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1 Introduction

An American option with maturity T , is an option whose holder can exercise his
right of option in any time up to T . Let Xs denote the underlying asset price process,
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here modeled as a diffusion process:

dXt = b(t,Xt)dt + σ(t,Xt)dWt

X0 = x
(1)

where b and σ denote a vector and a matrix field on Rd and W is a d-dimensional
Brownian motion. Let Φ(Xs) denote the c ash-flow associated with the option. The

Nmc Price True Price ∆ True ∆ CPU
500 4.806 -0.378 4.1
1000 4.795 4.918 -0.386 -0.387 16.2
5000 4.804 -0.384 405.2
10000 4.804 -0.384 405.2

Table 1: Standard American Put, 20 exercise periods

price as seen at time t of such an American option is given by

P (t,Xt) = sup
θ∈Tt,T

E
(
e−
R θ

t
rsdsΦ(Xθ)

∣∣∣Ft

)

where Tt,T stands for the set of all the stopping times taking values on [t, T ] and r

denotes the spot rate process, which is here supposed to be deterministic.
provided The solution of this optimal stopping problem has been provided by El
Karoui and others [6] by using the theory of the Snell envelopes: the optimal stopping
time is given by

θ∗t = inf{s ∈ [t, T ] ; P (s,Xs) = Φ(Xs)}.
Moreover, the function P (t, x), giving the price of the option, can be characterized
as follows. We define the stopping region, also called exercise region, as

Es = {(t, x) ∈ [0, T ]× R+ : P (t, x) = Φ(x)}

and the continuation region as its complement, that is

Ec = {(t, x) ∈ [0, T ]× R+ : P (t, x) > Φ(x)}.

By using the Ito’s Lemma, one can prove that P (t, x) solves the following partial differential
equation: setting L as the infinitesimal generator of X (acting on the space variable only), that is

Lg(x) =
1
2

d∑

i,j=1

aij(x)
∂2g

∂xi∂xj
(x) +

d∑

i=1

bi(x)
∂g

∂xi
(x)

being a = σσ∗, then
∂P

∂t
(t, x) + LP (t, x)− r(t)P (t, x) = 0
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whenever P (t, x) > Φ(x), with the final condition P (T, x) = Φ(x). The rigorous formulation of
this problem is given by means of variational inequalities (see Bensoussan and Lions, [4]).
Thus, the problem of the pricing of an American option is a strongly nonlinear problem, and there
is non hope to find closed formulas. In order to numerically compute the price of an American
option, one can use either a deterministic or a stochastic algorithm.
Concerning the deterministic methods, they can be based on finite elements methods for variational
inequalities. But here, we are interested in a stochastic approach, that is in a Monte Carlo algorithm
for the pricing of American options. It turns out from a dynamic programming principle, but let
us firstly start by formalizing better the framework.
Let (Ω,F ,P) be a filtered probability space where a d-dimensional Browinan motion W is defined
and set Ft = σ(Ws : s ≤ t). Let Xt denote the underlying asset prices, which evolve according
to (1). The price at time t of an associated American option with maturity T and payoff function
Φ : Rd

+ → R is then

P (t, x) = sup
θ∈Tt,T

Et,x

(
e−r(θ−t)Φ(Xθ)

)
(2)

where we have supposed that the spot rate is constant. In order to numerically evaluate P (0, x),
that is the price as seen at time 0, it is possible to set up a Bellman dynamic programming principle.
Indeed, let 0 = t0 < t1 < . . . < tn = T be a discretization of the time interval [0, T ], with step size
equal to ∆t = T/n, and let (X̄k∆t)k=0,1,...,n an approximation of (Xt)t∈[0,T ], that is X̄k∆t ' Xk∆t.
The price P (k∆t, X̄k∆t) can be approximated by means of the quantity P̄k∆t(X̄k∆t), given by the
following recurrence equality:

Theorem 1.1 For any ∆t = T/n ∈ (0, 1), then P̄n∆t(X̄k∆t) = Φ(X̄n∆t) and for any k = n −
1, n− 2, . . . , 1, 0, one has

P̄k∆t(X̄k∆t) = max
(
Φ(X̄k∆t) , e−r∆t E

(
P̄(k+1)∆t(X̄(k+1)∆t)

∣∣∣ X̄k∆t

))
.

As a consequence, one can numerically evaluate the delta ∆(t, x) of an American option, that is
the derivative of the price with respect to the initial value of the underlying asset price: ∆(t, x) =
∂xP (t, x). Recall that this is important since it gives the sensibility of the price with respect to
the initial underlying asset price and also for the hedging of the option. By considering the case
t = 0, as in Theorem 1.1, then the following approximation ∆̄0(x) of ∆(0, x) can be stated.

Proposition 1.2 For any ∆t = T/n ∈ (0, 1), set

Γ∆t = {α ∈ Rd ; P̄∆t(α) < Φ(α)},

where P̄∆t(α) is defined as in Theorem 1.1, that is

P̄∆t(α) = max
(
Φ(α) , e−r∆t E

(
P̄2∆t(X̄2∆t)

∣∣∣ X̄∆t = α
))

.

Then, by setting

∆̄(α) = ∂α Φ(α)1Γ∆t + e−r∆t∂α E
(
P̄(k+1)∆t(X̄(k+1)∆t)

∣∣∣ X̄k∆t = α
)
1Γc

∆t

where ∂α denotes the gradient, one has

∆̄0(x) = Ex

(
∆̄(X̄∆t)

)
.
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Such results state that in order to numerically compute the price P (0, x) and its delta ∆(0, x),
it is sufficient to approximate a family of conditional expectations and of their derivatives, thus
allowing one to set up Monte Carlo simulations.
Existing Monte Carlo methods applied to this context, consist in the numerical evaluation of the
conditional expectations by means of a stratification of the path space for the approximation of
the transition density of the process Xt, as the quantization algorithm by Bally, Pagés, Printemp
[10], the algorithm by Broadie and Glassermann [2] or the one by Barraquand and Martineau [3].
Another Monte Carlo approach makes use of regression methods to perform the approximation of
the conditional expectation, as made by Longstaff and Schwartz [9] or by Tsitsiklis and VanRoy
[11]
Also in order to overcome the problem of the discretization of the path space, another method can
be used. It has been introduced by Lions and Regnier [8] and uses formulas allowing to represent
conditional expectations like E(F (Xt) |Xs = α) and its derivative ∂αE(F (Xt) |Xs = α) written in
terms of a suitable ratio of non-conditioned expectations, that is

