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Résumé

Nous étudions dans cette thése des questions liées a I’évaluation et a la couverture
des dérivés de crédit sur panier tels que les Basket Default Swap et les CDO. En
particulier, nous nous intéressons, d’une part, a la modélisation de la corrélation de
défaut, et d’autre part, & I'incomplétude de marché introduite par le risque de cor-
rélation. Cette theése contribue également a la littérature sur les méthodes numériques
semi-analytiques d’évaluation des produits sur panier.

Dans la premiére partie, on étudie 'approche des diffusions & sauts condition-
nels, ainsi que I'impact du grossissement de filtrations sur la dynamique des processus
d’intensité. On établit la formule de I’espérance conditionnelle par rapport a la filtra-
tion élargie. Ce résultat est ensuite utilisé pour montrer I’équivalence entre I’approche
fonction copule et I'approche diffusion a sauts conditionnels. La deuxiéme partie est
consacrée a la copule de Marshall-Olkin. On effectue une étude détaillée de ces pro-
priétés, ainsi que de la paramétrisation de cette structure de corrélation. Dans la
troisiéme partie, on considére le probléme de couverture des produits sur panier. Pour
résoudre le probléme d’incomplétude di au risque de corrélation, on utilise un critére
de minimisation du risque quadratique et des stratégies auto financées en moyenne. On
développe des stratégies de couverture du risque de spread de crédit, ainsi que le risque
de défaut. Dans la quatriéme partie, on développe des méthodes semi-analytiques afin
d’évaluer des dérivés de crédit sur panier dans un modéle de Marshall-Olkin. Les méth-
odes présentées couvrent un champ tres large de mathématiques appliquées telles que
les transformées de Fourier, les changements de probabilité, les schémas de discréti-
sation stables, l'intégration de Sobol multidimensionnelle, et les algorithmes récursifs
de calcul des produits de convolution. Enfin, dans la cinquiéme partie, on analyse le
risque de corrélation de défaut qu’on trouve dans une nouvelle génération de produits
connus sous le nom de CDO au carré.

Mots-Clés. Corrélation de défaut, fonctions copules, swap de défaut sur panier,
CDO, grossissement de filtration, sauts contingents, copule de Marshall-Olkin, modéles
de chocs Poissoniens, distribution de défaut, méthode de réplication, inversion de
transformée de Fourier, récurrence de Panjer, marchés incomplets, minimisation du
risque local, risque de défaut, CDO au carré.



Abstract

This thesis investigates the issues related to the pricing and hedging of portfolio credit
derivatives such as Basket Default Swaps and Collateralized Debt Obligations. In
particular, it addresses the issue of default correlation modelling, and the market
incompleteness introduced by the default correlation risk. It also provides a contribu-
tion to the computational finance literature on pricing basket credit derivatives with
semi-analytical methods.

The first chapter presents the conditional jump diffusion framework and examines
the impact of filtration enlargements on the dynamics of the intensity process. A for-
mula of the conditional expectation with respect to the enlarged filtration is derived.
This is then used to show the equivalence between the copula approach and the CJD
framework. In the second chapter, we introduce the Marshall-Olkin copula. We give a
detailed analysis of its properties and we propose a parameterization of this rich cor-
relation structure. The third chapter addresses the problem of hedging basket default
swaps with the underlying single name instruments. To handle the market incomplete-
ness due to the default correlation risk, we use a risk-minimization criterion and we
allow for mean-self financing strategies. We derive strategies to hedge the credit spread
risk and the default risk. The fourth chapter derives semi-analytical methods for the
valuation of basket credit derivatives in the Marshall-Olkin framework. The methods
presented span a large spectrum of applied mathematics: Fourier transforms, changes
of probability measure, numerical stable schemes, high-dimensional Sobol integration
and recursive convolution algorithms. Finally, in the fifth chapter, we analyze the
default correlation risk in a new generation of products known as CDO-Squareds.

Key Words. Default correlation, copula functions, basket default swaps, CDO, fil-
tration enlargements, default contingent jumps, Marshall-Olkin copula, Poisson shock
models, aggregate default distributions, replication method, Fourier transform inver-
sion, Panjer recursion, incomplete markets, local risk minimization, default risk, CDO-
Squared.
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Introduction et Structure de la
Theése

La présente thése dont I'objet est I’étude des problémes de corrélation et d’incomplétude
dans les marchés de crédit se décompose en cing parties distinctes définies comme suit:

e Chapitre 1 : The Conditional Jump Diffusion Framework

e Chapitre 2 : Correlation with a Difference
e Chapitre 3 : Quadratic Hedging

e Chapitre 4 : Basket Asymptotics

e Chapitre 5 : Correlation of Correlation

La premiére partie de ce travail est consacrée a I’étude des diffusions a sauts condi-
tionnels. La premiére question, déja abordée dans quelques travaux récents, est liée au
couplement entre I'instant de défaut et 'intensité de défaut. La présence d’'un terme
de saut est a lorigine de difficultés théoriques et numériques non triviales. En effet,
le calcul des probabilités de défaut n’est plus possible avec les formules classiques de
Lando (1998). Une construction précise du modéle est nécessaire afin de répondre a
ce type de question. Une deuxiéme question, tout aussi fondamentale, est le lien entre
les dynamiques de sauts et les fonctions copules. La notion de fonction copule, intro-
duite dans la littérature de crédit afin de modéliser la dépendance entre les instants
de défaut, permet également de calculer 'intensité par rapport a la filtration élargie.
Ce qui aboutit & une expression explicite du terme de saut. Nous commencons ici
par répondre a la premiére question en adaptant une méthode de Kusuoka (1999) qui
consiste & faire un changement de probabilité judicieux afin d’enlever la dépendance
circulaire entre défaut et intensité. Puis, pour le deuxiéme probléme, nous proposons
une solution basée sur un résultat qui généralise la formule de Dellacherie (1970) au
cas multidimensionnel.

Dans la deuxiéme partie, nous abordons des questions relatives & la modélisation
de la corrélation de défaut & I’aide d’une copule dite de « Marshall-Olkin ». Une des
motivations provient du marché des CDO et du phénoméne de « skew de corrélation
». On se place dans un cadre statique et on s’intéresse aux distributions de défaut d’un
portefeuille d’émetteurs. Le probléme posé est celui de la calibration des parameétres

vii



0. Introduction et Structure de la Thése viii

de la copule pour reproduire les distributions implicites de marché. Nous montrons
que la copule MO est une bonne alternative a la copule Gaussienne standard. Ceci est
fait en trois étapes : (1) on introduit le modéle de MO comme ’extension naturelle
d’un processus de Poisson unidimensionnel, (2) on traite des problémes de calibration,
(3) on compare MO avec la copule Gaussienne. Le modele de MO a fait 'objet d’une
étude détaillée dans la littérature sur la théorie de la fiabilité dans le cadre de la
modélisation de la ruine de systémes & composantes multiples.

La troisiéme partie est consacrée au probléme de couverture des produits dérivés
de crédit de type « basket », tels que les first-to-default swaps et les CDO. Du fait
de l'incomplétude de marché qui est due au risque de corrélation, il est impossible
de répliquer parfaitement un profile « basket » avec des swaps de défaut. Ici, nous
utilisons un critére de minimisation du risque quadratique afin de définir une stratégie
de couverture.

Enfin nous consacrons la quatriéme et cinquiéme partie a la dérivation, puis a la
mise en ceuvre numérique d’un modeéle de MO. Notre but est de proposer une alterna-
tive & la méthode Monte-Carlo et d’implémenter des méthodes basées sur des solutions
semi-analytiques. C’est aussi 'occasion d’apporter une contribution au probléme de
réplication statique des dérivés de crédit sur paniers. En nous inspirant de diverses
techniques numériques, nous établissons ici des méthodes originales basées sur des
développements asymptotiques qui réduisent la dimension du probléme. Des tests
numériques de nos approximations indiquent une bonne adéquation avec la solution
exacte. Aprés avoir présenté les principaux résultats de cette nouvelle méthodologie,
nous montrons qu’il est possible d’étendre notre approche a une nouvelle génération
de produits structurés : les « CDO au carré ».

Donnons maintenant une description détaillée de chacun des chapitres qui com-
posent cette theése.

0.1 Chapitre 1 : The Conditional Jump Diffusion Frame-
work

Nous considérons un marché financier construit sur un espace de probabilité (€2, G, P).
Soient (X¢),~, un processus d’It6 d-dimensionnel représentant les variables d’état
économiques et {F;} est la filtration complétée engendrée par (X;),o. Les instants de
défaut sont modélisés par des temps aléatoires (71, ..., 7,) définis sur cet espace. Pour
1 =1,...,n, nous posons A

Di £ 1<y,

et nous notons {H}} la filtration engendrée par Dj.
Nous introduisons la filtration {G;} définie par

G 2 FyVHIV ...V HE,
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ainsi que les filtrations {G}} et {G; Z} :
2 FVHEVLLOVHIRVHITL Y v R

Supposons, en outre, que I’hypothése (H) est vérifiée, ce qui implique la conservation
de la propriété de martingales quand on passe de la filtration {F;} a la filtration {G,;}.

Nous utiliserons deux types d’intensités : la {F;}-intensité et la {G;}-intensité :

1. Nous appelons {F;}-intensité de 7; le processus positif {F;}-adapté h' tel que
D} — fJA” hids est une {gi}—martingale.

2. Et nous appelons {G;}-intensité de 7;, le processus positif {g; i}—adapté A tel
que D — fg/\” Aids est une {G;}-martingale.

Rappelons que sur la filtration {Q,f}, la probabilité conditionnelle de survie est
donnée par

T
P (TZ' >T }g,:f) = 1{Ti>t}E [exp <—/ h;d5> |~7:t:| .
t

Dans le cas général, le calcul de ’espérance conditionnelle n’est pas trivial. Pour
résoudre cette difficulté, nous utiliserons la méthode de changement de probabilité qui
a été développée par Kusuoka (1999).

Dans un premier temps, nous considérons le calcul de I'espérance conditionnelle
dans un modele dans lequel on spécifie la dynamique de l'intensité A’ et en particulier
le couplement avec les instants de défaut. FEnsuite, nous effectuons ce méme calcul
dans le cadre d’un modeéle de fonction copule.

Modéles de défauts « circulaires ». Le systéme de SDEs qui nous intéressera
dans la premiere partie de ce chapitre a été introduit par Kusuoka (1999). Dans
sa version bidimensionnelle initiale, il décrit les caractéristiques du défaut de deux
obligations dont les intensités sont liées aux instants méme de défaut :

/\tl = )\(1) —+ Al21{7’2§t}7
)\? - )\% + A211{T1§t}7

ot A} et A2 sont les intensités de chaque émetteur ; A2 et A%! désignent les amplitudes
de saut.

Ici nous nous intéresserons a une version générale qui peut inclure plusieurs oblig-
ations :

n
X=X+ > A9D].
j=1
J#
Signalons que Jarrow et Yu (2001) ont étudié un systéme similaire ou ils supposent

que la matrice de couplement est triangulaire, et ce afin de résoudre le probléme de la
dépendance circulaire.
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Précisons également qu’une construction rigoureuse d’un tel modéle n’est pas triv-

iale. Citons parmi les auteurs qui ont abordé cette question : Frey et Backhaus (2004),
u (2004), Becherer et Schweizer (2005).

Nous privilégierons ici la construction de Kusuoka (1999). L’idée de base est la
suivante : On se place dans une espace de probabilité (2,G’,{G;},P’) ou on con-
sidére un ensemble d’instants de défaut (71,...,7,) qui sont indépendants et dont les
(P',{G})-intensités sont égales & 1. Puis on définit une mesure de probabilité P :

dP,—s(Z/ (A\i —1) (dDi - (1 —D,ﬁ)dt))

En utilisant le théoreme de Girsanov et en définissant (€2, G, {G:}, P) comme la
P-complétude de (2,G',{G;}, P’), on peut montrer que ce changement de mesure est
tel que ! est la (P, {G})-intensité of 7.

Nous utiliserons cette technique pour dériver la fonction de densité des instants de
défaut que nous établissons dans la proposition suivante.

T*

Proposition (Chapitre 1, page 8)
Soit (t1,...,tn) € R et supposons que

tr(1) Str2) < oo S la(n),

ou 7 (.): {1,...,n} — {1,...,n} est une permutation croissante du n-uplet (ti,...,t,).
Alors, la densité conjointe des instants de défaut s’écrit

7r(z ZATI‘ ) ( ] () — tw(j—l)) ,

£t ot ﬁ D43 AT | e | Z

i=1 j=1 J=1

avec la convention tr) = 0.

Une autre preuve de la proposition s’inspire de la construction de Yu (2004) qui
est basée sur les travaux de Norros (1986) et Shaked et Shanthikumar (1987). Partant
de ’hypothése que les défauts simultanés sont exclus, on peut définir la suite ordonnée
des instants de défaut (Tp, T4, ....,Tn) : To = 0 < Th < ... < T,,, ainsi que la suite
(Zo, Z1, ..., Zy,) identifiant les obligations qui ont fait défaut :

TO = 07Z0:O7
T. = min{n:lgign, T¢>Tk,1};
Zr = isidy =7y

La suite double (T}, Z) k>0 définit un processus ponctuel marqué

w(w,dt x dz) (Q G) — ((0,00) x E,(0,00) ®E),

/ /H w, 8, 2) pu(w,dt x dz) ZH ) > Zi (W) LTy, ()<t}
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dont le (P, {G;})-compensateur v (w,dt x dz) = ®; (w,dz) \}'dt est donné par

n
A=) (L= DA
i=1
1—Di) X
@t (l) = %, pour 1€ {1, ,77,} .
t

On appelle le couple (A, ®; (dz)) les (P, {G:})-caractéristiques locales de la mesure
p(dt x dz) (Brémaud (1980)). En utilisant, I’expression de la densité conditionnelle
g® (w,t,2) & P (Tk edt,Z =i |ng71) (w), on peut dissocier le probléme au calcul
de plusieurs probabilités conditionnelles dont 11 suffira de faire le produit pour obtenir
le résultat.

Généralisation de la formule de Dellacherie. Nous avons mentionné que le
calcul des probabilités conditionnelles sur la filtration grossie n’est pas trivial a cause
des termes de saut. Ici nous établissons un résultat clé qui généralise la formule de
Dellacherie (1970) et qui sera utilisé par la suite pour effectuer des calculs dans un
modele ou la dépendance est définie & I'aide d’une copule.

Pour chaque sous-ensemble 7 € Il,, ou II,, est I’ensemble des sous-ensembles de

{1,...,n}, on définit I'indicatrice Dgw) et la filtration {gt(”)} :

D™ & ] (D{') < T (1 - D{) ,
jem j¢m
gt(”) £ FV \/H]Oo =5V \/J(Tj)
je™ JjE™

Théoréme (Chapitre 1, page 17)
Soit Y une variable aléatoire G-mesurable. Alors, on a

_ B Y * T (1= D7) |67
E[Y |G] WGZ;“Dt E [ngzw (1 - D?) ‘gt(ﬂ} |

La preuve est basée sur un argument de récurrence.

L’approche copule. Nous considérons dans cette section le calcul de la prob-
abilité conditionnelle de survie dans le cadre de 'approche copule. Plus précisé-

ment, la structure de dépendance est décrite formellement par le processus (62) >0

, O ]0,1]" x Q x [&oo) — [_0, 1], ou, pour chaque t, C; représente la fonction
copule conditionnelle C; (.) £ C" (.|F;) : pour presque tout w € € et pour tout
(t1, s tn) € [0, 00)",

P (71> t1, .y Tn > tn|F) (W) = Cf (P (11 > t1|F) (W) 4oy P (70 > 10 | F2) (w)) -
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Pratiquement, on peut construire le processus (62) en partant de ’approche de

Lando (1998) ou le défaut est défini par

t
7; = inf {t : exp (—/ hid8> < Uz} )
0

(h%) +>p st un processus positif {Fi}-adapté cadlag et U; est une variable aléatoire

>0

uniformément répartie sur [0, 1] et indépendante de F, et on suppose que les seuils
de défaut sont reliés par une copule statique o [0,1]" — [0, 1],
P(U1 > u,....Up > uy) = c’ (UL, eeey Up) -
Nous définissons également les intensités forward {F;}-adapté et {G;}-adapté :
( ;T, )\;T>. L’application de la formule de Dellacherie généralisé nous permet alors

d’établir 'expression de 'intensité {G; }-adapté pour chaque configuration de défaut.

Proposition (Chapitre 1, page 27)
S’il n’y a pas eu de défaut avant l'instant t, alors la {G; }-intensité forward s’exprime
) 6; (6_ fOt h‘tl,sds7 . 6_ fOT hi,5d$7 e e_ j(f h25d8>

T
i,(0) i i 9z;
)\Z’( = exp [ — ds
t,T t,T €XP t,s — 7 T ,; T n
0 Cy (e_ Jo h%’sds, vy € Jo hisds e” Jo htﬁsds)

Proposition (Chapitre 1, page 28)

Si k obligations indexées par m = {j1,...,Ji} ont déja fait défaut avant l'instant
t, et leurs instants de défaut sont {t;,,...,t;, } respectivement, alors la {G;}-intensité
forward s’exprime

—_— [S] On 1n
ok ol (6_ I htl’sdsj e o ht,sds>

T o ok
; ; ; Ox; Oxj, ...0x;
)\Zg:r) =hir ep <_/ iﬁds) l ; Jk—T fo L hl ds foom by ds
0 o —Jo t,s . t,s

TG, C, (e ,...,e Jo )

ot ©; =tj, pour j € ={j1,....Jr} ; ©; =T, pour j =i ; O =t, sinon.

Ceci est une extension des résultats de Schénbucher et Schubert (2001).
En outre, nous dérivons la dynamique de la {G, }-intensité en appliquant la formule
d’Itd aux expressions précédentes :

) ) =U U
d\; dhy TiTiT gy Tz, | T Tz Tz, : :
~ — h—%+ - = — At — hy| dt
-

TiTzy - TZy g TiTZy - TZy,
+/ A (i,w,t,2) (p(dt x dz) — v (dt x dz)),
E

ou Pamplitude du saut A (7,w, t, z) est donnée par
—=U —=U
C
TLZT 7 (W) T L g (w)  EZq (w) T L (w

) . .

= — —1,siz#1i

A(i,w,t,z) ={ TY c? ’ ’
(7 Y ) zizzl(w)...zzkil(u}) zzzzl(w)...zzkil(u})

0, si z =1.
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La composante de diffusion provient de la contribution de l'intensité {F;}-adapté et
les sauts sont causés par les défauts des autres émetteurs. Cette représentation permet
ainsi d’établir un lien entre la copule et la dynamique de saut.

0.2 Chapitre 2 : Correlation with a Difference

Pendant les derniéres années, plusieurs travaux ont été consacrés au probléme de mod-
¢élisation de la corrélation entres les instants de défauts de plusieurs émetteurs. Puisque
les distributions marginales sont déja connues -obtenues a partir des prix de swaps de
défaut- il s’agit alors de choisir une fonction copule pour pouvoir définir la densité
conjointe. L’idée d’utiliser les fonctions copules pour le risque de crédit a été intro-
duite par Li (2000). Signalons qu’actuellement, I’approche standard privilégiée par les
praticiens est basée sur une copule Gaussienne. Il existe, toutefois, d’autres copules
qu’on pourrait utiliser. Citons, par exemple, la t-copule, la copule archimédienne, la
copule de Clayton, la copule de Gumbel, etc.

Ici, on s’intéresse & une autre classe de copules connue sous le nom de copule de
Marshall-Olkin. Cette approche a été traditionnellement utilisée dans la théorie de la
fiabilité pour modéliser les pannes des systémes composés. La premiére application au
risque de crédit est celle de Duffie (1998).

Notre objectif est principalement de montrer que la copule de Marshall-Olkin pour-
rait étre une bonne alternative au cadre Gaussien classique. Motivé par le phénoméne
de « skew de corrélation » observé dans les marchés de CDO, nous étudierons les
propriétés de ce modele, et plus particulierement, ce que ca implique en termes de
distribution de portefeuille, nous montrerons par la suite qu’il est possible de calibrer
le modéle de fagon & reproduire les prix de marché.

On se place sur un espace probabilisé (2,G, P), soient (71, ...,7,) les instants de
défaut d’un panier d’obligations. D = 1(;,<4 est lindicatrice de défaut de la -
ieme firme. On suppose qu’il existe un ensemble de m processus de Poisson indépen-
dants (ch)lgjgma caractérisé par les intensités ()\Cj)lgjgma A% € Ry, qui peuvent dé-
clencher des défauts simultanés d’un ou plusieurs émetteurs. Chaque processus de Pois-
son N% peut étre représenté de facon équivalente par les instants de saut {9? }T 12,1
Pour chaque événement de type c;, et pour tout ¢ > 0, on définit un vecteur de Vari-

ables de Bernoulli indépendantes (A% g s eees A?’j ) avec des probabilités (pl’j e, P ),
p* € [0,1]. On suppose que, pour j # k, les vecteurs Ag = (A%’j,...,A?’j) et
AF = (A% ’k, - A?k> sont indépendants. Et on suppose que, pour t # s, les vecteurs
A{ = (A%’j,...,A?’j> ot Al = (A;’j,...,A?’j> sont indépendants. A Dinstant du r-
ieme événement de type c;, on simule les variables de Bernoulli <A;i]j ) e AZ;%) La

variable A;’Z; indique si émetteur 4 a fait défaut ou pas. Le processus N* défini par

™
m
i A (2]
eSS,

i=le7 <t
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est également un processus de Poisson dont l'intensité est
m
)\i — Zpi,j)\cj )
j=1

L’instant de défaut 7; est défini par le temps du premier saut du processus N°
Tiéinf{t:NZ>()}.

Afin d’établir la fonction copule de ce modeéle, on a recours a la représentation « en
chocs fatals équivalents » de Lindskog et McNeil (2003). Soit IT, I’ensemble des sous-
ensembles de {1, ...,n}. Pour chaque 7w € II,,, on introduit le processus N/ qui compte
le nombre de chocs qui entrainent le défaut des émetteurs appartenant a m :

.
m N/
R .
N] £ E E ,
i=1r=1 7
J: r=

ou la variable de Bernoulli A?’j £ TLiex Ai’j [Tigr (1 - Ai’j > est égale a 1 si tous les

émetteurs ¢ € 7 font défaut. Notons par AT = fOT AN'ds = A™T le taux de hasard de
NT.

On peut alors énoncer la formule de la probabilité conjointe établie par Marshall-
Olkin (1967) :

P(ri>Th,...tn >Tp) =exp | — ZA{T? — ZAEQ(Ti,Tj) — = Aﬂ;’l;(’;l]:an)

i ij

On se référera & Barlow et Proschan (1981), Joe (1997) ou bien Nelsen (1999) pour
plus de détails. Parmi les propriétés fondamentales de cette distribution, notons les «
singularités » qui apparaissent sur les diagonales de 1’hyper-cube [0, +00]".

Le modeéle de Marshall-Olkin offre une structure de corrélation qui est trés riche.
L’intérét majeur d’une telle approche est de reproduire la courbe de skew de marché.
Il est cependant nécessaire d’avoir une paramétrisation du modéle qui facilite la cal-
ibration. Ici, nous supposerons que nous avons quatre types de facteurs communs :
(1) un facteur « Beta » représentant le risque cyclique de marché, (2) des facteurs
sectoriels, (3) le facteur « World » qui affecte les tranches super senior de CDO, (4)
des facteurs idiosyncratiques spécifiques & chaque firme :

Mme—2
)\i _ [)\W] +pi,B [)\B} + Z pi,Sj [)\Sj] + [)\O,i] .
Jj=1

Nous utiliserons ensuite les prix des tranches de CDO disponibles sur le marché pour
entamer notre calibration.

Précisons que le marché des CDO a connu récemment une grande expansion qui a
culminé dans la création de tranches standards sur indice qui sont quottées par les ban-
ques. Partant des prix de marché, et en inversant la formule de la copule Gaussienne,
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on trouve qu’il n’existe pas une valeur unique de corrélation qui puisse reproduire tous
les prix. Ce phénoméne est appelé « skew de corrélation ». Remarquons au passage,
I’analogie avec le marché des options et la skew de volatilité.

Aprés avoir introduit formellement des concepts tels que la « corrélation composée
» et la « corrélation de base », nous montrons que la nature multi-modales de la
distribution de portefeuille de Marshall-Olkin permet d’introduire une concentration
du risque qui peut se traduire par différents niveaux de corrélation implicite. Ainsi
nous disposons de plus de flexibilité pour évaluer les tranches equity, mezzanine et
senior, ce qui, par conséquent, permet de re-créer cet effet de segmentation de marché.

0.3 Chapitre 3 : Quadratic Hedging

On se place dans un espace de probabilité (£2,G, P*) et on considére un modele de
Marshall-Olkin dynamique dans lequel on suppose que le vecteur des variables d’états
(Xt);>0 est un processus d’Ito

dXt =« (Xt) dt + ,6 (Xt) th,

et que 'intensité du facteur de Poisson N¢% est une fonction de X; : A% (Xy), A9 :
R? — R, ainsi que les probabilités des variables de Bernoulli (Al?cj. e Anc’]-> :
6,’ 6,’

(pl’j <X95j> e P (Xeif>> '

Et on se pose la question de la couverture des dérivées de crédit sur panier & ’aide des
instruments mono-émetteur (ou single name).
Remarquons que la filtration du modeéle

G2 F v \n}fthj v \7\7?{‘
j=1

j=1i=1

est beaucoup plus large que la filtration disponible aux agents économiques

Gi & Fi v [\/ Hi
=1

On se donne un marché financier ot on a (n + 1) actifs primaires S = (Si)o <i<n:
L’actif SO représente I'actif sans risque est sera utilisé comme numéraire. Toutes les
quantités sont exprimées en unités de S°. En particulier, SO sera est égal 4 1 tout le
temps. Nous considérons des dérivées de crédit zéro-coupon, aussi appelés des actifs
contingents de type européen. L’actif de couverture S? représentera 1’obligation zéro-

coupon de maturité T émise par la firme ¢ ; autrement dit son payoff est défini par
Si 21— Di.

Les obligations zéro-coupons sont rarement traitées sur le marché. On peut néanmoins
les créer synthétiquement a partir des swaps de défaut de différentes maturités.
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Nous considérons le probléeme d’évaluation et de couverture des actifs contingents
zéro-coupon par réplication dynamique a ’aide des actifs de couverture S.

On suppose que P* est une mesure de probabilité martingale (risque-neutre). Ici,
on utilise 'approche de Follmer et Sondermann (1986) ol une mesure martingale est
fixée et la minimisation du risque quadratique est effectuée par rapport a cette mesure.

Définition (Chapitre 3, page 67)
On appelle actif contingent une variable aléatoire Gr-mesurable Hp représentant
le payoff a échéance T d’un instrument financier.

On s’intéresse, par exemple, a un k*"-to-default dont le payoff est défini par

(k) & ,
Hyp" = 1{2;;1 Di.<k}’

ou & une tranche de CDO couvrant les pertes dans un intervalle [K1, K»],

K1 K 1 . 1 ¢ i\ i
Hél 2)Ammm(max<gZ(I—R)DT—K1,O>,KQ—K1>,

i=1

ol 0< K1 < Ky <1,et0< R <1 est le taux de recouvrement de 1’émetteur i.
Pour des actifs non-atteignables, une stratégie minimisant le risque quadratique
est caractérisée par : (a) le processus de cotit est une martingale, (b) le processus de
cofit est orthogonal a S. Follmer et Sondermann (1986) ont montré que la stratégie
de couverture est obtenue grace a la décomposition de Kunita-Watanabe de la {G;}-

martingale Hy = E* [Hp |G] :

t
Hy = Hy +/ (afT) "ds, + LHr,

10,71

ott LAT est une martingale orthogonale & S.
Notre but est d’établir un résultat analytique pour la stratégie (a{{T)

Nous procédons en plusieurs étapes.

1. Nous établissons la représentation en processus ponctuel marqué du modeéle
p (dt x dz). Le processus de défaut compensé s’exprime alors

t
Mi = / / Ly (o (ds x dz) — A (dz) ds).
0 JE

2. Nous établissons la dynamique, sous la mesure de probabilité P*, des prix
d’obligations zéro-coupon sujettes au risque de défaut

dsi = Si_ (uidt + (o))" W, — dMg') .

3. Nous appliquons un théoréme de représentation des martingales (voir Jacod et
Shiryaev (1987)) a la {G;}-martingale H; = E* [Hr |G ]:
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Proposition (Chapitre 3, page 77)

La {G.}-martingale Hy = E* [Hr|G:], t € [0,T*], ot Hr est une variable aléa-
toire Gp-mesurable intégrable par rapport o P*, admet la représentation intégrale
suivante

H, = H0+/0 (€ dw, —/O /Eg(s,z) (1 (ds x dz) — \s (d2) ds),

ot & est un processus d-dimensionnel {G}-prévisible et ( (s,z) est un processus
E-indexé {G;}-prévisible tel que

t t
/0 €,]12ds < oo, /0 [E ¢ (5,2) As (d2) ds < oo,

presque strement.

4. Enfin, nous établissons notre résultat principal que nous énoncons dans le théoréme
suivant :

Théoréme (Chapitre 3, page 78)

La stratégie de minimisation du risque quadratique d’un actif contingent (basket)
¢ laide d’instruments mono-émetteur est obtenue par la solution du systéme
d’équations linéaires suivant : pour 1 <k <n,

> ais) [(03&)” Uf+/ Liicoy Lpeoy e (d2)
i=1 E
tr
= (o) s+ [ ) 1pean @),

Pour illustrer le résultat, une application au cas d’un first-to-default est présentée
en fin de chapitre.

