Γ− = {x ∈ Γ : u(x).n(x) < 0}. (194)

Mathematically, the problem is well posed if we take as a boundary condition:

ϕ(x, t) = g(x), ∀x ∈ Γ−, ∀t ∈]0, T [. (195)

Remark It is possible to obtain an analytical solution of problem (191)-
(195) by “integrating” the equation along the characteristic curves of the vector
filed u. These curves (t→ X(t)) are defined by:

dX

dt
(t) = u(X(t), t), X(t = 0) = x. (196)

Show that, if we set Φ(t) = ϕ(X(t), t), we have:

Φ′(t) = (
∂ϕ

∂t
+ (u · ∇)ϕ)(X(t), t). (197)

The function Φ is thus constant; deduce from this the expression of ϕ.

We shall now propose several schemes for approximating with finite dif-
ferences this convection equation, starting by the one dimensional case, and
assuming that the space variable varies over the whole of R.

5.1 Lax’ Scheme

Let us approximate the continuous operator by D+
t +uD−x ; we obtain the explicit

backward Euler scheme defined by

1
k

[ψn+1
i − ψni ] +

ui
h

[ψni − ψni−1] = fni , (198)
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with the usual initial condition (h = δx;xi = ih):

∀i, ψ0
i = ϕ0(xi). (199)

The consistency error of the scheme is in O(k+h). To simplify studying stability,
we shall assume that u is constant in time and space. By Fourier transform, we
obtain:

ψ̂n+1(ξ)− ψ̂n(ξ) +
ku

h
ψ̂n(ξ)[1− eiξh] = kf̂n. (200)

The amplification factor is thus the complex number defined by

a(ξ) = 1− ku

h
[1− eiξh], (201)

whose modulus square is equal to:

a(ξ)|2 = [1− ku

h
(1− cos ξh)]2 + [

ku

h
sin ξh]2 (202)

= 1− 2
ku

h
(1− cos ξh) + 2(

ku

h
)2(1− cos ξh) (203)

= 1− 2
ku

h
+ 2(

ku

h
)2 + 2

ku

h
(1− ku

h
) cos ξh (204)

≤ 1 si
ku

h
≤ 1 and u ≥ 0. (205)

The proposed scheme is thus von Neumann stable under the two conditions:

ku

h
≤ 1 et u ≥ 0. (206)

The first condition is the CFL condition (Courant-Friedrich-Levy). As far as
the second condition is concerned, we can note that if u < 0, scheme (198) is
always unstable; to have stability in that case, we must use a downwind scheme,
that is:

1
k

[ψn+1
i − ψni ] +

ui
h

[ψni+1 − ψni ] = fni . (207)

One can show in the same way that, if u id constant in time and space, this
latter scheme is stable under the condition:

k|u|
h
≤ 1 and u ≤ 0. (208)

Remark 4.1 Let us note that the CFL condition we found is much less
restrictive for the time step than the stability condition we had found for the
heat equation. This is of course because the problem is here of first order in in
space, whereas it was of second order for the heat equation.

numerical domain of dependence and CFL
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Remark 4.2 The CFL condition obtained for the scheme (198) can be
interpreted graphically in the (x, t) space, as on figure VII.10. The half-line
Mn+1y from point Mn+1 with slope 1/u must intersect the line t = tn at a
point of segment NnMn, in other words the “numerical domain of dependence”,
which is the surface S bounded by the triangle with vertices Nn,Mn and Mn+1

must contain the “exact domain of dependence”i.e. the half-line Mn+1y. We
also see that if u is negative, S does not contain this half-line: there is instability.

5.2 Lax-Wendroff scheme

The above scheme is only first order in time and space; we shall construct, using
a Taylor expansion, a scheme accurate to second order. We still assume u is
constant and we shall set f = 0 for simplicity’s sake; we have, denoting the
exact solution of (191)-(195) by ϕ,

ϕ(x, t+ k) = ϕ(x, t) + k
∂ϕ

∂t
(x, t) +

k2

2
∂2ϕ

∂t2
(x, t) + 0(k3). (209)

If we express that ϕ is a solution of (191) with f = 0, we obtain

∂2ϕ

∂t2
=

∂

∂t
(−u∂ϕ

∂x
) = −u ∂

∂x
(
∂ϕ

∂t
) (210)

= −u ∂

∂x
(−u∂ϕ

∂x
) = u2 ∂

2ϕ

∂x2 , (211)

so that

ϕ(x, t+ k) = ϕ(x, t)− ku∂ϕ
∂x

(x, t) +
k2

2
u2 ∂

2ϕ

∂x2 (x, t) + 0(k3). (212)

Using centered finite difference approximations of the space variables derivatives,
we then obtain the Lax-Wendroff scheme:

ψn+1
i = ψni − ku(

ψni+1 − ψni−1

2h
) +

k2

2
u2

h2 [ψnj+1 − 2ψni + ψni−1]. (213)

By construction, this scheme is second order in time and space.
it is

5.3 The multidimensional case

There are no additional difficulties; in 2 dimensions, the Lax-Wendroff scheme
for instance becomes (taking f = 0 for simplicity’s sake):

ψn+1
ij = ψnij −

kuij
2h

(ψni+1,j − ψni−1,j)−
kvij
2h

(ψni,j+1 − ψni,j−1) (214)

+
k2

2
[
u2
ijD

+
x,iD

+
x,iΨ

n
.j + uijvij(D+

x,iD
−
y,j +D−x,iD

+
y,j)Ψ

n
.. (215)

+v2
ijD

+
y,jD

+
y,jΨ

n
i.

]
. (216)
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where we have denoted the discrete operators with different notation according
to the x and y directions. Index i refers to the first variable x, whereas j
is associated with the second variable y: for example Ψn

.,j denotes the singly
indexed sequence (ψni,j)i indexed by i whereas Ψn

.. is the doubly indexed sequence
(ψnij)i,j indexed by i and j. Here, the velocity field has two components ~u =
(u, v).

