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Abstract

We propose a generalized framework for the modeling of tradeable securities with dividends

which are not necessarily cash dividends at fixed times or continuously paid dividends. In our

setup the dividend processes are only required to be semi-martingales. We give a definition of

self-financing replication which incorporates dividend processes, and we show how this allows

us to translate standard results for the pricing and hedging of derivatives on assets without

dividends to the case of assets with dividends. We then apply this framework to analyze and

compare the different assumptions that have been made in earlier dividend models. We also

study the case where we have uncertain dividend dates, and we look at securities which are

not equity-based such as futures and credit default swaps, since our weaker assumptions on

the dividend process allow us to consider these other applications as well.

Keywords: Financial modeling, Dividends, Futures, Credit Default Swaps.

1 Introduction

The pricing theory for derivatives on non-dividend paying stocks is well understood nowadays
at a conceptual level, see for example Duffie (2001) and Musiela and Rutkowski (1997). In this
paper we will clarify stock-price models with dividends, and show that our more general framework
can also be used for securities other than stocks, such as futures and certain credit derivatives. By
introducing the economic concept of a tradeable we are able to reduce models with dividends to
models without dividends.

In the standard Black-Scholes model of option pricing (Black and Scholes (1973)) with one stock
and one bank account with fixed interest rate r > 0 the stock and bank account are considered
to be basic tradeables. For the stock it is clear that one can trade it and as our bank account
is equivalent to a zero coupon bond on a fixed time interval [0, T ], it is also clear that we may
view our bank account as a tradeable. It is assumed that there are no transaction costs, that
shortselling is allowed and that the products are perfectly divisible. For the market participants
we assume that they possess a perfect memory, an assumption that is reflected in the use of the
concept of filtration. Given the assumptions above, every product that can be made from these
two basic tradeables by a reasonable self-financing strategy (to be defined in a precise manner
later on) is a tradeable as well.

Introducing dividends in such models means that the ex-dividend price process of the stock
can no longer be thought of as a tradeable. Indeed it is clear that nobody would like to invest
in such an asset without receiving the dividend stream. It is therefore useful to investigate how
dividends can be incorporated into models for markets of tradeables in a consistent manner.

Quite often, certain assumptions have been made concerning the dividend payments which
seem to have been specificly designed to simplify the computation of standard European option
prices. The tractability of the Black-Scholes model is based upon the fact that the asset prices
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follow Geometric Brownian Motions, which leads to explicit closed-form formulas for standard
options such as European calls and puts. Taking dividends proportional to the stock price on
the dividend date retains this property, and it has therefore been a popular choice for academic
models. But many practitioners, i.e. option market makers, actually prefer to model dividends
as fixed amounts of cash, which are not dependent on the stock price just before the dividends
are paid. If one continues to assume that in between dividend dates stock prices follow Geometric
Brownian Motion, then the lognormal distribution no longer describes future values of the stock,
and in general no closed-form pricing formulas can be derived anymore.

Therefore, different assumptions have been made for dividends in the literature which try to
remedy this problem. In the Escrowed Model for dividends, for example, it is assumed that the
asset price minus the present value of all dividends to be paid until the maturity of the option
follows a Geometric Brownian Motion. In the Forward Model one assumes that the asset price
plus the forward value of all dividends (from past dividend dates to today) follows a Geometric
Brownian Motion. For both models one can use the original Black-Scholes pricing formulas for
European-style calls and puts, when adjusted values for the strike or the current stock price
are inserted in these formulas. Even more importantly, one can still use the powerful numerical
method of binomial tree pricing to price options that can be exercised before maturity (American
and Bermudean options). But the assumptions in these models may lead to inconsistencies, since
they assume different dynamics for the underlying process when different options on the same
underlying are considered simultaneously, and this may even lead to arbitrage opportunities in
the market, see Beneder and Vorst (2002) and Frishling (2002). The reason for this is obvious:
different asset price process dynamics are assumed for products up until the first dividend date.
One can fix this by changing the definition to an assumption that the asset price minus the present
value of all dividends to be paid in the future follows a Geometric Brownian Motion (an Adjusted

Escrowed Model). But this would mean that the prices of options will depend on the dividends
which are being paid after the options have expired. This is unsatisfactory as well, since this
means that a trader would have to adjust the price of a two-year option once his view on the
five-year dividend prediction changes. All this exemplifies the need for a consistent framework to
model cash dividends.

In this paper we define such a consistent modeling framework to handle dividends. The divi-
dend stream process and the ex-dividend stock price process can be freely specified and we then
show how tradeable securities (i.e. the stock process which include dividends) can be generated.
We note that in a very interesting recent paper by Korn and Rogers (Korn and Rogers (2004)) the
same problem is being treated. Their solution is to define the stock price to be the net present
value of all future dividends. They model the (discrete) dividend process directly and then derive
the stock price from this. It turns out that under their assumptions, the dividends are propor-
tional to the stock price on the dividend date, if it is assumed that dividends are announced before
that date. We do not make that assumption in our model: ex-dividend stock prices and dividend
values can be specified independently in our setup, since many market makers prefer models in
which it is possible to specify in advance the exact discrete dividend amount that will be paid.
The Escrowed, Forward, Korn-Rogers and other dividend models will be compared in examples
given at the end of this paper.

This paper consists of three parts. In the first part we will briefly discuss continuous dividends
of finite variation to get some intuition for the more general case, which is treated in the second
part. As mentioned earlier, our emphasis on creating tradeable securities from the (not tradeable)
ex-dividend process and the dividends can also be applied to the modelling problem for other
securities, such as futures and credit default swaps. This will be investigated in the last part.

2 Continuous Dividends of Finite Variation

We assume given a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) where the filtration (Ft)t∈[0,T ]

is the usual one associated with a given standard Brownian Motion W : Ω× [0, T ] → R with T > 0
a given fixed time-horizon. Throughout the paper, all filtrations we use are assumed to satisfy the
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usual conditions. We use the notation R+ = {x ∈ R | x ≥ 0} and R++ = {x ∈ R | x > 0}.
We assume that the adapted càdlàg stochastic process S : Ω× [0, T ] → R++ describes the price

of one unit of stock ex-dividend. The adapted stochastic process δ : Ω × [0, T ] → R+ satisfying

E

∫ T

0

δudu < ∞

represents a continuous stream of dividend payments. The interpretation of this process is as
follows. Assume you own x shares of stock during the time interval ]t, t+ ε] with ε infinitesimally
small, then you will receive at time t+ ε the amount of money xδtε as dividend. It goes without
saying that in our context x may be negative or noninteger as well. We will not assume that S
(the ex-dividend price process of the stock) is a tradeable in the market. In fact, we will need to
construct the tradeable S̃ from S.

