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Abstract

We present here the quantization method which is well-adapted for the pricing
and hedging of American options on a basket of assets. Its purpose is to compute
a large number of conditional expectations by projection of the diffusion on optimal
grid designed to minimize the (square mean) projection error ([22]). An algorithm
to compute such grids is described. We provide results concerning the orders of the
approximation with respect to the regularity of the pay-off function and the global size
of the grids. Numerical tests are performed in dimensions 2, 4, 6, 10 with American
style exchange options. They show that theoretical orders are probably pessimistic.
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1 Introduction and reference model

The aim of this paper is to present, to study and to test a probabilistic method for pricing
and hedging American style options on multidimensional baskets of traded assets. The
asset dynamics follow a d-dimensional diffusion model between time 0 and a maturity time
T . We especially focused on a classical extension of the Black & Scholes model in which
the volatility may depend on the asset prices. However, a large part of the algorithmic
aspects of this paper can be applied to more general models.

Pricing an American option in a continuous time Markov process (St)t∈[0,T ] consists
in solving the continuous time optimal stopping problem related to an obstacle process.
In this paper we are interested in “Markovian” obstacles of the form ht = (h(t, St) which
are the most commonly considered on financial markets. Roughly speaking, there are two
types of numerical methods for this purpose:
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– First, some purely deterministic approaches coming from Numerical Analysis: the
solution of the optimal stopping problem admits a representation v(t, St) where v satisfies a
parabolic variational inequality. So, the various discretizing techniques like finite difference
or finite element methods yield an approximation of the function v at discrete points of a
time-space grid (see e.g. [30] for an application to a vanilla put option or [9] for a more
comprehensive study).

– Secondly, some probabilistic methods based on the dynamic programming formula
or on the approximation of the (lowest) optimal stopping time. In 1-dimension, the most
popular approach to American option pricing and hedging remains the implementation of
the dynamic programming formula on a Binomial tree, originally initiated by Cox-Ross
& Rubinstein as an elementary alternative to continuous time Black & Scholes model.
However, let us mention before the massive development of Mathematical Finance, the
pioneering work by Kushner in 1977 (see [25] and also [27]) in which the Markov chain
approximation was first introduced, including its links with the finite difference method.
Concerning the consistency of time discretization, see [29].

These methods are quite efficient to handle vanilla American options on a single asset
but they quickly become intractable as the number of the underlying assets increases.
Usually, numerical methods become inefficient because the space grids are built regardless
of the distributions of the asset prices. The same problem occurs for finite state Markov
chain approximation “à la Kushner”. For the the extension of binomial tree into multino-
mial trees, the difficulty comes from the geometric shape of a tree compatible with all the
dimension and correlation constraints.

More recently, the problem gave birth to an extensive literature in order to overcome
the dimensionality problem. All of them finally lead to some finite state dynamic pro-
gramming algorithm either in its direct form or through the backward approximation of
the (lowest) optimal stopping time. In [8], Barraquant & Martineau a sub-optimal 1-
dimensional problem is solved: it amounts to process as if the obstacle process itself had
the Markov property. In [33], the algorithm devised by Longstaff & Schwartz is based on
conditional expectation approximation by regression along a finite truncation (ϕi(St))i∈I

of an orthogonal basis (ϕk(St))k≥1 of L2(σ(St),P). In [37], Tsitsiklis & Van Roy use a
similar idea but for a modified Markov transition. In [11], Braodie & Glassermann gen-
erates some random grids at each time step and compute some companion weights using
some statistical ideas based on the importance sampling theorem.

Finally in [19] and [20] Fournié et al. initiated an approach based on Malliavin calculus,
to compute conditional expectations and their derivatives with respect to a parameter.
This leads to a pure Monte Carlo method. Lions and Régnier in [32] use the same approach
to price American options and compute their Greeks.

In this paper, we propose and study a probabilistic method based on grids like in the
original finite state Markov chain approximation method. First, we discretize the asset
price process at times tk := kT/n, k = 0, . . . , n (if necessary, we introduce the Euler
scheme of the price price diffusion process, still denoted Stk for a while). The key point
is that we will not settle these grids a priori: we will use our ability to simulate large
samples of (Stk)0≤k≤n to produce at each time tk a grid Γ∗k which is optimal among all the
grids with size Nk in the following sense: the closest neighbour rule projection πΓ∗(Stk) of
Stk onto the grid Γ∗k is the the best least square approximation of Stk among all random
vectors Z such that |Z(Ω)| ≤ Nk. Namely

‖Stk − πΓ∗k(Ŝtk)‖2 = min
{
‖Stk − Z‖2 , Z : Ω → Rd, |Z(Ω)| ≤ Nk

}
.

In some sense we will produce and then use at each time step the best possible grid of
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size Nk to approximate the d-dimensional random vector Stk . For historical reasons coming
from Information Theory, πΓ∗k or πΓ∗k(Stk) are often called the optimal quantizer of Stk . The
resulting error bound ‖Stk −πΓ∗k(Stk)‖2 is called the lowest (quadratic mean) quantization
error. It has been extensively investigated in Signal Processing and Information Theory
for more than 50 years (see [23] or more recently [22]). Thus, one knows that it goes to 0

at a O(N
− 1

d
k ) rate as Nk →∞.

Except in some specific 1-dimensional cases of little numerical interest, no closed form
is available neither for the optimal grid Γ∗k, nor for the induced lowest quantization error.
In fact little is known on the geometric structure of these grids in higher dimension.
However, starting from the integral representation (valid for any grid Γ)

‖Stk − πΓ(Ŝtk)‖2
2

= E
(

min
x∈Γ

|Stk − x|2
)

and using its regularity properties as an almost everywhere differentiable symmetric func-
tion of Γ, one may implement a stochastic gradient algorithm that converges to some
(locally) optimal grid. Furthermore, the algorithm yields as by-products the weights
(PStk

-mass of the Voronoi tessels of the grid and the quantization error) involved in the
pricing of the American option (see subsection 2.2). Thus, Fig.1 illustrates on the bivariate
Normal distribution that an optimal grid gets concentrated on heavily weighted areas.

The paper is organized as follows. Section 2 of the paper is devoted to the description of
the quantization tree algorithm for pricing American options, to the study of its theoretical
rate of convergence. Then, its optimization and the algorithmic aspects to achieve this
optimization are developed. This section is partially adapted from a general discretization
method devised for Reflected Backward Stochastic Differential Equations (RBSDE) in [3].

Time discretization (subsection 2.1) amounts to approximating a continuously exercis-
able American option by its Bermuda counterpart to be exercised only at discrete times
tk, k = 0, . . . , n. The theoretical premium of the Bermuda option satisfies a backward dy-
namic programming formula. The quantization tree algorithm is defined in subsection 2.2:
it simply consists in plugging the optimal quantizers Ŝtk := πΓ∗k(Stk) of the Stk ’s in this
formula. Some weights appears that are obtained by the stochastic grid optimization pro-
cedure mentioned above. In subsection 2.3, the rate of convergence of this algorithm is
derived for Lipschitz continuous pay-offs as a function of the time discretization step T/n
and of the Lp-quantization errors ‖Stk−πΓ∗

k (Stk)‖p , k = 1, . . . n. Then a short background
on optimal quantization, its asymptotics is provided in subsection 2.4. In subsection 2.5,
the algorithm to optimize the grids of the quantization tree is detailed. The last subsection
deals with number N := 1 + N1 + · · ·+ Nn of elementary quantizers used to produce the
successive optimal quantizer grids on each time layer. We propose an optimal procedure
to dispatch a priori these N Rd-valued vectors among the layers and we derive some error
bounds depending on the mean quantization error when the payoff is Lipschitz continu-
ous. When the quantizer of each layer is optimal we obtain an a priori error bounds of
the form C(n−1/2 + n(N/n)−

1
d ) which can be improved (1 instead of 1/2 when the payoff

is semi-convex).
In Section 3, we design an approximating quantized hedging strategy following the ideas

by Föllmer & Sondermann on incomplete markets. We are in position to estimate the
induced some error bounds, called local residual risks of the quantization tree algorithm.
To this is the aim of Section 4. To this end, we combine some methods borrowed from
RBSDE Theory, analytical techniques for p.d.e. and quantization theory. We get a global
rate of convergence for the hedging strategy which seems to be the first of that kind.
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Section 5 is devoted to the experimental validation of the method. We present extensive
numerical results which tend to show that when the grid are optimal (in the quadratic
quantization sense), the spatial order of convergence is better than that obtained with
usual grid methods. The tests are carried out on multi-dimensional American exchange
options on (geometric) index in a standard d-dimensional decorrelated Black & Scholes
model. This rate, even better than forecast by theory, makes up for the drawback of an
irregular approximation. Two settings have been selected for simulation: one “in-the-
money” and one “out-of-the-money”, both in several dimensions d = 2, 4, 6, 10. In the
worst case (d=10) case, the computed premia remain within 3, 5% of the reference price.

Before going into technicalities, one may mention an obvious methodological difference
between the quantization tree algorithm and the regression method [33]. The Longstaff-
Schwartz approach makes the choice of a smooth but global approximation whereas we
privilege an irregular (piecewise constant) but local approximation. Among the expected
advantages of the local feature of quantization approximation, a prominent one is that it
may lead to higher order approximations of the price, involving the space derivatives i.e.
the hedging (see e.g. [6] for a first approach in that direction). A second asset, probably the
most important for operating applications, is that, once the asset price process has been
appropriately quantized, it can almost instantly price all possible American (vanilla) pay-
offs without any further Monte Carlo simulations. Finally, when the diffusion process is a
function of the Brownian motion like in the Black & Scholes model, the quantization tree
algorithm becomes completely parameter free: it suffices to call upon some quantization
grids of multi-variate Normal distributions, possibly stored on a CD-Rom for ever.

The reference model We consider a market on which are traded d risky assets S1, . . . , Sd

and a deterministic riskless asset S0
t := ert, r ∈ R between time t := 0 and the maturity

time T > 0. One typical model for the price process of the risky assets is the following
diffusion model

dSi
t = Si

t(r dt +
∑

1≤j≤q

σij(e−rtSt) dW j
t ), Si

0 := si
0 > 0, 1 ≤ i ≤ d (1)

where W := (W 1, . . . , W q) is a standard q-dimensional Brownian Motion defined on a
probability space (Ω,A,P) and

σ : Rd −→M(d× q) is a bounded and Lipschitz continuous. (2)

The filtration of interest will be the natural (completed) filtration F := (FS
t )t∈[0,T ] of S

(which coincides with that of the Brownian motion as soon as σσ∗(x) > 0 for every x).
For notational convenience, we will denote c(x) := Diag(x)σ(x). Note that c and the

drift b(x) := rx are Lipschitz so that a unique strong solution exists for (1) on (Ω,A,P).
Furthermore, it is classical background that, for every p ≥ 1,

Es0( sup
t∈[0,T ]

|St|p) < Cp(1 + |s0|p).

The discounted price process S̃t := e−rtSt is then a positive P-martingale satisfying

dS̃t = c(S̃t).dW j
t , S̃0 := s0. (3)

P is the so-called risk neutral probability in Mathematical Finance terminology. As long
as q 6= d, the usual completeness of the market necessarily fails. However, from numerical
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point of view, this has no influence on the implementation of the quantization method to
compute the price of the derivatives: we just compute a P-price. When coming to the
problem of hedging these derivatives, then the completeness assumption becomes crucial
and will lead us to assume that q = d and that the diffusion coefficient c(x) is invertible
everywhere on (R∗+)d.

When q = d and σ(x) ≡ σ∈M(d× d), (1) is the usual d-dimensional Black & Scholes
model: the risky assets are geometric Brownian motions given by

Si
t = si

0 exp


(r − 1

2
|σi.|2)t +

∑

1≤j≤d

σijW
j
t


, 1 ≤ i ≤ d.

An American option related to a payoff process (ht)t∈[0,T ] is a contract that gives the
right to receive once and only once the payoff ht at some time t∈ [0, T ] where (ht)t∈[0,T ]

is a F-adapted nonnegative process. In this paper we will always consider the sub-class
of payoffs ht that only depends on (t, St) i.e. satisfying

ht := h(t, St), t ∈ [0, T ] where h : [0, T ] −→ R+ is a Lipschitz continuous. (4)

Such payoffs are sometimes called vanilla. Under Assumptions (1) and (4), one has

E( sup
t∈[0,T ]

|ht|p) < +∞ for every p ≥ 1.

One shows that – in a complete market – the fair price Vt at time t for this contract is

Vt := ertess sup
{
E(e−rτhτ/Ft), τ ∈ Tt

}
(5)

where Tt := {τ : Ω → [t, T ], F-stopping time}. This simply means that the discounted
price Ṽt := e−rtVt of the option is the Snell envelope of the discounted American payoff

h̃t := h̃(t, S̃t)

with h̃(t, x) = e−rth(t, ertx). This result is based on a hedging argument on which we will
come back later on. Note that sup

t∈[0,T ]
|Vt| ≤ sup

t∈[0,T ]
|ht|∈ Lp, p ≥ 1.

One shows (see [9]) using the Markov property of the diffusion process (St)t∈[0,T ] that
Vt := ν(t, St) where ν solves the variational inequality

max
(

∂ν

∂t
+ Lr,σν, ν − h

)
= 0, ν(T, .) = h(T, .). (6)

where Lr,σ denotes the infinitesimal generator of the diffusion (1).
Then, it is clear that the approximation problem for Vt appears as special case of

the approximate computation of the Snell envelope of a d-dimensional diffusion with Lip-
schitz coefficients. To solve this problem in 1-dimension, many methods are available.
These methods can be classified in two families: the probabilistic ones based on a weak
approximation of the diffusion process (St) by a purely discrete dynamics (e.g. binomial
trees, [30]) and the analytic ones based on numerical methods for solving the variational
inequality (6) (e.g. finite difference or finite element methods). When the dimension d of
the market increases, these methods become inefficient.