In this scheme, the second mixed derivative is approximated by the following
7 points scheme:

∂2ϕ

∂x∂y
(ih, jh) ' 1

h2 [−ϕ((i− 1)h, (j + 1)h) + ϕ(ih, (j + 1)h) + ϕ((i− 1)h, jh)(217)

−2ϕ(ih, jh) + ϕ((i+ 1)h, jh) + ϕ(ih, (j − 1)h)− ϕ((i+ 1)h, (j − 1)h).(218)

Stability analysis is done via Fourier transform in both variables x and y, as-
suming the velocity field ~u is constant.

6 The convection-diffusion equation

Let us consider the following equation

∂ϕ

∂t
− ν ∂

2ϕ

∂x2 + u
∂ϕ

∂x
+ rϕ = 0 in R×]0, T [, (219)

ϕ(x, 0) = ϕ0(x), (220)

where ν is a real positive parameter, u is a given velocity field and r is a function
defined over R×]0, T [.

6.1 Continuous case

If we multiply equation (220) by ϕ, integrate over the whole space, and integrate
by parts, we obtain, omitting the integration variables to simplify the notation:

1
2
∂

∂t

(∫
R

ϕ2)+ ν

∫
Ω
∇|ϕ|2 −

∫
R

ϕ2

2
∂u

∂x
+
∫

Ω
rϕ2 = 0. (221)

The kinetic energy E =
∫
R
ϕ2 decreases with increasing time as soon as the

following condition is satisfied:

− 1
2
∂u

∂x
+ r ≥ 0. (222)

However a simple change of variables shows that this condition is not indis-
pensable in finite time. Indeed, if we set ϕ1 = e−αtϕ, equation (220) becomes

∂ϕ1

∂t
+ αϕ1 − ν

∂2ϕ1

∂x2 + u
∂ϕ1

∂x
+ rϕ1 = 0, (223)

i.e. it is of the same type as (220) except that r is changed to r + α. It can
be interesting, numerically, to carry out this change of variables, so as to avoid
the exponential growth of the solution with time.
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6.2 Discretization

Let us apply the following Crank-Nicolson type scheme; we obtain:

1
k

[ψn+1
j − ψnj ]− 1

2
ν

h2 [ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1 ]− 1

2
ν

h2 [ψnj+1 − 2ψnj + ψnj−1]

+
u
n+1/2
j

2h
(ψn+1
j+1 − ψ

n+1
j ) +

u
n+1/2
j

2h
(ψnj − ψnj−1)

+
rn+1
j

2
ψn+1
j +

rnj
2
ψnj = 0. (224)

Let us assume, for simplicity’s sake, that all coefficients are constant, and let us
perform a stability analysis of this scheme by using Fourier transform in space;
we obtain:

ψ̂n+1(ξ)− ψ̂n(ξ) +
2νk
h2 ψ̂

n+1(ξ) sin2 ξh

2
+

2νk
h2 ψ̂

n(ξ) sin2 ξh

2
+
ku

2h
ψ̂n+1(ξ)(cos ξh+ i sin ξh− 1)+

−ku
2h

ψ̂n(ξ)(cos ξh− i sin ξh− 1) + k
r

2
(ψ̂n+1 + ψ̂n)(ξ) = 0. (225)

The amplification factor can thus be written

a(ξ) =
1− α+ γ − iβ
1 + α+ γ + iβ

, (226)

with

α =
2νk
h2 sin2(

ξh

2
) + k

r

2
, β =

ku

2h
sin(ξh), γ = −ku

h
sin2(

ξh

2
). (227)

We have

|a(ξ)|2 − 1 =
−4α(1 + γ)

(1 + α+ γ)2 + β2 , (228)

and α is positive (according to (222) we assume r ≥ 0 since u is constant).
Thus, |a(ξ)|2 − 1 has the same sign as −(1 + γ). The scheme will be stable if,
for any ξ, 1 + γ(ξ) ≥ 0, or if the following stability condition is satisfied:

ku

h
≤ 1; (229)

we note it is always satisfied if u is negative.

plot of function A(t) = |a(ξ)|2, t = ξ

On figure VII.11 we have plotted the function |a|2, for k = h = 0.1, and
different values of u: the solid line curve corresponds to u = 0, that with di-
amond shaped symbols is the limit case u = 1, and last that with + symbols
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corresponds to u = 10. For clarity’s sake, we have not shown the curve corre-
sponding to u = −10 which indeed turns out to be located under the line with
ordinate 1. We observe that the stability condition (229) is not satisfied for
u = 10, whereas it is satisfied in the other cases: for u = 10, we must decrease
the time step so as to obtain a stable scheme.

To compute the order of consistency of the scheme, it suffices to study that of
the approximation of the first order term u(∂ϕ/∂x), as the other terms, already
estimated, give a consistency order of h2 + k2. We recall that this estimate has
been obtained by expanding the exact solution ϕ in the neighborhood of the
point (jh, (n+ 1/2)k). By 2 successive Taylor expansions, one with n+ 1 fixed
in the neighborhood of the point with index j + 1/2, the other at j + 1/2 fixed,
in the neighborhood of tn+1/2 = n+ 1/2k, we obtain:

1
2h

[ϕ((j + 1)h, (n+ 1)k)− ϕ(jh, (n+ 1)k)] =
1
2
∂

∂x
ϕ((j +

1
2

)h, (n+ 1)k)

+0(h2) =
1
2
∂

∂x
ϕ((j +

1
2

)h, (n+
1
2

)k) +
k

4
∂2

∂x∂t
ϕ((j +

1
2

)h, (n+
1
2

)k)

+0(h2 + k2). (230)

In a similar way, we have:

1
2h

[ϕ(jh, nk)− ϕ((j − 1)h, nk)] =
1
2
∂

∂x
ϕ((j − 1

2
)h, nk) + 0(h2)

=
1
2
∂

∂x
ϕ((j − 1

2
)h, (n+

1
2

)k)− k

4
∂2ϕ

∂x∂t
((j − 1

2
)h, (n+

1
2

)k) + 0(h2 + k2).

