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1 Introduction

In the Black-Scholes setting for option pricing it is assumed that the market-
maker designs a continuous-time hedge. This is not realistic from a practical
point of view. In the presence of transaction costs for example the investor
would like to hedge as little as possible. In fact even if there is no transaction
costs nor liquidity restrictions, an investor can and will obviously in practice
follow a discrete trading strategy at stopping times.

In this paper, we consider the problem of selecting the best hedging times
and ratios given a maximum fixed number of trading times. As a criteria
we take the variance of the replication error. Moreover we work under the
martingale measure. Note that the optimal price of the option for this criteria
is obviously the Black-Scholes price, so that we assume that the hedger of
the option trades at this price.

2 Minimal variance hedging given n rebal-

ancing

We consider the hedge ratios and hedging times as a control parameter. Let
(τn

1 , τn
2 , . . . , τn

n ) denote the rebalancing (stopping) times and
(
δτn

1
, δτn

2
, . . . , δτn

n

)
the corresponding (adapted) hedging ratios chosen by the investor. In order
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to apply Dynamic Programming techniques, we shall consider an investor
who initiates his strategy at time t, the value of the underlying being St = x,
with the selling of the option and an initial hedge of an amount α of stocks.
Let VT denote the value of the portfolio at time T, ϕ(x) the payoff of the
option, c(t, x) the Black-Scholes price, F = (Ft)0≤t≤T the standard augmen-
tation of the natural filtration of the Brownian motion, Tt,T the set of all
stopping times of the filtration F which satisfy t ≤ τ ≤ T with probability
one, Et the conditional expectation with respect to F . Let also denote Ãt

the quantity At discounted at time 0, that is Ate
−rt. The associated variance

of the tracking error is then:

I(t, x, α,Pn) ≡ E
[
{ṼT − ϕ̃(St,x

T )}2
]

= E
[
{c̃(t, St,x

t ) + α(S̃t,x
τn
1
− S̃t,x

t )

+
n∑

i=1

δτn
i
(S̃t,x

τn
i+1
− S̃t,x

τn
i
)− ϕ̃(St,x

T )}2

]

where by convention τn
n+1 = T and

Pn =
(
τn
1 , τn

2 , ...., τn
n , δτn

1
, δτn

2
, ...., δτn

n

)
.

In the expression above the process (St,x
s , s ≥ t) is the solution of the

equation {
dSs = rSsds + σSsdWs for s ≥ t
St = x (and Su = x for u ≤ t)

The problem at hand is to characterize the optimal cost function vn given
the initial hedge:

vn(t, x, α) ≡ inf
Pn

I(t, x, α,Pn) (1)

and to find, if some, P∗n minimizing I(t, x, α,Pn) i.e

vn(t, x, α) = I(t, x, α,P∗n)

and the optimal cost function

v∗n(t, x) = inf
α

vn(t, x, α)

The natural idea is to use Dynamic Programming to reduce our problem
to a sequence of standard optimal stopping problems. Indeed since we work
under the risk-neutral probability and with the square function, I(t, x, α,Pn)
splits naturally in the first local replication error until the next hedging time
and the error starting afresh at that date:
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Set

L = c̃
(
t, St,x

t

)
+ α

(
S̃t,x

τn+1
1

− S̃t,x
t

)
+

n+1∑
i=1

δτn+1
i

(
S̃t,x

τn+1
i+1

− S̃t,x

τn+1
i

)
− ϕ̃

(
St,x

T

)

Then

E
[
L2

]
= E

[
{c̃ (

t, St,x
t

)
+ α(S̃t,x

τn+1
1

− S̃t,x
t )− c̃

(
τn+1
1 , St,x

τn+1
1

)
}2

+{c̃
(
τn+1
1 , St,x

τn+1
1

)
+ δτn+1

1
(S̃t,x

τn+1
2

− S̃t,x

τn+1
1

)

+
n+1∑
i=2

δτn+1
i

(S̃t,x

τn+1
i+1

− S̃t,x

τn+1
i

)− ϕ̃(St,x
T )}2

]

So it is natural to conjecture the following Dynamic Programming rela-
tion:

vn+1(t, x, α) = inf
τ∈Tt,T

E
[
{c̃ (

t, St,x
t

)
+ α(S̃t,x

τ − S̃t,x
t )− c̃

(
τ, St,x

τ

)}2

+v∗n(τ, St,x
τ )

]
(DP )

or yet

vn+1(t, x, α) = −{c̃ (
t, St,x

t

)− αS̃t,x
t }2

+ inf
τ∈Tt,T

E
[
{c̃ (

τ, St,x
τ

)− αS̃t,x
τ }2 + v∗n(τ, St,x

τ )
]

Observe now that v∗n being given, we face a standard optimal stopping
problem. The solution to such a stopping time problem is well known (cf
[?]).

