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1 Standard European Option

Standard European Options are described in

std_doc

.

1.1 Localization and Discretization

We recall that the price of an European option in the Black and Scholes
model

dSt

St

= (r − δ)dt + σdWt
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can be formulated in terms of the solution to a Partial Differential Equation.
After logarithmic transformation Xt = log(St) the price at time t of the
option is Vt = u(t,Xt) where u solves the parabolic equation
{

∂u
∂t

(t, x) + σ2

2
∂2u
∂x2 (t, x) + (r − δ − σ2

2
)∂u

∂x
(t, x)− ru(t, x) = 0 in [0, T )× IR,

u(T, x) = ψ(x),∀x ∈ IR,

The notations are

• - x is the logarithm of the stock price

• - σ the volatility

• - r the interest rate

• - δ the instantaneous rate of dividend

• - ψ the pay-off

• - T the maturity

• - IR the real line (−∞, +∞)

The canonical form for a parabolic PDE (the one found in numerical
analysis books) is

∂v

∂τ
− ∂

∂x
(α

∂v

∂x
) + b

∂v

∂x
+ av = f in Ω× (0, T )

with initial conditions (v(x, 0) given) and boundary conditions on ∂Ω (for
instance v(x, t) given for x ∈ ∂Ω).

For smooth data and if α > 0 and a ≥ 0, this equation has one and only
one solution which depends continuously on the data. The condition on a is
not essential but the solution v may grow exponentially in time if a is not
positive.

The change of variable v(τ, x) = u(T − τ, ex) brings the B&S equation in
canonical form with α = σ2/2, b = r− δ− σ2/2, and a = r. Let x = log(S0).
We start by limiting the integration domain in space: the problem will be
solved in a finite interval D := [x− l, x + l] . One chooses l so that

IP (∃s ∈ [0, T ], |Xx
s | ≥ l) ≤ ε (1)

Once D is chosen, one discretizes in space and constructs the uniform grid
{xi} with

xi := x− l +
2i

M
, for 1 ≤ i ≤ M − 1.

Let VM denote the space generated by the indicator function of [xi, xi+1[ for
0 ≤ i ≤ M − 1.
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1.2 Finite Differences

One approximates the differential operator

Aφ :=
1

2
σ2∂2φ

∂x2
+ (r − δ − σ2

2
)
∂φ

∂x
− rφ

by a discrete operator Ah acting on functions uh(t, ·) defined on VM . The
easiest and most natural is to take:

Ahuh(t, xi) =
1

2
σ2 δ2uh

δx2
(t, xi) + (r − δ − σ2

2
)
δuh

δx
(t, xi)− ruh(t, xi)

with
δ2uh

δx2
(t, xi) =

1

h2
(uh(t, xi+1)− 2uh(t, xi) + uh(t, xi−1))

δuh

δx
(t, xi) =

1

2h
(uh(t, xi+1)− uh(t, xi−1)).

Remark 1 If |r − δ| /σ2 is not small then a less precise but more stable
finite difference approximation for this term is

δuh

δx
(t, xi) =

{
1
h
(uh(t, xi)− uh(t, xi−1)) if r − δ − σ2

2
< 0

1
h
(uh(t, xi+1)− uh(t, xi)) if r − δ − σ2

2
> 0

One then seeks the vector (uh(t, xi), 0 ≤ i ≤ M) such that, there holds

• In the case of natural Dirichlet boundary conditions,





for 0 ≤ t ≤ T, 1 ≤ i ≤ M − 1,
d
dt

uh(t, xi) + Ahuh(t, xi) = 0
uh(T, xi) = ψ(xi)
uh(t, x− l) = ψ(x− l),
uh(t, x + l) = ψ(x + l).

(2)

• In the case of Neumann boundary conditions,





for 0 ≤ t ≤ T, 1 ≤ i ≤ M − 1,
d
dt

uh(t, xi) + Ahuh(t, xi) = 0,
uh(T, xi) = ψ(xi),

uh(t, x1) = uh(t, x− l) + h∂ψ
∂x

(x− l),

uh(t, xM−1) = uh(t, x + l)− h∂ψ
∂x

(x + l).

(3)
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Set uh(t) := (uh(t, x1), . . . , uh(t, xM−1)) and

α :=
σ2

2h2
− 1

2h
(r − σ2

2
),

β := −σ2

h2
− r,

γ :=
σ2

2h2
+

1

2h
(r − σ2

2
).