E
(
F (Xt)

∣∣∣ Xs = α
)

=
E(F (Xt)πα

s )
E(πα

s )

∂αE
(
F (Xt)

∣∣∣ Xs = α
)

=
E(F (Xt)π1,α

s )E(πα
s )− E(F (Xt) πα

s )E(π1,α
s )

E(πα
s )2

(3)

being πα
s and π1,α

s suitable weights, which could also depend on suitable localizing functions. Such
representations can be proved by using Malliavin calculus techniques. A review of the main results
providing the formulas as in (3) can be found in Section 2, in the framework of the Black and
Scholes model; the main reference is the paper by Lions and Regnier [8] but a little different
approach (mainly for the multidimensional case) is developed here and can be found in Bally,
Caramellino and Zanette [1].
Therefore, representation (3) can be used for the practical purpose of the pricing of American op-
tions. In fact, since the weights πα

s and π1,α
s can be written explicitly, expectations like E(f(Xt)πα

s )
or E(f(Xt) π1,α

s ) can be approximated through the associated empirical means and used to numer-
ically compute the price P (0, x) and its delta ∆(0, x) by using Theorem (1.1) and Proposition 1.2,
thus avoiding the problem of the approximation of the transition density and of the discretization
of the path space. But this plan gives also another considerable gain, because it provides a Monte
Carlo algorithm for the evaluation of P (0, x) and ∆(0, x) which makes use of only one set of sim-
ulated trajectories for the computation of any conditional expectation appearing in Theorem 1.1
and in Proposition 1.2. Let us finally remark that, using this approach, the valuation of the delta is
not made through finite difference approximations but it is performed by means of representation
formulas written in terms of expectations. We postpone to Section 3 a comprehensive presentation
of the Lions and Regnier algorithm.

2 Formulas for the conditional expectation and

its gradient

In this section we summarize the formulas for the conditional expectation and its first derivatives
which will be used in the pricing algorithm. We restrict our attention to the Black and Scholes
model.
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2.1 The one dimensional case

Let X be a single underlying asset price process, driven by the Black and Scholes model, i.e. it
solves the following stochastic differential equation (sde)

dXt = (r − η)Xtdt + σXtdWt

X0 = x

where: x > 0; r, η ∈ R, being r the (constant) spot rate and η the dividend of the option; σ > 0
denotes the volatility; W is a 1-dimensional Brownian motion. Thus,

Xt = x exp
(
ht + σWt

)
, where h = r − η − 1

2
σ2. (4)

The aim is to study the conditional expectation

E(F (Xt) |Xs = α)

and its first derivatives, where 0 < s < t, α ∈ Rd
+ and F is a function with polynomial growth,

that is belonging to

Eb(R) = {f ∈M(R) : there exist C > 0 and m ∈ N such that |f(y)| ≤ C(1 + |y|m)}

where M(R) = {f : R→ R : f is measurable}. In such a case one can state the following result
(Lions and Regnier [8], Lemme 2.1.1 and Lemme 2.1.5):

Theorem 2.1 (Representation formulas I: without localization)
i) For any 0 ≤ s < t, F ∈ Eb and α > 0, one has

E
(
F (Xt)

∣∣∣ Xs = α
)

=
Ts,t[F ](α)
Ts,t[1](α)

where

Ts,t[f ](α) = E
(
f(Xt)

H(Xs − α)
σs(t− s)Xs

∆Ws,t

)
(5)

being H(ξ) = 1ξ≥0, ξ ∈ R, and

∆Ws,t = (t− s)(Ws + σs)− s(Wt −Ws).

ii) For any 0 ≤ s < t, Φ ∈ Eb and α > 0, one has

∂αE
(
F (Xt)

∣∣∣ Xs = α
)

=
Rs,t[F ](α)Ts,t[1](α)− Ts,t[F ](α)Rs,t[1](α)

Ts,t[1](α)2

where Ts,t[f ] is defined above and

Rs,t[f ](α) = −E
(
f(Xt)

H(Xs − α)
σs(t− s)X2

s

[ (∆Ws,t)2

σs(t− s)
+ ∆Ws,t − t

σ

])
. (6)
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Let us point out that, for any fixed function f , the operator Rs,t[f ](α) is simply the derivative of
Ts,t[f ](α): Rs,t[f ](α) = ∂αTs,t[f ](α).
In the proof of Theorem 2.1 it is shown the existence of a process πs,t ∈ L2(Ω) such that, roughly
speaking,

“ E
(
F (Xt)δ0(Xs − α)

)
” = E(F (Xt)H(Xs − α)πs,t)

where δ0 stands for the Dirac measure in 0 (notice that H is actually the distribution function
associated with δ0). Obviously, the Dirac mass is something “very irregular”. In some sense, the
Malliavin integration by parts formula allows to regularize it, thus to overcome the problem of
handling a Dirac mass, but it is worth to point out that this procedure provides an high variance
because of the presence of the Heaviside function H. Thus, it is very useful to give a localization
method for the computation of conditional expectations, as made in the following Lemma (similarly
to Lions and Regnier [8], Lemme 2.1.1 and Lemme 2.1.6).

Lemma 2.2 Let ψ : R→ [0, +∞) be such that
∫
R ψ(ξ)dξ = 1. Then the operators Ts,t and Rs,t,

defined in (5) and (6) respectively, can be localized as follows:

Ts,t[f ](α) = Tψ
s,t[f ](α) and Rs,t[f ](α) = Rψ

s,t[f ](α)

where

Tψ
s,t[f ](α) = E(f(Xt)ψ(Xs − α)) + E

(
f(Xt)

H(Xs − α)−Ψ(Xs − α)
σs(t− s)Xs

∆Ws,t

)
(7)

and

Rψ
s,t[f ](α) = −E

(
f(Xt)ψ(Xs − α)

∆Ws,t

σs(t− s)Xs

)

−E
(
f(Xt)

H(Xs − α)−Ψ(Xs − α)
σs(t− s)X2

s

[ (∆Ws,t)2

σs(t− s)
+ ∆Ws,t − t

σ

])
.

