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Abstract

In general, contingent claims on assets which may default during the duration of
the contract cannot be priced and hedged consistently. This is due to the fact that the
possibility of a default event brings in an extra uncertain factor, and there are therefore
too few assets to construct a hedge against all sources of uncertainty. In this paper
we show that consistent pricing and hedging is still possible if we assume that (1) we
can estimate the size of the loss in value (as a percentage) upon default and (2) default
is the only non-systematic risk factor involved. Moreover, we show that the resulting
formulas for prices and hedges do not depend on the intensity of the default process,
but on a new riskfree intensitywhich is an explicit function of other parameters in the
model, in contrast to most other models. We derive a simple tree method to implement
the methodology that is proposed, and show how other pricing methods for claims on
defaultable assets are linked to our method.

1 Introduction

Many assets in finance carry an inherent risk that they maydefaulti.e. that they may expe-
rience a sudden loss in value at a time which cannot be predicted before the actual default
event takes place. Such a default event creates a downward ’jump’ in the value of the as-
set, and the usual methodology for pricing and hedging derivative contracts on assets no
longer works. Indeed, it is well known that the assumption of continuous sample paths
for the value of the underlying asset is one of the essential ingredients for the classical
Black-Scholes model for the pricing of derivative contracts. If the value of the underlying
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can change suddenly by a large amount, thus creating a discontinuity in time, the hedge
proposed by Black and Scholes can no longer be used to eliminate all risk and therefore
the option cannot be priced consistently using their methods. This important fact was al-
ready pointed out in (Merton 1976), and many methods have been proposed since to find
consistent pricing methods for contingent claims on defaultable assets.

The most important differences in such methods arise in the modelling of the default event
and we can broadly recognize two essentially different approaches in the existing literature.
In the first approach, which is often referred to as the structural model approach, the default
event for a firm is typically modelled as the first time that the value of the assets of a firm
is smaller than the value of its liabilities. This means that we may not know in advance
when default will occur, but that we can at least see the likelihood of default rise or fall if
we assume that the value of assets and liabilities of the firm can be observed at any time.
In the second approach, which is often called ’reduced-form modelling’, default is seen as
an exogenously given event, which only depends on the current state of the firm through its
’default intensity’ which governs the probability that a jump will occur in the next small time
interval. In mathematical terms, the first approach models the default time as a previsible
stopping time, while the second one models it as a totally inaccessible stopping time.

The main problem with the first approach is the assumption that the value of the firm can
be observed at all times, which is obviously quite problematic in practice. Therefore most
models use the reduced-form formulation, and try to model the intensity of the default pro-
cess using both market-wide as well as firm-specific factors. The default intensities cannot
be observed directly either, but explicit pricing formulas, which are derived by imposing
absence of arbitrage conditions, can be inverted to find estimates for them. Credit ratings,
macro-economic factors and correlation between default events for different firms can all be
incorporated in such models, but the estimation problem obviously becomes significantly
harder when the model grows in complexity. See for example (Rogers and Hilberink 2000)
for recent work on structural models, (Duffie and Singleton 1995; Lando 1994) for a general
discussion of intensity-based models, and (Jarrow and Turnbull 1995) for the special case
where a Markov chain of credit ratings is the only factor influencing the default intensities.

An important problem for those models of the default process which are based on many
factors is the impossibility to hedge the derivative contracts. Prices for such contracts are
written in the form of conditional expectations under a risk-neutral measure but no hedges
are provided, often because replicating portfolios simply do not exist. A lot of contracts
where the underlying asset can default therefore seem to take the form ofinsurancecon-
tracts, since a premium is paid to make sure that the expected profit over all such protective
contracts will be positive in the long run.

In this paper we propose a model which will provide a consistent pricing methodology
for derivatives on defaultable assets and explicit hedges against default risk. We are able
to do so by two important assumptions which are essential for our model and its explicit
solution:

� The decrease in value at the time of default is a known constant (given as a percentage
of the pre-default value).
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� The factor which causes default is the only factor in the dynamics of the asset price
which is idiosyncratic.

Both assumptions are obviously quite restrictive and never met completely in practice, but
they are necessary if we want to be able to hedge our contingent claims. If we do not
know the decrease in value due to default (but assume instead that we know the probability
distribution for this unknown quantity) then we cannot replicate the payoff of the derivative,
see (Lamberton and Lapeyre 1996), Chapter 7. The second condition we impose is also
necessary since we want to be able to diversify away all the risk which is not associated
with default by using other assets in the market. In this sence, our approach is similar to
the one reported in (Merton 1976) where the assumption that default represents risk which
is uncorrelated with the market is used in a CAPM-type argument to derive a similar option
pricing formula for this problem. The main difference between the approach we propose
here and earlier models such as Merton’s, or the models introduced in (Zhou 1997) and
(Mason and Bhattacharya 1981), is the possibility to derive perfect hedges which replicate
claims perfectly.

In (Beumee, Hilberink, Patel, and Walsh 1999) the problem of hedging derivative credit
risk has been considered, and in this paper we show how to construct such hedges for a
continuous-time model, but we will also show how hedges can be approximated on a tree in
discrete time, thus highlighting the practical applicability of our models. We also consider
the case where only one default is allowed to occur during the lifetime of the contract, which
is not treated in the papers we mentioned, but which is of obvious practical interest.

As stated before, we will model simultaneously a defaultable assetSand an assetV that
cannot default, which both depend on a common factor. In the continuous-time model that
we will want to consider later, this common factor is modeled as a Brownian Motion process
{(Wt, t ≥ 0}, while the default event is modelled using a Poisson process{(Nt, t ≥ 0} with
intensityλ:

dSt = µs St− dt + σs St− dWt + (α − 1) St− dNt (1.1)

dVt = µv Vt dt + σv Vt dWt . (1.2)

This means that the processSfor the defaultable asset is a right-continuous diffusion process
with jumps, which at the default times, i.e. the jump times of the processN, changes its
current valueSt− to αSt−.

This setup is typical for most reduced-form models for default events; see for example the
papers (Lando 1994; Lando 1995; Zhou 1997; Davis and Mavroidis 1997; Dempster and
Gotsis 1998). In our model, however,α is a deterministic and a priori given constant value
in ]0, 1[, an assumption which we earlier specified as being essential for the possibility of
hedging. The second fundamental assumption is the existence of the assetV which has a
common factor withSbut cannot default. We will show later on that if this assumption is
not satisfied, we may alternatively assume the existence of aninsurerfor the default event
and derive exactly the same results.

Consider a derivative contractC whose payout at the expiration timeT depends on both
S and V. Denote its value at timet ∈ [0, T], depending on the current valuesSt = S and
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Vt = V, byC(S, V, t). We will also assume the existence of a riskless bond (or bankaccount)
the valueBt of which evolves as

dBt = rBt dt,

wherer is a constant and knownriskless rate of return.
We will show that within this framework we can price and hedge contingent claimsC on

the underlying assetsS and V. Moreover, it turns out that we to do so we will only need
market parameters with a sensible interpretation which can be estimated using market data.