At this stage, one may assume without loss of generality that the interest rate r in (1)
is 0 since Equation (3) for S̃ appears as a special case of (1) for S since the function h̃(t, x)
has the same regularity as h. (To derive the “true” formulae when r 6= 0 one just has to
keep in mind the “original” equation dS̃t = c(St).dWt).
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2 Pricing an American option using a quantization tree

In that part, the specificity of the martingale diffusion dynamics proposed for the risky
assets in (3) (with r = 0) has little influence on the results, so it is costless to consider a
general drifted Brownian diffusion

dSt = b(St) dt + c(St).dWt, S0 := s0∈ Rd. (7)

where b : Rd → Rd and c : [0, T ]×Rd →M(d× q) are Lipschitz continuous vector fields
and (Wt)t∈[0,T ] is q-dimensional Brownian motion.

2.1 Time discretization: the Bermuda options

The exact simulation of a diffusion at time t is usually out of reach (e.g. when σ is not
constant in the specified model (1)). So one uses a (Markovian) discretization scheme,
easy to simulate, e.g. the Euler scheme:

Stk+1
= Stk + b(Stk)

T

n
+ c(Stk).(Wtk −Wtk−1

). (8)

Then, the Snell envelope to be approximated by quantization is that of the Euler scheme.

Sometimes, the diffusion can be simulated simply, essentially because it appears as
a closed form St := ϕ(t,Wt). This is the case of the regular multi-dimensional Black &
Scholes model (set σ(x) := σ in (1)). Then, it is possible to consider directly the the Snell
envelope of the homogeneous Markov chain (Stk)0≤k≤n for quantization purpose.

This time discretization corresponds, in the derivative terminology, to approximating
the original continuous time American option by a Bermuda option, either on S or on
S itself. By Bermuda option, one means that the set of possible exercise times is finite.
Error bounds are available at these exercise times tk (see Theorem 1 below).

Whatsoever, we want to quantize the Snell envelope of a homogeneous discrete time
Markov chain (Stk or Stk) whose transition, denoted P (n)(x, dy), preserves Lipschitz con-
tinuity. More precisely, for every Lipschitz continuous f : Rd → R

[P (n)f ]Lip ≤ (1 + Cb,σ,T
T

n
)[f ]Lip. (9)

(see, e.g., [3] for a proof). In fact this discrete time markovian setting is the natural frame-
work for the method. In fact, throughout this section, the generic notation (Xk)0≤k≤n will
denote indifferently Stk or Stk (and more generally any Lp-integrable homogeneous Ftk -
Markov chain whose transition P (n) satisfies (9). The Ftk -Snell envelope of h(tk, Xk),
denoted by (Vk)0≤k≤n, is defined by:

Vk := ess sup {E (h(θ, Xθ)/Ftk) , θ∈ Θk}

where Θk denotes the set of {tk, . . . , tn}-valued Ft`-stopping times. It (Vk)0≤k≤n satisfies
the so-called backward dynamic programming formula (see [34]):

{
Vn := h(tn, Xn),

Vk := max (h(tk, Xk),E(Vk+1/Ftk)) , 0 ≤ k ≤ n− 1.
(10)

One derives using the Markov property a dynamic programming formula in distribution:
Vk = vk(Xk), k∈ {0, . . . , n}, where the functions vk are recursively defined by
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{
vn := h(tn, . ),

vk := max
{
h(tk, .), P (n)(vk+1)

}
, 0 ≤ k ≤ n− 1.

(11)

This formula remains intractable for numerical computation since they require to com-
pute at each time step a conditional expectation.

Theorem 1 below gives some Lp-error bounds that hold for Vtk − Vtk in our original
diffusion framework. First we need to introduce some definition about the regularity of h.

Definition 1 A function h : Rd −→ R is semi-convex if

∀x, y ∈ Rd, ∀ t∈ R+, h(t, y)− h(t, x) ≥ (δh(t, x)|y − x)− ρ|x− y|2 (12)

where δh is a bounded function on R+ ×Rd and ρ ≥ 0.

Remarks: Note that (12) appears as a convex assumption relaxed by −ρ|x−y|2. In most
situations, is used in the reverse sense i.e. h(t, x) − h(t, y) ≤ (δh(t, x)|x − y) + ρ|x − y|2.
The semi-convexity assumption is fulfilled by a wide class of functions:

– If h(t, .) is C1 for every t∈ R+ and ∂h
∂x(t, x) is ρ-Lipschitz in x, uniformly in t, then

h is semi-convex (with δh(t, x) := ∂h
∂x(t, x)).

– If h(t, .) is convex for every t ∈ R+ with a derivative δh(t, .) (in the distribution
sense) which is bounded in (t, x), then h is semi-convex (with ρ = 0). Thus, it embodies
most usual pay-off functions used for pricing vanilla and exotic American style options
like h(t, x) := e−rt(K − ϕ(ertx))+ with ϕ Lipschitz continuous (on sets {ϕ ≤ L}, L > 0).

The notion of semi-convex function seems to appear in [15] for pricing one-dimensional
American options. See also [31] for recent developments in a similar setting.

Theorem 1 (a) Let h : Rd → R be a Lipschitz continuous function and let p∈ [1, +∞).
Let Vn denote the Snell envelope of (Stk)0≤k≤n or (Stk)0≤k≤n. There is some positive real
constant C depending on [b]Lip, [c]Lip, [h]Lip and p such that

∀n∈ N∗, ∀ k∈ {0, . . . , n}, ‖Vtk − Vk‖p ≤ eCT (1 + |x|)√
n

. (13)

(b) If Xk = Stk , k = 0, . . . , n and if the obstacle h is semi-convex, then

∀n∈ N∗, ∀ k∈ {0, . . . , n}, ‖Vtk − Vk‖p ≤ eCT (1 + |x|)
n

(14)

2.2 Space discretization: the quantization tree

Our aim is to discretize the random variables Xk by some random variables X̂k that
can only take a finite number Nk of values. Then, we wish to approximate the dynamic
programming formula satisfied by the true Snell envelope (Vk)0≤k≤n with the X̂k’s.

2.2.1 Abstract quantization of a random vector X, Lp-distortion

Let X∈ Lp
Rd(Ω,A,P). From a probabilistic point of view, Lp-quantization (p ≥ 1) consists

in studying the best Lp-approximation of X by a random vectors X ′ = q(X) where
q : Rd → R is a Borel function taking at most N values x1, · · · , xN ∈ Rd. One easily
proves that for a fixed N -tuple x := (x1, · · · , xN )∈ (Rd)N , the Lp-mean error ‖X−q(X)‖p

reaches its minimum at any q such that ({q = xi})1≤i≤N makes up a Voronoi tessellation
(Ci(x))1≤i≤N of x.
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Definition 2 Let x := (x1, · · · , xN )∈ (Rd)N . A Borel partition C1(x), . . . , CN (x) of Rd

is a Voronoi tessellation of the N -tuple x if, for every i∈ {1, . . . , N}, Ci(x) satisfies

Ci(x) ⊂ {y∈ Rd / |xi − y| = min
1≤j≤N

|y − xj |} where | . | is for the Euclidean norm on Rd.

One denotes X̂x = q(X) =
∑

1≤i≤N xi1Ci(x)(X) the corresponding random vector, called
a Voronoi quantizer. One often drops the exponent x to note X̂.

Note that, however the ith tessel Ci(x) always has the same closure and the same boundary,
this boundary being included in at most N − 1 hyperplanes. If the distribution of X
weights no hyperplane, then the Voronoi tessellation is PX - essentially unique and all all
the Voronoi quantizers X̂ have the same distribution.

The problem is then to estimate the Lp-mean quantization error ‖X − X̂‖p . Let PX

denote the distribution of X. Then, the Lp-quantization error is given by

‖X−X̂‖p
p
=

N∑

i=1

E
(
1Ci(x)|X−xi|p

)
=E

(
min

1≤i≤N
|X−xi|p

)
=

∫

Rd

min
1≤i≤N

|xi−y|pPX (dy). (15)

The Lp-quantization error only depends upon the distribution PX of X.

The optimization phase consists in choosing the N -tuple x := (x1, . . . , xN ) which
achieves the smallest possible Lp-quantization error and then to evaluate how fast it goes
to 0 as N → ∞. This will be investigated further on in subsection 2.4, once the way we
use quantization and its related error will have been developed.

2.2.2 Quantization tree and quantized pseudo-Snell envelope

We assume from now on that for every k ∈ {0, 1, . . . , n}, we have access some way or
another to a Voronoi quantized random vector X̂k for Xk, using Nk points xk

1, · · · , xk
Nk

.

The quantized dynamic programming formula below is devised by analogy with the
original one (10): one simply replaces Xk by its quantized random vector X̂k . It reads





V̂n := h(tn, X̂n),

V̂k := max
(
h(tk, X̂k),E(V̂k+1/X̂k)

)
, 0 ≤ k ≤ n− 1.

(16)

Notation: for the sake of simplicity, from now on, we will denote Êk( . ) := E( . /X̂k).

The main reason for considering conditional expectation with respect to X̂k is that
the the sequence (X̂k)k∈N is not Markovian. On the other hand, even if the Nk-tuple
xk := (xk

1, . . . , x
k
Nk

) of every term Xk of the chain has been set up a priori, this does
not make possible to compute explicitly this algorithm. As a matter of fact, one needs
to know the coupled distributions (X̂k, X̂k+1), 0 ≤ k ≤ n− 1. This is enlightened by the
easy proposition below.

Proposition 1 Let xk := (xk
1, . . . , x

k
Nk

) denote for every k∈ {0, . . . , n} a quantization of
the distribution L(Xk). Set, for every k∈ {0, . . . , n} and every i∈ {1, . . . , Nk},

αk
i := P(X̂k = xk

i ) = P(Xk∈ Ci(xk)), (17)
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and, for every k∈ {0, . . . , n− 1}, i∈ {1, . . . , Nk}, j∈ {1, . . . , Nk+1}
πk

ij := P(X̂k+1 = xk+1
j /X̂k = xk

i ) = P
(
Xk+1∈ Cj(xk+1)/Xk∈ Ci(xk)

)

=
βk

ij

αk
i

with βk
ij := P

(
Xk+1∈ Cj(xk+1), Xk∈ Ci(xk)

)
. (18)

One defines by a backward induction the function v̂k by

v̂n(xn
i ) := hn(xn

i ), i∈ {0, . . . , Nn}

v̂k(xk
i ) := max


h(tk, xk

i ),
Nk+1∑

j=1

πk
ij v̂k+1(xk+1

j )


, 1 ≤ i ≤ Nk, 0 ≤ k≤, n− 1. (19)

Then, V̂k = v̂k(X̂k) satisfies the above dynamic programming (16) of the pseudo-Snell
envelop. Thus, if µ0 := δx0

, then v̂0(X̂0) = v̂0(x0) is deterministic.

Simply implementing the algorithm defined by (19) on a computer raises two questions:
– How is it possible to estimate the parameters αk

i and βk
ij involved in (19) ?

– Is it possible to handle the complexity of such a tree structured algorithm ?

Preliminary estimation phase (first approach): the theoretical tractability of the
above algorithm exclusively depends on the parameters αk

i and βk
ij . Actually, the ability

to compute the αk
i ’s and the βk

ij ’s at a reasonable cost is the key of the whole method
presented here for practical implementation. The most elementary solution is simply to
process a wide range regular Monte Carlo simulation of the Markov chain (Xk)0≤k≤n to
estimate the parameters αk

i and βk
ij of interest defined by (17) and (18). An estimate

of the Lp-quantization error ‖Xk − X̂k‖p can also be computed along the procedure.
Actually, this ability to compute these weights and moduli at a reasonable cost is the key
of the whole method. When (Xk)0≤k≤n is a Euler scheme (or Black & Scholes diffusion)
this makes no problem. More generally, this depends upon the ability to simulate some
P (x, dy)-distributed random numbers for any x∈ Rd.

We will see further on in paragraphs 2.4 how to choose the Nk-tuples xk (size and
geometric location).

Complexity of the quantization tree : theory and practise A quick look at the
structure of the algorithm (19) shows that going from layer k + 1 down to layer k needs
C ×Nk.Nk+1 elementary computations (C is a positive real constant). Hence, the cost of
a full tree descent in order to get (v̂0(x0

i ))1≤i≤N0 approximately is

Complexity = C × (N0N1 + N1N2 + · · ·+ NkNk+1 + · · ·+ Nn−1Nn).

Setting N := N0 + · · ·+ Nn shows that this complexity always satisfies

Complexity ≥ C.
N2

n + 1
.

This purely combinatorial lower bound needs to be tuned. In fact, in most examples
the Markov transition P (x, dy) behaves in such a way that, at each layer k, many terms
of the “transition matrix” [πk

ij ] are numerically 0. This means that the estimates of
these coefficients will often be 0! Subsequently, the true complexity of the algorithm is
more likely close to O(N) instead of the above N2/n estimation. Thus, the cost of such
a “descent” is similar to that of a Cox-Ross-Rubinstein’s one dimensional binomial tree
with O(

√
N) time discretization instants (such a tree approximately contains N/2 points).
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2.3 Convergence and rate using Lp-quantization error

The aim of this paragraph is to provide some a priori Lp-error bounds for ‖Vk− V̂k‖p , 0 ≤
k ≤ n, based on the Lp-quantization errors i.e. ‖Xk − X̂k‖p , 0 ≤ k ≤ n where quantizer
X̂k is a Voronoi quantizer that takes Nk values xk

1, . . . , x
k
Nk

. This error modulus can be
obtained as a by-product of a Monte Carlo simulation of (Xk)0≤k≤n: it only requires
to compute, for every µk-distributed simulated random vector, its distance to its closest
neighbour in the set {xk

1, . . . , x
k
Nk
}.