Informally we would reason as follows. Suppose we start at time zero with x0 = 1 unit of stock.
When we are at time t ∈ [0, T ] we have xt stocks. Let ε > 0 be small. At time t + ε we receive
εxtδt money units which we immediately invest in stock so

xt+ε = xt +
εxtδt
St+ε

Now let us define S̃t = xtSt. We are then inclined to view S̃ as the price process of a tradeable.
We have

S̃t+ε = xt+εSt+ε

= xtSt+ε + xtδtε

= xt(St + St+ε − St) + xtδtε

or

S̃t+ε − S̃t = xt(St+ε − St) + xtδtε

Formally we therefore proceed as follows. We are looking for a predictable adapted stochastic
process x : Ω × [0, T ] → R with x0 = 1 almost surely and an adapted stochastic process S :
Ω × [0, T ] → R such that the following equations are satisfied simultaneously:

S̃t = S̃0 +

∫ t

0

xud(Su +Du) (1)

S̃t = xtSt (2)

where

Dt =

∫ t

0

δudu

defines the cumulative dividend process, and where we assume the above equations to be well-
defined, i.e. S +D is a semi-martingale.

Our economically motivated intuition says that in an arbitrage-free market model there is
precisely one predictable adapted process x such that the equations above are satisfied, and we
will now show that this intuition is correct.

Theorem 2.1. Assume that S + D is a continuous semi-martingale. Then there exists a
unique process x such that the equations (1)-(2) above are satisfied.

Proof. We assumed that S + D is a semi-martingale and as D is a semi-martingale as well
it follows that S is also a semi-martingale. From the general theory of stochastic integration it
follows that S̃ is a semi-martingale too. As S is assumed to be strictly positive and càdlàg it
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follows from Ito’s lemma and a localization argument (see for example Protter (2003)) that 1/S
is a semi-martingale and hence x must be a semi-martingale too. We assumed that S + D is
continuous and since D is continuous, S has to be continuous too. But then

[S, x]t = Stxt −

∫ t

0

Sudxu −

∫ t

0

xudSu

= S0x0 −

∫ t

0

Sudxu +

∫ t

0

xudDu

by equation (1)-(2) so this shows that
∫ t

0
Sudxu, and hence x, has finite variation. Applying Ito’s

rule and using the fact that x has finite variation we find

dS̃t = Stdxt + xtdSt

and combining this with

dS̃t = xtdSt + xtdDt

we find that

dxt =
xt
St
dDt

As D is non-decreasing, so is x. From the general theory of stochastic differential equations it
follows that

dxt =
xt
St
dDt

x0 = 1

has a unique strong predictable solution on [0, T ] (see for example Protter (2003)). In fact

xt = e
∫

t

0
δu
Su
du

which completes the proof.

Note that a proof of existence for the process xt could easily be settled using the last few
equations, but it is the uniqueness which is of particular interest here. Also note that we assumed
here that the semi-martingale S +D is continuous and that the cumulative dividend process D is
of finite variation. In the next section, where we discuss the more general case, we will show that
we do not need to make these assumptions to show uniqueness and existence of tradeables S̃ in a
more general setup.

3 General Dividend Processes

We would now like to be able to define on the same probability space, but with a filtration
which need not necessarily be generated by a Brownian Motion, an asset process which may pay
a discrete (i.e. cash) dividend equal to D̃ on time tD ∈ ]0, T [ where D̃ ∈ FtD and such that

StD− − D̃ > 0 (P − a.s.)

where S again describes the ex-dividend process. In fact, we would even like to consider cases
where an asset pays both continuous and discrete dividends, or even more generally, where the
cumulative dividend process is just assumed to be a semi-martingale.

Let Vt, St and Bt be adapted càdlàg ex-dividend price processes for assets V, S and B which
are strictly positive and let DV

t , D
S
t and DB

t be the corresponding càdlàg adapted cumulative
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dividend processes (which are not necessarily positive), such that Vt +DV
t , St +DS

t and Bt +DB
t

are all semi-martingales. We will assume that DS
0 = DB

0 = DV
0 = 0 throughout the paper. The

asset B will often represent a bank account in this setup.

We would like to define the notion of replicability i.e. the idea that the price process of a
certain asset V can be mimicked by trading in other assets.

Definition 3.1. We say that an asset V can be replicated using assets S and B iff there exist
adapted and predictable processes φS and φB such that for all t ∈ [0, T ]

Vt− = φSt St− + φBt Bt− (3)

d(Vt +DV
t ) = φSt d(St +DS

t ) + φBt d(Bt +DB
t ) (4)

where the first equation for t = 0 should be read as V0 = φS0 S0 + φB0 B0 (i.e. without taking
left-hand side limits).

Note that for continuous processes without dividends we find the classical definition of replica-
tion back in (3)-(4), but the lefthand side limits in the first equations are an important difference
compared to the case without dividends. Indeed we can no longer say that

Vt = φSt St + φBt Bt

as in the usual formulations in the absence of dividends, but instead

Vt − ∆Vt = φSt (St − ∆St) + φBt (Bt − ∆Bt)

which is of course a reformulation of (3) since Xt − ∆Xt = Xt−.
If we define

φSt = ψSt Vt−/St− (5)

φBt = ψBt Vt−/Bt− (6)

then
dVt + dDV

t

Vt−
= ψSt

dSt + dDS
t

St−
+ ψBt

dBt + dDB
t

Bt−

for certain predictable adapted processes ψS and ψB such that

ψSt + ψBt = 1

The interpretation is that the rate of return of V (which equals the difference in value based on
changes in both the ex-dividend price and the dividends, divided by the price before any dividends
have been paid out) is based on percentages invested in assets S and B. Working with percentages
guarantees in an intuitive manner that we only consider strategies which do not necessitate cash
withdrawal or injection, i.e. it is a convenient way to define self-financing strategies. However, our
definition above is slightly more general in the sense that it allows the price processes becoming
zero for certain times as well.