Using the following relations, for p = n+ 1/2,

1
2
∂ϕ

∂x
((j +

1
2

)h, pk) +
1
2
∂ϕ

∂x
((j − 1

2
)h, pk) =

∂ϕ

∂x
(jh, pk) + 0(h2),

∂2ϕ

∂x∂t
((j +

1
2

)h, pk)− ∂ϕ

∂x∂t
((j − 1

2
)h, pk) =

∂ϕ

∂x
(jh, pk) + 0(h), (231)

we obtain, by adding (230) and (231)

1
2h [ϕ((j + 1)h, (n+ 1)k)− ϕ(jh, (n+ 1)k) + ϕ(jh, nk)− ϕ((j − 1)h, nk)]

= ∂ϕ
∂x (jh, (n+ 1

2 )k) + 0(h2 + hk + k2), (232)

which proves that the scheme (224) is in 0(h2 + hk + k2): if h and k are of the
same order of magnitude, the proposed scheme is of second order in time and
space.

scheme

7 Finite differences in time and finite elements
in space

In two or more dimensions, as soon as the computational domain does not
have its boundary piecewise parallel to the coordinate axes, the finite difference



56 pages 41

method (in the space variables) is no longer practical: we must transform the
partial differential equation into local coordinates before discretizing it, and this
is a lengthy, and sometimes painful, computation. It may then be preferable to
change the discretization method in space and to choose, for instance, a finite
element or a finite volume method: this is what we do in this Section and the
next.

Let us consider, for instance, the following convection-diffusion equation:

∂ϕ

∂t
+∇ · (uϕ)− ν∆ϕ = f in Ω×]0, T [, (233)

ϕ(x, 0) = ϕ0(x) in Ω, (234)
ϕ(x, t) = 0 on Γ×]0, T [, (235)

where u = u(x, t) is a given velocity field, and ν is a strictly positive constant.
To fix ideas, let us discretize the time derivative by using a fully implicit

finite difference scheme. We then inductively define a sequence of functions
(x → φn(x))n (φn ' ϕ(., tn) only depending on the space variable x: we start
with the initialization φ0 = ϕ0, then, knowing φn, we compute φn+1 by solving
the following boundary value problem (k = δt > 0)

find φn+1 solving (236)
φn+1 − φn

k
+∇ · (un+1φn+1)− ν∆φn+1 = fn+1 in Ω, (237)

φn+1 = 0 on Γ, (238)

with the notation: un+1 = u(., tn+1), fn+1 = f(., tn+1).
We thus obtain a sequence of boundary value problems, to which we may

apply the finite element technique as explained in the beginning of this book.
To do this, we start with the continuous problem (in space) (7.2), and write its
variational formulation as

find φn+1 ∈ H1
0 (Ω) such that ∀w ∈ H1

0 (Ω), we have: A(φn+1, w) = l(w),(239)

where A and l are respectively the bilinear and linear forms defined over
H1

0 (Ω) by:

A(v, w) =
∫

Ω
(vw)(x)dx− k

∫
Ω

(un+1v · ∇w)(x)dx+ νk

∫
Ω

(∇v · ∇w)(x)dx,

l(w) = k

∫
Ω

(fn+1w)(x)dx+
∫

Ω
(φnw)(x)dx. (240)

Using Green’s formula in the second integral defining A, we have:

A(w,w) =
∫

Ω
w2(x)dx+

k

2

∫
Ω

[(∇·un+1)w2](x)dx+νk

∫
Ω
|(∇w)(x)|2dx, (241)
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so that if 1 + (k/2)(∇ · un+1) ≥ 0, the bilinear form A is elliptic on H1
0 (Ω) and

problem (7.3) admits a unique solution (let us note that the above condition is
always satisfied if u is a divergence free field).

We then proceed to the discretization by covering Ω with triangles with
vertices qi; let us call Ωh the computational domain defined as the union of all
these triangles. Let w1, . . . , wnv be the usual basis functions for the P 1 finite
element approximation (wi(qj) = δij). At every time step tn+1, we are led to
solve the above variational problem in the subspace Vh of H1

0 (Ω) generated by
all the functions wi associated with interior nodes of the mesh, i.e. the space
of functions wh continuous on Ωh, equal to zero on the boundary of Ωh whose
restriction to each triangle is a linear function. The discrete variational problem
is then written

find φn+1
h ∈ Vh such that ∀wh ∈ Vh, we have: Ah(φn+1

h , wh) = lh(wh),
(242)

where A〈 has the same expression as A, except that we integrate over the
computational domain Ωh, and the linear form lh is now defined by:

l(wh) = k

∫
Ωh

(fn+1wh)(x)dx+
∫

Ωh
(φnhwh)(x)dx. (243)

The numerical technique is then the one that was explained in the first chapters:
we expand φn+1

h on the basis of Vh and we express (7.5) by taking for wh each
of the basis functions. This leads us to the solution of a linear system whose
solution gives us the components of φn+1

h .
If the solution of the continuous problem (7.1) is sufficiently smooth, which

actually depends on the smoothness of the data, it is shown, for example, in
Pironneau (1988) that this method is convergent, the error between the exact
solution and the approximate solution being O(h + k), if we denote by h the
size of the mesh. More generally, the error would be of order r in space, should
we have chosen an approximation with P r finite elements.