The estimates below can be obtained for any homogeneous Markov chain having a
Lipschitz transition P (x, dy) i.e. satisfying, for every Lipschitz continuous g : Rd −→ R,

[Pg]Lip ≤ K[g]Lip where [g]Lip := sup
x6=y

|g(x)− g(y)|
|x− y| . (20)

This is the case of the Euler scheme (and the diffusion) having Lipschitz drift and diffu-
sion coefficient as mentioned before, see (9). The theorem below specifies the Lipschitz
regularity of the functions uk defined in (11) and gives the a priori error bounds in this
Lipschitz setting.

Theorem 2 Assume that the function h is [h]Lip-Lipschitz continuous in x, uniformly
time and that the transition P is K-Lipschitz. For every k∈ {0, . . . , n}, let X̂k denote any
(Voronoi) quantizer of Xk. For every p ≥ 1,

‖Vk − V̂k‖p ≤
n∑

i=k

di‖Xi − X̂i‖p

with di :=[h]Lip + cK[ui+1]Lip , 0≤ i≤n−1 , dn :=[h]Lip, c :=1 if p=2 and c :=2 otherwise.

Proof: Step 1: We need to show that the functions vk defined by (11) are Lipschitz
continuous and

[vk]Lip ≤ (K ∨ 1)n−k[h]Lip . (21)

Clearly, [vn]Lip ≤ [h]Lip . Then, one concludes by induction, using that |max(a, b) −
max(a′, b′)| ≤ max(|a− a′|, |b− b′|): dynamic programming formula (11) yields that

[vk]Lip ≤ max
(
[h]Lip , [P (vk+1)]Lip

) ≤ max
(
[h]Lip ,K[vk+1]Lip

)

Step 2: Set Φk := P (vk+1) for every k∈ {0, . . . , n − 1} (and Φn ≡ 0). The function Φk

satisfies E(vk+1(Xk+1)/Ftk) = E(vk+1(Xk+1)/Xk) = Φk(Xk). One defines similarly Φ̂k by
the equality Êk(v̂k+1(X̂k+1)/X̂k) := Φ̂k(X̂k) (and Φ̂n ≡ 0). Then

|Vk − V̂k| ≤ |hk(Xk)− hk(X̂k)|+ |Φk(Xk)− Φ̂k(X̂k)|

≤ [h]Lip |Xk − X̂k|+ |Φk(Xk)− Êk(Φk(Xk))|+ |Êk(Φk(Xk))− Φ̂k(X̂k)|.(22)

Now |Φk(Xk)− ÊkΦk(Xk)| ≤ |Φk(Xk)− Φk(X̂k)|+ Êk|Φk(Xk)− Φk(X̂k)|

≤ [Φk]Lip

(
|Xk − X̂k|+ Êk|Xk − X̂k|

)
.

Hence, ‖Φk(Xk)− ÊΦk(Xk)‖p ≤ 2[Φk]Lip‖Xk − X̂k‖p .
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When p = 2, the very definition of the conditional expectation as a projection in a Hilbert
space implies that one may remove the factor 2 in the inequality.

Now Êk(Φk(Xk))− Φ̂k(X̂k) = Êk (E(vk+1(Xk+1)/Xk))− Êk

(
v̂k+1(X̂k+1)

)

= Êk

(
vk+1(Xk+1)− v̂k+1(X̂k+1)

)

since X̂k is σ(Xk)-measurable. Conditional expectation being a Lp-contraction, it follows

‖Êk(Φk(Xk))− Φ̂k(X̂k)‖p ≤ ‖Vk+1 − V̂k+1‖p .

Finally, it follows from the above inequalities and (22) that

‖Vk − V̂k‖p ≤ ([h]Lip + c[Φk]Lip)‖Xk − X̂k‖p + ‖Vk+1 − V̂k+1‖p , k∈ {0, . . . , n− 1}.
On the other hand, ‖Vn − V̂n‖p ≤ [h]Lip‖Xn − X̂n‖p , so that

‖Vk − V̂k‖p ≤
n∑

i=k

([h]Lip + c[Φi]Lip)‖Xi − X̂i‖p

The definition of Φi and the K-Lipschitz property of P (x, dy) complete the proof since

[Φi]Lip = [P (vi+1)]Lip ≤ K[vi+1]Lip . ♦

2.4 Optimal quantization: existence and asymptotics

The Lp-quantization error has a an attractive specificity among other usual error bounds
used in Numerical Integration: it behaves as a regular function of the quantizing N -
tuple x := (x1, . . . , x

N
). More precisely, as a symmetric function of the N -tuple x,

the Lp-quantization error is 1-Lipschitz continuous. If PX has a compact support, it is
straightforward that x 7→ ‖X − X̂x‖p reaches a minimum at some x∗. One may always
assume that x∗ ∈ (H(suppPX ))N (convex hull of suppPX ). When PX no longer has a
compact support, one shows by induction on N that

x 7→ ‖X − X̂x‖p still reaches an absolute minimum on (Rd)N

(see [35] or [22], among others), still lying in (H(suppPX ))N . Furthermore, one shows the
following simple facts (see [35] or [22] and references therein):
– If suppPX has an infinite support, any optimal N -tuple x∗ has pairwise distinct elements.
– If suppPX is everywhere dense in its convex hull, then the N components of an optimal
N -tuple x∗ all lies in H(suppµ). This still holds true for N -tuples corresponding to local
minima. In particular, this holds if PX has a positive density function on Rd.
– The minimal Lp-quantization error goes to zero as N →∞ i.e.

lim
N

min
x∈(Rd)N

‖X − X̂x‖p = 0.

As a matter of fact, let (zk)k∈N denote an everywhere dense sequence of Rd-valued
vectors and set xN := {z1, . . . , zN }. It is straightforward that ‖X − X̂xN ‖p goes to zero
by the Lebesgue Dominated Convergence Theorem. Furthermore 0 ≤ minx∈(Rd)N ‖X −
X̂x‖p ≤ ‖X − X̂xN ‖p . ♦

At which rate does this convergence to zero hold turns out to be a much more chal-
lenging question. The answer was completed by several authors (Zador, see [23], Bucklew
& Wise, see [12] and finally Graf & Luschgy see [22]). It reads as follows
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Theorem 3 (Asymptotics of optimal quantization) Assume that E|X|p+η < +∞ for some
η > 0. Then

lim
N

(
N

p
d min

x∈(Rd)N
‖X − X̂x‖p

p

)
= Jp,d‖ϕ‖ d

d+p
(23)

where PX (du) = ϕ(u) λd(du) + ν(du), ν ⊥ λd (λd Lebesgue measure on Rd) and ‖g‖q :=(∫
|g|q(x) dx

) 1
q

for every q ∈ R∗+. The constant Jp,d corresponds to the case of the

uniform distribution on [0, 1]d (or any Borel set of Lebesgue measure 1).

Little is known about the true value of the constant Jp,d except in dimension 1 where
Jp,1 = 1

2p(p+1) . Some geometric considerations lead to J2,2 = 5
18
√

3
(see [23]). Nevertheless

some reasonable bounds are available, based on random quantization (see [14]), the idea is
to upper-bound minx∈(Rd)N ‖X − X̂x‖p

p
by ‖min1≤i≤N |X −Zi|‖p

p
where the Zi’s are i.i.d.

with an appropriate distribution).

Whatsoever, this theorem says that minx∈(Rd)N ‖X − X̂x‖p ∼ CX,p,dN
1
d . This is in

accordance with the commonly admitted rates obtained e.g. in Numerical Integration by
uniform N -tuple methods. In some sense, although optimal quantizers are never uniform
square grid (except for the U([0, 1]) distribution), optimal quantization provides the best
possible “grid method” for a given distribution µ.

2.5 Optimal quantization: how to get it?

Optimal quantization of a single random vector: how to get it? When x =
{x1, . . . , xN}, Equation (15) implies that ‖X − X̂x‖p

p
= E

(
min1≤i≤N |X − xi|p). The in-

duced symmetric function on (Rd)N is (Lipschitz) continuous and is denoted Dp
N from now

on(1). One shows (see, e.g., [22] when p = 2 or [35]) that, if p > 1, Dp
N is continuously dif-

ferentiable at every N -tuple y∈ (Rd)N satisfying ∀ i 6= j, xi 6= xj and PX

(∪N
i=1∂Ci(y)

)
=

0. The gradient ∇Dp
N (y) is obtained by formal differentiation, that is

∇Dp
N :=

(
E∂Dp

N

∂xi
(y, X)

)

1≤i≤n

=
(∫

Rd

∂Dp
N

∂xi
(y, u)PX(du)

)

1≤i≤n

where
∂Dp

N

∂xi
(y, u) := p

u− xi

|u− xi| |u− xi|p−11Ci(y)(u), 1 ≤ i ≤ n.

(The above result still holds when p = 1 if PY is continuous.) So, the gradient of Dp
N has

an integral representation with respect to the distribution of X this strongly suggests to
implement a stochastic gradient descent derived from this representation to approximate
some (local) minimum of Dp

N : whenever d ≥ 2, the implementation of deterministic
gradient descent is irrealistic since it would rely on the computation of many integrals
with respect . . . to PX . This stochastic gradient descent is defined as follows: let (ξt)t∈N∗
be a sequence of i.i.d. PX -distributed random variables and let (γt)t∈N∗ be a sequence of
positive steps satisfying

∑
t

γt = +∞ and
∑

t

γ2
t < +∞. (24)

1The letter D is a reference to the word distortion which used en Information Theory for the Lp-
quantization error (to the power p)
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Then, starting from an initial N -tuple x0 with N pairwise distinct components, set

xt = xt−1 − γt∇Dp
N (xt−1, ξt) (25)

(this formula a.s. grants by induction that xt has pairwise distinct components). Unfortu-
nately, the usual assumptions that ensure the a.s. convergence of the algorithm (see [16])
are not fulfilled by Dp

N (see, e.g. [16] or [26] for an overview on Stochastic approximation).
To be more specific, let us stress that Dp

N (y) does not go to infinity as |y| goes to infinity
in (Rd)N and ∇Dp

N is clearly not Lipschitz continuous on (Rd)N . Some a.s. convergence
results in the Kushner & Clark sense have been obtained in [35] for compactly supported
absolutely continuous distributions PX , mainly in the quadratic case p = 2 (however, reg-
ular a.s. convergence is established when d = 1). In fact the quadratic case is the most
commonly implemented for applications and is known as the Competitive Learning Vector
Quantization (CLVQ) algorithm.

Formula (25) can be developed as follows if one sets xt := {x1,t, . . . , xN,t},

Competitive phase : select i(t + 1) ∈ argmini|xi,t − ξt+1| (26)

Learning phase :

{
xi(t+1),t+1 := xi(t+1),t − γt+1

xi(t+1),t−ξt+1

|xi(t+1),t−ξt+1| |xi(t+1),t − ξt+1|p−1

∗[.5em]xi,t+1 := xi,t, i 6= i(t + 1).
(27)

Furthermore, it is established in [35] that, if X∈ Lp+ε (ε > 0), on the event {xt → x∗}

Dp,t+1
N := Dp,t

N (1− γt+1) + γt+1
xi(t+1),t − ξt+1

|xi(t+1),t − ξt+1| |x
i(t+1),t − ξt+1|p−1 a.s.−→ 1

p
Dp

N (x∗) (28)

αi,t+1 := αi,t(1− γt+1) + γt+11{i=i(t+1)}
a.s.−→ PX(Ci(x∗)), 1 ≤ i ≤ N. (29)

These “companion” – hence costless – procedures yield the parameters (weights of the
Voronoi cells, Lp-quantization error of x∗) necessary to exploit the N -tuple x∗ for numerical
purpose. Note that this holds whatever the limiting N -tuple x∗ is: this means that the
procedure is consistent.

Concerning practical implementations of the algorithm, it is to be noticed that, when
p = 2 at each, step the N -tuple xt+1 lives in the convex hull of xt and ξt+1 which has a
stabilizing effect on the procedure. One checks on simulation that the CLVQ algorithms
does behave better than its non-quadratic counterparts.

Optimization of the quantization tree: the CLV Q algorithm The principle
is to modify a Monte Carlo simulation of the chain (Xk)0≤k≤n by processing a CLV Q
algorithm at each time step k. One starts from a large scale Monte Carlo simula-
tion of the Markov chain (Xk)0≤k≤n i.e. independent copies Z0 := (Z0

0 , . . . , Z0
n), Z1 :=

(Z1
0 , . . . , Z1

n), . . . , Zt := (Zt
0, . . . , Z

t
n), . . . of (Xk)0≤k≤n. Our aim is now to produce for

every k ∈ {0, . . . , n} some (almost) optimal Nk-tuple Γ∗k := (xk,∗
1 , . . . , xk,∗

Nk
) with size Nk,

their transition kernels [πk
ij ], their weight vectors (αk

i )0≤i≤Nk
and the induced quantization

errors. Note that, if one set

βk
ij := P ({Xk+1∈ Cj(Γk+1)} ∩ {Xk∈ Ci(Γk)})

then πk
ij =

βk
ij

αk
i
. So one can focus on the estimation of the weight vectors βk

ij .

Then the algorithm is as follows
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1. Initialization phase:
• Initialize the n + 1 starting Nk-tuples Γ0

k := {x0,k
1 , . . . , x0,k

Nk
}, 0 ≤ k ≤ n, of the n + 1

CLVQ algorithms that will quantize the distributions L(Xk).

• Initialize the weight vectors αk,0
i := 0, 1 ≤ i ≤ Nk for every k∈{0, . . . , n}.

• Initialize the transitions βk,0
ij := 0, i∈ {1, . . . , Nk}, j∈ {1, . . . , Nk+1}, 0 ≤ k ≤ n− 1.

