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1 Trees for standard options

1.1 Cox-Ross-Rubinstein as an approximation to Black-
Scholes

The generalized Cox-Ross-Rubinstein (CRR) model has an interest on his
own as a basic model of stochastic discrete-time process for the underlying
asset of a financial derivative. One of its main attractive feature is the
easiness of standard option pricing by backward induction which relies on
the possibility of performing a perfect hedge at every node of the tree (cf.
The Generalized CRR Model). In fact the original motivation of Cox, Ross
and Rubinstein was to approximate the Black-Scholes price of an option.

Let N denote the step number of the algorithm: the Black-Scholes dy-
namic under the risk-neutral probability is replaced by the dynamic of the
generalized CRR scheme

Sn+1 (h) = uSn (h) withproba.p∗

dSn (h) withproba.1− p∗

with h = T
N

, where T is the time to maturity (ie the current date is taken to
be zero), with a suitable choice of the parameters:

u = eσ
√

h, d = e−σ
√

h, 1 + r = eρh

Note that p∗ = 1+r−d
u−d

is the risk-neutral probability in the generalized
CRR scheme.

1.1.1 Convergence of the marginal law at maturity

The first idea which comes to study the convergence of the algorithm is
to compute the characteristic function of SN (h) . In fact, it is easier with
ln SN (h).
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Without loss of generality assume S0 = 1. For λ ∈ R

EP ∗ [exp (iλ ln SN (h))]

= EP ∗
[
exp

(
iλ ln

N−1∏

n=0

Sn+1 (h)

Sn (h)

)]

= EP ∗
[
exp

(
iλ ln

S1 (h)

S0

)]N

=
(
p∗ exp

(
iλσ

√
h

)
+ (1− p∗) exp

(
−iλσ

√
h

))N

and since p∗ = 1+r−d
u−d

∼ 1
2

+

(
ρ−σ2

2

)

2σ

√
h + O

(
h
√

h
)

EP ∗ [exp (iλ ln SN (h))] ∼
(
1 +

[
iλ

(
ρ− σ22

)
− λ2σ22

]
TN

)N

→ exp
([

iλ
(
ρ− σ22

)
− λ2σ22

]
T

)

= E
[
exp

(
iλ

((
ρ− σ22

)
T + σBT

))]

= EP ∗BS [exp (iλ ln ST )]

where P ∗
BS is the risk-neutral Black-Scholes probability. Therefore UNDER

THE RISK NEUTRAL MEASURES

SN (h)CRR → SBS
T Conv (1)

in LAW as N →∞.
This grants the convergence of the price of standard european options

with payoffs continuous and bounded, e.g. Put options. The convergence of
the Call prices follows by Call-Put parity, since the CRR scheme satisfies the
Call-Put parity relationship.

An instructive feature of this calculation is that the limiting law depends
only on p∗eiλ ln(u) + (1− p∗) eiλ ln(d) through its Taylor expansion up to o (h) .
Thus u, d or/and p∗ could be altered as long as the involved terms of the
development are not modified.

1.1.2 Some remarks about the limit N →∞
Notice that the upper and lower value of the spot at maturity are uN =
eσ
√

T
√

N and dN = e−σ
√

T
√

N whereas the ratio of 2 successive points is u
d

=

e2σ
√

h = e2σ
√

T
N . Thus at the same time, the scan of the law of SN (h) goes

to R∗
+ and the grid gets more and more dense. In the same way it is easy

to show that the points visited by the process S (h) will eventually become
dense in [0, t]×R∗

+. Although it is elementary, this is a nice phenomenon.
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1.1.3 Code implementation

It is very easy to design the corresponding code (cf Routine tr coxrossrubinstein.c
).

1.1.4 Convergence of the delta

Observe that

∆0S0 =
Cu,N−1 − Cd,N−1

(u− d)

= (1 + r)−(N−1) EP∗ [ϕ (uS0X)]− EP∗ [ϕ (dS0X)]

u− d

where X is a random variable independent from S0 so that

∆0S0 = (1 + r)−(N−1) EP∗

[
ϕ (uS0X)− ϕ (dS0X)

u− d

]

Assume now that ϕ is a C1 function. Then

ϕ (uS0X)− ϕ (dS0X) =
∫ u

d
S0Xϕ′ (aS0X) da

so

∆0S0 = (1 + r)−(N−1) 1

(u− d)

