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Source | Model | Option

| Model_Option | Help on mc methods | Archived Tests

mc_fixedasian_kemnavorst

Input parameters:

• Time StepNumber M

• Generator Type

• Number of iterations N

• Scheme

• Confidence Value α

• Delta relative increment

Output parameters:

• Price P

• Error Price σP

• Delta δ

• Error delta σδ

• Price Confidence Interval: ICP =[Inf Price, Sup Price]

• Delta Confidence Interval: ICδ =[Inf Delta, Sup Delta]

Description:
Computation for a Asian Call or Put Fixed European Option of its Price and
its Delta with the Control Variable of Kemna-Vorst Monte Carlo or Quasi-
Monte Carlo simulation. In the case of Monte Carlo simulation, the method
also provides an estimation for the integration error and a confidence interval.

For a best understanding of Asian option and a detailed description of the
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notations, we refer the reader to the general part about options ?????????.
Simulation of an Asian option is not obvious because we need to generate
the mean of the underlying asset over a given period. Explanations about
this point are described in the next points. You can read the part on simu-
lation of random variables????????/ for a more complete presentation about
simulation of Brownian trajectory.
Quasi Monte Carlo simulation is available for this options, but some restric-
tions appear: we need multidimensional low-discrepancy sequences and for
some of them (like Sobol for instance) we are limited in practice with their
dimension. See the implemented part for low-discrepancy sequences.

The underlying asset price evolves according to the Black and Scholes model,
that is:

dSu = Su((r − d)du + σdBu), ST0 = s

then

ST = s exp

(
(r − d− σ2

2
)(T − T0)

)
exp(σBT−T0)

where ST denotes the spot at maturity T , s is the initial spot, T0 is the initial
time.

The Price of a Fixed Asian option at t is:

Pt = e−r(T−t)E [f(K,A(t0, T ))]

where f denotes the payoff of the option, K the strike and A(t0, T ) the mean
of the price of the underlying asset over a given period [t0, T ].
We have

A(t0, T ) =
1

T − t0

∫ T

t0
Sudu

The Delta is given by:

δ = e−r(T−t) ∂

∂s
E[f(K, A(t0, T ))]

Estimators are expressed as:

P̃ =
1

N
e−r(T−t)

N∑

i=1

P (i)

δ̃ =
1

N
e−r(T−t)

N∑

i=1

∂

∂s
P (i) =

1

N
e−r(T−t)

N∑

i=1

δ(i)

The values for P (i) and δ(i) are detailed for each option by using the Kemna-
Vorst simulation method.



12 pages 3

• Fixed Asian Call: The payoff is (A(t0, T )−K)+.
- Case t0 ≤ T0:
We decompose A(t0, T ) over [t0, T0] and [T0, T ]. Then we have:

E
[
(A(t0, T )−K)+

]
= E

[
(A′(T0, T )−K ′)+

]

with K ′ = K − T0−t0
T−t0

A(t0, T0)

and A′(T0, T ) = 1
T−T0

∫ T
T0

S ′udu with S ′u = T−T0

T−t0
Su.

K ′ is named the pseudo strike and S ′ the pseudo spot.

If K ′ ≤ 0 then we obtain:

E
[
(A(t0, T )(i)−K)+

]
= E [A′(T0, T )−K ′]

for which we know an analytic formula.
In this case we have:

Pt = e−r(T−t)

[
s

(r − d)(T − t0)
(e(r−d)(T−T0) − 1)−K ′

]

and

δ =
e−r(T−t)

(r − d)(T − t0)
(e(r−d)(T−T0) − 1)

For the particular case r = d, we have:

Pt = e−r(T−t)(s′ −K ′)

δ = e−r(T−t)T − T0

T − t0

Else we cannot suppress the (.)+ and we have to realize a Monte Carlo
Simulation to compute the price. The simulation method deals with
control variate, due to Kemna and Vorst ([2]).

• Fixed Asian Put: The payoff is (K − A(t0, T ))+.
- Case t0 ≤ T0:
With the same decomposition as for a Call, we find the following ex-
pression:

E
[
(K − A(t0, T ))+

]
= E

[
(K ′ − A′(T0, T ))

+
]

If K ′ ≤ 0 then we obtain:

E
[
(K − A(t0, T )(i))+

]
= E [0]
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In this case we have:
Pt = 0

δ = 0

Else we cannot suppress the (.)+ and we realize a Monte Carlo Simu-
lation with Kemna and Vorst method ([2]).