2. Updating t ∼→ t+1: At step t, the n+1 Nk-tuples Γt
k, 0 ≤ k ≤ n, have been obtained.

We use now the sample Zt+1 to carry on the optimization process i.e. building up the
Γt+1

k ’s as follows. For every k = 0 up to n

• Simulation of Zt+1
k (using Zt+1

k−1 if k ≥ 1)

• Selection of the “winner” in the kth CLVQ algorithm i.e. the only index it+1
k ∈

{1, . . . , Nk} satisfying
Zt+1

k ∈ Cit+1
k

(Γt
k)

• Updating of the kth CLVQ algorithm:

Γt+1
k,i = Γt

k,i − γt+1(1{i=it+1
k }(Γt

k,i − Zt+1
k ))1≤i≤Nk

.

• Updating of the kth weight vector αk,t := (αk,t
i )1≤i≤Nk

:

∀ i∈ {1, . . . , Nk}, αk,t+1
i := αk,t

i + 1{i = it+1
k }.

• Updating of the (quadratic) quantization error estimator Dk,t:

Dk,t+1 := Dk,t − 1
t + 1

(|Γt
k,it+1

k

− Zt+1|2 −Dk,t)

• Updating of the weight vectors βk,t := (βk,t
ij )1≤i≤Nk−1,1≤j≤Nk

(k ≥ 1)

∀ i∈ {1, . . . , Nk−1}, ∀ j∈ {1, . . . , Nk}, βk−1,t+1
ij := βk−1,t

ij + 1{i = it+1
k−1, j = it+1

k }.

• Updating the transition kernels (πk,t
ij )1≤i≤Nk−1,1≤j≤Nk

(k ≥ 1)

πk,t+1
ij :=

βk,t+1
ij

αk,t+1
i

(possibly only at the end of the simulation process!).

One shows, see [3], that on the event
{
Γt

k → Γ∗k
}
, Dk,t t→+∞→ Dµk,2

Nk
(Γ∗k) and

αt
k −→ α∗k = (µ(Ci(Γ∗k)))1≤i≤Nk

(since L(Xk) is continuous).

Actually one shows, using the same classical martingale approach, that

βt
k−1 −→ β∗k−1 =

(
P(Xk−1∈ Ci(Γ∗k−1), Xk∈ Cj(Γ∗k))

)
1≤i≤Nk−1,1≤j≤Nk

(30)

on the event
{
Γt

k−1 −→ Γ∗k−1

} ∩ {
Γt

k −→ Γ∗k
}
.

The main features of this algorithms are essentially those of the regular CLVQ algo-
rithm. Note only that the successive optimizations of the quantization Nk-tuples are not
recursive, so there is no deterioration of the process when k increases.
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2.6 A priori error bounds in time and space

(Stk)0≤k≤n. Let (Vk)0≤k≤n denote the X̂k denote a Voronoi quantizer of Next theorem
provides a general error bound for ‖Vk− v̂k(X̂k)‖p as a function of the quantization errors
‖Xk − X̂k‖p (optimality of the Voronoi quantizers X̂k is not required). Proposition 2
below is an improvement of Theorem 2 when Xk = Stk or Stk in which the constant do
not depend on n.

Proposition 2 Assume that the coefficients b and c of the diffusion (7) and the obstacle
h are Lipschitz continuous. Let p∈ [1, +∞). There exists Kb,σ,h,T,p > 0 such that

∀n∈ N∗, ∀ k∈ {0, . . . , n}, ‖Vk − v̂k(X̂k)‖p ≤ Kb,σ,h,T,p

n∑

`=k

‖X` − X̂`‖p (31)

where (v̂k(X̂k))0≤k≤n is the pseudo-Snell envelope of (h(tk, Xk))0≤k≤n defined by (16).

One gets rid of n since the Lipschitz coefficient K(n) of both chains (Stk) and (Stk) satisfy
lim supn(K(n))n < +∞ (see [3] for details).

To go further we need a new assumption on the distributions of the Xk’s: namely the
uniform ϕ-domination of the quantization errors ‖Xk− X̂k‖p in the following sense: there
exists a random variable R∈ Lp+η(η > 0) and a sequence (ϕk,n)0≤k≤n<+∞ such that

∀n ≥ 1, ∀ k∈ {0, . . . , n}, ∀N ∈ N∗, min
x∈(Rd)N

‖Xk − X̂x
k ‖p ≤ ϕk,n min

x∈(Rd)N
‖R− R̂x‖p . (32)

The point is that the distribution of R may depend on p but not on N , k or n. It is shown
in [3] (Theorem 3) that uniformly elliptic diffusions with smooth and bounded coefficients
satisfy the domination property (32) with ϕk,n := c

√
tk = c

√
k/n. It is shown in the

Appendix that, if q ≥ d and σ is smooth and uniformly elliptic, then the extended B & S

model (1) is uniformly dominated by c
√

k/n and N (0; Id) in the sense of (32).

Combining the bounds obtained in Theorem 1 (time) and Proposition 2 (space) with
the Theorem 3 (asymptotics of optimal quantization) yield an error structure looking like

C1

nθ
+ C2

n∑

k=1

√
tk N

− 1
d

k with N1 + · · ·+ Nn = N − 1 (33)

(the last equality being up to n) Nk denotes the size of the optimal quantizer X̂k at the
kth layer (time 0 is excluded since X̂0 := s0 perfectly quantizes S0 = s0). Minimizing the
right hand of the sum is an easy optimization problem with constraint. Then, in order
to minimize (33), one has to make a balance between the time and space discretization
errors. The results are detailed in Theorem 4 below.

Theorem 4 (Optimized quantization tree and resulting error bounds) Assume that all
the assumptions of Proposition 2 hold and that the (Stk)0≤k≤n is dominated in the sense
of (32) by ϕk := c

√
tk. Let n ≥ 1, N ≥ n + 1. For every k∈ {1, . . . , n}, set

Nk :=




t
d

2(d+1)

k N

t
d

2(d+1)

1 + · · ·+ t
d

2(d+1)

k + · · ·+ t
d

2(d+1)
n




, (N ≤ N1 + · · ·+ Nn ≤ N + n + 1). (34)

Assume that, in (a) and (b) below, the Voronoi quantizer X̂k has size Nk and is Lp-optimal.
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(a) Euler scheme:
Then,

‖Vtk − v̂k(X̂k)‖p ≤ Cp(s0)

(
1√
n

+
n1+ 1

d

N
1
d

)
with Cp(s0) ≤ Cpe

CpT (1 + |s0|).

where (vk(X̂k)) is the quantized pseudo-Snell envelope of (Stk). If, furthermore n :=⌈(
d

2(d+1)

) 2d
3d+2

N− 1
2d+1

⌉
, then ‖Vtk − V̂ n

tk
‖p ≤ C ′

p(s0)N
− 1

3d+2 = O

(
1√
n

)
.

(b) Diffusion: If the obstacle h is semi-convex (and if Xk := Stk), then

‖Vtk − v̂k(X̂k)‖p ≤ Cp(s0)

(
1
n

+
n1+ 1

d

N
1
d

)
with Cp(s0) ≤ Cpe

CpT (1 + |s0|).

where (vk(X̂k)) is the quantized pseudo-Snell envelope of (Stk). If furthermore n :=⌈(
d

2(d+1)

) d
2d+1

N− 1
2d+1

⌉
, then ‖Vtk − V̂ n

tk
‖p ≤ C ′

p(s0)N
− 1

2d+1 = O

(
1
n

)
.

3 Hedging

Tackling the question of hedging American options needs to go deeper in financial mod-
eling, at least from a heuristic point of view. So, we will shortly recall the principles that
govern the pricing and hedging of American options to justify our approach. First, we
come back to the original diffusion model (3) which drives the asset price process (St)
(with r = 0). Furthermore, we will assume when necessary that (q ≥ d) and

∀x ∈ Rd, σσ∗(x) ≥ ε0Id (35)

so that ε0Diag(x2
i ) Id ≤ cc∗(x) ≤ |||σσ∗|||∞ |x|2Id.

3.1 Hedging continuous time American options

First we need to come back shortly to classical European option pricing theory. Let hT

be a European contingent claim that is a nonnegative FT -measurable Rd-valued random
vector. Assume for the sake of simplicity that it lies in L2(P,FT ). The representation
theorem for Brownian martingale shows (see [36]) that

hT = E(hT ) +
∫ T

0
Hs.dWs = E(hT ) +

∫ T

0
Zs.dSs (36)

where H is a dPdt-square integrable F-predictable process and Zs := [c(Ss)∗]−1Hs. Hence
Mt := E(hT /Ft) satisfies Mt = M0 +

∫ t
0 Zs.dSs.

An analogy with discrete time model shows that the integral
∫ T

t
Zs.dSs represents the

(algebraic) gain from time t up to time T provided by the strategy (Zi
s)1≤i≤d (at every time

s∈ [t, T ] the portfolio contains exactly Zi
s units of asset i). So, at time T , the value of the

portfolio invested in risky assets S1, . . . , Sd is exactly hT monetary units: put some way
round, the portfolio Zt replicates the payoff hT ; so it is natural to define the (theoretical)
premium as

Premiumt := E(hT /Ft) = E(hT ) +
∫ t

0
Zs.dSs. (37)
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If hT := h(T, ST ), the Markov property of (St) implies that Premiumt := p(t, St). If

h is regular enough, then p solves the parabolic P.D.E.
∂p

∂t
+ Lr,σp = 0, p(T, . ) := h(T, . )

and a straightforward application of Itô formula shows that Zt = ∇xp(t, St).

Let us come back to American option pricing. If one defines the premium process
(Vt)t∈[0,T ] of an American option by the P-Snell envelope of its payoff process, then this
premium process is a supermartingale that can be decomposed as the difference of a mar-
tingale Mt and a nondecreasing path-continuous process Kt i.e., using the representation
property of Brownian martingales,

Vt = Mt −Kt = V0 +
∫ t

0
Zs.dSs −Kt (K0 := 0).

So, if a trader replicates the European option related to the (unknown) European payoff
MT using Zt, he is in position to be the counterpart at every time t of the owner of the
option in case of exercise since

Mt = Vt + Kt ≥ Vt ≥ ht.

In case of an optimal exercise of his counterpart he will actually have exactly the payoff
at time t since all optimal exercise times occur before the process Kt leaves 0.

If the variational inequality (6) admits a regular enough solution ν(t, x), then Zt =
∇xν(t, St). In most deterministic numerical methods, the approximation of such a deriva-
tive is usually less accurate than that of the function ν itself. So, it is hopeless to implement
such methods for this purpose as soon as the dimension d ≥ 3.

3.2 Hedging Bermuda options

Let (V n
tk

)0≤k≤n denote the theoretical premium process of the Bermuda option related to
(h(tk, Stk))0≤k≤n. It is a (Ftk)0≤k≤n-supermartingale defined as a Snell envelope by

V n
tk

:= ess sup {Etk (h(τ, Sτ )) , τ ∈ Θn
k}

where Θn
k denotes the set of {tk, . . . , tn}-valued F-stopping times.

Then, the Ftk -Doob decomposition of (V n
tk

) as a the (Ftk)-supermartingale yield:

V n
tk

= Mn
k −An

k ,

where (Mn
tk

) is a Ftk -L2-martingale and (An
tk

) is a non-decreasing integrable Ftk -predictable
process (An

0 := 0). In fact, the increment of An
k can easily be specified since

∆An
k := An

k −An
k−1 = V n

tk−1
− Etk−1

V n
tk

=
(
h(tk−1, Stk−1

)− Etk−1
V n

tk

)
+

. (38)

The representation theorem applied on each time interval [tk, tk+1], k = 0, . . . , n then
yields a F-progressively measurable process (Zn

s )s∈[0,T ] satisfying

Mn
k :=

∫ tk

0
Zn

s .dSs, 0 ≤ k ≤ n, with E
∫ T

0
|c∗(Ss)Zn

s |2ds < +∞ (39)

(keep in mind that <
∫ tk
0 Us.dSs >t=

∫ tk
0 |c∗(Ss)Us|2ds).

Now, in such a setting, continuous time hedging of a Bermuda option is irrealistic since
the approximation of an American by a Bermuda option is directly motivated by discrete
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time hedging (at times tk). So, it seems natural to look for what a trader can do best when
hedging only at times tk. This leads to consider the closed subspace Pn of L2(c∗(S.)dP.dt)
defined by

Pn =
{

(ζs)s∈[0,T ], ζs := ζtk , s∈ [tk, tk+1), ζtk Ftk -measurable, E
∫ T

0
|c∗(Ss)ζs|2ds < +∞

}
.

(40)
and the induced orthogonal projection projn onto Pn (for notational simplicity a process
ζ∈ Pn will be often referred as (ζtk)0≤k≤n). In particular, for every U ∈ L2(c∗(S.)dP.dt)

‖c∗(S.)projn(U).‖L2(dP.dt) ≤ ‖c∗(S.)U.‖L2(dP.dt).

Doing so, we follow classical ideas introduced by by Föllmer & Sondermann ([18]) for
hedging purpose in incomplete markets (see also [10]). One checks that Pn is isometric
with the set of square integrable stochastic integrals with respect to (Stk)0≤k≤n, namely

{
n∑

k=1

ζtk .∆Stk+1
, (ζtk)0≤k≤n∈ Pn

}
.