0.4 Chapitre 4 : Basket Asymptotics

Nous revenons maintenant au cas particulier d’'un modele de Marshall-Olkin sta-
tique. On s’intéressera dans ce chapitre aux méthodes numériques semi-analytiques
d’évaluation des dérivés de crédit sur panier.

Nous présentons ici nos principales méthodes numériques : (1) Pexpansion en FTD,
(2) Texpansion homogeéne, (3) 'expansion homogéne asymptotique, (4) 'expansion
asymptotique.

On note par (7'[1], vy T[”}) la suite ordonnée des instants de défaut, définie comme
suit : 7 = min (71, ..., 7,), et pour k =2, ..., n,

K]

7 = min (7’7; i=1,..,n, 7; > T[k71]> ,
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et on pose

Q[k] (T) Ap <7-[k] > T) =P (XT < k’) s

ou Xp £ Dy D% compte le nombre de défauts avant I’horizon de temps 7T
L’objectif est de calculer Q*! (T') a l’aide d’une formule semi-analytique.

Une premiére possibilité consiste & énumérer tous les états de défauts possibles et
a calculer les probabilités de chaque état. Si le calcul du premier temps de défaut
est fait a l'aide d’une formule fermée qui est relativement simple, 'implémentation en
dimension plus élevée utilise des algorithmes complexes difficiles & mettre en ceuvre.
Il s’agit 1a d’introduire une nouvelle représentation dont les coefficients sont calculés
en résolvant un systéme d’équations de récurrence. Plus précisément, la probabilité
du k-iéme défaut prendra la forme suivante

P(TW > T) = Y Y ol

{s:d(zs)<k} m€lln

ol Qm (T) £ E [Hieﬁ (1 - D})] et pour chaque configuration de défaut représentée
par les vecteurs binaires (constitué de 0’s et de 1’s) =5 = (s,1,...,2s2), s = 1,...,2",
les coefficients a%s € {—1,0, 1} sont calculés récursivement.

Devant la complexité algorithmique qui résulte de I'approche directe, nous avons
choisi de suivre une autre voie : puisque nous disposons déja d’un pricer efficace de
FTD (First-To-Default), notre idée a été de développer une méthode indépendante du
pricer FTD, mais qui adapterait ce dernier au cas général des NTD (Nth-To-Default).
La méthode que nous proposons dite d’ « expansion en FTD » repose sur un argument
de réplication statique. En effet, en procédant par un raisonnement de récurrence, nous
montrons qu’il est possible de répliquer un NTD avec des FTD référencant des sous-
ensembles du panier d’origine. Signalons que ce résultat est générique et ne dépend

n

pas de la copule utilisée. En notant par 7% (.), pour 1 < s < (), ensemble des
sous-ensembles de {1,...,n} contenant exactement [ éléments :

() {1,2, .. kY = {1,2,....n},

la probabilité de survie de 7% devient

P (T[k] > T> = Z Za[k] Q[I] (1),

l=n—k+1 s=1

ou les coefficients sont donnés par alf! () = (—1)17("7’”1) <£:—1k>v pour n —k+1<
[ <n.
On notera que le gain de performance de cette approche est di & un réarrangement
intelligent des termes FTD. Cependant, cette méthode n’est pas toujours satisfaisante,
notamment pour des NTD d’ordre élevées.
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Abordons maintenant la méthode de la transformation homogene. Remarquons,
tout d’abord, que si on applique la formule de réplication en FTD & un panier ho-
mogene, le nombre de termes a calculer sera réduit considérablement puisque tous les
FTD référencant des sous-paniers de k éléments auront la méme valeur. Notre idée a
été alors de transformer le panier original en un panier homogéne et ce tout en préser-
vant certaines caractéristiques de la distribution des défauts. Nous nous intéressons
ici au comportement local au niveau de la queue de distribution. Ainsi, nous avons
choisi comme métrique de risque le quantile associé a I'ordre du NTD en question.

Dans le but de calculer les quantiles de distributions, nous utiliserons un algorithme
basé sur Iinversion d’une transformée de Fourier. Signalons, cependant, que cet al-
gorithme souffre d’une anomalie intéressante. Les probabilités de défaut de chaque
émetteur sont généralement faibles, ce qui entraine que la distribution de portefeuille
est centrée vers la gauche et que les probabilités de queue décroissent exponentielle-
ment. Une fois que la probabilité devient inférieure a la double précision de la machine
10716, les erreurs d’arrondissement liées aux bruits numériques commencent & dominer.
Ceci a pour effet de produire un plateau numérique ou les valeurs estimées oscillent
de facon erratique. Pour passer outre ce probléme, nous proposons un changement
de probabilité judicieux qui est adapté a la question. Avant d’effectuer 'inversion
de Fourier, on se place sous la nouvelle mesure, ensuite on applique la dérivée de
Radon-Nykodim pour retrouver le résultat escompté.

Venons en enfin aux méthodes asymptotiques. Il s’avére que, pour des porte-
feuilles de tailles importantes, la formule de récurrence de ’expansion homogeéne est
numériquement instable. En effet, cette récurrence est similaire 4 un schéma de dis-
crétisation instable d’'une EDP classique. Au vu des difficultés numériques de ce
schéma instable, nous avons choisi d’explorer une autre voie et de nous intéresser
au comportement asymptotique du panier homogéne. Nous montrons que la solution
admet un développement en série que nous énongons dans la proposition suivante.

Proposition (Chapitre 4, page 111)
Pour un portefeuille homogéne, la probabilité de survie du k-iéme défaut admet le
développement en série suivant :

+oo n n
_Ac A (TH)™ ACm (T)"™
QM (T) = e Z Z - B(k—1,7pn,..nm)|
n1=0 Ny =0
ot AS(T) £ 30 A% (T), A% ( f A% (t) dt, le paramétre pr, .. p,, est

Prtyeim = 1 = e—A°’*<T> (L= p})™ . (L= p)"™",
et B(k,n,p) désigne la fonction de probabilité binomiale cumulé de paramétre p :

B (kn,p) = Yo () 7/ (1= p)" .

Ce développement en série correspond a la formule d’une mixture de binomiales
dont les coefficients peuvent étre estimés avec une approche analytique ou bien avec
une intégration quasi-Monte-Carlo.
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Nous établissons également un développement en série de la solution quand le
panier sous-jacent est non-homogéne. Les distributions conditionnelles qui apparais-
sent dans la formule sont calculées par un algorithme de convolution récursif. Ce type
d’algorithmes a été abondamment utilisé dans la littérature actuarielle.

Pour clore ce chapitre, on effectue des tests numériques pour comparer la précision
de I’expansion homogene, ’approximation de Duffie et la méthode de Panjer (Lindskog
et McNeil (2003)).

0.5 Chapitre 5 : Correlation of Correlation

Ces derniéres années ont connu une forte croissance des émissions de CDO synthé-
tiques dont le portefeuille sous-jacent est lui-méme constitué de tranches de CDO. Ces
transactions de « CDO de CDO » sont aussi appelées des « CDO au carré ». Une telle
transaction comprend typiquement entre 5 et 20 CDO sous-jacents dont le portefeuille
de référence compte 300 & 600 entités. Les CDO au carré sont généralement structurés
afin d’obtenir une note comprise entre ‘A’ et ‘AA’. Pour des raisons de diversification
et de dilution du risque, les primes offertes sont beaucoup plus importantes que celles
d’un CDO normal. Ce qui explique 'engouement des investisseurs pour ce produit.

Dans ce chapitre, nous étendons notre approche numérique aux CDO au carré.
Dans un premier temps, nous montrons qu’il est possible de répliquer statiquement
ce nouveau payoff a ’aide des instruments FTD. Partant de la formule de réplication
développée dans le Chapitre 4, et en appliquant des régles de calcul aux sous-ensembles
du panier d’obligations de référence, on aboutit & des expressions formelles du porte-
feuille de réplication. Afin d’illustrer la méthode, il est facile de dériver quelques résul-
tats pour des paniers de petite taille. Cependant, en pratique, le nombre d’instruments
de couverture devient important pour des paniers de CDO, ce qui induit des temps de
calcul extrémement longs.

Nous avons donc cherché a réduire la complexité numérique du probléme en explo-
rant une autre méthode qui s’inspire de la transformation homogéne du Chapitre 4.
La méthode que nous proposons dite du « processus individuel équivalent » repose sur
I'idée suivante. L’instant du k-ieme défaut 7] est caractérisé par une pseudo-intensité
(que l'on définira), ainsi qu’une décomposition sur les facteurs communs du modele de
Marshall-Olkin. Il existe alors un processus de Poisson (single-name) dont le temps
du premier saut admet les mémes caractéristiques de défaut que 7%, 11 ’agit donc de
définir la transformation suivante :

e 0,i eq 0,eq
<[pl’]]11<<}§?1’ O )19'S"> - ((pﬂ' )1§j§m’/\ ) ’

qui relie un panier sous-jacent d’obligations de référence & un processus individuel
équivalent préservant les propriétés de défaut de 7). Par un raisonnement analogue,
il est possible de définir une transformation équivalente pour une tranche de CDO.
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Plus précisément, si on note, pour un horizon de temps 7T, les pertes du portefeuille
n
Ly %> LD,
i=1

ol Déﬂ et L; sont 'indicatrice de défaut et la perte de I’émetteur 7. La probabilité de
survie de la tranche (o, 3) est definie

QW) 2B |1~

MP
B-al’

ol ]\Ja”6 £ min (max (L7 — a,0) , 3 — ) désigne la perte de la tranche a 7.

La transformation équivalente conserve la valeur de @ (T') pour un horizon de
temps fixeé.

Notre algorithme se base sur les théorémes suivants.

Théoréme (Chapitre 5, page 135)
Posons 1; = exp (iul;). Pour T fizé, La transformée de Fourier ¢ (u) de la
variable aléatoire L1 s’écrit

Z Q[ll

7€l

2o 1—¢@->].

¢ 1ET

Théoréme (Chapitre 5, page 135)
La transformée de Fourier de la variable de perte ¢ (u) admet le développement en
série suivant

+oo 61 n1 Cm N
6w = N [Z yo A A aﬁ(u,pmm)],

T
n1=0 Nm =0 m

ot AS(T) £ S0 A% (T), A% (T) £ fOT N () dt, et le vecteur des probabilités py, . n,
(Praim (1) oo P, (1)) est donné par

. _AO
pnla“‘7nm <Z) = 1 —€ Az (T) (1 - pz71)n1 A (1 - pzam)nm

Enfin, pour clore ce chapitre, nous présentons une illustration de la méthode sur
un cas test. Cet exemple met en jeu une topographie de corrélation trés intéressante.
Il permet, en outre, de développer une intuition sur les effets de corrélation et le risque
de modele lié & ces produits.

m
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Chapter 1

The Conditional Jump Diffusion

Framework

Enlarging the economic state-variables’ filtration by observing the default process of
all available credits has some profound implications on the dynamics of intensities.
Indeed, the sudden default of one credit triggers jumps in the spreads of all the other
obligors. This is referred to as the “Conditional Jump Diffusion” effect. The aim
of this chapter is to give a comprehensive and self-contained presentation of the CJD
framework, and present some new results. In particular, we derive the density function
of default times in the “looping” defaults model; we give a formula of the conditional
expectation w.r.t. the enlarged filtration in the n-dimensional case and we study the

equivalence between the copula approach and the CJD framework.

1.1 Introduction

The problem of correlating default times has been studied extensively in a number
of papers. The main approach used is the Copula approach. The first application of
copulas to basket credit derivatives is given in Li (2000). Since then practitioners have
used the Gaussian copula as the market standard approach to default correlation. For a
comprehensive review of copulas and their applications to finance and risk management
you can consult for example the papers by Embrechts, Lindskog, McNeil (2003) or
Bouyé, Durrleman, Nikeghbali, Riboulet, Roncalli (2000).

Another approach that was suggested by Duffie (1998) is the correlated intensities
method. The default times’ intensities, in this model, are assumed to follow some cor-
related diffusions. Although theoretically appealing and easily implementable, Duffie’s
approach fails to reproduce some realistic default correlations (see Jouanin, Rapuch,

Riboulet and Roncalli (2001) for an empirical study). In fact, a closer look at the



1. The Conditional Jump Diffusion Framework 3

formulas shows that correlated intensities introduce an adjustment in the joint default
probabilities, which is similar to a quanto adjustment or a convexity adjustment. This
is very different, in essence, from default correlations.

One way to improve Duflie’s approach is to consider the impact of filtration en-
largements. Indeed, the intensity of each default time studied on its natural filtration
has a different dynamic from the one observed on the enlarged filtration where the
default information of the other obligors is taken into account. This fundamental ob-
servation was made in the papers by Jeanblanc and Rutkowski (2000a), Jeanblanc and
Rutkowski (2000b) and Elliott, Jeanblanc and Yor (2000). Enlarging the working fil-
tration or, in financial terms, increasing the flow of information available to investors,
profoundly alters the intensity dynamics. A sudden default in one credit can create
a shock wave in the market, which translates into revising its estimate of the default
likelihood of the other obligors; this, in turn, triggers a jump in their credit spreads.
This phenomenon will be referred to henceforth as the “Conditional Jump Diffusion”
effect.

The first example of CJD dynamics is given in Kusuoka (1999). This example is
also studied in Jeanblanc and Rutkowski (2000b). The infectious defaults model of
Davis and Lo (2001b) assumes a CJD dynamic, where upon default the intensities
jump proportionally to their pre-default levels, then revert back to the pre-default
state. Deriving survival probabilities in the general CJD framework is far from being
a trivial task. Jarrow and Yu (2001) have studied a simplified version of the model
where closed-form formulas can be derived. They assume that the CJD coupling is
unidirectional. In other words, the universe of credits is split into two subsets: a
default event in the first subgroup triggers jumps in the spreads of the other obligors;
the default of an obligor in the second set, on the other hand, has no impact on the
spreads of the first.

Copulas and CJD dynamics are two sides of the same coin. A choice of copula
implies a specification of a CJD dynamic, and vice-versa. Copulas and CJDs are
equivalent in that sense. This was first studied in the paper by Schénbucher and
Schubert (2001). This seminal work bridges the gap between the mathematician’s
approach to default correlation, where it is merely about a choice of copula function,
and the trader’s approach where default correlation translates into a windfall P&L in
the event of default.

The aim of this chapter is to complement the recent literature on the modelling of
default correlation in the so-called Conditional Jump Diffusion framework by giving
a comprehensive and self-contained presentation of this approach, and presenting new
results.

Our first contribution is a general formula of the default times’ multivariate dis-
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tribution in the “looping” defaults model. The second contribution is a generalization
of the conditional expectation with respect to the enlarged filtration formula of Del-
lacherie to the n-dimensional case. And last but not least, we study the equivalence
between the copula approach and CJD dynamics along the lines of Schénbucher and
Schubert (2001).

The rest of this chapter is organized as follows. Section 1.2 describes the model.
Section 1.3 considers interacting Itd6 and point processes and studies the “looping”
defaults’” model. In Section 1.4, we derive a generalized Dellacherie formula. This
latter is then used in Section 1.5 to establish the equivalence between copulas and

CJD dynamics. Section 1.6 gives some numerical examples.

1.2 The Model

We work in an economy represented by a probability space (€2, G, P) and a time horizon
T* € (0,00), on which is given a d-dimensional Brownian motion W. We assume that
the probability space (€2, G, P) is rich enough to support a set of n non-negative random
variables (71,...,7,) representing the default times of the obligors in the economy.
Further, we assume, for convenience, that P(7; =0) = 0 and P (7; > t) > 0 for any
teR,.

We also introduce an R%-valued Ito process (Xt);>0, describing the evolution of the

state-variables in the economy, which solves the following SDE
dX; = a(Xy) dt + 8 (Xy) dW,
for some Lipschitz functions ay : RY — R and ﬁkj RIS RE1<k< d,1<j<d.
Filtrations. We denote by {E}Ogth* the filtration generated by X and aug-
mented with the P-null sets of G:
Fi=0(Xs:0<s<t)VN.

We introduce, for each obligor 7, the right-continuous process Di = 1 {ri<t) indicating
whether the firm has defaulted or not. We denote by {H%} the filtration generated by
this process

Hi 2 FP' =0 (Di:0<s<t).
We define the following filtrations:

1. The collective filtration of the economic state variables and the default processes

Gi & Fiv [\/ Hi] :
i=1
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2. For each obligor ¢, the filtration generated by the state variables and the default

processes of all other firms other than 4

G' A2 FRVH

Ht 2 V| =H vV VHTIVHT Y VI
ji
3. The firm specific information generated by the default filtration of ¢ and the

state variables’ filtration
g§ £ F: V Hi

We assume that the filtration {#;} has the martingale invariance property with
respect to the filtration {G;}, i.e., that hypothesis (H) holds.

Hypothesis (H). Every {F;}-square-integrable martingale is a {G; }-square-integrable
martingale.

This implies, in particular, that the {F;}-Brownian motion is a Brownian motion
in the enlarged filtration {G,;}.

Assumption 1. We assume that the probability of instantaneous joint defaults is

equal to zero, i.e., P(r; =7;) =0, for i # j.

Intensities. We shall use the following definition of an intensity process for a
stopping time 7 with respect to a given filtration {Z;}. We refer to Brémaud (1980)

for details.

Definition 1 (Intensity process). Let T be an {I,}-stopping time and let A be a non-
negative {Z; }-predictable process such that, for all t > 0, fg’ Asds < oo almost surely.
We say that X is an {Z;}-intensity of the stopping time T if

tAT
Mt £ Dt — / )\st
0
is an {Z;}-martingale. The process My is called the compensated point process.

Remark 2 From Definition 1, the intensity is not uniquely defined after the occur-
rence of the default time. Indeed, if N is an intensity process, then \f = AMly<ry and

)\% = )\% + 01,54y, for all 0 > 0, are also intensity processes for T.

For each obligor i, we define two types of intensities: the first one with respect
to the firm-specific filtration {Qi} and the second one with respect to the enlarged
filtration {G;}.
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Firm-Specific-Information Setting. We assume that 7; has an intensity hi with
respect to the filtration {g;} We know that there exists an {F;}-adapted process h’
such that 1{ri>t}%§ = 1{ri>t}h§ (see, for instance, Jeanblanc and Rutkowski (2000b)
for details). The process h’ is the {F;}-adapted version of the {gf}-intensity, ie.,

tATy .
h*is {F:}-adapted, and D} — / hids is a {G}} -martingale.
0

Enlarged-Information Setting. We assume that 7; has an intensity X with
respect to the enlarged filtration {G;}. There exists a {g; Z‘}—audaupted process A’ such
that 1{n>t}X§ = 1{n~>t}/\i- The process A’ is the {gt_i}—adapted version of the {G;}-

intensity, i.e.,

) ) tAT;
Ais {G; "} -adapted, and D} —/ Aids is a {G;}-martingale.
0

Expectations. If we work in the firm-specific filtration {gg’}, it is well-known

that the conditional survival probabilities can be computed as

T
P(ri>TIG}) = 1(7,5nE [exp (—/ hf;,ds> |ft} , for T > t. (1.1)
t

However, when we consider the general case where we work on the enlarged filtration
{G:}, the conditional survival probability cannot be computed in a straightforward
way. To address this issue, we shall use the change of measure technique introduced
by Kusuoka (1999): under the new measure the “circular” nature of this type of

“looping” default models is broken and calculations can be easily carried out.

Assumption 2. For practical applications, we make the assumption that the
intensities are Markov-functionals of the background process X and the default indi-
cators D £ (Dl, . D"). We assume that

X = N (X4, D}, ., DITY0, DIV DY)

for some bounded continuous functions A’ (.,.) : R x {0,1}" — R, which are C? in
the first argument. This is similar to the Markovian setting considered in Frey and
Backhaus (2004).
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1.3 Interacting It6 and Point Processes

In this section, we consider a general model of “looping” defaults where the default
point processes impact intensities, which, in turn, drive the default processes. This
type of “circular” dependence between Itd6 and point processes has been studied in
Becherer and Schweizer (2005). They have addressed, in particular, the question of

existence and uniqueness of the solution.

Construction via a Change of Measure. To construct this non-standard
dependence structure, we use a change of measure method, which extends the ar-
gument in Kusuoka (1999). The basic idea is to start with some probability space
(Q,G',{G;}, P") on which we are given a Brownian motion W and a set of well defined
independent default times with constant (P’, {G}})-intensities equal to 1. Assume G is
trivial, Gf.. = G’, and {G;} satisfies the usual conditions. Then, define the probability

measure P as

n
% =& (Z/ (Xi — 1) (dDj — (1 - Dj) dt)) : (1.2)
i=1 T
Using Girsanov theorem, we can see that this measure change is such that )\i is the
(P,{G;})-intensity of 7;. Again, by Girsanov, W is a local (P,{G;})-martingale; its
quadratic covariance process (W) is the same under P and P’, hence it is a (P, {G;})-
Brownian motion. Define (2,G,{G;}, P) as the P-completion of (Q,G’,{G;}, P’), one
can verify that {G,} satisfies the usual conditions under P. Therefore, W is a (P, {G;})-
Brownian motion.
We shall use the change of measure construction to derive the default times’ density

function in Proposition 3.

Non-Standard SDEs. Applying It6’s lemma to the intensity process /\i =
bY (X¢,Dy), one finds that the looping defaults model in a Markovian setting can
be described as:

(X, D) is the solution of the following system of SDEs

X\, = o (X, Dy) dt + B (X, Dy) dWy + Y - A7 (X;,Dy) dMY, (1.3)

j=1

i
the functions o/ (.,.) : R? x {0,1}" = R, for i = 1,...,n; 8% (.,.) : R4 x {0,1}" — R,
fori=1,..n,1=1,...d; AY(,.):R¢x {0,1}" = Rfori=1,...,n, j=1,..,n, are
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given by

o (xy) = LXN (x,y) + LN (x,y),
d .
; X' (x,y)
il _ 1Y) gkl
B (x,y) = ]; By % (%),
AY (Xv Y) = X (X) y_j) -\ (X¢ y) )

where £X is the infinitesimal generator of the R%valued diffusion process X;, and
E{;)(( )] denotes the infinitesimal generator of the Markovian process D, for a given
path of the background process X; (w) = x (w).

This is not a standard SDE: the coefficients defining the intensities depend on
the default state, and the default state vector depends in turn on the intensities. An

example of this class of models is studied next.

The Jarrow and Yu Model'. The looping defaults model of Jarrow and Yu
follows the SDE

dxi =Y " AYdD], (1.4)
j=1
J#i
for some constant jumps A% € R. This is a particular case of equation (1.3), where
al(xy) = > (L-y(i)N(x,y)AY;
gt (xy) = 0
AY (x,y) = AY, A% =0,

The intensity process A’ is, then, given by

n
A =X+ > AYD]. (1.5)
j=1
J#i
Our first result is an analytical expression of the default times’ multivariate density.
Proposition 3 (Default Times’ Multivariate Density). Let (11,t2,...,1,) € R, and

suppose that
ler) Str) < oo S la(n)s

'In the Jarrow and Yu paper, a simplified version of the general model is considered. They assume
that the coupling matrix [A”] is upper-triangular in order to break the circular dependence.
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where the mapping w (.) : {1,...,n} — {1,...,n} is a monotonic permutation of (t1,ta, ..., tp).

Then, the default times’ multivariate density is given by

7r(z + ZATI‘ ) ( ] () — tw(j—l)) ;
(1.6)

n

i—1
Fltrentn) =[] [ M@ + 3 A7) | exp ‘Z

i=1 j=1 J=1

with the convention tr ) = 0.

Example. For n = 3, suppose t2 < t; < t3, then

ftta,ts) = AN+ A2) (A3 + A% 4 A3
X exp (—/\%tg)
xexp (— (\jtz + (\§ + A12) (t1 — 12)))
xexp (— (Not2 + (N + A%) (1 —t2) + (A§ + A2 + A3 (25— 11))) .

Proof. Extending the argument of Kusuoka (1999), we use a change of measure
technique. We assume that we have some probability measure P’ under which the
default times (71, ..., 7) are independent random variables exponentially distributed

with parameter 1. So that the P’-density of (71, ...,75) is
f (t1,.ty) =P (11 €dty, .y Ty € dty) =exp(— (t1 + ... +15)) .

Define the probability measure P (as in equation (1.2))
dP

= L« Pl-
AP’ T*, a.s.,
where L satisfies, for t € [0,T*],
Lt—1+2/ Ly ¢} (dD: — (1 - Di) ds) . (1.7)
¢ is given by
n
PEN-1=X+> AYD] -1, (1.8)
j=1
J#

By Girsanov’s theorem, the intensity of the default time 7; under P’ is equal to
(1+46}) x 1=}

The Doléans-Dade martingale L can also be written as the product

HL for t € [0, 7],
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where Li, 1 <1 < n, is defined as
Li=1 +/ L ¢% (dD} — (1— D})ds). (1.9)
10,4]

The solution of the SDE (1.9) is

TN\t . .
Ly = oxp (- /0 (X —1) dS) Loty + LimzpyAr]
= €Xp ((TZ A t) - Af'i/\t) [1{T.L‘>t} + 1{T1St}A3'.Li| )
where A’ denotes the hazard rate process Al £ fg Aids.
To compute the density function at (1, ..., ), we proceed as follows.

We fix an arbitrary positive number a > 0, and we compute, for (e1,...,e,) €

[—a, a]”, the expression of
P(Tl S (tl — 61,t1] ey T € (tn — En,tn]) .

To this end, we choose a time horizon T* such that T* > max (¢;) + « (e.g., T* =

1<i<n
1+ max (t;) + «), and we use the change of probability measure
<i<n

Thus, we have

P(Tl c (tl — 61,t1] sy Ty € (tn — En,tn])
= B [1{ri e (t1—e1,t1],.;Tn € (tn — €nstn]} X Lp<]

= / / exp (— (ug + ... +up)) % [H exp (u; — AZZ) [/\Ll] duy...duy,
u1 €(t1—e1,t1] Un € (tn—€n,tn] i=1

n
/ul G(tl —el,tl] /’une(tn—en,tn] .

1=

exp (—Aii) [)\Lz]] duy...duy,. (1.10)
1

The first equality follows from the change of measure, the second equality uses the
fact that on the set {(71,...,7n) € (t1 — €1,t1] X ... X (ty, — €n, tn]}, we have

Lb. =exp (1i — AZTZ) P\Zn] ,

since 7; < t; + o < T*.
Consider the monotonic permutation of the default times 7 : Tr() < Tr2) < o0 <

Tr(n), and let us derive explicitly the expressions of the intensity and hazard rate for
{Tﬂ.(l) <..< Tﬂ.(n)}.



1. The Conditional Jump Diffusion Framework 11

By (1.5), the intensity )\T(()) at time t = 7,(;) is simply

i—1

The hazard rate is computed by (1.5) and using the fact that A7) js piece-wise constant
on the intervals [Tﬂ(j_l),ﬂr(j)), for1 <j<i:

w() ™ _ 7r
ATY@') - ZA x(j—1)
= > A0 () — Ten)
i=1
- SO a0 (). a2
i=1

By introducing the permutation 7, (1.10) becomes

P(r1 € (t1 — €1, t1], ooy Tn € (tn — €n, tn))

= /matlehm .../une(tnemtn [H exp( A7t (@) ) [/\Z(Z())}] duy...du,.

Taking the limit ¢; — 0, for 1 < ¢ < n, we arrive at the expression of the density under

gt = [T (-470) ]

Substituting the intensity and the hazard rate by their expressions (1.11) and (1.12)

the P-measure

ends the proof. m

Marked Point Process Representation. An alternative way of constructing
the looping defaults’ model is to use the total hazard rate construction developed by
Norros (1986) and Shaked and Shanthikumar (1987). This approach was used in Yu
(2004).

Assumption 1 excludes simultaneous defaults, we can therefore define the sequence
of strictly ordered default times (Tp, 71, ...,Ty) : To = 0 < Ty < ... < T, as well as the
identity of the defaulted obligor (Zy, Z1, ..., Zy):

TO B O, Z() B O;
T, = min{r;:1<i<n, 7, >Tk_1};
Zy = 1if Ty =75
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When Assumption 1 is not satisfied, at each default time, multiple defaults can occur,
which means that the size of the mark space is 2. This is the case, for example, in the
Marshall-Olkin copula. The marked point process (T, Z,) is called the failure process
associated to (71,...,7n) (see Norros (1986)). For each 1 < i < n, the point process

Di is given by
T; = min{Tk : Zk = i};

Dy = Zl{Tkgt}l{zk:i}-
k=1

The internal history of the process (Dtl, . D?), G =Vi, FP i, satisfies the following
properties (see Brémaud (1980) Chap III T2):

ng = U<T07Z07-"7TH7ZTZ);
ng* = O'(TO,ZO,...,Tnfl,anl,Tn);
Gr, = ng— Vo (Zn) .