Kemna & Vorst Method [2], [1].
• Call case
We detail the presentation for a Call option. Case of the Put is similar.

Kemna-Vorst method uses a control variate C ′(T0, T ) in the expression of
the mean of the option. We define

C ′(T0, T ) = exp

(
1

T − T0

∫ T

T0

log(S ′u)du

)

Then we can write:

Pt = e−r(T−t)E [(A′(T0, T )−K ′)+ − (C ′(T0, T )−K ′)+]
+e−r(T−t)E [(C ′(T0, T )−K ′)+]

= e−r(T−t)(Rt + Qt)

- For the term Qt there is an explicit formula expressed as a Black-Scholes
formula.

Qt = s′ exp

(
(r − d− σ2

6
)
T − T0

2

)
N(d1)−K ′N(d2)

with

d2 =
1

σ
√

T−T0

3

(
log(

s′

K ′ ) + (r − d− σ2

2
)
T − T0

2

)

and

d1 = d2 + σ

√
T − T0

3

Proof:
Qt = E [(C ′(T0, T )−K ′)+]

= E
[
C ′(T0, T )1{C′>K′}

]
−K ′P (C ′(T0, T ) > K ′)

C ′(T0, T ) can be expressed as:

C ′(T0, T ) = s′ exp

(
(r − d− σ2

2
)
T − T0

2

)
exp

(
σ

T − T0

∫ T−T0

0
Budu

)
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then we obtain:
P (C ′(T0, T ) > K ′) = N(d2)

If we note XT−T0 =
√

3
T−T0

∫ T−T0
0 Budu, XT−T0 follows the N(0, T − T0) law.

And under the probability P ∗ such that

dP ∗

dP
= exp

(
σ√
3
XT−T0 −

σ2

6
(T − T0)

)

we can calculate

E
[
C ′(T0, T )1{C′>K′}

]
= E∗

[
s′ exp

(
(r − d− σ2

6
)T−T0

2

)
1{C′>K′}

]

= s′ exp
(
(r − d− σ2

6
)T−T0

2

)
P ∗(C ′ > K ′)

= s′ exp
(
(r − d− σ2

6
)T−T0

2

)
N(d1)

Also we have an analytic formula for ∂Qt

∂s
:

∂Qt

∂s
=

T0 − t0
T − t0

exp

(
(r − d− σ2

6
)
T − T0

2

)
N(d1)

This expression will be used for the Delta estimation.

- For the term Rt there is no explicit formula. This term is estimated by
standard Monte Carlo simulation.
At each step of the simulation, we compute

Rt(i) = R1(i)−R2(i)
= (A′(T0, T )(i)−K ′)+ − (C ′(T0, T )(i)−K ′)+

from a generation of A′(T0, T )(i) and C ′(T0, T )(i).
Procedure to simulate these parameters is described in a next point (A’ sim-
ulation and C’ simulation).

- Estimations
For the Price and the Delta we have:

P̃t =
1

N
e−r(T−t)

N∑

i=1

Rt(i) + e−r(T−t)Qt

δ̃ =
1

N
e−r(T−t)

N∑

i=1

δ̃(i) + e−r(T−t)∂Qt

∂s
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where δ̃(i) = ∂R1(i)
∂s

− ∂R2(i)
∂s

∂R1(i)

∂s
=

{
∂A′(T0,T )(i)

∂s
if R1(i) > 0

0 otherwise

∂R2(i)

∂s
=

{
∂C′(T0,T )(i)

∂s
if R2(i) > 0

0 otherwise

• Put case
In the case of a Put, we obtain the following formula:
The explicit price for Qt is given by

Q = K ′N(−d2)− s′ exp

(
(r − d− σ2

6
)
T − T0

2

)
N(−d1)

At each step of the simulation, we compute

Rt(i) = R1(i)−R2(i)
= (K ′ − A′(T0, T )(i))+ − (K ′ − C ′(T0, T )(i))+

For the Delta, we have: δ̃(i) = ∂R1(i)
∂s

− ∂R2(i)
∂s

∂R1(i)

∂s
=

{
−∂A′(T0,T )(i)

∂s
if R1(i) > 0

0 otherwise

∂R2(i)

∂s
=

{
−∂C′(T0,T )(i)

∂s
if R2(i) > 0

0 otherwise

Simulation of the mean A′(T0, T )
The simulation is done with one of the three schemes: Rieman sums, Trape-
zoidal method or Brownian Bridge method. Description of the three schemes.