According to this new notation, the operator Ah applied to uh(t, ·) can be
described as follows:

Ahuh(t, ·) = Mhuh(t) + vh,

with

• In the case of natural Dirichlet boundary conditions,

Mh =




β γ 0 · · · 0 0
α β γ 0 · · · 0
0 α β γ · · · 0

0
...

. . . . . . . . .
...

0 0 · · · α β γ
0 0 0 · · · α β




(4)

and

vh =




ψ(x− l)α
0
...
0

ψ(x + l)γ




;

• In the case of artificial Neumann boundary conditions,

Mh =




β + α γ 0 · · · 0 0
α β γ 0 · · · 0
0 α β γ · · · 0

0
...

. . . . . . . . .
...

0 0 · · · α β γ
0 0 0 · · · α β + γ




(5)
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and

vh =




−αh∂ψ
∂x

(x− l)
0
...
0

γh∂ψ
∂x

(x + l)




.

Remark 2 When M = 2p+1, x don’t belong to {xi ; 1 ≤ i ≤ M−1}. Thus,
at each time step, we use linear interpolation to compute the option value
corresponding to the initial stock price uh(t, x) which is then approximated
by 1

2
(uh(t, xp) + uh(t, xp+1)).

Now, let us discuss the discretization in time.

1.3 The “θ-scheme”

The standard θ-scheme (θ ∈ [0, 1]) of the parabolic equation (1.1) may be
summarize as follows: fix a discretization step k such that T = Nk and
construct an approximation

uh,k(t, x) =
N∑

n=0

un
h(x)1[nk,(n+1)k[(t)

where u0
h, . . . , u

N
h are the elements of VM satisfying





uN
h = ψh

for 0 ≤ n ≤ N − 1
un+1

h −un
h

k
+ Ah(u

n+1
h + θ(un

h − un+1
h )) = 0.

(6)

Besides, one must add the appropriate boundary conditions:
{

un
h(x− l) = ψ(x− l),

un
h(x + l) = ψ(x + l),

for Dirichlet boundary conditions and

{
un

h(x1) = un
h(x− l) + ∂ψ

∂x
(x− l)h

un
h(xN−1) = un

h(x, +l)− ∂ψ
∂x

(x + l)h.

for Neumann boundary conditions.
For θ = 0, we recover the Euler explicit scheme. Similarly, for θ = 1 the
scheme is the “fully implicit” Euler scheme, and for θ = 1

2
it is the Crank-

Nicholson scheme.
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Once we have computed uh,k, we recover the delta-hedging ∆ =
1

ex

∂u(t, x)

∂x
by its approximation on [nk, (n + 1)k[×]x− l, x + l[ given by

∆h =
1

ex

un
h(x)− un

h(x− h)

2h
.

1.4 Explicit Method

First, let us discuss the case θ = 0. Using the definition of Ah, the approxi-
mating scheme (6) is reduced to





uN
h = ψ

for 1 ≤ n ≤ M − 1
un

h(xi) = p1u
n+1
h (xi−1) + p2u

n+1
h (xi) + p3u

n+1
h (xi+1)

where

p1 = k(
σ2

2h2
− b

2h
)p2 = 1− k(r +

σ2

h2
) p3 = k(

σ2

2h2
+

b

2h
)

with b = r − δ − 1
2
σ2.

This scheme is stable if k ≤ h2

σ2+rh2 .

1.5 Implicit Methods

When we choose 1 ≥ θ > 0, we have to solve at each time step, a linear
system of the type

Muk,h(jk, ·) = Nuk,h((j + 1)k, ·)
where M and N are tridiagonal matrix of the type




b1 c1 0 · · · 0 0
a2 b2 c2 0 · · · 0
0 a3 b3 c3 · · · 0

0
...

. . . . . . . . .
...

0 0 · · · aM−1 bM−1 cM−1

0 0 0 · · · aM bM




.

For example in the case of natural Dirichlet boundary condition, M is given
by

ai = θk(
b

2h
− σ2

2h2
), bi = 1 + θk(r +

σ2

h2
), ci = −θk(

b

2h
+

σ2

2h2
)
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for every i and N is given by

ai = (1−θ)k(
σ2

2h2
− b

2h
), bi = 1−(1−θ)k(r+

σ2

h2
), ci = (1−θ)k(

b

2h
+

σ2

2h2
)

(7)
The fully implicit Euler, the Crank–Nicolson methods and all those with
θ 6= 0 require the resolution of a linear system

Mu = v,

where u and v are M -dimensional vectors. Let us describe two algorithms of
resolution of such a linear system.