The compensators A* w.r.t. the internal history can be written in regenerative form
(Brémaud (1980) Chap III T7)

n
. B
A =N ey AV (T, 24, T, Za) (1.13)
k=1
where each A®) (i;...) is a deterministic function of its arguments. The stochastic
compensator A’ is a piece-wise deterministic function evaluated at default times. To

clarify the notations, we underline that A®) (i; ...) are deterministic functions

AP G ([0, 400) x {1, .onp)F S RY
(T1, Z1, oo To1s Zor) — AP GT0, 20,0, T, Zia)

but the compensator A is stochastic

n
@) =D L @sten@n AL (T @), 21 @)oo Timt (@), Zior (@)
k=1
It is well known that if: (a) P(0 <73 <o00) =1, (b) P(r; =7;) = 0, for i # j,
(¢) the compensators A’ are continuous, then the random variables AL, = A% for
1 < i < n, are independent and exponentially distributed with parameter 1 (see Norros
(1986) Th 2.1). Hence, the default times (71, ..., 7,) are mapped to some independent
exponential variables (61, ...,0,). Norros establishes that this mapping is bijective
and thus provides a way of constructing the default times in terms of independent

exponentials.
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The mapping 1 : R — Ri 2 (11,0, Tn) = (01, ...,0y) is called the total hazard
function of (71,...,7y). It is almost inverse ¥*, in the sense that ¥* (¢ (71,..., 7)) =
(T1,..-yTn) a.8., is obtained by the following algorithm.

Define Agk)’* (;...) = inf {t A(k)( ") > 9}. For a given (01,...,0,) € R}, and

proceed as follows:
T} = min {Aéi)’* (i;0) =i € {1, ,n}} :
71 = min {z : Aéi)’* (1;0) =Ty, i € {1, ,n}} ;
-7z =T
T+1 = min {A(kH) ( (T1, Z1)1 <1<k ) ied{l,... n}\{Zh---,Zk}};
L1 = mm{Z : Ag’:H) < (T, Zt) 1<k ) = Th1, 0 € {1,y \{Z1, ..., Zk}}

= TZp1 = Tkt1;

\

{ n—A() ( Zn; (Th, Z1) 1<) < 1)

— Tz, = Tna

See Algorithm 2.4 in Norros (1986) for further details.
This provides another way of constructing the looping defaults model. Indeed, one
can establish the link between the intensity (1.5) and the functions A®) (4;...) of the

regenerative form (1.13). Observe first that the compensator Al is given by
¢
Al :/O (1 — Di) Nids,

and let us write it down explicitly for an example where obligor ¢ is the third default,
ie. Ty =714, Z3 =1.

0<t<Ty: A=)\t =AY (@)

Ty <t<Ty:Z#i: A= NTi+ (Ny+A%) (1 —Ty) = AP (T, 7))

Ty <t <Ts:Zy#i: Ay = NTi+ (N + A7) (Ty — T1)+ (N + A2 + A122) (t — Tp) =
A® (.11, 24, T, Z)

Ty <t <Ty:Zz=i: A= NTi+(Ny+ A7) (To — T1)+ (N + A2 + A122) (T — T) =
Ag ) (Z; Tl, Zl, TQ, ZQ, Tg, Zg)

Ty <t: Ai = Aéﬂ:a

In general, the looping defaults model (1.5) can be expressed in regenerative form
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(1.13) as follows:

k—1 j—1 Jj—1
AN @11, 21, o T, Zn) b+ NN - T0) [ 1z
=1 =1 =1
k—1
+ZA’Z’] (t =Tk Hl{Zﬁé'L}
=1 I=1

The marked point process representation (7, 7,) offers an alternative proof of

Proposition 3. One could write, for example,

P(Tl edty,...,Ty € dtn)
= [P( ) € dt (1) Tr(n) € dtﬂ(n))
= P (T1 S dtw(l): Zi=m (1) sy Iy € dtw(n),Zn =T (n))

= HP (Tk S dtﬂ.(k), Zy = W(k) |T1 = tﬂ.(l),Zl = 7T(1) ey L1 = tﬂ.(kfl), Ly 1= (k —

k=1

The double sequence (T, Z); <<, defines a marked point process with counting mea-

sure

w(w,dt xdz) : (£2,G) — ((0,00) X E,(0,00) ® &),
/ / H (w,s,2) p(w,dt x dz) = ZH (w, Tk (W) , Zk (W) L7y ()<t}
0 JE =1

and predictable compensator
v(w,dt x dz) = ®; (w,dz) N'dt,

where \}" is a non-negative {G;}-predictable process and @, (w,dz) is a probability
transition kernel from (Q x [0,00), G ® By ) into (E, £). The pair (A}, ®; (dz)) is called
the (P, G;)-local characteristics of p (dt x dz). Here, we have

M= Z (1 — D) Ni;
=1

Dy) A,
@t(Z) = % fOI‘ZG{l },
t

with the convention @, (.) = 0 if A}’ = 0. The density of (T}, Zx) , conditional on G, _,,
is given by (see Brémaud (1980) Chap VIII T7)

g (w,t,2) : (2x[0,00), G1, , @ By) — (B,E)

1)).

¢
9" (w,t,z) & P (T), € dt, Z, =i |Gr,_, ) (w) = D¢ (w, 1) A (w) exp (—/ N (w) ds> dt.
1(w)

Ty
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Reverting back to the default times’ multivariate density and using the expression of

the conditional density g(k) (w,t, z), we can express each term in the product as

/tw(k)
Tp—1(w

Conditioning on the path {T} = tray, Z1 =7 (1), Tio1 = trp—1), Zk—1 = 7 (k —

and using the fact that the intensities are piece-wise constant between jumps, we get

P (T € dtrgry, 2 = 7 (k) |Gy, ) = <1 - Dj““’) AT oxp (-

tr
(k) &)

Agds> dtr(i)-
)

P (Ty € dtry, Zx = 7 (k) [Th = tr), Z1 = 7 (1), ...,

(k)
AT exp (<A (et = e 1)) ) ey
The intensity A (k) at time t = ¢, ) is given by
A = 25" 4 3 A0, (1.15)
j=1

and the intensity of the failure process )\ffw 1) is given by the sum of the remaining

intensities associated with the obligors that have survived after t,(x_1)

n n
7 _ % _ (1)
>\t7r(k—1) - Z < Dt (k— 1)) )\tw(kfl) - Z <1 o D Lk 1)) 7r(k 1) Z tw(k 1’
i=1 i 7

B (1.16)
Putting (1.14), (1.15) and (1.16) together gives the result after some basic algebra:
e (k)
kl_[ At (k) exp( ; r(k—1) ( m(k) — tﬂ(kfl))>
1

[, tn) =

- T1 e (-5 =10
Lk=1 k=1 i=k
[ n T n i

= Hhm exp (‘Z A (e —twuc—l)))
Lk=1 i=1 k=1

— H )\ W(k) exp (— Z A?j?}))
k=1 i=1

- 1_[1 [)\Zr((?)} exp (—AZSB))
Li=

we have inverted the summation order in the third equality, introduced the cumulative

hazard rate in the fourth equality and replaced the index k by 7 in the last line.

1)})

Ti1 = ta(k—1), Zk—1 =7 (k —

1))

(1.14)
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1.4 Generalization of the Dellacherie Formula

In this section, we derive a formula of the conditional expectation with respect to the
enlarged filtration. This is a generalization of the Dellacherie formula. We shall use
this key result to compute the expectations that we encounter in the CJD framework.
In particular, the conditional survival probability can be computed with our formula.
We apply this result in Section 1.5 where survival probability calculations are carried

out in details.

The Dellacherie Formula. We start with the following result established in
Dellacherie (1970).

Lemma 4 Let Y be a G-measurable random variable. Then, we have

E [Y X 1{7—,->t} ‘ft]

BY|FVH] = 1B [V |5V HG ] + 1ron—F [Lriony 172

In order to compute the conditional expectation with respect to the filtration
{.7-} \Y H%}, one needs to consider the two possible default states. On each set, repre-
senting whether a default has occurred before ¢ or not, the conditional distribution is
different. In general, for n default times (71, ..., 7,), we have a set of 2" default states;
one has to compute the conditional expectation with respect to the enlarged filtration
{Gi} = {F: v Vi, Hi} on each default scenario. To be more precise, we introduce the

following notations.

Notation. At time ¢, each default state is represented by n € Il,, where I, is
the set of all subsets of {1,...,n}. 7 = () means that there has been no defaults before
t; m = {1,...,n} means that every obligor has already defaulted. If 7 = {j1,...,jx}
for some indexes j,, € {1,...,n}, then these indicate the obligors that have defaulted.
To the subset 7, we associate the indicator Dﬁﬂ), which is equal to 1 if we are in the

default state (7) or 0 otherwise:

o™ & I (p?) | x [TL(1-pi) |- (1.17)

je™ jérn

We also define the filtration {gt(”)} as:

Werv|\VHL | =RV | Vo] (1.18)

JET jJET
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For instance, if n = 2, then we have 4 possible default states: I = {0, {1}, {2},{1,2}};
the default state indicators are

p®

Dt({2})

DI 21 g1,
D({ ) o

150> D

(1>

Lo <y = L <y lmac<y-

The filtrations {Qt(@)} {gt({l})} {gt({z})} {gt({l’?})} follow immediately from (1.18).

Generalized Dellacherie Formula. Next, we state our conditional expectation

result.

Proposition 5 (Conditional expectation w.r.t. the enlarged filtration). Let Y be a

G-measurable random variable. Then, we have

BV x Ty (1= 27) |07
E[Y |G:] W;HD 5 [ngw (1 B Df) )gt(ﬂ)}

The proof is based on a repeated use of Lemma 4.

Proof. We shall proceed by induction. By Lemma 4, the property is satisfied for
n=1.

Assume that the formula is true for n and let us prove that it holds for n + 1.

Define for n > 1, the filtration {.7:(”)} £ {F VvV Hi}

Applying Lemma 4 to the filtration {.7-'t(n+1)} = {ft( )y H"H} we get

B[y x (1-Dpth) |77
B[(1- Dptt) |77
(1.19)
Observing that {ft(n) % HQOH} = {[F VHE? Vv I[Vii, Hi]}, the first term of equa-
tion (1.19) can be expanded by applying the induction relationship:

BV |F™Y| = DptE [y A v et + (1 - D)

DB [y (ft(") v Hgo“}
o]

_ prtl Z D(ﬂn)E [Y X jgrn (1 B D{) M}—t VHI v {vj@r" HZ’OH
- t t :

mnelly E [ngm, (1 - DZ) ‘ [Fe vHE T v [\/j@rn Héo} }
(1.20)

— D:L‘i’lE
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Define a partition of Iytq: Mapq = I UTIL, o, and II] NII ; = (), where
I,
not containing (n + 1). They are constructed as:

1 is the set of all subsets containing (n + 1), and IT,_; is the set of all subsets

].'IL_1 = {mU{n+1}:m, € Iy},
m,., = {muUd:m, cI,}.

Equation (1.20), then, becomes

_ Z D(ﬂn+1)E {Y 8 ngé’r"“ (1 B Dg) ‘}-t v [\/jewn“ H]oo} }
= h , ,
e B {[igra.. (1= D1 [V [Vier,,, 1]

The second term in equation (1.19),

(1.21)

E [Y x (1 - Dpth) (ft(")}
E [(1 — DY) ‘ft(")}

(1= D)

)

can also be computed by the induction relationship. To expand the numerator, we
apply it to the variable [Y X (1 — Df“)]:

[ (1= D)) * Ty, (1 2F)

nt1y | £) ] _ (o)
E [y x (1 - Dpt?) ‘J—'t } = ,,,;1,, Dy B [Hg‘gwn <1 - Di) ’Qt(’rn)}

and to expand the denominator, we apply it to the variable (1 — D?H):

oty | 2] oy B[ DF)] X T, (1 DF) |67 |
E [(1 Dyt ’Ft ] = Wn;{ﬂ Dy & [Hjm (1 B Dg') \Qt(”“]

The ratio is obtained by observing that DY")DY“ = 0 if 7, # 7, so that we are left

in the denominator with one term, which corresponds to m, = 7J,.
B[v x (1- Dt |7
B[(1- Dt |F7]

B[ 5 (1= D) % Ty, (1 - 51) |07

— D(Wn)
t n+1 J (mn)
E“(lthJr )]XHJ'ﬁn(l*Dt)‘gt

A=) E [ngém (1 — Df) ‘gt(ﬂn)] X [Dt(ﬂ”) E[HﬁWH(I—D{)‘ng")]

oy e B 0 X T, (1= )6
e B[ D] x Ty, (1- D1 0]

]]

(1.22)

9
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Using the Il,,;1 corresponding default states, equation (1.22) becomes

_ prtl . {Y 5 (1 B D;H—l) ‘]:t(n)} _ (Wn+1)E {{Y] X Hj¢7rn+1 (1 N Dg) gt(wnﬂ)}
e B[(1- D) |77 wnfzn; B B g, (1- D§> ’gt;mﬂ)}
1.23

Combining (1.21) and (1.23) ends the proof. m

1.5 The Copula Approach

In this section, we consider the problem of computing the conditional survival probabil-
ity, P(7; > T'|G¢), in a copula framework. Using our generalized Dellacherie formula,
we derive an analytical result depending on the default state that we are in. This
approach was first studied in Schénbucher and Schubert (2001). However, our set-up
is more general since we consider a “time-dependent” conditional copula to model the
default times’ multivariate dependence. The theory of conditional copulas is presented

next.

Copulas. First, we give the formal definition of a copula function (see Nelsen
(1999)).

Definition 6 (Copula). An n-dimensional copula is any function C : [0,1]" — [0,1]
with the following properties

e C is grounded, i.e., C (uq,...,un) = 0 for all (uy, ..., u,) € [0,1]" such that ux =0

for at least one k;

e C is n-increasing, i.e., the C-volume of all n-boxes whose vertices lie in [0,1]"

18 positive:
2

i Z (1)t o (u’f, ,u%) >0,

i1=1 ip=1

for all (u%,,u,ll) and (u%, ,u,,zl) in [0,1]" with ul, <u?, 1 <k <n;

e C has margins Cy, which satisfy Cy (ug) = C (1,..., 1, ug, 1..., 1) = uy for all uy
in [0, 1].

This definition ensures that C' is a multivariate uniform distribution. The link
between copulas and the construction of multivariate distributions is given by Sklar’s

theorem.
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Theorem 7 (Sklar’s theorem). Let F' be an n-dimensional distribution function with

margins Fi, ..., Fy,. Then, there exists an n-copula C such that for all (xy, ..., zy) € R",
F(x1,...;xn) =C (F1(x1), .o, Fry (zp)) -

If Fy, ..., Fy are all continuous, then C' is unique. Otherwise, C is uniquely determined
on Ran Fy X ...x Ran F,. Conversely, if C is an n-copula and Fi, ..., F, are distri-
bution functions, then the function F defined above is an n-dimensional distribution

function with margins Fi, ..., Fy,.

The Theory of Conditional Copulas. Patton (2001) has extended the existing
theory of (unconditional) copulas to the conditional case by introducing the so-called
“conditional copula”. This tool can be used in the modelling of time-varying condi-
tional dependence. Here, we follow Patton’s approach by giving the formal definitions
of a conditional multivariate distribution and a conditional copula, and Sklar’s theorem

for conditional distributions.

Let A be some arbitrary sub-c-algebra.

Definition 8 (Conditional multivariate distribution). An n-dimensional conditional
distribution function is a function H (JA) : R" x Q — [0, 1] with the following proper-

ties:

e H(|A) is grounded, i.e., for almost every w € Q, H (x1,...,2y|A) (w) = 0 for

all (z1,...,xn) € R" such that xx, = —oo for at least one k;

e H (|A) is n-increasing, i.e., for almost every w € Q, the H-volume of all n-boxes
inR" is positive:
2 2 . . . .
Vi ([21,23] X oo x [27,22]) = Z Z (—1)attin g <x111,...,x31" |.A> (w) >0,
i1=1  ip=1
for all (m%, ml) and (x%, x2) in R" with x,lg < xi, 1<k <ny

ceey by cey gy

o H(oo,.....,00|A) (w) =1, for almost every w € Q.

o H(x1,..,2n]A)(.) : Q — [0,1] is a measurable function on (2, A), for each
(z1,...,2n) ER".

The margins of an n-dimensional conditional distribution function are conditional

distribution functions.
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Definition 9 (Conditional copula). An n-dimensional conditional copula is a func-
tion C (JA) : [0,1]" x Q — [0, 1] with the following properties:

e C(|A) is grounded, i.e., for almost every w € Q, C (u1,...,un |A) (w) =0 for all
(w1, ..., upn) €10,1]" such that up, = 0 for at least one k;

e C (|JA) is n-increasing, i.e., for almost every w € Q, the C-volume of all n-boxes

in [0,1]" is positive:

2 2
LY (it (ul i |A> (w) >0,
i1=1 1

in

for all (u%,,u,ll) and (u%, ,u,,zl) in R" with u,ﬁ < u%, 1<k<n;

e C (JA) has (conditional) margins Cy, (|A), which satisfy, for almost every w € Q,
Cr (ug |A) (w) =C(1,..., L ug, 1..., 1]A) (w) = ug, for all uy, in [0, 1].

o C(ug,...,unA)(.) : @ — [0,1] is a measurable function on (2,.A), for each
(u1, ..., un) € 10,1]".

Alternatively, a conditional copula can be defined as a conditional distribution

function with uniformly distributed conditional margins.

Theorem 10 (Sklar’s theorem for conditional distributions). Let H (|A) be an n-
dimensional conditional distribution function with conditional margins Fy (|A) , ..., F, (JA).
Then, there exists a conditional n-copula C (].A) : [0,1]" x Q — [0, 1] such that for al-

most every w € Q, and for all (x1,...,x,) € R",
H (z1,...,2p|A) (w) =C(F1 (21 ]A) (W), .0, Fry (2 |A) (W) |A) (w) .

If for almost every w € Q, the functions xz; — F; (z;|A) (w) are all continuous, then
C(|A) (w) is unique. Otherwise, C (|A) (w) is uniquely determined on the product
of the values taken by xz; — F; (z;|A) (w), i = 1,...,n. Conversely, if C (|A) is a
conditional n-copula and Fy (|A),..., F, (|A) are conditional distribution functions,
then the function H (]A) defined above is a conditional n-dimensional distribution
function with conditional margins Fy (|A), ..., Fy, (JA).

As a corollary to Theorem 10, we can construct the conditional copula from any

conditional multivariate distribution.

Definition 11 (Generalized-inverse). The generalized-inverse of a univariate distri-

bution function F is defined as

F~l(u) =inf {z: F(z) > u}, for alluec[0,1].
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Corollary 12 Let H (|A) be an n-dimensional conditional distribution with continu-
ous conditional margins F1 (|A),...,Fy (|A). Then, there exists a unique conditional
copula C (|A) : [0,1]" x Q — [0,1] such that

C (uy oy tn [A) (W) = H (F (u1 [A) (@) oo 7 (un |A) (W) [A) (W),

for almost every w € Q, and for all (uy, ..., u,) € [0,1]".
Given a set of conditional marginal distributions and a conditional copula, we
can construct a joint conditional distribution, and from any given joint conditional

distribution, we can extract the conditional margins and the conditional copula.
Next, we make the following assumptions.

Model. As before, we denote by 71,...,7, a set of non-negative variables on
a probability space (2,G, P), such that P(r; =0) = 0 and P(7; >¢) > 0 for any
t € R,. Weset Di = 1(;,<4y and we denote by {Hi} the associated filtration: H} =
o (D; HERS t). We are also given an Itd process X and its filtration {F;} augmented
with the P-null sets of G, and Fy is trivial. The investor filtration, in this model, is
{G:}: G = F v Vi, Hi. The firm-specific information is denoted by {G;}: G =
Fi V HL.

On the firm-specific filtration {G}}, the default time 7; has an {F}-adapted in-
tensity h?, i.e., D} — fg’/\” hids is a {G}}-martingale. So that

P(r;>T|G)) = (1-D})E [exp <— /tThgds> \}"t] :

On the enlarged filtration {G;}, 7; has a {gt_i}—adapted intensity \, i.e., D,%;—fot“i Mds
is a {G;}-martingale.

Our goal is to establish a formula of the conditional expectation
P(ri>T|Gt).

Furthermore, we assume that the multivariate dependence structure is described by
the process (62) >0 » Where

C; :[0,1]" x Q x [0,00) — [0,1]
is the conditional (survival) copula, C;(.) £ C" (.|F;), i.e., for almost every w € €,
and for all (t1,...,t,) € [0,00)",

P11 >ty >ty | F) (w) = ﬁz (P(r1 > t1|F) (W) ety Py > tn | F2) (W) (w) -
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One can formally construct the process (6;) >0 s follows.

Denote by Gy (21, ..., xn) = P (11 < 1, ..., T, < zp |F) the conditional multivariate
distribution function, and by G (x) = P (7; < x|F;) the conditional margins. Define
the generalized inverse of Gj (.), I} (v) = inf {z : G} (z) > u}; for almost every w € €,
the functions © — P (7; < z|F;) (w) are continuous. The conditional copula C7 is

then given by
Cy (u1y .oy up) (w) = Gy (Itl (u1) (W) 5oy I} (up) (w)) (W),

for almost every w € Q, and for all (uy,...,u,) € [0,1]". The conditional survival

copula, which links the marginal survival functions, is given by
2 2 ' . ' .
CF (w1 tn) (@) = Y o 32 (=107 (0] vl ) ),
i1=1 ip=1
where v} =1 —u; and v? = 1, and (uy, ..., un) € [0,1]".

Assumption 3. We assume that, for each ¢ > 0, and for almost every w € €2, the

function

Cy (Lw) =« [0,1]" —[0,1]
(UL, ooy tty) — O (U, oy i) (W)

is absolutely continuous.

Comparison with the Threshold Copula. In practice, one can construct the
copula process by considering a Cox-process approach as in Lando (1998). In this
subsection, we compare the conditional time-dependent copula with the threshold
copula used in Schonbucher and Schubert (2001). Let (h}),., be an {F;}-adapted

nonnegative cadlag process. Set

t .
T; 2 inf {t : exp (—/ héds) < UZ-} , (1.24)
0

where U; is a random variable uniformly distributed on [0, 1] and independent of F.
One can check that A’ is the {F;}-adapted intensity of 7; with respect to the firm-
specific filtration {Qtl} Assume that the distribution of the n-dimensional vector
(Ui, ...,U,) is defined by the (static) survival copula function . [0,1]" — [0, 1],

t>0

P(U; > u1, ..., Up > up) -cv (Upy ooy Up) -

c’ (.) is referred to as the default thresholds (survival) copula. Following a remark

in Jouanin et al. (2001), one can relate this copula to the default times’ conditional
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survival probability: for almost every w € €2, we have

P(11 > t1, ey ™ >t | F) (w)
= E[P(r1>t1,.,Tn >ty | Fo ) (W) | F2] (w)

- B :]P’ <U1 > exp (- /Otl B! () ds) s Un > oxp <— /Ot” B () ds) |]-“oo> () |ft} ()
— E :]P’ <U1 > exp (— /Otl h! () ds) oy U > €xp <— /Otn R (W) ds)

— E :UU <exp (— /Ot1 h! () ds> ey €XP <— /Otn B (W) ds>> ]}}] (w

the first equality follows from the law of iterated expectation; the second equality

is from the construction of the default times (1.24); the third equality is due to the
independence of the threshold variables (U, ...,U,) from F4 and the fact that the
fg " hids are Foo-measurable; and the fourth equality follows from the definition of the
threshold copula.

The default times’ conditional copula process (6: ) +>p can then be constructed via

ci (E [e—fé” M F B (el | ) — B T <e—f31 s el M) |

(1.25)
This provides a practical way of generating the conditional copula process that was
formally introduced in the previous section. By choosing an absolutely continuous

threshold copula, one can ensure that Assumption 3 is verified.

Forward Intensity. A convenient way of parameterizing the conditional sur-
vival probabilities P (7; > T'|F; V 'H} ) and P (; > T'|G;) is to introduce the forward

intensity processes (hy 0 and ()‘t,T)tzo'

Definition 13 (Forward Intensity). Assume thatP (1; > 0|F:) =1, and P (1; > T |F;) >
0, for all T € RT.

Let F} (T) £ P(1; > T|F;), for all T € RT, denote the conditional survival prob-
ability. We assume that F} (T) is a.s. continuously differentiable in the T-variable.
Then, the {F:}-adapted forward intensity at T is defined as

i _Olog F}(T)

tr = 5T , for all T € RT. (1.26)

Integrating (1.26), we obtain

T T
P(ri>T|F)=P(r; > 0|F)exp <—/ h§78d3> = exp (—/ hffvsds) , for T € RY.
0 0
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Thus, we can write the conditional survival probability w.r.t. F; V H} as

P(Ti >T|ft)
P(Ti >t|.7:t)

T
= (1- D;) exp <—/ hasds) , for T € RY.
t

P(ri>T|FRVH) = (1-Dj

Similarly, we define the {Qt_ Z‘}—zaudaupted forward intensity.

Definition 14 (Forward Intensity). Assume that P (7’7; >0 ‘Qt_i) =1, andP (Ti >T ‘Qt_i) >
0, for all T € RT.

Set H{ (T) £ P (r; > T‘Q{i) , for all T € R, and define the {Q{i}—adapted
forward intensity as:

; log H} (T
i = —aoga—Tt(), for all T € RY. (1.27)

Then, we have
. T .
P (i > T!Qt_’) = exp <—/ A§75d3> , for T e RY.
0

T
(1 - Dj}) exp (—/ A;sds> , for T € RT.
t

At this point, the forward intensity process is merely a parameterization of the condi-

P(T;>T|gt)

tional survival probability. Next, we establish the link between this parameterization

and the standard “spot” intensities.

Link Between Forward and Spot Intensity. Conditional survival probabilities

and intensities are linked via the following result due to Aven (1985).

Proposition 15 (Aven (1985)). Let (Q,Q, {@}t 07 ,P> be a filtered probability
€lo, *

space and Dy = 1y;<4y with 7 a {gt}—stopping time. Let {en},, be a sequence, which

decreases to zero and let Y;*, t € [0,T%] be a measurable version of the process

1 ~
Y= —B[Die, — Di|G]
n

Assume that there are mnon-negative and measurable processes g and y;, t € [0,T%]
such that:

1. for each t,

lim Y/* =g; a.s.;
n—oo
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2. for each t, there exists for almost all w € ), an ny = ng (t,w) such that
Y (W) = gs (W) < ys (W), Vs < t, n > no;
where

t
/ ysds < 00, a.s., t € [0,T*];
0

then M; = Dy — fg’ gsds is a {@}—martz’ngale, and fg gsds is the compensator of
Dy.

The relationship between intensity and conditional survival probability follows di-

rectly from this result (see, for instance, Schénbucher and Schubert (2001)).

Lemma 16 Let H, (T') denote the conditional survival probability
H, (T) :P<T>T‘§t> .

Assume that H, (T') is differentiable from the right with respect to T at T = t, and
that the assumptions of Proposition 15 are satisfied. Then, the intensity process of Dy

s given by N
~ OH (T
-0

7=t -

Remark 17 Note that g: = 0 after T and that g; is {th}-adapted.

Using our forward intensity parameterization (and assuming that the technical
assumption of Proposition 15 are satisfied), we can recover the {F;}-adapted intensity
process of 7;. Set Fi (T) £ P(rs > T|FVH,), and F{ (T) & P(r; > T|F;). The
process ﬁ@, which is {F; V 'H}}-adapted, and the {F;}-adapted version hj are related
by

Ei = 1{Ti>t}hi, for t > 0.
The expression of Ei can be obtained by Lemma 16:
7o _OF(T) "
! or '
SN PR o1 9
oT | U R (1)

0 r.
= ——= |lir,>0 €xp <—/ hj sds)} -
5T [ (ri>t) o 7=t

- 1{n‘>t} hi,t :
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Thus, we have the following relationship between the {F;}-adapted spot and forward

intensities: for all ¢t < 7,

hy = hi,. (1.28)
Similarly, we can recover the {g; i}—adapted intensity: for all ¢ < 7,
PR (1.29)

Equations (1.29) and (1.28) can be viewed as the equivalent of the well-known rela-

tionship between a forward rate and a short rate in interest rate modelling.

Computing the Conditional Survival Probability. Using our generalized
Dellacherie formula, the conditional survival probability H} (T) = P (7; > T |G;) can
be obtained as

Hi(T) =Y DM H™ (1), (1.30)
mwelly

where

=
2
—~
S
~—
lI>

p™ & ] (D{) X (1—D{> ,
jen j¢m
¢” 2 v |\ M| =RV |\ o)
JjE™ JE™

It is clear that all the terms in the sum (1.30) such that i € m are equal to zero. For
all the remaining ones, the conditional distribution of default depends on the default
state m observed at time ¢, and will vary from one state to the next. We derive the
formula of the conditional expectation in the pre-default state: m = (). Then, we do

the same when one or more defaults have occurred before ¢ : |7| > 0.

Pre-default. We have the following result.

Proposition 18 (Pre-default). If no default has occurred before time t, then the {G;}-

forward intensity is given by
O 7 (e~ Jo 1t ods — [ R ds — [ty ds
Ai () hz Thi d Oz; 't € e € ST L, e )
t:T =y reXp | — £ sdS — - — —
0 C: <e_ fO h%,sds, . e f() ht7sd8’ s e~ fO ht,sds>

(1.31)
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Proof. On the set H?Zl (1{7j>t}>, the conditional survival probability is given
by
8 [(1—Dp) < [T (1 - DF) 1]

E [H}Ll (1 - Dg') |]-“t]

1,(0
1 0(T) =

The numerator can be computed as

E |(1- Di) xf[(l—Di) |7t

= C, (B[(1- D})y_}}] , o B[(1= D) |R], ... EB[(1— D) |F))

—r _rtyp1 _ (T i _
frd Ct (e jO ht,sds?”',e jO ht,sdsy'”,e fO ht,sds);

the first equality is from the definition of the survival copula process, and the sec-
ond equality uses the definition of the {F;}-forward intensities. The denominator is
computed similarly. Differentiating with respect to T',

1 oM (T)
Hti,(@) (T) or

we obtain the result of Proposition 18. =

(0
e -

Post-default. If one or more defaults have occurred, the conditional distribution

of 7; changes, which results in a different expression of the {G;}-forward intensity.