Simulation of C ′(T0, T )
As for the mean A′(T0, T ) we use one of the three proposed schemes to simu-
late the variable C ′(T0, T ). To improve the efficiency of the variable control
method, we have to generate the same brownian motions as for A′(T0, T ). In
this case we obtain higher correlations between A′(T0, T ) and C ′(T0, T ). It
leads to a better variance reduction.

C ′(T0, T ) = exp
(

1
T−T0

∫ T
T0

log(S ′u)du
)

= s′ exp
(
(r − d− σ2

2
)T−T0

2

)
exp

(
σ

T−T0

∫ T−T0
0 Budu

)
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We need to simulate

Y = exp

(
σ

T − T0

∫ T−T0

0
Budu

)

We obtain the following approximation for the three schemes

• Scheme 1: Rieman sums

Ỹ = exp

(
σ

M

M∑

k=1

Btk

)

• Scheme 2: Trapezoidal method

Ỹ = exp

(
σ

M

M∑

k=1

Btk + Btk+1

2

)

• Scheme 3: Brownian bridge method

Ỹ = exp

(
σ

M

M∑

k=1

Xk

)

where Xk is generated according the law of 1
h

∫ tk+1
tk Budu\Btk , Btk+1

,

that is N(
Btk

+Btk+1

2
, h

6
).

Finally, we have

C ′(T0, T )(i) = s′ exp

(
(r − d− σ2

2
)
T − T0

2

)
Ỹ

Algorithm:

♣ /* Function : AnalyticKemnaVorst */
Analytic formula for an asian option if K ′ ≤ 0.
- /* Put Case */
- /* Call case */
/* Case r = d */
/* Case r 6= d */

♣ /* Function : SimulStockAndAverageKemnaVorst */
Computation of the averages A′(t0, T )(i) and C ′(t0, T )(i) according to the
selected scheme for each step of the Monte Carlo simulation with the same
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brownian motions.
This function is called from the ”FixedAsianKemanVorst” function.
/*Initialisation*/

- /* Average Computation */
For the 3 schemes, we need values of Btk for each of the M times tk defined
on [T0, T ].
We compute Btk+1

(i) = Btk(i) +
√

hgk(i), where gk(i) are independant stan-
dard gaussian variables.
Call to the appropriate function to generate independent standard gaussian
variables. See the part about simulation of random variables for explanations
on this point. We just recall that for a MC simulation, we use the Gauss-
Abramovitz algorithm, and for a QMC simulation we use an inverse method
and a M or 2M -dimensional low-discrepancy sequence.
We have Stk(i) = s exp

(
(r − d− σ2

2
)(tk − T0)

)
exp(σBtk(i))

And then we use the specific formula for each scheme to estimate A(t0, T )(i)
and C ′(t0, T )(i).
/* Scheme 1 : Rieman sums */
/* Scheme 2 : Trapezoidal method */
/* Simulation of M gaussian variables according to the generator type, that
is Monte Carlo or Quasi Monte Carlo. */
For the two first schemes, we need to generate M independent gaussian vari-
ables. We keep them in a table.
/* Gaussian value from the table Gaussians */
At each step, we take the next gaussian value in the table.

/* Scheme 3 : Brownian Bridge method */
/* Simulation of 2M gaussian variables according to the generator type, that
is Monte Carlo or Quasi Monte Carlo. */
/* Gaussian value from the table Gaussians */
For the third scheme, we need to generate 2M independent gaussian vari-
ables.
In fact at each step, a second standard gaussian variable g′k(i) is required to

simulate
(

1
h

∫ tk+1
tk Budu\Btk , Btk+1

)
as

(
Btk

+Btk+1

2
+

√
h
6
g′k(i)

)
.

- /* Final average A′(T0, T ) */
- /* Final average C ′(T0, T ) */

♣ /* Function : FixedAsianKemnaVorst */
Main function to realize the Monte Carlo simulation with Kemna and Vorst
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method for an Asian option.
Parameters s et K are pseudo-spot and pseudo-strike. */
/* Value to construct the confidence interval */
For example if the confidence value is equal to 95% then the value zα used
to construct the confidence interval is 1.96. This parameter is taken into
account only for MC simulation and not for QMC simulation.
/*Initialisation*/
/* Size of the random vector we need in the simulation */
For each of the three schemes, we need a vector of size M (or 2M for the
third scheme) of independent gaussian variables to simulate the Brownian
trajectory. In case of QMC simulation, it involves that we need a M or
2M -dimensional low-discrepancy sequence.

