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JANUARY 03

The underlined algorithms have been already
implemented.

1 Standard European Options in the Black-Sholes
Model

1.1 Call, Put, CallSpread, Digit

1.1.1 Analytic

• Black-Sholes Type Formula The general version of the Black-Sholes for-
mula used to price European options on stocks paying a continuos dividend
yields [63]

1.1.2 Tree

• Cox Ross Rubinstein Binomial Binomial algorithm with the Cox-Ross-
Rubinstein stock price parameters and probabilities [62]

• Extended Cox Ross Rubinstein Binomial Two steps backward CRR scheme,
for a better accuracy of the Greeks [3]

• Hull White Binomial Binomial algorithm with the Hull-White stock price
parameters and probabilities modified to account for dividends [6]

• Euler Binomial Stock price parameters and probabilities obtained from
the discretization of the Wiener process

• Kamrad Ritchken Trinomial Trinomial tree with a stretch parameter λ
[73]

• Third Moment Trinomial tree with matching first three moments

• LnThird Moment Trinomial tree with matching first four moments giving
a o(h2) order of accuracy
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1.1.3 Finite-Difference

• Gauss Method For a given time step the elliptic problem is solved by the
direct method of Gauss for tridiagonal matrix [19]

• Explicit Method Direct explicit scheme [19]

• Iterative Sor Method For a given time step the elliptic problem is solved
by the iterative method Sor(Successive Overrelaxation) [19]

• Multigrid Method For a given time step the elliptic problem is solved by
a FMG Multigrid algorithm [99]

• Adaptative Finite Element Method Adaptative time step and space varies
to improve precision.[25] [8]

1.1.4 Montecarlo

• Monte Carlo Standard

• Quasi Montecarlo Low discrepancy sequences(Faure, SquareRoot, VanDerCorput,
Sobol, Niedereitter, Owen’s Randomization Technique) [45], [30], [38], [34],
[1]

• Variance Reduction Various reduction variance methods(Antithetic Methdod,
Stratified Sampling, Control Variate,Moment Matching, Importance Func-
tion, Newton,Malliavin Calculus for Digital Options) [68],[100],[41] [26]

2 Standard American Options in the Black-Sholes
Model

2.1 Call, Put, CallSpread, Digit

2.1.1 Tree

• Cox Ross Rubinstein Binomial Binomial algorithm with the Cox-Ross-
Rubinstein stock price parameters and probabilities [62]

• Extended Cox Ross Rubinstein Binomial Two steps backward CRR scheme,
for a better accuracy of the Greeks [3]

• Hull White Binomial Binomial algorithm with the Hull-White stock price
parameters and probabilities modified to account for dividends [6]

• Euler Binomial Stock price parameters and probabilities obtained from
the discretization of the Wiener motion process

• Kamrad Ritchken Trinomial Trinomial tree with a stretch parameter λ
[73]
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• Third Moment Trinomial tree with matching first three moments

• Breen Accelerated Binomial The Breen accelerated method approximates
the Geske-Johnson option pricing formula [76]

• Broadie-Detemple BBSR Binomial Black-Sholes modification of binomial
algorithm with Richardson extrapolation [43]

• LnThird Moment Trinomial tree with matching first four moments giving
a o(h2) order of accuracy

2.1.2 Finite-Difference

• Brennan-Schwartz Algorithm The Brennan-Schwartz algorithm solves the
linear complementarity problem [24],[12]

• Splitting Gauss Method The obstacle problem is splitted in two steps.
Theta-method finite difference algorithm [59]

• Splitting Explicit Method The obstacle problem is splitted in two steps.
Explicit finite-difference algorithm [59]

• Iterative Psor Method Projected SOR algorithm is used to solve large-
scale linear complementarity problem [14]

• Cryer’s Algorithm Pivoting method to solve directly linear complementar-
ity problem [15]

• Interior Point Algorithm The linear complementarity problem is solved
with a interior point algorithm

• Finite Element Method Finite Element Method

• Dempster Algorithm The linear complementarity problem is reduced to a
linear programming problem,solved with a simplex algorithm [36]

• Brandt-Cryer Multigrid Method The linear complementarity problem is
solved by a Proiected FMG Multigrid algorithm [16]

2.1.3 Montecarlo

• Barraquand-Martineau Algorithm Stratification method. [18]

• Broadie-Glassermann Algorithm Approximation of dynamical program-
ming using a stochastic mesh method. [71]

• Tsitsiklis-VanRoy Algorithm Approximation of dynamical programming
using regression method.[83],[82]

• Longstaff-Schwartz Algorithm Estimation of optimal stopping time using
regression method.[23]