∫ u

d
EP∗ [S0Xϕ′ (aS0X)] da

= (1 + r)−(N−1) EP∗ [S0Xϕ′ (a (h) S0X)]

for some point a (h) in [d, u] by the mean value property. Assuming now
that yϕ′ (y) is a Lipschitz function we know that so is the CRR price with
the same Lipschitz constant which doesn’t depend on h. In particular the
function b 7→ EP∗ [S0Xϕ′ (bS0X)] is uniformly continuous uniformly in h,
therefore since [d, u] → [1, 1] as h → 0

lim
h→0

EP∗ [S0Xϕ′ (a (h) S0X)] = lim
h→0

EP∗ [S0Xϕ′ (S0X)] (2)

Now by the standard convergence result

lim
h→0

EP∗ [S0Xϕ′ (S0X)] = EP∗BS [Stϕ
′ (St)]

= eρT S0∆
BS
0

Therefore the delta does converge towards the Black-Scholes delta, at least
for sufficiently smooth payoffs. For a Call (or Put) option the argument to
get ( 2) must be slightly modified.
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1.2 Variants of the CRR tree

We follow more or less closely the excellent review in [1] To achieve the
convergence in law ( 1 on page 3) many other choices of u and d and q
(denoting the probability inside the tree) may be done, regardless of any
arbitrage or financial consideration: the tree algorithm becomes a numerical
approximation algorithm among other ones, the oly purpose is to get a good
convergence to the limiting price and delta.

Note that all the following trees will remain recombining trees since this
is true as soon as u and d remain constant within the tree. Only the choice
of u, d and the probability is at hand here.

1.2.1 The Random Walk scheme

This scheme is implemented in Routine tr euler.c. As long as ST = S0 exp
((

ρ− σ2

2

)
T + σBT

)

a very natural choice is to approximate the Brownian motion B by the stan-
dard Random Walk. This leads to

u = e

(
ρ−σ2

2

)
h+σ

√
h
, d = e

(
ρ−σ2

2

)
h−σ

√
h

and q = 1
2
.

The algorithm to get the option price is the straightforward discretized
version of the risk-neutral expectation:

Cn = e−ρh
(

1

2
Cu,n+1 +

1

2
Cd,n+1

)

The convergence may be proved in the same way as before.
Notice that the discretized process is not a martingale.

1.2.2 The matching-3-moments scheme

This scheme is implemented in Routine tr thirdmoment.c. An alternative
route to convergence is the Central Limit Theorem. This leads to the idea
of matching the mean and variance of the conditionnal laws of the approx-
imating chain with those of the continuous process. These are denoted the
“local consistency conditions”. The equations that u, d, q should satisfy are

qu + (1− q) d = eρh

qu2 + (1− q) d2 − e2ρh = e2ρh
(
eσ2h − 1

)

Since one degree of freedom remains, a natural idea is to match also the third
moment, which gives the equation

qu3 + (1− q) d3 = e3ρhe3σ2h
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The solution of this system is

u =
eρhQ

2

[
1 + Q +

√
Q2 + 2Q− 3

]

d =
eρhQ

2

[
1 + Q−

√
Q2 + 2Q− 3

]

q =
eρh − d

u− d

with Q = eσ2h.
Notice that ud = e2ρhQ2 > 1 : this tree is not symmetric.

1.3 Trinomial trees

Along this line there is no need any longer to remain stucked with the discrete-
time no-arbitrage constraint one node-two sons. We may well choose a 3-
points scheme or p-points scheme or even a number of points depending on
N (this is useful for other kinds of limiting continuous-time dynamics, like
Lévy processes for instance). From the previous calculation it’s easy to see
that the points and probabilities of the chosen scheme should be constrained
by:

∑
pj exp (iλ ln uj) = 1 +

[
iλ

(
ρ− σ22

)
− λ2σ22

]
h + o (h) (3)

in the sense that these conditions ensure the convergence ( 1 on page 3).
We’ll see later that these conditions are equivalent to the local consistency
conditions, and also that they ensure a convergence of a much more general
type.

Note that from a computational point of view in order to get a recom-
bining tree a condition like uj+1/uj independant of j should be imposed.

A feature common to all the trinomial trees is that they allow a more
precise computation of the delta, gamma, theta of the option in a natural
finite-difference-like manner.