It is of course possible to choose other discretization schemes in time; let us
single out, for example, the Crank-Nicolson scheme defined by:

find φn+1
h ∈ Vh such that ∀wh ∈ Vh, we have: (244)∫

Ωh
(φn+1
h wh)(x)dx− k

∫
Ωh

(φ
n+1+φn

2 un+1 · ∇wh)(x)dx (245)

+νk
∫

Ωh
(∇(φ

n+1+φn

2 ) · ∇wh)(x)dx, (246)

= k
∫

Ωh
(fn+ 1

2wh)(x)dx+
∫

Ωh
(φnhwh)(x)dx. (247)

The stability of this scheme is easily proven by energy qualities, such as were
described in Section 3.4.1 (it suffices to take wh = φn+1 + φn). We can also
make the linear system giving the components of φn+1 in the basis of Vh explicit
and study the eigenvalues of the corresponding matrix [Pironneau (1988)]. Let
us note that on a uniform triangular mesh of a rectangular domain, the scheme
is the same as the one we would obtain with a finite difference method, and
this gives another way to check its stability. Last, this scheme is second order
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in time, and for a sufficiently regular mesh, we can hope for a second order
accuracy in space.

8 Finite differences in time and finite volumes
in space

Let us again consider a convection-diffusion equation (the notation are the same
as in the previous Section), with, for a change, Neumann boundary conditions:

∂ϕ
∂t +∇ · (uϕ)− ν∆ϕ = f in Ω×]0, T [, (248)

ϕ(x, 0) = ϕ0(x) in Ω, (249)
∂ϕ
∂n (x, t) = g(x, t) sur Γ×]0, T [. (250)

We cover the domain Ω by quadrangles Qk, so that ∪k∈KQk = Ω, and we
assume that this mesh is admissible, i.e. the intersection between two quadran-
gles is either empty, or reduced to one point , or to a whole side. We integrate
the partial differential equation on any one of those quadrangles and obtain,
after using Green’s formula,

∂
∂t

∫
Qk
ϕ(x, t)dx+

∫
∂Qk

(u · nϕ)(x, t)dγ(x) + ν
∫
∂Qk

(∂ϕ∂n )(x, t)dγ(x) (251)

=
∫
Qk
f(x, t)dx. (252)

As above, we can discretize this equation in time, choosing an implicit, explicit,
or semi-implicit scheme. If, for instance, we choose an explicit scheme, we are
led to compute a sequence of functions φm defined by the recurrence relation∫

Qk
1
δt [φ

m+1 − φm](x)dx+
∫
∂Qk

(um · nφm)(x)dγ(x) (253)

+ν
∫
∂Qk

(∂φ
m

∂n )(x)dγ(x) =
∫
Qk
fm(x)dx, (254)

and initialized by φ0 = ϕ0.

a finite volume mesh defined by rectangles

8.1 A cell centered scheme

We shall evaluate each of the above integrals by using only the values of the
unknown at the center of the cells, which are the nodes of the mesh. At step
n + 1, the unknowns of the problem are the values of φn+1 at each of those
nodes, so that there are as many unknowns as equations like (8.3).

Let us now describe how to approximate these integrals. To do this, let us
use the notation of figure VII.12, and denote by qk (resp. ql) the center of cell
Qk (resp. Ql). With a view to computing the line integrals, we denote by φ̃rs
the average of φ on the edge [qr, qs], i.e.

φ̃rs =
1

|qr − qs|

∫
]qr,qs[

φ(x)dγ(x). (255)
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Using the midpoint quadrature formula (formula (208) from Chapter II), we
have φ̃rs ' φ((qr + qs)/2). If the cells are orthogonal, the points qk, ql and
(qr + qs)/2 all lie on a common line, and the value of φ at this latter point can
then be approximated by the weighted average of the values taken by φ at the
points qk and ql. This gives eventually:

φ̃rs ' φrs = φl
|qk − qr+qs

2 |
|qk − ql|

+ φk
|ql − qr+qs

2 |
|qk − ql|

. (256)

We shall use this approximation for the average of φ over [qr, qs] in all cases.
The integrals featured in (8.3) are then computed in the following way:∫

Qk
φ(x)dx ' φk area (Qk) (257)∫

]qr,qs[
∂φ
∂n (x)dγ(x) ' φl−φk

|qk−ql| |q
r − qs| (258)∫

∂Qk
(u · nφ)(x)dx ' u · nrs φrs + u · nst φst + · · · . (259)

In this way, we obtain a numerical scheme for all almost orthogonal meshes.
If this is not the case, we must modify the above approximate formulas. For
example, to compute the normal derivative of φ, we can go back to the definition
∂φ/∂n = ∇φ·n and compute an approximation ∇̃φ to ∇φ by solving the system
(with notation as on Figure VII.12):

(∇̃φ).(qr + qs − qu − qt) = 2(ϕrs − ϕut), (260)
(∇̃φ).(qs + qt − qu − qr) = 2(ϕst − ϕur). (261)

Stability and convergence results can be obtained for regular meshes by applying
the method described above for finite differences. Other direct proofs exist,
based on the consistency of the approximate flux (i.e. the line integrals featured
in (8.3)) and the conservative nature of the scheme (i.e. if φ is a smooth function,
the approximation of the integral over Qk ∩ Ql of ∂φ/∂n in the equation over
Qk is the opposite to that associated with Ql).

Although it is in some sense close to both the finite difference and the P 0

finite element method, the finite volume differs from those methods on other
points. As the finite element method, it is based on a weak formulation of
the partial differential equation, obtained by integrating it, but only against
the function 1, and the sought solution is not expanded on a basis. The flux
approximation uses a “finite difference” principle, but the resulting scheme is
not consistent in the finite difference sense; consistency only plays a role at the
integral formulation level, in the flux approximation.