Throughout the paper we will assume DB = 0 i.e. our bank account does not pay dividends
(or coupons), only interest. Note that we have assumed that S +DS is a semi-martingale but we
have not assumed it to be continuous, as we did in Theorem 2.1.

Theorem 3.1. Let S +DS and B be semi-martingales satisfying the conditions stated above.

Then there exists a unique asset price process Ṽ with DṼ ≡ 0 and Ṽ0 = S0 that can be replicated
with φS ≡ 1.

To prove Theorem 3.1, we need the following result which is stated and proven in Jaschke
(2003).
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Theorem 3.2. Let H be a semi-martingale and let Z be a semi-martingale with Z0 = 0 and
∆Zt 6= −1, for all t ∈ R+. Then the solution of the equation

Xt = Ht +

∫ t

0+

Xs−dZs

is given by

Xt = Ht − Et

∫ t

0+

Hs−d(
1
Es

) (7)

Et = eZt−
1
2 [Z,Z]ct

∏

0<s≤t

(1 + ∆Zs)e
−∆Zs (8)

and this solution is unique.

Proof of Theorem 3.1. Since we want φS ≡ 1 we define φBt = (Ṽt− − St−)/Bt−, so Ṽ should
satisfy

dṼt = d(St +DS
t ) +

Ṽt− − St−
Bt−

dBt (9)

We define At = Ṽt − St, then

dAt = dDS
t + At−

dBt
Bt−

so if we take Ht = DS
t and Zt =

∫ t

0
dBu/Bu−, we can apply Theorem 3.2 to prove the existence

and uniqueness of the process A and hence of the process Ṽ = A+ S. Indeed, substitution in (8)
gives

Et = e
∫

t

0+
dBu
Bu−

−
1
2 [
∫ dBu

Bu−

,
∫ dBu

Bu−

]ct
∏

0<s≤t

(1 + ∆

∫ t

0+

dBu

Bu−

)e
−∆

∫

t

0+
dBu
Bu−

= e
∫

t

0+
d(lnBu)

∏

0<s≤t

Bs−
Bs

(1 + Bs−Bs−

Bs−
) = Bt/B0

so according to (7) the process

Ṽt = St + At

= St + DS
t −Bt

∫ t

0+

DS
u−d(

1
Bu

) (10)

satisfies our requirements.

The interpretation of the result proven in the Theorem is of course that it should be possible
to invest our dividend stream in the bank account and by doing so end up with a process which
no longer pays any dividends. We will denote the process V constructed in the Theorem by SB

in the sequel.
Since XtYt =

∫

Xt−dYt+
∫

Yt−dXt+[X,Y ]t for all semi-martingales X and Y , we can rewrite
the formula (10) derived in the Theorem as follows:

SBt = St + DS
t −Bt

∫ t

0+

DS
u−d(

1
Bu

)

= St + Bt

∫ t

0+

dDS
u

Bu−
+ Bt [D

S , B−1]t (11)
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The necessity of the last bracket term to compensate for the fact that paid out cashflows and the
bank account may have nonzero covariation was already noted in Norberg and Steffensen (2005).

If we assume that B is continuous and of finite variation then we simply find

SBt = St + Bt

∫ t

0+

dDS
u

Bu
.

In the special case for just one cash dividend DS
t = D̃1[tD ,T ](t), we can reduce this to

SBt = St + 1[tD ,T ](t)D̃
Bt
BtD

Note that if we work on a Brownian filtration, then S+DS and V +DV are continuous processes,
so ∆DS = −∆S and the times at which DS and S are discontinuous thus have to coincide. In
general we would have for adapted processesX on this filtration thatXt− = Xt−∆Xt = Xt+∆DX

t

and the first replication equation (3) would then boil down to

Vt + ∆DV
t = φSt (St + ∆DS

t ) + φBt (Bt + ∆DB
t )

which is the classical notion of a gains process to model dividend, and has been introduced earlier
in the literature, see for example Duffie (2001). This may seem a natural alternative choice for
the first equation in our definition of replication, but it will not generalize in a nice way when
we use other filtrations than those generated by Brownian Motion, since we will see later that on
filtrations which are not left-continuous we may not always have that ∆DS = −∆S. On such
filtrations our definition is therefore different from the one in Duffie (2001).

Theorem 3.3. Let S +DS and B be semi-martingales satisfying the conditions stated above.
Then there exists a unique asset price process V with DV ≡ 0 and V0 = S0 such that V can be
replicated using S only, i.e. such that φB ≡ 0. This asset price process V = S̃ can, together with
B, replicate SB.

Proof. We are looking for a process V such thatDV ≡ 0, with φB ≡ 0. But this last assumption
implies that φSt = Vt−/St− so we need to prove that there exists a unique process V such that

dVt =
Vt−
St−

d(St +DS
t ) (12)

with V0 = S0, so

Vt = S0 +

∫ t

0+

Vu−
Su−

d(Su +DS
u )

We can thus apply Theorem 3.2 again with Zt =
∫ t

0
d(Su+DS

u )
Su−

and H ≡ S0 to prove existence and

uniqueness. Finally, the asset Ṽ = SB can be replicated using V = S̃ and B since

Ṽt− = φS̃t S̃t− + φBt Bt−

dṼt = φS̃t dS̃t + φBt dBt

if we take φS̃ = St−/S̃t− and φBt = (Ṽt− − St−)/Bt−, as can be seen from (12) and (9).

Note that in the special case of a single discrete dividend D̃ at one particular time tD, i.e.
when DS

t = D̃1[tD,T ](t), we can simplify the expression for the process V based on formula (7)
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considerably. In fact, we then find that V = S̃ with

S̃t = S0e
∫

t

0+

d(Su+DS
u )

Su−

−
1
2 [
∫

t

0+

d(Su+DS
u )

Su−

,
∫

t

0+

d(Su+DS
u )

Su−

]ct (1 +
D̃1[tD,T ](t)

StD−
)e

−
D̃1[tD ,T ](t)

StD−

= S0e
∫

t

0+
d(lnSu)−1[tD,T ](t)∆(lnSt)(1 +

D̃1[tD,T ](t)

StD−
)

= St + 1[tD,T ](t)
D̃

S(tD)
St

and this process indeed satisfies the requirements. Note that this expression represents our eco-
nomic intuition of what happens when we reinvest dividend proceeds in the underlying asset S.