20 pages 4

• Pages-Bally Algorithm Approximation of dynamical programming using
quantization method. [97]

• Broadie-Glassermann Algorithm Simulation algorithm for estimating the
prices of American option with exercise opprtunities in a finite set of times.
[70]

• Rogers Algorithm Method based on martingale Lagrangian. [81]

• Lions Regnier Algorithm Method based on Malliavin Calculus. [53]

2.1.4 Approximation

• MacMillan Approximation Quadratic method based on exact solutions to
approximations of the partial differential equation [54]

• Whaley Approximation Quadratic method based on exact solutions to ap-
proximations of the partial differential equation [79]

• Bjerksund-Stensland Approximation The approximation is based on an
exercise strategy corresponding to a flat exercise boundary [29]

• Ho-Stapleton-Subrahmanyam Approximation 2-points approximation for-
mula with exponential extrapolation [94]

• Bunch-Johnson Approximation 2-points Geske-Johnson approximation for-
mula [32]

• Carr Approximation Randomization and the American Put [13]

• Ju Approximation Pricing an American Option by approximating Its Early
Exercise Boundary as a Multipiece Exponential Function [69]

• Broadie-Detemple LBA and LUBA Methods Approximation methods based
on lower and upper bounds [43]

3 Barrier European Options in the Black-Sholes
Model

3.1 Call, Put In-Out/Down-Up, Parisian

3.1.1 Analytic

• Reiner-Rubinstein Formula Black-Sholes type formula [61]

• Heynen-Kat Formula Formulas for partial barrier option [33] [35]
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3.1.2 Trees

• Derman Kani Ergener Bardhan Algorithm Interpolation scheme for im-
proving the pricing error of a binomial method [37]

• Ritchken Trinomial Algorithm Choosing the strech parameter λ of the
Kamrad-Ritchken method such that the barrier is hit exactly [72]

• Rogers-Stapleton Method Tree with random time steps corresponding to
hitting times [21]

• Lyuu Method Binomial combinatorial algorithm [101]

3.1.3 Finite-Difference

• Gauss Method Finite-difference algorithm with an interpolation scheme

• Finite Element Method Finite Element Method [42]

3.1.4 Montecarlo

• Baldi-Caramellino-Iovino Method Large deviations technique [58]

3.2 Discrete Barrier Option

3.2.1 Approximation

• Broadie-Glassermann-Kou Method A continuity correction for discrete bar-
rier options [90]

3.2.2 Montecarlo

• Variance Reduction Reduction variance methods

4 Barrier American Options

4.1 Call, Put In-Out/Down-Up

4.1.1 Trees

• Derman Kani Ergener Bardhan Algorithm Interpolation scheme for im-
proving the pricing error of a binomial method [37]

• Ritchken Trinomial Algorithm Choosing the strech parameter λ of the
Kamrad-Ritchken method such that the barrier is hit exactly [72]
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4.1.2 Finite-Difference

• Psor Method Psor Finite-difference algorithm with interpolation scheme
[14]

• Cryer’s Algorithm Pivoting method to solve directly linear complementar-
ity problem algorithm with interpolation scheme [15]

• Finite Element Method Finite Element Method [42]

5 Double Barrier European Options In/Out, Parisian
in the Black-Sholes Model

5.1 Call, Put In/Out

5.1.1 Analytic

• Kunitomo-Ikeda Formula Pricing formula expressed as the sum of an in-
finite series [66]

5.1.2 Approximation

• Geman-Yor Method Laplace transform method [65]

5.1.3 Trees

• Ritchken Trinomial Algorithm Choosing the strech parameter λ of the
Kamrad-Ritchken method such that the barrier is hit exactly [72]

• Rogers-Stapleton Method Tree with random time steps corresponding to
hitting times [21]

• Lyuu Method Binomial combinatorial algorithm [101]

5.1.4 Finite-Difference

• Gauss Method Finite-difference algorithm with interpolation scheme

• Finite Element Method Finite Element Method [42]

5.1.5 Montecarlo

• Baldi-Caramellino-Iovino Method Large deviations technique [58]
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6 Double Barrier American Options In/Out in
the Black-Sholes Model

6.1 Call, Put In/Out

6.1.1 Trees

• Ritchken Trinomial Algorithm Choosing the strech parameter λ of the
Kamrad-Ritchken method such that the barrier is hit exactly [72]

6.1.2 Finite-Difference

• Psor Method Psor Finite-difference algorithm with interpolation scheme
[14]

• Cryer’s Algorithm Pivoting method to solve directly linear complementar-
ity problem algorithm with interpolation scheme [15]

• Finite Element Method Finite Element Method [42]