8.2 Other possible schemes

As we have seen, the principle of the finite volume method is to integrate the
equation over a cell, and then to interpolate this integral with function values
at the nodes. We have seen the case of quadrangular cells, with nodes at the
center of the cells, the interpolation being linear. Other choices are possible; let
us quote, for instance
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• the nodes are the vertices of the quadrangle Qk and the control cells are
the quadrangles obtained by splitting each quadrangle Qk in 4 (along the
medians) and joining together all the sub-quadrangles thus formed that
have a common side;

• the nodes are the midpoints of the quadrangle edges and the cells are
obtained by joining together all quadrangles having a common edge;

• in all of the above, we can replace the quadrangles by triangles; for exam-
ple, the nodes are the vertices of the triangulation and the cell associated
with a node is the polygon obtained by joining the mediatrice of the tri-
angles sharing this vertex.

Naturally, for all these choices, it is necessary that the number of unknowns
be exactly equal to the number of equations. Despite this, there can be prob-
lems. Let us consider, for example, the convection equation

∂ϕ

∂t
+ u · ∇ϕ = 0, (262)

with: ∇ · u = 0. Let us choose quadrangular cells, and define the nodes as the
center of the cells; we have∫

Qk

∂ϕ

∂t
+
∫
∂Qk

u · nϕ = 0. (263)

We cannot assume that ϕ is constant on each cell, because the second integral
would be zero. This shows the importance of the choice of the interpolation.

These finite volume methods are comparatively recent [Jameson et al. (1986)].
They are conceptually simple and easy to implement. The theory is still un-
der development, so that at the present time there are few theoretical error
estimates.

These methods have first been developed for convection equations (Euler
equation for fluid flows). Nicolades (1992) extended them to second order equa-
tions, after decoupling them into a system of two first order equations, according
to the scheme:

∆ϕ = 0 ↔ u = ∇ϕ, ∇ · u = 0. (264)

Some of the equations are integrated over triangles, whereas the others are
integrated over the Vorono polygons associated with the triangulation.

One of the interests of this method is that it makes it possible, contrary to
finite difference methods, to treat equations with possibly discontinuous coeffi-
cients. Numerical tests show that for an operator like −∇ · (ν∇ϕ), where ν is
a matrix with variable and discontinuous coefficients, the finite volume method
gives, for a Neumann boundary condition, better results than the finite element
method; on the other hand, the conclusion is reversed for a Dirichlet boundary
condition. For a recent survey of this type of methods, the reader is referred to
the forthcoming book by Eymard, Gallout and Herbin (1995), where a rather
complete mathematical bibliography can be found
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9 Finite Differences for Variational Inequalities

9.1 Definition

Some problems, like the Laplace equation with Dirichlet data, can be converted
into a variational equation in H1

0 (Ω):

−∆u = f in Ω, u|Γ = 0
⇔∫

Ω
∇u · ∇w =

∫
Ω
fw, ∀w ∈ H1

0 (Ω)

⇔

min
u∈H1

0 (Ω)

∫
Ω

(
1
2
|∇u|2 − fu)

Other problem leads to a variational inequality in a Sobolev space.
For example let Ω ⊂ Rd and let

H1
0 (Ω)+ = {w ∈ L2(Ω) : ∇w ∈ L2(Ω)d, w ≥ 0}

and consider
min

u∈H1
0 (Ω)+

∫
Ω

(
1
2
|∇u|2 − fu) (265)

9.2 Properties

Theorem

1. Problem (265) has a unique solution.

2. It is equivalent to finding u ∈ H1
0 (Ω)+ such that∫

Ω
∇u · ∇w ≥

∫
Ω
fw, ∀w ∈ H1

0 (Ω)+ (266)

3. In Ω+ ≡ {x ∈ Ω : u(x) > 0} we have∫
Ω
∇u · ∇w =

∫
Ω
fw, ∀w ∈ H1

0 (Ω+)

Proof
The solution exists and is unique because it is the minimization of a strictly
convex lower semi-continuous functional in a closed convex set.
By definition, if u is a solution, then all λ ∈ R+ and all w ∈ H1

0 (Ω) such that
u+ λw ∈ H1

0 (Ω)+ we have∫
Ω

(
1
2
|∇u+ λw|2 − f(u+ λw))−

∫
Ω

(
1
2
|∇u|2 − fu) ≥ 0
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After division by λ and letting λ→ 0, (266) is found.
Furthermore is suppw ⊂ Ω+ then for small enough λ′s

u+ λw ∈ H1
0 (Ω)+ ⇒ u− λw ∈ H1

0 (Ω)+

Hence the converse inequality to (266) is obtained, so it must be an equality.

9.3 Discretization

The most obvious method of discretization would be to discretize by a Galerkin
procedure whereby Vh approximates H1

0 (Ω) and V +
h approximates H1

0 (Ω)+:

V +
h = {v ∈ Vh : v(x) ≥ 0, ∀x ∈ Ω} (267)

It is quite easy with piecewise linear continuous triangular elements because the
hat functions wi being positive all positive combination of these will have the
required properties:

V +
h = {v : v(x) =

N∑
1

viw
i(x), vi ≥ 0}

where N is the number of inner vertices in the triangulation.
Thus the minimization problem becomes

min
U≥0

1
2
UTA U − F (268)

It has been shown earlier that the Finite Element method on a uniform
triangulation for the Laplace operator is identical to the 5 points Finite Dif-
ference formula, except perhaps near the boundaries. So we have confidence is
considering that (268) discretizes (266) with, in the case d = 1

Ah =
1
h2


2 −1 0
−1 2 −1

. . .
−1 2 −1

0 −1 2

 (269)

and U,F the vectors made by the values of u and f at the grid points.