(8)

where Ψ denotes the probability distribution function associated with ψ: Ψ(y) =
∫ y

−∞ ψ(ξ)dξ.

By using the localized version for the operators, we can immediately set up localized representation
formulas:

Theorem 2.3 (Representation formulas II: with localization) For any 0 ≤ s < t, F ∈ Eb,
α > 0 and for any ψ : R→ [0, +∞), such that

∫
R ψi(ξ)dξ = 1, one has

E
(
F (Xt)

∣∣∣ Xs = α
)

=
Tψ

s,t[F ](α)

Tψ
s,t[1](α)

and

∂αE
(
F (Xt)

∣∣∣ Xs = α
)

=
Rψ

s,t[F ](α)Tψ
s,t[1](α)− Tψ

s,t[F ](α)Rψ
s,t[1](α)

Tψ
s,t[1](α)2

,

where the operators Tψ
s,t[f ](α) and Rψ

s,t[f ](α) are defined in (7) and (8) respectively.

We postpone to Section 2.3 a discussion on the choice of the localizing function ψ.
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2.2 The multidimensional case

Let X be process giving the dynamics of d underlying asset prices, driven by the Black and Scholes
model, i.e. it solves the following stochastic differential equation (sde)

dXt = (r̂ − η)Xtdt + σXtdWt

X0 = x ∈ Rd

where:

• x ∈ Rd
+;

• r̂, η ∈ Rd, with r̂i = r for any i = 1, . . . , d, being r the (constant) spot rate, and with η the
vector of the dividends of the option;

• σ denotes the d× d volatility matrix which we suppose to be non-degenerate;

• W is a d-dimensional correlated Brownian motion.

Without loss of generality, one can suppose that σ is a sub-triangular matrix, that is σij = 0
whenever i < j, and that W is a standard d-dimensional Brownian motion. Thus, any component
of Xt can be written as

Xi
t = xi exp

(
hit +

i∑

j=1

σijW
j
t

)
, i = 1, . . . , d (9)

where from now on we set

hi = r − ηi − 1
2

i∑

j=1

σ2
ij , i = 1, . . . , d.

The aim is to study the conditional expectation

E(F (Xt) |Xs = α)

where 0 < s < t, α ∈ Rd
+ and F is a function with polynomial growth, that is belonging to

Eb(Rd) = {f ∈M(Rd) : there exist C > 0 and m ∈ N such that |f(y)| ≤ C(1 + |y|m)}

where M(Rd) = {f : Rd → R : f is measurable}.
In the case of the geometric Brownian motion, that is whenever X evolves as in (9), it is quite easy
to state formulas for the conditional expectation as a direct application of the formulas provided
in the one-dimensional case. In few words, to this goal it suffices to consider an auxiliary process
X̃ with independent components for which a formula for the conditional expectation immediately
follows as a product. In a second step, such a formula can be adapted to the original process X
by means of an (inversible) function giving X from the auxiliary process X̃. We present here an
approach slightly different from the one developed by Lions and Regnier [8], which is detailed in
Bally et al. [1] (where all the proofs can be found).
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To our purposes, let `t = (`1t , . . . , `
d
t ) be a fixed C1 function and let us set

X̃i
t = xi exp

(
hi t + `i

t + σiiW
i
t

)
, i = 1, . . . , d (10)

which obviously satisfies the sde

dX̃t = (r̂ − η + `′t)X̃tdt + σ̄X̃tdWt

X̃0 = x
(11)

being σ̄ the diagonal matrix whose entries are given by σii, i = 1, . . . , d. As a first result, we study
a transformation allowing to handle the new process X̃ in place of the original process X. We set

σ̃ij =
σij

σjj
, i, j = 1, . . . , d, and σ̂ = σ̃−1 (12)

It is worth noticing that σ̂ is easy to compute because σ̃ is a triangular matrix. Moreover, σ̂ is
itself triangular and σ̂ii = 1 for any i. Thus,

Lemma 2.4 The function Ft and its inverse Gt = F−1
t such that Xt = Ft(X̃t) and X̃t = Gt(Xt)

are given by

F i
t (y) = e−

Pi
j=1 eσij`j

t yi

i−1∏

j=1

( yj

xj
e−hjt

)eσij

, i = 1, . . . , d, y ∈ Rd
+;

Gi
t(z) = e`i

t zi

i−1∏

j=1

( zj

xj
e−hjt

)bσij

, i = 1, . . . , d, z ∈ Rd
+.

Remark 2.5 In principle one could take ` arbitrarily. In Bally et al. [1], a detailed discussion
about possible choices for ` shows that standard methods (e.g. minimization of the variance) do not
allow to optimize with respect to `. Therefore, for practical purposes the simple choice `(t) = ` t
seems to be good enough. Concerning the (now) constant `, two main possibilities for ` can be
suggested:

• ` = 0: this simplifies the process X̃;

• ` = `∗, with `∗ chosen such that α̃ = Gs(α) = α (where α will stand for the value of X at
time s, see next Theorem 2.6), that is

`∗1 = 0 and, as i = 2, . . . , d, `∗i =
i−1∑

j=1

σ̂ij

(
hj − 1

s
ln

αj

xj

)
. (13)

Such a choice gives a formula for the conditional expectation in point of fact identical to
that provided by Lions and Reigner [8].

