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1 Semi-Analytical method of Zhang

1.1 Introduction

The semi analytical method proposed by Zhang [1] consists in deriving a new analyti-
cal approximate formula for arithmetic average Asian options of European type and in
computing the corresponding correction term equal to the difference between the true
price and the approximation. This correction term is governed by a Partial Differential
Equation with smooth coefficients and zero initial condition and is evaluated accurately
by a finite differences method. We only present the case of a fixed strike option when the
difference (r− δ) between the risk-free interest rate and the dividend rate is different from
zero. But floating strike options are treated in a similar way. Moreover, to deal with the
case r − δ = 0, it is enough to take the limit r − δ → 0 in the equations that we give.

1.2 Pricing and hedging approximations

The price at time t = 0 of the arithmetic average Asian call option with maturity T fixed
strike K spot S0 is given by C(0, S0, 0) where the function C satisfies the following PDE:

{
∂C
∂t + S ∂C

∂I + σ2

2 S2 ∂2C
∂S2 + (r − δ)S ∂C

∂S − rC = 0
with terminal condition C(S, I, T ) = max( I

T −K, 0)

After the following change of variables




ξ = TK−I
S e−(r−δ)τ − (1−e−(r−δ))

r−δ

τ = T − t

C(S, I, t) = e−δτ S
T f(ξ, τ),

the function f satisfies the following PDE :




∂f
∂τ − σ2

2

(
ξ + 1−e−(r−δ)τ

r−δ

)2
∂2f
∂ξ2 = 0 ∀(τ, ξ) ∈ [0, T ]× R

with the initial condition f(ξ, 0) = (−ξ)+
(1)

Zhang proposes an analytical approximation of the solution of this PDE based on the
following remark

∂2f(ξ, 0)
∂ξ2

= δ0(ξ)

where δ0(ξ) is the Dirac’s delta function concentrated at ξ = 0. Therefore the diffusion
effect only exists at ξ = 0 initially, and will be significant only for small values of ξ.
Dropping ξ in the diffusion coefficient in (1) we obtain the approximation f0(ξ, τ) from
the following equations :





∂f0

∂τ − σ2

2

(
1−e−(r−δ)τ

r−δ

)2
∂2f0

∂ξ2 = 0 ∀ξ ∈ R

f(ξ, 0) = (−ξ)+



The following change of time variable

dη =
σ2

2

(
1− e−(r−δ)τ

r − δ

)2

dτ

η =
σ2

4(r − δ)3
(−3 + 2(r − δ) + 4e−(r−δ)τ − e−2(r−δ)τ ) (2)

transforms the PDE into the standard heat equation
{

∂f0

∂η − ∂2f0

∂ξ2 = 0

f(ξ, 0) = (−ξ)+

The explicit solution is

f0(η, ξ) = −ξN

(
− ξ√

2η

)
+

√
η

π
e
− ξ2

4η

which gives the following approximations for the price and the delta of the Asian Option :

C0(S, I, t) = e−δτ S

T

(
−ξN

(
− ξ√

2η

)
+

√
η

π
e
− ξ2

4η

)

∆0 = e−δτ

(
1− e−(r−δ)τ

(r − δ)T
N

(
− ξ√

2η

)
+

1
T

√
η

π
e
− ξ2

4η

)
.

1.3 Finite Difference Computation of the correction term

Since
∂2f0

∂ξ2
=

e
− ξ2

4η

2
√

πη

the correction term f1(ξ, τ) = f(ξ, τ)− f0(ξ, τ) satisfies the following equation:
{

∂f1

∂τ − c(ξ, τ)∂2f1

∂ξ2 = R(ξ, τ)

f1(ξ, τ = 0) = 0
(3)

where

c(ξ, τ) =
σ2

2

(
ξ +

1− e−(r−δ)τ

r − δ

)2

and R(ξ, τ) =
σ2ξ

4
√

πη

(
ξ +

2
r − δ

(
1− e(r−δ)τ

))
.

To solve this equation with a finite difference scheme, it is necessary to localize the spatial
domain. The right hand hand of (3) goes to zero like ξ2e−ξ2/4η as |ξ| → +∞. We choose
the maximal discretization value X to satisfy e−X2/(4η) = 10−16 where η is evaluated at
τ = T . From the definition (2) of η , for small values of (r − δ), η ' 1

6σ2τ3 which gives
X ' 5σT 3/2.
We discretize the domain [−X, X]× [0, T ] into I× (N +1) points. I is the number of steps
along the ξ-axis and N is the number of points along the τ -axis. The value of the unknown
function f1(ξ, τ) is written as gn

i at the node (ξi, τn) We use a θ scheme with θ equal to
0.5. This scheme is known to be the Crank-Nicholson scheme. The partial derivatives are
approximated by the formulas:

∂g

∂τ
=

gn+1
i − gn

i

∆τ



∂2g

∂ξ2
=

gn
i−1 − 2gn

i + gn
i+1

2(∆ξ)2
+

gn+1
i−1 − 2gn+1

i + gn+1
i+1

2(∆ξ)2

where ∆τ = T/N and ∆ξ = 2X/I.
Denoting

c
n+1/2
i =

1
2
(c(ξi, τn+1) + c(ξi, τn))

R
n+1/2
i =

1
2
(R(ξi, τn+1) + R(ξi, τn)),

we discretize (3) in the following way

gn+1
i − gn

i

∆τ
− c

n+1/2
i

(
gn
i−1 − 2gn

i + gn
i+1

2(∆ξ)2
+

gn+1
i−1 − 2gn+1

i + gn+1
i+1

2(∆ξ)2

)
= R

n+1/2
i (4)

We notice that this scheme evaluates the second order partial derivative w.r.t. ξ at the
average of the nth and the (n+1)th time level. The scheme is found to be consistent (thanks
to the Taylor expension) with a truncation error of O(

(
∆τ)2, (∆ξ)2

)
. A rearrangement of

(4) gives the algorithm:

−s
n+1/2
i gn+1

i

2
+ (1 + s

n+1/2
i )gn+1

i − s
n+1/2
i gn+1

i+1

2

=
s
n+1/2
i gn

i

2
+ (1− s

n+1/2
i )gn

i +
s
n+1/2
i fn

i+1

2
+ ∆τR

n+1/2
i

with the discretization parameter s
n+1/2
i = c

n+1/2
i ∆τ/(∆ξ)2.

According to the initial condition in (3), the initial vector G0 = (g0
1, . . . , g

0
I ) = (0, . . . , 0).

We obtain inductively Gn+1 = (gn+1
1 , . . . , gn+1

I ) from Gn = (gn
1 , . . . , gn

I ) by solving by the
method of Gauss the I × I tridiagonal system of equations An.Gn+1 = Bn.Gn +Fn where

An =




αn
1 βn

1 0 . . . . . . 0

βn
2 αn

2 βn
2

. . .
...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . βn
I−1

0 . . . . . . 0 βn
I αn

I




Bn =




χn
1 γn

1 0 . . . . . . 0

γn
2 χn

2 γn
2

. . .
...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . . . . βn
I−1

0 . . . . . . 0 γn
I χn

I




and

∀1 ≤ i ≤ I, Gn
i = gn

i , Fn
i = ∆τR

n+1/2
i , αn

i = 1 + s
n+1/2
i

βn
i = −0.5s

n+1/2
i , χn

i = 1− s
n+1/2
i , γn

i = 0.5s
n+1/2
i

It is possible to take advantage of the tridiagonal property of the matrices An and Bn to
reduce the number of computations in the Gauss method.
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