The structure of this paper is as follows. In the next section we will consider a discrete
time approximation for the processes under consideration, and construct a tree which can
be used to price and hedge contingent claims. In section 3 we prove a convergence result,
under rather mild conditions, for the case where we let the time step in the tree models go
to zero. In section 4 we show how we can derive the partial differential equation for the
pricing of the claims directly using the stochastic calculus for jump-diffusions. In the last
section conclusions and suggestions for further research are formulated.

2 Discrete Time Models

In this section, we will not use the continuous-time processes defined by equations (1.1)-
(1.2), but instead we first consider approximations of these processes with a discrete time
parameter. To value contingent claims dependent onSandV, we approximate the diffusion
processes on a tree with variable time gridh. The fundamental assumption underlying the
construction of such a tree will be that we assume that at every time stept = kh, (k ∈
1, 2, ..., N(h)) (with hN(h) ≤ T < h(N(h) + 1)) there are three possibilities:

1. the common factorW makes a (slight) upward movement, causing both assets to
increase toS(k+1)h = usSkh andV(k+1)h = uvVkh respectively, withus, uv > 1

2. the factorW makes a (slight) downward movement, causing both assets to decrease
to S(k+1)h = dsSkh andV(k+1)h = dvVkh respectively, withds, dv < 1

3. the assetSdefaults to a valueαSwhich is substantially smaller than its current value,
while the assetV only changes slightly, soS(k+1)h = αSkh andV(k+1)h = γvVkh, with
γv close to 1.

The free parametersus, ds, uv, dv, γv and probabilities assigned to each of the three
possibilities may depend on the time gridh, as long as we have that

� The default process is Poisson. This means that on the relevant time interval [kh, (k+
1)h] the probability of default happening in this interval is equal to the length of
this interval h times the intensity parameterλ, and this default event is therefore
independent of the number of defaults which have happened before,

4



� The first two conditional moments of the assetS, conditioned on the event that no de-
fault occurs in this time interval, should be the same as those of a lognormal process,
with drift coefficientµs and diffusion coefficientσs respectively.

� The first two moments of the assetV should be the same as those of a lognormal
process with drift coefficientµv and diffusion coefficientσv in all cases(i.e. both
when a default occurs and if no default occurs).

Note that the factorW and the default events are not independent of each other in this model.
We will also assume that a riskfree rate of interestr is a known constant during the entire
time horizon that we wish to consider. This is for notational simplicity only: it can easily be
seen in the sequel that our analysis can be generalized for an a priori known time-varying
interest rates{r(kh), k = 1, 2, ..., N(h)}.

Taking all these assumptions into account implies that a branch in our trinomial tree must
have the following generic structure:

S
V
�
�
�

@
@
@

usS
uvV

dsS
dvV

αS
γvV

Probability: (1− λh)p

Probability: (1− λh)(1− p)

Probability:λh

The free parameters in this model areus, ds, uv, dv, γv and p, and all these parameters
may depend on the timesteph. Because of the second assumption we must have that for all
k,

E [ ln S(k+1)h − ln Skh | no default ] = (µs)h

E [ (ln S(k+1)h − ln Skh)
2 | no default ] = σ2

sh + (µs)
2h2

E [ ln V(k+1)h − ln Vkh | no default ] = (µv)h

E [ (ln V(k+1)h − ln Vkh)
2 | no default ] = σ2

vh + (µv)
2h2,

implying that

p ln us + (1− p) ln ds = (µs) h (2.3)

p (ln us)
2 + (1− p)(ln ds)

2 = σ2
s h + (µs)

2h2 (2.4)

(1− λh) (p ln uv + (1− p) ln dv) + λh(ln γv) = (µv) h (2.5)

(1− λh)
(
p ln(uv)

2 + (1− p)(ln dv)
2) + λh(lnγv)

2 = σ2
v h + (µv)

2h2 (2.6)

This gives us 4 equations for the 6 unknown parametersus, ds, uv, dv, γv and p. We will
therefore have to show in the sequel that the results we obtain do not depend on our partic-
ular choices for the two degrees of freedom that we still have.

Suppose that at a certain timet = kh we construct a portfolio5 containing an amount
B of riskless bonds, and (possibly shorted) amountsε and δ of the risky assetsS and V
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respectively. The value of this portfolio at timet = kh is then given by

5kh = δSkh + εVkh + Bkh.

The change in value of this portfolio5 and the derivative contractC = C(S, V, t) over the
time interval [kh, (k + 1)h] can be represented as follows:

δS+ εV + B
C(S, V, kh)

�
�
�

@
@
@

δSus + εVuv + Berh

Cu = C(Sus, Vuv, (k + 1)h)

δSds + εVdv + Berh

Cd = C(Sds, Vdv, (k + 1)h)

δSα + εVγv + Berh

Cα = C(Sα, Vγv, (k + 1)h)

Probability: (1− λh)p

Probability: (1− λh)(1− p)

Probability:λh.

If we want the value of the portfolio5 to be equal to the value of the derivative contract
C on all three end points of the branch, we must have

Cu = δSus + εVuv + Berh

Cd = δSds + εVdv + Berh

Cα = δSα + εVγv + Berh.

These three equations can be solved to give us the three components of the portfolio5,
that isδS, εV and B, in terms of the other parameters in the model. A standard arbitrage
argument may then be used to conclude that the initial value of the derivative contractC at
time kh should be equal to the initial portfolio value5 = δS+ εV + B which is the sum of
these three components. Tedious but trivial calculations then give that

C = e−rh ( puCu + pdCd + pαCα ) (2.7)

with

pu = (erh − α)(dv − γv) + (α − ds)(erh − γv)

(us − ds)(dv − γv) + (uv − dv)(α − ds)

pd = (erh − α)(γv − uv) + (us − α)(erh − γv)

(us − ds)(dv − γv) + (uv − dv)(α − ds)

pα = (us − ds)(dv − erh) + (uv − dv)(erh − ds)

(us − ds)(dv − γv) + (uv − dv)(α − ds)

Appropriate conditions are to be imposed to ensure that all three of these quantities are in
the interval ]0, 1[; these will indeed be shown to be satisfied in the sequel.

Once we know that (2.7) is correct, we can find the proper values ofpu, pd and pα

by a simpler alternative method. Indeed, sinceC(S, V, kh) = S andC(S, V, kh) = V and
C(S, V, kh) = erkh should all satisfy this equation, we must have that

erhS = puSus + pdSds + pαSα (2.8)

erhV = puVuv + pdVdv + pαVγv. (2.9)

1 = pu + pd + pα. (2.10)
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and the riskfree probabilitiespu, pd andpα follow immediately from these three equations.

3 The Partial Differential Equation

We now consider the case where we let the parameterh, which represents the time interval
between nodes of our tree, go to zero. To do so, we will need the following asymptotic
properties of the riskfree probability values.