In [?], we give the proof of the Dynamic Programming equation. We
also prove that the value function vn is the unique viscosity solution of the
following sequence of variational inequalities on [0, T ]× R+∗ ×K :





∂vn

∂t
+ Avn + σ2(xe−rt)2(∆(t, x)− α)2 ≥ 0

vn ≤ v∗n−1

(vn − v∗n−1)(
∂vn

∂t
+ Avn + σ2(xe−rt)2(∆(t, x)− α)2) = 0

vn(T, x, α) = 0

(2)

where A is the differential operator associated to St given by Av (t, x) =
rx ∂v

∂x
(t, x) + σ2

2
x2 ∂2v

∂x2 (t, x), ∆(t, x) = ∂c
∂x

(t, x) (i.e. the Black-Scholes delta)
and K is a compact set where ∆ takes its values (this is not a restriction as we
shall see below). Notice than once v1, v2, ...., vn have been found, τn

1 , τn
2 , ...., τn

n

can be constructed in the same way as done for optimal stopping problems.
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2.1 Some properties of the solution

2.1.1 Optimal hedge ratios

If we know the trading dates it is easy to find the optimal deltas:

E

[{
Ṽ (T )− ϕ̃(ST )

}2
]

= E




{
n∑

i=0

∫ τ∗i+1

τ∗i

(∆ (t, St)− δτ∗i ) dS̃t

}2



=
n∑

i=0

E




{∫ τ∗i+1

τ∗i

(∆ (t, St)− δτ∗i ) dS̃t

}2



=
n∑

i=0

E

[∫ τ∗i+1

τ∗i

(∆ (t, St)− δτ∗i )2σ2S̃2
t dt

]

=
n∑

i=0

E

[
Eτ∗i (

∫ τ∗i+1

τ∗i

∆2 (t, St) σ2S̃2
t dt)

−2δτ∗i Eτ∗i (

∫ τ∗i+1

τ∗i

∆ (t, St) σ2S̃2
t dt)

+δ2
τ∗i

Eτ∗i (

∫ τ∗i+1

τ∗i

σ2S̃2
t dt)

]

This entails

δτ∗i =
Eτ∗i

[∫ τ∗i+1

τ∗i
∆ (t, St) σ2S̃2

t dt
]

Eτ∗i

[∫ τ∗i+1

τ∗i
σ2S̃2

t dt
]

which shows by the mean value theorem that δτ∗i = ∆ (ui, Sui
) for some

random ui between τ ∗i and τ ∗i+1.
Now if we assume that ϕ is a k−Lipschitz function, then |∆ (ui, Sui

)| ≤ k,
so that we can restrict ourselves to [−k, k], or better yet to the range of the
function ∆. In the Call case, the interval [0, 1] is chosen, and [−1, 0] in a Put
case.

2.1.2 Limit as N →∞
Obviously, the hedging error goes to zero as the number of hedges goes to
infinity since it is true for the deterministic case h = T−t

N
, ti = (i − 1)h.
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Moreover in this case we know the convergence rate. Therefore

vN(0, x, α) ≤ RN

≡ E
[{

c̃ (0, S0) + ∆(0, S0)(S̃t2 − S̃0)

+
N∑

i=2

∆(ti, Sti)(S̃ti+1
− S̃ti)− ϕ̃(ST )

}2



with

lim
N→∞

NRN =
e−2rT

2
E

[∫ T

0

e−2rtS4
t σ

4(
∂2c

∂x2
(t, St))

2 dt

]

where ∂2c
∂x2 is the gamma of the option. This result was shown by Zhang ([?]).