In the following, we refer to the choice `(t) = ` t. In particular, in such a case the transformation
Gt giving X̃t = Gt(Xt) can be rewritten as

Gi
t(z) = e`i t zi

i−1∏

j=1

( zj

xj
e−hjt

)bσij

, i = 1, . . . , d, z ∈ Rd
+. (14)

By using the process X̃, mainly the fact that its components are independent, we can easily obtain
a first formula for the conditional expectation and its gradient starting from the one-dimensional
one.
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Theorem 2.6 (Representation formulas I: without localization)
i) Let 0 ≤ s < t be fixed. For any function F ∈ Eb(Rd) and α ∈ Rd

+, one has

E
(
F (Xt) |Xs = α

)
=
Ts,t[F ](α)
Ts,t[1](α)

where

Ts,t[f ](α) = E
(
f(Xt)

d∏

i=1

H(X̃i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

)
(15)

being X̃s = Gs(Xs) and α̃ = Gs(α) [Gs being defined in (14)], H(ξ) = 1ξ≥0, ξ ∈ R, and

∆W i
s,t = (t− s)(W i

s + σiis)− s(W i
t −W i

s), i = 1, . . . , d.

ii) Let 0 ≤ s < t be fixed. For any function Φ ∈ Eb(Rd), one has, for j = 1, . . . , d,

∂αj
E

(
F (Xt) |Xs = α

)
=

j∑

k=1

σ̂kj
α̃k

αj
× Rs,t;k[F ](α)Ts,t[1](α)− Ts,t[F ](α)Rs,t;k[1](α)

Ts,t[1](α)2
,

where Ts,t[f ](α) is defined above and, as k = 1, . . . , d,

Rs,t;k[f ](α) = −E
(
f(Xt)

H(X̃k
s − α̃k)

σkks(t− s)(X̃k
s )2

[ (∆W k
s,t)

2

σkks(t− s)
+ ∆W k

s,t −
t

σkk

]
×

×
d∏

i=1,i 6=k

H(X̃i
s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

)
.

(16)

Remark 2.7 If no correlation is assumed among the assets, that is if the volatility matrix σ is
diagonal, then σ̂ = Idd×d. Thus, the sum appearing for the evaluation of ∂αjE(F (Xt) |Xs = α)
reduces to the single term with k = j, with coefficient α̃j/αj = e`js, which in turn is equal to 1
whenever ` = 0.

Let us now discuss formulas for the conditional expectation involving localization functions. If
we restrict our attention to product-type localizing function, then we can first state a localized
formula for the operators Ts,t[f ](α) and Rs,t;j [f ](α) and then for the conditional expectation and
its gradient. In fact, one first has

Lemma 2.8 Let ψ(x) =
∏d

i=1 ψi(xi), x = (x1, . . . , xd) ∈ Rd, with ψi ≥ 0 and
∫
R ψi(ξ)dξ = 1.

Then the operators Ts,t and Rs,t;j, defined in (15) and (16) respectively, can be localized as follows:

Ts,t[f ](α) = Tψ
s,t[f ](α) and Rs,t;k[f ](α) = Rψ

s,t;j [f ](α), k = 1, . . . , d,

where

Tψ
s,t[f ](α) = E(f(Xt)

d∏

i=1

[
ψi(Xs − α)) +

H(X̃i
s − α̃i)−Ψi(X̃i

s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

)
(17)
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and

Rψ
s,t;k[f ](α) = −E

(
f(Xt)

[
ψk(X̃k

s − α̃k)
∆W k

s,t

σkks(t− s)X̃k
s

+

+
H(X̃k

s − α̃k)−Ψk(X̃k
s − α̃k)

σkks(t− s)(X̃k
s )2

( (∆W k
s,t)

2

σkks(t− s)
+ ∆W k

s,t −
t

σkk

)]
×

×
d∏

i=1,i6=k

H(X̃i
s − α̃i)−Ψi(X̃i

s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

)
.

(18)
where Ψi denotes the probability distribution function associated with ψi: Ψi(y) =

∫ y

−∞ ψi(ξ)dξ.

By using the localized version for the operators, the localized representation formulas for the
conditional expectation and its gradient immediately follows:

Theorem 2.9 (Representation formulas II: with localization) For any 0 ≤ s < t, F ∈ Eb,
α ∈ Rd

+ and for any ψ ∈ Ld, one has

E
(
F (Xt)

∣∣∣ Xs = α
)

=
Tψ

s,t[F ](α)

Tψ
s,t[1](α)

and, as j = 1, . . . , d,

∂αjE
(
F (Xt)

∣∣∣ Xs = α
)

=
j∑

k=1

σ̂kj
α̃k

αj
× R

ψ
s,t;k[F ](α)Tψ

s,t[1](α)− Tψ
s,t[F ](α)Rψ

s,t;k[1](α)

Tψ
s,t[1](α)2

,

where the operators Tψ
s,t[f ](α) and Rψ

s,t;k[f ](α) are defined in (17) and (18) respectively.

Remark 2.10 In principle, one could take different localizing functions for each operator, that is:

E
(
F (Xt)

∣∣∣ Xs = α
)

=
Tψ1

s,t[F ](α)

Tψ2
s,t[1](α)

∂αjE
(
F (Xt)

∣∣∣ Xs = α
)

=
j∑

k=1

σ̂kj
α̃k

αj
× R

ψ3
s,t;k[F ](α)Tψ4

s,t[1](α)− Tψ5
s,t[F ](α)Rψ6

s,t;k[1](α)

Tψ7
s,t[1](α)2

.

Furthermore, what observed in Remark 2.7 holds here as well: when σ is diagonal, the sum giving
∂αjE(F (Xt) |Xs = α) reduces to the single term with k = j, with coefficient α̃j/αj = e`js, which
in turn is equal to 1 if ` = 0.

2.3 A short discussion on the localizing functions

Let us conclude this “theoretical” section with a brief analysis on the choice of the localizing
functions.
Let us first discuss the one dimensional case. By referring to Theorem 2.3, in order to compute
E(F (Xt) |Xs = α) one has to evaluate

Tψ
s,t[f ](α) = E

(
f(Xt)

[
ψ(Xs − α) +

H(Xs − α)−Ψ(Xs − α)
σs(t− s)Xs

∆Ws,t

])
,
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with f = F and f = 1. Such an expectation is practically evaluated by means of the empirical
mean obtained through many independent replication:

Tψ
s,t[f ](α) ' 1

N

N∑
q=1

f(X(q)
t )

[
ψ(X(q)

s − α) +
H(X(q)

s − α)−Ψ(X(q)
s − α)

σs(t− s)X(q)
s

∆W
(q)
s,t

]
.