Proposition 19 (Post-default). If k obligors indexed by m = {j1,...,jx} have de-
faulted before time t, and their default times are {t; ,...,t;,} respectively. Then, the
{Gi}-forward intensity is given by

©On
o ([ ) BT o)
AZ’(ﬂ-) _ hl _ hl d Ti OZjyq - ‘TJk
7 = Ny €XP t,sAS ) ,
) ’ ) ak f 7‘[‘ n R ds
0 W 0 ts ,...,e 0 t,s
25, ... 05,

(1.32)

where
©; = tj, forjem={j,...Jn};
©;, = T, forj=i;

©; = t, otherwise.

Proof. On the set |:H1127,:1 | U Edtjm}:| {Hjéé{jh..-,jk} 1{7j>t}} , the conditional sur-
vival probability is

B {(1 - D5 ) x ngﬂ (1 ) X Hﬁmzl oo cat, ) |-7:t}
[ e (1~ Dz]f) x Tt Yry, ety } |~7:t] '

Hy™(T) =
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Using the conditional survival copula process and the {F; }-forward intensities, we have

k

E|(1-Df) <[] (1 - Dg) N | TR
igr m=1

— 6; (ei .[0@1 htl,sds’ . 67 ‘I‘O@n h25d8> ,

where
©; =tj, for j € m={j1,.... jx}; ©; = T; and ©; = t, otherwise.

Hence, the k-density is given by

k
E|(1-Df) x]] (1 - Di) < [ 1, edt;, } | Fi
jgn m=1
ok — ©1 51 On pn
_ v A h; sds - h sds
96,00, ! O

= H hmexp | — " pim s 6—UT e Jo s o= J b
tT 68 Oxi ..0x; T
e’ 0 g1+ 0T

The denominator is computed similarly

k
E|(1-Dj) <[] (1 . D{) N | ETR
j¢n m=1
k ) tin k
[T () (),
el ’ 0 ’ 8:L“313:Ujk
where
0; =t;, for j € m = {j1,...,Jx}; 0; = t; and 0; = t, otherwise.

Differentiating the conditional survival probability HZ’(W) (T),

— © (S
ok T (= Jo L hids — [ b ds
0z, ...0Tj, Ct (6 e 0 *

0 6 ’
o o Pnids i heds
ijl ...axjk Ct <6 tys g eeey (& 0 t,s

HZ’(W) (T) =

with respect to T', we get the result of Proposition 19:

Yo 1 oH™(D)

i, (T
AL

| |
The formulas of Schénbucher and Schubert are obtained in our framework by set-
ting T' = t, using the relationship between spot and forward intensity, namely )\i = )‘i,v

ht = hat, and observing that

— ) On 1n — -0 O,
CZ (67 Jot h%,sds’ vy € o ht,sds) = CU <6_ Jo! hids’ vy € Jo h?d5> , (1.33)
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since for ©; < t, all the foej hids are {F;}-measurable and equation (1.25) simplifies
to (1.33).

Regenerative Form of the Intensity. Equations (1.31) and (1.32) offer another
derivation of the regenerative form of the intensity. Indeed, using the notations of

Section 1.3 where the marked point process representation was introduced, one can

write: "
M= "1 cengal” T1 Zay e, Thor, Zien), (1.34)
k=1
where
(k) ¢ i L _xile“‘xqu
a; - (6T1, 21, s Ti—1, Zk—1) = hyexp —/ hods | ————, (1.35)
0 szl...xzkil
. . =U —=U
and the lighter notations Crifvzl-..zzk X and szl"'mzk | are short for
v I e Gy
TilZy T2y ox; 8%21...8.%2,671 v ’
k—
v _ o (e—ffl hids o= Jo" h?ds)
T2y %25 0rz,..0rz, T ’
Oz, = Tj forl1 <j<k-—1;0;=t; and ©; =t otherwise.

Dynamics. Assuming that the {7;}-adapted intensities (hf, ..., A}’ o follow a

diffusion, we can derive the dynamics of ()\i) by applying It6’s lemma to the regen-

>0
erative form (1.34). At each default time T, for 1 < k < n (and given that obligor ¢

has not defaulted), the jump of A! is given by

i . i i (k+1) /- . (k) /-
ANy = Ap, — A =ap 7 (i) —limay (2)
k 1Ty
—=U —=U
i _ka hids Tz, T, Cwiwzlu-fvz,v,l
= the 0 Us — - —F . (1.36)
szl...:rzk Tz TZy_ 4

Between jump times, ()\i) e follows a diffusion. For Tj_1 <t < Ty, it coincides with
(k) N

a;’ (1) whose dynamics can be obtained by It6’s lemma:

r —=U —=U

dagk) (1) . dh% hzdt Z Cxixszl...mzk71 ijle...mzk71 h] _ft hgds
o -~ yat | — — - = te 0
a® (3) hi cy v
i L i¢{Z1,., 21} iz -T2y 22y-%2Zp 4

r —=U —=U

dht . Cxix-xz Xz, sz Tz, k) .
(G- |t ) o ()
L t Jt{Z1,.., Zx—1} TiTzy Tz, |~ TjTZ Tz,
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Note that the index j ¢ {Z1,..., Zx_1} covers all the non-defaulted obligors including

. Thus, the dynamics of ()\ff) are given by:

>0
for t < 7,
) ) U U
d)\ff . dh% _pid) — CﬂciﬂciﬂcZy"mZk,lCer"kafl “1 N at
)\i - hl t €U —=U (2
t— t TiTgy Tz | T TiTZ Tz
—U —=U
Cona C
iLjLZy L2y g~ LZyTZy j j
+ — L —1| (apf = X_dt)
jg{Zl,‘.%,‘Zk_l} TiTzy Tz | TjTZy Ty
jF#i
(1.37)
Defining a version of the intensity )\i, which does not jump after 7;,
N =X
we can express (1.37) using the marked point process p (dt x dz):
; , —U —U
dX; dhy TiTT Ty Tz TZy ) )
N H + 1—— — A — hi| dt
[ t Llfizlleu.xzk71 xile...a:Z,Fl
+/ A (i,w,t,2) (pu(dt x dz) — v (dt x dz)), (1.38)
E
where the jump size A (i,w,t, 2) is given by
—=U 6U
TITZTZ (W) T 7y, (w) T2 (w) T2y g (w) . )
— — —1,if z#i
. U U ) )
A(Z,UJ, t,Z) - Czizzl(w)...zzkil(u})szzzl(w)...zzkil(w) <139)
0, if z = 1.

The intensity A’ has a diffusion part, which is defined by the dynamics of the {F;}-
adapted intensity h?, and jumps upon the default of the other obligors. This is an
equivalent representation of the copula model as another member of the class of “loop-
ing” default models considered in Section 1.3. Note that, if the tresholds (U, ..., Us)

are independent, i.e.,

n
C(Upy .oy uy) = Hui, for all u; € [0,1],

i=1
then,
o —U
miiﬂzl'zl(w)...wzkil(w) mzl(w)...ivzkil(w) . f 3
— — = 1, for z # 1,
TiTZy(w) - TZy_q(w) ~ TZTZy(w)TZp_q(w)
—U —U
l'il'il'zl(w)...ivzkil(w) mzl(w)...ivzkil(w) . f .
— — = 0, for z =1,

xile(w)...xzkil(w) xile(w)"‘xzkfl(w)
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and equation (1.38) degenerates to

i dhi .
— = — A — R} dt.
Ai— hwlt + [ t t]

This is consistent with the fact that, when the default tresholds are independent, the

intensities A\* and h® coincide.

1.6 Numerical Examples

The goal of this section is to illustrate the relationship between CJD dynamics and
the copula approach. We start with the Jarrow and Yu model, for n = 2, and we
look at the default correlation implied by a given conditional jump size. Then, we
consider the inverse problem where we study the default contingent jump implied by

a Gaussian copula.

Case Study: n = 2. We consider the example of 2 default times with interacting

intensities:

/\t1 = )\[1) + A121{7—2§t}7
A? - )\% + A211{T1§t}7

with A% > )\(1) and A?? > )\%. And let a2 and as; denote the proportional jump
ratios: Al2 = a12>\(1), A2l = agl)\g.

Figure (1.1) shows how the pair-wise default correlation varies with the jump size
for different time horizons. When the jump size is zero, the two default times are
independent and their default correlation is zero. On the other hand, when the jump
size goes to infinity, the default correlation goes to its maximum value. In this example,
the two intensities are identical, and the highest achievable default correlation is 1.
Intuitively, an infinite intensity corresponds to the default state. In other words, an
infinite jump size implies that the default of one obligor triggers the default of the
other.

The copula function implied by these CJD dynamics is depicted in Figure (1.2).
For convenience, we have plotted the copula in Gaussian coordinates, i.e., we use the
transformation: (61,02) — (271 (P (11 < 61)), 2 (P(r2 < 62))).

In order to do a comparison with the standard Gaussian copula (depicted in Figure
(1.3)), we calibrate the parameters of both copulas such that the default correlation
is the same. In this example, the 5-year default correlation is 15%. Since the default
correlation is the same, the “slope” of the copula functions is preserved, but the

behaviour in the tail is very different.
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Default Corr.

Jump Size

Figure 1.1: Default correlation as a function of the jump size ratio a = a2 = a1, for
different time horizons T'. The intensities are A} = A3 = 100 bps.

Figure 1.2: Conditional jump diffusion copula, with a jump ratio of a9 = a1 = 3.58,
which corresponds to a 5 year-default correlation of 0.15 for )\(1) = A2 =100 bps.
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Figure 1.3: Gaussian copula with an asset correlation of 0.497, which corresponds to
a 5 year-default correlation of 0.15 for A} = A2 = 100 bps.

Gaussian copula. Now, we investigate the inverse problem. We consider two

default times (71, 72) with marginals

P(ri>T) = e ™7,

P(ry>T) = e 7,

for some fixed h1 € R4, he € R, and whose joint distribution is defined via a Gaussian

copula, i.e.,
P(r1 <Ti, 1o <T) = o (@71 (P(m1 < T1)), @ (P(r2 < T2))),

where ®5 (.,.) is the bivariate normal distribution and ®~!(.) is the inverse normal
function. And we study the link between the default contingent jump size and corre-
lation.

Figure (1.4) shows how the jump size ratio varies with asset correlation. As corre-
lation increases, the jump size ratio increases as well. For a correlation of 1, the jump
size goes to infinity. In other words, the default of one obligor triggers the default of

the other one and vice-versa.

1.7 Conclusion

The objective of this chapter was to introduce the conditional jump diffusion frame-

work and its relationship with default correlations and copulas. This was done in two



1. The Conditional Jump Diffusion Framework 35

5]
o

N
[

N
o

w
]
I

Jump Size
N N w
o v o

! |

—_
(51
L

10 +

Asset Corr.

Figure 1.4: Jump size ratio implied by a Gaussian copula as a function of asset corre-
lation. The intensities are hy = hy = 100 bps.

steps. First, we have studied CJD dynamics and their implied default times’ multi-
variate dependence. Then, we have considered the inverse problem and examined the
consequences of a choice of copula on the dynamics of intensities. Thus, establishing
the equivalence between CJD and Copulas. This equivalence principle has a few useful
applications. It can be used as a sanity check, to verify whether a specific calibrated
copula function implies reasonable jumps. One example is the standard Gaussian cop-
ula calibrated on KMV historical asset correlations. The analysis of implied jumps
can be a powerful tool for finding aberrations in the calibration procedure. On the
other hand, one can have a view on the jump in default and would rather build a
default model, which reflects that view. This is very similar, in spirit, to calibrating a
term structure interest rate model, then infer implied forward volatilities, or building
a BGM style model, which is consistent with one’s view of forward volatilities. Both

approaches are useful and complement each other.



Chapter 2

Correlation with a Difference

In this chapter, we analyze the “Marshall-Olkin” copula model in the context of credit
risk modelling. This framework was traditionally used in reliability theory to model
the failure rate in multi-component systems. The failure of each component is assumed
to be contingent on some independent Poisson shocks. Our aim is to show that MO
is a viable alternative to the Gaussian copula. This is done in three steps: (1) we
introduce the MO model as the natural extension of a univariate Poisson process,
(2) we discuss the calibration issues, (3) we compare it with the standard Gaussian
copula. Furthermore, we show that the MO model can be used to reproduce the

observed correlation skew in the CDO market.

2.1 Introduction

The problem of correlating multiple credits boils down to the specification of a copula
function, which links the marginal default distributions. There is a growing literature
that addresses this problem. The main approach that has emerged as the market
standard is the Gaussian copula approach. The idea of using a Gaussian copula to
model the default times’ dependence in basket products goes back to Li (2000). It was
also used implicitly in the CreditMetrics framework and the KMV firm-value approach.
The t-copula is an extension of the Gaussian copula with a higher tail-dependence. It
allows for a better modelling of extreme events’ risk. A good reference on t-copulas
and the pricing of small baskets can be found in Mashal and Naldi (2002).

In this chapter, we study another alternative: the Marshall-Olkin copula. This
latter was first used in the context of basket credit derivatives pricing by Duffie (1998),
then by Duffie and Garleanu (2001). The Marshall-Olkin copula was traditionally used
in reliability theory to model the failure of multi-component systems. In this set-up,

the failure of each component is assumed to be contingent on some independent Poisson

36
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shocks. This is also known as a multivariate Poisson model. A good description of
these models can be found in Barlow and Proschan (1981). The Marshall-Olkin copula
can also be viewed as the limiting distribution of a multivariate binary model (Wong
(2000)). One practical feature of the Marshall-Olkin approach is the simplicity of its
Monte-Carlo implementation. In addition, it has a number of useful analytical results
for aggregate portfolio distributions (see Lindskog and McNeil (2003)).

The purpose of this chapter is primarily to show that the Marshall-Olkin model
can be a viable alternative to the standard Gaussian copula. This is achieved in three
steps. First, we present the MO framework. Second, we propose a parameteriza-
tion procedure of the model based on market intuition and observed market prices.
And third, we compare the Marshall-Olkin copula with its elliptical counterparts: the
Gaussian and the t-copula.

The rest of the chapter is structured as follows. In Section 2.2, we introduce the
Marshall-Olkin model. In Section 2.3, we derive the copula function of default times.
In Section 2.4, we study the aggregate default distribution. In Section 2.5, we discuss
the model calibration. In Section 2.6, we compare Marshall-Okin with the Gaussian
and t-copula. In Section 2.7, we use the Marshall-Olkin copula to reproduce the

correlation skew in the CDO market.

2.2 The Model

We work on probability space (£2,G, P), on which is given a set of n non-negative
random variables (71, ..., 7,) representing the default times of a basket of obligors.

We introduce, for each obligor i, the right-continuous process D} = 1¢r,<4y indi-
cating whether the firm has defaulted or not.

We assume that there exists a set of m independent Poisson processes (Ntc j) >0
with intensities A% € R,, which can trigger simultaneous joint defaults. -

Each Poisson process N% can be equivalently represented by the sequence of event
trigger times {6;’ }7’6{1,27---}'
For every event type c;, and for all ¢ > 0, we define a set of independent Bernoulli

variables (A,}’j, ...,A?’j> with probabilities (p', ..., p™7), p™J € [0, 1].
We assume that for j # k, the vectors A{ = (Ai’j, ceey A?’j> and AF = <A%’k, ey A?k>

are independent.

We assume that for ¢ # s, the vectors AJ = (A%’j, vy A?’j> and A = (Ai’j, s A?’j>
are independent.

At the r* occurrence of an event of type ¢j, we draw the set of independent {0, 1}-

valued Bernoulli variables (A;’% s s AZ&? ) The variable A;’gj indicates, conditional on
ks T

T
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an event of type c;, whether a default of type ¢ has occurred or not.
defined as

N; & f > A (2.1)

=1 g% <4

The process ( l)t>0

is also a Poisson process with intensity
m
N=) T phIa, (2.2)
j=1

It is obtained by superpositioning m independent (thinned) Poisson processes.

The default time 7; is defined as the first jump time of the Poisson process (NZ) >0

i 2 inf {t : N} > 0}. (2.3)

This common shock model can also be described formally by the following SDE
. . m ..
dD} = (1-Dj ) APdN;. (2.4)
j=1
This description was used, for instance, in Duffie (1998).

2.3 The Copula Function

In this section, we derive the copula function of the shock model described above.
To this end, we shall use the “equivalent fatal shock model” of Lindskog and McNeil
(2003).

Equivalent Fatal Shock Model. Let IT, be the set of all subsets of {1,...,n},
excluding the empty set (). For each 7w € IlL,, we introduce the point process N/,
which counts the number of shocks in (0, ¢] resulting in joint defaults of the obligors

in 7 only:
N €j
m

N[ & ZZA;}j, (2.5)

j=1lr=1

where, for each trigger time 657, Aw’g is a Bernoulli variable, which is equal to 1 if all

obligors ¢ € 7 default and all the others i ¢ 7, survive:

AP 2 TT 4P ] (1 - A;}j) . (2.6)

1ET ¢
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At the occurrence of the r™ common shock, of type cj, at time 0y, the point process

N7 gets incremented by AN;’:J. = A;ri’g . For example, if 7 = {1, 2}, then the process

Nt{l’g} counts the shocks, which trigger simultaneous defaults of obligors 1 and 2 but
not the other obligors 3 to n.

We have the following fatal shock representation key result. We refer to Lindskog
and McNeil (2003) for details (see Proposition 4).

Proposition 20 (Fatal shock representation). The processes (N™), .y are indepen-

dent Poisson processes' with intensities

m
AT = pr,j)\cj-’
j=1

where
v =TI L0 - 2).

1ET ¢

This provides a fatal shock representation of the original not-necessarily-fatal shock
set-up. It will allow us to analyze the multivariate distribution of the default times.

For m € I1,,, let 7, denote the first jump time of the Poisson process N™:
T =1inf {t : NJ > 0}.
Each obligor i can be equivalently described using the fatal shock representation.
Lemma 21 (Obligor description using the fatal shock representation).

1. The Poisson process N* can be expressed as

N = > 1yemNT,
7T€Hn

and its intensity? is given by

No= 3" LemA™

7T€Hn
2. The default time T; is given by

Ti=min{rr:i€m, T y}.

'The processes (N’r)Wel_In do not jump at the same time, i.e., for m1 # w2, and t > 0, ANTAN;? =
0, where the jump process AY of a semi-martingale Y is defined as AY; £Y; — li?tlYS.

2Note that \* # AU}, Indeed, for 7 = {i}, N{ # Nt{i}. The process N counts all shocks affecting
obligor i, which may also affect other obligors. Nt{’} counts the shocks affecting obligor 4 only.
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Multivariate Exponential Distribution. Since we have

= inf {¢: N} > 0} = inf {t : Z Lgiem N > 0} = minT,,

THET
7T€Hn

the multivariate distribution of (71,...,7,) = (rriln Try e, N Tﬂ> can be computed
m:lem TNET

as follows.

Proposition 22 (Multivariate Exponential Distribution). The multivariate distribu-

tion of the default times (T1,...,Ty) is

P(ry>Th, ...t > Ty) H exp < maxT,) (2.7)
7€l

where AT, £ fOT ANds = \"T.

This is the Multivariate Exponential Distribution developed by Marshall-Olkin
(1967). We refer to Barlow and Proschan (1981), Joe (1997) or Nelsen (1999) for a
detailed study of this distribution function:

P(ry>T1, ..., 7q >1y) =exp | — ZA{T? - ZAg;Q(T,,T) T AEM(;ETH)
i 0]

Proof. We proceed as follows:

P(ri>T,....mn>T,) = P (mlmT7r >T1, ..., mien Tr > Tn>
mnem
= P ( Tx > max[T; })
leﬂ'
welly
= P( ma.xT )
w€lln

()
AL e

().

the third equality is from the definition of 7, the fourth equality is due to the inde-

pendence of the Poisson processes (N7) |

w€lly”
The Multivariate Exponential distribution is “memoryless”, i.e., it has the property

that

Pri>T,..tpn>Th 1>t .t >ty) =P (11 >T1 —t1, .7 > Ty — ty)
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for all Ty > tq1,...,1,, > t,. This is the multidimensional version of the well-known
property for the exponential distribution.

Example. For n = 2, if we set uy 2 P (11 > t1), us = P(72 > t3) and ag = %,

as & %, we get the bivariate Marshall-Olkin survival copula?

C (u1,u2) = uyug min (ufal,ugm) — min (ufalug, ulu;o@) : (2.8)
The copula function (2.8) has an absolutely continuous part on the upper and lower
triangles: {u; < ug} and {u2 < w1}, and has a singular component on the diagonal

{u1 = UQ}.

2.4 The Aggregate Default Distribution

The central question in credit portfolio modelling is the study of the aggregate default
distribution of a given portfolio. Let X; denote the total number of defaults, for a

fixed time horizon t: .
X, 2> Dj. (2.9)
i=1

The distribution of X, is referred to as the aggregate default distribution at time ¢. In
this section, we derive the aggregate default distribution in the Marshall-Olkin model.

Poisson Approximation. In Lindskog and McNeil (2003), the default indicators
D} are approximated by their corresponding Poisson counters N;. For low default
probabilities this is a reasonable approximation. For ¢ > 0, the total number of

defaults X; is then approximated by the random variable Z; defined as

n
Xy~ Z 2 N (2.10)

i=1
This is known in the actuarial literature as the approximation of the individual model
with the collective model; for low individual default probabilities, the likelihood of
multiple jumps in the Poisson process is small, and is neglected for the purposes of

estimating the aggregate portfolio distribution.

3The bivariate survival copula of two randoms variables (X1, X2) is defined as the function C:
[0,1] x [0,1] — [0, 1] such that

C(]P)(Xl >£131),]P(X2 >£B2)) :]P)(Xl > xl,Xz > :Eg).
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The total number of losses Z; = Y | N{ is a compound Poisson process. It is the

. . Cj
sum of m independent compound Poisson processes Z,”:

Ca
Z\r]
t

AEDY Zn: A;]] (2.11)

r=1 =1

Next, we derive the distribution of Z;, first, using its moment generating function,

then using Panjer’s algorithm.

Moment Generating Function. The aggregate portfolio counter Z; is a com-
pound Poisson process, which is obtained as the sum of m independent compound

Poisson processes:

m
Zi=Y 77 (2.12)
j=1

The distribution of each compound Poisson ij is not available in closed-form, but

one can compute the moment generating function of Z;,Lz, (a) = B [e“"zt]. Since

the processes Z,” are independent the m.g.f. of Z; is given by
M
Lz, () = 1_[15251' ().
J:

7.7 is defined by the Poisson counter N,” and its compounding distribution X
i.e.,
N,
z7 L3 X7, (2.13)
r=1

where ij,ng, e X (g XCJ) are i.i.d. independent of Ntcj. When the jump sizes

Cj . . . . .
X, are discrete random variables taking values in {a1, a2, ...}, one can write

C4 a
Z7 = apN{x,
k
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where N/* are independent Poisson processes? with intensities
A% = NP (XY =ay),

and the m.g.f. of the compound Poisson process is obtained immediately as

()| <o (e - ).

k

£, () =B [e—azfj] —F

Here, the jump sizes take values in {0, 1,..,n} and the distribution of X% = Y1 | A%,
where A%J is a Bernoulli variable with probability p*/, can be computed by inverting

its Fourier transform, which is given by the product
n . .
f-ch (O&):E[ —taX J} H ,Je 1o l_pl,j))'
=1

The moment generating function of Z; is then given by

Lz, (a H exp (—t i (1 - e—ak) AP (X% = k:)) . (2.14)
k=0

Panjer’s Recursion. As shown in Lindskog and McNeil (2003), the distribution
of the compound Poisson Z; can also be derived using Panjer’s recursion. The total

number of losses Z; has the following representation (see Proposition 6 in Lindskog
and McNeil (2003)):

N,
223X, (2.15)
r=1

where NV, is a Poisson process with intensity

X:i)&‘j [1-12[(1—;%3')] .

i=1

4Indeed, it suffices to write

N7
Ztcj - zt:lxcj_zzakl?fjak

r=1 k
Nt
) — Ak
S |3 10y | = M
k r=1 k

The process N;* is a Poisson process obtained by thinning Ntcj; its intensity is given by
A% =1 [I{XCJ- =ak}] A%. The N;*’s are independent since they cannot jump at the same time,
AN AN =0, for k # 1.



2. Correlation with a Difference 44

It counts any loss-causing shock in (0, ¢]. )Afl, )?2, vy )Z'T (i X) are i.i.d. and indepen-
dent of N;. The distribution of X is given by

P()Z':()) ~ 0,

P()?:k;) - igwp(x%‘ — k), fork=1,..,n,

P(X‘:k) — 0, for k> n.

The distribution of Z; can then be computed with Panjer’s algorithm (see Panjer
(1981)):
—Xt) :

l
Zkl@()?:k)l@(zt:z_k),forz>0.
k=1

P(Z;=0) = exp

At
l

/N

This recursive algorithm offers a more efficient method for computing the probabilities

P (Z; =), than the inversion of the moment generating function.

Duffie’s Approximation. Duffie and Pan (2001) have suggested another approx-
imation of the aggregate default distribution. They have neglected the probability of
multiple jumps of the common market factor events® and they have assumed that the

solution of the SDE (2.4) can be approximated as
4
Dj~Y AYN7. (2.16)
j=1
A

Using equation (2.16), we can easily approximate the Laplace transform of X; =

S Di as a product of conditional market factor Laplace transforms:

Lx,(a) = E[e Y]

m n

~ [ |exp (—AF) + (1 —exp (A7) [ (e + (1 —p™))|,
j=1 i=1
where A7} £ fOT \ids = \9T.
If m > n, so that we have n idiosyncratic factors and m — n common market

factors, i.e.,
m—n

Dj~ Y AWMNI 4+ N,
j=1

"Refer to Duffie and Pan (2001) for a discussion of the domain of validity of the approximation.
A numerical comparison of Duffie’s approximation, the Panjer approximation and the exact method
can be found in Chapter 4.



2. Correlation with a Difference 45

where Nto 4 A N;™~""* is the idiosyncratic factor of obligor i. Then, the Laplace

transform collapses to
m
Fx, (a) ~ H eXp (1 — exp ( A )) cp? (oz)] , (2.17)
j=1

where

AS)

=
=

Il
=

((1- e (A%)) e +exp (~4%) ).

(e + (1-p7)).

1

~.
I

AN
®
I
—

-
Il
—

A direct inversion of the Laplace transform (2.17) gives the aggregate default dis-

tribution.

Monte Carlo. The aggregate default distribution can also be estimated using
a Monte-Carlo method. A good reference on simulating Multivariate-Exponential
Default Times can be found, for instance, in Duffie and Singleton (1998).

We are interested in simulating the correlated default times (771, ..., 7,) only if they

occur before a fixed time horizon T'. The basic algorithm proceeds as follows:

1. Simulate the jump times of the market factor Poisson processes (Nr_cpl, ey Nr_ﬁm) :
{ef"j}re{l,z...}’ for 1 <j<m,

(a) Initialize 05 = 0,
(b) While ;7 < T, simulate a uniformly distributed variable U, find the inter-
jump time S such that 1 —exp (— (AZZ — A )) = U, set 0 = 9i11+5;

J
07‘71

2. For each market factor jump time 6,7, simulate the individual default Bernoulli
variables <A1’cj , LAY ) :
059 059
(a) Simulate a set of n independent uniformly distributed variables (U, ..., Uy),
set A;’gj = Ly, <pis}, for 1 <i <m;
3. Set the individual default times:

ri = min (A0 + (1- AR )T:1<j <m0 <T).

T

A variant of this simulation uses the fact that the process Nf = N/ +...+Nf™ is a

Poisson process and its intensity is given by the sum of intensities A\ £ X\ 4 ... 4+ \°m,
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The probability of having a market factor jump of type {c;} is given by the ratio

P = ch . Conditional on a market factor jump at 67, the identity of the market factor

that triggered follows a multinomial distribution with parameters (Q, ey )‘;—Zn) We

have the following algorithm:

1. Simulate the jump times of “any type” of market factor events in the interval
(0, T): {07} c12,..

(a) Initialize 65 = 0,

(b) While 67 < T, simulate a uniformly distributed variable U, find the inter-
jump time S such that 1 — exp (— (Ag — 50_1>) =U,set 0. =0._1+S;

2. For each jump time 67, simulate the identity of the market factor that has trig-
gered J;:

(a) Simulate a uniformly distributed variable U, find the index J¢ in {1,...,m}

such that
Je—1 J

S <Y
j=1 =1

3. For each pair (05, J©), simulate the individual Bernoulli variables (A,lﬂ"]’g, ...A?’J’E>:
(a) Simulate a set of n independent uniformly distributed variables (U, ..., Uy),

set Ap”" = 1{Ui§pi,J$}7 for 1 <i < n;
4. Set the individual default times:

T; = min (Af:‘]ﬁ@ﬁ + (1- Aﬁ,’Jﬁ) T:0.<T).

