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Implementation of the Low Discrepancy Sequences
QMC simulation

Quasi Monte Carlo simulation consists in approximating the integral∫
[0,1]d

f(u)du by 1
N

∑N
i=1 f(ui) where {ξi} are quasi-random numbers, that

means they are generated from low-discrepancy sequences. As we already
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have explained it, such sequences neither are random nor pseudo-random but
deterministic and successive values are not independent. However they sat-
isfy good properties of equidistribution on [0, 1]d and we have that 1

N

∑N
i=1 f(ξi) →∫

[0,1]d
f(u)du.

In the following sections we describe some low discrepancy sequences. We
explain their construction and discuss some of their properties, especially on
their discrepancy.
General references about the Quasi-Monte Carlo simulation are [2], [7], [8],
[6] or [4].
Implementation of the sequences is described in the implemented part. C
codes can be found in the source part.

1 Tore-SQRT sequences

They are d-dimensional sequences, obtained by considering the multiples of
suitable irrational numbers modulo 1.
• Tore sequence
It is defined by :

ξn = ({n.α}) = ({n.α1}, . . . , {n.αd})

where α = (α1, . . . , αd) ∈ Rd such that (1, α1, . . . , αd) are linearly indepen-
dent on Q.
{x} = x− [x] denotes the fractional part of x.

• SQRT sequence
It is a particular case of the Tore sequence with

α = (
√

p1, . . . ,
√

pd)

where (p1, . . . , pd) are the first d prime numbers.

If α1, . . . , αd are algebric, then the discrepancy satisfies:

D∗
n(ξ) = O

(
1

n1−ε

)
, ∀ε > 0

Click there to reach the implemented part: implementation.
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2 Van der Corput and Halton sequences

2.1 Van der Corput sequence

This is a one-dimensional sequence defined by the radical-inverse function
ϕp in base p:

ϕp(n) =

R(n)∑
i=0

ai

pi+1

where the coefficients ai are given by the digit expansion in base p of n :

n =

R(n)∑
i=0

aip
i

R(n) denotes the maximum index for which aR(n) is not equals to 0. Its value
depends on n and p by the relation pR(n) ≤ n < pR(n)+1, that is:

R(n) =

[
log n

log p

]

Discrepancy of the Van der Corput sequence satisfies the following majora-
tion:

D∗
n(ξ) ≤ 1

n

p log(pn)

log(p)
= O

(
log n

n

)

Remarks: (ref Article of Alan Jung and Silvio Galanti)
- For n < p, there is only one positive coefficient a in the decomposition in
base p, that is a0 = n. Thus ϕp(n) = n

p
and the sequence is increasing.

- There are cycles of length p in this sequence. Each subsequence of length
p (indices kp to (k + 1)p − 1) is increasing in magnitude proportionnaly to
power of 1/p, and covers uniformly the interval [0, 1). Consequences of this
property will be studied for multidimensional sequences (especially Halton
sequence).

2.2 Halton sequence

The Halton sequence is a d-dimensional generalization of the Van Der Corput
sequence. Let (p1, . . . , pd) be the d first prime numbers, then ξn is defined
by:

ξn = (ϕp1(n), . . . , ϕpd
(n))
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where ϕpi
(n) is the Van der Corput sequence in base pi.

The Halton sequence satisfies :

D∗
n(ξ) ≤ 1

n

d∏
i=1

pi log(pin)

log(pi)
= O

(
logd(n)

n

)

with a constant Cd =
∏d

1
pk−1

2 log pk
.

This constant grows to infinity super-exponentially with dimension.
Click there to reach the implemented part: implementation.

2.3 Permuted (Generalized) Halton sequence

Orthogonal projections of points from the Halton sequence show non uniform
distribution for some dimensions (see Morokoff and Caflish [6], Jung ??? or
Bratley and Fox ????). This non-uniformity is due to cycles of length pi for
each one-dimensional sequence.
To break correlations between the inverse radical functions of different di-
mensions, we realize permutations of coefficients ai.
We consider (Πpi

, 1 ≤ i ≤ d) d permutations over {0, . . . , pi−1} such that
Πpi

(0) = 0.
Each term of the permuted Halton sequence is defined by:

Spi
(n) =

Πpi
(a0)

pi

+ · · ·+ Πpi
(aR(n))

p
R(n)+1
i

with n =
∑R(n)

i=0 aip
i.