The aim is now to choose the localizing function ψ in order to reduce the variance as well as
possible. To this purpose, let us introduce the quantity

If
1 (ψ) =

∫

R
E

(
f2(Xt)

[
ψ(Xs − α) +

H(Xs − α)−Ψ(Xs − α)
σs(t− s)Xs

∆Ws,t

]2)
dα,

which gives the integrated variance up to the constant (with respect to ψ) term Tψ
s,t[f ](α) =

Ts,t[f ](α). Then one has

Proposition 2.11 Setting L1 = {ψ : R → [0, +∞) ; ψ ∈ C1(R), ψ(+∞) = 0 and
∫
R ψ(t) dt =

1}, then
inf

ψ∈L1
If
1 (ψ) = If

1 (ψ∗),

where ψ∗ = ψ∗(ξ), ξ ∈ R, is a Laplace-type probability density function:

ψ∗(ξ) =
λ∗

2
e−λ∗ |ξ|, with λ∗ = λ∗[f ] =



E

(
f2(Xt)

(
1

σs(t−s) Xs
∆Ws,t

)2)

E
(
f2(Xt)

)




1/2

.

Remark 2.12 The optimal value of the parameter λ corresponding to f = 1 can be explicitly
written (see Bally et al. [1] - recall that x denotes the starting underlying asset price):

λ∗[1] = x−1 e−hs+σ2s

√
t + σ2s(t− s)

σ2s(t− s)
.

The above optimization criterium has been introduced by Kohatsu-Higa and Petterson [7]. In
principle, one could consider a measure more general than the Lebesgue one, namely to replace dα
with ρ(dα) in the expression for If

1 (ψ), but in such a case it is not possible to write down explicitly
the optimal localizing function.
Such an approach can be generalized to the multidimensional case [5], where the functional If

1 has
to be obviously replaced by

If
d (ψ) =

∫

Rd

E
(
f2(Xt)

d∏

i=1

[
ψi(X̃i

s − α̃i) +
(H −Ψi)(X̃i

s − α̃i)

σiis(t− s)X̃i
s

∆W i
s,t

]2)
dα̃.

Then the following result holds:

Proposition 2.13 Setting Ld = {ψ : Rd → [0, +∞) ; ψ(x) =
∏d

i=1 ψi(xi), where ψi ∈ L1, for
any i}, then

inf
ψ∈Ld

If
d (ψ) = If

d (ψ∗)
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where ψ∗(ξ) =
∏d

j=1 ψ∗j (ξj), ξ = (ξ1, . . . , ξd) ∈ Rd, with ψ∗j (ξj) = λ∗j
2 e−λ∗j |ξj |, ξj ∈ R and λ∗j =

λ∗j [f ], enjoys the following system of nonlinear equations:

λ∗j
2 =

E
(
f2(Xt)

[ ∆W j
s,t

σjjs(t− s)X̃j
s

]2 ∏

i : i6=j

[
λ∗i

2 +
( ∆W i

s,t

σiis(t− s)X̃i
s

)2])

E
(
f2(Xt)

∏

i : i 6=j

[
λ∗i

2 +
( ∆W i

s,t

σiis(t− s)X̃i
s

)2]) , j = 1, . . . , d.

Remark 2.14 If ` = 0 (see Remark 2.5 for details), for f = 1 the corresponding optimal values
of the parameters λj are given by (recall that x1, . . . , xd are the starting underlying asset prices)

λ∗j [1] = x−1
j e−hjs+σ2

jjs

√
t + σ2

jjs(t− s)
σ2

jjs(t− s)
, j = 1, . . . , d.

It is worth to point out that similar arguments could be used in order to handle the problem
of minimizing the variance coming out from the expectation giving the operator Rψ

s,t[f ](α) (and
Rψ

s,t;k[f ](α), see (7) and (17)). Anyway, for practical purposes, numerical evidences show that the
choice λ∗ = 1/

√
s works good enough (thus avoiding to weight the algorithm with the computation

of further expectations).
Finally, let us conclude with a short consideration. For simplicity, let us consider the one dimen-
sional case. The main problem is a good estimate of E(Φ(Xt) |Xs = α), which can be written as
the ratio between Tψ

s,t[Φ](α) and Tψ
s,t[1](α) but also in the following way:

E(Φ(Xt) |Xs = α) = E
(
Φ(Xt)

πψ
s,t

E(πψ
s,t)

)
, πψ

s,t = ψ(Xs − α) +
H(Xs − α)−Ψ(Xs − α)

σs(t− s)Xs
∆Ws,t

(one could also complicate things by considering two different localizing functions in the above
ratio...). So, another reasonable way to proceed might take into account the variance coming out
from the weight πψ

s,t. But since it is written in terms of a ratio, at this stage it does not seem
reasonably feasible to obtain results giving the associated optimal localizing function ψ.

3 The algorithm for the pricing of American op-

tions

We give here first a detailed presentation of the use of the representation formulas in the ap-
plied context of the pricing and hedging of American options. Secondly, we summarize the pric-
ing/hedging algorithm.

3.1 How to use the formulas in practice

The algorithm is devoted to the numerical evaluation of the price P (0, x) and the delta ∆(0, x) of
an American option with payoff function Φ and maturity T , on underlying assets whose price X
evolves following the Black-Scholes model, that is as in (9). It has been briefly described in the
Introduction, let us now go into the details.
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Let 0 = t0 < t1 < . . . < tn = T be a discretization of the time interval [0, T ], with step size equal to
ε = T/n. By using Theorem 1.1 and Proposition 1.2, the price P (0, x) is approximated by means
of P̄0(x), where P̄kε(Xkε), as k = 0, 1, . . . , n, is iteratively defined as:

P̄nε(Xnε) = Φ(Xnε) ≡ Φ(XT )
k = n− 1, . . . , 1, 0 : P̄kε(Xkε) = max

{
Φ(Xkε) , e−rε E

(
P̄(k+1)ε(X(k+1)ε)

∣∣∣ Xkε

)} (19)

and the delta ∆(0, x) is approximated by using the following plan:

setting ∆̄(Xε) =





∂α Φ(α)
∣∣∣
α=Xε

if P̄ε(Xε) < Φ(Xε)

e−rε ∂α E
(
P̄2ε(X2ε)

∣∣∣ Xε = α
)∣∣∣

α=Xε

if P̄ε(Xε) > Φ(Xε)

then ∆̄0(x) = Ex

(
∆̄(Xε)

)
.