3 Finite difference method

This section deals with the numerical analysis of variational inequality 2.
We first set Xt = ln(St) and if we define uα

n by the relation

vα
n(t, x) = uα

n(t, ln(x))

then uα
n solves in [0, T ]× R the following parabolic inequality:





∂uα
n

∂t
+ Ãuα

n + σ2(exe−rt)2(∆(t, ex)− α)2 ≥ 0
uα

n ≤ infδ uδ
n−1

(uα
n − infδ uδ

n−1)(
∂uα

n

∂t
+ Ãuα

n + σ2(exe−rt)2(∆(t, ex)− α)2) = 0
uα

n(T, x) = 0

(3)

Since this variational inequality is defined on the whole real line IR, we
need first to localize it in an interval [−l, +l] where l is a constant. The
localized problem is then solved by the finite different method.

3.1 Localization

To localize the variational inequality, we introduce

T t,x
l = inf{s > t; |X t,x

s | > l}
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and we denote

uα
n,l(t, x) = −{c̃(t, ex)− αexe−rt}2

+ inf
τ∈Tt,T

E

[
{c̃((τ ∧ T t,x

l ), e
Xt,x

(τ∧T
t,x
l

))− αe−r(τ∧T t,x
l )e

Xt,x

(τ∧T
t,x
l

)}2

+ u∗n−1((τ ∧ T t,x
l ), e

Xt,x

(τ∧T
t,x
l

))

]

= −{c̃(t, ex)− αexe−rt}2

+ inf
τ∈Tt,T

E
[
Φ(τ,X t,x

τ∧T t,x
l

)
]

where Φ(t, x) = {c̃(t, ex)− αe−rtex}2 + u∗n−1(t, e
x).

The following proposition (see [?]) implies that to calculate uα
n, it suffices

to compute the value of the function uα
n,l.

Proposition 1 uα
n,l converges uniformly to uα

n on any compact as l goes to
infinity i.e.:

∀R > 0, lim
l→∞

sup
(t,x)∈[0,T ]×[−R,R]

|uα
n(t, x)− uα

n,l(t, x)| = 0

Remark 1 More precisely, we have the following estimate:

|uα
n(t, x)− uα

n,l(t, x)| ≤ Ce−
(l−R−|r−σ2

2 |T )2

σ2T

where C is a constant independent of l. In practice, for a given precision ε,
a suitable value for l can be found by using the above estimate.

3.2 Discretization

We discretize now the problem using the finite difference method. We in-
troduce a grid of mesh points (tj, xi) = (j ∗ k,−l + ih) where k = T

M
and

h = 2l
N+1

. We note uh(t) = (uh(t, i))1≤i≤N where uh(t, i) is an approximation
of u(t, xi).

We approximate the derivatives by

∂u

∂x
(t, xi) ∼ uh(t, i + 1)− uh(t, i− 1)

2h

and
∂2u

∂x2
(t, xi) ∼ uh(t, i + 1)− 2uh(t, i) + uh(t, i− 1)

h2
.
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We get

(Ãhuh(t))i = (−r − σ2

2

2h
+

σ2

2h2
)uh(t, i−1)−σ2

h2
uh(t, i)+(

r − σ2

2

2h
+

σ2

2h2
)uh(t, i+1)

One then seeks the vector (uh(t, xi), 0 ≤ i ≤ N) such that, there holds

• in the case of natural Dirichlet boundary conditions:





duh

dt
(t, i) + Ãuh(t, i) + fh(t, i) ≥ 0, ∀0 ≤ t ≤ T, ∀1 ≤ i ≤ N

uh(t, i) ≤ φh(t, i) ∀0 ≤ t ≤ T, ∀1 ≤ i ≤ N

(duh

dt
(t, i) + Ãuh(t, i) + fh(t, i))(uh(t, i)− φh(t, i)) = 0

uh(T, i) = 0, ∀1 ≤ i ≤ N
uh(t, 0) = uh(t, N + 1) = 0, ∀0 ≤ t ≤ T

• in the case of Neumann boundary conditions:





duh

dt
(t, i) + Ãuh(t, i) + fh(t, i) ≥ 0, ∀0 ≤ t ≤ T, ∀1 ≤ i ≤ N

uh(t, i) ≤ φh(t, i) ∀0 ≤ t ≤ T, ∀1 ≤ i ≤ N

(duh

dt
(t, i) + Ãuh(t, i) + fh(t, i))(uh(t, i)− φh(t, i)) = 0

uh(T, i) = 0, ∀1 ≤ i ≤ N
uh(t, 1) = uh(t, 0), ∀0 ≤ t ≤ T
uh(t, N) = uh(t, N + 1), ∀0 ≤ t ≤ T

where fh(t) = (fh(t, i))1≤i≤N are φh(t) = (φh(t, i))1≤i≤N are some vectors
defined by:

fh(t, i) = σ2(exie−rt)2(∆(t, exi)− α)2

and
φh(t, i) = inf

δ
uδ

n−1(t, xi)