Lemma 3.1. Suppose that the h-dependent parameters us, uv, ds, dv, γv > 0, 0 < p < 1
satisfy for all h> 0 the equations (2.3)-(2.6), and also assume that

lim
h↓0

p(h)(1 − p(h)) 6= 0 (3.1)

lim
h↓0

γv(h) = 1. (3.2)

Then the solutions pu, pd and pα of the equations (2.8)-(2.10) satisfy

pu (us − 1)2 + pd (ds − 1)2 = σ2
sh + o(h) (3.3)

pu (uv − 1)2 + pd (dv − 1)2 = σ2
vh + o(h) (3.4)

pu (us − 1)(uv − 1) + pd (ds − 1)(dv − 1) = σsσvh + o(h) (3.5)

while (uv − 1)3, (dv − 1)3, (us − 1)3, (ds − 1)3 are all of order o(h) and

pα = λ̃h + o(h), λ̃ = 1
1− α

(
µs − r − σs

σv

(µv − r )

)
. (3.6)

A proof of this lemma can be found in the Appendix at the end of this paper. Remark
that we can interpret the first equation as a condition that we do not destroy branches in the
tree as we refine our grid, while the second one states that the expectation of the square of
the increments of theV asset upon default vanishes when the time grid converges to zero.
Using these conditions, we are now in a position to derive a partial differential equation for
the value of a contingent claim onSandV.

Theorem 3.1. Assume that we select the two free parameters p= p(h) and γv = γv(h)

such that (3.3)-(3.4) are satisfied, and let the other parameters us(h), ds(h), uv(h) and
dv(h) satisfy (2.3)-(2.6). Then the solution of the riskfree probability pricing method on the
tree given by (2.7) will converge to the solution of the following partial differential equation

rC = (r + λ̃(1− α)) S
∂C
∂S

+ rV
∂C
∂V

+ 1
2σ2

sS2∂2C
∂S2 + 1

2σ2
vV2∂2C

∂V2 (3.7)

+ σsσv SV
∂2C

∂S∂V
+ ∂C

∂t
+ λ̃ [ C(Sα, V, t)− C(S, V, t) ] .

when the time grid size h converges to zero, where

λ̃ = 1
1− α

(
µs − r − σs

σv

(µv − r )

)
(3.8)
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under the condition that this partial differential equation admits a unique solution C(S, V, T)

which is twice continuously differentiable in S and V and once differentiable with respect
to t.

Proof. We have, from (2.7), that

erhC(S, V, kh) = pu C(Sus, Vuv, (k + 1)h) + pd C(Sds, Vdv, (k + 1)h)

+ pα C(Sα, Vγv, (k + 1)h).

We perform a Taylor series expansion inh aroundh = 0 on both sides. Since we have
shown in the previous Lemma that terms like(us − 1)3 are in fact of small ordero(h), we
only need to consider a second order expansion for an expansion up to orderh. Such a
Taylor series expansion is indeed possible since we assumed that the solutionC to the PDE
satisfies the appropriate differentiability requirements. We find

(1+ rh)C(S, V, kh)

= pu

[
C(S, V, kh)+ ∂C

∂S(S, V, kh) · S(us − 1) + 1
2

∂2C
∂S2 (S, V, kh) · S2(us − 1)2

]
+

pu

[
∂2C
∂S∂V (S, V, kh) · S(us − 1)V(uv − 1) + ∂C

∂V (S, V, kh) · V(uv − 1)
]

+
pu

[
1
2

∂2C
∂V2 (S, V, kh) · V2(uv − 1)2 + ∂C

∂t (S, V, kh) · h
]

+
pd

[
C(S, V, kh)+ ∂C

∂S(S, V, kh) · S(ds − 1) + 1
2

∂2C
∂S2 (S, V, kh) · S2(ds − 1)2

]
+

pd

[
∂2C
∂S∂V (S, V, kh) · S(ds − 1)V(dv − 1) + ∂C

∂V (S, V, kh) · V(dv − 1)
]

+
pd

[
1
2

∂2C
∂V2 (S, V, kh) · V2(dv − 1)2 + ∂C

∂t (S, V, kh) · h
]

+
pα C(Sα, Vγv, (k + 1)h) + o(h).

Collecting and rearranging terms gives

rh C(S, V, kh) (3.9)

= ∂C
∂S(S, V, kh) · S

[
puus + pdds − (pu + pd)

] +
∂C
∂V (S, V, kh) · V

[
puuv + pddv − (pu + pd)

] +
1
2

∂2C
∂S2 (S, V, kh) · S2 [

pu(us − 1)2 + pd(ds − 1)2 ] +
1
2

∂2C
∂V2 (S, V, kh) · V2 [

pu(uv − 1)2 + pd(dv − 1)2 ] +
∂2C
∂S∂V (S, V, kh) · S· V

[
pu(us − 1)(uv − 1) + pd(ds − 1)(dv − 1)

] +
pα

[−C(S, V, kh)+ C(Sα, V, kh)+ ∂C
∂t (Sα, V, kh) · h + ∂C

∂V (Sα, V, kh) · V(γv − 1)
]

+ 1
2

∂2C
∂V2 (Sα, V, kh) · V2(γv − 1)2

]
+

(1− pα) ∂C
∂t (S, V, kh) · h.

From (2.8) and (2.9) we may immediately conclude that

erh − 1 = pu(us − 1) + pd(ds − 1) + pα(α − 1)

erh − 1 = pu(uv − 1) + pd(dv − 1) + pα(γv − 1)
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so we have that

puus + pdds − (pu + pd) = rh + (1− α)pα + O(h2)

puuv + pddv − (pu + pd) = rh + (1− γv)pα + O(h2).

Substituting these equations, and the results from Lemma 3.1 into (3.9) and dividing byh
then gives the result if we leth tend to zero. �

We can now easily see that if we wish to price a contingent claim which only depends
on the defaultable assetS, and not onV, then the price of such an asset also depends onS
alone. However, from the proof we can see that thehedgefor such a claimdoesinclude the
assetV. But the price ofV never enters our calculations; only themarket price of riskof V,
µv−r

σv
appears in the pricing formula, thus showing that our results hold for a generic choice

of the assetV.

4 Analysis in Continuous Time

Having found the limiting solution for trees with time stepsh converging to zero, we now
turn to the full continuous time problem, which will enable us to derive the partial differen-
tial equation for the option priceC directly. We want to model the defaultable assetSas a
diffusion process with jumps which are governed by a Poisson process. To do so, we start
with a probability space(�, F , P) and a filtration{Ft, t ≥ 0} satisfying all the usual condi-
tions (i.e. it is right-continuous andF0 contains allP-negligible sets). We assume the space
to be rich enough to be able to define on it a Brownian Motion process{(Wt, Ft), 0 ≤ t ≤ T}
and an infinite countable number of stochastic variables{Zk, k ∈ N} which have an expo-
nential distribution with parameterλ. DefineT0 = 0 and for allk ∈ N construct the random
variablesTk+1 = Tk + Zk so

P(Tk+1 − Tk ≤ s) = (
1− e−λs) 1{s≥0}.

Then we define the asset process{St, 0 ≤ t ≤ T} to be of the following form:

St = S0 e(µs− 1
2σ2

s )t+σsWt

∞∑
k=0

αk1{ t∈ [Tk, Tk+1[ }.