9.3.1 Linear Programming

Problem (268) is known as a quadratic programming problem with linear slack
constraints. There are packages to solve it. Furthermore the optimality con-
ditions are in the scope of linear programming packages and can be solved as
such:
Find U ∈ RN , Λ ∈ Rd such that
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A U − Λ = F (270)
U ≥ 0, Λ ≥ 0 (271)

But owing to the special structure of the matrix A and the simplicity of the
constraints, this may not be the best method.

9.3.2 Solution by Penalization

The easiest but perhaps not the best is to replace (268) by

min
U

1
2
UTA U − F +

1
2ε

∑
(U−i )2 (272)

and to solve it either by an iterative gradient method or to solve the (non-linear)
optimality conditions by a fixed point method like

AUn+1 +
1
ε
I(Un−)Un+1 = F

where I(Un+) is the diagonal matrix with 1 on the ith row if Un is negative
and 0 otherwise.

9.3.3 Solution by Projection

A better way is to start from an initial guess U0 and loop on

AUn+1/2 = F, Un+1
i = max(Un+1/2

i , 0) (273)

The convergence can be obtained by invoking the convergence theorem for
the projected gradient algorithm.Indeed a B-preconditioned gradient projection
method with step-size ρ applied on (268) would give a sequence generated by

B Un+1/2 −B Un = ρ(F −AUn), Un+1
i = max(Un+1/2

i , 0)

Choosing B = A and ρ = 1 gives back (273).
Note on the way that it might be more efficient to choose the ρ which minimize
the criteria of (268).

9.3.4 Solution by Pseudo-time and Enthalpy

Time dependant procedures seek U as the limit in t→∞ of

∂U

∂t
+AU = F

If A is a positive definite matrix, then the asymptotic solution indeed satisfies
AU = F . Following Fremond, for variational inequalities we can study

1
β(U)

∂U

∂t
+AU = F
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If U → β(U) is continuous, piecewise linear and

β(U) = ε if U < −ε
= 1 if U > 0

where 0 < ε << 1, then U tends to the solution of (268) when t → ∞ and
ε→ 0.
In effect in the region U < 0 the time derivative dominates AU − F and so U
remains constant in time, meaning that if U(x) reaches 0, it stays there and
does not become negative.

9.4 Phase Changes and Free Boundaries

In phase change problems the modelling contains naturally an enthalpy function
to account for the latent heat to tranform water into ice for instance. The
parameter ε accounts for ”mushy regions” of ice and water.
Let θ be the temperature of a system with water and ice. In the water Ωw we
have (κ is the thermal conductivity it is equal to κw in the water and κi in the
ice):

1
β(θ)

∂θ

∂t
−∇ · (κ∇θ) = 0

The mathematical limit ε → 0 may have three regions: water, ice at θ = 0
and ice at θ < 0.

In the water Ωw, θ ≥ 0 and
∂θ

∂t
− κw∆θ = 0, (274)

In the ice Ωi, θ = 0 and the heat flux
∂θ

∂t
− κi∆θ ≥ 0. (275)

or θ < 0 and
∂θ

∂t
− κi∆θ = 0. (276)

At the interface water-ice, there is continuity of θ and of κ∇θ . This problem
can be viewed as a free boundary problem; the interface water-ice is also un-
known but an additionnal boundary condition is given, namely the free bound-
ary Σ is defined by θ = 0 and the additional boundary condition is

κw
∂θ

∂n
|Σ+ = κw

∂θ

∂n
|Σ−

where n is the normal to Σ and + is on the side of the water.
Note that if the temperature in the ice never goes under 0 degree (that

depends on θGamma then (275) can be summarized by writing

min{∂θ
∂t

(x, t)−∇ · (κ(θ)∇θ)(x, t) , θ(x, t)} = 0 ∀x ∈ Ω, ∀t ∈ (0, t). (277)
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Note also that with Dirichlet conditions θ = θΓ on the boundary, the problem
is equivalent to find θ ∈ H1

θΓ
(Ω)+ = {w ∈ H1(Ω), w ≥ 0, w|Γ = θΓ} such that∫

Ω
(
∂θ

∂t
w + κ(θ)∇θ · ∇w) ≥ 0, ∀w ∈ H1

0 (Ω)+ (278)

and, finally, also equivalent to

min
θ(·,t)∈H1

θΓ
(Ω)+

∫
Ω

(θ
∂θ

∂t
+ κ(θ)∇θ · ∇θ) (279)

10 The BLACK and SCHOLES Equation

10.1 European Options

The Black & Scholes equation is used in finance to predict the price of an option
on a share in the market.

Consider a share which is worth St dollars at time t (for instance x=38 at
time t=0, i.e. now). We want to pay C dollars at time 0 to place an option
which will give us the right to buy the share at time T > 0 for K dollars (K=40
for instance); we are not obliged to buy the share at time T . So obviously if
the share is worth more than 40$ at time T we will exercise our right and if it
is less we will not.

More precisely there will be a profit if ST > C +K. The problem is to find
C or more generally C(x, t) for all x and use the result for x = S0, t = 0.

Remark As x could be invested elsewhere in a ”zero-risk” share at interest
rate r, a more practical inequality would be C(x, T ) < x −KerT , but for our
purpose that changes only the value of K.

10.1.1 Notations

t : time, x destined to be the price St of the share when it is used in conjunction
with t; St : the price of the share follows a stochastic differential equation

dSt = St(µdt+ σdw). (280)

Thus
µ : average tendency of the price of the share per dollar
σ : volatility of the share
C(x, t) : price of an option on a share of value x and at time t.
r : risk free interest rate.

We know that

C(x, T ) = ϕ(x) is given by ϕ(x) = max(x−K, 0)
C(x, t) ≈ x when x→ +∞ ∀t. (281)
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10.1.2 Example

σ = 0.03, r = 0.1,
µ = r, K = 40$, T = 6 months = 0.5

10.1.3 The Black and Scholes equation

The computation of C in the model of Black & Scholes involves the solution of
the following parabolic equation with given final data:

∂C

∂t
+

1
2
σ2x2 ∂

2C

∂x2 + µx
∂C

∂x
− rC = 0 in R+×]0, T [ (282)

It is also the expected value of ϕ(St)e−r(T−t) with St given by (280) and ST = x.