To check that this expression models the correct behavior, first notice that

t < tD : S̃t = St S̃t− = St− (13)

t = tD : S̃tD = StD + D̃
StD

StD−

S̃tD− = StD− (14)

t > tD : S̃t = St(1 + D̃
StD−

) S̃t− = St−(1 + D̃
StD−

) (15)

We can now show directly that V = S̃ satisfies (12). Indeed, we have for t < tD that

dS̃t = dSt = dSt + dDS
t =

S̃t−
St−

d(St +DS
t )

as required, where we have used (13) and the definition of DS
t . For t = tD we find, using (14)

dS̃t = dSt + dDS
t =

S̃t−
St−

d(St +DS
t )

and finally, for t > tD

dS̃t = dSt +
D̃

StD
dSt = (1 +

D̃

StD
)d(St +DS

t )

=
S̃t−
St−

d(St +DS
t )

so we are done.

The approach taken in the proof of Theorem 3.3 formalizes the idea that we could reinvest
dividend payouts in the asset which pays the dividends, instead of the approach taken in the
previous Theorem, where the dividend proceeds were invested in the bank account.

The unique processes S̃ and SB that we have created and which do not contain any dividends,
can now be used for replication purposes, so the original ex-dividend process S and its dividend
process DS have become superfluous in this sense:

Corollary 3.1. If an asset V can be replicated using the assets S and B, then it can be
replicated using the assets S̃ and B.
If an asset V can be replicated using the assets S and B, then it can be replicated using the assets
SB and B.

Proof. If an asset V is replicated using S and B we may write

Vt− = φSt St− + φBt Bt− (16)

d(Vt +DV
t ) = φSt d(St +DS

t ) + φBt dBt (17)
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but using (12) we can rewrite this as

Vt− = φSt
St−

S̃t−
S̃t− + φBt Bt−

d(Vt +DV
t ) = φSt

St−

S̃t−
dS̃t + φBt dBt

so taking φS̃t = φSt St−/S̃t− shows the first result. The second result follows when we use (12) to
rewrite (16)-(17) in the form

Vt− = φSt S
B
t + (φBt − φSt

SBt− − St−

Bt−
)Bt

d(Vt +DV
t ) = φSt dS

B
t + (φBt − φSt

SBt− − St−

Bt−
)dBt

so replication is possible in this case as well.

We now consider an arbitrage-free market with the assets (S̃, B) in it. We know that there
exists a measure Q, equivalent to our original measure P , such that S̃/B is a martingale under Q.

Definition 3.2. We say that V is the price process of a tradeable asset iff

1. It can be replicated using S̃ and B

2. The process D(V ) is a martingale under Q, where1

D(V ) =
V +DV

B
−DV

− •B−1

Due to the corollary proven above, we might as well have required that V can be replicated using
SB and B.

We noted before in (11) that we may rewrite D(V )t as

D(V ) =
V

B
+ B−1

− •DV + [DV , B−1]

but we prefer the notation used in the definition since it does not involve a bracket. The main
point of the definition given above is that we would like D to be a martingale, and not just a local

martingale. That it is a local martingale is already guaranteed by the first part of the definition,
as the following result shows. This representation theorem is the main result of the paper, which
shows how the usual martingale representation theory for assets without dividends carries over to
our more general case.

Theorem 3.4. If an asset price process V can be replicated using S and B then there exists
an adapted predictable process φ such that

dD(V )t = φt d

(

S̃t
Bt

)

Proof. We apply Ito’s rule for (not necessarily continuous) semi-martingales which states that
for twice continuously differentiable functions f : Rn → R and semi-martingales X on Rn we have

f(Xt) − f(X0) =

n
∑

i=1

∫ t

0+

∂f
∂xi

(Xs−)dX i
s + 1

2

n
∑

i=1

n
∑

j=1

∫ t

0+

∂2f
∂xi∂xj

(Xs−)d[X i, Xj]cs

+
∑

0<s≤t

[ f(Xs) − f(Xs−) −
n
∑

i=1

∂f
∂xi

(Xs−)∆X i
s ]

1We use the common notation Z = X
−

• Y for a process Z satisfying dZt = Xt−dYt.
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In particular, for f(x, y) = x/y we find that

d
Xt

Yt
=

dXt

Yt−
−
Xt−

Yt−

dYt
Yt−

−
d[X,Y ]ct
Y 2
t−

+
Xt−d[Y, Y ]ct

Y 3
t−

+

(

∆Yt
Yt−

)(

Xt−

Yt

∆Yt
Yt−

−
∆Xt

Yt

)

If V can be replicated using S and B, it can be replicated using S̃ and B by the previous corollary,

so there exist φS̃ and φB such that

Vt− = φS̃t S̃t− + φBt Bt− (18)

d(Vt +DV
t ) = φS̃t dS̃t + φBt dBt (19)

where we have used the fact that DS̃ = DB ≡ 0. But then

d
Vt +DV

t

Bt
=

d(Vt +DV
t )

Bt−
−

Vt− +DV
t−

Bt−

dBt
Bt−

−
d[V +DV , B]ct

B2
t−

+
Vt− +DV

t−

B3
t−

d[B,B]ct

+

(

∆Bt
Bt−

)(

(Vt− +DV
t−)

Bt

∆Bt
Bt−

−
∆(Vt +DV

t )

Bt

)

−DV
t−d

1

Bt
= −DV

t−

[

−dBt
B2
t−

+
d[B,B]ct
B3
t−

+

(

∆Bt
Bt−

)(

∆Bt
BtBt−

)]

−φS̃t d
S̃t
Bt

= −φS̃t

[

dS̃t
Bt−

−
S̃t−
Bt−

dBt
Bt−

−
d[S̃, B]ct
B2
t−

+
S̃t−
B3
t−

d[B,B]ct

]

− φS̃t

(

∆Bt
Bt−

)

(

S̃t−
Bt

∆Bt
Bt−

−
∆S̃t
Bt

)