The second algorithm is clearly more efficient than the first since we restrict the
simulation to a single vector of market factor default times. The intensity of the “any-
type” market factor event is potentially m times larger than the individual market
factor intensities, hence would produce more jump times. The conditional probabilities

(pj) e provide a much better way to simulate the identity of the market event.
<j<m

2.5 Calibration

The Marshall-Olkin copula model offers a very rich correlation structure, which can

be used to reproduce some observable measures of interdependence such as estimates
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of default correlations or basket credit derivative prices. In this section, we discuss the
calibration of the model parameters.

In general, one needs to specify m (n + 1) parameters, corresponding to the vector
of market factor intensities and the matrix of factor loadings. Market factor events
can be classified in two categories: (a) “common” market factors affecting a subset of
credits, which share some common characteristics; (b) idiosyncratic factors specific to
individual obligors. Suppose m > n, so that we have n idiosyncratic factors Nto ’i, with

intensities A%, and m. £ m — n common factors. The decomposition (2.2) becomes

Me
X=) " phIa 4 A0, (2.18)
j=1
Each idiosyncratic factor N%¢ triggers the default of obligor i only with probability
1. The number of unknown parameters is m. (n + 1); the individual idiosyncratic terms
are obtained directly by the residuals [)\i — Zj:cl phi )\CJ} .

The aim of the calibration procedure is threefold:

1. define the common market factor events that constitute the backbone of the

correlation structure;
2. specify a parametric form of the market factor loadings;

3. calibrate the intensity levels of the pre-specified market factors in the model.

Next, we explore each point in turn.

Choice of Common Market Factors. The first step consists in specifying
the common market factors that explain joint default events. Clearly, this choice is
market-specific and depends on macro and micro economic factors, which prevail at a
particular point in time. The set of economic drivers that explain the default correla-
tion “sentiment” for investment grade credits, for example, are different from the ones
that affect emerging market or high-yield credits. On one hand, one would find that
the behaviour of investment-grade credits is most likely to be explained by industry-
sector events; on the other hand, in emerging markets the joint behaviour of credit
entities is better explained by regional and country factors. Taking investment-grade

credits as an example, one can highlight three distinct types of market behaviours:

e Intra-sector segment: it is commonly accepted that credit spreads of reference
entities, belonging to the same industry-sector, have a tendency to move in
tandem. This would seemingly imply the existence of a sector factor, which is

generally stable in time and jumps occasionally. Sector factor shocks are observed
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through the joint co-movements of credit spreads in this particular sector. The

sector factor itself cannot be observed but we can observe its effect.

e Inter-sector segment: historically, we observe that credit spreads in different
industries have also a tendency to move together. The dependence between
credits from different sectors is less important than the one observed intra-sector.
This would correspond to general economy-wide events such as economic cycles,
recessions, etc. Using the equity market terminology, we refer to the inter-sector

driver as the “Beta” driver.

e Super senior risk: using the market-standard Gaussian copula model, one
finds that the value attributed to a super senior CDO tranche is equal to zero.
This is due to the “zero-tail-dependence” property of the Gaussian copula. The
credit CDO market, however, has a different view. Indeed, super senior tranches
are priced and traded at a premium of the order of a few basis points. This
suggests that the market is pricing the highly unlikely global Armageddon risk
(a situation where everyone defaults), and attributes an insurance-like premium
to this “catastrophe” risk. Unlike the Gaussian copula, the Marshall-Olkin model
is capable of capturing this effect. By assuming a low-probability global “World”
driver and letting every credit in our universe have a factor-loading equal to 1,
we ensure that the premiums of super senior CDO tranches are floored at the
world driver spread. We can view this as a background radiation effect: the
world driver sits silently in the background, and would never be active (under
the real probability measure), but if the event occurs, every credit entity would

default almost surely.

Summary 23 In this specification of the Marshall-Olkin model, we have the following

decomposition:
me—2
N= )4 ] 4 Y S ] 4 A, 2.19)
j=1

where

MWV is the intensity of the “World” driver;

AB is the intensity of the “Beta” driver, and pi,B 5 the loading on that driver;

A% is the intensity of the “Sector” driver Sj, and p; s, s the loading on that
sectorﬁ;

A% is the intensity of the idiosyncratic event.

1f 4 € S; then pi,s; > 0 otherwise p; s, = 0.
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Parametric Form of the Factor Loadings. The second step consists in fixing
the matrix of factor loadings [pi’j ] It is clear that given the large number of credits
that one has to deal with, it is crucial to reduce the dimensionality of the parameters
to be specified. A natural approach, as suggested in Lindskog and McNeil (2003)
and Duffie and Pan (2001), is to assume that the contribution of each market factor
component (pi’j )\Cj), in equation (2.19), is a fixed percentage «; of the total intensity
X ie., forall 1 <i<n,
pi’f\?cj =a; < L.

The market factor contributions (aq,...,a;,) are chosen such that the residual

idiosyncratic intensities are positive:
Me Me
i 0,5 \¢j ,
A —Zp I\ 20(:)12201].
j=1 j=1

One consequence of this choice is that the loadings are completely specified by the

individual intensities and the corresponding market factor intensities

o A\
ph] — a]E'

Unfortunately, as the intensity A’ increases, the loading p™/ increases and can

breach the condition that it is a probability:
pHI < 1. (2.20)

A suggested parameterization is to impose condition (2.20) by writing p*/ as a

conditional probability function
P =1—exp (-7 ), (2.21)
where the “hazard” rate -, ; is defined as
YVi,j = O‘j)\iczj-
Expanding the exponential to first-order, we find, for ajA’\—é << 1,

p =1—exp <—0@~E> ~ Qg

and as A goes to +0o, p*J converges asymptotically to 1.
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Calibration of the Market Factor Intensities. Finally, given the parametric
form (2.21), the only unknown parameters left are the common market factor intensi-
ties, which can be recovered from benchmark basket instruments such as first-to-default
swaps, or CDO tranches. Another possibility for calibrating the driver intensities is to
use empirical default correlations. For example, one can use the average inter-sector
default correlation to fit the Beta driver, then for each sector driver use the average
intra-sector default correlation.

Note that the calibration method presented in this section resembles the one used

for an HJIM model of yield curve dynamics,
n .
df (t,T) = (...)dt+ Y % (t,T) dW},
i=1

which is also done in three steps:

1. define the number of drivers that explain the dynamics of the yield curve, e.g.

n=3;
2. specify a parameterization of the volatility curve for each driver:

i (t,T) =04 (t) F; (T — 1)

3. calibrate the instantaneous volatility levels o; (¢) on a set of benchmark swaption

or cap instruments.

2.6 Gauss vs Marshall-Olkin

In this section, we compare the Marshall-Olkin copula with the standard Gaussian

and Student copulas.

Overview. The Gaussian copula is defined as
C (u, . ttn) = 2™ (271 (w1), ..., 271 (u2)),

where ®" (.) is the joint distribution function of a normally distributed random vector
with unit variances and zero means, and @1 (.) is the inverse function of the univariate
standard normal distribution. The Gaussian copula can be viewed as the copula
function of a set of correlated Gaussian variables transposed back into “uniform”
space with the inverse normal function.

The t-copula is defined as

C (ut, ooy tt) = 70 (51 (1) oyt (u2))
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where ¢} (.) is the joint distribution function of the multivariate student distribution
and ¢, (.) is the inverse function of the univariate student distribution. The t-copula
is obtained from the multivariate dependence of a set of correlated student variables.

Some key differences between Marshall-Olkin, Gaussian and t-copula are summa-

rized below.

e Tail dependence: the upper tail dependence is defined as
Ao = 11/1%19 (X > F¢' (0 |[Y > Fyt(u) (2.22)
u

(see Embrechts, Lindskog and McNeil (2003)). The expression of the tail depen-
dence (2.22) for the three copula functions, Gaussian, t-copula and MO, is given
by:

Gaussian
)\U - 0,

_ Vv1i—p
Ay copule - — 2(1—t,, (x/y+1 ))
U +1 T+,

A2 {12} 1 1
M.O. _ : W1 i .
AU = Inm( @ > [)\ ]mln (/\{1},)\{2}>.

The tail dependence for a Gaussian copula is always equal to zero. The t-

copula and the Marshall-Olkin copula can be parameterized to fit non-zero tail

dependence and to capture more extreme tail events.

e Elliptical copulas do not allow for multiple defaults in the interval [¢,t 4+ dt),
ie. P(ri=715) =0, for i # j. In a Marshall-Olkin model, the probability
of instantaneous joint defaults can be non-zero. In fact, the foundation of the

correlation profile in MO is based on joint instantaneous defaults.

e The mixed partial derivatives of a copula function, #%W, exist for almost all
€ [0,1]". The copula function can then be decomposed into its absolutely

continuous part A (uq, ..., u,) and its singular part S (ug, ..., uy):

C (U1, ttn) = A(ug,...,un)+S(u1,...,up),

U, k
A (ugy.yuy) = / / o°c ml’” xn)dwl Az,
S (Uty ey tly) = (Ul eeey Up) — (ul,..., Up) -

Elliptical copulas, by construction, are absolutely continuous. The Marshall-
Olkin copula has a singular part and a continuous part (see, for example, Em-
brechts, Lindskog and McNeil (2003)).
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e Many analytical results are available for the Marshall-Olkin copula, and the
pricing of credit derivatives such as first-to-default swaps can be implemented
in closed form. In general, for the Gaussian and t-copula, one needs to use a
Monte-Carlo simulation, except in simplified one-factor models (as in Schén-
bucher (2000) or Frey and McNeil (2003)), where semi-analytical results are
available by using the conditional independence property and integrating over

values of the conditioning latent variable.

Modes of the Aggregate Default Distribution. Consider a portfolio of 100
obligors with 10 credits per sector. Set the intensities of the individual credits to
A\ = 2%, the intensity of the World driver to A" = 0.05%, the intensity of the Beta
driver to A® = 5%, and all the sector intensities to A% = 2.5%. Attribute 60% of the
credit intensity to the Beta factor, 20% to the sector factor, and the remaining 20%
to the idiosyncratic factor. This implies the following values of the factor loadings:
pB =0.24, and p»S = 0.16. The 5-year default correlation in this model is 19.25%
intra-sector, and 16.16% inter-sector’.

To begin with let us consider the aggregate default distribution at the 5-year time
horizon.

We plot the distribution of the portfolio specified here with (pi’B =0.24; p»Si = 0.16),
and we compare it with the distribution of a portfolio with similar marginals but a
different multivariate dependence (pi’B =0; pi¥i = 0).

In Figure (2.1), we observe that the default distribution has four different modes:
the first big hump corresponds to the idiosyncratic component, the second hump cor-
responds to the Beta contribution, the third hump is the sector contribution, and the
last spike at the far end of the distribution is due to the world driver.

In the second model depicted in Figure (2.2), the Beta and Sector factors are
turned off. The joint dependence is built-in via the world driver. Thus, the default
distribution has only a single idiosyncratic mode and the world driver spike. Compared
with Figure (2.1), the idiosyncratic mode has shifted to the right since the idiosyncratic
default probabilities are higher in this case.

Next, we compare the distribution in Figure (2.1) with the ones of a Gaussian
copula and a t-copula. In order to do a meaningful comparison, we impose that the
b-year default correlation is the same for the various models. Since the marginal
distributions are unchanged, the mean of the aggregate default distribution is fixed

independently from the copula function. The additional requirement to have the same

"The numerical values in this example are chosen arbitrarily to exhibit the shape of the distributions
and compare the various copulas. For empirical studies of default correlation, we refer the reader to
the article by Nagpal and Bahar (2001) and the paper by Servigny and Renault (2002).
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Figure 2.1: Default distribution for a portfolio of 100 credits: A = 2%, A" = 0.05%,
N = 5%, A% =2.5%, phB = 0.24 and p»% = 0.16.
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Figure 2.2: Default distribution for a portfolio of 100 credits: \* = 2%, A\ = 0.05%,
A = 5%, X% = 2.5%, p»B = 0 and p*%i = 0.
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Figure 2.3: Comparison of the default distributions for the calibrated Marshall-Olkin,
Gaussian and t-copula.

pair-wise default correlations corresponds to keeping the variance fixed as well. In
this example, the 5-year default correlations of the Marshall-Olkin model are pf’)j =
19.25% intra-sector, and pfj = 16.16% inter-sector. A direct inversion of the default
correlation formula, with a Gaussian copula dependence, gives the following values
of the Gaussian asset correlation pf}j = 41.68% intra-sector, and pfj = 36.39% inter-
sector. Doing a similar calibration for a t-copula with a parameter v = 9, we get
pf}j = 35.92% intra-sector, and pfj = 30.12% inter-sector. Note that to arrive at
the same level of default correlation, the equivalent asset correlation in the t-copula
is lower than the one in the Gaussian copula. This is natural since the t-copula has
higher tail dependence. In fact, as pointed out in Mashal and Naldi (2002a), even with
zero asset correlation, the implied default correlation with the t-copula is non-zero.
Figure (2.3) depicts the default distributions of the three calibrated copula models.
Having matched the first two moments of the default distribution, the key difference
between the Marshall-Olkin copula and the elliptical copulas is the shape of the dis-
tribution function. Marshall-Olkin implies a multi-modal distribution. Gaussian and

Student copulas imply uni-modal distributions.

Tail of the Distribution. The Marshall-Olkin and the Gaussian copulas have
very different behaviours in the tail of the portfolio distribution. To highlight this
difference, we plot the cumulative default distribution of the example portfolio in log-
space. We introduce the re-scaled log variable hg, for k =1,2,...,n,
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Figure 2.4: Tail of the portfolio default distribution for the Marshall-Olkin, Gaussian
and T-copula.

The re-scaled tail measure hj can be interpreted as the “hazard” rate of the k™-to-
default time ¥,

P(Xr < k) =P (T[k] > T) = exp (i T).

Figure (2.4) shows that, for the Gaussian and t-copula, hj converges to zero as we
move further into the tail of the distribution. In the Marshall-Olkin model, the values
of hj, are floored at 0.05%. This is the effect of the World driver: it suffices to observe
that

P(Xr<k) < P(Xp<n)=1-P(Xp=n)
= 1-P (DY =1)
= exp(—)\WT).

Here, we have used the property that all credits default if and only if the world
driver triggers, i.e., {D%V = 1}. This part of the distribution is precisely the one that
determines the value of the extreme events and catastrophe risk. The world driver
plays a unique role since it can be used to match insurance premiums of super senior

risk. This cannot be achieved with a Gaussian copula.

Time Invariance. Another major difference between Marshall-Olkin and the
Gaussian copula is the “time” behaviour. Consider an example with two obligors, and
a one-factor MO model:

)\i — p’i,CAC + )\O,i‘
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Figure 2.5: Default correlation as a function of the time horizon for the Gaussian and
Marshall-Olkin copulas.

Set the intensities to A' = A2 = A\° = 1%, and the factor loadings to ph¢ = p*¢ =
0.3915. The 5-year default correlation is equal to 15%. For the equivalent Gaussian
copula, set the asset correlation to p4 = 41.04% in order to match the 15% default
correlation at the 5-year time horizon. With this specification, compute the default
correlation at other time horizons between 0 and 5 years, and compare the implied
term structures.

Figure (2.5) shows that the Marshall-Olkin default correlation is stable through
time. This is not surprising, since, as mentioned before, the multivariate exponen-
tial distribution is memoryless, therefore the T-default correlation estimated at time
t would be the same as the (T — t)-default correlation at time 0. The Gaussian cop-
ula, on the other hand, is highly time-dependent. The upward sloping shape of its
default correlation term structure means that a first-to-default swap, for example,
would become cheaper as time goes by, even if the underlying credit spreads remain
unchanged. At time ¢t = 0, the 5-year FTD basket would be priced at 15% default
correlation. Then, after one year, the maturity of the FTD becomes 4 years, which
corresponds to a default correlation of 13.8%. And at time ¢ = 4 year, the same basket
becomes a 1-year trade and would be marked at 8% default correlation. Rogge and
Schoénbucher (2003) point out the same deficiency of the Gaussian copula by analyzing

the size of the default contagion as a function of time.
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2.7 Correlation Skew

In this section, we discuss how the Marshall-Olkin copula can be used to match the

correlation skew of the CDO market.

Overview. Over the last few years, we have seen an increased liquidity in CDO
tranche trading, which resulted in an observable market of default correlation. Dealers
are starting to quote a two-way market on a pre-specified set of tranches referenced to a
given index portfolio. By inverting the Gaussian copula formula, one finds the implied
level of correlation that would match the quoted tranche premiums. As with the
Black-Scholes option model, there is not a single correlation number that would match
all tranches at various attachement points. Supply and demand factors combined
with the credit views and risk appetite of the market participants would explain the
discrepancy of correlations across the capital structure. The example below gives the

market bid/offer premiums of the European iTraxx index tranches.

0-3% 23.3 243
3-6% 134 137
6-9% 44 47

9-12% 28 32.3
12-22% 14.2 155

The index level is 37 bps. The (0-3%) tranche is quoted in points upfront for a
tranche paying 500 bps running.
Next, we explain some concepts such as base correlation and compound correlation

in a formal manner.

One-Factor Gaussian Copula. We give a formal definition of the one-factor

Gaussian copula function.

Definition 24 (One-factor Gaussian Copula). The one-factor Gaussian copula with

parameter p € [0,1) is defined as

C (g, ..., un) 2 /_:o [E[;I’ (q)_l\(;f)_—_p\/ﬁyﬂ ¢ (y) dy,

where ® (.), @71 (.) and ¢ (.) are the standard normal distribution function, its inverse

and its density function respectively.
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This formal definition can be understood by considering a simplified firm value
model as in Schonbucher (2000) for example. The default of obligor ¢ is triggered when
the asset value of the firm, denoted V; are below a given threshold. V; is assumed to
be normally distributed. The relationship between default and the asset value is given
by

{ri<T} <= {V; <o ' (P(r; <T))}.

The asset values of different obligors are correlated. Their joint dependence is defined
via a common factor Y, which follows a standard normal distribution, and idiosyncratic

standard normal noises €1, ..., €,:

V;é\/ﬁy‘i‘\/l_[)eu

where Y and €, ...,¢, are i.i.d. standard normally distributed. The linear correla-
tion between the asset values of two obligors is p. This coefficient, which is used to
parameterize the family of one-factor Gaussian copulas, is sometimes called an asset
correlation. Conditional on a given value of the systemic factor Y, the asset values are
independent; hence, the default times are independent as well. This is the set-up of a
conditionally independent defaults model.

One can write down the default times’ copula function by conditioning on Y and

using the law of iterated expectations:

— /_mp V<@ TP <TY), . Vo SO P(rn <T)) Y =) ¢ (y) dy
~ ~1(P(r _ -1(P(r —
- /_+ iy (el P G \fTT;)) VLU Bl G f/%)) \/ﬁy) ¢ (y) dy

-/ [Hf’ <¢_1$Lf)_—;ﬁy)] 0 () dy.

The one-factor Gaussian copula is the standard model used to quote CDO tranches in
the market.

Pricing CDOs. Let us consider the pricing of a CDO tranche, which covers the
losses of a given portfolio between two thresholds 0 < K7 < Ky < 1.
Letting ¢; denote the recovery rate of obligor ¢, we define the portfolio loss process

as
n

1 .
L= (1-8)D}
=1
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The loss on the tranche (K7, K3) is defined as

MEY2 — min (max (Ly — K1,0), Ky — K1)

MtK K2 are pure jump processes. The CDO payments correspond

The processes L; and
to the increments of MtK I’KQ, i.e., there is a payment when the process MtK 1,K2 jumps,
which happens at every default time. The payoff of the protection leg of a CDO is
therefore defined as the Stieljes integral

t
protectionlegé/ exp <_/ T‘Sd8> thKth'
10,7] 0

Letting (Tp = 0,71, ..., Tv) denote the cashflow dates, AT; £ T; — T;_1, the payment

fractions and S the tranche premium, the payoff of the premium leg is defined as:

n T;
premium_leg £ S x Zexp <—/ rsds> [(Kg - Kp)— Mrgl’Kz] AT;.
i=1 0
The value of the CDO tranche is given by the expected value of the discounted payoff
under a risk neutral measure.
Assume deterministic interest rates and let B (0,T) £ exp <— fOT rsds> denote the
discount factor maturing at time 7T". Using the integration by part formula and Fubini’s

theorem to interchange the order of integration, we can re-write the protection integral

¢
/ exp <—/ rgds> thKl’K2
10,77 0

Similarly, to compute the value of the premium leg, we need to know the expected
tranche losses at times T;: E [Mg 1’K2}.

The pricing of CDO tranches boils down to computing the values of all “tranchelets”:

as

) — B(0,1)E [Mffhﬂ —/T 980, [MtKhK?} dt,

o ot

Cy (K1, K2) 2 B [Mfviz} for 0<t<T. (2.23)
For ¢t > 0, if we know the density function f; (.) of the portfolio loss Li:
fe(x) £ P (L € dz), (2.24)

then, the expectation (2.23) is given by

K>

B || = / (¢ — K1) fy (x) do + (Ko — K1) (1 - Fy (2)), (2.25)
K,

where Fy (z) = [*_ fi (2) dz is the cumulative probability function of L;. With a given

copula, such as the one-factor copula, it is easy to compute the density function f; (.)
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using techniques such as the FFT (see Laurent and Gregory (2002)) or the convolution

recursion (see Andersen, Sidenius, Basu (2003)).

Compound Correlation. As mentioned earlier, the one-factor copula has been
used by dealers to quote the standardized CDO tranches traded in the market. Since
the prices of various tranches are driven by supply and demand, a single correlation
parameter is not sufficient to reproduce market prices. Inverting the pricing formula of
the one-factor Gaussian copula, one would find the implied correlation, which matches
the market price of each tranche. This implied correlation is referred to as “Compound

Correlation”.

Definition 25 (Compound Correlation). For a given CDO tranche with attachment
points (K1, K2) and quoted premium SEVE2 | let GEVE2 (S p) denote the model price
using the one-factor Gaussian copula with parameter p. We call compound correlation,

the value of the parameter p such that
GRvie (gRuEe gy — 0. (2.26)

If a compound correlation exists, i.e., if the mapping (2.26) is invertible, then this
offers a way to compare different tranches on a relative value basis. Unfortunately, it
turns out that the model price is not a monotonic function of compound correlation.
Therefore, it is not guaranteed that we can always find a solution. Moreover, in some
instances, we can find more than one value of correlation, which satisfies (2.26). This
usually happens with Mezzanine tranches, which are not correlation sensitive. This
behaviour is well documented (see McGinty, Beinstein, Ahluwalia, Watts (2004)) and
has motivated the base correlation approach that we describe next.

Solving for compound correlations in the previous example, we get the following

results.

0-3% 20.08% 18.57%
3-6% 5.92%  6.17%

6-9% 13.56% 14.19%
9-12%  20.82% 22.42%
12-22% 29.54% 30.43%

Base Correlation. One can view each CDO tranche with attachment points
(K7, K3) as the difference between two equity tranches: (0, K2) and (0, K7). This can
be checked easily from the definition of the payoff:

M2 = p%Fe MY for all T > 0.
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Therefore, to price any CDO tranche it suffices to have the whole continuum of equity
tranches (0, K), for K € [0,1]. Each one of these equity tranches can be valued with
a different one-factor Gaussian copula correlation p (0, K). The function p (0, K) :

[0,1] — [0,1] is called the “Base Correlation” curve.

Definition 26 (Base Correlation). The base correlation curve is a function p (0, K) :
[0,1] — [0,1], which parameterizes the prices of all equity tranches (0,K). In other
words, the price of the (0, K)-tranche is given by the one-factor Gaussian copula model
with parameter p (0, K).

Furthermore, the value of any tranche with attachment points (K1, K2) and quoted

Ko

premium SEVE2 s given by

GO,KQ (SKl,K27p(O’K2)) _ GO,Kl (SKl,KZ,p(()?Kl)) i (227)

Using the standard tranches quoted in the market, one would proceed with a boot-
strapping algorithm to find the base correlation curve, which reproduces the market

quotes. The popularity of this method lies in the fact that the function
h(z) = G%E (S, z), for a given K € [0,1] and S € R,

is monotonic. Hence, we can always invert the relationship (2.27) for each attachment
point.

Mathematically, base correlation is just another way of parameterizing the den-
sity function fr (.) of the portfolio loss L. Indeed, given a base correlation curve

(p (0, K))g<c<1, One can compute the value of all “tranchelets” (Cr (0, K))o< <y
Cr(0,K) 2 E [M%K } .

Assuming that, for T > 0, the function K — Cr (0, K) is C?, we can recover the

density function as:
0?Cr (0, K)
fr(K) = ———Fr5—" (2.28)

This follows directly from equation (2.25). This is similar to the Breeden & Litzen-
berger (1978) formula in options theory where the implied density of the forward stock
price is obtained from the continuum of call prices at different strikes.

Solving for base correlations in the previous example, we get the following results.

0-3%  20.08% 18.57%
0-6%  29.60% 27.43%
0-9%  37.10% 34.12%
0-12% 42.54% 38.50%
0-22% 56.04% 49.28%
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Figure 2.6: Base Correlation Skew.

Marshall-Olkin Skew. As mentioned earlier, because of the multi-modality of
the Marshall-Olkin loss distribution, it is possible to use each mode of the distribution
to match various parts of the capital structure. Figure (2.1), for example, suggests
that the idiosyncratic hump can be used to match the equity tranche (0-3%), the Beta
hump can be used to match the mezzanine tranches (3-6%, 6-9% and 9-12%), and the
World driver can be used to match the senior tranche (12-22%). Additional tweaking
of the calibration can also be done with sector drivers.

Figure (2.6) shows the results of the calibration using a MO model with one com-
mon Beta driver and the World driver.

Using the Beta driver, we can match accurately most of the equity and mezza-
nine tranches. The senior tranches are more sensitive to extreme events and require
additional common factors to have a better market fit. Here our intent is solely to
show that the multi-modality feature of the MO copula generates a correlation skew
curve, which mirrors the one observed in the market. A precise study of the market

calibration is outside the scope of this chapter.

2.8 Conclusion

We have presented in this chapter the Marshall-Olkin copula in the context of default
correlation modelling. We have proposed a calibration procedure to fit this rich cor-
relation structure to an intuitively sound market dynamic. And we have shown that
MO offers some desirable features that make it an eligible alternative to the Gaussian

copula. The comparison between MO and the Gaussian copula is similar in many
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ways to the evolution from Black-Scholes to term structure models in fixed income
markets. Black-Scholes has been used as the model of choice by a lot of traders be-
cause of its simplicity. It converts one volatility number to a price. However, there
is no guarantee that an exogenous BS swaption matrix is arbitrage-free or at least
self-consistent. On the other hand, a calibrated HJM model, which is built upon a
defined set of yield curve deformations or drivers, is self-consistent by construction.
The Gaussian copula can be viewed as the Black-Scholes of default correlation. The
Marshall-Olkin approach corresponds to an HJM framework. Once the market fac-
tors are calibrated, all combinations of sub-baskets can be priced consistently in this

calibrated term-structure of default inter-dependence.



Chapter 3
Quadratic Hedging

In this chapter, we present a methodology for hedging basket credit derivatives with
single name instruments. Because of the market incompleteness due to the residual cor-
relation risk, perfect replication cannot be achieved. We allow for mean self-financing

strategies and use a risk-minimization criterion to find the hedge.

3.1 Introduction

In this chapter, we address the problem of hedging basket credit derivatives with single
name instruments. Typical basket products such as first-to-default swaps and CDOs
reference a pool of underlying credit entities and their payoff is dependent on the
joint default behaviour of the underlying basket. This introduces a default correla-
tion risk, which makes the multi-credit market incomplete: a basket product cannot
be completely replicated with single name instruments. Other correlation sensitive
instruments are required to offset the residual correlation risk. Furthermore, credit
securities have two potential sources of risk: spread risk and default risk. In general,
one cannot hedge both at the same time. The hedger would use his judgement and
focus mainly on one source of risk depending on the prevailing market conditions. This
bi-modal nature of the credit markets introduces another level of complexity to the
default correlation incompleteness.

One approach to handle market incompleteness is to use quadratic optimality
criteria. Quadratic hedging approaches, such as local risk-minimization and mean-
variance hedging, have been developed in a series of papers by Follmer, Schweizer
and Sondermann (see, for example, Follmer and Sondermann (1986), Follmer and
Schweizer (1991), Schweizer (1993), Schweizer (1994)). Other criteria for determining
an optimal hedging strategy have also been developed in the literature. See, for ex-
ample, El Karoui and Quenez (1995), Davis (1997), Cvitanic (1997). Here, we use the

64
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risk-minimization approach of Follmer and Sondermann to find the optimal hedging
strategy for basket products. This analysis is done in the Marshall-Olkin copula frame-
work, where each individual default process is decomposed on a basis of independent
Cox processes. The so-called common market factors can trigger joint defaults in the
basket, whereas idiosyncratic factors, on the other hand, can only trigger individual
defaults. The market incompleteness is the result of the M.O. model, which has si-
multaneous defaults and hence a particularly large mark space for the point process
representing defaults.

This chapter is organized as follows. In Section 3.2, the model is described. In
Section 3.3, we formulate the problem to be addressed. In Section 3.4, we present
the “Equivalent Fatal Shock” model. In Section 3.5, we derive the dynamics of the
zero-coupon defaultable bonds used for hedging. In Section 3.6, we give the martingale
representation of the basket contingent claim price process. In Section 3.7, we derive

the risk-minimizing hedging strategy.