When there are more than one share x is multidimensional µ∂ϕ/∂x is replaced
by ~µ · ∇ϕ and the Laplace operator −∆ replaces −∂2C/∂x2.

Because of the singularity at x = 0 of the coefficients of the PDE, it contains
a hidden boundary condition (the limit of the PDE at x = 0):

∂C

∂t
− rC = 0 at x = 0 (283)

i.e. if r is constant:

C(0, t) = ϕ(0)e−
∫ T
t
r(τ,0)dτ = ϕ(0)er(t−T ) (284)

10.1.4 Change of variable

To remove the singularity at x = 0 the following change of variable is proposed

u(y, t) = C(ey, t) (285)

µ′ = µ− 1
2
σ2 (286)

τ = T − t (287)

Then the problem becomes

∂ϕ

∂τ
− 1

2
σ2 ∂

2ϕ

∂y2 − µ
′ ∂ϕ

∂y
+ rϕ = 0 in R×]0, T [ (288)

u(y, 0) = ϕ(ey) (289)

and when R is approximated by ]−L,+L[ (this process is called ”localization”
in finance) then (281),(283) become

u(L, τ) = eL, (i.e, C(x, T − t) ' x when x >> 1) (290)
u(−L, τ) = ϕ(0)er(τ−T ) (291)
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10.1.5 Stability

Equation (289) integrated and multiplied by u gives∫
Ω

1
2
∂u2

∂τ
+
∫

Ω

u2

2
∇· ~µ′+

∫
Ω
∇uT σ

2

2
∇u+

∫
Ω

(∇· (∇· σ
2

2
))
u2

2
+
∫

Ω
ru2 =

∫
∂Ω
...

(292)
The ’kinetic energy’ E =

∫
Ω u

2 will decay with time if

∇ · µ+∇ · (∇ · σ
2

2
) + r ≥ 0 (293)

because (292) gives a negative sign to ∂E/∂τ .

Remark
However a change of variable shows that this hypothesis is not absolutely

essential.
Let u1 = e−ατu then (289) becomes

∂u1

∂τ
+ αu1 − µ′

∂ϕ1

∂y
− σ2

2
∂2u1

∂y2 + ru1 = 0 (294)

so r is changed into r + α
Numerically however if (293) is not verified it is a good idea to do this change

of variable because it removes the exponential growth of u, something which is
always difficult to capture because the ”overflow” of real numbers when the
result of an arithmetic operation is too large.

10.2 Discretization

An explicit scheme would be

1
k

[um+1
j −umj ]− 1

2
σmj

2

h2 [umj+1−2ϕmj +umj−1]−
µ′mj
h

(umj+1−umj )+
rmj
2
umj = 0 (295)

One of the best implicit scheme is the Crank-Nicolson scheme :

1
k

[umj − um−1
j ]

−1
4
σmj

2

h2 [umj+1 − 2ϕmj + umj−1]− 1
4
σm−1
i

2

h2 [um−1
j − 2ϕm−1

j + um−1
j−1 ]

−
µ′mj
2h

(umj+1 − umj )−
µ′m−1
j

2h
(um−1
j − um−1

j−1 ) +
rmj
2
umj +

rm−1
j

2
um−1
j = 0

These can be applied either to the system written in (x, t) or to the one written
in (y, τ)

In the first case the coefficients σ and µ are constant and the analysis of
Von Neumann shows unconditional stability for the Crank-Nicolson scheme and
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of course precision in 0(h2 + k2). If (x, t are used then the same result holds
with non uniform spatial mesh obtained by transformation of the y-mesh , in
principle; however in practice it is also stable for a uniform mesh in x.

11 American Options

The model now requires that C(x, τ) never becomes larger (or smaller) than
ψ(x, τ) given. Thus it is a time dependant variational inequality

The problem is:

max{∂C
∂τ

+ ~µ′∇C + σTσ : ∇∇C − rC; ψ − C} = 0 (296)

where σTσ : ∇∇C means σkiσil∂2
xk,xl

C with a summation over repeated
indices.

11.1 Discretization and well posedness

Assume µ′i > 0 and d = 2. Denote by D0
l the central differencing operator which

uses the two points left and right if l=1, or up and down if l=2, of the current
point, and by D±j the one which uses the point left (with minus sign) or right
(or up or down) and the current point. Then a simple discretization of the PDE
is

1
k

[Cm+1
ij −Cmij ]+

∑
l=1,2

µ′lD
+
l C

m
ij +

∑
l,n,m=1,2

σlmσnmD
0
lD

0
nC

m
ij −rijCmij = 0 (297)

With boundary conditions it is a linear system for Cm: ACm = d.
So to discretize (296) we consider:

max{ 1
k

[Cm+1
ij − Cmij ] +

∑
l=1,2

µ′lD
+
l C

m
ij +∑

l,n,m=1,2

σlmσnmD
0
lD

0
nC

m
ij − rijCmij , ψij − Cmij } = 0 (298)

It is a problem of the type

A C ≤ d, C ≥ ψ (C − ψ)T (AC − d) = 0 (299)

Proposition If δt is small enough (298) has a unique solution.

Proof Let C1 C2 be two solutions, then
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A(C1 − C2) = 0 (300)
or C1 − C2 = 0 (301)
or C1 ≥ ψ AC1 = d A C2 ≤ d C2 = ψ (302)
or AC2 = d C2 ≥ ψ C1 = ψ AC1 ≤ d (303)

Therefore

A(C2 − C1) ≥ 0, C2 − C1 ≥ 0 (304)
or A(C2 − C1) ≤ 0, C2 − C1 ≤ 0 (305)

In all cases (C2 − C1)TA(C2 − C1) ≤ 0, but δt → 0 implies A → − 1
δtI, so

‖C2 − C1‖2 → α
δt with α < 0; therefore C2 = C1.