We sum the three expressions to calculate dD(V )t and collect terms:

dD(V )t − φS̃t d
S̃t
Bt

= d
Vt +DV

t

Bt
−DV

t−d
1

Bt
− φS̃t d

S̃t
Bt

=
d(Vt +DV

t )

Bt−
−

Vt− +DV
t−

Bt−

dBt
Bt−

−DV
t−

−dBt
B2
t−

− φS̃t

[

dS̃t
Bt−

−
S̃t−
Bt−

dBt
Bt−

]

−
d[V +DV , B]ct

B2
t−

+
Vt− +DV

t−

B3
t−

d[B,B]ct − DV
t−

d[B,B]ct
B3
t−

− φS̃t

[

−
d[S̃, B]ct
B2
t−

+
S̃t−
B3
t−

d[B,B]ct

]

(

∆Bt
Bt−

)

[

(Vt− +DV
t−)

Bt

∆Bt
Bt−

−
∆(Vt +DV

t )

Bt
− DV

t−

∆Bt
BtBt−

− φS̃t
S̃t−
Bt

∆Bt
Bt−

+ φS̃t
∆S̃t
Bt

]

We substitute (18)-(19) and get

=
1

B2
t−

[

Bt−(φS̃t dS̃t + φBt dBt) − (Vt− +DV
t−)dBt +DV

t−dBt − φS̃t (Bt−dS̃t − S̃t−dBt)
]

+
1

B3
t−

[

− Bt−d[V +DV , B]ct + Vt−d[B,B]ct + φS̃t Bt−d[S̃, B]ct − φS̃t S̃t−d[B,B]ct

]

(

∆Bt
Bt−

)

[

Vt−∆Bt −Bt−∆(Vt +DV
t ) − φS̃t−S̃t−∆Bt +Bt−φ

S̃
t−∆S̃t

BtBt−

]

=
1

B2
t−

[

Bt−φ
B
t − Vt− + φS̃t S̃t−

]

dBt

+
Bt−
B3
t−

[

− d[V +DV , B]ct + φS̃t d[S̃, B]ct + φBt d[B,B]ct

]

+

(

∆Bt
Bt−

)(

1

BtBt−

)

[

(Vt− − φS̃t S̃t)∆Bt − Bt−∆(Vt +DV
t ) + Bt−φ

S̃
t ∆S̃t

]

10



and we see this is zero by using (18)-(19) again, and using the fact that (19) implies that

∆(Vt +DV
t ) = φS̃t ∆S̃t + φBt ∆Bt

This completes the proof.

We have thus proven that asset price processes V that can be constructed in a self-financing
manner using stock and the bank account, inherit the local martingale property from the under-
lying assets: if the discounted version of S̃ is a local martingale under Q, then so is D(V ), the
properly discounted version of V and its dividend process DV . This will allow us to apply the
usual theory for option pricing in arbitrage-free markets without dividends.

Note that we allow tradeables here to have dividend processes. Alternatively we could say that
V is a tradeable whenever DV ≡ 0 and V

B
is a Q-martingale, but we will see in the applications of

the next section that this would be too restrictive for many financial applications.
Since D(V )t is a Q-martingale we have that EQ[D(V )t | Fs] = D(V )s and taking limits s ↑ t

we find that EQ[∆D(V )t | Ft−] = 0. So when B is continuous and of finite variation we must have
that

EQ[∆Vt + ∆DV
t | Ft−] = 0

This expression immediately shows that on left-continuous filtrations (such as those generated by
Brownian Motion) where Ft− = Ft, we must have that ∆V = −∆DV since both V and DV are
adapted. But if the underlying filtration is not left-continuous this is no longer necessary, even if
cash dividend payments are announced in advance (i.e. when ∆DV is Ft−-measurable). We then
only know that

EQ[∆Vt | Ft−] = −∆DV
t

so the jump in the ex-dividend process of a tradeable does not necessarily cancel the jump due
to a dividend payment. This was already noted in Heath and Jarrow (1988) and Battauz (2002).
In the last paper an asset price model is formulated in which DV

t = D1t≥tD with D and tD
deterministic, and ∆VtD = −D + Y (VtD− −D) for a stochastic variable Y with support ] − 1, 1[
and such that EQ[Y | FtD−] = 0. This provides a nice example of a tractable dividend model
where ∆V 6= −∆DV .

4 Examples

We will now show how the framework developed so far can be applied to different types of
securities. In all the different products we consider the key notion that we will use is the fact
that if an asset V is tradeable in an arbitrage-free and complete market on a filtered probability
space (Ω,F ,P, (Ft)t∈R+), then there exists a unique equivalent martingale measure Q such that
the process D(V ) is a martingale under Q. Throughout this section the processes B will be of
finite variation and continuous, so [DV , B−1] ≡ 0 and D(V ) being a Q-martingale then leads to

Vt = Bt EQ

[

VT
BT

+

∫ T

t

dDV
u

Bu

∣

∣

∣

∣

∣

Ft

]

(20)

Note that this expression has a nice interpretation: the current price of a tradeable can be seen
as the price of a derivative which represents the sum of the ex-dividend price at a later date and
all the cashflows paid out by the tradeable until that date, after all these have been properly
discounted.
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4.1 Equity Dividend Models: Deterministic processes for Dividends

In the first section of this paper we mentioned some different approaches to handle the incor-
poration of dividends in equity price processes. As we explained there, the Escrowed Model for
dividends assumes that the (cumulative) dividend process is deterministic and that asset price
minus the present value of all dividends to be paid until the maturity of the option follows a
Geometric Brownian Motion. This means that

Vt = St −

∫ T

t

Bt
Bu

dDS
u

is a Geometric Brownian Motion, and if it is also a tradeable, it must be a Q-martingale after
discounting, so

St
Bt

−

∫ T

t

1

Bu
dDS

u =

(

S0

B0
−

∫ T

0

1

Bu
dDS

u

)

e
∫

t

0
σudW

Q
u−

1
2

∫

t

0
σ2

udu

for some deterministic process σ : R+ → R+ and WQ a Brownian Motion under Q. The standard
European Call option has a payoff (ST −K)+ which under Q can be written as

BT
Bt

(

Vte
∫

T

t
σudW

Q
u −

1
2

∫

T

t
σ2

udu −K

)+

This shows that the original Black-Scholes formula can be used to calculate the Call Option price
Bt

BT
EQ[(ST −K)+ | Ft], if one inserts a different starting value for the asset price process: instead

of the Black-Scholes formula with current asset price St we now use a Black-Scholes formula with
current asset price Vt.