1.5.1 Gauss Factorization

To solve such a system, the following Gauss factorization is often used; it is
based on the fact that a regular matrix can be factorized into

M = LU

where L is a lower triangular matrix (all elements above the diagonal are
zero) and U is an upper triangular matrix with all ones on its diagonal. The
solution of the linear system LUz = v is decomposed into Ly = v,Uz = y;
the first one is solved by a loop from 1 to M and the second one by a loop
from M to 1. It is easy to see that M triangular implies that L,U are also
triangular and so only the upper diagonal of U and the two diagonals of L
need to be found.
The computation of L,U, v′ are done in the same downsweep:

∣∣∣∣∣∣∣∣

b′M := bM , yM := vM

For 1 ≤ i ≤ M − 1, i increasing :
b′i = bi − ciai+1/b

′
i+1,

yi = vi − ciyi+1/b
′
i+1.

∣∣∣∣∣∣

u1 = y1/b
′
1

For 2 ≤ i ≤ M, i decreasing
zi = (yi − aiui−1)/b

′
i.

Remark 3 Note that it is necessary that all the bi (called the pivots) be not
0.
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1.5.2 SOR Iterative Methods

An alternative, which in the case of tridiagonal systems is justified only by
its programming simplicity, is to uses the Successive Over-Relaxation scheme
for solving the linear system

Mu = v

The solution is computed as the limit of a converging sequence, u = lim
p−→∞

up.

The basic steps are:

• Step 0 : Choose u0 ≥ 0. Choose ε > 0, 1 < ω < 2. Set p = 0.

• Step 1 : Form an intermediate vector hp+1 = (hp+1
i )1≤i≤N by

hp+1
i = − 1

mii

(vi −
i−1∑
j=1

Miju
p+1
j −

m∑
j=i

Miju
p
j).

• Step 2 Define up+1 by :

up+1
i = up

i + ω(hp+1
i − up

i ))

• Step 3 Set p = p + 1 and repeat until |up+1 − up| < ε where ε is the
prescribed precision.

In practice one stores all the up in the same computer memory, so the
exponent p does not appear in the computer program except as a loop index.

2 Standard American Option

Standard American Options are described in

std_doc

.
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2.1 Variational inequality in finite dimension

Consider the following approximating obstacle problem on Ql = [0, T ] × Ωl

where Ωl =]x− l, x + l[.

{
max(∂u

∂t
+ Au, ψ − u) = 0

u(T, .) = ψ
(8)

with a Dirichlet boundary condition u = ψ on ]0, T [×∂Ωl.
In order to make the numerical analysis of obstacle problem (8), we introduce
a finite difference grid in space similar to the European case and construct
an approximation:

uh,k(t, x) =
N∑

n=0

un
h(x)1[nk,(n+1)k[(t)

where u0
h, . . . , u

N
h are the elements of VM satisfying

{
uN

h = ψh

(
un+1

h −un
h

k
+

(
Ah(u

n+1
h + θ(un

h − un+1
h )), vh − un

h

)
l
≤ 0 ∀vh ≥ ψh

(9)

Let us describe in the two next sections the computational treatment of vari-
ational inequalities in finite dimension (9). For a better understanding, we
refer to [6] for a detailed presentation of the numerical analysis of variational
inequalities.

2.2 Linear complementarity problem

It is well-known that the variational inequality in finite dimension (9) can be
expressed as a linear complementarity problem.
At each time step n, we have to solve





MX ≥ G
X ≥ Φ
(MX −G,X − Φ) = 0

(10)

with 



M = I − kθAh

X = un

G = (I + k(1− θ)Ah)u
n+1

Φ = ψh
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Remark that M is a tridiagonal matrix:

M =




b c · · · · · · 0
a b c · · · 0
...

. . . . . . . . .
...

...
... a b c

0 · · · · · · a b




with 



a = θk
(
− σ2

2h2 + 1
2h

(r − δ − σ2

2
)
)

b = 1 + θk(σ2

h2 + r)

c = −θk
(

σ2

2h2 + 1
2h

(r − δ − σ2

2
)
)

We close this section by the description of three algorithms which solve the
linear complementarity problem (10)

2.2.1 Brennan-Schwarz method

Consider the tridiagonal matrix M̃ defined as follows:

M̃ =




b1 0 · · · · · · 0
a b2 0 · · · 0
...