1.3.1 Trinomial schemes with matching two first moments

Let u > m > d be the possible values of Sn+1(h)
Sn(h)

, with probabilities q1, q2, q3

respectively.
In order to get a recombining tree we need only

ud = m2
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The two first moment matching conditions give

q1u + q2m + q3d = eρh

q1u
2 + q2m

2 + q3d
2 = e2ρhQ

Q as before.
Since

q1 + q2 + q3 = 1

it is seen that two unknowns remain.
The solution corresponding to the additional constraint

q1 = q2 = q3 =
1

3

is

u = V +
√

V 2 −m2

d = V −
√

V 2 −m2

m =
eρh (3−Q)

2

with V = eρh(3+Q)
4

.
Many other choices can be done.

1.3.2 The Kamrad-Ritchken tree

This tree is implemented in Routine tr kamradritchken.c. Kamrad and Ritchken
choose to take a symmetric 3-points approximation to ln

(
Sh

S0

)
and to match

the 2 first moments of this quantity. More precisely, if v denote the upper
state this leads to:

v (q1 − q3) =
(
ρ− σ22

)
h

v2 (q1 + q3)− v2 (q1 − q3) = σ2h

They further simplify the last equality-still maintaining an o (h) matching of
the variance in

v2 (q1 + q3) = σ2h

Note that it can be checked by the calculation of the characteristic function
that this o (h) matching property is enough.
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By replacing v by λσ
√

h this leads to

q1 =
1

2λ2
+

(ρ− σ22)
√

h

2λσ

q2 = 1− 1

λ2

q3 =
1

2λ2
− (ρ− σ22)

√
h

2λσ

The parameter λ appears as a free parameter of the geometry of the tree,
which may be useful for some purposes. It is called the stretch parameter.
The value λ = 1.22474 which corresponds to q2 = 1

3
is reported to be a good

choice for an ATM Call (or Put).

1.4 Miscellaneous remarks

1.4.1 Local consistency and convergence in law

Let’s come back to the equality:

∑
pj exp (iλ ln uj) = 1 +

[
iλ

(
ρ− σ2

2

)
− λ2σ2

2

]
h + o (h) (4)

and assume:

pj = pj,0 + pj,1

√
h + pj,2h + o (h)

uj = 1 + uj,1

√
h + uj,2h + o (h)

Then obviously ∑
pj,0 = 1,

∑
pj,1 =

∑
pj,2 = 0

We have

exp (iλ ln uj) = exp

(
iλ

(
uj,1

√
h + uj,2h−

u2
j,1

2
h

)
+ o (h)

)

= 1 + iλuj,1

√
h +

(
iλ

(
uj,2 −

u2
j,1

2

)
− λ2

2
u2

j,1

)
h + o (h)

and ( 4) is equivalent to:

∑
pj,0iλuj,1 = 0

∑
pj,0

(
iλ

(
uj,2 −

u2
j,1

2

)
− λ2

2
u2

j,1

)
+

∑
pj,1iλuj,1 =

[
iλ

(
ρ− σ2

2

)
− λ2σ2

2

]
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and as long as p and u are real-valued:
∑

pj,0uj,1 = 0

∑
pj,0

(
uj,2 −

u2
j,1

2

)
+

∑
pj,1uj,1 =

(
ρ− σ2

2

)
(5)

∑
pj,0u

2
j,1 = σ2

or
∑

pj,0uj,1 = 0 (6)
∑

pj,0uj,2 +
∑

pj,1uj,1 = ρ (7)
∑

pj,0u
2
j,1 = σ2

Let’s look now at the local consistency equations for S :
∑

pjuj = exp (ρh) + o (h)
∑

pju
2
j = exp

((
2ρ + σ2

)
h

)
+ o (h)

which may be written down the following way:
∑

pj,0uj,1 = 0
∑

pj,0uj,2 +
∑

pj,1uj,1 = ρ

2
∑

pj,0uj,1 = 0
∑

pj,0u
2
j,1 + 2

∑
pj,0uj,2 + 2

∑
pj,1uj,1 =

(
2ρ + σ2

)

or alternatively
∑

pj,0uj,1 = 0
∑

pj,0uj,2 +
∑

pj,1uj,1 = ρ
∑

pj,0u
2
j,1 = σ2

so that local consistency is equivalent to ( 6).