Remark that we have not, so far, specified anything about the relation between the random
times between default{Zk, k ∈ N} and the Brownian motion process{(Wt, Ft), 0 ≤ t ≤ T},
and in particular we have not assumed them to be independent.

The processS is defined to be right-continuous with left-hand limits: it belongs to the
class ofcorlol processes in the usual terminology. We define the left hand limit process
{St−, 0 < t ≤ T} associated withSby St− = lim

u↑t
Su, so

St− = S0 e(µs− 1
2σ2

s )t+σsWt 1{ t∈ ]0, T1] } + S0 e(µs− 1
2σ2

s )t+σsWt

∞∑
k=1

αk1{ t∈ ]Tk, Tk+1] },
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and we introduce the corresponding jump process

1St = St − St−.

This jump process is obviously equal to zero at all times except the default timest = Tk for
k ∈ N \ {0}, where one can easily show that

1STk = S0 e(µs− 1
2σ2

s )Tk+σsWTk ( αk − αk−1 ) = (α − 1) STk−.

We will shortly start analyzing portfolios with value

5t = ρt Bt + δt St + εtVt.

with Bt = ert and we will require the hedging processes{ρt, 0 ≤ t ≤ T}, {δt, 0 ≤ t ≤ T}
and{εt, 0 ≤ t ≤ T} to be left-continuous processes:

ρt =
∞∑

k=0

ρk
t 1{ t∈ ]Tk, Tk+1] }

δt =
∞∑

k=0

δk
t 1{ t∈ ]Tk, Tk+1] }

εt =
∞∑

k=0

εk
t 1{ t∈ ]Tk, Tk+1] }.

This means that we do not want the hedging strategies to anticipate the default event, i.e.
the hedging position at a certain timet should be based on all the information aboutSu at
timesu < t but not onSt itself. Remark that the definitions imply thatρt = ρt−, δt = δt−
andεt = εt− so1ρt = 1δt = 1εt = 0 for all t in [0, T].

The left-continuity will now enable us to use the stochastic integration theory for general
processes. The integral

It =
∫ t

0
δu−dSu

is defined to be equal to

It =
∞∑

k=0

I k
t 1{ t∈ [Tk, Tk+1[ },

with

I k
t = I k−1

Tk
+ δk−1

Tk
1STk +

∫ t

Tk

δk
u dSu.

The key element here is that we incorporate the value ofδk−1
Tk

at the jump timeTk, and
not the value ofδk

Tk
, since we should not anticipate on beforehand that a jump is about to

happen. Note thatI will be in the class of corlol processes as well, i.e. it is right-continuous
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and has left-hand limits. Moreover, with these definitions we can now use the following
two key results from the general theory of stochastic processes, proofs of which, and details
concerning their interpretation, can be found for example in the books (Elliott 1982; Rogers
and Williams 1987) and (Shiryayev 1984).

Lemma 4.2. (Partial Integration Formula for Semimartingales)
Using the definitions given above, we have that for all t∈ [0, T]

δt St − δ0S0 =
∫ t

0
Su− dδu +

∫ t

0
δu− dSu + 〈

δc, Sc〉
t +

∑
0≤u≤t

1Su 1δu

where〈δc, Sc〉 is the joint quadratic variation of the continuous parts of the S andδ pro-
cesses.

Lemma 4.3. (Change of Variable Formula for Semimartingales)
For every twice differentiable function F with bounded first and second order derivatives
we have that for all t∈ [0, T]

F(St) − F(S0) =
∫ t

0
F ′(Su−) dSu + 1

2

∫ t

0
F ′′(Xu−) d

〈
Sc, Sc〉

u

+
∑

0<u≤t

( F(Su) − F(Su−) − F ′(Su−)1Su ),

where〈Sc, Sc〉 is the quadratic variation of the continuous part of the S process.

We now define the Poisson processN associated with the jump times{Tk, k ∈ N} as

Nt =
∞∑

k=0

k1{ t∈ [Tk, Tk+1[ }.

This Poisson process is obviously in the class of corlol processes, and its intensity isλ. We
can then easily show that our original processSsolves the stochastic differential equation

St − S0 = µs

∫ t

0
Su− du + σs

∫ t

0
Su− dWu + (α − 1)

∫ t

0
Su− dNu, (4.1)

since application of the Change of Variable Formula forF(x) = ln x gives that

ln St − ln S0 =
∫ t

0

µs Su− du + σsSu− dWu + (α − 1)Su− dNu

Su−
+ 1

2

∫ t

0

−1
S2

u−
σ2

s S2
u− du

+
∑

0<u≤t

( lnαSu− − ln Su− − 1
Su−

· (α − 1)Su− )1{Su 6=Su−}

= (µs − 1
2σ2

s)t + σsWt + (α − 1)Nt + Nt · ( lnα − (α − 1) )
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so

St = S0 e(µs− 1
2σ2

s ) t + σs Wt + (lnα) Nt

= S0 e(µs− 1
2σ2

s )t+σsWt

∞∑
k=0

αk1{ t∈ [Tk, Tk+1[ },

which is exactly the definition of theSprocess we introduced earlier. But substituting (4.1)
in the Change of Variable Formula then gives that for our processSwe have that

F(St) − F(S0)

=
∫ t

0
F ′(Su−) [ µsSu− du + σsSu− dWu + (α − 1)Su− dNu ]

+
∫ t

0

1
2 F ′′(Su−) σ2

s(Su−)2 du

+
∑

0<u≤t

[
( F(αSu−) − F(Su−) ) · 1{Su 6=Su−} − F ′(Su−)(α − 1)Su− · 1{Su 6=Su−}

]

=
∫ t

0
[ F ′(Su−)µsSu− + 1

2 F ′′(Su−) σ2
s(Su−)2 ] du +

∫ t

0
F ′(Su−)σsSu− dWu

+
∫ t

0
[ F(αSu−) − F(Su−) ] dNu. (4.2)

We can use this equation to construct a (dynamic) portfolio5t which will satisfy the
following conditions:

� the value of this portfolio will at all times during the life time of the contract equal
the value of the derivative contractC,

� the portfolio only consists of prescribed amountsδt of the risky assetsS, prescribed
amountsεt of the riskless assetV, and a prescribed amountρt of cash,

� the invested amountsεt, δt andρt are left-continuous, so they do not anticipate the
default event, and they are self-financing, so no money is injected into, or withdrawn
from, the portfolio during the life time of the derivative contract.

The last requirement can be formulated as follows: we require the portfolio

5t = ρt Bt + δt St + εtVt (4.3)

to satisfy

5t − 50 =
∫ t

0
ρu dBu +

∫ t

0
δu dSu +

∫ t

0
εu dVu, (4.4)

at all times 0≤ t ≤ T, which means that the changes in value of the portfolio are only a
result of price movements in the market and not due to our selling or buying of assets. A
self-financing portfolio which satisfies all conditions mentioned above is called a replicating
portfolio, and we equate its value at all times with the value of the derivativeC at that time,
using a standard arbitrage argument. This will then enable us to prove the following.
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Theorem 4.2. Let C be a contingent claim paying G(ST, VT) at the expiration date T, and
let the two assets S and V evolve in continuous time according to (1.1)-(1.2). Assume that
the diffusion factor and default factor have zero crossvariation at all times: d〈W, N〉t = 0
for all t ∈ [0, T]. Then C must satisfy the partial differential equation

rC = (r + λ̃(1− α)) S
∂C
∂S

+ rV
∂C
∂V

+ 1
2σ2

sS2∂2C
∂S2 + 1

2σ2
vV2∂2C

∂V2 (4.5)

+ σsσv SV
∂2C

∂S∂V
+ ∂C

∂t
+ λ̃ [ C(Sα, V, t)− C(S, V, t) ] ,

with boundary condition

C(S, V, T) = G(S, V)

if this PDE has a unique solution on t∈ [0, T] for this boundary condition, which is twice
continuously differentiable in S and V and continuously differentiable in t.

