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Source | Model | Option

| Model_Option | Help on mc methods | Archived Tests

mc_floatingasian_standard

Input parameters:

• Time StepNumber M

• Generator Type

• Number of iterations N

• Scheme

• Confidence Value α

Output parameters:

• Price P

• Error Price σP

• Delta δ

• Error delta σδ

• Price Confidence Interval: ICP =[Inf Price, Sup Price]

• Delta Confidence Interval: ICδ =[Inf Delta, Sup Delta]

Description:
Computation for a Floating Asian Call or Put European Option of its Price
and its Delta with the Standard Monte Carlo or Quasi-Monte Carlo. In the
case of Monte Carlo simulation, the method also provides an estimation for
the integration error and a confidence interval.

For a best understanding of Asian option and a detailed description of the
notations, we refer the reader to the general part about options ?????????.
Simulation of an Asian option is not obvious because we need to generate
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the mean of the underlying asset over a given period. Explanations about
this point are described in the next points. You can read the part on simu-
lation of random variables????????/ for a more complete presentation about
simulation of Brownian trajectory.
Quasi Monte Carlo simulation is available for this options, but some restric-
tions appear: we need multidimensional low-discrepancy sequences and for
some of them (like Sobol for instance) we are limited in practice with their
dimension. See the implemented part for low-discrepancy sequences.

The underlying asset price evolves according to the Black and Scholes model,
that is:

dSu = Su((r − d)du + σdBu), ST0 = s

then

ST = s exp

(
(r − d− σ2

2
)(T − T0)

)
exp(σBT−T0)

where ST denotes the spot at maturity T , s is the initial spot, T0 is the initial
time.

The Price of an asian option at t is:

Pt = e−r(T−t)E [f(ST , A(t0, T ))]

where f denotes the payoff of the option, K the strike and A(t0, T ) the mean
of the price of the underlying asset over a given period [t0, T ].
We have

A(t0, T ) =
1

T − t0

∫ T

t0
Sudu

The Delta is given by:

δ = e−r(T−t) ∂

∂s
E[f(ST , A(t0, T ))]

The estimators are expressed as:

P̃ =
1

N
e−r(T−t)

N∑

i=1

P (i)

δ̃ =
1

N
e−r(T−t)

N∑

i=1

∂

∂s
P (i) =

1

N
e−r(T−t)

N∑

i=1

δ(i)

Values for P (i) and δ(i) are detailed for each option.
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• Asian Call Floating : The payoff is (ST − A(t0, T ))+.
- Case t0 ≤ T0:
We decompose A(t0, T ) over [t0, T0] and [T0, T ]. Then we have:

E [(ST − A(t0, T ))+] = E
[(

ST −K ′ − T−T0

T−t0
1

T−T0

∫ T
T0

Sudu
)+

]

= E [(ST −K ′ − A′(T0, T ))+]

with K ′ = T0−t0
T−t0

A(t0, T0)

and A′(T0, T ) = 1
T−T0

∫ T
T0

S ′udu with S ′u = T−T0

T−t0
Su.

K ′ is named the pseudo strike and S ′ the pseudo spot.

Hence we obtain the following expressions:

P (i) = (ST (i)−K ′ − A′(T0, T )(i))
+

δ(i) =

{
∂ST (i)

∂s
− ∂A′(T0,T )(i)

∂s
= ST (i)

s
− A′(T0,T )(i)

s
if P (i) > 0

0 otherwise

- Case T0 < t0:

• Asian Put Floating : The payoff is (A(t0, T )− ST )+.
- Case t0 ≤ T0:
With the same decomposition as for a call, we find the following ex-
pressions:

P (i) = (K ′ + A′(T0, T )(i)− ST (i))
+

δ(i) =

{
∂A′(T0,T )(i)

∂s
− ∂ST (i)

∂s
= A′(T0,T )(i)

s
− ST (i)

s
if P (i) > 0

0 otherwise

- Case T0 < t0:

Simulation of the mean AT
We note

Yt =
∫ t

0
Sudu

We propose 3 different schemes to estimate Yt. The interval [0, t] is divided
into M steps and we note the step size h = t/M . We define the times
tk = kt/M .
A more detailed description for these schemes is given in [1].
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1. Scheme 1: Rieman sums
The estimation for Yt is given by:

Ỹ M
t = h

M−1∑

k=0

Stk

2. Scheme 2: Trapezoidal method
The approximation for Yt is obtained by considering the conditional
expectation E

[∫ t
0 Sudu\Bh

]
where Bh is the σ-field generated by the

Stk , k = 0, . . . , M − 1.
The conditional law of (Bu\Btk , Btk+1

) for u ∈ [tk, tk+1] is given by:

L(Bu\Btk = x,Btk+1
= y) = N

(
tk+1 − u

h
x +

u− tk
h

y,
(tk+1 − u)(u− tk)

h

)

Then we have:

E
[∫ t

0
Sudu\Bh

]
=

M−1∑

k=0

Stk

∫ tk+1

tk

e
u−tk

h
((r−d)h+σ(Btk+1

−Btk
)−σ2

2
(u−tk))du

for which we give the following approximation from a Taylor expansion:

Ỹ M
t = h

M−1∑

k=0

Stk

(
1 +

(r − d)h

2
+ σ

Btk+1
−Btk

2

)

3. Scheme 3: Brownian bridge method
We express Yt as:

Yt =
M−1∑

k=0

∫ tk+1

tk

Stkexp

(
(r − d− σ2

2
)(u− tk) + σ(Bu −Btk)

)
du

With a Taylor expansion, we obtain:

Ỹ M
t = h

M−1∑

k=0

Stk

(
1 +

h

2
(r − d− σ2

2
)− σBtk +

σ

h

∫ tk+1

tk

Budu

)

For the simulation, we will use that:

L
(∫ tk+1

tk

Budu\Btk , Btk+1

)
= N

(
h

2
(Btk + Btk+1

);
h3

6

)
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Remarks:
For each scheme, we need to simulate M independent gaussian variables (2M
for the third scheme) to obtain the values of Stk and Btk .
- In the case of Monte Carlo simulation, pseudo-random generators generate
successive terms that are independent so there is no particular problem with
this point.
- However, in the case of Quasi-Monte Carlo simulation, successive terms
generated by a low discrepancy sequence are not independent. Thus we can
not consider a one-dimensional simulation. We need to use M (or 2M)-
dimensional sequences. See the implementation part for Quasi-Monte Carlo
to verify maximum allowed dimension for each low discrepancy sequence.