1.4.2 Exact martingalian schemes

If the scheme at hand is designed to compute an expectation under some risk-
neutral probability, it might be a clever choice to choose an approximating
probability which is also risk-neutral for the discrete-time Makov chain for
any N and not only asymptotically. The building of the tree may thus be
easily checked by using the (discrete-time) optional sampling theorem: for a
martingale X and every uniformly bounded stopping time τ, E [Xτ ] = X0.
From a practical point of view, this also means that the output prices of
the scheme will be arbitrage-free, there will be no numerically-generated
arbitrage.
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1.4.3 Flat trees and American options

The algorithm for pricing American options is the natural backward scheme:

Cn = max
(
ϕ (Sn) , e−ρh

∑
qiCn+1,ui

)
(8)

It gives the exact price in the CRR model for the case of the CRR tree, this
may be proved directly very easily.

The algorithm requires the computation of the intinsic value at each node.
A computationnal interest of a flat tree (like Kamrad-Ritchken or CRR) is
therefore that it allows the computation of the intrinsic values across all the
possible values of the underlying (either 2N +1 or N +1 for the above trees)
before performing the backward scheme. This may reduce dramatically the
computationnal cost of the algorithm.

2 Trees for barrier options

2.1 Inaccuracy of the direct method

Let’s consider only the case of a Down-and-Out Call with a constant rebate
R attached to the limit L. The first idea to price this option within the
CRR scheme is to apply directly the backward recurrence scheme. In fact
it is possible to show by calculus (although it is a bit tedious) that the
obtained price shall converge to the right Black-Scholes limit. Nevertheless, it
is observed that the convergence is very bad compared with that for standard
options. The reason is clear: let nL denote the index such that

S0d
nL ≥ L > S0d

nL+1

Then the algorithm, N being fixed, yields the same result for any value of the
barrier between S0d

nL and S0d
nL+1. Therefore the convergence can not be

faster than, roughly speaking, ∂CBS

∂L
(dnL − dnL+1) c√

N
, (where CBS denotes

the Black-Scholes price of the option) whereas the convergence for standard
European options is known to be of order 1

N
.

An alternative method is to feed the algorithm with the right value of the
barrier. We shall discuss 2 different ways to do this.

2.2 The Bardhan-Derman-Kani-Ergener algorithm

This algorithm is implemented in Routine tr dermankani.c. The method is
the following: consider a node just before breaching from above the barrier,
that is at level S0d

nL . Let us rename mod= S0d
nL as the “modified barrier”
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and eff=S0d
nL+1 as the “effective barrier”. We shall use the CRR backward

scheme with the modified barrier, but with modified values of the rebate
at the (modified) barrier. The modification of the boudary value is made
as follows: should L be equal to the effective barrier, then the price at the
modified barrier would be given by the CRR algorithm at this node:

C (L = eff) = (1 + r)−1

[(
(1 + r)− d

u− d

)
Cu + R

(
u− (1 + r)

u− d

)]

Should L match the “modified barrier”, then the price at this node would be
C (L = mod) = R.

A natural idea now is to interpolate between these two values:

C =
(L− eff)

(mod− eff)
C (L = mod) +

(mod− L)

(mod− eff)
C (L = eff)

The modified algorithm is reported to behave like a standard CRR scheme.

2.3 The Ritchken algorithm

This algorithm is implemented in Routine tr ritchken downout.c for Down
and Out Barrier options. The idea here is to choose the stretch parameter λ
such that the barrier is hit exactly. We know that λ should be greater than
one, intuitively among many possibilities for λ, the closer λ is to one, the
better.

The natural way to choose λ is the following: compute the value nL above,
ie

nL =


 ln

(
S0

L

)

σ
√

h




where [t] denotes the greater integer less or equal than t. Then take λ =

1
nL

ln(S0
L )

σ
√

h
.

Here again convergence is reported to be like that for standard options.

2.4 The Rogers & Stapelton method

The principle of the Tree method proposed by Rogers and Stapelton is dif-
ferent from the one of the classical binomial method. Indeed, these authors
propose to approximate the logarithm of the stock price (Xt = X0 + σWt +
(r − δ − σ2/2)t)t by the random walk (ξn)n where for some fixed ∆x > 0,
{ ξ n = Xτn

τ0 = 0, τn+1 = inf{t > τn, |Xt −Xτn | > ∆x}
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The main interest is that the random walk approximates the underlying dif-
fusion uniformly closely. In compensation, if we are interested in an option
with maturity T , the number of time-steps ν = sup{n : τn < T} before T is
random.
The price of the European option with payoff function ϕ, maturity T , up and
out barrier b∗ (resp. down and out barrier b∗, resp double out barriers b∗ < b∗)

and rebate R is approximated by
∑

n≥0 P (ν = n)E
(
e−rηT/nR1{η<n} + e−rT ϕ(ξn)1{η≥n}

∣∣∣∣ν = n
)

where η = inf{n : ξn ≥ log(b∗)} (resp inf{n : ξn ≤ log(b∗)}, resp. inf{n :
ξn /∈ (log(b∗), log(b∗))}.
One can prove that the path followed by the random walk (ξn)n is inde-
pendent of ν : more precisely, the transition probabilities can be computed
thanks to the scale function s(x) = − exp(−2(r − δ − σ2/2)x/σ2) of the
underlying diffusion (Xt) by