Computing projn(Zn
. ) amounts to minimizing E

(
n∑

k=1

∫ tk+1

tk

|c∗(Ss)(Zn
s − ζtk)|2ds

)
over

(ζk)0≤k≤n∈ Pn. Setting ζn
tk

:= projn(Zn
. ) and standard computations yield

ζn
tk

:=
(
Etk

∫ tk+1

tk

cc∗(Ss) ds

)−1

Etk

(∫ tk+1

tk

cc∗(Ss)Zn
s ds

)

=
(
Etk∆Stk+1

(∆Stk+1
)∗

)−1Etk(∆Mn
k+1∆Stk+1

) (41)

=
(
Etk∆Stk+1

(∆Stk+1
)∗

)−1Etk

(
∆V n

tk+1
∆Stk+1

)
. (42)

The last equality follows from the fact that An
k−1 is Ftk−1

-measurable and from the mar-
tingale property of (Stk). The increment

∆Rn
tk+1

:=
∫ tk+1

tk

(Zn
s − ζn

tk
).dSs = ∆Mn

k+1 − ζn
tk

.∆Stk+1
(43)

represents the hedging default induced by using ζn
tk

instead of Zn
. . The sequence (∆Rn

tk
)0≤k≤n

is a Ftk -martingale increment process, singular with respect to (Stk)0≤k≤n since
Etk(∆Rtk+1

∆Stk+1
) = 0. It is possible to define the local residual risk by

Etk |∆Rn
tk+1

|2 = Etk

(∫ tk+1

tk

|c∗(Ss)(Zn
s − ζtk)|2ds

)
, k∈ {0, . . . , n− 1}. (44)

A little algebra yields the following, more appropriate for quantization purpose:

Etk |∆Rn
tk+1

|2=Etk |∆V n
tk+1
−Etk∆V n

tk+1
|2−(Etk∆Stk+1

∆S∗tk+1
)−1

(
Etk∆V n

tk+1
∆Stk+1

)2
. (45)

Formulae (42) or (44), based on Stk and V n
tk

have natural approximations by quantization.
On the other hand, (41) and (44) are more appropriate to produce some a priori error
bounds (when simulation of the diffusion is possible).
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3.3 Hedging Bermuda option on the Euler scheme

When the diffusion cannot be easily simulated, we substitute the (continuous time) Euler
scheme defined by

∀ t∈ [tk, tk+1), St = Stk + c(Stk)(Wt −Wtk), S0 := s0 > 0.

This process is P-a.s. defined since it is a.s. nonzero (but it may become negative adverse
to the original diffusion). Then, mimicking the above subsection, leads to define some
processes Z

n, M
n and A

n by

V
n
tk

:= M
n
k −A

n
k (Doob decomposition)

M
n
k :=

∫ tk

0
Z

n
s c(Ss) dW s =

∫ tk

0
Z

n
s dSs (with s = ti, s∈ [ti, ti+1))

∆A
n
k := A

n
k −A

n
k−1 = V

n
tk−1

− Etk−1
V

n
tk

=
(
h(tk−1, Stk−1

)− Etk−1
V

n
tk

)
+

.

and A
n
0 := 0. The (simpler) formulae for the hedging process hold

ζ
n
tk

:= (Etk∆Stk+1
∆S

∗
tk+1

)−1Etk(∆V
n
tk+1

∆Stk+1
) =

1
∆tk+1

Etk

∫ tk+1

tk

Z
n
s ds. (46)

The related hedging default and local residual risk are defined by mimicking (44) and (45):

∆R
n
tk+1

:=
∫ tk+1

tk

(Zn
s − ζ

n
tk

).dSs = ∆Mn
k+1 − ζ

n
tk

.∆Stk+1
(47)

Etk |∆R
n
tk+1

|2 := Etk |∆V
n
tk+1
− Etk∆V

n
tk+1

|2−(Etk∆Stk+1
∆S

∗
tk+1

)−1
(
Etk∆V

n
tk+1

∆Stk+1

)2
.(48)

3.4 Quantized hedging and local residual risks

The quantized formulae for strategies and residual risks are simply derived from formu-
lae (42) or (46) by replacing Stk (Stk respectively) by their quantization Ŝtk ( Ŝtk respec-

tively) and V n
k := vn

k (Stk) by V̂ n
k := v̂n

k (Ŝtk) (V̂ n
k := v̂n

k (Ŝtk) respectively). It follows from
section 2 that V n

tk
:= vk(Stk) is approximated by v̂n

k (Ŝtk). So, one sets (for the diffusion)

ζ̂n
k :=

n

T

(
cc∗(Ŝtk)

)−1
Êk

(
(v̂n

k+1(Ŝtk+1
)− v̂n

k (Ŝtk))(Ŝtk+1
− Ŝtk)

)
. (49)

|∆R̂n
tk+1

|2 := Etk |∆V̂ n
tk+1
− Etk∆V̂ n

tk+1
|2 − (Etk∆Ŝtk+1

∆Ŝ∗tk+1
)−1

(
Etk∆V̂ n

tk+1
∆Ŝtk+1

)2
.(50)

One derives their counterparts ̂̄ζn

k , |∆ ̂̄Rn

tk+1
|2 for the Euler scheme by analogy. The point

to be noticed is that computing ζ̂n
tk

or ̂̄ζn

k at a given point xk
i of the kth layer requires to

invert only one matrix which does not cost much.

4 Convergence of the hedging strategies and rates

This section is devoted to the evaluation of the different errors (quantization, residual
risks) induced by space and time discretization.
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4.1 From Bermuda to America

First, one extends the definition of V n
t at any time t∈ [0, T ] by setting

V n
t := V n

tk
+

∫ t

tk

Zn
s dSs = V n

tk+1
−

∫ tk+1

t
Zn

s dSs + ∆An
k+1, t∈ [tk, tk+1). (51)

This definition implies that, for every k∈ {0, . . . , n}, the left-limit of V n satisfies

V n
tk− = V n

tk
+ ∆An

k+1. (52)

Proposition 3 Assume that the payoff process ht = h(t, St) where h is a semi-convex
function. Assume that the diffusion coefficient c is Lipschitz continuous.
(a) For every k∈ {0, . . . , n}, V n

tk
≤ Vtk and for every t∈ (tk, tk+1), (V n

t −Vt)+ ≤ ∆An
k+1.

Furthermore P-a.s., for every t∈ [0, T ],

{ |V n
t − Vt| ≤ Ch,c

T
n (1 + Et(maxs≥t |Ss|2)),

|V n
t − V

n
t | ≤ [h]LipEt(maxtk≥t |Stk − Stk |).

(b) The following bound holds for the hedging strategies (in the “cc∗ metric”)

E
(∫ T

0
|c∗(Ss)(Zs − Zn

s )|2ds

)
+ E

(∫ T

0
|c∗(Ss)Zn

s − c∗(Ss)Z
n
s )|2ds

)
≤ Ch,c

T

n
. (53)

Proof: (a) The inequality between V n and V at times tk is obvious since Vt is defined as
a supremum over a larger set of stopping times than V n

tk
. Then, using the supermartingale

property of V, equality (51) and Jensen inequality yield

(V n
t −Vt)+ ≤ (Et(V n

tk+1
)+∆An

k+1−Et(Vtk+1
))+ ≤ Et((V n

tk+1
−Vtk+1

+∆An
k+1)+) ≤ ∆An

k+1.

Now, using the expression (38) for ∆An
k+1 and V n

tk
≥ h(tk+1, Stk+1

) imply

∆An
k+1 = (h(tk, Stk)− EtkV n

tk+1
)+ ≤ (h(tk, Stk)− Etkh(tk+1, Stk+1

))+

We need at this stage to use the regularity of h (semi-convex Lipschitz continuous)

h(tk, Stk)− h(tk+1, Stk+1
) = h(tk, Stk+1

)− h(tk+1, Stk+1
) + h(tk, Stk)− h(tk, Stk+1

)

≤ [h]Lip∆tk+1 − δh(tk, Stk).(Stk+1
− Stk) + ρh (Stk+1

− Stk)2.

Hence h(tk, Stk)−Etkh(tk+1, Stk+1
) ≤ [h]Lip∆tk+1 + ρhEtk |Stk+1

− Stk |2

≤ [h]Lip∆tk+1 + ρhEtk

∫ tk+1

tk

Tr(cc∗)(Ss) ds

≤ [h]Lip∆tk+1 + Cρh∆tk+1

(
1 + Et(max

s≥tk
|Ss|2)

)

≤ Cc,h
T

n

(
1 + Etk(max

s≥tk
|Ss|2)

)
for some constant Ch,c > 0.

Finally, it yields

∆An
k+1 ≤ Cc,h

T

n

(
1 + Etk(max

s≥tk
|Ss|2)

)
. (54)
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To complete the inequality for |Vt − V n
t |, one first notice that, if t∈ [tk, tk+1)

V n
t = V n

tk+1
−

∫ tk+1

t
Zn

s dSs + ∆An
k+1 ≤ h(tk+1, Stk+1

)−
∫ tk+1

t
Zn

s dSs (55)

so that V n
t = Et(V n

t ) ≥ Et(h(tk+1, Stk+1
)) = h(t, St) + Et(h(tk+1, Stk+1

)− h(t, St)).

Using again he semi-convexity property of h at (t, St) finally yields that

V n
t + Cc,h

T

n

(
1 + Et(max

s≥t
|Ss|2)

)
≥ h(t, St).

As it is a supermartingale as well, it necessarily satisfies

P-a.s. V n
t + Cc,h

T

n

(
1 + Et(max

s≥t
|Ss|2)

)
≥ Snell(h(t, St)) = Vt

which yields the expected result. The second inequality is obvious once noticed

|V n
t − V

n
t | ≤ max

tk≥t
|h(tk, Stk)− h(tk, Stk)| ≤ [h]Lip max

tk≥t
|Stk − Stk |.

(b) One considers the càdlàg semi-martingale Vt − V n
t = V0 − V n

0 +
∫ t
0 (Zs − Zn

s ).dSs −
(Kt −An

t ) where t := k on [tk, tk+1). It follows from Itô formula for jump processes that

∫ T

0
|c∗(Ss)(Zs − Zn

s )|2ds +
∑

tk≤T

(∆An
tk

)2 + (Vt − V n
t )2

= −2
∫ T

0
(Vs − V n

s−)(Zs − Zn
s ).dSs + 2

∫ T

t
(Vs − V n

s−)d(Ks −An
t ).

Now
∫ T

0
(Vs − V n

s−)d(Ks −An
s ) =

∫ T

0
(Vs − V n

s−)dKs +
∫ T

t
(V n

s− − Vs)dAn
s

≤
∫ T

0
(Vs − V n

s )dKs +
∑

tk≤T

(∆An
k)2

since V n
tk− = V n

tk
+ ∆An

k ≤ Vtk + ∆An
k . This yields, using the inequality obtained in (a)

and (54),

∫ T

0
(Vs − V n

s−)d(Ks −An
s ) ≤ Ch,c

T

n

∫ T

0
(1 + Es max

u≥s
|Su|2)dKs + An

n max
t<tk≤T

∆An
k

≤ Ch,c
T

n


KT

(
1 +sup

s∈[0,T ]
(Es max

u≥s
|Su|2)

)
+

(
1 +sup

s∈[0,T ]
(Es max

u≥s
|Su|2)

)2

 .

One checks that
∫ t
0 (Vs − V n

s )(Zs − Zn
s )dSs is a true martingale so that

E
(∫ T

0
|c∗(Ss)(Zs − Zn

s )|2ds

)
≤ Ch,c

T

n
(‖KT ‖2 + 1) (1 + ‖ max

s∈[0,T ]
|Ss|2‖2).

Now KT ∈ L2 since 0 ≤ KT ≤ V0 +
∫ T
0 ZsdSs which yields the expected result.
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The inequality involving the Euler scheme is obtained following the same approach
using now V n − V

n.

E
∫ T

0
|c∗(Ss)Zn

s −c∗(Ss)Z
n
s |2ds ≤ 2E

∫ T

0
(V n

s − V
n
s )d(Kn

s −K
n
s ) + E(h(T, ST )− h(T, ST ))2

≤ 2[h]LipE
∫ T

0
Es

(
max
tk≥s

|Stk − Stk |
)

d(Kn
s + K

n
s ) + [h]2

Lip
‖ST − ST ‖2

2

≤ C E
(

sup
t∈[0,T ]

Et

(
max
tk≥t

|Stk − Stk |
)

(Kn
T + K

n
T )

)
+ C‖ST − ST ‖2

2

≤ C‖ sup
t∈[0,T ]

Et max
tk≥t

|Stk−Stk | ‖2

(‖Kn
T ‖2 + ‖Kn

T ‖2

)
+ C‖ST − ST ‖2

2

≤ Ch,c
T

n

(‖Kn
T ‖2 + ‖Kn

T ‖2 + 1
)
. (56)

Now ‖Kn
T ‖2 ≤ ‖V n

0 ‖2 + ‖
∫ T

0
(Zs − Zn

s )dSs‖2 ≤ C1(1 + ‖ sup
s∈[0,T ]

|Ss| ‖2) + O(1/n), hence

supn ‖Kn
T ‖2 < +∞. Concerning K

n
T one has

‖Kn
T −K

n
T ‖2 ≤ ‖V n

0 ‖2 + ‖V n
0‖2 + ‖

∫ T

0
Zn

s dSs −
∫ T

0
Z

n
s dSs)‖2 ≤ C + O(1/

√
n) by (56)

so that supn ‖Kn
T ‖2 < +∞. Plugging this back in (56) completes the proof. ♦

We are now in position to get a first result about the control of residual risks induced
by the use of discrete time hedging strategies. It shows that this control is essentially
ruled by the path-regularity of the process Z.

Theorem 5 If h is semi-convex and h and c are Lipschitz continuous, then

‖c∗(S.)(Z. − ζn
. )‖L2(dP⊗dt) ≤ ‖c∗(S.)(Z. − ζ.)‖L2(dP⊗dt) +

C√
n

where ζ := projn(Z) (57)

is the projection of Z on Pn. Furthermore ‖c∗(S.)(Z. − ζ.)‖L2(dP⊗dt) goes to 0 as n goes to
0. So, this term which depends on the path-regularity of Zs, rules the rate of convergence.