The global sequence is given by :

ξn = (Sp1(n), . . . , Spd
(n))

There is no optimal choice for the permutations. We present 3 approaches
to modify the Halton sequence
• An algorithm was suggested by Braaten and Weller [1] for d ≤ 16 with a
possible extension to a larger d (however with significant computation).

• Reverse-Radix Algorithm
An other algorithm (see Kocis and Whiten [5]) consists in reversing the bi-
nary digits of integers, expressed using a fixed number of base 2 digits and
removing any values that are too large.
This algorithm can be applied for very large values of dimensions.
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• Halton Sequence Leaped:
This other variant for the Halton sequence consists in using only every Lth
Halton number subject to the condition that L is a prime different from all
bases p1, . . . , pd (see Kocis and Whiten [5]).

3 Faure sequence

This is a d-dimensional sequence.
The Faure sequence is a permutation of the Halton sequence, but it uses
the same base r for each dimension. We choose r as the smallest odd prime
integer such that r ≥ d.
Note that the k-th dimension of a d-dimensional Faure sequence is different
from the k-th dimension of a d′-dimensional Faure sequence as soon as the
base r is different.
With usual notations, ai are the coefficients of the r-adic decomposition of n

n =

R(n)∑
i=0

air
i

We consider the following transformation T :

T : x =

R(n)∑

k=0

ak

rk+1
7→ T (x) =

R(n)∑

k=0

bk

rk+1

with bk =
∑R(n)

i=k Ck
i ai mod r and Ck

i denote binomial coefficients.
The coefficients bk are a permutation of the ak.
Precision ... and reference ?????

The Faure sequence is defined by using successive transformations T k:

ξn =
(
ϕr(n), T (ϕr(n)), . . . , T d−1(ϕr(n))

)

where ϕr is the Van der Corput sequence in base r.

The discrepancy of the sequence satisfies :

D∗
n(ξ) ≤ Cd logd(n)

n

where Cd is a constant dependent on d and r : C = 1
d!

( r−1
2 log r

)d.

The constant Cd tends to 0 with dimension.
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The Faure sequence exhibits cycles of length r but cycles are not composed
of increasing terms, except for the first dimension. For the same dimension,
the Faure sequence has generally a smaller base than the Halton one, thus
cycles are smaller too. Because we use the smallest prime number greater
than the dimension d and not the d-th prime number.

Click there to reach the implemented part: implementation.

4 Generalized Faure sequence

This is a d-dimensional sequence. Let r be the smallest odd prime integer,
such that r ≥ d.
The digit expansion of n in base r is given by n =

∑R(n)
i=0 ai(n)ri.

The Generalized Faure sequence is defined by :

ξn =




R(n)∑

k=0

ξ
(1)
n,k

rk+1
, . . . ,

R(n)∑

k=0

ξ
(d)
n,k

rk+1




with

ξ
(j)
n,k =

R(n)∑
s=0

c
(j)
k,sas(n), j ≤ d, k ≤ R(n)

c(j) = (c
(j)
k,s)0≤k≤R(n),0≤s≤R(n) and c(j) = A(j)P j−1 where A(j) is a lower trian-

gular inversible matrix such that (ai,l) ∈ Fr and P = (Ck
s ) for k ≤ R(n), s ≤

R(n) is built with the binomial coefficients.

The discrepancy of the sequence satisfies:

D∗
n(ξ) ≤ C(d, r)

logd(n)

n

where C(d, r) ≈ 1
d!

( r
2 log r

)d.

Click there to reach the implemented part: implementation.

5 Nets and (t,s)-sequences

(t, s)-sequences are a group of sequences with a very regular distribution be-
haviour. Their points are placed into certain equally sized volumes of the
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unit cube for sequences of a fixed length. Chapter 4 of Niederreiter [7] well
describes theoretical aspects for such sequences. We just summarize in this
section some definitions and properties of those sequences.

Definitions

• An elementary interval E ∈ Id is defined as E =
∏d

i=1[aib
−di , (ai +

1)b−di ] where ai, di > 0 are integers satisfying 0 ≤ ai ≤ bdi for 1 ≤ i ≤ d.

• Let 0 ≤ t ≤ m be integers. A (t,m, s)-net in base b is a point set P of
bm points in Is such that the number of points in E is equal to bt for
every elementary interval E in base b with Π(E) = bt−m.