3.2 The Model

We work in a financial market represented by a probability space (£2,G, P*) and a
time horizon T € (0,00), on which is given a d-dimensional Brownian motion W
and n non-negative random variables (71, ..., 7,) representing the default times of the

obligors in the economy.

Assumption 1. We assume that P* is a (risk-neutral) martingale measure.
Throughout, we shall work under this martingale measure. We follow the approach of
Follmer and Sondermann (1986) where a “good” martingale measure is chosen, then

the minimization of the risk is done with respect to this measure.

Assumption 2. We introduce an R%valued It process X, describing the state

variables in the economy, which solves the following SDE:
dXt =« (Xt) dt + ,6 (Xt) th,

for some Lipschitz functions aj : R* — R and Bj R - R? 1<k<d, 1<j<d.
We denote by {F;} the filtration generated by X and augmented with the P-null
sets of G:
Fi2o(Xs:0<s<t)VAN.

We introduce, for each obligor 4, the right-continuous process D! = 1 {ri<t) indicat-
ing whether the firm has defaulted or not. We denote by {H;} the filtration generated
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by this process:
Hi & F Zéa(Dé:OSsgt).
The agents’ filtration is the one generated by the economic state variables and the

default processes

G & Fi v [\n/ Hi] : (3.1)

Assumption 3. We assume that the default times are correlated and we allow
for multiple instantaneous joint defaults. The multivariate dependence is defined by a
Marshall-Olkin copula.

More precisely, we assume that there exists a set of m independent Cox processes

o
(V") 10
trigger simultaneous joint defaults.

with continuous bounded intensities A% (X;), A% : R¢ — R,, which can

Each Cox process N% can be equivalently represented by the sequence of event
trigger times {67 }r€{1,2,...}‘

For every event type c;, and for all ¢ > 0, we define a set of independent Bernoulli
variables (Ai’j, e A?’j> with probabilities (pl’j (X1) ;.o p™7 (Xt)), where piJ : R? —
[0,1] are some continuous functions of the background process.

We assume that for j # k, the vectors AJ = (Ai’j, e A?’j> and AF = <A%’k, o Afk>
are independent.

We assume that for ¢ # s, the vectors AJ = (Atl’j, vy A?’J) and A = (Ai’j, s A?’j)
are independent.

At the rt" occurrence of an event of type cj, at time 057, we draw the set of inde-
pendent {0, 1}-valued variables (A;g, s AZ(; ); the variable A;gj indicates whether a

default of type ¢ has occurred or not.

The process (N) >0 defined as

m

_— .
NESS S A, 652
I=lgi <t

is also a Cox process with intensity

m

N(Xp) 23 TpM (X)) A (X))
j=1
It is obtained by superpositioning m independent (thinned) Cox processes.
The default time 7; is defined as the first jump time of the Cox process (Ntl) 0"

i 2inf {t: N} > 0}. (3.3)
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This common shock model can also be described formally by the following SDE

m
dD} = (1-Dj ) APdN{. (3.4)

j=1
The information flow in the Marshall-Olkin model is much larger that the one
accessible to agents. It contains the evolution of the common trigger events and the

“conditional” Bernoulli events:

G =FV C/ FNY | v C/ \n/ FA (3.5)

j=1 j=li=1

3.3 The Problem

In our economy, we assume that we have (n + 1) primary assets available for hedging

with price processes S? = (Sf)o <<+ The first asset SY is the money-market account,

ie., SY = exp ( fot rsds> for some Fi-adapted process r. S° will be used as numeraire
and all quantities will be expressed in units of S°. In particular, S° will be equal to 1
at all times. We shall consider only zero-coupon credit derivatives or contingent claims
of the European type. The hedging asset S¢ will represent the zero-coupon defaultable
bond maturing at T linked to obligor i; i.e., it pays 1 if obligor ¢ survives until time

T, or 0 otherwise. The payoff at maturity is defined as:
S 21— Di.

In practice, zero-coupon defaultable bonds are not traded in the market. They can,
however, be extracted from the prices of liquid default swap instruments with different
maturities. Given some recovery rate assumption and an interpolation method between
maturities, a bootstrapping algorithm can be used to extract the value of zero-coupon
bonds.

We shall consider here the problem of pricing and hedging zero-coupon contingent
claims by dynamically trading the hedging assets S. The contingent claims in this

context include credit derivatives of the basket type.

Definition 27 (Contingent Claim). A contingent claim is a Gr-measurable random

variable Hy € L? (P*) describing the payoff at maturity T of a financial instrument.

A well-known example is a k*™-to-default (zero-coupon note) maturing at 7. Its

payoff is defined as:
(k) &
Hp™ = Y5 by}
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it will pay 1 if there are less than k defaults in the basket or 0 otherwise. The most
common structure in this category is a first-to-default, H:(pl), which pays 1 if no obligor
in the basket defaults before T'. Another popular example of contingent claims is a
CDO (zero-coupon note). If we assume that the recovery rate for obligor ¢ is a constant
proportion 0 < R’ < 1, then the payoff of a CDO tranche covering the portfolio losses,
which fall in some range [K7, K2|, where 0 < K1 < Ko <1, is

n
HFLE) 2 ﬁ min (max (% Zl (1 - RY) D} — Ky, 0) Ko — K1> :
As usual, the problem of the seller of this contract is twofold: (a) how much should he
charge for this security at time 0, (b) how can he cover his position with the available
hedging instruments.

This is formalized by considering dynamic strategies (o, n) = (v, 1;)g<s<p+, Where
a is a n-dimensional predictable process and 7 is adapted. af representsitfle number
of units of the single-name hedge instrument ¢ held at time ¢, and 7, is the amount
of money invested in the cash account. The value of the portfolio is given by V; =
()" St +ny, and the cumulative gains up to time ¢ are Gy (o) = f]o,t] (o)™ dS,. The
cost process is Cy = V; — Gy («).

For non-attainable claims, a risk-minimizing strategy is characterized by: (a) its
cost process must be a martingale, (b) the cost process is orthogonal to S. As shown
in Follmer and Sondermann (1986), the hedging strategy is obtained by the Kunita-
Watanabe decomposition of the {G,}-martingale H, = E* [Hr |G;]:

tr
Hp = Hy +/ (a;HT> dS; + LET,

10,T]
where LHT is a martingale orthogonal to S.

Our goal is to find an analytical result for the strategy (a{{T)

3.4 Marked Point Process Representation

In this section, we present the “Equivalent Fatal Shock Model” (see Lindskog and
McNeil (2003)) used to equivalently describe the Marshall-Olkin set up introduced
in Section 3.2. This provides an explicit representation of the marked point process,

which will be used throughout.

Equivalent Fatal Shock Model. Let II,, be the set of all subsets of {1,...,n}.
For each m € Il,, we introduce the point process N/, which counts the number of

shocks in (0,t] resulting in joint defaults of the obligors in 7 only. For example, if
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m = {1,2}, then the process Nt{m} counts the shocks which trigger simultaneous
defaults of obligor 1 and 2 but not the other obligors 3 to n. The process N/ is, then,
formally defined as

m NS
NFEN Y ot (3.6)
j=1r=1 "
where
AP ATTAM]] (1 - Ai’j> . (3.7)
e ¢

For t > 0, A?’j is a Bernoulli variable, which is equal to 1 if all obligors i € 7 default
and all the others survive. So, at the occurrence of the 7" common shock, of type cj,

at time 6,7, the point process Nj gets incremented by AN{;EJ. = A;rég )

Note that for 7 = {i}, Nt{i} should not be confused with N}:
N # N

N} counts all the shocks that affect obligor i and may affect other obligors as well, on
the other hand Nt{i} counts the shocks affecting obligor ¢ only and do not affect the
others.

Next, we state the key result of the fatal shock representation. We refer to Lindskog
and McNeil (2003) for details (see Proposition 4).

Proposition 28 (Fatal shock representation). (N™) .y are Cox processes, with in-

tensities
m

N (Xy) = pr’j (Xe) A9 (X)),
j=1

where
P (X)) =[P (x) ] (1 -9 (X)) .
iem ¢

Moreover, conditional on F, the processes (N’r)ﬂel-In are independent.

We summarize in the following lemma the equivalent description of each obligor 4

using the fatal shock representation.

Lemma 29 (Obligor description using the fatal shock representation).

The Cox process N is given by

N/ = > 1gem N7, (3.8)
7€l
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and its intensity can be expressed as the sum'

N(Xe)= Y Laem A" (X). (3.9)
welly

Marked Point Process Representation. The Marshall-Olkin model is defined
on the filtration {g~t}, which is larger than the one available to investors, namely {G,;}.
We shall use the generic tools of the MO model, however, the local characteristics of
the MPP representation are derived for {G;}.

We define the sequence of ordered default times (Tp, T1,....,T,) : To = 0 < T} <
... <T,, and identities of the defaulted obligors as:

Ty = 0,72y =0;
T, = min{r;:1<i<n,7;>Tk 1};

Z = mwifTy=7;foralli e w, and m € Ily;

The mark space of this point process is £ 2 I, the set of all subsets of I,, = {1,...,n}.
The double sequence (T, Zk);>; defines a marked point process with counting

measure
u(w,dtxdz) : (Q,g)—>((0,oo)><E,(0,oo)®5),

t
/ / H (w, t, Z) o) (w, dt x dZ) = Z H (w, Ty, (w) A (w)) 1{Tk(w)§t}'
0o JE i1
The MPP (T}, Zj),~, can also be described through a family of counting processes
(D¢ (7)) rert,, defined as: Dy (m) £ 341 Yyrp<t,z,=n); Dt () counts the number of
events on (0,¢] matching a mark equal_to the subset 7. We can also define 7 () =
> k1 Tkliz,—x} as the default time where all obligors in 7 default simultaneously.
If we denote by (AT);>¢ the (P*,{G;})-intensity of the default time 7 (7), then the
(P*,{G.})-intensity kernel of the counting measure p (dt X dz) is given by

At (w,dz) dt = M\ (w) Py (w, dz) dt,
where (At)y>q is the non-negative {G;}-predictable process

A=) A (3.10)

melly

and ®; (w, dz) is the probability transition kernel from (2 x [0,00),G ® B4) into (E, &)

)\ﬂ'
Py (w,m) = )\—tt for 7 € Ty, (3.11)
"Here, we have used the fact that if N* has intensity A, then 3 a;N* has intensity 3 a;\* when
the intensities are calculated in the filtration generated by all N*.
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with ®; (.) = 0 if Ay = 0. The pair (A, P4 (dz)) is the (P*,{G,})-local characteristics
of the counting measure p (dt x dz).

For each subset 7 € Iy, the intensity (Af),~, can be computed as

1 0
)\f:%%EP*(DH;L(?T)—DMWHQH:—a—TP*( 7(m) > T(Ge) 7=t -

Lemma 30 The process (A]);>q s given by
SR T R D ol CRCRIED
iem xC(In\m) Li€x

Proof. Recall that the (conditional) multivariate distribution function of default
times in the M.O. model is

P* (Tl >t1,..,Tn >ty ’ft [ H €xXp < maxti> ’ft] )
w€lln e
where AT £ fOT A" (Xy) ds, for all m € II,. By defining, for each n-uplet (¢1,...,t,) €
R?, the mapping

(t1,.ntn) — {(01,71), s (O, Tk) -},

g = 0, m =10,
0, = min{tizlgign, ti>9k71}7
m, = mwiffp =1t; foralliem, and 7 € I,

which sorts and groups the times (¢i,...,t,) in a strictly increasing order, we can

express the (conditional) density function,
ft (tl, ...,tn) £ p* (’7’1 €dty,...,Tn € dty, ’ft) ,

as follows

frlty,otn) =B | ] > ATEYS (X ) | exp | — > AgES R

k>1 SC{?TlU..AUTkal} SC{W1U.A.U7T;€,1}

where S spans the set of all subsets of {71 U ... Umg_1}, which contains all the obligors
who have defaulted prior to 6.
In order to compute the conditional expectation P* (7 (7w) > T'|G;), we use the

generalized Dellacherie formula

B [1r(mpoy % [lige (1= DJ)
g |

P*(r (1) >T|G) = Y. D ] (3.12)

z€Ily, Iy [Hz%x (1 B D%)
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The only subsets, x € I, for which the conditional expectation is not equal to zero
are the ones of the form x C (I, \ 7), i.e., at least all the obligors in 7 are alive; here,
the notation (I, \ 7) represents the complement of 7 in I, The default state indicator

can be expressed as

D) = [H Dz‘] [H (- Dz>]

€T 1ET

II (-0

i€(In\m)\z

)

and equation (3.12) becomes

H(l—Di)] > {HDé’ 11 (10%)] HEO(T),

iem (I,\m) |icx i€(In\m)\z
B [I{T(W)>T} x [Lige (1 — Dj)

B [[Tigo (1 - D)) |61
We shall compute each term separately.

On the set [[;c, l{TiGdSi}] Ticx 1{ri>t}] [Hie([n\w)\w 1{ri>t}] , the conditional prob-
ability is equal to

P*(1(m) >T|G) =

g |

lI>

Hy (1)

H(T) = ‘ .
B [[Hi@r (1 - Di)] x [Hie(In\w)\w (1 - D%)} X [HZEJ: l{TiEdSi}] ‘ﬂ}

Using the expression of the (conditional) density function, we find that the numerator

is given by

E* | 1r(m>1y X

X [H 1{T¢€dsi}] |Ft

1ET

It-09)] {(H (1- )

iem In\m)\z

-7 ieXp <_ ZA?US> ’ ! 11 )\xexp (ZA?USM g [f(x) ((Si)iex)} I

Scx qC(In\m SCx

where f@) ((8i)jes) = P*(Micw {Ti € dsi} |F) is the density function of the first
d = |z| defaulted obligors before time t.

Similarly, we have for the denominator

=1 0-7)] L(H (1- i)

ien I\m)\z

X [H 1{Tieds,-}] | F

s

= E* |exp <_ZA3US> X [ H)\ exp (ZA2U5>] X [f(“”) ((si)iex)} | Fi

SCz qC(In\m)\x SCz

B 1oy * [ier (L= D)) % [Tictramne (1 = D] % [Tics Liricasy] 17
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Using the fact that HqC(In\ﬂ)\z exp (— Y oSca Atqus>] X [f(””) ((sl)lex)] ,forall s; <t,
1 € x, is Fy-measurable, we obtain

exp (— S (A5 - AM) m] .

SCx

HY)(T) = B*

Differentiating with respect to T, and evaluating at T' = t, we get

AT = [H (1—D§)] < >> ATI2: I (-Di| D A9 (x| . (3.13)

ien (In\m) |ice  ie(I\m)\z Sca

After some basic algebra, we find that equation (3.13) can be expressed as

Azleﬂ (1—Di)] x wCZ [HD%] AT ()

ien (In\r) Licz
]
For 1 < i < n, the compensated point process M* : M} = D} — fg/\” N (X,)ds, is
given by

t
M} = / / Licay (u(ds x dz) — A (d2) ds) (3.14)
o JE
which can also be written as
M=) lueyM], (3.15)
7T€Hn

where, for each 7 € Il,, M™ is the compensated point process:
t
M = Dy () —/ Al ds. (3.16)
0

This MPP representation makes formal the idea that the mark space of the default
times (71, ..., 7) is I, since joint defaults are allowed. Here, we have fixed the mark
space, but as default events occur, we put zero probability mass for the states of I,

which cannot occur anymore.

3.5 Dynamics of the Zero-coupon Defaultable Bonds

In this section, we derive the dynamics of the zero-coupon defautable bonds under the
martingale measure P*. First, we give an explicit formula of the zero-coupon default-
able bond price. Then, we apply Itd’s lemma to compute the martingale representation

of the price process.
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Lemma 31 (Ezxplicit formula of the zero-coupon defaultable bond).

Si = (1- Dj)E* [exp (- /tT N (Xs)ds> yff} .

Proof. The value of the (discounted) zero-coupon single-name bond is
S; =E*[1— D}|G].
Since 7¢ is the first jump time of a Cox process,
{r'>T} < {N; =0},

we can write, for ¢ = 0,

S =P* (N =0) =E* [exp (— /OT M (X) ds>] :

In the Marshall-Olkin copula framework, the conditional expectation formula holds as

well, i.e.,

S{ =E*[1-Dy|G] = (1- Dj) E* {exp <— /tTAi (Xs)ds> m] .

To verify this property, we need to check that the survival probability does not jump
upon the default of the other obligors. For clarity, we shall do the calculations for
n = 2, the general case is a straightforward extension.

Using the generalized Dellacherie formula, we have

P* (11 >T,79 > t|F;) P*(r1 >T|FVol(r

2))

]P)* (7-1 > T|gt) = 1{7’1>t}1{7'2>t} P* (7_1 > t o > n ‘ft) +1{7’1>t}1{7'2<t} P* (7_1 >t ‘E V O'(

Recall that the M.O. (conditional) multivariate probability function is given by

P* (11> Th, 72 > Ts | F) = B* [exp <—ALE} — A AP ) |ft] for all Ty, Ty > 0,

where AT, £ fOT A" (X) dt, for m € II,,. We shall compute each term in turn. We start

with the survival case.

* {1} {2} {1,2}
P(n>Tr>t|lFH) B eXP( AR AP A |
P* (11 > t, 72 > t|F1) E* exp ( {1} A{2} A{l 2}) |~7:t}
B exp ( A{l} {2} ALL 2}> |-7:t}
N exp < A{l} A{Z} At{1 2})
{1} {2} {1,2}
= B eXP( 1 - 2 AT12 ) | Fi
exp( A{ } A{ } A;{ ’ }>

= B [exp (- (A07 - AfY) - (A8 Al 17
= [E* [exp (— (A%w — A%)) |Ft] ,

2))
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the first equality follows from the multivariate probability function; the second and
third equalities are due to the fact that Ail}, Afz}, and Ail’g} are Ji-measurable; the
last equality is due to the fatal shock representation: A' (X;) = A (X)) + A0 (X,).

For the default case, let us compute the conditional probability on the set 1(,, 1317, cds)

for s <t,
P*(Tl >T,’7’2€d8‘ft)

P*(Tl >t,’7’2€d8‘ft)

The numerator is computed as follows: for € > 0,

P* (11 > T,72 € (s — ¢, 8] | F)

= P'(ri>T,72>s|F)—P(r1>T, 79 >s—¢|F)
= B [exp (—AR - AP AL 7| < B fexp (—AF - A - AR 7]

= E* [exp (—Ag}} — A8 — A;1’2}> <1 — exp (A?} - Aii)) ’.7'}}
= E* H—)\{Q} (Xs) 6i| exp (—Aé}} — A~ A;l’z}) ]]‘}] +o(e).
Similarly, we have for the denominator

P* (r1 > t,ra € (s—¢ 8] |F) = E H—W} (X,) e} exp (-A}l} AP A;{l’Q}) m] +o(e).
- [—W} (X,) e} exp <_A§1} AP Ajw}) Fo(e).
Hence,
B [ (X exp (—A% - Al - Al |7 ]
A2 (X,)] exp (—Af = AP AM)
exp (—Af - af?)
B pr A{l} Aj”})

= E* [exp tl)) ].7-}] )

P*(7'1>T,7'2€d8|ft
P*(Tl>t,72€d8‘ft)

| F

Therefore, the conditional survival probability does not jump upon the default of other
Sy = (1 - Dj) E* [exp <—/ A (Xs) ds) \Ft] .
t

Applying It6’s lemma and using the Markovian property of X, we find an explicit

obligors:

expression of the martingale representation of the price process S°.
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Proposition 32 (Single-name price process representation). We have

/ / (8, Xa) Lsesy (1 (ds x dz) — As (d2) ds)
d d
+/0< -0y Yy B o awk

where st (t,z) : [0,T] x RY — R is defined as

s' (t,x) £ B, [exp <— /t : N (Xs) ds)] :

Proof. The value of the (discounted) zero-coupon single-name bond is

Si = (1- Dj) E* [exp (— /tT M (Xs) ds> |]-"t] .

Given the Markovian property of the background process X, we have
St=(1-Dj) s (t,Xy),

where st (t,7) : [0,T] x R? — R is

s' (t,x) £ B, {exp <— /t ' N (Xs)dsﬂ .

We assume that the function s is sufficiently smooth, in particular, that it is con-
tinuous, C! in the first argument and C? in the second argument. X is an R%-valued
diffusion process with drift vector a (x), diffusion matrix 5 (z), and infinitesimal gen-

erator

d d d
)& OF (z)
a Z Z Z Bt (@) B (@ 8:1: 8a:k Z 63:] '

j=1k=11=1 j=1

N =

Using the fact that L; £ E* [exp (— f(;[ M (X) ds) ].7-}] is an {F; }-martingale, we find

that the function s’ is solution of the Feyman-Kac equation

%
. . t .
N (2) 8 (,2) + w A (ta) = 0, for (tz)€[0,T] x R,
s'(T,z) = 1, forzeR%

Applying Ito’s lemma to S}, we get

dS; = —dDjs"(t,X;) + (1 — Dj)ds" (t, Xy)

; d d
.. ; 0s* (t, Xt) t Xt
— —dDis' (t, X;) + (1 — D}) (T + Ags' (t, Xy) ZZ ‘

7]6:

——— B (Xi)d

wk
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Replacing the term in dt with the Feyman-Kac equation, we get

. . d tX
S} = —dM;}s' (t, X;) + (1 — Dj) ZZ t)

Jj=1k=1

Bk (Xe) AW |

where M? is the compensated martingale M} = Di— f(f AT\ (Xs) ds. Using the marked

point process representation,

Mi = /O t /E 1y (o (ds x dz) — A (d2) ds).
we arrive at the result. m
Corollary 33 The dynamics of the zero-coupon defaultable bonds are given by
dsi = Si_ (uidt + (o))" W, — dMg') ,
where the drift and volatility processes i and o' are
pp = 0,

d .
ik Odlog s* (t, X,
ey = | LT ()| pork =1,
j=1 J

3.6 Martingale Representation

In this section, we derive a martingale representation of the {G;}-martingale H; =
E* [Hr |Gt ].

To this end, we use the fatal shock representation of our model in conjunction with
the martingale representation result for marked point processes.

The agents’ information structure is modelled by the filtered probability space
(Q,G,{G:}, P*), where {G;} is the natural filtration generated by the d-dimensional
Brownian motion W and the marked point process p (dt x dz) with the (P*,{G:})-
intensity kernel A (dz). The Martingale Representation Theorem (see Jacod and
Shiryaev (1987) Chap III Corollary 4.31) shows that the martingale generator in this

economy is (W, (1 (dt x {z}) = M ({2}).cxm, ).

Proposition 34 (Martingale representation of Hy). The {G;}-martingale H, = E* [Hr |G] ,
€ [0,7*], where Hy is a Gp-measurable random variable, integrable with respect to

P*, admits the following integral representation

H; = Hy —l—/o (&) aw, — /0 /EC(S, 2) (u(ds x dz) — s (dz) ds) , (3.17)
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where £ is a d-dimensional {G,}-predictable process and C (s, z) is an E-indexed {G;}-
predictable process ( (s, z) such that

/HﬁsH ds < oo, //c (d2) ds < oo,

This can be written as

H0+/ ()T dWe— > ¢ (s,m)dMF. (3.18)

welly 10,]

almost surely.

In order to replicate the claim Hyp, one needs to match the diffusion terms fi, 1<i<d,

and the jump-to-default terms [—( (s, )] for each possible default state m € I,,.

3.7 Computing the Hedging Strategy: The Main Result

In this section, we use the martingale representation of Proposition 34 to derive the
risk-minimizing hedging strategy. This is equivalent to finding the Kunita-Watanabe
decomposition of Hy:

Hr = Hy + / (o)™ dS; + L. (3.19)
0.7

Our goal is to establish an analytical result, which derives single-name hedges
(ai) | <i<n I terms of the martingale representation predictable processes & and (., 7),
m € Il,.

As shown in Follmer and Schweizer (1991), the strategy (ou),~, can be computed
as -

ay=d(S); d(S,V (@), (3.20)
where the value process is given by

Vi (o) = Hy, = B* [Hr |Gy, for t € [0,T]. (3.21)

This follows from the Kunita-Watanabe decomposition of H and the projection of
Vi (@) on the martingale [, , ()" dSs.

Theorem 35 (Risk-minimizing hedging strategy). The risk-minimizing hedging strat-
egy of a general (basket) contingent claim with single name instruments is given by the
solution of the following linear system,

for1 <k <n,

Zaisf— [(Ut of /l{zez}l{kez})‘t(dz)
=1

— <gi€>tr§t+/EC(t,z) Liken e (d2) -
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Proof. Using the single-name instrument representation of Corollary 33, we have

()= [ s (020 W= [ ey (s 2) = 0o a2) ) )
and the predictable covariance is
d(S)y’ =d(S",8%), = S;_SI <(ai)“" ol + /E Liea e (dz)> dt.
The value process V; (o) = E* [Hr |G;] is given by the martingale representation

Vi (a) = B [Hr |Gi] = Ho +/0 (€, dW, — /0 /Eg(s,z) (1 (ds x dz) — s (d2) ds) .

Hence, we have

ats.v @)=t ()" 6+ [ 1penc(tan @)

and the strategy (o),~ is given by the solution of the following system

n

> ai [Stisf [(Ui)tr o +/El{z'€z}1{k€z})‘t (dZ)”

i=1

tr
= st (o) et [ (2 SE1pen ().

Proposition 32 establishes the martingale representation for the single-name secu-

rities whose payoff is Hy = 1 — Dk

gl_Dé“ (t7 z) = ]_{ieZ}Si (t,Xt) R for z € Hn,
d .
]_7D7: k i 857/ t,X
(67) = a-py Y 20Xy xy),
j=1 J

The hedging strategy is solution of
for1<k<n

n

Soab| [ PE P ) a) + (677F) 6]
E

=1

E Pk LT
= [ Phean+ (&) e
E

Note that this problem combines both default risk and spread risk.
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Application. We consider a first-to-default (basket) contingent claim whose pay-

n
éH 1—Df).

off is

The price of this claim at time ¢ is

aY =

n
i= 1
We can show that it can be expressed as (see Chapter 4)

aY =

ﬁ (1— Dz)] Y (t, Xy),

=1

where the function A (t,z) : [0,7] x R* — R is defined as
T
WD (4, X)) = Efy, {exp <— / AW (X,) dsﬂ ,
t

A (X)) = i [1 - ﬁ (1—p" (Xt))] \Y (X).

j=1 i=1

Using [t6’s lemma and some algebra, we find

aH® =~ [ W (6,50 (u (e x dz) ~  (d2)
E
n d d
. onW (t, X,
+{J] (- Dt)] S —a;- t)ﬁjk (X;) dWF.
i=1 j=1k=1 J

This gives the processes of the martingale representation

CHJ(}) (t Z) — h(l) (t7 Xt) , fOI‘ a].l z € Hn;
e s o] s onW (¢, X
(as ) = [H (1~ Dt>] 2 #ﬁjk (X),
i=1 Jj=1 ’

which can be plugged into the linear system of Theorem 35. Inverting this latter gives

the single-name hedge ratios of the first-to-default basket claim.

3.8 Conclusion

The problem of hedging basket credit derivatives with single name instruments is a
very interesting challenge both for academics and practitioners. In this chapter, we

have presented a solution based on a risk-minimization approach. We have seen that,
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in the credit market, we have two sources of uncertainty: spread risk and default risk.
We have addressed both types of risk and we have shown how to derive the single
name hedge ratios by solving a quadratic minimization problem.

The explosive nature of the default space representation will probably be one of
the limiting factors that need to be addressed. In the pricing problem, questions
of numerical efficiency were handled by Fourier transform techniques and recursion
methods borrowed from actuarial mathematics. These techniques might also prove to
be very useful for the hedging problem. Another area of research would be to consider
other hedging approaches, such as quantile hedging (see Follmer and Leukert (1999)),

and to do a numerical comparison of the effectiveness of each strategy.
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Chapter 4
Basket Asymptotics

In this chapter, we provide some efficient numerical methods for the valuation of large
basket credit derivatives. The approaches are presented in the Marshall-Olkin copula
model. Some formulas are specific to MO, but most of the numerical techniques are
generic and could be used with other copulas. The methods presented span a large
spectrum of applied mathematics: Fourier transforms, changes of probability measure,
numerical stable schemes, high-dimensional Sobol integration, recursive convolution

algorithms.

4.1 Introduction

Over the past few years, basket credit derivatives have grown in popularity. They offer
investors a new way to take leveraged credit views and to earn higher yields compared
with similarly rated bond investments. One example of such products is a first-to-
default swap. This structure a default swap where the credit event is defined as the
first default in a basket of underlying references. The first-to-default event triggers a
payment equal to the par amount minus the recovery value of the defaulted security.
In return, the protection buyer pays a periodic default-contingent premium until the
maturity of the swap or the time of default, whichever is first. For more risk-averse
investors who seek investments in low-risk assets, higher-order default swaps, such as a
second-to-default, a third-to-default, ... or an n""-to-default, offer an attractive alter-
native. Another popular class of basket credit derivatives is synthetic CDO tranches
(Collateralized Debt Obligations). CDOs usually reference large portfolios of credits,
typically 50 to 100 names, and the credit event is defined in relation to the aggregate
loss of the portfolio. The protection seller commits to cover all the losses incurred
within a pre-defined range. In return, he receives a periodic premium on a notional,

which amortizes with the portfolio losses.