In the Forward Model, the the asset price plus the forward value of all dividends (from past
dividend dates to today) is assumed to follow a Geometric Brownian Motion, so

Vt = St +

∫ t

0

Bt
Bu

dDS
u

is a Geometric Brownian Motion, and since it has to be a tradeable as well we find that

St
Bt

+

∫ t

0

1

Bu
dDS

u =
S0

B0
e
∫

t

0
σudW

Q
u−

1
2

∫

t

0
σ2

udu

and the European Call payoff can be written as

BT
Bt

(

Vte
∫

T

t
σudW

Q
u−

1
2

∫

T

t
σ2

udu − [

∫ T

0

Bt

Bu
dDS

u +K]

)+

so we see that this time we can use the original Black-Scholes formula with a different strike:

instead of the strike K we need to insert the strike K +
∫ T

0
Bt

Bu
dDS

u into the Black-Scholes formula
for European Calls, and insert Vt instead of St for the current asset price.

4.2 Korn-Rogers Model: Bounded Variation processes for Dividends

In the model of Korn and Rogers, stochastic dividends are paid at dividend times which are
known a priori while the ex-dividend asset price process S equals the conditional expectation,
under the equivalent martingale measure, of the sum of all (discounted) future dividends, so

St = Bt EQ

[
∫ ∞

t

dDS
u

Bu

∣

∣

∣

∣

Ft

]
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In the case treated by Korn and Rogers, the filtration is generated by a Lévy process. We define

Vt = St +

∫ t

0

Bt
Bu

dDS
u

which implies that

Vt
Bt

= EQ

[
∫ ∞

t

dDS
u

Bu

∣

∣

∣

∣

Ft

]

+

∫ t

0

dDS
u

Bu
= EQ [D∞| Ft]

where

D∞ =

∫ ∞

0

dDS
u

Bu
.

is assumed to be a well-defined finite stochastic variable, which is integrable with respect to Q. It
is thus immediately clear that in this model S is automatically a tradeable. Korn and Rogers let
the process DS have the specific form DS

t =
∑∞

i=1 1t≥tiXti with X an exponentiated Lévy process
and the times ti deterministic. Obviously, DS is of bounded variation in that case.

4.3 Futures: Îto-processes for Dividends

A futures contract is an exchange-traded standardized contract which gives the holder the
obligation to buy or sell a certain commodity (or another financial contract) at a certain date in
the future, the delivery date, for a price specified on that day, the settlement price. It should
be contrasted with a forward contract, which gives the holder the obligation to buy or sell at
a date in the future for a price specified today but paid or received at the future date (today’s
forward price for the commodity or underlying contract). Forwards are conceptually easier but
more complicated in practice, since it assumes that a buyer and a seller agree on cash being paid
today and delivery taking place at a future date.

If one wants to buy the commodity on a specific delivery date in the future one can obtain
a future contract, at zero costs today. Today’s futures price for that delivery date tells you for
what price you will obtain the commodity at that time, but instead of paying that amount right
now (which you would do if you had taken out a forward contract) you pay nothing now. Instead,
you open a bank account on the exchange, the so-called margin account. From now until the
delivery date (or until the first date before that date on which you get rid of the future) you will
receive every day, after the new futures price for your commodity and your delivery date has been
specified, the difference between the new futures price and the previous day’s futures price, if this
difference is positive. When this difference is negative, the corresponding amount it taken from
your account. The net effect of this is that you end up paying the futures price at which you
obtained your contract in the market: you pay the futures price on the delivery date (which must
equal the price of the commodity on that date, of course) but you have been compensated on a
daily basis if that price is higher than the futures price at which you got in. On the other hand, if
the futures price on the delivery date is lower, you have actually paid that difference by the daily
adjustments before that date.

The futures contract has therefore three essential elements:

• Going long or short any number of futures contracts is free at all times

• With every future contract we enter, we can associate a margin account in which the dif-
ferences between the current and previous futures price is being paid (if we are long one
contract) or withdrawn (if we are short one contract).

• This margin account earns interest.

We will use these three elements as the basis of a definition of a futures price.
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Definition 4.1. We call m : Ω × [0, T ] → R the futures price process associated with delivery
of asset S at time T if the following holds:

• m is a semi-martingale and mT = ST

• For all bounded previsible processes ψ the following process M is a tradeable:
{

dMt = Mt−
dBt

Bt−
+ ψtdmt

M0 = 0
(21)

Notice that delivery involves the ex-dividend price, and not the price of the tradeable.
We will use the notation Mψ for the process M to remind ourselves that it depends on the

process ψ. Note that the process ψ in the definition above has the interpretation of a futures
trading strategy: ψt represents the number of futures contracts in our position at time t. Our
definition reflects the fact that we may enter the futures market at any time at zero costs. What
we do is to ’invest’ the proceeds of the futures strategy ψ into the margin-account M which earns
the riskfree rate.

This approach is different from the usual one (see for example Bjork (2004)) where margin
accounts are never taken into account explicitly. The only exception we know of is the work of
Duffie and Stanton (1992) in which the margin account is mentioned directly. Our treatment here
is inspired by the paper by Pozdnyakov and Steele on the martingale framework for futures pricing,
Pozdnyakov and Steele (2004), but our definition differs from theirs. We only impose that m is
such that Mψ/B is a Q-martingale on [0, T ] (i.e. that Mψ is a tradeable in economic parlance)
and we do not need to impose any regularity conditions on m from the start. Another difference
with the approach in Pozdnyakov and Steele (2004) is that we introduce a whole collection of
tradeables from the very beginning and this is completely in line with the fact that one may enter
a futures contract at any time in real life.

The following two results are then immediate:

Theorem 4.1. The margin account process can be replicated using a zero ex-dividend process
with pays continuous dividends equal to the futures price.

Proof. Taking φŜt = ψt, φ
B
t = Mt/Bt and Ŝt = 0, DŜ

t = mt replicates Vt = Mt with DV
t = 0,

see equations (3)-(4).