• Let t ≥ 0 be an integer. A sequence x0, x1, . . . of points in Is is a
(t, s)-sequence in base b if, for all integers k ≥ 0 and m > t, the point
set constituting of the xn with kbm ≤ n ≤ (k + 1)bm is a (t, m, s)-net
in base b.

Properties:

• Any (t,m, s)-net in base b is also a (u,m, s)-net in base b for integers
t ≤ u ≤ m.
The same property holds for (t, s)-sequences.
Then smaller values of t mean stronger regularity properties.

• The discrepancy of a (t, m, s)-net P in base b with m > 0 satisfies:

NDN(P ) ≤ B(s, b)bt(log N)s−1 + O(bt(log N)s−2)

where

B(s, b) =

{
( b−1

2 log b
)s−1 if either s = 2 or b = 2, s = 3, 4

1
(s−1)!

( bb/2c
log b

)s−1 otherwise

• The discrepancy of the first N terms of a (t, s)-sequence P in base b
satisfies:

NDN(P ) ≤ C(s, b)bt(log N)s + O(bt(log N)s−1)

where

C(s, b) =

{
1
s
( b−1

2 log b
)s if either s = 2 or b = 2, s = 3, 4

1
s!

b−1
2bb/2c(

bb/2c
log b

)s otherwise
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• For m ≥ 2, a (0,m, s)-net in base b can only exist if s ≤ b + 1.
A (0, s)-sequence in base b can only exists if s ≤ b.

Examples:

• The Van der Corput sequence is a (0, 1) sequence in base b. In fact, if
we consider the bm points xn with kbm ≤ n < (k+1)bm (k ≥ 0,m ≥ 1),
every b-adic interval [ab−m, (a + 1)b−m] contains exactly one point xn.

• The s-dimensional Sobol sequence is a (τ, s)-sequence in base 2, where
τ =

∑s
i=1 deg(Pi) − s. It is called a LPτ -sequence. Sobol sequence is

described in the next point.

• The s-dimensional Faure sequence in base r is a (0, s)-sequence where
r is the smallest prime integer greater or equal than s.

6 Sobol sequence

The Sobol sequence is a d-dimensional sequence in base 2 and it is a (τ, d)-
sequence. It is one of the most used sequences for Quasi-Monte Carlo simula-
tion. It was first developped by Sobol [3] and it has been proved to have some
additional uniformity property under some initialization conditions (see [9]).
Its construction is based on primitive polynomials in the field Z2 and XOR
operations.

Each dimension is a permutation of the Halton sequence with base 2 whenever
N = 2d. These permutations are generated from irreductible polynomials in
Z2. But they allow for certain correlations to develop, then they can produce
regions where no points fall until N becomes very large.

The Sobol sequence is defined by:

ξn =
(
a0V

(1)
0 ⊕ · · · ⊕ aR(n)V

(1)
R(n); . . . ; a0V

(d)
0 ⊕ · · · ⊕ aR(n)V

(d)
R(n)

)

where the V
(j)
i are direction numbers (expressed as binary fraction) obtained

from d different primitive polynomials and ai denote the coefficients of the
digit expansion of n in base b = 2, given by: n =

∑R(n)
i=0 ai2

i.
⊕ represents the bitwise exclusive OR operator (XOR). For explanation
about XOR operation or primitive polynomials, we refer the reader to the
Numerical Recipes in C ?????.
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To implement this sequence, we use an other expression for ξn depending
only on the previous point and one direction number. This principle is de-
tailed in the implemented part and is due to Antonov and Saleev ?????.

The discrepancy of the sequence satisfies:

D∗
n(ξ) ≤ Cd

(log n)d

n
+ O

(
(log n)d+1

n

)

where Cd = 2t(d)

d!(log 2)d grows superexponentially with dimension,

and for K > 0, K d log d
log log d

≤ t(d) ≤ d log d
log 2

+ O(d log log d). t(d) grows superlin-
early with dimension.

• Definition of the constants V :
- For each j ≤ d we first choose a primitive polynomial P (j) with degree
s(j):

P (j) = xs(j) + b1x
s(j)−1 + · · ·+ bs(j)−1x + 1

and we select s(j) odd integers c
(j)
i such that

c
(j)
i < 2i+1, 0 ≤ i < s(j)

The choice for constants c
(j)
i is not a easy step. Sobol’ article ????? gives

some explanations about this problem.
- Once we have chosen P (j) and the c

(j)
i for i < s(j), we use the coefficients

bi through the recurrence relation :

c
(j)
i = 2b1c

(j)
i−1 ⊕ 22b2c

(j)
i−2 ⊕ 2s(j)−1bs(j)−1c

(j)
i−s(j) ⊕ 2s(j)c

(j)
i−s(j) ⊕ c

(j)
i−s(j)

to determine the c
(j)
i for i ≥ s(j).