Proof. Let C(S, V, t) be the unique solution for the PDE with the given boundary condi-
tion. Define a self-financing portfolio5 with value5t at time t as in (4.3), with hedging
processes

δt = C(αSt−,Vt,t)−C(St−,Vt,t)
(α−1)St−

εt = ∂C
∂V (St−, Vt, t) +

σs
σv(1−α)Vt

[
C(αSt−, Vt, t) − C(St−, Vt, t) − St−(α − 1) ∂C

∂S(St−, Vt, t)
]
,

ρt = 1
Bt

[ C(St−, Vt, t) − δt St− − εtVt ] .

Remark that all these hedging strategy processes are left-continuous and that our choice
implies that50 = C(S0, V0, 0) as can be easily seen in the equation forρt given above. We
now find that

d5t

= ρt dBt + δt dSt + εt dVt = rρt Bt dt + δt dSt + εt dVt

= rC(st−, Vt, t) dt + δt(dSt − rSt−dt) + εt(dVt − rVtdt)
(4.5)=

(
(r + λ̃(1− α)) ∂C

∂SSt− + r ∂C
∂V Vt + 1

2
∂2C
∂S2 σ2

sS2
t− + 1

2
∂2C
∂V2 σ2

vV2
t

+ ∂2C
∂S∂V σsσvSt−Vt + ∂C

∂t + λ̃ [ C(αSt−, Vt, t) − C(St−, Vt, t) ]
)

dt

+ C(αSt−,Vt,t) − C(St−,Vt ,t)
α−1 (µsdt + σsdWt + (α − 1) dNt − r dt)

+
(

∂C
∂V Vt + σs

σv(1−α)
(C(αSt−, Vt, t) − C(St−, Vt, t) − (α − 1) ∂C

∂SSt−)
)

·
· (µv dt + σv dWt − r dt)
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We collect terms to obtain

d5t

=
(

1
2

∂2C
∂S2 σ2

s S2
t− + 1

2
∂2C
∂V2 σ2

vV2
t + ∂2C

∂S∂V σsσvSt−Vt + ∂C
∂t

)
dt

+ ( C(αSt−, Vt, t) − C(St−, Vt, t) ) ·
·
(

(λ̃ + µs−r−(µv−r )
σs
σv

α−1 )dt + ( σs
α−1 + − σs

σv
σv

α−1 ) dWt + dNt

)

+ ∂C
∂S St−

(
(r + λ̃(1− α) + σs(1−α)(µv−r )

σv(1−α)
)dt − σs(α−1)

σv(1−α)
σv dWt

)
+ ∂C

∂V Vt ( r dt + µv dt + σv dWt − r dt )

=
(

1
2

∂2C
∂S2 σ2

s S2
t− + 1

2
∂2C
∂V2 σ2

vV2
t + ∂2C

∂S∂V σsσvSt−Vt + ∂C
∂t

)
dt

+ ( C(αSt−, Vt, t) − C(St−, Vt, t) ) dNt

+ ∂C
∂S St−

(
(r + (µs − r ) − σs(µs−r )

σv
+ σs(µs−r )

σv
) dt + σsdWt

)
+ ∂C

∂V Vt ( µv dt + σvdWt )

= dC(St−, Vt, t).

But since5T = C(ST−, VT, T) = G(ST−, VT) we have thus shown that the portfolio5 is a
perfect hedge for the contingent claimG, and the value of this claim at time zero is therefore
equal to50 = C(S0, V0, 0). �

5 Solution of the Partial Differential Equation

We may solve the PDE that we have now derived using Fourier Transforms, but once the
form of the solution has been found, it may be derived in a much simpler way.

Let F(S, t) denote the solution of the ordinary Black-Scholes equation with adjusted
interest rater + λ̃(1− α) for a contingent claimG:

0 = 1
2σ2

s S2∂2F
∂S2 + (r + λ̃(1− α)) S

∂F
∂S

+ ∂F
∂t

− (r + λ̃(1− α))F

G(S) = F(S, T), (5.1)

and look for a solution for our PDE of the form

C(S, t) =
∞∑

n=0

an(t) F(αnS, t). (5.2)

We immediately find the boundary conditions

a0(T) = 1, an(T) = 0, n ∈ N \ {0}. (5.3)

Taking our PDE (3.7)

0 = 1
2σ2

s S2∂2C
∂S2 + (r + λ̃(1− α)) S

∂C
∂S

+ ∂C
∂t

− (r + λ̃(1− α))C + λ̃(1− α)C + λ̃ ( C(Sα, t)− C(S, t) )
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and substituting (5.2) gives

0 =
∞∑

n=0

an(t)

[
1
2σ2

s S2 ∂2

∂S2α2n F(αnS, t) + (r + λ̃(1− α))αn S
∂

∂S
F(αnS, t)

+ ∂

∂t
F(αnS, t) − (r + λ̃(1− α))F(αnS, t)

]

+
∞∑

n=0

[
F(αnS, t) d

dtan(t) + λ̃(1− α)an(t)F(αnS, t)

+λ̃an(t)
(

F(αn+1S, t) − F(αnS, t)
)]

and using (5.1) for the valueS→ Sαn then gives

0 = 0 +
∞∑

n=0

[
d
dtan(t) + λ̃an−1(t) − αλ̃an(t)

]
F(αnS, t)

if we takea−1(t) = 0 for all t, and therefore

d
dtan(t) = λ̃ (α an(t) − an−1(t)), n ∈ N \ {0},
d
dta0(t) = λ̃α a0(t).

Solving for the functionsan satisfying these equations and the boundary conditions (5.3)
gives

an(t) = [λ̃(T − t)]n

n!
e−λ̃α(T−t),

so if we define

r̃ = r − 1
2σ2

s + λ̃(1− α)

a solution is given by

C(S, t)

=
∞∑

n=0

[λ̃(T − t)]n

n!
e−λ̃α(T−t) ·

E
[

e−(r+λ̃(1−α))(T−t)G(ST) | ln ST ∼ N(ln Sαn + r̃(T − t), σs

√
T − t)

]

=
∞∑

n=0

[λ̃(T − t)]ne−λ̃(T−t)

n!
· (5.4)

E
[

e−r (T−t)G(ST) | ln ST ∼ N(ln Sαn + r̃(T − t), σs

√
T − t)

]
.