7 Lookback European Options in the Black-Sholes
Model

7.1 Call, Put Fixed-Floating

7.1.1 Analytic

• Goldman-Sosin-Gatto and Conze-Viswanathan Formula Black-Sholes type
formula [55],[85]

• Heynen-Kat Formula Formulas for partial lookback option [33] [35]

7.1.2 Trees

• Babbs Method Change of numeraire technique [86],[96]

• Forward Shooting Grid Method Barraquand-Pudet or Hull-White enhenced
method [93],[7]

7.1.3 Finite-Difference

• Wilmott-Dewyne-Howison Method Resolution of two-dimensional PDE.
Similarity reduction [89]

• Andreasen Method A change of numeraire approach [39]
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7.1.4 Montecarlo

• Anderson-Brotherton-Ratcliffe Method Bias Elimination for efficient sim-
ulation procedure [77]

• Clerlow-Carvehill method Control variate technique [2]

8 Lookback American Options

8.1 Call, Put Fixed-Floating

8.1.1 Trees

• Babbs Method Change of numeraire technique [86],[96]

• Forward Shooting Grid Method Barraquand-Pudet or Hull-White enhanced
method [93],[7]

8.1.2 Finite-Difference

• Wilmott-Dewyne-Howison Method Resolution of a two-dimensional VI.
Similarity reduction [89]

8.1.3 Approximation

• Zhang-Taksar Method Quadratic methods for american path-dependant
options [95]

9 European Asian Options in the Black-Sholes
Model

9.1 Call, Put Fixed-Floating

9.1.1 Approximation

• Geman-Yor Method Laplace transform method [65]

9.1.2 Trees

• Forward Shooting Grid Method Barraquand-Pudet or Hull-White enhanced
method [93],[7]

9.1.3 Finite-Difference

• Rogers-Shi Method Reduction to a one-dimensional PDE [103]

• Hameur Breton Ecuyer Method Finite Element Method [52]

• Zvan-Forsyth-Vetzal Method Finite Volume Techinque [49]
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• Andreasen Method A change of numeraire approach [39]

9.1.4 Montecarlo

• Kemma-Vorst Method Control variate variance reduction method to com-
pute the price of fixed-strike average-rate options with the approximation
of the integral using the law of the brownian bridge [48],[27]

• Glasserman-Heidelberger-Shahabuddin Method Gaussian Importance sam-
pling and stratification computational issue [74],[75]

• Variance Reduction and Robbind-Monro algorithm [10]

9.1.5 Approximation

• Rogers-Shi Method Rogers-Shi upper and lower bounds[103]

• Thompson Method Upper and lower bounds [92]

• Levy Formula Lognormal approximation with first two moments.[22]

• Turnbull-Wakeman Formula Edgeworth expansion around a lognormal us-
ing first four moments.[50]

• Milevski-Posner Formula Reciprocal gamma distribution using first two
moments. [87]

• Fusai-Tagliani Approximation Edgeworth expansion around a normal and
maximum entropy approximation using first four logarithmic moments.[4]

• Zhang Approximation Analytical approximation formula with error cor-
rection obtained by numerical solution of PDE.[44]

10 American Asian Options in the Black-Sholes
Model

10.1 Call, Put Fixed-Floating

10.1.1 Trees

• Forward Shooting Grid Method Barraquand-Pudet or Hull-White enhanced
method [93],[7]

10.1.2 Finite-Difference

• Hameur Breton Ecuyer Method Finite Element Method

• Zvan-Forsyth-Vetzal Method Finite Volume technique [49]
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11 Europeen 2D Standard Options in the Black-
Sholes Model

11.1 CallMax, PutMin, BestOf, Exchange

11.1.1 Analytic

• Stulz and Johnson Formula Black-Sholes type formula [84] ,[31]

11.1.2 Tree

• Boyle-Evnine-Gibbs 4-branches Algorithm General lattice method to price
contingent claims on k assets [88]

• Kamrad-Ritchken 5-branches Algorithm 5-branches tree with a stretch
parameter λ [73]

• Euler 4-branches Algorithm Stock price paramenters and probabilities ob-
tained from the discretization of the Wiener motion processes [60]

• Product Tree 4-branches Algorithm The tree is the product of two one-
dimensional trees

11.1.3 Finite-Difference

• Alterning Direction Implicite Algorithm(ADI) At each time step, one can
integrate “in each direction” [46], [47]

• Explicit Method Direct explicit scheme [19]

• Implicit Method Implicit scheme solved with iterative stationary(SOR)
and not stationary methods(GMRES and BiCgStab).[98],[64], [14]

• Multigrid Method The elliptic problem is solved by a FMG multigrid al-
gorithm [99]