We set: 



α = (− r−σ2

2

2h
+ σ2

2h2 )

β = −σ2

h2

γ = (
r−σ2

2

2h
+ σ2

2h2 )

The operator Ãh is then defined by:
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• in the case of natural Dirichlet boundary conditions:

Ãh =




β γ 0 · · · 0 0
α β γ 0 · · · 0
0 α β γ · · · 0

0
...

. . . . . . . . .
...

0 0 · · · α β γ
0 0 0 · · · α β




• in the case of Neumann boundary conditions:

Ãh =




β + α γ 0 · · · 0 0
α β γ 0 · · · 0
0 α β γ · · · 0

0
...

. . . . . . . . .
...

0 0 · · · α β γ
0 0 0 · · · α β + γ




3.3 The “θ-scheme”

We give θ ∈ [0, 1]. We construct an approximation

uh,k(t, x) =
N∑

n=0

un
h(x)1[nk,(n+1)k[(t)

where u0
h, . . . , u

N
h satisfy





un+1
h (i)−un

h(i)

k
+ θÃhu

n
h(i) + (1− θ)Ãhu

n+1
h (i) + fn

i ≥ 0
un

h(i) ≤ φn
i

(
un+1

h (i)−un
h(i)

k
+ θÃhu

n
h(i) + (1− θ)Ãhu

n+1
h (i) + fn

i )(un
h(i)− φn

i ) = 0
uM

h (i) = 0

Besides, one must add the appropriate boundary conditions.
For Dirichlet boundary conditions we have:

{
un

h(0) = 0
un

h(N + 1) = 0

for Neumann boundary conditions:
{

un
h(0) = un

h(1)
un

h(N + 1) = un
h(N)
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3.4 Explicit Method

First, let us discuss the case θ = 0. The approximating scheme is reduced





un+1
h (i)−un

h(i)

k
+ Ãhu

n+1
h (i) + fn

i ≥ 0
un

h(i) ≤ φn
i

(
un+1

h (i)−un
h(i)

k
+ Ãhu

n+1
h (i) + fn

i )(un
h(i)− φn

i ) = 0
uM

h (i) = 0

The solution of the system is given by

un
h(i) = min(gn

i , φn
i )

where gn
i = un+1

h (i) + kÃhu
n+1
h (i) + kfn

i .

3.5 Implicit Methods

When we choose 1 ≥ θ > 0, we have to solve at each time step, a linear
system of the type





TX ≥ G
X ≤ F
(TX −G,X − F ) = 0

where





T = θkÃh − I

G = −kfn − un+1 − (1− θ)kÃhu
n+1

F = φn

X = un

T is a tridiagonal matrix:

T =




b + a c 0 · · · 0 0
a b c 0 · · · 0
0 a b c · · · 0

0
...

. . . . . . . . .
...

0 0 · · · a b c
0 0 0 · · · a b + c




with 



a = θk(−(r − σ2

2
) 1

2h
+ σ2

2h2 )

b = −θk σ2

h2 − 1

c = θk((r − σ2

2
) 1

2h
+ σ2

2h2 )
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3.6 The algorithm of Howard

At each time step, we have to solve a variational inequality in some domain
D:

min(Au− θ, u− φ) = 0 (4)

Let ε > 0 given. The algorithm of Howard ([?]) reads as follows: the
solution is approximated by a sequence (uk) and the stopping criteria is

‖uk+1 − uk‖∞ < ε. (5)

• Let uk be given, we compute a partition Dk
1 ∪Dk

2 de D such that:

Auk − θ ≥ uk − φ in Dk
1

Auk − θ < uk − φ in Dk
2

• at the next step, we solve a linear system:

Au− θ = 0 in Dk
1

with u = φ in Dk
2 . This, again a well posed problem which leads to

uk+1.

We thus obtain by this method the solution of the discrete variational
inequality and the boundary of the continuation set.