Let P(λ̃) denote a Poisson process with parameterλ̃. We have then proven
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Theorem 5.3. The solution to the partial differential equation (3.7) can be written in the
form of the following conditional expectation:

C(S, t) = EQ
[
e−r (T−t) G(ST · αNT−t )

]
for all t ∈ [0, T], whereQ is a measure under which the stochastic variables N and ST are
assumed to be independent with marginal distributions

ln ST ∼ N(ln S+ r̃(T − t), σs
√

T − t)
N ∼ P(λ̃)

and where

r̃ = r − 1
2σ2

s + λ̃(1− α)

Note that this means that calculation of the price of the derivative contract may be inter-
preted as calculating an expectation by conditioning onn jumps having occurred, where the
jump intensity has changed in the riskfree world to a new valueλ̃ , instead of the real world
jump intensityλ.

If α = 1 or λ̃ = 0 we find back the usual Black-Scholes equation, as was to be expected.
In particular, note that the intensity of the default processNt does not enter the partial
differential equation. If we hedge perfectly, it should not make any difference howoftenwe
have to hedge, since we have to be ready for the possibility of a jump occurring at all times
during the lifetime of the contract.

Equation (5.4) shows how we may easily compute the value of a call option on a de-
faultable assetS. Indeed, it is simply a linear combination of terms indexed byn, with
weight

[λ̃(T − t)]ne−λ̃(T−t)

n!

while the main term

E
[

e−r (T−t)G(ST) | ln ST ∼ N(ln Sαn + r̃(T − t), σs

√
T − t)

]
.

can easily be shown to be the value of a vanilla Black-Scholes call option with strike
price K, time to maturityT − t, volatility σ and riskfree interest rater , if we substitute
Sαne−λ̃(1−α)(T−t) for the stock price into the Black-Scholes formula, instead ofS. The term
e−λ̃(1−α)(T−t) may be interpreted as a negative dividend on the risky assetS.

If the derivative assetC only depends on the defaultable assetS, while the other asset
V is priced in a Black-Scholes complete market with market price of risk equal toϕ, the
equation simplifies to

rC = ( µs − σsϕ ) S
∂C
∂S

+ 1
2σ2

s S2∂2C
∂S2 + ∂C

∂t
− ( µs − σsϕ − r )

C(Sα,V,t)−C(S,V,t)
α−1 .
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Note that if we define an analogousmarket price of default riskϕdef by

µs − r
σs

= ϕ + ϕdef

then we may write

rC = r S
∂C
∂S

+ 1
2σ2

s S2∂2C
∂S2 + ∂C

∂t
− σsϕdef

C(Sα,V,t)−C(S,V,t)− ∂C
∂S(Sα−S)

α−1 .

which shows clearly that we arrive yet again at the ordinary Black-Scholes formula if there
is no default risk (i.e. ifϕdef = 0). As we noted before, the price ofV itself never enters our
pricing formula, and any non-defaultable assetV with this market price of risk can therefore
be used to hedge our position.

We can give a nice and simple interpretation of the new riskfree default intensity in terms
of an insurance contractfor default risk. Suppose we construct a portfolio consisting of
σsSt− assetsV and−σvVt (i.e. shorted) assetsS. The value of this portfolio will then be

5t = σsSt−Vt − σvVtSt.

If we useλ̃ to denote the intensity which makesÑt = Nt − λ̃t a martingale under the risk-
neutral measureQ , so

EQ [Nt − Ns | Ns] = λ̃(t − s)

then we have, under the assumption that the portfolio is self-financing,

d5t = σsSt−(µvdt + σvdWt )Vt

− σvVt( (µs + λ̃(α − 1))dt + σsdWt + (α − 1)(dNt − λ̃dt) )St−
= (σsµv − σvµs + σvλ̃(1− α))St−Vt dt + σv(1− α)λ̃dÑt

but sinceÑt is a martingale under the risk-neutral measure, the first term must equalr5t− dt
and since

r5t− = r(σs − σv)St−Vt

we thus have

σsµv − σvµs + σvλ̃(1− α) = r(σs − σv)

or

λ̃ = 1
1− α

(
µs − r − σs

σv

(µv − r )

)

This result helps to give an appropriate interpretation of the new market parameterλ̃ that
we have introduced. The decomposition

dNt = λ̃ dt + dÑt (5.5)
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under the risk-neutral measure can be interpreted as the decomposition of an insurance con-
tract Nt (which pays $ 1 at timeT for every default that has happened during the time
interval [0, T], i.e. the lifetime of the contract) into a martingale partÑt and a risk premium
λ̃ per time unit. The derivation above therefore shows that our original assumption, that
all risk due to the diffusion termdWt in the asset dynamics can be diversified away using
the assetV, is in fact equivalent with the existence of an insurance contract with this pre-
mium. The assumption that an assetV exists which shares the diffiusion term withS but
cannot itself default is therefore no longer necessary if one can find someone who is willing
to ’insure jumps’. This statement should actually be of help in risk management problems
which involve default or credit derivatives. The statement that risk which cannot be diver-
sified away in defaultable assets should be interpreted as insurance seems logical, and the
derivation above may constitute a first step to the explicit quantification of such a statement.

6 Exclusion of Multiple Default Events.

For some markets it is more realistic to model the default process in such a way that either
zero or one default can occur, but not more than one. It is relatively easy to describe this
process in stochastic calculus: one may simply stop the Poisson processNt at its first jump
time τ to give a new process̃Nt = Nmin(t,τ). It can be shown (Davis 1993) that the compen-
sator forÑt is equal toλ(1− Ñt−) at all timest ≥ 0. by the optional stopping theorem. By
a slight abuse of notation, we will again use the notationNt for the stopped process, instead
of Ñt. We thus have for this case

dSt = µsSt− dt + σsSt− dWt + (α − 1)St−(1− Nt−) dNt (6.1)

Having maximally one jump means that the information structure of the problem changes.
When we considered a Poisson processNt, the value of the derivative contractC(S, V, t)
did not depend on the current valueNt, the number of defaults so far. This is because the
conditional distribution of the future of a Poisson process does not depend on the number
of jumps which have occurred in the past. This is no longer true for the stopped Poisson
process. Once a jump has occurred no jump can occur in the future, so the conditional dis-
tribution of the future changes at the time of the jump (to a trivial one, in fact). This means
that the contingent claim will now depend on the jump having or not having occurred:
C = C(St, Vt, Nt, t), and we need to consider the casesC(S, V, 0, t) andC(S, V, 1, t) sep-
arately. We will from now on only consider contingent claims which do not depend onV,
soC(S, V, N, t) = C(S, N, t). The case where the claim does depend onV can be treated
using an obvious extension of the analysis presented here.

It is not hard to see that if the contingent claim at timeT is of the formG(S), i.e. it
does not depend onNT, thenC(S, 1, t) will evolve according to the ordinary Black-Scholes
equation:

C(S, 1, t) = E [ e−r (T−t)G(ST) | ln ST ∼ N(ln S+ (r − 1
2σ2)(T − t), σ

√
T − t) ]

since no jumps are to be expected after the jump has occurred, and we will simply be able to
hedge our position using the standard hedge, as prescribed by Black and Scholes. The price
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of the contract from then on must then be equal to the price of constructing these hedges,
which is the solution to the ordinary Black-Scholes equation.