. . . . . . . . .
...

...
... a bd−1 0

0 · · · · · · a bd




where bd = b and bi−1 = b− ac

bi

for i = −M, . . . , M .

Brennan and Schwartz ([4])have developed the following algorithm for pricing
American option related to the resolution of a new linear complementarity
problem 




M̃X ≥ G̃
X ≥ Φ

(M̃X − G̃,X − Φ) = 0

(11)

where G̃ = (g̃i) ,(i = −M, . . . , M), with g̃M = gM and g̃i−1 = gi− cgi

g̃i

. Their

method can be summarized as follows:

x−M = max(
g̃−M

b−M

, f−M).

And,
for −M + 1 ≤ i ≤ M , set

xi = max

(
g̃i − axi−1

bi

, fi

)
. (12)
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We refer to Jaillet et al. ([1])for a rigorous justication of the convergence of
this algorithm in the case of American Put.

2.2.2 PSOR Method

The linear complementarity problem (10) can be written as follows: find
vectors W = (wi)0≥i≥M−1 and Z = (zi)0≥i≥M−1 in IRM such that





W = MZ + V
(13.1)
W ≥ 0, Z ≥ 0
(13.2)
(W,Z) = 0 (13.3)

(13)

where we have set Z = X − Φ and V = MΦ−G.
Such a linear complementarity problem can be solved with a Projected-SOR
scheme in the following manner:

• Step 0: Choose z0 ≥ 0, 1 < ω < 2. Then, set p = 0.

• Step 1: Form:

yp+1
i = − 1

Mii

(vi +
i−1∑
j=1

Mijz
p+1
j +

m∑
j=i

Mijz
p
j )

• Step 2: Define the new vector zp+1 by:

zp+1
i = max(ψ(xi), zp

i + ω(yp+1
i − zp

i ))

• Step 3:Set p = p + 1 and repeat until |zp+1 − zp| < ε where ε is the
prescribed precision.

Convergence has been established by Cryer ([2]).

2.2.3 The Algorithm of Cryer

This algorithm is based on a direct method and is a modification of Saigal’s
(1970) algorithm. The main difference is that the data are scanned in alter-
nating forward and backward passes.
The basic idea of this kind of algorithm is : Choose an initial value which
satisfies both (13.1) and (13.2), maintain the two conditions during all steps
and make satisfy gradually the non-negative condition given in (13.3). The
solution of the problem (13) is then obtained.
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Let us introduce the following notations : N = {1, 2, · · · ,m}, if J ⊂ N ,
|J | denotes the number of elements in J ; N\J denotes the complement of
J with respect to N ; (MZ + V )|J ≥ 0 denotes the system of |J | inequal-
ities obtained by deleting column and row indices not belonging to J . We
recall that if M is a Minkowski matrix (M has positive principal minors,
positive diagonal entries and non-positive off-diagonal entries), so is M |J ,
and M−1 ≥ 0. With these notations, the basic steps of this algorithm can be
described as follows :

step 0 : Choose Z0 ≥ 0, such that (MZ0 + V )|J0 = 0, where J0 =
{i ∈ N : Z0

i > 0}. We can assume that J0 ⊃ Q = {i ∈ N : V 0
i < 0}. Then,

set p = 0.

step 1 : Denote W p = MZp + V, and Ip = {i ∈ N | W p
i < 0}

• If Ip = φ, stop. (W p, Zp) is the solution of problem.

• Otherwise, choose ip ∈ Ip and set Jp+1 = Jp
⋃{ip}. Compute Zp+1

such that (MZp+1 + V )|Jp+1 = 0, and Zp+1|N\Jp+1 = 0.

Set p = p + 1 and repeat until Ip = φ or p = m.

The above basic algorithm is valid for all Minkowski matrix. In the par-
ticular case where M is a tridiagonal Minkowski matrix, an implementation
of this basic method which minimizes the amount of computation can be
found in [3].