Proof: Minkowski inequality yields

‖c∗(S.)(Zs − ζn
. )‖L2(dP⊗dt) ≤ ‖c∗(S.)(Z. − ζ.)‖L2(dP⊗dt) + ‖c∗(S.)(ζ. − ζn

. )‖L2(dP⊗dt) .

Now ζ. − ζn
. = projn(Z. − Zn

. ) so that by Inequality (53) in Proposition 3(b),

‖c∗(S.)(ζ. − ζn
. )‖L2(dP⊗dt) ≤ ‖c∗(S.)(Z. − Zn

. )‖L2(dP⊗dt) ≤
C√
n

.

Now, let F be a bounded adapted continuous-path process. Set Φs :=
n

T

∫ tk+1

tk

Fudu, s ∈
[tk, tk+1). Using the properties of projn, one gets

‖c∗(S.)(Z. − ζ.)‖L2(dP⊗dt) ≤ 2 ‖c∗(S.)(Z. − F.)‖L2(dP⊗dt) + ‖c∗(S.)(F. − projn(F ).)‖L2(dP⊗dt)

≤ 2 ‖c∗(S.)(Z. − F.)‖L2(dP⊗dt) + ‖c∗(S.)(F. − Φ.)‖L2(dP⊗dt)

≤ 2 ‖c∗(S.)(Z. − F.)‖L2(dP⊗dt) +
∥∥∥∥
∫ T

0
||c(Ss)||2ds(w(F,

T

n
) ∧ 2‖F‖∞)2

∥∥∥∥
L2(P)

where w(F, δ) denotes the uniform continuity modulus of F . One concludes using that the
space L∞(c∗(St)dPdt) is everywhere dense in L2(c∗(St)dPdt). ♦
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4.2 Hedging error induced by the (quadratic) quantization

We will focus on the error at time t0 = 0.

Proposition 4 If σ Lipschitz continuous, bounded and uniformly elliptic and if h is semi-
convex and Lipschitz continuous, then

|ζn
0 − ζ̂n

0 | ≤ C(1 + |s0|)| n
3
2

(N/n)
1
d

.

Proof: The hedging vectors ζn
0 and ζ̂n

0 satisfy respectively

(E(∆St1∆S∗t1))ζ
n
0 = E ((V n

1 − V n
0 )∆St1) (58)

(E(∆Ŝt1∆̂S∗t1))ζ̂
n
0 = E

(
(V̂ n

1 − V̂ n
0 )∆Ŝt1

)
(59)

where V n
1 = vn

1 (St1) and V n
0 = vn

0 (s0), etc. The quadratic quantization Ŝt1 of St1 being op-
timal and S0 being deterministic, one has E(∆St1/∆Ŝt1) = ∆Ŝt1 . Then a straightforward
computation shows that

E(∆St1∆S∗t1)− E(∆Ŝt1∆Ŝ∗t1) = E((∆St1 −∆Ŝt1)(∆St1 −∆Ŝt1)
∗)

so that ||E(∆St1∆S∗t1)− E(∆Ŝt1∆Ŝ∗t1)|| ≤ E‖∆St1 −∆Ŝt1‖2
2
≤ CN

− 2
d

1 .

Now |E ((V n
1 − V n

0 )∆St1) − E
(
(V̂ n

1 − V̂ n
0 )∆Ŝt1

)∣∣∣

≤ ‖∆Ŝt1‖2(‖V n
1 − V̂ n

1 ‖2 + |V n
0 − V̂ n

0 |) + ‖V n
1 ‖2‖St1 − Ŝt1‖2

≤ ‖∆St1‖2C(1 + |s0|) n

(N/n)
1
d

+
C

N
1
d
1

≤ C(1 + |s0|)
√

n

(N/n)
1
d

where we used in the last inequality that ‖Ŝt1‖2 ≤ ‖St1‖2 ≤ C
√

T
n (1 + |s0|). One derives

from (58) and (59) that

|E(∆St1∆S∗t1)(ζ
n
0 − ζ̂n

0 )| ≤
∣∣∣E ((V n

1 − V n
0 )∆St1)− E

(
(V̂ n

1 − V̂ n
0 )∆Ŝt1

)∣∣∣

+||E(∆St1∆S∗t1)− E(∆Ŝt1∆Ŝ∗t1)|| |ζ̂0|

≤ C(1 + |s0|)
√

n

(N/n)
1
d

+
C

N
2
d
1

≤ C(1 + |s0|)
√

n

(N/n)
1
d

.

Hence, one obtains the following result by inverting the covariance matrix since

|ζn
0 − ζ̂n

0 | ≤ ||(E(∆St1∆S∗t1))
−1||C(1 + |s0|)

√
n

(N/n)
1
d

.

Now, it follows from the obvious cc∗(x) ≥ ε0 Diag(x2
i ) that

E(∆St1∆S∗t1) ≥
(

ε0

∫ t1

0
min

1≤i≤d
E(Si

s)
2ds

)
Id ≥

(
ε0

∫ t1

0
min

1≤i≤d
(ESi

s)
2ds

)
Id = (min

i
(si

0)
2 ε0T

n
)Id

so that ||E(∆St1∆S∗t1))|| ≤ ε−2
0 (min

i
si
0)
−2 n

T
which completes the proof. ♦
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4.3 Approximation of the strategy: rate of convergence

In this section we evaluate the “global” residual risk on [0, T − δ] induced by the use of
the time discretization of the diffusion with step T/n i.e.

E
∫ T−δ

0
|c∗(Ss)(Zs − ζs)|2 ds for some δ > n−1/3. (60)

where Zt is defined by (36) and ζt := projn(Z) is the projection on the set Pn of elementary
predictable strategies. Our basic assumption is

(H) ≡ (i) σ ∈ C∞
b (Rd), (ii) σσ∗ ≥ ε0 Id, (iii) ‖∇c‖∞ < +∞.

Note that ∇c(x) = ∂σ(x)x + σ(x) where ∂σ = (∂σ1, . . . , ∂σd) with ∂σi the Jacobian
matrix of the i

′th column of the matrix σ. So ∇c is generally not bounded. However, if
∂σ(x) = O(|x|−1) when |x| goes to infinity, then ‖∇c‖∞ is finite.

Theorem 6 Assume that (H) holds true. Let δn := n−1/3. Then there exists some real
constants K and θ (depending on the bounds of c and its first two derivatives) such that

E
∫ T−δn

0
|c∗(Ss)(Zs − ζs)|2 ds ≤ K(1 + |s0|)q

a

1

n
1
6
− θ√

ln n

. (61)

Remarks: Roughly speaking the above result says that on every [0, T − δ], δ > 0, the
speed of convergence in L2 is of order 1

n1/6 . Let us now comment the true statement.

– The fact that we may take [0, T −δn], δn = n−1/3 says that asymptotically we control
the whole interval [0, T ).

– The fact that θ√
ln n

comes out is due to the non uniform ellipticity of S: this is the
cost of truncation around zero. One may look at that some way round: if we had worked
with the uniformly elliptic diffusion X = ln S instead of S, then the obstacle function
becomes h(t, expx) and has an exponential growth. So we need to truncate as well and
the cost is still

√
lnn.

– In most financial applications the obstacle h is at most Lipschitz continuous (for
example h(t, x) = e−rt(K − ertx)+ for a put of strike K). However, if the obstacle is
more regular, namely h ∈ C1,2, then no regularization is needed and the resulting error
O(1/n1/3).

Some technical difficulties arise when evaluating the term in (60) directly, so we first
reduce the problem to a simpler one. This is done in two steps.

Lemma 1 (Step 1) Set Hs := c∗(Ss)Zs and ηs :=
n

T
Etk

∫ tk+1

tk

Hudu, s∈ [tk, tk+1). Then

E
∫ T

0
|c∗(Ss)(Zs − ζs)|2 ds ≤ C

n
+ E

∫ T

0
|Hs − ηs|2 ds. (62)

Proof: We temporarily define zs :=
1

tk+1 − tk
Etk

∫ tk+1

tk

Zrdr, tk ≤ s < tk+1. Note that z

is an adapted process which is piecewise constant. Since ζ is the L2−projection of Z on
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the subspace of these type of processes, we have

E
∫ T

0
|c∗(Ss)(Zs − ζs)|2 ds ≤ E

∫ T

0
|c∗(Ss)(Zs − zs)|2 ds

≤ 2E
∫ T

0
|Hs − ηs|2 ds + 2E

∫ T

0
|ηs − c∗(Ss)zs|2 ds.

It remains to prove that the second term in the right hand of the above inequality is
dominated by C/n. We write this term as

E
n−1∑

k=0

∫ tk+1

tk

∣∣∣∣
c∗(Ss)
∆tk+1

Etk

∫ tk+1

tk

Zudu− 1
∆tk+1

Etk

∫ tk+1

tk

c∗(Su)Zudu

∣∣∣∣
2

ds ≤ 2(I + J)

with I := E
n−1∑

k=0

∫ tk+1

tk

∣∣∣∣
c∗(Ss)− c∗(Stk)

∆tk+1
Etk

∫ tk+1

tk

Zudu

∣∣∣∣
2

ds,

J := E
n−1∑

k=0

∫ tk+1

tk

∣∣∣∣
1

∆tk+1
Etk

∫ tk+1

tk

(c∗(Su)− c∗(Stk))Zudu

∣∣∣∣
2

ds.

Let us evaluate J . Set s := tk if s ∈ [tk, tk+1). Conditional Schwartz’s inequality
implies that
∣∣∣∣Etk

∫ tk+1

tk

(c∗(Su)− c∗(Stk))Zudu

∣∣∣∣
2

≤ Etk

∫ tk+1

tk

‖c∗(Su)− c∗(Stk‖2duEtk

∫ tk+1

tk

|Zu|2du

≤ [c∗]2
Lip

∫ tk+1

tk

Etk |Su − Stk |2duEtk

∫ tk+1

tk

|Zu|2du.

Now, classical results about Euler schemes of diffusions with Lipschitz continuous coeffi-
cients yield that, for every u∈ [tk, tk+1),

Etk |Su − Stk |2 ≤ C∆tk+1Etk

(
(1 + sup

t∈[0,T ]
|St|)2

)
.

for some positive real constant C. Consequently

J ≤ C
T

n
E

(
n−1∑

k=0

Etk((1 + sup
t∈[0,T ]

|St|)2)Etk

∫ tk+1

tk

|Zu|2du

)

≤ C
T

n
E

(
(1 + sup

t∈[0,T ]
|St|)2

n−1∑

k=0

Etk

∫ tk+1

tk

|Zu|2du

)
≤ C

n

∥∥∥∥∥(1 + sup
t∈[0,T ]

|St|)2
∥∥∥∥∥

2

∥∥∥∥∥
n−1∑

k=0

Etkλk+1

∥∥∥∥∥
2

where λk+1 :=
∫ tk+1

tk

|Zu|2 du for every k∈ {1, . . . , n− 1}. Since the λk’s are nonnegative,

n−1∑

k=0

λ2
k+1 ≤

(
n−1∑

k=0

λk+1

)2

so that E
(

n−1∑

k=0

Etkλk+1

)2

≤ 2E
(

n−1∑

k=0

(λk+1 − Etkλk+1)

)2

+ 2E
(

n−1∑

k=0

λk+1

)2
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≤ 2E
n−1∑

k=0

(λk+1 − Etkλk+1)
2 + 2E

(
n−1∑

k=0

λk+1

)2

≤ 4E
(

n−1∑

k=0

λk+1

)2

= 4E
(∫ T

0
|Zu|2 du

)2

.

Finally J ≤ C

n
‖(1 + sup

t∈[0,T ]
|St|)2‖2

∥∥∥∥
∫ T

0
|Zu|2 du

∥∥∥∥
2

.

It is a standard result on diffusions that ‖(1 + supt∈[0,T ] |St|)2‖2 is finite. It remains to
prove that the term involving Z is finite. Since cc∗(Ss) ≥ ε0 SsS

∗
s Id, it follows that

|Zs|2 ≤ ε−1
0 max1≤i≤d(Si

s)
2 |Hs|2 so that, Schwartz Inequality yields

E
(∫ T

0
|Zs|2 ds

)2

≤
(
E sup

0≤t≤T

∣∣(Si
t)
−1

∣∣8
)1/2(

E
(∫ T

0
|Hs|2 ds

)4
)1/2

≤C

(
E

(∫ T

0
|Hs|2 ds

)4
)1/2

<+∞.

As S−1
t := (1/Si

t) satisfies an equation similar to (1), its supremum has finite polynomial
moments. Finally, the last inequality is a standard fact from RBSDE theory (see [17]
or [2]). So we have proved that J ≤ C/n.

One treats I the same way round. ♦

Step 2 The second type of difficulty which appears is due to the following two facts:
– The obstacle h(t, St) is not sufficiently smooth and so we do not have a nice control

on the increasing process K.
– The diffusion process S is not uniformly elliptic (because c(0) = 0) and so we do not

have nice evaluations of the density of St.
In order to overcome these difficulties we will replace S by an elliptic diffusion denoted

S and the obstacle h by a smooth obstacle h. Namely, let ε > 0 and λ > 0. We define:
– A function h ∈ C1,2(R+ ×Rd,R) using a regularization by convolution of order ε of

h. In particular, since h is Lipschitz continuous, we have

‖h− h‖∞ ≤ Cε and ‖(∂t + Lc)h‖∞ ≤ Cε−1 (63)

where Lc is the infinitesimal generator of the diffusion S.
– A function ϕλ ∈ C∞

b (Rd,Rd) satisfying

ϕλ(x) :=

{
x if |x| ≥ e−λ

x
2|x|e

−λ if |x| ≤ 1
2e−λ

and sup
λ>0

‖Dαϕλ‖∞ ≤ Cα for every multi-index α.

Then the approximating diffusion coefficient cλ := c ◦ ϕλ satisfies

cλc∗λ(x) ≥ ε0

4
e−2λ and ‖Dαcλ‖∞ ≤ Cα for every α. (64)

We consider now the solution Sx of the SDE

dSt = St(rdt + cλ(St)dWt), S0 = x.