But from a simple discrete tree argument we can then find the partial differential equation
for C(S, 0, t). In fact, we should now combinetwo trees, one for the case where a default
has already occurred, and one for the case where a default has not (yet) occurred.

C(St, 0, t) No default has yet occurred

C(St, 1, t) Default has occurred

As we remarked above, on the lower tree the contract simply evolves according to the
Black Scholes equation, while on the upper tree we have to use the riskneutral proba-
bilities pu, pd and pα which we introduced before. We can then go through exactly the
same calculations. SinceC(S, 1, t) follows the Black-Scholes equation we use the notation
C(S, t) = C(S, 0, t). Calculations eventually lead to the partial differential equation

rC = (r + λ̃(1− α)) S
∂C
∂S

+ 1
2σ2

sS2∂2C
∂S2 + ∂C

∂t
+ λ̃ [ C(Sα, 1, t) − C(S, t) ] ,

which may be solved explicitly

Theorem 6.4. Let C(St, Nt, t) be a contingent claim paying GNT (ST) at the expiration
date T, and let the asset S evolve in continuous time according to (6.1). Assume that the
diffusion factor and default factor have zero crossvariation at all times: d〈W, N〉t = 0 for
all t ∈ [0, T]. Then C must satisfy

C(S, 0, t)

= e−r (T−t)EQ
[

G0(STeλ̃(1−α)(T−t))1{τ≥T} + G1(αSTeλ̃(1−α)(τ−t))1{τ≤T}
]

C(S, 1, t)

= e−r (T−t)EQ [ G1 (ST) ]
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whereQ is a measure such that ST andτ are independent with

ln ST ∼ N(ln S+ (r − 1
2σ2

s)(T − t), σ
√

T − t)

while τ has an exponential distribution with parameterλ̃, as in (3.8) conditioned on the
event thatτ ≥ t.

Proof. We solve the PDE, with boundary conditions

C(S, 0, T) = G0(S)

C(S, 1, T) = G1(S)

by Fourier analysis. First we use the coordinate transformationS= ex with

C(S, 0, t) = C(ex, 0, t) = φ0(x, t),

C(S, 1, t) = C(ex, 1, t) = φ1(x, t),

which gives that

∂φ0

∂x
= S

∂C
∂S

,

∂2φ0

∂x2 = S2 ∂C
∂S

+ S
∂C
∂S

,

so the transformed PDE becomes

rφ0 = (r + λ̃(1− α) − 1
2σ2

s)
∂φ0

∂x
+ 1

2σ2
s
∂2φ0

∂x2 + ∂φ0

∂t
+ λ̃ [ φ1(x + ln α, t) − φ0(x, t) ] .

Denoting the Fourier transforms1 as

8k(ω, t) = 1√
2π

∫ ∞

−∞
e−iωxφk(x, t) dx

(for k = 0, 1) we find that


∂80
∂t = 80(ω, t) [ r + λ̃ − iω(r + λ̃(1− α) − 1

2σ2
s) + 1

2σ2
sω

2 ]
− λ̃81(ω, t)eiω lnα

80(ω, T) = 8G0(ω)

(6.2)

1We will not go into details concerning the existence and uniqueness of the Fourier transforms here. The
Fourier Transform ofG(ex) may not be well defined but one can show that such problems can be circumvented
when we incorporate the boundary conditionsG(ex) into the PDE itself by solving the PDE’s forC(ex, i, t) −
G(ex) instead of the PDE’s forC(ex, i, t). It then turns out that the solutions do exist for vanilla products such
as ordinary calls or puts. We do not introduce this (rather cumbersome) method here but proceed formally, since
we may always check that the solution we find does indeed satisfy the PDE.
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where8Gk(ω) denotes the Fourier Transform ofGk(ex). We can solve this to find

80(ω, t) (6.3)

= 8G0(ω)e[ R(ω)+λ̃(1−iω(1−α)) ](t−T)

− λ̃eiω lnα

∫ t

T
e[ λ̃(1−iω(1−α))+R(ω) ](t−s)81(ω, s)ds

with

R(ω) = r − iω(r − 1
2σ2

s) + 1
2σ2

sω
2.

For λ̃ = 0 we must have that the resulting expression is the Fourier transform of the solution
of the Black Scholes equation. But81(ω, s) is the Fourier transform of the solution of the
Black Scholes equation, which must therefore equal

81(ω, s) = 8G1(ω)eR(ω)·(s−T) (6.4)

= 1√
2π

∫ ∞

−∞
eiωxE

[
e−r (T−s)G1(ST) | ln ST ∼ N(x+ (r − 1

2σ2
s)(T − s), σs

√
T − s)

]
dx

We can then substitute this result in (6.3) to find

80(ω, t)

= eλ̃(t−T)eiωλ̃(1−α)(T−t) · [8G0(ω)eR(ω)(t−T)
]

+ λ̃eiω lnα

∫ T

t
eλ̃(1−iω(1−α))(t−s) [eR(ω)·(t−s)eR(ω)·(s−T)8G1(ω)

]
ds

and substituting (6.4) in the terms in brackets gives

80(ω, t)

= e−λ̃(T−t) 1√
2π

∫ ∞

−∞
eiω(x+λ̃(1−α)(T−t)) ·

E
[

e−r (T−t)G0(ST) | ln ST ∼ N(x+ (r − 1
2σ2

s)(T − t), σs

√
T − t)

]
dx

+ 1√
2π

∫ T

t
λ̃e−λ̃(s−t)

∫ ∞

−∞
eiω(x+λ̃(1−α)(s−t)+lnα) ·

E
[

e−r (T−t)G1(ST) | ln ST ∼ N(x+ (r − 1
2σ2

s)(T − t), σs

√
T − t)

]
dx

and applying the inverse Fourier transform then gives the solution

φ0(x, t)

=
(∫ ∞

T
λ̃e−λ̃(s−t) ds

)
E [e−r (T−t)G0(ST) | ln ST ∼ N(x+ a(T), σ

√
T − t)]

+
∫ T

t
λ̃e−λ̃(s−t)E [e−r (T−t)G1(ST) | ln ST ∼ N(x+ lnα + a(s), σ

√
T − t)] ds
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with

a(s) = (r − 1
2σ2

s)(T − t) + λ̃(1− α)(s− t)

which proves the result. �

Notice that in this new formula we can no longer calculate the value of a vanilla call op-
tion as a countable infinite sum of solutions of the usual Black-Scholes formula, since the
stochastic time of defaultτ enters our calculations explicitly. This is due to the changed na-
ture of the problem: the distribution of the future of the default process does not depend on
time when we allow an infinite number of defaults, but if only one default can maximally oc-
cur, this is no longer the case. In our earlier result we could substituteS→ Sαneλ̃(1−α)(T−t)

in the ordinary Black-Scholes call formula, but we see that in the present case we must
substituteS→ Sα0eλ̃(1−α)(T−t) for the first term andS→ Sα1eλ̃(1−α)(τ−t) for the second
term. Taking the expectation of the second term then involves an integration over the whole
(riskfree) conditional distribution ofτ, thus making the pricing formula more complex.