83
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Basket credit derivatives are default-correlation instruments. Their value is mainly
driven by the likelihood of joint defaults in the portfolio. For a first-to-default, for
example, as correlation changes between 0 and 1, the break-even spread varies between
the sum of the individual default swap spreads and the widest default swap spread. The
usual approach used to model default correlation is the copula function framework.
A comprehensive review of copulas and their applications to risk management can
be found in Embrechts, Lindskog, McNeil (2003) or Bouyé, Durrleman, Nikeghbali,
Riboulet, Roncalli (2000). The Gaussian copula, often used in credit risk modelling,
goes back to Li (2000). Other studies of elliptical copulas with higher tail dependence,
such as the t-copula, can be found in Mashal and Naldi (2002). The Marshall-Olkin
copula is yet another class of copula functions, which stems from the multivariate
compound Poisson process. In this model, individual defaults are constructed from a
series of independent common shock. Each common shock is assumed to be a Poisson
process. This set-up has been traditionally used in the reliability theory literature (see
Barlow and Proschan (1981)). Previous work on the use of the Marshall-Olkin copula
in the context of credit risk modelling includes Duffie (1998), Duffie and Singleton
(1999), Duffie and Pan (2001), Wong (2000), Lindskog and McNeil (2003).

The objective of this chapter is to develop efficient numerical methods for pricing
basket default swaps in the Marshall-Olkin framework. The valuation of large basket
products is usually done with Monte-Carlo simulations. The advantage of Monte-Carlo
is its simplicity and generality. Its main drawbacks, however, are the quality of the
convergence, especially when one computes sensitivities, such as deltas and gammas. A
good convergence is particularly hard to achieve for credit products since default events
are usually rare, and probabilities in the tail of the distribution are difficult to estimate.
On the other hand, the direct implementation in closed form is very accurate but is less
trivial to implement; it is also very expensive computationally. Indeed, this method is
based on enumerating the 2" default configurations of the basket and computing the
probability of each configuration. This algorithm explodes exponentially as the number
of credits increases. To address this problem, we use a collection of techniques from
numerical analysis and actuarial mathematics, and we develop a suite of semi-analytic
numerical methods based on the asymptotic behaviour of the portfolio. Although
the implementation is done in the Marshall-Olkin framework, most of the numerical
techniques are generic and could be used with other copula models. Other analytic
approximations of the Marshall-Olkin model have been developed by Duffie and Pan
(2001), and by Lindskog and McNeil (2003).

This chapter is organized as follows.

In Section 4.2, we present briefly the Marshall-Olkin copula model.

In Section 4.3, we derive the pricing formulas for basket default swaps with the
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brute force method. The exploding nature of the direct approach will motivate the
other methods described in the rest of the chapter.

We show, in Section 4.4, that we can replicate any nth-to-default swap with a
portfolio of first-to-default swaps referenced to subsets of the original basket. This
replication technique is referred to as the “Expansion” method.

In Section 4.5, we develop the “Homogeneous Expansion” method, where we trans-
form the original reference portfolio to an equivalent homogeneous one. This transfor-
mation keeps invariant certain properties of the aggregate default distribution. This
invariance principle ensures, in turn, the invariance of the prices of nth-to-default
swaps. We compute the default distributions by a Fourier transform inversion; and we
show how to resolve the problem with machine precision, when one estimates small
tail probabilities, by an importance sampling technique.

For large reference portfolios, we find that the recursion relationship of the homo-
geneous expansion becomes numerically instable. To address this issue, we propose, in
Section 4.6, an asymptotic implementation of the homogeneous expansion. In partic-
ular, we show that the density function of the nth-to-default random time admits an
infinite asymptotic series expansion. For homogeneous portfolios this series expansion
corresponds to the formula of a “Binomial Mixture”. We show how to compute the
dominant orders in the expansion in closed form, and how to estimate the higher-order
terms numerically with a Quasi Monte Carlo integration technique.

In Section 4.7, we describe the infinite series expansion for non-homogeneous port-
folios; and we show how to compute the conditional distributions that appear in the
expansion by the convolution recursion method. This type of recursions is often used

in actuarial mathematics.

4.2 Set-up and Notations

The Marshall-Olkin copula is based on the Multivariate Poisson Process construction.
Here, we give a brief overview of this model as described in Lindskog and McNeil
(2003).

We consider a set of non-negative random variables (71, ..., 7y, ), defined on a prob-
ability space (€2, G, P), representing the default times of n obligors. For each firm i,
we denote by Di £ 1(;,<¢ the default indicator process.

We assume that there exists a set of (m + n) independent Poisson processes (Ntc I ) >0
with intensities A% (), which can trigger joint defaults.

For every event type c;, and for all £ > 0, we define a set of independent Bernoulli

variables (Ai’j, o A?’j> with probabilities (p1j, ..., Pnj), pi,; € [0,1].
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We assume that for j # k, the vectors AJ = (Atl’j, s A?’j> and AF = (A;gl’k, s A?k>
are independent.

We assume that for ¢ # s, the vectors A{ = (Atl’j, - A?’j> and A = <A§’j, s A?’j>
are independent.

At the 7" occurrence of the common market event of type j, at time 67, we
draw the set of n independent Bernoulli variables (A;:JJ - AZ:g) The variable A;:JJ
indicates if obligor ¢ has defaulted or not.

The process (N}) >0 defined as

m-+n
-, j
NES S ()
J=1 77 <4
is also a Poisson process obtained by superpositionning a set of independent (thinned)

Poisson processes. Its intensity is given by

m-+n

Ai(t) =D pigh(t). (4.2)
j=1

We define the default time 7; as the first jump time of the Poisson process Nj:
7i Zmin {t: N} > 0}. (4.3)

We denote by Q; (T') the survival probability of 7:

Qi(T)2P(r;>T) =P (Nj=0) =exp <— /OT i () d5> : (4.4)

which will be referred to as the Q-factor associated with 7;.

To specify the model further, we assume that we have two types of market factors:
(1) the first m drivers are common market factors which affect more than one obligor;
they can represent global economic factors, industry sector factors, or regional and
country factors; (2) the m remaining ones are idiosynctratic issuer-specific shocks;
they will be denoted as: N £ N™ (and A% (£) £ Xem+i (¢)), for 1 < i < n. Their
corresponding factor loadings are: p;m4; = 1 and p; ik =0, for 1 <k # ¢ < n.

Equation (4.2) then becomes

i (t) = ipiyj)\cj (t) + )\O’i (t) . (45)
j=1

The copula function of the default times (71, ..., 7,), implied by this multivariate Pois-
son process, is known as the Marshall-Olkin copula (see Proposition 6 in Lindskog and
McNeil (2003)).
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Furthermore, we associate with the set (71, ..., 7,) the ordered sequence of random

times 711 < 7 < ... < 7[" defined as 7Y = min (74, ..., 7,,), and for k = 2, ..., n,
¥l = min (7’7; ci=1,..,n, 7; > T[k71]> . (4.6)

Now, we consider a k'-to-default swap (also called a k out of n default swap
in Laurent and Gregory (2002)), which matures at time 7', and is specified by the

following contractual obligations:

e if k default events occur before maturity, 7l < T, and credit ¢ is the one that
has last defaulted, 7%/ = 7;, then the protection seller makes a payment equal

to (1 — 6;), where §; is the recovery value of issuer i;

e in return, the buyer makes a series of periodic premium payments (C1, ..., Cy) ,on
the cash-flow dates (71,...,Tn), as long as the total number of defaults is less
than k. Each cash flow Cj is equal to the product of the premium and the
day-count fraction (7; — T;—1).

The value of the premium leg is given by the expectation of the discounted payoff
N
premium_leg = Z B(0,T;) C;P <7'[k] > Tz> ,
i=1

where B (0,7) is the risk-free zero-coupon bond maturing at time 7'. Interest rates
and credit processes are assumed to be independent.

The value of the protection leg is given by the following recovery integral:

n T
protection leg = Z (1—6;) [/ B(0,t)P (T[k} =7, 7H € dt> dt} . (4.7)
i=1 0

Q¥ (T), the k*-to-default Q-factor, is the survival probability of the default time 7!#;

it can be written as:
QM (1) 2 p (ﬂ’ﬂ > T) —P(Xr<k),

where X1 counts the portfolio aggregate defaults at time T°
n .
Xp 2> D (4.8)
i=1

If we have a basket with homogeneous recoveries, the value of the protection leg

simplifies to

T
protection leg = — (1 — 6)/ B(0,t) dQ*! (¢);
0
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otherwise, one needs to compute the density:
P <7'[k] = 7,7 € dt> .

We refer to Laurent and Gregory (2002) or Bielecki and Rutkowski (2001) for more
details.

It should now be clear that to evaluate basket default swaps, we need to generate
the survival probability curve Q! (t), for 0 < t < T. This latter is discretized on
a fine mesh and used to estimate the recovery integral of the protection leg. In the
next section, we show how to compute this with a direct method; then, in the rest of
the chapter, we shall study the properties of the aggregate default distribution X by

using its probability generating function

The “Homogeneous Transformation”, the “Asymptotic Homogeneous Expansion”, and
the “Asymptotic Expansion” are all based on the fundamental “probability generating

function representation” of Theorem 44, Section 4.5.

4.3 Direct Approach

To motivate the numerical methods developed in this chapter, we show, in this section,
how to compute the key component Q! (T') with the direct approach, which is based
on enumerating all default combinations in the basket, and mixing their probabilities
by using some simple algebraic rules. This combinatorial recipe is only needed for
higher-order baskets, where k& > 2. For first-to-default swaps, the algebra is very
simple, and closed form solutions are readily available. We begin with the simple FTD
case; then we build up the algorithm for the more burdensome cases. We shall use the

equivalent fatal shock representation of Lindskog and McNeil

4.3.1 Equivalent Fatal Shock Representation

Let II,, be the set of all subsets of {1,...,n}. For each 7 € Il,, we introduce the point
process N, which counts the number of shocks in (0, ¢] resulting in joint defaults of

the obligors in 7 only:

m—+n th

NFES ZAQ:{, (4.9)

j=1 r=1
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where, for each trigger time 657, A;rc’f is a Bernoulli variable, which is equal to 1 if all

obligors ¢ € 7 default and all the otrhers, i ¢ 7, survive:
AP ATTAM]] (1 - Af;j> . (4.10)
1T ¢

For example, if 7 = {1,2}, then the process Nt{1’2} counts the shocks, which trigger
simultaneous defaults of obligors 1 and 2 but not the other obligors 3 to n.

Further, let Nt count all shocks which results in any kind of loss, i.e.,

N2 Y N (4.11)
Tl'enn
T£D

We have the following fatal shock representation key result. We refer to Lindskog
and McNeil (2003) for details (see Proposition 4).

Proposition 36 (Fatal shock representation).

1. The processes (N F)wel‘ln are independent Poisson processes with intensities

m+n

N ()= pegA (1),
j=1

where

Prj = sz‘,j H (1 —pij)-

1ET i¢m
2. N is a Poisson process with intensity
" m+n n
NOEDD [1 -IIa —m)] X ().
j=1 i=1

This provides a fatal shock representation of the original not-necessarily-fatal shock

set-up. Each obligor 7 can be represented as
Ni= " LgenNT.
Tl'enn

Each default configuration, represented by the subset 7, can be alternatively be defined

with a n-dimensional vector Zs = (xs1, ..., s 2) of zeros and ones such as

1ET < Ts; = L.



4. Basket Asymptotics 90

If n = 3, for instance, we have the following mappings

{1,2} <= (1,1,0)
{1,3} <= (1,0,1)
{2} <= (0,1,0)

Denoting the fatal shocks N/ (and its intensity A™ (¢)) by
NFFT 2 N7 and AP (1) £ A7 (1),

we can express each obligor ¢ as

27L
Ni =Yg N (4.12)
s=1

We shall see that the notations of (4.12) will be useful in the derivation of pricing

formulas for basket default swaps.

4.3.2 First-to-Default Swap: £ =1

To derive the formula of the FTD Q-factor QU (), it suffices to observe

(1>

Q[l] (T) P (T[l} > T) =P(r1>T,....ktp, >1T)

- P(NT:O) — exp <—/OTX(t)dt>.

Proposition 37 The survival probability of the first-to-default time is given by

P (T[” > T) = exp <— /OT A (1) dt> ,

-5 flo-ma]won

=1

where

ZA‘“ ] (4.13)

Now, we turn to evaluating the density P (T[l] =7, e dt), which is needed for
the protection leg when the recovery rates are non-homogeneous. The formulas in
Laurent and Gregory (2002), are based on the assumption that the probability of
simultaneous defaults is equal to zero; in the Marshall-Olkin model, this is not the
case; we need to examine the instantaneous joint defaults case a bit closer. Indeed, if
joint defaults occur, we can choose which reference obligation to deliver. One market
convention is to deliver the bond with the lowest recovery value. We assume, without

loss of generality, that the underlying references in the basket are ordered such that



4. Basket Asymptotics 91

81 < 89 < ... < 8,. This means that the i*" reference is delivered if 7; € (t — ¢,t] and
all the other references with lower recoveries (71, T2, ..., 7;—1) are alive. In other words,

the density is given by

i—1
IP(T, =71 710 ¢ dt) = hr&%w (A” >t—emie(t—et],[ |7 ¢ (t—e,t])
€E—> l:]_

1 _ ) ) i—1
= lim =P (Nte =0,N/ - N/ =1, N/ - N = 0>

t €
e—0 =1

L . . i—1
= lim =P (Ni-c=0)P (N; N =1, N =N = 0) :
=1

e—0t €

To show that

i—1
e (=1 - =0) =32 s T o0 0

=1 7=1

we argue as follows. The probability to have more than one common market event in
(t — €,t] is of order o (€¢). Hence

i—1
P (N;‘ ~ N =1,(\N -N. = 0)

=1
| P (J\[tZ - Ntife = 1705;} Ntl - Ntlfe =0 ‘Ntcj - Ntcie = 1vﬂk7éj NtCk - Ntcfe = 0)

- Z ¢ c; e . +o(e).
j=1 xP <th — N2 =1, ﬂk;ﬁj Nt = Nt = O)
But, since we have
m+n

i i _ 2]
N-NL =YY Ay,
I=1 97 e(t—e
Then,

i—1

P (Ntz - Ntife = 17 ﬂNtl _Ntlfe = O>
=1

m—+n

= Z P (A;JE =1, ﬂ A — o) (N =N7Z.=1)+o0(e)
m+n o ‘
P H (1 —pl”>
=1

Taking the limit, we arrive at the following expression:

[AY ()] +o(e).-

J=1

P (T = 70, T[l € dt

o (1 Z [pm [T -ny ] 5 ()] + [ (1)] - (4.14)
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If we had a different convention for the bonds to be delivered in the case of joint
defaults, we would need to re-order the default times according to the recovery rate

delivery rule, and formula (4.14) would hold for the re-ordered basket.

4.3.3 EktP-to-Default Swap: k > 1

In order to evaluate the Q-factor of the random time 7¥, for & > 1, we have to enumer-
ate all the possible basket default configurations, and to compute their corresponding
probabilities. We shall represent each default configuration with a n-dimensional vec-
tor of zeros and ones, Ts = (2s1,...,2s2) for s = 1,...,2" if z,; = 1, then the ith
reference has defaulted. By d(z5) = Y i~ @54, we denote the number of defaults in
this configuration. For example, if we have n = 3 underlying credits, the basket de-
fault configurations are: x; = (0,0,0), zz = (1,0,0), z3 = (0,1,0), 23 = (1,1,0),
x5 =(0,0,1), z¢ = (1,0,1), z7 = (0,1,1), zg = (1,1, 1).

Let Q&3] (T") denote the probability of the default configuration = on the interval
(0,T7:

n

Q1) 2E T (0%)™" (1 - D) ™|, (4.15)

i=1
with the convention 0° = 1. By definition, summing up the probabilities of all config-
urations, such that d (Z;) < k, gives the value of the Q-factor Q¥ (T):

QM = > QF(1).
{s:d(zs) <k}

It is easy to see, from equation (4.15), that we can write Q1 (T') as a linear combi-
nation of FTD Q-factors on subsets of {71, ...,7,}. We introduce the notation II,, to
represent the set of all subsets of {1,...,n}. For each subset m € Hn, We define the
first-to-default random time 75! = min {ri 1 em}, and its Q-factor Q7T (T):

2(1—1)%)].

In the example with n = 3, we have the following basis of first-to-default Q-factors:
{1 @{1}< ). Qpy (1), Q4 (), QL (1,0l 5, (1), 0, (1), @Y, 4y (1)} Note
that Q7r (T') for the empty set # = () is equal to 1. For the first configuration
71 = (0,0,0), the Q-factor Q1 (T') is given by

P((0.0.0) =B [(1 - D) (1 - D}) (1= )] = QWY (7).

QU (1) =P (T;” > T) —E

For the second configuration zg = (1,0,0), we have

P((0,0,0)):E[D%(l—D%) (1_D§“)] Q{23}() Q{123}()
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In general, the default configuration Q-factors can be written as

Q1) =Y ol (T (4.16)

melly,

where the coefficients o take values in {—1,0,1}. For n = 3, the ay-coefficients for

each configuration are:

LQ Qy Qu Qua Qly Qs Qs
000 00 0 0O 0 0 0 1
1 0 0 0 0 0 0 0 0 1 —1
010 00 0 0 0 1 0 1
1 10—-00 0 0 1 1 -1 1
001 00 0 0 1 0 0 -1
101 00 1 0 -1 0 11
011 01 0 0 -1 -1 0 1
1 1 1 1 -1 -1 —1 1 1 1 —1

In the general case, this table can be constructed recursively as follows.

We define a partition of I1,41: Il 11 = ].'II_F1 UII, 4, and HI_H NI, = 0. By
HﬁJrl, we denote the set of all subsets that contain (n + 1), and by IT__,, the set of
all subsets that do not contain (n + 1):

I, = {mnt1: Moyt € Mnya, (Rn+1) € T},

H:1+1 = {1 g1 € My, (R 4+1) € Topa}.

For a (n+ 1)-dimensional basket, the default configurations are either <5:\§, 1) or

(5:\?, 0), where 27 is the default configuration for a n-dimensional basket:

Q@ 7y — B |- o) [T (00 (1 Di) ]
=1

= E{(1-D3") Y an ] (1—D2_'p)]

L T €Il 1ETY

= E| > oo [ 0-D%)|,

LTS § Ry 1€Tn41
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ol (1) = B (D;z“)f[(DiT)””?»i (1—D§p)1_x?’i]

i=1
- E D”+1 ) Y e [] 1—DT]
T €Iy 1€y
= E Z ar, [[ 0=D%)| -E |1 -Dp™") > ax, [[ (1-Dk)
Ly €I 1ETn T €Il 1ET Y

= E| > an, [[ 0-Dp)|-E| > arn [[ (-Dh)

1 €L 1€ 41 Tn+1 GH:Jrl 1€Mn41

In summary, we have the following recursion:

(a3.0)  _

ar,y = 0,for mpp € T 4,
7,0 7n
a,(rnﬂ) = o, for Ty € I 4 and Ty = T, U{n + 1},
and
zn,1 n _
agnﬂ) = oy, for myp € I and 741 = m, U,
! 7
aSMH) = —aﬁ;, for mp41 € HIH and mp41 =1, U{n+1}.

Once we have generated the ar-representation (equation (4.16)) for each default con-
figuration, and we have computed the subset FTD Q-factors (from Proposition 37),
(T

we are in a position to evaluate the k™-to-default Q-factor Q¥ (T).

Proposition 38 Using the notations in this section, the survival probability of the

k' -to-default random time is given by

P(rH>T)= > > azQl(r

{s:d(zs)<k} m€lln

where the {—1,0,1}-valued coefficients a® are computed recursively.

As mentioned in Section 4.2, for non-homogeneous recovery rates, we need to
evaluate the density P (7'Z = 7kl 7k dt) First, let us remark that credit ¢ would be

the k''-to-default obligor in an infinitesimal interval (t — e, ] iff:

{TZ‘ =7l 7k ¢ (t — e,t]}<:> {Dz —-Dj_, = 17Zn:Dfl;—e+zl:let - Drltfe - k}

=1 =1

This corresponds to the default of credit ¢ being in the interval (¢ —¢,t], and the

total number of defaults is equal to k. If there are instantaneous joint defaults, only
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the credits in the set {1,...,7} define the default-rank for credit 7 (the references are
assumed to be ordered according to the pre-specified recovery-delivery rule). In other
words, a credit [ would be considered to be in default before credit i if 7; < 7;, or

71 = 7; and [ < 4. Thus, we need to compute

i (n = 7l I ¢ dt) = lim -P (Dg -Di =1y D +Y DD} = k)
7 =1 =1

1 -
— lim =B [ (D}~ D) Lyyw i, pbpl k)|

e—0t €

But we have
P(D% - Dz—e = 1) = (1 - Dz—e)P(Nti - Nti—e > 0) .
Hence

B (D}~ Di) Ly by vv, ni- Dte:k}}
= & [( —the) (Nt Nt E) 1{21 \ DL 43, (1-DL )(NI-N}_ )= k}} +o(e).
Using the equivalent fatal shock representation, we know that
NN = Y a (NN
m€lly

and o
D =3"a,D".
s=1

Combining the probabilities of the default configurations zy,, in the interval (0,¢ — €],
and the probabilities of the configurations zg,, in the instantaneous interval (¢ — €, ],

we arrive at

B [(1 N D’LE) (Ntl N Ntife) 1{27:1 Dife—"_zf:l(l Dy e)(Nl —N{ 5) k}}

Z Z { — Tgy,i) Tyl (d(55) 43 (1=, )y = k}} Q[a] (t) [e)\[az] (t)} +o(e),

s1=1s9=1

which is a weighted average over all possible scenarios. This is the convolution between
the basket default distributions on the intervals (0,¢ — €] and (¢t — €, ], weighted by
the indicator function of the default scenarios that contribute to the recovery payoft
(1 —6;).

The density follows by taking the limit

2 2n
P (Tz‘ = T[k],T[k] S dt) = Z Z Q[msl] (t) )‘[152] (t) (1 - wsm) xs2,i1{d(§§)+2f=1(17m51,z)m52,z=k} :
s1=1s9=1
(4.17)
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4.4 Expanding the Baskets

In principle, the direct method requires, for each time step, 27! values, corresponding
to the possible combinations of s; and s2 in equation (4.17); as the size of the under-
lying basket increases, the number of default configurations explodes exponentially.
This significant limitation restricts the applicability of the method to baskets under
10 or 11 credits. As an alternative, we propose a different approach, which is based on
a static replication idea. We show that each k''-to-default swap can be synthetically
generated with a portfolio of first-to-default swaps referenced to subsets of the original
basket. This result is not very surprising, since sub-FTDs may be viewed as a type of
Arrow-Debreu prices of the multivariate default space. Given the set of all sub-FTD
prices, one can compute the value of any higher-order basket default swap. The key
building block is the FTD evaluator; a fast implementation of FTD prices ensures, in
turn, a reasonable run time for k*™-to-default swaps.

In this section, we describe how this static FTD replication is done: first, we show
the relationship between k*'-to-default and (k — 1)"-to-default swaps; then, we apply

this recursion step-by-step until we arrive at the complete FTD expansion.

4.4.1 The Recursive Formula

To illustrate the recursive relationship, we start with a simple example, where we have
a basket of n = 3 credits: A, B and C. We observe that the {A, B, C'}-second-to-default
swap can be replicated with the first-to-default swaps referenced to the sub-baskets
{4, B}, {A,C}, {B,C} and {A, B,C} as:

STD (A, B,C) = FTD (A, B)+FTD (A,C)+FTD (B,C)-2FTD (A, B,C). (4.18)

To see this, it suffices to verify that the payoffs of the two sides of the equation match
in all default scenarios. Since equation (4.18) is symmetric in A, B and C, we suppose,
for instance, that credit A defaults, and we denote its recovery rate by 6 4. On the left-
hand side, ST D (A, B,C) becomes FTD (B, ('), and makes no cash payments; on the
right-hand side, FTD (A, B) pays (1 — 64) and terminates, FT D (A, C) pays (1 — 64)
and terminates, F'T'D (B, C') is unchanged and does not make any cash payments, and

finally FT'D (A, B,C) pays (1 — 64) and terminates. In summary, we have
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PV PV cash balance
FTD (A, B) — 0 (1—464)
FTD(A,CQC) — 0 (1—-064)
FTD (B,C) — FTD(B,C) 0

—2FTD (A,B,C) — 0 —2(1—064)
Total — FTD(B,C) 0

PV PV cash balance

STD(A,B,C) — FTD(B,C) 0

For the premium leg, all the trades pay one unit of premium before default. If A
defaults, STD (A, B,C) and FTD (B, C) keep paying one unit of premium each, and
the premium payments stop for all the other FTDs which contain the reference A:
FTD(A,B), FTD(A,C), FTD (A, B,C),

Before default After A defaults

FTD (A, B) 1 0
FTD(A,CQC) 1 0
FTD(B,C) 1 1
—2FTD (A, B,C) -2 0
Total 1 1

Before default After A defaults
STD (A, B,C) 1 1

A similar analysis shows that we can replicate the {A, B, C'}-third-to-default by
second-to-defaults on the sub-baskets { A, B}, {A,C}, {B,C} and {A, B, C} as follows:

TTD (A, B,C) = % ISTD (A, B) + STD (A,C) + STD (B,C) — STD (A, B,C)] .

Now, we turn to the general case, and we establish the result for a basket of n credit.
We denote by Vrgk} (A1, ..., A,) the value of a k'™M-to-default swap referenced to the
n-dimensional basket {Aj,...,A,}. We also define the [-subsets of {1,2,...,n} (i.e.
subsets containing exactly [ elements) by the mappings 7 (.), for 1 < s < (}):

() {1,2, ., kY = {1,2,...,n}.

Furthermore, it is notationaly convenient to assume that each [-subset 7', is an ordered
sequence of indices 7 (1) < 7l (2) < ... < 7L (k).
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Example 39 We consider n = 3 credits; for subsets of | = 2 elements, we have:
{71'% : W% (1) =1; 77% (2) = 2} 3 {ﬂ-% : W% (1) =1; 77% (2) = 3} s {71-% : 71% (1) =2; 7T§ (2) = 3} .

For a second-to-default VT?], we can easily check that the replicating portfolio of
FTD swaps contains the {Aj, ..., A, }-FTD and all the (n — 1)-element-sub-FTDs,

1
V2 (4., A Zv 1 ( ., ...,Aﬂgfl(n_l)) — (=1 V(A ..., A).
For higher-orders k£ > 2, we have a recursion of the form

[k—1 k—
VI (A, A ZV 1( 7(),...,An71(n71)>—b7[f]vn[ U (A, oy Ay).

Ts

s
(4.19)
Equation (4.19) is symmetric in Ay, ..., A,. Suppose, for example, that A; goes into
default. The subsets (7r2_1 ())1 <4<p, are ordered such that the last set is 7~ =
{As, ..., A, } and all the other sets contain credit A;. In the sum S, the first (n — 1) sub-

sets contain the defaulted reference A1, hence each sub-basket Vg:” (Aﬂ?ﬂ(l), e Awg* (nfl)) ,
for 1 < s < n—1, becomes VTEk__;] (Aﬂgfz(z), very A7r272(n71)>' The sub-basket Vrgk__ll} (Ao, ..., Ap)

remains unchanged and the last term V,i’f‘” (A1, ..., Ay) becomes V,Eli_f] (A2, ..., Ap).
It follows that, after default, equation(4.19) becomes

AV Ay, A0 = [V (Aﬂﬁ(?), ...,Aﬂgfz(nfl)) + VR (A, A
s=1
bgc] V')Ek_m (A27 7An) )

re-arranging the terms, we obtain

n—1
(agﬂ B 1) Viliz” (A, ..., Ap) = Z Vryi*;] (Aﬂ_?sm—l(2)7 e Aﬂ_?—l(nil))
bV Ay, A (4.20)

On the other hand, applying equation (4.19) to the (n — 1)-element-basket { Ao, ..., Ap}
yields

n—1
agg__ll]vik__ll} (AQ, veey A'ﬂ) - Z Vrgk__22] <A7r271(2)7 “eey Aﬂ'?il(’nfl)>

b[k HvEA 4y, A, (4.21)
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which, compared with equation (4.20), gives

alfl —1 = agﬁ:f], and blF = bﬂ:”. (4.22)

Applying the double-recursion (4.22), we arrive at the values of agﬂ I,

d =ay 1= =a? k-2 =1+ (h-2)=k—1,

[F].

and the values of by, :

QI a1

ni(k72):n—(k—2)—1:n—k+1.

Proposition 40 The replication of a k'*-to-default swap referencing a basket of n
credits {Ay, ..., Ap}, is done with (n+1) (k —1)"-to-default swap instruments: the
replicating swaps reference the original basket {A1, ..., An} and all its (n — 1)-element-

sub-baskets,

Z Vilizl] (Awgfl(l)a veny Awgfl(n71)> a bgc}vﬂ[kil] (Al? RS An) ’

s=1

1
VI (4, .., Ap) = -

an

(4.23)
witha® =k —1 and b = n — k +1.

4.4.2 The Complete Expansion

Using the relationship (4.23), it is easy to see that we can proceed recursively until we
arrive at the complete expansion in terms of the basic FTD instruments, each FTD

swap references a sub-basket of | elements, where [ varies between (n — k + 1) and n:

no ()
l=n—k+1 s=1

Note that aif ] (1), the instrument contribution to the replicating portfolio, depends
solely on the size of the subset 7}. This is a consequence of the symmetry with respect
to the references A, ..., A,. In order to derive the expression of the coefficients a%c } (),
we replace each term, on the right-hand side of the recursive relationship (4.23), by

its FTD representation (4.24),
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n l

Vi (A1, An) = 1Y Z Z a3 OV (A () At ()

7‘b t=1l=n—k+1 s=1

[k] no (7))
bl B

—m | X Yoy (Awg<1>a---~4ng<z>> : (4.25)
a

n l=n—k+2 s=1

g

So

We simplify the triple sum S; by interchanging the summation order and using the

following lemma.