(20)

The conditional expectation E(P̄(k+1)ε(X(k+1)ε) |Xkε) and the derivative ∂α E(P̄2ε(X2ε) |Xε =
α)|α=Xε

will be computed through the formulas given in the previous section, by means of suitable
empirical means evaluated over N simulated paths.

Remark 3.1 In the context of the geometric Brownian motion, the process X can be exactly
simulated at each instant tk = kε. So, in this particular case we do not need an approximation
X̄kε of Xkε, and thus we write directly Xkε. Furthermore, it is worth remarking that the algorithm
allows to use the same sample in order to simulate all the involved conditional expectations, as it
will follows from the next description.

As k = n, n− 1, . . . , 0 we need

Xi
kε = xi e(r−ηi− 1

2

Pi
j=1 σ2

ij)kε+
Pi

j=1 σijW j
kε , i = 1, . . . , d.

In order to have Xkε, we simply need Wkε. Since the algorithm is of backward-type, for the above
simulation we consider the following backward approach, which uses the Brownian bridge law.
Indeed, at time T = nε, we can simulate Wnε in the classical way:

Wnε =
√

nεUn, with Un = (U1
n, . . . , Ud

n), U i
n ∼ N(0, 1), i = 1, . . . , d, independent,

which gives Xnε. Now, in order to simulate X(n−1)ε, we need W(n−1)ε, which in turn can be
simulated by using the Brownian bridge: since Wnε is known, W(n−1)ε can be simulated by using
the conditional law of W(n−1)ε given the observed value for Wnε. It is well known that the law
of Ws given that Wt = y for 0 < s < t is given by a gaussian law with mean s/t y and variance
s(t− s)/t I. Thus,

W(n−1)ε =
n− 1

n
Wnε +

√
n− 1

n
εUn−1

with Un−1 = (U1
n−1, . . . , U

d
n−1), U i

n−1 ∼ N(0, 1), i = 1, . . . , d, are all independent. Obviously, we
can proceed similarly for the simulation of Wkε, as k = n− 2, . . . , 1:

Wkε =
k

k + 1
W(k+1)ε +

√
k

k + 1
ε Uk,

with Uk = (U1
k , . . . , Ud

k ), U i
k ∼ N(0, 1), i = 1, . . . , d, independent. Thus, the basic data in the

algorithm are given by

U = {U i,q
k ; k = 1, . . . , n (time), i = 1, . . . , d (dimension), q = 1, . . . , N (sample)} (21)

and the simulation algorithm can be summarized step by step as follows.
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1. Computation of the samples (W i,q
kε )i=1,...,d; k=1,...,n, q = 1, . . . , N : for any fixed sample

q = 1, . . . , N , set

for k = n : W i,q
nε =

√
nεU i,q

n , i = 1, . . . , d, and

for k = n− 1, . . . , 1 : W i,q
kε =

k

k + 1
W i,q

(k+1)ε +

√
k

k + 1
ε U i,q

k , i = 1, . . . , d.
(22)

2. Computation of the samples (Xi,q
kε )i=1,...,d; k=0,...,n, q = 1, . . . , N : for any fixed sample q =

1, . . . , N , set for k = n, n− 1, . . . , 1

Xi,q
kε = xi e(r−ηi− 1

2

Pi
j=1 σ2

ij)kε+
Pi

j=1 σijW i,q
kε , i = 1, . . . , d (23)

and Xi,q
0 = xi, i = 1, . . . , d. As an example, Figure 1 shows a set of simulated paths of X.

x
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time=1

time=0

Xq
1

Figure 1 An example of the tree turning out by simulating 10 paths of the process X
on [0, 1].

3. Computation of (X̃i,q
kε )i=1,...,d; k=0,...,n, q = 1, . . . , N , allowing to numerically evaluate the

conditional expectations involved in (19). In order to do this, if d > 1 one needs to introduce
the drift `, which could vary according to the time interval of interest [kε, (k + 1)ε], that is
one has something like `i

k, for k = 1, . . . , n−1 (time) and i = 1, . . . , d (dimension). As a first
stage, the `i

k’s can be chosen arbitrarily. But since one could also choose `k = (`1k, . . . , `d
k)

depending on the position of X at time kε, the weight `k could also depend on the qth

sample, as suggested in Remark 2.5. So let us consider the set

L = {`i,q
k ; k = 1, . . . , n− 1 (time), i = 1, . . . , d (dimension), q = 1, . . . , N (sample)}. (24)

Once L is given or computed, one can compute the sample (X̃i,q
kε )i=1,...,d; k=0,...,n: for any

fixed sample q = 1, . . . , N , set for k = n, n− 1, . . . , 1

X̃i,q
kε = xi e(r−ηi− 1

2

Pi
j=1 σ2

ij)kε+`i,q
k kε+σii W i,q

kε , i = 1, . . . , d, (25)

and X̃i,q
0 = xi, i = 1, . . . , d.

Let us point out some remarks:

(a) in the one dimensional case, the auxiliary process X̃ does not need, so one can drop
this computation or else set X̃q

kε = Xq
kε;

(b) each X̃i,q
k has to be evaluated in terms of its corresponding `i,q

k , q = 1, . . . , N ;
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(c) there are two main differences between Xi,q
kε and X̃i,q

kε :

i. X̃i,q
kε does not contain

∑i
j=1 σijW

j
kε but only σiiW

i
kε. As a consequence, X̃1,q

kε , . . . ,

X̃d,q
kε are independent, for any fixed q and k;

ii. X̃i,q
kε contains the term `i

k which does not appear in Xi,q
kε .

4. Computation of the weights {∆W i,q
k }i=1,...,d; k=1,...,n−1, q = 1, . . . , N , defined as

∆W i,q
k := ∆W i,q

tktk+1
= (tk+1 − tk)W i,q

tk
− tk(W i,q

tk+1
−W i,q

tk
) + tk(tk+1 − tk)σii.