4 Formulation of the problem in the binomial

model

Among the N possible dates of trading, the hedger will decide to hedge only
n (< N) times. So he can not any longer duplicate the payoff by constructing
a self-financing strategy. His goal is to minimize the variance of the tracking
error under the risk neutral probability.

In [?], we have shown that the value function vn solves an optimal stopping
problem:

vn(t, x, α) = −(c̃t − αxe−rt)2+ inf
τ∈Tt,T

E[{c̃ (
τ, St,x

τ

)− αS̃t,x
τ }2 + v∗n−1(τ, S

t,x
τ )]
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where Tt,T is the set of all stopping time which satisfy t ≤ τ ≤ T . Recall
that the optimal stopping time which achieves the minimum is given by

τ ∗t = inf{u ∈ [t, T ]/v∗n−1(u, St,x
u ) ≤ vn(u, St,x

u , α)}
If n is fixed, an application of the Bellman principle reduces the multiple-

times optimal stopping problem to a sequence of traditional optimal stopping
problems. In other words, we have to solve at step n + 1 an American-type
option pricing problem in which the payoff function is given by the value
function at step n.

This procedure may be implemented in a straightforward manner in the
corresponding problem in the binomial setting. We can show the following
corollary to the discrete-time version of (DP ) which allows us to find the
value function by an explicit recursive procedure:

Corollary 1 Let V n,α
p , p ≤ N be the nonnegative adapted process defined

recursively by

V 0,α
p = −(c̃p − αS̃p)

2 + E
[
{c̃

(
p + 1, S

p,Sp

p+1

)
− αS̃

p,Sp

p+1 }2 + V 0,α
p+1 | Fp

]

and for n ≥ 1 and p ≤ N − 1

V n,α
p = min{E [

V n,α
p+1 | Fp

]
+ E

[
{c̃

(
p + 1, S

p,Sp

p+1

)
− αS̃

p,Sp

p+1 }2 | Fp

]

−(c̃p − αS̃p)
2, V n−1,∗

p }
where V n,α

N = 0, V n−1,∗
p =min

α
V n−1,α

p , and Fp = σ(S0, S1.., Sp),

then the optimal variance vn is given at time p by:

vn(p, Sp, α) = V n,α
p

Moreover, the first optimal date of trading (after p) is given by:

τ ∗p = min{u ∈ {p, ..., N}/V n−1,∗
u ≤ V n,α

u }
The above result gives the following algorithm: we first calculate the

variance of the tracking error for n = 0 at every node at every time step
working backwards throughout the tree. Using V 1,α

N = 0, we can compute the
error at every node at time N . We can then apply the Dynamic Programming
equation to compute the error at time N − 1 which is the minimum of the
immediate trading value and the present value of continuing without trading.
We can then reapply this procedure at every node at every time step as the
step n.

The scheme at hand is of complexity n ∗N3: we solve for each resolution
of (DP) a family of optimal stopping problem (complexity N2) for every level
α (which is discretized with N levels). There are n such steps.
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5 Numerical results

The option considered here is a European Call expiring at date T = 0.333
with strike price K. The value of the parameters are the following:

S0 = 100, K = 100, r = 0, σ = 0.2

5.1 Tracking error in the binomial scheme

The following figure plots the variance of the tracking error as a function of
the number of rebalancing. This figure illustrates the rapid decrease of the
tracking error as the number of trading increases.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100

The variance of the tracking error as a function of the number of trading n (N=200)

In the next plot, we fix the number of hedging, and we draw the error as
a function of the number of time steps. Note that it displays the typical
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oscillatory behaviour of a binomial method.

0.21

0.215

0.22

0.225

0.23
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0.24

0.245

0.25

100 150 200 250 300 350 400

The variance of the tracking error as a function of the number of time steps N (n=20)

5.2 Comparison with deterministic strategies

In the following table, we compare the variance of the tracking error in our
model with the error obtained in the deterministic case from Zhang ([?]).

Number of
hedging times

(n)

Error for
optimal
stopping times

Error for
deterministic
times

10 0.500 1.662
20 0.236 0.831
30 0.149 0.554
40 0.105 0.415
50 0.078 0.332
60 0.061 0.277
70 0.051 0.237
80 0.043 0.207
90 0.036 0.184
100 0.031 0.166

Thus it shows that the variance of the tracking error for optimal stopping
times can be reduced significantly compared to the deterministic hedging
case.
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