7 Conclusions

In this paper we have presented a hedging strategy for contingent claims on defaultable
assets, under the important assumption that we know the size of the (relative) loss in value
upon default, and the assumption that market-wide risk in the asset can be hedged away
using other assets in the market. The usefulness of the model therefore critically depends on
whether these two assumptions are a reasonable approximation for a particular case that one
wants to consider. However, more important is the general conclusion that if one manages
to hedge away (part of) the market risk in a defaultable security, hedging the default risk
should in principle be possible if the underlying asset can be shorted. We have shown that
the resulting equations may be interpreted as the introduction of aninsurance contractNt

against default risk, which pays one dollar at the end of the contract for every default that has
occurred. The parameterλ̃, which was shown in (5.5) to determine the risk premium on such
an insurance contract, is a market parameter which is not directly observable but it could
be estimated using statistical estimation techniques. Note that we do not need to estimate
λ̃ directly since we have shown thatλ̃ follows from the drift and volatility parameters ofS
andanyassetV which cannot default.

This is the important difference with earlier models such as (Merton 1976) in which it
is shown that an option pricing formula based on a hedge with just the two assetsSand B
cannot be constructed, but that one may still find an option pricing formula if one assumes
that the defaults represent ’non-systematic’ risk which will be uncorrelated with the market,
having aβ of zero. The option formula which is derived there is very similar to our result
when the number of defaults is not limited to one, but in that model the parameterλ which
is used represents theoriginal intensity of the default process.

The difference with our model is that we find a newriskneutralintensity λ̃, due to our
consideration for the rest of the market, modelled by the assetV. Indeed, in our model
the original intensity of the default process does not play a role in the pricing or hedging
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formulas. And if our position is properly hedgedall the timethe average number of default
that may happen should indeed not enter our calculations. The fact that the intensity of the
jump process should be changed to a new riskneutral value in the pricing formula has been
remarked upon earlier in (Aase 1988). In that paper a more general setup is used and it
is shown that claims can be replicated, but the equivalent martingale measure (and hence
prices) are not unique. Also the new intensityλ̃ under the martingale measure is not linked
to other default-free assetsV in the market. The same is true for the paper (Lando 1995) in
which a special case of our setup (withα = 0 and no restriction on the number of defaults
that may happen) has been solved.

Note that the only characteristic ofV which enters our equations is its market price of
risk (which should be the same forall default-free assets in our model) and thepriceof V at
any given moment is only used to calculate the hedge for the option; it does not play a role
in the option price when the payoff at maturity does not involveV. This suggests that our
framework may also be applicable in more complicated models for defaultable assets, and
these are now the topic for ongoing research.

Appendix

Proof of Lemma 3.1.Subtracting the square of equation (2.3) from (2.4) gives

p(1− p) ( ln us − ln ds )2 = σ2
sh,

and so we have (since we assumed thatus > ds)

ln us − ln ds = σs√
p(1− p)

·
√

h. (7.1)

If we substitute this back into (2.3) we find that

ln ds = (µs)h− p(ln us − ln ds) = −σs

√
p

(1−p)
·
√

h + (µs)h (7.2)

and using (7.1) this means that

ln us = σs

√
1−p

p

√
h + (µs)h. (7.3)

Similar calculations for (2.5) and (2.6) show that

ln uv =
√

1−p
p ·

√
σ2

v − 2λ lnγ2
v ·

√
h + (µv − λ lnγv) · h + O(h

√
h)

ln dv = −
√

p
1−p ·

√
σ2

v − 2λ lnγ2
v ·

√
h + (µv − λ lnγv) · h + O(h

√
h)

We conclude that under the conditions stated in (3.1)-(3.2), lnus, ln ds, ln uv, ln dv are all
O(

√
h).
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To simplify future notation, define

p̄ =
√

1− p
p

+
√

p
1− p

= 1√
p(1− p)

.

Using the asymptotic expansions inh of the parameters as derived previously, we find that

us = eln(us) = 1 + ln(us) + o(h)

so (us − 1)3 = O(h
√

h) and analogous expressions can be derived fords, uv anddv. The
equations (3.3)-(3.4) of the Lemma now follow immediately from (2.4)-(2.6), while

uv − dv = (uv − 1) − (dv − 1) = ln(uv) − ln(dv) + o(
√

h)

= p̄
√

σ2
v − λ lnγ2

v

√
h + o(

√
h) (7.4)

us − ds = (us − 1) − (ds − 1) = ln(us) − ln(ds) + o(
√

h) (7.5)

= p̄σs

√
h+ o(

√
h) (7.6)

ds − erh = (ds − 1) − (erh − 1)

= −σs

√
p

1−p

√
h+ (µs − r )h + o(h) (7.7)

dv − erh = (dv − 1) − (erh − 1)

= −
√

σ2
v − λ lnγ2

v

√
p

1−p ·
√

h+ (µv − r − λ lnγv)h+ o(h). (7.8)

Since

pα = (us − ds)(dv − erh) + (uv − dv)(erh − ds)

(us − ds)(dv − γv) + (uv − dv)(α − ds)

we calculate for the numerator

(us − ds)(dv − erh)

= ( p̄σs

√
h + o(

√
h))(−

√
σ2

v − λ ln(γv)2
√

p
1−p

√
h+ (µv − r − λ ln(γv))h+ o(h))

(uv − dv)(e
rh − ds)

= ( p̄σv

√
h+ o(

√
h))(σs

√
p

1−p

√
h − (µs − r )h+ o(h))

(us − ds)(dv − erh) + (uv − dv)(e
rh − ds)

= ((µv − r )σs − (µs − r )σv)h
√

h + o(h
√

h)

and for the denominator

(us − ds)(dv − γv)

= ( p̄σs

√
h+ o(

√
h))(1− γv −

√
σ2

v − λ lnγ2
v

√
p

1−p ·
√

h + (µv − r − λ lnγv)h+ o(h))

(uv − dv)(α − ds)

= ( p̄
√

σ2
v − λ lnγ2

v

√
h + o(

√
h))(α − 1+ σs

√
p

1−p

√
h − (µs − r )h+ o(h))

(us − ds)(dv − γv) + (uv − dv)(α − ds)

= (σs(1− γv) − σv(1− α))
√

h + o(
√

h)
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and since limh↓0 γv = 1 we have that

pα = (µv − r )σs − (µs − r )σv

σv(α − 1)
h + o(h)

which proves (3.6). To prove (3.5) we note that

pu(us − 1)(uv − 1) + pd(ds − 1)(dv − 1)

= pu

(
σs

√
1−p

p

√
h

)(
σv

√
1−p

p

√
h

)

+ pd

(
−σs

√
p

1−p

√
h
)(

−σv

√
p

1−p

√
h
)

= σsσvh
(

1−p
p pu + p

1−p pd

)
.

Using an argument which is similar to the one given above one may show that

pu = p + o(
√

h)

pd = 1− p + o(
√

h)

and (3.5) follows. �
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