Remark

If µ = 0 and σ is constant, then uniqueness is true for all δt.

11.1.1 Solution by truncation

Solve at each time step

ACm+1/2 = d (306)

Set
Cm+1
ij = max(Cm+1/2

ij , ψij) (307)

11.1.2 Solution by penalization

Consider a perturbation of (298) with ε << 1. Then one generates the sequence:

(A+
1
ε
Im)Cm+1 = d+

1
ε
Imψ (308)

where Im is diagonal and has ones where Cm ≤ ψ.

11.2 Mesh refinement

The precision of the method depends much more on the mesh size here because
of the change of equation at a mesh point. For precise results one ought to use
variable mesh sizes; but then the computer program becomes involved and a
Finite Volume Method may be prefered.

12 REFERENCE

1. R. Jarrow, A. Rudd: Option pricing R. Irwin publishing co. Illinois 1983.

2. Cox, Rubinstein: Option Market 1985.



56 pages 55

13 Appendix A

13.1 Solution of the problem by the BPX method

Condition number of the Laplacian matrix
Scheme (30) for problem (28)-(29) leads to a linear system AΨh = Fh. One

could, of course, use a direct method (for example Choleski), but for large scale
problems we would rather use an iterative method like the Conjugate Gradient.
Unfortunately, the matrix A is ill conditioned and so, as soon as the number
of unknowns is large (say larger than 5000) we must use a preconditioner. The
multigrid method is particularly well suited to finite differences since construct-
ing nested grids is of course very simple.

Let us first show that the matrix A has a condition number in O(h−2). For
simplicity’s sake, let us assume that

h1 = h2 ≡ h, u = 0, L1 = L2 = 2π. (309)

The scheme may be written as

(AΨh)ij ≡ −
1
h2 (ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j) = fi,j (310)

where ψi,j ≈ u(ih, jh) and i, j = 1, ..., N − 1 with Nh = 2π.
We look for the solution of the scheme in the form

ψ(x, y) =
∑

δt,l=1,...,N−1

Re(uδt,lei(kx+ly)). (311)

By substituting uδt,lei(kx+ly) in the scheme, we obtain:

− 1
h2u

δt,lei(kih+ljh)[eikh + e−ikh + eilh + e−ilh − 4]) = fi,j (312)

So, if f̂δt,l is the discrete Fourier transform of f , that is

f(x, y) =
∑

δt,l=1,...,N−1

Re(f̂δt,lei(kx+ly)). (313)

then uδt,l = f̂δt,lh2/(4 sin2(kh/2) + 4 sin2(lh/2)) is the solution of the scheme,
because

eikh+e−ikh+eilh+e−ilh = 2 cos(kh)+2 cos(lh) = 4−4 sin2 kh

2
−4 sin2 lh

2
. (314)

For ψ to satisfy the boundary conditions, we must take a linear combination of
functions that give only sine functions:

ψ(x, y) =
∑

δt,l=0,...,N

uδt,l sin(kx) sin(ly) (315)
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and this is only possible if f itself has the same form, that is if f(x, y) =
−f(2π − x, y) = −f(x, 2π − y).

This computation also shows that vδt,l(x, y) = sin(kx) sin(ly) is an eigenvec-
tor of the scheme for the eigenvalue h−2(4 sin2(kh2 ) + 4 sin2( lh2 )) because

(Avδt,l)i,j =
1
h2 (4 sin2(kh/2) + 4 sin2(lh/2))vδt,l(ih, jh). (316)

Since we have (N − 1)2 solutions of this form and the matrix A has size (N −
1)2 × (N − 1)2 we have all the eigenvalues. The smallest one corresponds to
δt = l = 1 and the largest one to δt = l = π/h− 1

The condition number of A, i.e. the ratio of its largest to its smallest eigen-
value is now

cond(A) =
sin2(π2 −

h
2 )

sin2 h
2

≈ 4
h2 (317)

The BPX preconditioning Let us consider a multigrid mesh with K levels
obtained by subdividing each rectangle of the initial finite difference grid into
four identical rectangles. At level n the average size of the rectangles is denoted
by δth.

We solve the system AΨh = Fh by the preconditioned conjugate gradient
method with a preconditioning matrix C. The algorithm (20)-(29) from Chapter
4 requires us to be able to compute C−1b for a given vector b. Let us denote
by bδth the P 1 function (i.e. piecewise linear and continuous) equal to bi,j at the
vertex i, j of the triangular mesh obtained by subdividing each finite difference
rectangle into two triangles by a diagonal, always the same (cf. Chapter 2,
figure 2.9). We set

C−1b =
K∑
δt=1

Nδt∑
i=1

∫
Ω b

δt
h w

δt
i dx∫

Ω∇w
δt
i · ∇wδti dx

wδt (318)

where the sum is over all basis functions (hat functions wδti ) of level δt, then
over all K levels. Bramble et al. (1990) have shown that C−1A has a condition
number in O(1).

One should handle the coarsest level in a particular way, by solving the
problem exactly. The right formula is then (the coarse level is now level 0)

C−1b = A−1
0 Q0b+

M∑
δt=1

Nδt∑
i=1

∫
Ω b

δt
h w

δt
i dx∫

Ω∇w
δt
i · ∇wδti dx

wδt (319)

where A0 is the restriction of A to the coarse basis functions and Q0 is the
projection L2 on the coarse space.

Remark The method can also be applied with a finite element discretization
as soon as we have a sequence of nested grids. The result on the condition
number is independent of the space dimension.
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