2.3 Splitting methods

We will give an alternate method to solve variational inequalities in finite
dimension (9) which is not related to linear complementarity problems.
The splitting methods can be viewed as an analytic version of dynamic pro-
gramming. The idea contained in such a scheme is to split the American
problem in two steps: we construct recursively the approximate solution uh,k

starting from uN = ψ and computing un
h for 0 ≤ n ≤ N in two steps as

follows:

• Step 1 We solve the following Cauchy problem on [nk, (n + 1)k[×]x−
l, x + l[ with Dirichlet or Neumann boundary conditions

{
∂w
∂t

+ Aw = 0, (t, x) ∈ [nk, (n + 1)k[×, ]x− l, x + l[
w(j + 1, ·) = un+1

h (.)

Denote by Sk[u
n+1
h ](·) the solution w.
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• Step 2

un
h(·) = max

(
ψh(·), Sk[u

n+1
h ](·))

Barles-Daher-Romano ([5]) prove the convergence of this scheme. As de-
scribed for the European case, we solve the first step using θ-schemes. For
instance, we can use explicit scheme and it can be shown that this scheme is
stable if k ≤ h2

2
.

Moreover, we are able to prove that the approximate solution obtained by
splitting methods are bounded above by those obtained by methods related
to linear complementarity problem.

3 Exotic Options

3.1 Barrier Options

We gather in the generic term barrier every option which value solves the
following parabolic partial linear equation,





∂u
∂t

+ 1
2
σ2 ∂2u

∂x2 + (r − δ − σ2

2
)∂u

∂x
− ru = 0 in [0, T )× Ω,

u(T, y) = ψ(y),∀y ∈ Ω,
u(t, y) = R(t, y),∀(t, y) ∈ [0, T ]× ∂Ω,

(14)

Let us give some examples:

• Out Options
We consider only the case of a down barrier L, the discussion for an
upper barrier U is similar.
For this option, Ω =]L, x + l[ and R(t, L) = R.

• In Options
For this option, Ω =]L, x + l[, ψ(y) = R and R(t, L) = C(T − t, L)
where C is the price of a standard European call with maturity T − t

• Double Barrier Out Options For this option, Ω =]L,U [ and R(t, L) =
R(t, U) = R.

• Double Barrier In Options For this option, Ω =]L,U [, ψ(y) = R, R(t, L) =
C(T − t, L) and R(t, U) = C(T − t, U).
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3.1.1 Algorithm

For barrier options, one also discretizes in space and time with a θ-scheme
and one solves with Gauss method (cf. there) in the case of european option
and with Psor method (cf. there ) in the american case. To obtain accurate
prices the grid points is located on the barrier, where we impose Dirichlet
boundary conditions. One uses linear interpolation to find the price value
and delta value corresponding to the initial stock price. If the initial stock
price is close to barrier one uses for delta one-sided second-order difference
approximation.

3.2 Asian Options

3.2.1 Rogers-Shi Fixed Asian Options

European style Asian option may be valued using one-dimensional PDEs
based on a scaling property of geometric brownian motion.[7]
Let y = K

x
and b = r − δ. The price of a Asian call fixed option

Ca(0, x) = IE

(
e−rT

(
1

T

∫ T

0

Ssds−K

)

+

)
,

can be formulated as
Ca(0, x) = e−δT xu(0, y)

where u is the solution of the following PDE





∂u
∂t

+ 1
2
σ2x2 ∂2u

∂x2 −
(

1
T

+ bx
)

∂u
∂x

= 0 in [0, T )×R+

u(t, 0) = 1−e−b(T−t)

bT

u(T, x) = 0 in R+. u(t,∞) = 0 in R+.

The delta of fixed-strike Asian call option is given by:

∆a = e−δT (u(0, y)− y
∂u(0, y)

∂y
)

The price of a Asian put fixed option

P a(0, x) = IE

(
e−rT

(
K − 1

T

∫ T

0

Ssds

)

+

)
,

can be formulated as

P a(0, x) = e−δT xu(0,
K

x
)
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with u solution of the PDE
{

∂u
∂t

+ 1
2
σ2x2 ∂2u

∂x2 −
(

1
T

+ bx
)

∂u
∂x

= 0 in [0, T )×R+

u(T, x) = x+ in R+.

The delta of fixed-strike Asian put option is given by:

∆a = e−δT (u(0, y)− y
∂u(0, y)

∂y
)

The PDEs are solved with a finite difference time-implicit scheme. One
discretizes in space and time and one solves the linear system with Gauss’
method (there). If necessary one uses linear interpolation to find the option
value corresponding to the initial stock price.
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