Sometimes Sx
t will denote the solution starting at x. The related Snell envelope

Y t = ess supτ∈Tt
Et h(τ, Sτ ),
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satisfies the RBSDE

Y t = h(T, ST ) + KT −Kt −
∫ T

t
Hs.dWs

for some non decreasing process K and some adapted square integrable process H. We
refer to [17] and [2] for this topic. We also consider the approximation

η
s

=
n

T
Etk

∫ tk+1

tk

Hsds, tk ≤ s < tk+1.

Lemma 2 Assume that (H) holds

E
∫ T

0
|Hs − ηs|2 ds ≤ C(e−Cλ2/T + ε2) + E

∫ T

0

∣∣∣Hs − η
s

∣∣∣
2
ds (65)

Proof: We use the stability property of RBSDE′s (see [17] and [2]) in order to obtain

E
∫ T

0
|Hs −Hs|2 ds ≤ C E sup

0≤s≤T
|h(s, Ss)− h(s, Ss)|2 ≤ C(ε2+E sup

0≤s≤T
|h(s, Ss)− h(s, Ss)|2).

Let τ := inf{t / |St| ≤ e−λ}. Note that

P(τ ≤ T ) = P( inf
0≤s≤T

|Ss| ≤ e−λ) = P( sup
0≤s≤T

|log Ss| ≥ λ) ≤ Ce−Cλ2/T

the last inequality is a standard large deviation fact (although it can be easily checked
directly on model (1)). Since St = St for t ≤ τ , we obtain

E
∫ T

0
|Hs −Hs|2 ds ≤ C

(
ε2 + E

(
sup

0≤s≤T
(|h(s, Ss)|2 + |h(s, Ss)|2)1{τ≤T}

))

≤ C(ε2 + e−Cλ2/T ).

On the other hand since η and η are the L2(dt dP)-projections of H and H respectively on
the space Pn of elementary predictable processes, we complete the proof by noting that

E
∫ T

0

∣∣∣ηs − η
s

∣∣∣
2
ds ≤ E

∫ T

0
|Hs −Hs|2 ds ≤ C(ε2 + e−Cλ2/T ) ♦

We need now some analytical facts that we recall here (see [17] and [2]). First of all
we have the representation

Y t = u(t, St), Ht = (c∗λ∇u)(t, St)

where u is the unique (in some sense not important here, see [2]) solution of the PDE

(∂t + Lc)u(t, x) + F (t, x, u(t, x)) = 0, u(T, x) = h(T, x),

with F (t, x, u(t, x)) = α(t, x)1{u(t,x)=h(t,x)} ((∂t + Lc)h(t, x))+

where α is a measurable function such that 0 ≤ α ≤ 1. Denote F (t, x) := F (t, x, u(t, x))
and notice (recall (63)) that sup

0≤t≤T
sup
x∈Rd

|F (t, x)| ≤ C/ε. With this notation u satisfies

(∂t + Lc)u(t, x) + F (t, x) = 0, u(T, x) = h(T, x),
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and consequently u satisfies the mild form of the above PDE

u(t, x) = P T−thT (x) +
∫ T

t
P s−tFs(x)ds

where (P t)t≥0 is the semi-group of the diffusion St, that is P tf(x) = Ef(Sx
t ). This is the

equation that will be used in the sequel.
We turn now to the semi-group. It is well known (see [21] or [28]) that under the

hypothesis (64), P t(x, y) = pt(x, y)dy and for every k ∈ N and every multi-index α =
(α1, . . . , αm) we have

∣∣∣∂k
t Dα

xpt(x, y)
∣∣∣ ≤ K(1 + |x|)q

atk+m+1
2

e2λ × e−K′ |x−y|2
t (66)

where K, K ′, q depend on α and on Cα from (64) (but not on λ). Let us point out some
immediate consequences of this evaluation in our framework. Since |hT (y)| ≤ C(1 +
|y|),using ( 66) we obtain

∣∣∣∣
∂P δhT

∂xk
(x)

∣∣∣∣ ≤
∫

Rd

∣∣∣∣
∂pδ(x, y)

∂xk

∣∣∣∣× C(1 + |y|)dy ≤ 1√
δ

K(1 + |x|)q

a
e2λ (67)

∣∣∣∣
∂2P δhT

∂xk∂xp
(x)

∣∣∣∣ ≤ 1
δ

K(1 + |x|)q

a
e2λ (68)

∣∣∣∣
∂

∂xi
P T−thT (x) − ∂

∂xi
P T−shT (y)

∣∣∣∣ ≤
K(1 + |x|+ |y|)q

aδ3/2
e2λ(

√
t− s + |x− y|). (69)

We deal now with the second term in the right hand of (73). Since ‖F‖∞ ≤ C/ε, the same
computations as above (using (66)) give

∣∣∣∣
∂P δFs

∂xk
(x)

∣∣∣∣ +
∣∣∣∣
∂2P δFs

∂xk∂xp
(x)

∣∣∣∣ ≤ 1
δε

K(1 + |x|)q

a
e2λ (70)

and∣∣∣∣
∂2P δFs

∂s∂xk
(x)

∣∣∣∣ ≤ 1
δ3/2ε

K(1 + |x|)q

a
e2λ. (71)

Lemma 3 Let vi = ∂u
∂xi

. Under the hypothesis (H) (and consequently under (64)) one has

|vi(t, x)− vi(t, y)| ≤ K(1 + |x|+ |y|)q

a
e2λ ×

(√
δ

ε
+

1
δε
|x− y|

)
(72)

and |vi(t, x)− vi(s, x)| ≤ K(1 + |x|)q

a
e2λ ×

(√
δ

ε
+

1
δε

√
t− s

)
.

for every x, y ∈ Rd and every t, s ≥ 0 such that |t− s| ≤ δ.

Proof: We take derivatives in the mild equation for u and we obtain, for t ≤ T − δ

vi(t, x) =
∂

∂xi
P T−thT (x) +

∫ T

t

∂

∂xi
P s−tFs(x)ds

=
∂

∂xi
P T−(t+δ)P δhT (x)+

∫ T

t+δ

∂

∂xi
P s−(t+δ)P δFs(x)ds+

∫ t+δ

t

∂

∂xi
P s−tFs(x)ds.(73)
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Note that in the first two terms in the above (73) involve P δF , so one can use the regu-
larization effect of the semi-group which is not the case for the third term. We evaluate
first the last term in the right hand of the above equality. Using (66)

∣∣∣∣
∫ t+δ

t

∂

∂xi
P s−tFs(x)ds

∣∣∣∣ ≤ ‖F‖∞
∫ t+δ

t

∫

Rd

∣∣∣∣
∂

∂xi
ps−t(x, y)

∣∣∣∣ dyds

≤ ‖F‖∞
K(1 + |x|)q

a
e2λ

∫ t+δ

t

∫

Rd

1
s− t

e−K′ |x−y|2
s−t dy ds

≤ ‖F‖∞
K(1 + |x|)q

a
e2λ

∫ t+δ

t

1√
s− t

ds

≤
√

δ

ε

K(1 + |x|)q

a
e2λ,

the last inequality being a consequence of ‖F‖∞ ≤ C/ε. We deal now with the first term
in the RHS of (73). Using the Feynman-Kac formula

∂

∂xi
P T−(t+δ)P δhT (x) =

∂

∂xi
EP δhT (Sx

T−(t+δ)) =
d∑

k=1

E


∂P δhT

∂xk
(Sx

T−(t+δ))
∂Sx,k

T−(t+δ)

∂xi


 .

Using inequalities (67), (68) and (69), one checks that
∣∣∣∣∣∣
E


∂P δhT

∂xk
(Sx

T−(t+δ))
∂Sx,k

T−(t+δ)

∂xi
− ∂P δhT

∂xk
(Sy

T−(t′+δ))
∂Sy,k

T−(t′+δ)

∂xi




∣∣∣∣∣∣

≤ 1
δ

K(1 + |x|+ |y|)q

a
e2λ(|x− y|+

√
t− t′).

We turn now to the second term in the right hand of (73). Using (70), one obtains
∫ T

t+δ

∣∣∣∣
∂

∂xi
P s−(t+δ)P δFs(x)− ∂

∂xi
P s−(t+δ)P δFs(y)

∣∣∣∣ ≤
K(1 + |x|+ |y|)q

aδε
e2λ |x− y| .

Consider now t′ > t and write
∣∣∣∣
∫ T

t+δ

∂

∂xi
P s−tFs(x)ds −

∫ T

t′+δ

∂

∂xi
P s−t′Fs(x)ds

∣∣∣∣

≤
∫ t′+δ

t+δ

∣∣∣∣
∂

∂xi
P s−tFs(x)

∣∣∣∣ ds +
∫ T

t′+δ

∣∣∣∣
∂

∂xi
P s−tFs(x)ds− ∂

∂xi
P s−t′Fs(x)

∣∣∣∣ ds =: I + J.

Using (70) and (71), we obtain I ≤ K(1 + |x|)q

aδε
e2λ

∣∣t− t′
∣∣

J ≤ K(1 + |x|)q

aδ3/2ε
e2λ

∣∣t− t′
∣∣ ≤ K(1 + |x|)q

aδε
e2λ

√
|t− t′|

the last inequality being a consequence of |t− t′| ≤ δ. This completes the proof . ♦

The above lemma and the representation Hx
t = (c∗λ∇u)(t, Sx

t ) straightforwardly yield

Corollary 1 For every s < r < T − δ such that r − s < 1/n < δ,

(
E |Hx

r −Hx
s |2

)1/2
≤ K(1 + |x|)q

a
e2λ ×

(√
δ

ε
+

1
δε

1√
n

)
. (74)
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Proof of Theorem 6: Using (74)

E
∫ T−δ

0

∣∣∣Hs − η
s

∣∣∣
2
ds =

∑

tk<T−δ

E
∫ tk+1

tk

∣∣∣∣
1

∆tk+1

∫ tk+1

tk

(Hs −Hr)dr

∣∣∣∣
2

ds

≤
∑

tk<T−δ

∫ tk+1

tk

1
∆tk+1

∫ tk+1

tk

E |Hs −Hr|2 drds

≤ K(1 + |x|)2q

a2
e4λ ×

(√
δ

ε
+

1
δε

1√
n

)2

.

Moreover, as a consequence of the first two lemmas

E
∫ T−δ

0
|c∗(Ss)(Zs − ζs)|2 ds ≤ C

n
+ C(e−C′λ2/T + ε2) +

K(1 + |x|)2q

a2
e4λ × 1

ε2
(δ +

1
nδ2

).

In order to minimize δ + 1
nδ2 we take δn = n−1/3 so that δ + 1

nδ2 = Cn−1/3. Then, in order
to minimize ε2 + ε−2n−1/3 we take εn = n−1/6 so that ε2 + ε−2n−1/3 ∼ n−1/6. Finally we
take λn =

√
ln n and to obtain (61). ♦

5 Numerical results on American exchange options

In this section, we present some numerical experiments concerning the pricing and the
hedging of American style options in (even) dimensions d = 2 up to 10. This study will
be divided in two parts. First, we will numerically estimate the spatial accuracy in each
dimension in order to be able to produce a good choice of time and space discretization.
Secondly, we will compute some prices and hedges following this choices.

5.1 The model

dimension),
We specify the underlying asset model (1) into a d-dimensional Black & Scholes (B&S)

model (constant volatility sigma) with constant dividend rates µ`, ` = 1, . . . , d i.e.

dS`
t = (r − µ`)S`

t dt + σ`S
`
t dW `

t , t ∈ [0, T ], ` = 1, . . . , d (75)

where (Wt)t∈[0,T ] denotes a d-dimensional standard Brownian motion. The traded assets
vector are (eµ`tS`

t ), ` = 1, . . . , d) so that the discounted price satisfies (75) with r = 0.
The assets are assumed to be independent for technical reasons: it turns out to be the
worst setting for quantization, so the most appropriate for experiments.

Beyond the importance of B&S for applications, St is then a closed function of (t,Wt)
for every t ∈ [0, T ] since S`

t = s`
0 exp ((r − (µ` + σ2

` /2))t + σ`W
`
t ). Therefore, one can

either implement a quantization tree for (St)t∈[0,T ] or for (Wt)t∈[0,T ]. Although the pay-
offs functions are stricto sensu, no longer Lipschitz continuous as functions of W , we chose
the second approach because of its universality: an optimal quantization of the Brownian
motion can be done once for all and can be derived from optimal quantizations of the
d-dim standard Normal distributions by appropriate dilatations (see Fig.1).

We focus on American style “geometric” exchange options which pay-offs read

h(x) = max (x1 · · ·xp − xp+1 · · ·x2p, 0) with d := 2p. (76)
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It follows from the pricing formula (5) that the European and American premia for
exchange options do not depend upon the interest rate r so we can set r = 0 w.l.g. An
important remark is that there exists a closed form for the Black & Scholes premium of a
European exchange option with maturity T at time t given by

ExBS(θ, x, y, σ̃, µ) := erf(d1) exp(µθ) x− erf(d1 − σ̃
√

θ) y,

d1(x, y, σ̃, θ, µ) :=
ln(x/y) + (σ̃2/2 + µ)θ

σ̃
√

θ
and erf(x) :=

∫ x

−∞
e−

u2

2
du√
2π

where θ := T−t, σ̃ :=

(
d∑

`=1

σ2
`

)1/2

, µ :=
p∑

`=1

µ`−
d∑

`=p+1

µ`, x :=
p∏

`=1

S`
t , y =

d∏

`=p+1

S`
t . (77)

We will also use some American geometric put pay-offs h(x, . . . , xd) := (K−x1 · · ·xd)+.