• Howard Method Implicit scheme solved with iterative Howard Method

11.1.4 Montecarlo

• Monte Carlo Standard

• Quasi Montecarlo Low discrepancy sequences(Faure, SquareRoot, Halton,
Sobol, Niedereitter, Owen’s Randomization Technique) [45], [30], [38], [34],
[1]

• Variance Reduction Various reduction variance methods(Antithetic Meth-
dod, Stratified Sampling, Control Variate,Moment Matching, Importance
Function, Newton) [68],[100],[41] [26]
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12 American 2D Standard Options in the Black-
Sholes Model

12.1 CallMax, PutMin, BestOf, Exchange

12.1.1 Tree

• Boyle-Evnine-Gibbs 4-branches Algorithm General lattice method to price
contingent claims on k assets [88]

• Kamrad-Ritchken 5-branches Algorithm 5-branches tree with a stretch
parameter λ [73]

• Euler 4-branches Algorithm Stock price paramenters and probabilities ob-
tained from the discretization of the Wiener motion processes [60]

• Product Tree 4-branches Algorithm The tree is the product of two one-
dimensional trees

12.1.2 Finite-Difference

• Splitting Adi Method One combines an Adi method with splitting tech-
nique [59],[9]

• Splitting Explicit Method Splitting method and an explicit scheme [59]

• Splitting Implicit Method Implicit scheme solved with iterative station-
ary(SOR) and not stationary methods(GMRES and BiCgStab).[98],[64],
[14]

• Brandt-Cryer Multigrid Method The linear complementarity problem is
solved by a Proiected FMG multigrid algorithm [16]

• FMGH Multigrid Method The linear complementarity problem is solved
by a FMGH multigrid algorithm

• Howard Method Implicit scheme solved with iterative Howard Method

12.1.3 Montecarlo

• Barraquand-Martineau Algorithm Stratification method. [18]

• Broadie-Glassermann Algorithm Approximation of dynamical program-
ming using a stochastic mesh method. [71]

• Tsitsiklis-VanRoy Algorithm Approximation of dynamical programming
using regression method.[83],[82]

• Longstaff-Schwartz Algorithm Estimation of optimal stopping time using
regression method.[23]
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• Pages-Bally Algorithm Approximation of dynamical programming using
quantization method. [97]

• Broadie-Glassermann Algorithm Simulation algorithm for estimating the
prices of American option with exercise opprtunities in a finite set of times.
[70]

• Lions Regnier Algorithm Method based on Malliavin Calculus. [53]

13 Standard European Options in the Merton
Model

13.1 Call, Put, CallSpread, Digit

13.1.1 Analytic

• Merton Formula Pricing formula expressed as the sum of an infinite series.
[78]

13.1.2 Approximation

• Carr-Madan Approximation Fast Fourier Transform Algorithm [17]

13.1.3 Finite-Difference

• Explicit Method Direct explicit scheme [19]

• ADI-FFT Method ADI-FFT alogrithm [40]

13.1.4 Montecarlo

• Monte Carlo Standard

14 Standard American Options in the Merton
Model

14.1 Call, Put, CallSpread, Digit

14.1.1 Finite-Difference

• Splitting Explicit Method The obstacle problem is splitted in two steps.
Explicit finite-difference algorithm [59]

• Splitting ADI-FFT Method The obstacle problem is splitted in two steps.
ADI-FFT finite-difference algorithm [40],[102]
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15 Standard European Options in the Dupire-
Local Volatility Model

15.1 Call, Put, CallSpread, Digit

15.1.1 Finite-Difference

• Implicit Method Implicit scheme [19]

• Adaptative Finite Element Method Adaptative time step and space varies
to improve precision.[25] [8]

15.1.2 Montecarlo

• Monte Carlo with variance reduction

16 Standard European Options in the Hull-White
Model

16.1 Call, Put, CallSpread, Digit

16.1.1 Montecarlo

• Variance Reduction and Robbind-Monro algorithm [10], [5]

17 Standard European Options in the Heston
Model

17.1 Call, Put, CallSpread, Digit

17.1.1 Montecarlo

• Heston Closed-Form Solution [91]

• Variance Reduction and Robbind-Monro algorithm [10]

18 Calibration in the Dupire Model

• Numerical solution of an inverse problem.[80],[67],

• Mercurio-Brigo Lognormal-mixture dynammics and calibration to market
[28]

• Weighted Monte-Carlo Approach [56]

• Inference of a consistent implied volatility under a minimum of entropy
criterion [57]
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• Tree calibration algorithm [20],[11]

19 Calibration in the Merton Model

• Algorithmes de type Andersen Andreasen [51].
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