Theorem 4.2. We have for all t ∈ [0, T ] that m satisfies

mt = EQ

[

ST −

∫ T

t

d[ EQ[ST | Ft], B ]u
Bu

∣

∣

∣

∣

∣

Ft

]

Proof. From the proof of Theorem 3.1. we see that we can solve (21) for M . In fact we have
that

d

(

Mt

Bt

)

= ψt

(

dmt

Bt−
+ d[m,B−1]t

)

=
ψt
Bt−

(

dmt −
d[m,B]t
Bt

)

By the definition of tradeable, D(M) must be a Q-martingale, but since M pays no dividends,
this means that M/B must be a Q-martingale. If we take ψt = Bt− for all t, we thus have that

EQ[mT −mt −

∫ T

t

d[m,B]u
Bu

| Ft] = 0

and since mT = ST we thus find the result

mt = EQ[ST −

∫ T

t

d[m,B]u
Bu

| Ft]

Write mt = EQ[ST | Ft] − At then At has finite variation, so [m,B] = [EQ[ST | Ft], B] and the
result follows.
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In many models it is assumed that B is continuous and of finite variation, and in this case we
get the well-known result that mt = EQ[ST | Ft].

More interesting is the case where the bank account B has quadratic variation. Let S and B be
driven by Brownian Motions V and W with correlation coefficient ρ in a market that is completed
by additional assets, i.e. under Q (the martingale measure for numeraire B) we have

dSt/St = rdt + σSdVt

dBt/Bt = rdt + σBdWt

for known constants r, σS and σB. Then the futures price m equals

mt = EQ[ST −

∫ T

t

d[EQ[ST | Fs], B]s
Bs

| Ft]

= Ste
r(T−t) −

∫ T

t

d[Sse
r(T−s), Bs]s
Bs

= Ste
r(T−t) −

∫ T

t

er(T−s)σSSsσ
BBsρ ds

Bs

= Ste
r(T−t) − ρσSσBerT

∫ T

t

EQ
[

e−rsSs
∣

∣Ft
]

ds

= Ste
r(T−t) − ρσSσBerT

∫ T

t

e−rsSte
r(s−t)ds

= Ste
r(T−t) [1 − ρσSσB(T − t)]

Note that the futures price may thus become negative for positively correlated S and B processes
when the time to maturity is large! In practice, of course, the interest rate earned on a futures
margin account is usually fixed or certainly of finite bounded variation. In that case, negative
future prices will not occur for positive asset price processes S.

4.4 Credit Default Swaps: Stopped Jump Process for Dividends

We now consider credit default swaps, as an example of a filtration for the dividend process
which is not a Brownian filtration. In particular, we would like to derive a trading strategy which
allows us to hedge a position in credit default swaps using defaultable coupon bonds.

We will use the same setup as Bielecki, Jeanblanc, and Rutkowski (2005). Define on a proba-
bility space (Ω,F ,Q) a strictly positive stochastic variable τ and

Et = 1t≥τ

p(t) = EQ(1 − Et) = Q(τ > t)

and let (Ft)t∈R+ be the filtration generated by the process E, then τ is obviously a stopping time
with respect to this filtration. We assume that p is a continuous function on R+. In a market
with a deterministic bond process B which is continuous and of finite variation, we define a credit
default swap with maturity T for the default event τ as an asset S such that

ST = 0, DS
t = −A(t ∧ τ ∧ T ) + I(τ)Et

where A and I are deterministic continuous functions which represent a (cumulative) amount paid
as long as there is no default, and an amount received upon default respectively. We assume that
A is differentiable as well. The process

Mt = Et +

∫ t

0

(1 − Eu−)
dp(u)

p(u)
(22)
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is a Q-martingale on (Ft)t∈R+ , since a direct computation verifies that EQ[Mt −Ms|Fs] = 0 for
all 0 ≤ s < t:

EQ[Et − Es | Fs] = EQ[1s<τ≤t | Fs] = 1s<τE
Q[1s<τ≤t] = 1s<τ (p(s) − p(t))

EQ[

∫ t

s

(1 − Eu−)dp(u)
p(u) | Fs] = 1s<τE

Q[1s<τ

∫ t

s

(1 − Eu−)dp(u)
p(u) ]

= 1s<τE
Q[1s<τ1τ≤t

∫ τ

s

dp(u)
p(u) + 1s<τ1τ>t

∫ t

s

dp(u)
p(u) ]

= 1s<τ

∫ t

s

∫ v

s

−dp(u)
p(u) dp(v) + p(t)

∫ t

s

dp(u)
p(u) ] = 1s<τ (p(t) − p(s)).

If we want S to be a tradeable, equation (20) then gives for the ex-dividend price:

St = Bt EQ

[

ST
BT

+

∫ T

t

dDS
u

Bu

∣

∣

∣

∣

∣

Ft

]

= EQ

[

∫ T

t

−(1 − Eu−)dA(u) + I(u)dEu
Bu

∣

∣

∣

∣

∣

Ft

]

Using standard results this can be rewritten as

St = Bt
1τ>t

EQ1τ>t

EQ

[

−1τ>t

∫ τ∧T

t

−dA(u)

Bu
+
I(τ)

Bτ
1t<τ≤T

]

= BtLtK(t) (23)

with Lt = (1 − Et)/p(t) and

K(t) = −

∫ T

t

p(u)
−dA(u)

Bu
−

∫ T

t

I(u)
dp(u)

Bu

a deterministic continuous process. The Q-martingale S/B + B−1 • DS can be represented in
terms of M . We have

dLt =
d(1 − Et)

p(t)
−

(1 − Et−)dp(t)

p(t)2
=

−dMt

p(t)
=

−dMt(1 − Et−)

p(t)
= −Lt dMt

and we find for t ≤ τ , since St = BtLtK(t),

d
St
Bt

+
dDS

t

Bt
= d(LtK(t)) +

−(1 − Et−)dA(t) + I(t)dEt
Bt

= K(t)dLt + Lt−dK(t) +
−(1 − Et−)dA(t) + I(t)dEt

Bt

= −K(t)Lt−dMt +
I(t)

Bt
(dEt + (1 − Et−)

dp(t)

p(t)
)

=
1

Bt
(I(t) − St−)dMt (24)

We can use this to calculate how the Credit Default Swap can be hedged with a defaultable
bond. We define the defaulable bond P with maturity T and known coupon payments Ci at known
times ti ≤ T for i = 1...n as a tradeable with

PT = 0, DP
t =

n
∑

i=1

Ci1t≥ti1τ>ti .