So, for any fixed sample q = 1, . . . , N , set for k = n− 1, . . . , 1

∆W i,q
k = εW i,q

kε − kε(W i,q
(k+1)ε −W i,q

kε ) + kε2σii, 1, . . . , d. (26)

Once we have all the previous ingredients, we can proceed to the computation of P̄kε(Xkε) given
by (19). To this purpose, let us set

Pk[F ](Xq
kε) = E

(
F (X(k+1)ε)

∣∣∣ Xkε = α
)∣∣∣

α=Xq
kε

where
Xq

kε = (X1,q
kε , . . . , Xd,q

kε ) = the qth sample, given by (23).

which has to be considered here as a datum. Notice that for each fixed (time) k, we have a random
space grid Xq

kε = (X1,q
kε , . . . , Xd,q

kε ) ∈ Rd and we compute Pk[F ](Xq
kε) for each point of the grid.

By Theorem 2.6, Pk[F ](Xq
kε) is given by

Pk[F ](Xq
kε) =

E
(
F (X(k+1)ε)

d∏

i=1

H(X̃i
kε − α̃i)

X̃i
kε

∆W i
kε (k+1)ε

)

E
( d∏

i=1

H(X̃i
kε − α̃i)

X̃i
kε

∆W i
kε (k+1)ε

)

∣∣∣∣∣∣∣∣∣∣∣eα= eXq
kε

where, for ξ ∈ R, H(ξ) = 1 if ξ ≥ 0 and h(ξ) = 0 otherwise. In this practical context, such
expectations are computed and thus replaced by the associated empirical means, that is we set in
practice

Pk[F ](Xq
kε) =

N∑

q′=1

F (Xq′

(k+1)ε)
d∏

i=1

H(X̃i,q′

kε − X̃i,q
kε )

X̃i,q′
kε

∆W i,q′

k

N∑

q′=1

d∏

i=1

H(X̃i,q′

kε − X̃i,q
kε )

X̃i,q′
kε

∆W i,q′

k

(27)

Here, X̃i,q′

kε and ∆W i,q′

k are computed through (25) and (26) respectively. Finally, we can set up
the dynamic programming principle:

un(Xq
nε) = Φ(Xq

nε), q = 1, . . . , N

for k = n− 1, . . . , 1, 0 then uk(Xq
kε) = max

(
Φ(Xq

kε),Pk[uk+1](X
q
kε)

)
, q = 1, . . . , N.
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Obviously, uk gives the Monte Carlo estimate for P̄kε in (19) and finally the price P̄0 is approximated
by u0(X

q
0 ) ≡ u0(x) = max(Φ(x),P0[u1](Xq

ε )), where in practice we set

P0[u1](x) =
1
N

N∑
q=1

u1(Xq
ε ).

This procedure gives the price. Concerning the delta, everything starts at the final steps, that is
when time ε is considered. Indeed, by (20) we can approximate ∆̄0(x) = (∆̄0;1(x), . . . , ∆̄0;d(x))
through its Monte Carlo estimate v0(x) = (v0;1(x), . . . , v0;d(x)) given by, for j = 1, . . . , d,

v0;j(x) =
1
N

N∑
q=1

v1;j(Xq
ε )

where v1;j(Xq
ε ) = ∂αj

Φ(α)|α=Xq
ε

if uε(Xq
ε ) < Φ(Xq

ε ) and v1;j(Xq
ε ) = e−rε∂αjE(u2(X2ε) |Xε =

α)|α=Xq
ε

if uε(Xq
ε ) > Φ(Xq

ε ) (recall that u2 is the estimate for P̄2ε). The gradient ∂αΦ(α) should
obviously be considered as given in input. Concerning the gradient of the conditional expectation,
by using Theorem 2.6 one has to evaluate

Hj [u2](Xq
ε ) ≡ ∂αj

E
(
u2(X2ε)

∣∣∣ Xε = α
)∣∣∣

α=Xq
ε

=
j∑

m=1

σ̂mj
X̃m,q

ε

Xj,q
ε

× Rs,t;m[u2](Xq
ε )Ts,t[1](Xq

ε )− Ts,t[u2](Xq
ε )Rs,t;m[1](Xq

ε )
Ts,t[1](Xq

ε )2

(28)

where Ts,t and Rs,t;m are given by (15) and (16) respectively. Now, since they are weighted
expectations of random variables for which we have N samples, they can be practically evaluated
by means of the associated empirical mean: by taking into account (15) and (16), we write, for
f = u2 or f = 1 (more precisely, by replacing f(Xq′

2ε) = u2(X
q′
2ε) or f(Xq′

2ε) = 1 in the formulas
below),

Ts,t[f ](Xq
ε ) =

1
N

N∑

q′=1

f(Xq′
2ε)

d∏

i=1

H(X̃i,q′
ε − X̃i,q

ε )

σiiε2 X̃i,q′
ε

∆W i,q′
1

Rs,t;m[f ](Xq
ε ) = − 1

N

N∑

q′=1

f(Xq′
2ε)

H(X̃m,q′
ε − X̃m,q

ε )

σmms(t− s)(X̃m,q′
ε )2

[ (∆Wm,q′
1 )2

σmms(t− s)
+ ∆Wm,q′

1 − t

σmm

]
×

×
d∏

i=1,i 6=m

H(X̃i,q′
ε − X̃i,q

ε )

σiis(t− s)X̃i,q′
ε

∆W i,q′
1

(29)
This concludes the analysis of the pricing/hedging algorithm.

Let us point out that, for the sake of simplicity, in the above description we have taken into account
the non localized formulas. In practice, it is much better to use localizing functions in order to
reduce the variance, so one should use the formulas coming from Theorem 2.9. Obviously, nothing
changes except for the choice of the localizing functions, for which we refer to the discussion in
Section 2.3.
Finally, let us observe that one could use a further technique allowing to reduce the variance: the
introduction of a control variable. Unfortunately, there is not a standard way to proceed in this
direction. For example, one could use as a control variable the price of the associated European
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option. The idea is the following. For a fixed initial time t and underlying asset price x, let us set
P am(t, x) and P eu(t, x) as the price of an American and European option respectively, with the
same payoff Φ and maturity T . We define

P (t, x) = P am(t, x)− P eu(t, x).