P (ξn+1 = x+∆x|ξn = x) = 1−P (ξn+1 = x−∆x|ξn = x) =
s(0)− s(−∆x)

s(∆x)− s(−∆x)
.

The conditional expectation E
(
e−rηT/nR1{η<n} + e−rT ϕ(ξn)1{η≥n}

∣∣∣∣ν = n
)

is

computed by backward recursion on a tree with n time-steps. To handle the
barrier conditions, it is not necessary to place the barriers b∗ and b∗ at grid
points. Indeed, it is enough to modify the transition probabilities for x∗ and
x∗ the grid points just below b∗ and just above b∗ : P(ξn+1 = x∗ −∆x|ξn =
x∗) = (s(b∗)− s(x∗))/(s(b∗)− s(x∗ −∆x)),
P (ξn+1 = x∗ + ∆x|ξn = x∗) = (s(x∗) − s(b∗))/(s(x∗ + ∆x) − s(b∗)). Now
P (ν = n) = P (τn ≤ T ) − P (τn+1 ≤ T ) is estimated by remarking that the
variables (τn+1 − τn)n≥0 are Independent and Identically Distributed with

common Laplace transform : E(e−λτ1) = cosh((r−δ−σ2/2)∆x/σ2)
cosh(γ∆x)

where γ =

√
(r−δ−σ2/2)2+2λσ2

σ2 . More precisely, P (τn ≤ T ) is computed thanks
to the following refinement of the Central Limit Theorem

P


τn − nE(τ1)√

nVar(τ1)
≤ x


 ∼ N(x) +

E ((τ1 − E(τ1))
3) (1− x2)e−x2/2

√
72πnVar(τ1)3

where as usual N(.) denotes the cumulative distribution function of the Nor-
mal law and the three first moments of the random variable τ1 are obtained
by differenciation of its Laplace transform which is given above.
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3 Customization of trees

One of the main attractive features of tree algorithms for option pricing is
their easy customization which is due to the visualization of the paths of the
underlying in the Markov chain approximation. Thus it is often straightfor-
ward to design an algorithm for the pricing of a somewhat involved contingent
claim-even if the numerical behavior of the algorithm may be poor, this gives
a first idea of the price at stake. This first version of the algorithm may be
improved later. Often in practice it is fruitful for this second stage to con-
sider the algorithm like a finite-difference scheme to figure out the weakness
of the approximation of the delta or of the price in a tricky region.

Let us look at an example of customization.

3.1 Example: pricing time-dependant american options

The natural way to modify the basic algorithm is to replace the backward
formula ( 8 on page 10) by

Cn = max
(
ϕ (nh, Sn) , e−ρh

∑
qiCn+1,ui

)

where ϕ (t, x) is the time-dependant payoff of the option.
A particular case is that of the so-called bermuda options where the

american right is in force only at a set of prescribed periods: for instance
between a fixed date T1 and maturity. In case the current date is prior to T1

a natural idea is to apply the backard formula ( 8 on page 10) between step
N − 1 and n1 where

(n1 − 1) h ≤ T1 ≤ n1h

and then the standard CRR scheme.
This first algorithm is very crude since it gives the same price, N being

fixed, for any value of T1 between (n1 − 1) h and n1h. A way to feed the
algorithm with the right value is to use a Kamrad-Ritchken trinomial tree
with a stretch parameter λ1 and a number of steps n1 between times 0 and
T1 and λ2 and n2 between T1 and T. In order to get a recombining tree we
get the following pasting condition at time T1 :

λ1

√
T1n1 = λ2

√
T − T1n2

Do not forget that λ1 and λ2 should be grater than one. A possible way to
choose the parameters is: fix first λ1 ≥ 1 (for instance λ1 = 1.2274), choose
n1, then take

n2 = [n1 (T − T1)T1] + 1

Then n2T1 ≥ n1 (T − T1) thus λ2
2 = λ2

1T1n1 (T − T1) n2 ≥ λ2
1 ≥ 1.
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