Algorithm:

♣ /* Function SimulStockAndAverage */
Computation of ST (i) and the average A(t0, T )(i) according to the selected
scheme for each step of the Monte Carlo simulation.
/*Initialisation*/
- /* Average and Stock Computation */
For the 3 schemes, we need values of Btk for each of the M times tk defined
on [T0, T ].
We compute Btk+1

(i) = Btk(i) +
√

hgk(i), where gk(i) are independant stan-
dard gaussian variables.
We have Stk(i) = s exp

(
(r − d− σ2

2
)(tk − T0)

)
exp(σBtk(i))

And then we use the specific formula for each scheme to estimate the average
A(t0, T )(i).
/* Scheme 1 : Rieman sums */
/* Scheme 2 : Trapezoidal method */
/* Simulation of M gaussian variables according to the generator type, that
is Monte Carlo or Quasi Monte Carlo. */
For the two first schemes, we need to generate M independent gaussian vari-
ables. We keep them in a table.
Call to the appropriate function to generate independent standard gaussian
variables. See the part about simulation of random variables for explanations
on this point. We just recall that for a MC simulation, we use the Gauss-
Abramovitz algorithm, and for a QMC simulation we use an inverse method
and a M -dimensional low-discrepancy sequence.
/* Gaussian value from the table Gaussians */
At each step, we take the next gaussian value in the table.

/* Scheme 3 : Brownian Bridge method */



8 pages 6

/* Simulation of 2M gaussian variables according to the generator type, that
is Monte Carlo or Quasi Monte Carlo. */
Call to the appropriate function to generate independent standard gaussian
variables. See the part about simulation of random variables for explanations
on this point. We just recall that for a MC simulation, we use the Gauss-
Abramovitz algorithm, and for a QMC simulation we use an inverse method
and a 2M -dimensional low-discrepancy sequence.
/* Gaussian value from the table Gaussians */
For the third scheme, we need to generate 2M independent gaussian vari-
ables.
In fact at each step, a second standard gaussian variable g′k(i) is required to

simulate
(

1
h

∫ tk+1
tk Budu\Btk , Btk+1

)
as

(
Btk

+Btk+1

2
+

√
h
6
g′k(i)

)
.

- /*Stock*/
Final value ST (i).
- /*Average*/
Final value A(t0, T )(i).

♣ /* Function FloatingAsianStandardMC */
Main function to realize the Standard Monte Carlo simulation for an Asian
option.
/* Value to construct the confidence interval */
For example if the confidence value is equal to 95% then the value zα used
to construct the confidence interval is 1.96. This parameter is taken into
account only for MC simulation and not for QMC simulation.
/*Initialisation*/
/* Size of the random vector we need in the simulation */
For each of the three schemes, we need a vector of size M (or 2M for the
third scheme) of independent gaussian variables to simulate the Brownian
trajectory. In case of QMC simulation, it involves that we need a M or
2M -dimensional low-discrepancy sequence.

• /*MC sampling*/
/* Test after initialization for the generator */
Test if the dimension of the simulation is compatible with the selected gener-
ator. In this case, we need a vector of size M or 2M . Some low discrepancy
sequences are not necessary adapted to a so large dimension.
/* Begin N iterations */

- /*Price*/
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At the iteration i, we obtain ST (i) and the average A(t0, T )(i) from the
function ’SimulStockAndAverage’. And we compute:

P (i) = Payoff(ST (i), A′(t0, T )(i) + K ′)

- /*Delta*/
Calculation of Delta δi with formula for a Call: if P (i) > 0

δ(i) =
ST (i)

s
− A′(T0, T )(i)

s

/*Sum*/
Computation of the sums

∑
Pi and

∑
δi for the mean price and the mean

delta.
/*Sum of squares*/

Computation of the sums
∑

P 2
i and

∑
δ2
i necessary for the variance price and

the variance delta estimations. (finally only used for MC estimation)

/* End N iterations */

• /*Price*/
The price estimator is:

P =
1

N
e−r(T−t)

N∑

i=1

P (i)

The error estimator is σP with :

σ2
P =

1

N − 1

(
1

N
e−2r(T−t)

N∑

i=1

P (i)2 − P 2

)

• /* Price Confidence Interval */
The confidence interval is given as:

ICP = [P − zασP ; P + zασP ]

with zα computed from the confidence value.

• /*Delta*/

δ =
1

N
e−r(T−t)

N∑

i=1

δ(i)
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The error estimator is σδ with:

σ2
δ =

1

N − 1

(
1

N
e−2r(T−t)

N∑

i=1

δ(i)2 − δ2

)

• /* Delta Confidence Interval */
The confidence interval is given as:

ICδ = [δ − zασδ; δ + zασδ]

with zα computed from the confidence value.

Confidence intervals are always computed, but for a QMC simulation they
don’t work, thus they don’t appear in the results.
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