- Finally we calculate V by:

V
(j)
i =

c
(j)
i

2i+1

•Uniformity property: An additional uniformity property of the sequence
is called by Sobol the property A.

- We define a binary segment of length 2s as a set of points Pi whose sub-
scripts satisfy the inequality l2s ≤ i < (l + 1)2s where l = 0, 1, . . . .
We divide up the s-dimensional unit cube Is by the planes xk = 1

2
into 2s
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multidimensional small cubes, which represent binary parallelepipeds.

- Property A: If in any binary segment of length 2s of the sequence P0, . . . , Pi, . . . ,
all the points belong to different small cubes, then we say that the sequence
satisfies property A.

Sobol [9] proved a sufficient and necessary condition on the direction num-
bers so that the property A is verified. A table of good numerical values for
V is given for a dimension s ≤ 16.

- Property A’: The property A can be extended to the property A’ de-
fined as follows.
We divide up the s-dimensional unit cube Is by the planes xk = 1

4
, 1

2
, 3

4
into

22s multidimensional small cubes. If in any binary segment of the sequence
P0, . . . , Pi, . . . of length 22s, all the points belong to different small cubes,
then we say that the sequence possesses the property A’.

- Remark about the link between property A or A’ and the dimension s:
Note that the property A (resp. A’) holds for subsequences of length 2s

(resp. 22s). In practice if s increases, it becomes difficult to verify the condi-
tion because we need to simulate at least 2s (22s) points.

Click there to reach the implemented part: implementation.

7 Niederreiter sequence

The Niederreiter sequence is a s-dimensional (t, s)-sequence in base b whose
theoretical aspects are described in Niederreiter [7]. It is defined as:

ξn =




R(n)∑
j=0

y
(1)
n,j

bj+1
, . . . ,

R(n)∑
j=0

y
(s)
n,j

bj+1




with n =
∑R(n)

r=0 ar(n)br and

y
(i)
n,j =

R(n)∑
r=0

c
(i)
j,rar(n) ∈ Fb

C(i) = (c
(i)
j,r) is called the generator matrix of the i-th coordinate. An algo-

rithm to compute the values is given in Niederreiter [7]. Inititialization of
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the (c
(i)
j,r) is done at the beginning of the simulation.

The discrepancy of the sequence satisfies:

D∗
n(ξ) = O

(
(log n)s

n

)

Construction of the c
(i)
jr : (in the next version)

The method is based on the formal Laurent series.

Remark: If b is a prime power and s an arbitrary dimension such that s ≤ b,
we can choose P1, . . . , Ps as the linear polynomials Pi(x) = x − bi where
bq, . . . , bs are distinct elements of Fb. Then the Niederreiter sequence is a
(0, s)-sequence in base b and we have for 1 ≥ i ≥ s and j ≥ 1:

c
(i)
jr = 0 if 0 ≤ r < j − 1

c
(i)
jr = (r/j − 1)br−j+1

i if r ≥ j − 1.

Click there to reach the implemented part: implementation.

8 General remarks on low discrepancy sequences

• Quasi-random numbers combine the advantage of a random sequence
that points can be added incrementally, with the advantage of a lattice
that there is no clumping of points.

• For large dimension s, the theoretical bound (log N)s/N may only be
meaningful for extremly large values of N . The bound in Koksma-
Hlawka inequality gives no relevant information until a very large num-
ber of points is used.
Low discrepancy sequences are very useful for low dimension. In high
dimension s, a lattice can only be refined by increasing the number of
points by a factor 2s.

• Orthogonal projections: if a d-dimensional sequence is uniformly dis-
tributed in Id, then two-dimensional sequences formed by pairing coor-
dinates should also be uniformly distributed. The appearance of non-
uniformity in these projections is an indication of potential problems
in using a quasi-random sequence for integration. This problem is de-
velopped in Morokoff and Caflish [6]. We will see that procedures like
scrambling permutation can be suggested to improve the uniformity
property while preserving the discrepancy.
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