5.2 Specification of the numerical scheme

Let us precise now the numerical scheme that we will implement. As mentioned above, our
approach to pricing consists first in quantizing the d-dim Brownian motion. More precisely,
let T > 0 and n,N two integers; set ∆t := T

n and tk := k∆t. Spatial discretization
depends on the time tk. We use the optimized dispatching rule (34) that assigns Nk

points to the grid Γk of time tk so that N ≤ N0 + N1 + N2 + · · ·+ Nn ≤ N + n, (typically,
N0 = 1 < N1 < · · · < Nn). Now, we compute for every k ∈ {0, . . . , n} a Nk-optimal
quantizer of N (0; Id), from which we derive the Nk-optimal quantizer (xk

` )`=1,...,Nk
of

Wtk by a
√

tk-dilatation. The optimal grids of the Normal distributions are obtained
by processing the CLV Q algorithm (25). The final converging phase is refined using a
randomized version of the so-called Lloyd I fixed point procedure (see e.g. [24]). For
further details about the implementation, see [7]. Then, all the companion parameters
(weights αk

i , βk
ij and quantization errors) are then estimated by a standard Monte Carlo

simulation. In this very particular but important case, we do need the extended CLVQ
procedure proposed for general diffusions (see [3]).

Finally, the Quantization tree algorithm (19) reads




vn
i := hn

i , i = 1, . . . , Nn,

vk
i := max

(
hk

i ,
∑

1≤j≤Nk+1
πk

i,j vk+1
j

)
, i = 1, . . . , Nk, k = 0, . . . , n− 1

(78)

where the obstacle hk
i := h(sk

i,1, . . . , s
k
i,d) with sk

i,` := s0,` exp
(
−

(
µ` +

σ2
`

2

)
k∆t + σ` xk

i

)
, ` =

1, . . . , d and where the weights πk
i,j are Monte-Carlo proxies of the theoretical weights i.e.

πk
i,j :=

P(Wtk+1
∈ Ck+1

j ,Wtk ∈ Ck
i )

P(Wtk ∈ Ck
i )

.

where Ck
i = Ci(xk). Following (49) the hedging δk

i at xk
i is computed by

δk
i,` :=

Nk+1∑

j=1

πk
i,j(v

k+1
j − vk

i )(eµ`tk+1sk+1
j,` − eµ`tksk

i,`)

Nk+1∑

j=1

πk
i,j(e

µ`tk+1sk+1
j,` − eµ`tksk

i,`)
2

, ` = 1, . . . , d. (79)
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In practise, we need to introduce a kind of control variate variables (Mk
i )1≤i≤Nk,1≤k≤n

for the quantization tree algorithm. That means some explicitly known variables satisfying
(ideally):

Nk+1∑

j=1

πk
i,j Mk+1

j = Mk
i . (80)

(Mkis a martingale with respect to the natural filtration of (Ŵtk)0≤k≤n). Of course this
can only be achieved up to the spatial discretization by considering a FS

tk
-martingale

Mtk := m(tk, Stk) where m is explicitly known

An efficient choice is here to take

Mk
i = ExBS(T − tk,

p∏

`=1

sk
i,`,

d∏

`=p+1

sk
i,`, σ̃, µ). (81)

Then, we use the following proxy for the premium of the American pay-off (h(tk, Stk))0≤k≤n

Premiumh(tk, sk
i ) := m(tk, sk

i ) + vh−m,k
i (82)

where (vh−m,k
i )1≤k≤n is obtained by the scheme (78) with the obstacle hi

k−m(tk, sk
i )1≤k≤n.

5.3 Numerical accuracy, stability

We will now estimate numerically the rate of convergence (at time t = 0) of the numerical
premium p(n,N) := Premiumh(0, s0) given by (78) using (82) towards a reference pth as
a function of (n,N) where N := N/n (average number of points per layer). The reference
premium pth is obtained by a finite difference method for vanilla American put options
in 1-dimension and derived from a 2-dimensional difference method due to Villeneuve &
Zanette in higher dimensions (see [38]). The error terms both in time and in space given
by Theorem 4 are

E(n,N) = |p(n, N)− pth| ≈ c1

n
+ c2

n

N
α with α = 1/d. (83)

for semi-convex pay-offs. Two questions are raised by this error bound: are these rates
optimal? Is it possible to compute an optimal number nopt of time layers to minimize the
global error?

We are able to answer the first one: we compute by c1 and C2 := c2N
−α by nonlinear

regression of the function n 7→ E(n,N) for several fixed values of N and n.
We begin by the 1 and 2-dimension settings. The specifications of the reference

model (75) are (d = 1, vanilla put, r = 0.06, σ = 0.2, S0 = 36, K = 40) and (exchange,
d = 2, σ = 0.2, µ = −0.05, S1

0 =
√

40, S2
0 =

√
36).

In Table 1 are displayed numerical approximations of c1, C2 and

αi :=
ln(C2(N i+1)/C2(N i))

ln(N i/N i+1)
, i = 1, 2, 3.

Note first that c1 does not depend upon N : this confirms the above global error
structure (83). These empirical values for α are closer to 2/d than the theoretical 1/d
and strongly suggests that α = 2/d is the true order. This can be explained by the
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d = 1 d = 2
N i N1 = 20 N2 = 30 N3 = 40 N4 = 60 N1 = 235 N2 = 455
c1 0.47 0.45 0.45 0.46 3.54(-1) 3.41(-1)
C2 3.77(-3) 1.82(-3) 1.03(-3) 4.79(-4) 6.61(-4) 3.55(-4)
αi 1.87 1.90 1.91 × 0.89 ×

Table 1: Estimation of the spatial convergence exponent α of (83) in dimensions d = 1, 2.

following heuristics: in the linear case (e.g. a European option computed by a descent of
the quantization tree algorithm), the semi-group of the diffusion quickly regularizes the
premium. Then, the second order numerical integration formula by quantization applies:
if f admits a Lipschitz continuous derivative and X is a square integrable random variable,
then (see [35])

|Ef(X)−
∑

1≤i≤N

P(X̂x =xi)f(xi)−
∑

1≤i≤N

f ′(xi).E((X−xi)1Ci(x))︸ ︷︷ ︸
= 0 if x optimal

| ≤ 1/2[f ′]Lip‖X−X̂x‖2
2
, (84)

where ‖X − X̂x‖2
2

is O(N−2/d). The optimality of the grid makes the term E((X −
xi) 1Ci(x)(X)) = 1

2

∂‖X− bXx‖2
2

∂xi
vanish. Applying rigorously this idea to American option

pricing remains an open question (however see [6]). Whatsoever this better rate of con-
vergence is a strong argument in favour of optimal quantization.

From dimension 4 to 10, the storage of the matrix {πk
i,j} for increasing values of N and

large n is costly and make the computations intractable. The above computations suggest
a spatial order of 2/d when the grids are optimal. In fact, truly optimal grids become
harder and harder to obtain in higher dimensions, that is why we verify that spatial order
becomes closer and closer to 1/d rather than 2/d.

Several answers to the second question are possible according to the variables used in
the error bound. Here, we chose to compute nopt as a function of N and n. (rather than
N and n). For a given value of N , one proceeds as above a non linear regression that
yields numerical values for c1 and C2 := c2N

−1/d. Finally set

nopt(d, N) :=
√

c1

C2
.

In lower dimension (d ≤ 3), the order α can be estimated and one may set directly for
every N , nopt(d,N) =

√
c1
c2

N
1/d. In Table 2 are displayed the numerical values.

d = 1 d = 2 d = 4, N = 750 d = 6, N = 1000 d = 10, N = 1000
c1 0.45 0.35 8.84(-1) 1.46 2.10
c2 1.12 2.05(-1) × × ×
C2 × × 2.62(-3) 2.57(-3) 8.75(-4)

nopt 0.63N 1.31N
1/2 19 24 50

Table 2: Estimation of the optimal number of time layers for d = 1, 2, 4, 6, 10.

5.4 Numerical results for American exchange options

We now present numerical computations for American geometric exchange functions based
on the model described in section 5.1. Namely, we present the premium of in- and out-of-
the money options as a function of the maturity T (expressed in year), T ∈ { k

n , 0 ≤ k ≤ n}.
This distinction gives an insight about the numerical influence of the free boundary.
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Maturity 3 months 6 months 9 months 12 months
AMref 4.4110 4.8969 5.2823 5.6501

Price Error (%) Price Error (%) Price Error (%) Price Error (%)
d = 2 4.4111 0.0023 4.8971 0.0041 5.2826 0.0057 5.6505 0.0071
d = 4 4.4076 0.08 4.9169 0.34 5.3284 0.82 5.7366 1.39
d = 6 4.4156 0.1 4.9276 0.63 5.3550 1.38 5.7834 2.20
d = 10 4.4317 0.47 4.9945 2.00 5.4350 2.89 5.8496 3.53

Table 3: American premium & relative error for different maturities and dimensions.

We first settle the value of N and then read on Table 2 the optimal number n =
nopt(d,N) of time layers. Space discretization is that used for the above numerical exper-
iments. The model parameters and initial data settled so that µ and σ̃ remain constant,
equal to −5% and 20% respectively in (77):

µ1 := −5%, µi := 0, 2 ≤ i ≤ d, σi := 20/
√

d%.

si
0 := 402/d, 1 ≤ i ≤ d/2, si

0 := 362/d, d/2 + 1 ≤ i ≤ d (in-of-the-money),

si
0 := 362/d, 1 ≤ i ≤ d/2, si

0 := 402/d, d/2 + 1 ≤ i ≤ d (out-of-the-money).

In Fig.2 and 3 are displayed the computed premia (and hedges in 2-dim) at time
t = 0 together with the reference ones as a function of the maturity T ∈ [0, Tmax]. Fig.2
emphasizes that both premia and hedges in 2-dimension are very well fitted with the
reference premium.

In in-the-money case, we can see on Fig.3(a)-(c)-(e) that the computed premium tends
to overestimate the reference one when the dimension d increases and when the maturity
grows. However, the maximal error remains within 3,5 % in all the cases as displayed in
Table 3. The same phenomenon occurs for the computed hedges, within a similar range
(hedges are not depicted here). A piecewise constant approximation scheme is usually not
efficient to compute derivatives. Furthermore the parameters of the quantization tree have
not been settled to minimize the local residual risks (48). In the out-of-the-money setting,
very different behaviours are observed on the premia. Indeed whatever the dimension is
(from 4 to 10), the premia seem to be well computed (Figs.3(b)-(d)-(f)). Fig. 4 depicts
the quantized residual risk (at t = 0) as a function of the maturity. It suggests that
that numerical incompleteness of the market has a bigger impact on the premium “in-the-
money” than “out-of-the-money”.

References

[1] D.G. Aronson, Bounds for the fundamental solution of a parabolic equation, Bull. of the A.M.S.,
73, 1967, pp.890-903.

[2] V. Bally, M.E. Caballero, B. Fernandez, N. El Karoui, Reflected BSDE’s, PDE’s and Variational
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ANNEX: Uniform domination of the log-normal quantization error

Proposition In the extended Black & Scholes model (1), if σ∈ C∞b (Rd) is uniformly elliptic, then
the (minimal) quantization errror (Stk

)0≤k≤n satisfies the uniform domination property (32) with

ϕk := cσ,T

√
tk (cσ,T > 0) and R := (si

0 ψ(
√

TZi))1≤i≤d, Z ∼ N (0; Id), (85)

where ψ(u) := (ui + eui

)1≤i≤d, u = (u1, . . . , ud)∈ Rd.

Proof: One starts from the obvious inequality, valid for every u, v∈ R and every ρ > 0,

|eρv − eρu| ≤ ρ|v + ev − (u + eu)|.
The diffusion Yt := ln St starting at 0 is clearly a diffusion with diffusion coefficient σ(St), hence
ln St is uniformly elliptic. It follows from item (a) that the density function πln Stk

satisfies

πln Stk
(y) ≤ α π√βtk Z(y), (α, β > 0).

Consequently, if Xk := Stk
starting now at X0 := s0 > 0, one has for every N -tuple x∈ (Rd

+)N

DXk,p
N (x) = E

(
min

1≤i≤N
|(s`

0e
Y `

tk )1≤`≤d − xi|p
)
≤ αE

(
min

1≤i≤N
|(s`

0e
β tkZ`

tk )1≤`≤d − xi|p
)

.
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Now, one easily derives (with obvious notations) that

DXk,p
N ≤ α inf

y∈(Rd)N
E( min

1≤i≤N
|(s`

0 (eβ tkZ`
tk − eβ tky`

i ))1≤`≤d|p).

For every i∈ {1, . . . , n}, Inequality (85) yields

d∑

`=1

(s`
0)

2
(
e
√

β tkZ` − e
√

β tky`
i

)2

≤
(√

tk
T

)p d∑

`=1

(s`
0)

2
(
ψ(
√

TZ`)− ψ(
√

Ty`
i )

)2

which finally yields the expected result since u 7→ s`
0ψ(

√
Tu) is a bijective from R onto R∗+. ♦
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Figure 1: A 300-tuple with the lowest quadratic quantization error for the Normal distribution
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(a) (b)

(c) (d)

(e) (f)

Figure 2: d = 2, n = 25 and N = 300. In-the-money : a), c), e) ; Out-of-the-money : b), d), f).
American premium fonction of the maturity : a), b) ; Hedging strategy on the first asset : c), d) ;
Hedging strategy on the second asset : e), f). The cross + depicts the premium obtained with the
method of quantization and – depicts the reference premium (V & Z) (cf. [38]).
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(a) (b)

(c) (d)

(e) (f)

Figure 3: d = 4, 6, 10. In-the-money : (a), (c), (e) ; Out-of-the-money : (b), (d), (f). American
premium fonction of the maturity. + depicts the premium obtained with the method of quantization
and – depicts the reference premium (V & Z) (cf. [38]).
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Figure 4: Example of residual risk as a function of the maturity in 4-dmension
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