Similar calculations as above then give the ex-dividend price as

Pt = Bt EQ

[

PT
BT

+

∫ T

t

dDP
u

Bu

∣

∣

∣

∣

∣

Ft

]

= Bt
1 − Et
p(t)

n
∑

i=1

Ci
p(ti)

Bti
1t<ti
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and this allows us to write

Pt = BtLt

n
∑

i=1

vi(1 −Rit), DP
t =

n
∑

i=1

p(ti)LtiR
i
t

with

vi = Ci p(ti)/Bti , Rit = 1t≥ti

But then

d
Pt
Bt

+
dDP

t

Bt
=

n
∑

i=1

vid
[

(1 −Rit)Lt + LtiR
i
t

]

and

d
[

(1 −Rit)Lt + LtiR
i
t

]

= dLt + d[(Lti − Lt)R
i
t] = dLt + Lti∆R

i
t − d(LtR

i
t)

= dLt + Lti∆R
i
t − [Lt−dR

i
t +Rit−dLt + LtR

i
t − Lt−R

i
t− − Lt−∆Rit −Rit−∆Lt]

= dLt + Lti∆R
i
t −Rit−dLt − Lt∆R

i
t

= (1 −Rt−)dLt + (Lti − Lt)∆R
i
t = −(1 −Rt−)Lt−dMt + 0

=
−1t≤ti1t≤τ

p(t)
dMt

so

d
Pt
Bt

+
dDP

t

Bt
=

n
∑

i=1

Ci
Bti

p(ti)

p(t)
1t≤ti1t≤τdMt (25)

and equations (24)-(25) thus show that if we want to replicate the Credit Default Swap using
defaultable coupon bonds, the amount of bonds per swap to hold in our portfolio equals for t ≤ τ

φt =
I(t) − St−

Bt





1

p(t)

∑

{i:ti≥t}

Cip(ti)

Bti





−1

.

4.5 Uncertain Dividend Dates: Jump-diffusion Processes

The results of the previous subsection concerning dividend processes generated by jumps at
random times can also be used to model uncertainty in dividend dates. Suppose we have an ex-
dividend stock price process S and a dividend of known magnitude D̃ which will be paid out at
the unknown dividend date τ which has a known distribution p under an equivalent martingale
measure Q, i.e.

DS
t = D̃Et, Et = 1t≥τ , Q(τ > t) = p(t)

As before, we also have a bank account given by Bt = B0e
rt. Since we would like our model

to have some tractability, we would like the process S to be adapted to (Ft)t∈R+ , the filtration
generated by the process E and a standard Brownian Motion W . We define the process

Vt = St +Bt

∫ t

0

dDS
u

Bu

and this should be a Q-martingale after discounting if we want the stock to be a tradeable. Notice
that we use a model here which is similar to the Forward model we mentioned in subsection
4.1 because the alternative, the Escrowed model which uses Vt = St −

∫ T

t
dDS

u/Bu, is no longer
adapted when the cumulative dividend process DS is stochastic. If V/B is a Q-martingale, then by

17



predictable representation theorems (see for example Protter (2003)) there must exist predictable
processes At and Jt such that d(Vt/Bt) = AtdWt + JtdMt where Mt has been defined in the
previous subsection. Since ∆(Vt/Bt) = Jt∆Mt it is clear that Jt = D̃/Bt so we find

d
St
Bt

= d
Vt
Bt

−
dDs

t

Bt
= AtdWt +

D̃

Bt
dMt −

D̃

Bt
dEt

= AtdWt +
D̃

Bt
(1 − Et−)

dp(t)

p(t)

or

d(
St
Bt

− D̃

∫ t∧τ

0

1

Bu

dp(u)

p(u)
) = AtdWt

To arrive at a tractable formula we choose At now in such a way that we can solve this SDE,
which is certainly the case if the lefthand side becomes the increment of a lognormal process, i.e.
we take

St
Bt

− D̃

∫ t∧τ

0

1

Bu

dp(u)

p(u)
= (

S0

B0
− 0)eσWt−

1
2σ

2t

so the ex-dividend price then becomes

St = S0e
(r−

1
2σ

2)t+σWt + D̃

∫ t∧τ

0

Bt
Bu

dp(u)

p(u)

If the martingale measure Q is unique, a vanilla call with payoff (ST−K)+ based on the ex-dividend
price must then have the price

Bt
BT

EQ[(ST −K)+ | Ft]

=
Bt
BT

EQ[

(

(St − D̃
∫ t∧τ

0
Bt

Bu

dp(u)
p(u) )e(r−

1
2σ

2)(T−t)+σ(WT −Wt) + D̃
∫ T∧τ

0
BT

Bu

dp(u)
p(u) −K

)+

| Ft]

If one assumes that the processes W and E are independent, this leads to a European option
pricing formula that can be written in terms of integrals of the Black-Scholes call option formula
over different strike and stock values.

5 Conclusions

We have shown how dividends can be modeled consistently in arbitrage-free markets by the
introduction of tradeable securities without dividends that can be replicated using underlying
assets with dividends. We believe that our definition of what replication should mean in the
presence of dividends provides a natural concept for the modelling of dividends, as witnessed by
the many different examples given in the previous section.

The last example given there (where the dividend dates are uncertain) shows that we need
to be careful when defining a model for the ex-dividend process if we want the combination of
ex-dividend and dividend processes to be a tradeable in an abitrage-free market: it is obvious that
when dividends are present, the ex-dividend process cannot be a martingale under an equivalent
martingale measure after discounting. But once tradeables have been defined in a proper manner
by reinvesting dividend proceeds, Theorem 3.4 shows that pricing and hedging problems can be
addressed using the well-known tools of martingale representation theorems in stochastic calculus.

We therefore believe that our results may be of some interest when designing hedging strate-
gies for financial products which include dividends or when designing hedging strategies that use
securities that have dividend payoffs themselves in the hedge.
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