Then it is easy to see that

P (t, Xt) = sup
θ∈Tt,T

E
(
e−r(θ−t)Φ̂(θ, Xθ)

∣∣∣Ft

)

where Tt,T stands for the set of all the stopping times taking values on [t, T ] and Φ̂ is defined by

Φ̂(t, x) = Φ(x)− P eu(t, x)

(notice the obstacle Φ̂(t, x) is now dependent on the time variable also, and is such that Φ̂(T, x) =
0). Thus, for the numerical valuation of P (0, x), one can set up a dynamic programming principle
in point of fact identical to the one previously described, provided that the obstacle Φ is replaced
by the new obstacle Φ̂(t, x). Once the estimated “price” P̄0(x) and “delta” ∆̄0(x) are computed,
the approximation of the price and delta of the American option is then given by

P̄ am
0 (x) = P̄0(x) + P eu(0, x) and ∆̄am

0 (x) = ∆̄0(x) + ∆eu(0, x)

respectively. Notice that the new obstacle has to be evaluated at each time step: in order to set up
this program, it should be possible to compute the price/delta of an European option on Φ. This
happens for some call or put options, for which prices and deltas are known in closed form. But
one could think also to proceed by simulation for their computation, by using the formulas given
in Theorem 2.1 and Theorem 2.6.

3.2 Sketch of the pricing/hedging algorithm

The algorithm itself can be stated as follows. We refer here to the simplest case: we do not consider
localizing functions (but we underline in footnote where they should be) and control variables.

• Set the diffusion and option parameters: the dimension d, the starting point x, the interest
rate r and the dividends ηi, the volatility matrix σ and the auxiliary matrices σ̃ and σ̂, the
maturity T , the payoff Φ and its first derivatives ∂jΦ, j = 1, . . . d.

• Choose n and set ε = T/n.

• STEP n

– Produce Uq
n ∼ N(0, I), q = 1, . . . , N .

– Using (22), compute W q
nε, q = 1, . . . , N .

– Using (23), compute Xq
nε, q = 1, . . . , N .

– Initialization: set un(Xq
nε) = Φ(Xq

nε).

• STEP k, for k=n-1,...,1
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– Produce Uq
k ∼ N(0, I), q = 1, . . . , N .

– Using (22), compute W q
kε, q = 1, . . . , N .

– Using (23), compute Xq
kε, q = 1, . . . , N .

– Do the following1.

∗ Choose `q
k, q = 1, . . . , N . For example:

choice 1: `q
k = 0;

choice 2: `q
k = `∗(Xq

kε) as in (13) (with α = Xq
kε and s = kε):

`1,q
k = 0 and for i = 2, . . . , d: `i,q

k =
i−1∑

j=1

σ̂ij

(
hj − 1

kε
ln

Xj,q
kε

xj

)
.

∗ Using (25), compute X̃q
kε, q = 1, . . . , N .

– Using (26), compute ∆W q
k , q = 1, . . . , N .

– Using (27)2, compute Pk[uk+1](X
q
kε), q = 1, . . . , N .

– Compute for any q = 1, . . . , N ,

uk(Xq
kε) = max

(
Φ(Xq

kε), e
−rε Pk[uk+1](X

q
kε)

)

– If k=1 then add the following3.

∗ Using (29)4 and (28), compute Hj [u2](Xq
ε ), j = 1, . . . , d, q = 1, . . . , N .

∗ Compute for any j = 1, . . . , d and q = 1, . . . , N ,

v1;j(Xq
ε ) = ∂jΦ(Xq

ε )1{u1(X
q
ε )<Φ(Xq

ε )} + e−rεHj [u2](Xq
ε )1{u1(X

q
ε )>Φ(Xq

ε )}.

Remark. For q = 1, . . . , N , Uq
k+1, W q

(k+1)ε, Xq
(k+1)ε, `q

k, X̃q
kε, ∆W q

k and uk+1(X
q
kε), will

not be employed anymore.

• STEP 0:

– Compute

P0[u1](x) =
1
N

N∑
q=1

u1(Xq
ε ).

and set
u0(x) = max

(
Φ(x), e−rε P0[u1](x)

)
,

which finally approximates the price P (0, x).

1This step is devoted to the multidimensional case: recall that X̃ ≡ X in the one dimensional
case.

2Or: first choose the localizing (=probability density) functions ψi,, i = 1, . . . , d, compute the
Ψi’s as the associated probability distribution functions and after use the localized version of (27),
coming from part i) of Theorem 2.9 (or Theorem 2.3 if d = 1).

3This step is devoted to the computation of the delta.
4Or: first choose the localizing (=probability density) functions ψi, i = 1, . . . , d, compute the

Ψi’s as the associated probability distribution functions and after use the localized version of (29),
coming from part ii) of Theorem 2.9 (or Theorem 2.3 if d = 1).
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– Compute for any j = 1, . . . , d

v0;j(x) =
1
N

N∑
q=1

v1;j(Xq
ε ),

which finally approximates the jth component of the delta vector ∆(0, x).

References

[1] V. Bally, L. Caramellino and A. Zanette (2003). Pricing American options by Monte Carlo
methods using a Malliavin Calculus approach. Technical report, INRIA. 4, 7, 8, 11

[2] M. Broadie and P. Glassermann (1997). Pricing American-style securities using simulation.
Jourbal of Economic Dynamics and Control, 21, 1323-1352. 4

[3] J. Barraquand and D. Martineau (1995). Numerical valuation of high dimensiona multi-
variate American securities. Journal of Finance and Quantitative Analysis, 30, 383-405.
4

[4] A. Bensoussan and J.L. Lions (1984). Impulse Control and Quasivariational Inequalities.
Gauthiers-Villars. 3

[5] B. Bouchard and N. Touzi (2002). On the Malliavin approach to
Monte Carlo approximation of conditional expectations. Prépublication du
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www.proba.jussieu.fr/mathdoc/preprints/index.html 11

[6] N. El Karoui C.Kapoudjan E.Pardoux S.Peng M.C.Quenez reflected solutions of Backward
SDE’s and related obstacle problems for PDE’s. The Annals of Probability 1997, Vol. 25,
No 2 , 702-73. 2

[7] A. Kohatsu-Higa and R. Pettersson (2001). Variance reduction methods for simulation of
densities on Wiener space. Preprint. 11

[8] P.L. Lions and H. Regnier (2001). Calcul du prix et des sensibilités d’une option américaine
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