• /* Computation of the price and the delta for term Q with the control
variate */
Black and Scholes formula
/* Put case */
/* Call case */

• /*MC sampling*/
/* Test after initialization for the generator */
Test if the dimension of the simulation is compatible with the selected gener-
ator. In this case, we need a vector of size M or 2M . Some low discrepancy
sequences don’t work with a so large dimension. See the part on the imple-
mentation of low-discrepancy sequences, you can find for each sequence the
maximal dimension allowed in our implementation.
Definition of a parameter which exprimes if we realize a MC or QMC sim-
ulation. Some differences then appear in the algorithm for simulation of a
gaussian variable and in results in the simulation.

/* Begin N iterations */

- /*Price*/
At the iteration i, we obtain A′(t0, T )(i) and C ′(t0, T )(i) from the function
’SimulStockAndAverage’. And we compute:

R(i) = Payoff(A′(t0, T )(i) + K ′)− Payoff(C ′(t0, T )(i) + K ′)
= R1(i)−R2(i)

In order to obtain the delta, we compute the price for the stock incre-
mented s ∗ (1 + inc) and s ∗ (1 − inc). Therefore the partial derivative will
be the difference divided by the increment.
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- /*Delta*/
Calculation of Delta δi with formula for a Call:

δ(i) =
(A′

s∗(1+inc)
(T0,T )−A′

s∗(1−inc)
(T0,T ))(i)1R1(i)>0

2∗s∗inc

− (C′
s∗(1+inc)

(T0,T )(i)−C′
s∗(1−inc)

(T0,T )(i))1R2(i)>0

2∗s∗inc

/*Sum*/
Computation of the sums

∑
Ri and

∑
δi for the mean price and the mean

delta.
/*Sum of squares*/

Computation of the sums
∑

R2
i and

∑
δ2
i necessary for the variance price and

the variance delta estimations. (finally only used for MC estimation)

/* End N iterations */

• /*Price*/
The price estimator R is:

R =
1

N

N∑

i=1

R(i)

The error estimator is σP with :

σ2
P =

e−2r(T−t)

N − 1

(
1

N

N∑

i=1

R(i)2 −R2

)

Final price estimator is:

P = e−r(T−t) [R + Q]

• /* Price Confidence Interval */
The confidence interval is given as:

ICP = [P − zασP ; P + zασP ]

with zα computed from the confidence value.

• /*Delta*/
First part of the delta estimator:

δ = e−r(T−t) 1

N

N∑

i=1

δ(i)
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/* Put Case */
For a Put, we take −δ.
The error estimator is σδ with:

σ2
δ =

1

N − 1

(
1

N
e−2r(T−t)

N∑

i=1

δ(i)2 − δ2

)

Final delta estimator is:

δ = e−r(T−t)

[
1

N

N∑

i=1

δ(i) +
∂Q

∂s

]

• /* Delta Confidence Interval */
The confidence interval is given as:

ICδ = [δ − zασδ; δ + zασδ]

with zα computed from the confidence value.

Confidence intervals are always computed, but for a QMC simulation they
don’t work, thus they don’t appear in the results.

Variance reduction by importance sampling
For each of the three previous schemes (Rieman sums, trapezoidal method
or brownian bridge method), one can also use a reduction variance method
by importance sampling. Indeed, by Girsanov theorem, we have :

E
[
e−θWT− θ2

2
T f(Bt + θt, 0 ≤ t ≤ T )

]
= E [f(Bt, 0 ≤ t ≤ T )]

for any function f of the trajectory of the Brownian.

The schemes are build by replacing Bt by Bt + θt and multiplying the

result by the correction factor term e−θWT− θ2

2
T . We choose θ in order to

get the mean of the modified asset E[Ã(t0, T )] = 1
T−t0

∫ T
t0

s exp((r − d −
σ2

2
)(u − t0) + σθu) equal to the strike K. We have observed that this leads

to a variance reduction if the value of θ obtained is positive. Therefore, the
formula we chose for θ is the following :

θ = max

(
0,

1

σ

(
σ2

2
− (r − d) + 2 ∗ (

K

s
− 1

T
)

))
.
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