Lemma 41

(r

nl
;gv“l( 21 (mt (1)) > A (it ) n—lZVl (Al(l As(l)>.

Proof. To generate all the subsets of the double mapping 7"~ (rh (), for1 <t <
n,1<s< (?_1), first we enumerate all the (n — 1)-subsets of {1, ...,n}, then for each
(n — 1)-subset, we enumerate all of its [-subsets; in total, we have generated n x (?_1)
subsets of {1,...,n} containing exactly [ elements. This means that we have spanned
the set of all [-subsets a number of times d, where d verifies n x (?_1) = d x (}'); hence
d=n—-10. nm

The sum S7, then, becomes

n

!
Z a[k 1] (n_l)zvg[l] (Awls(l),...,Aﬂls(lO
s=1

l=n—k+1
On the other hand, we can re-write the double sum So as
n () .
Z a%*l] (Z)Z‘/Z (Aﬂ'ls(l)w"aAwls(l)) :

l=n—k+2 s=1
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By splitting the k-sums in S; and S, equation (4.25) becomes

VI (44, Ap)
n—k+1 n—1 k1] (ln) )
= > ( & > o ()Y, (Awm)v--wAwaa))
I=n—k+1 \ @n s=1
n—1 _— _ b[k] [k 1] (" "
+ Z (( a[k} )anl (l) - ( [k) ) Z‘/Z ( wl (1) Awé(l))
l=n—k+2 n
n b[k ( )
—Z< ) =1 ) Sy (A (1),...,Awé(l)). (4.26)
s=1

Comparing equation (4.26) with the original expansion (4.24), we obtain the following

double-recursion:

awm:(i%yﬁ*m>mu—n
o (1) = (2) ol () = (B) V@) forn—k+1<i<n
o (1 :<Z[_;g)a£f @), forl=n—k+1.

Let us solve this double-recursion step-by-step.
We start with the case [ = n,

o - (S22 (44)- (27

_ () (n '—:L)'_ i (—1)h! (Z:lf> ‘

Then, for | =n — k + 1, we have

o n—k+1) = n_(z:]f+1)a,[f:11}(n—k+1)

alf~ 1](n—k+1):...:ag]_k+1(n—k+1):1.

Qp_q

And finally, forn —k+ 1 <[ <n,
Wy — (U 1y (PR e
alf )= (777 ) a0 - (i) el 0, a:27)

From the shape of equation (4.27), we postulate that the solution is of the form

alfl (1) = (=17 (3),

and using some elementary algebra, we find that the solution is:

olfl (1) = ()Y (17,

To summarize, we have the following proposition.
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Proposition 42 The replication of a k™-to-default referencing a basket of n credits
{A1,..., An}, is done with the first-to-default swaps that reference all the l-subsets of
the original basket, where n —k+1 <[ <n:

VI (AL A = 3 Sl O WY (Anys e Any)

where ol (1) = (—1)17(”7/“1) (l L ) forn—k+1<[1<n.

Remark 43 Note that the first-to-default expansion is generic and is applicable to all
copula models. The replication itself is independent of the choice of the multivariate

dependence.

In order to compare the FTD expansion with the direct approach, we apply equa-
tion (4.24) to an k''-to-default credit linked zero-coupon cash flow, and we establish

the expression of the Q-factor associated with the random time ¥

P (T[k] > T> - Z Za[k] QU (). (4.28)

l=n—k+1 s=1

Recall the expression of Q¥ (T') with the direct method (equation (4.16))

P(rH>T)= > > azQl(n). (4.29)

(s:d(z5)<k} TETIn
The key difference lies in the fact that instead of generating the entire set of subsets
I1,, and add up many terms whose coefficients are ozxs = 0, we restrict ourselves to
those sub-FTDs les (T') that contribute to the value of the sum. Indeed, looking back
at the 2™-by-2" matrix [a%], in the example of Subsection 4.3.2, one notices that it

is actually very sparse. The only extreme case where all the sub-FTDs are required is

for the last-to-default swap k = n.

4.5 The Homogeneous Transformation

In general, the number of sub-FTDs in the replication formula (4.24) is a function of
n, the size of the basket {41, ..., A,} and k, the order of the basket default swap. For
instance, a STD swap is replicated with (1 + n) sub-FTD instruments, a TTD swap is
replicated with (1 +n+ n(nH) ) sub-FTD instruments, and so on. A k''-to-default
swap, in general, is rephcated with all the FTD instruments referencing the [-sub-
baskets, where [ varies between (n —m + 1) and n; the size of this replicating portfolio
is given by the truncated binomial expansion N (k,n) = 1+ (271) + ... 4+ (27FF1).
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Clearly, for small values of k£ and n, the total number of sub-FTDs is reasonable, but
when one considers higher default orders, the combinatorial coefficients are larger, and
may be impossible to handle numerically in extreme cases: a last-to-default swap, for
example, requires a total of N (n,n) = 2" — 1 sub-FTDs.

The most time-consuming step in the evaluation is the generation of the sub-FTDs
Qgrlg (T), for all combinations {7} : 7} € II,,

basket, then, for a given subset size [, all the FTD instruments would have exactly the

ﬂé’ = l}. If we had a homogeneous

same value; and equation (4.28) would then collapse to

p(rH>1)= 3 ol @ eim.

l=n—k+1

!'is one Il-subset of the homogeneous basket. The number of sub-FTDs to

where 7
compute, would reduce to one evaluation per [-subset, hence a total of N (k,n) = k
FTD evaluations for the whole k''-to-default swap. So, our first approximation is to
transform the original non-homogeneous basket to a homogeneous one, and to preserve
some properties of the aggregate default distribution. The homogeneous transforma-
tion idea goes back to Moody’s binomial expansion and diversity-score approach: they
consider a transformation that preserves the mean and the variance of the portfolio
loss distribution. It is a well-known fact, however, that the first and second moments
are not enough to represent heavy-tailed loss distributions. In our approach, for each
default order, we consider the corresponding percentile of the aggregate default dis-
tribution, and we require that this quantity remains invariant with respect to the
homogeneous approximation. We shall see that this transformation is exact for a FTD
swap, and that for higher-order defaults our approximation appears to give a very

good accuracy.

4.5.1 An Illustrative Example

We begin with a first-to-default swap, and we work out the homogeneous transfor-
mation that preserves its present value. We consider the non-homogeneous basket
{41, ..., An}, which is represented with its MO decomposition: its market factor load-

ings matrix [p; ;| 1<i<n , and its idiosyncratic intensities vector ()\O’i) L<icn- Our objec-
1555m SIS
tive is to find an equivalent portfolio {A7, ..., A} }, where all the underlying credits A}

have the same MO representation: ((p}‘) L<ier )\0’*> , and the value of the FTD swap
<j<m

referencing this new portfolio is equal to the value of the original non-homogeneous
FTD. As discussed in Subsection 4.3.1, the FTD random time 71, in a MO model, is
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exponentially distributed and its hazard rate Al (¢) is given by equation (4.14):

jg:,XOJ(t)].

=1

A (A And) = D [1 -Tla- p@-,ﬁ] X (8] +

i=1

To ensure that the two FTD swaps have the same value, we need to equate the hazard
rates of the FTD times 71 ({41, ..., 4,}) = min (74, ...,7,) and 700 ({A4%, ..., A%}) =

min (77, ..., 75):

AT (AL, LAY = A ({Ar, LA VMY ()] e RT, 1< j <m. (4.30)

Substituting the FTD hazard rates with their formulas, and because the equality (4.30)
holds for all values of the factor intensities )\? (t), one gets

n

1_H(1_pi’j):1_(1_p;)n,f0rl§j§m; and Z)\O’i(t):n)\o’*(t).
=1 i=1

This completes the definition of the equivalent portfolio transformation. The FTD
equivalent homogeneous portfolio is obtained by taking the arithmetic average of the
idiosyncratic intensities, and the geometric average the market factor conditional sur-

vival probabilities ¢; ; = 1 — p; ;:

* 1 .
p; = l—exp (% Zlog (1 —p@j)) ,
i=1
* 1 g 7
A1) = EZAO» ().
i=1

4.5.2 The Homogeneous Transformation

Now, we turn to the general case of higher-order default swaps. We want to define the
transformation

(bkd]lgign ’(AOJ)1<i<n> - <(p§)1ngnz’A0%>’

1<53m

such that the value of the k*"-to-default is the same for the two portfolios {Aq, ..., A, }
and {A7, ..., A% }. The key is to match the survival probabilities of the random default
time 7%, Recall that the Q-factor Q¥ (T') and the portfolio aggregate defaults X
are related as:

QM (1) =P <7'[k] > T) =P (Xr <k).

In order to study the properties of the random time 7%, we work with the aggregate
default distribution X7, and its probability generating function ¢ (z). We show that
¢ (x) can be conveniently expressed in terms of the basis FTD Q-factors Qgrl] (T) of
Subsection 4.3.2.
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Theorem 44 The probability generating function ¢ (x) of the random variable X is
given by:
= > QUE(T) 2" (1 - 2)™. (4.31)

7T€Hn

Proof. See Appendix A.1. =

Remark 45 Observing that the survival probability Q¥ (T') can be recovered from the

probability generating function ¢ (x), one gets

oM ()= @),

— !

Theorem 44 provides another proof of the FTD expansion formula (4.28) in Subsection
4.4.2.

Letting A% (T) and A% (T") denote the cumulative market factor and idiosyncratic
intensities respectively, i.e., A% (T') = fOT NG (t)dt, for j = 1,...,m, and A% (T) =
fo A% () dt, for i = 1,...,n, the value of each sub-FTD Q-factor is given by equation
(4.13),

Z AO,’Z

In order to remove the non-linear dependence on the market factor intensities, we ex-
pand the exponential function to first-order!: exp (Z;n:l (Iicr (1 = pij)) A% (T)> ~
L+ (ITier (1 = pij)) A% (T), and we define a new set of adjusted market factor
loadings p; ; =1 — e AT (1 — pij). Then, equation (4.32) becomes

(4.32)

QU(T) =exp [ - |> (1 -]« —pi,j>) A% (T

7j=1 1ET

m
QLTI] (T)~exp | — ZACJ' (T) ]| |exp (— E:AOz ) + Z (H (1 —pij ) A% (T)
j=1 1ET Sy
(4.33)
In the spirit of equation (4.14), used in the FTD case, this new formula expresses the
survival probability as a linear combination of market factor intensities and a separate

idiosyncratic contribution. Direct substitution of equation (4.33) in the expression of

the probability generating function of Theorem 44 shows that we can write ¢ (z) as a

IThis expansion is a very good approximation since the values of the intensities (A; (T)) 1<j<m AT€
usually small. T
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linear combination of functions ¢ (z) and ¢ (x), defined as:

o) = Y (H(l—p?fj)> 2" (1 — )",

w€lly, \i€m
po(x) = Y exp (— > A% (T)> 2" (1 — )
welly e

and which can be interpreted as the market factor conditional probability generating
functions and the idiosyncratic probability generating function, respectively. Indeed,
using Theorem 44, we can easily see that ¢ () is the p.g.f. of a sum of independent
Bernoulli variables XO, where P (XO = 1) =1- e_AO’i(T), and @5 (z) is the p.g.f. of
a sum of independent Bernoulli variables Xij , where P (XZ] = 1) = p; ;. Inverting the
probability generating function ¢ (z),

¢ () ~ exp ZACJ o (2) + > A9 (T) [¢5 ()] |
j=1

gives the value of the k'"-to-default Q-factor P (X7 < k) as a linear combination of
market factor contributions and an idiosyncratic term, which allows a one-to-one map-

ping between the two portfolios,

m

P(Xr <k)~exp | — > A% (T) +ZQ[’“] TYAS (T)|,  (4.34)

J=1

where

:P(ZX?<k> andQ (ZX]<k>,forj:1,...,m
=1

In light of equation (4.34), the homogeneous transformation for the k'"-to-default
payoff is defined as the one that keeps invariant the probability of the idiosyncratic
mode Q([)k] (T'), and the probabilities of the market factor modes ng} (T'). For the
homogenous basket {A],..., A%}, the idiosyncratic and market factor probabilities
di (T') and ng] (T') are computed directly as truncated sums of the binomial ex-
pansion: Q%k] (T)=1B (k: —1,n,1— e_AO’i(T)>, and ng] (ThY=1B <k‘ -1, n,/]\o/;f), where
B (k,n,p) = Zi‘c:o (M (1 —p)" " (p)" is the binomial distribution with parameter p.
For the non-homogeneous basket { Ay, ..., A, }, these probabilities can be computed by
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an inversion of the Fourier transform? Fy (s) = ¢, (¢®) and F5(s) = ¢ (%),
P (Z X9 = k) = F HFo(5) sk »
i=1
P (Z X! = k:) = FH(FL(S)) =k -
i=1

Since the variables (Xlo) and (XZJ > are independent, the p.g.f. ¢, (x) and

1<i<n
@5 (z) are given by the products ¢, (z) = [[iL; ¢xo (z) and ¢§ (z) = [}, ¢y (),
where ¢x () = (pr + (1 — p)) is the p.g.f. of a Bernoulli variable with parameter p.

1<i<n

Other methods to generate the distribution of a sum of independent variables, such as
the convolution recursion method (see Subsection 4.6.2), are available, and are more

efficient than the Fourier transform inversion.

In summary, the homogeneous transformation can be described algorithmically

through the following steps:
1. Find A%* (T):

(a) generate the idiosyncratic default distribution [P (37, X? =1)]
Fourier inversion;

(b) use a Brent search to find A%*(T) such that B (1 - e*AO’i(T),kz,n) =
P (3o, X7 < k).

0<i<n by

2. For each market factor, find p;-‘:

(a) transform the loadings p; ; to the adjusted ones: p; ; =1 — e~ (1 —pij);

(b) generate the conditional market factor default distribution []P’ (Zﬂzl XJ = l)}
’ ! 0<I<n
by Fourier inversion;

(c) use a Brent search to find I;j such that B (5;, k, n) =P (Z?:l Xg < k);

(d) transform back p?k topj: pj =1— A (@) (1 - p?")

4.5.3 Fourier Inversion and Importance Sampling

One issue that arises in the Fourier inversion procedure is that its failure to estimate
accurately small probabilities in the tail of the distribution. Indeed, since underlying

default probabilities are usually small, the portfolio aggregate default distribution is

2See Appendix B.2 for the Fourier transform inversion formula.
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Figure 4.1: Fourier inversion round-off plateau.

centred to the left, and the tail probabilities decay exponentially as we move further
from the mean. When the tail probabilities are smaller that the machine double-
precision ~ 10716, the numerical round-off errors dominate. This results in a well-
documented oscillating behaviour, which is known in the numerical analysis literature
as a round-off plateau?®.

To address this problem, we apply a technique inspired by the importance sampling
method, which is often used in Monte Carlo simulations to improve the speed of the
convergence. The idea is to consider the aggregate default distribution under a new
probability measure. Provided that the change of measure is chosen appropriately, such
that the new target distribution is centred in the tail, the percentile to be estimated
will be significantly larger than the machine precision, and we are in a better position
to estimate it accurately with the Fourier inversion algorithm. Once the percentile
is evaluated, it can then be converted back to the original measure with the Radon-

Nykodim derivative (which, in fact, is a fast-decaying-exponential).

To define the appropriate measure change, we use the concepts of tilted distribu-
tions, Esscher transforms and saddle points *.

For a given probability density function f(z), we call tilted densities of f, the
family of density functions fp (z) defined by

6096

Jo (@) = 1 @) 357 = f @O, (4.35)

3See Boyd (2000) for a discussion on machine precision and round-off plateaus.
*A good reference on exponential tilting can be found in Ross (1997).
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where M (t) = E [¢"*] = [ €' f (z) dw is its moment generating function, and K (t) =
log (M (t)) is its cumulant generating function. The mean and the variance of the
tilted distribution are given by: py = Kj (0) = K’ (0), and o2 = K/ (0) = K" (0).
The change of probability measure corresponding to the unique solution of the
equation
K’ (5) —z (4.36)

is called an Esscher transform. The parameter 0 is known as the saddle-point. This,
basically, defines a change of probability measure such that the new distribution is

centred around x.

In our setting, we have a set of independent Bernoulli variables X; with pa-
rameter p;, and we need to estimate the percentile of the aggregate distribution
P(X1+...+ X, > k), for a given k.

The probability mass function of the Bernoulli variable X; is given by:
file)=pf (L—p)' ™", & =0,1,
its moment generating function is:
M; (0) = pie® +1 - p;,

and we can write its tilted probability mass as:

)l—x

Ox,x 1—p,
fig (:L‘) — € pz]& (ep’b — @.ﬁt (1 _I’)\Z)l*I’ fOI‘ T = O7 17
(2

with ;

B = —g—.
pie’ +1—p;

ff (z) corresponds to the probability mass function of a Bernoulli variable with the

tilted probability p;.

For the aggregate defaults r.v. Xy + ... + X,,, the tilted probability mass is:

o) @)@
@ =3y = T 36.0)

where, since the variables X; are independent, the moment generating function M (0)

,r=0,1,....n,

is given by the product of the individual m.g.f. M; (0). The Radon-Nykodim derivative
used to transform f% () back to the original density f () is:

f(x) = f° () KO0,
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Using the tilted probabilities (p1, ..., Pn), we generate the distribution of the aggregate

P _ _K(0)-6
i = 070,

we arrive at the probability distribution of the random variable X; + ... + X, under

defaults under P?; then multiplying by the Radon-Nykodim derivative
the original probability measure P.

To summarize, the algorithm to compute the tail probability P (3" | X; < k) is as

follows:

1. Step 1: use a Brent method to solve for the saddle point 5, such that K’ <§> = k.
K’ (t) is given by

n

K’ (t) _ Z pz‘et

— piet +1—p;

2. Step 2: compute the tilted probabilities p;

~ pz‘ee

pie? +1—p;

3. Step 3: generate the aggregate default distribution, in the new measure Pg,

PP Ot Xi=3 )} by Fourier inversion.
0<j<n

4. Step 4: compute the default distribution in the original measure:
P (ZX - j) — P (ZX :j> exp (K (5) —§j) .
i=1 i=1

4.6 The Asymptotic Homogeneous Expansion

The transformation, described in the previous section, produces a homogeneous port-
folio, which mimics some properties of the aggregate default distribution, and can
be used pari-pasu for the purposes of basket default swap valuation. By using this
homogeneous portfolio, the numerical burden that comes with the pricing of large bas-
kets is eased, and the valuation algorithm is significantly speeded up. From equation
(4.23), the kM-to-default survival probability Qgﬂ l=p (T[k] > T) for the n-dimensional

homogeneous portfolio {A], ..., A%} can be computed recursively as:

k—1

This simple-looking recursion hides a nasty numerical problem: it is numerically un-

Q= (1) (@ - Qi) + Qi (4.3

stable. As one moves up the recursion tree, the numerical round-off errors (which
[k—1]

originate mainly from the difference (Qn_l — Q% _1]>) propagate rapidly, and the re-

sulting prices are completely erroneous. In fact, a closer look at equation (4.37) shows
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that this latter resembles the discretized finite-difference scheme of the wave equation

PDE, with time-dependent and space-dependent velocity:

k] _ olk-1] _  _ n k=1 _ Alk—1]
Q! - Ql <k_1> (k- Q).
8Qz,t _ aQaz,t

Equation (4.38) is a well-known unstable difference scheme?.

To address this issue, we take a different route: rather than using the recursive
approach, we study the asymptotic behaviour of the homogeneous portfolio. We show,
in this section, that the solution Q%f | admits an asymptotic series expansion, and we

explain how to compute each term in the expansion.

4.6.1 Asymptotic Series Expansion
We fix a time horizon T, and we consider the k'-to-default Q-factor: QI (T) =
P (T[k] > T).

Proposition 46 Asymptotic Series Expansion

The homogeneous portfolio k''-to-default Q-factor has the following series expan-

ston:
" _ () +0o0 +o0 Act (T)m ACm (T)nt L )
e D S ]
ny= N, =
(4.39)
where

_AO,*
Pny,..onm = l—e AR(T) (1 _pi)nl (1 _p:(n)nm ’

and B (k,n,p) is the cumulative Binomial probability with parameter p:

k
B(k,n,p)=>_(})p (1-p)"7.
j=0
Proof. As in Subsection 4.5.2, we consider the p.g.f. of the defaults counting
variable X7. By virtue of Theorem 44, ¢ (z) is given by
pla)= > QU(T) "™ (1 - )",
welln

where the sub-FTD Q-factors of the homogeneous basket are

m

QU(T) =exp | = |3 (1= (1 =) @) A% ()| = [d(m) A (D)] | . (4.40)

Jj=1
"We refer the reader to Press, Teukolsky, Vetterling, Flannery (1992).
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d(m)
Replacing each exponential exp <<1 — pj) A% (T )) by its series expansion,

ROV b
exp <(1 _p;)d(n) AS (T)) _ i" [(1 PJ> A (T)]

’I'LjZO

n;! ’
;!

equation (4.40) becomes

Q (7s)
d(m n1 d nm
oo [(mn) Tae @] [(1-8)" A )
o] 35S , ,
n1=0 nm,=0 n Mm:
Che +o0 Acl n1 Acm <T)nm _ .
- AS(T) d(m)AL o (T)
> Z I e 1 : (4.41)

n1=0 N =0

where

A i (1) = A% (T) +log (1= pi)™) + .. + log (1 = p})"™) -

Substituting (4.41) in the expression of the probability generating function gives

. +oo Ac n Cm Nm
T D S S A € ——

Nm:
niy= =0 nm—O m

where

Corromn (@) =Y Quyoy, (1) @4 (1= )™

7r€1'In

Qniyeci (1) = exp (=d (1) Ay, o, (T)).

Using Theorem 44 again, it is easy to see that ¢, ., (v) is, in fact, the prob-
ability generating function of a set of n independent identically distributed vari-
ables (Z1, ..., Zn), with an idiosyncratic intensity A;,, ., (T), or a default probability
P(Zi=1)=1-e " fori=1,. n Indeed, Qni,...nm (m) is the sub-FTD
Q-factor of the m-subset of (71, ..., Zp),

Qnaroinn () = [ exp (=A%, (D) = [[P(Zi =

s iEm

The p.gf. ¥, n, (7) is, then, given by the product of the p.g.f. of the individual

independent variables Z;:

P @) = (w4 (MO 1= pry™ (1= pp)™) (1= )"
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In other words, ¢,,, ., (v) is the probability generating function of a Binomial dis-

NI (1= pp)™ . (1= pj,)", and @ (x)
is a weighted average of the Binomial p.g.f. ¢, ., (z):

+oo +oo
‘2 (w) = Z Z Wny,...;nm, (pnl,...,nm (.’L') )

n1=0 N =0
A AT (D)™ A (T)"

’I’L1! ’I’Lm!

tribution with parameter py, . p,, =1 —

wnlr-'vnm =
A direct inversion of the probability generating function completes the proof. m

Remark 47 Note that the weights wpy, .. n, n front of each Binomial function sum

up to 1:
+oo +oo Acl m Ac2 (T)n2 Acm (T)nm

b3S

n1=0n2=0 n.,=0

O =1.
Equation (4.39) can be seen as the formula of a “Binomial Mizture” i.e., a weighted
average of Binomial distributions. The first mode (wo,... 0, po,....0) is the “independent”
mode, or the pure idiosyncratic mode; then the “correlation” modes are added on top.
Each correlation mode corresponds to a market factor contribution, or a combination
thereof.

As n goes to infinity, each Binomial mode converges to a Gaussian distribution,
and equation (4.39) becomes the formula of a “Gaussian Mizture”.

Figure (4.2) depicts an example of a typical default distribution in a M.O. model
with three types of market factors: “World” driver, Beta driver and Sector driver. In
Figure (4.3), we give examples of the Binomial mixture modes with different values of

the exponents (nw,np,ng).

In practice, rather than treating the market factor Poisson jumps separately, it is

more efficient to consider the process {N€(t),t > 0}:

m
A Cj
23NN,
j=1

which counts the total number of market factor events of any typeS. Since Nf is the

sum of independent Poisson processes, it is a Poisson process as well, and its intensity

is given by the sum of intensities: A\°(t) = X (t) + ... + A\ (¢). For a fixed time
See Duffie and Pan (2001).
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Figure 4.2: Binomial mixture modes. There are four modes in this example: the first
one corresponds to the idiosyncratic defaults; the second one is the Beta mode, rep-
resenting joint defaults in different sectors; the third hump, which is less pronounced,
is the sector mode; and finally, the last peak, at the end of the distribution, is a state
of the world where all credits defaults.
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Figure 4.3: Conditional Binomial Distributions in the Asymptotic Homogeneous Ex-
pansion.
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horizon T', conditional on the total number of jumps, the probability of a jump of type
J is given by m; = I}VJT%), for 1 < j < m. Re-writing the series expansion (4.39) by

conditioning on the total number of jumps, we get the following result.

Corollary 48 The asymptotic series expansion (4.39) can be re-written as

k] SN e AC(T)" LIS P
QUD =D ™= 3 e B L)
n= ni+...4+nm=n
(4.42)

The conditional terms M,L'nm,ﬂ?fl ...mym are the probabilities of a multinomial dis-
tribution with parameters (71, ...,mp). For each expansion order n, the number of
terms in the multinomial expansion (i.e., the number of sets (ni,...,n,,) such that

).

ny + ... + ny = n) is equal to ( For high values of m and n, the number
of terms in the multinomial expansion can be very large. For a typical diversified
portfolio of 100 to 125 underlying credits, we find that the number of market factors,
representing mostly various industry sectors, is of the order of m ~ 25. In order to
reduce the truncation error in (4.42), this type of portfolios usually requires the series
expansion cut off point to be of the order of N ~ 15. For m = 25 market factors, as
soon as we exceed order n = 6, the number of terms in the multinomial expansions be-
comes significantly large, and very time-consuming to compute. To improve this part
of the algorithm, we use a n-dimensional Quasi-Monte-Carlo integration technique.

A few comments are in order.

e [t should be emphasized that the need to go into high orders is driven by the
values of the cumulative intensity A° (T') = A (T') +...+ A% (T); the truncation

order is determined so that

N c n
1 Ze—AC(T)A (T) “ens
n=0 ’

n

where ¢y is a given accuracy level. Longer maturities, higher market factor inten-
sities, and larger number of market factors require more orders in the expansion

to achieve the same level of accuracy.

e The conditional jump type probabilities (71, .., 7,) are, by construction, signifi-
cantly higher than zero, therefore the convergence properties of the Quasi-Monte-
Carlo sample are very good, which in turn implies that only a reduced number

of paths is usually needed (typically, number of samples is ~ 1000 paths).

e Estimating the probabilities of the multinomial distribution is a well-posed in-
tegration problem on the n-dimensional hypercube, which is particularly suited

for Quasi-Monte-Carlo.



4. Basket Asymptotics 116

4.6.2 Quasi-Monte Carlo Integration of the Conditional Distribution

Re-writing equation (4.42) in terms of expectations, the k™-to-default Q-factor Q¥ (T7)

1S:
“+o00

ey A (T)"
QW (T) = Z_;)eA (T)%IP (B (k=Lnpys yem ) INF =)

The conditional expectation P (.|N§ =n) is given analytically by summing over the

weights of the multinomial distribution,

|
P (B (k - l,n,pN?’__.’N;m) NG — n) . T B (k— 1, Py

|
b Tim=n ny....Mm:

Here, we estimate this expectation numerically using Quasi-Monte Carlo integration’.
We use an n-dimensional Sobol sequence to simulate a vector of n indices (x1, ..., T ),

where the x;’s are discrete random variables with the following distribution:
P(z;=j)=mj, for 1 <j<m.

For each path, the parameter of the conditional Binomial distribution PNS,. Nem is

given by:

C
Pngr,.

N;m =1-—- eiAO,*(T) (1 — p?;l) (1 - p;n) - p:cl,...,xn7

and the conditional expectation is evaluated as:

P (B (k _ 1,n,pN;1,___7N;m) NS = n)

= P(B((k—1,1,pa,. 2,))
N

1
N Z B (k - 1,n,pleyath?.“?xgath> .

path=1

12

In practice, we compute the dominant terms of the series expansion in closed form, and
we estimate the higher-order terms, needed for the convergence of the asymptotic series
(i.e., to reduce the truncation error ), by numerical integration. For a typical basket
of 25 market factors, the orders 1 through 6 use the closed form formula; orders 7 to
15 use Quasi-Monte Carlo. Sobol integration is particularly appropriate for this type
of high dimensional integration problems, it benefits from the space filling properties
of this low-discrepancy sequence. We can also use other low-discrepancy sequences,

8

such as Faure, Halton, Haselgrove®, etc.

A similar approach is used in Merino and Nyfeler (2002).
8See Niederreiter (1992) for a discussion of low-discrepancy sequences and their application to
high-dimensional integration.
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4.7 The Asymptotic Expansion

In this section, we relax the homogeneous portfolio assumption, and we derive an
asymptotic series expansion of the k'™'-to-default Q-factor in the non-homogeneous
case. We also show how to compute the conditional aggregate default distributions
that appear in the expansion, using the convolution recursion algorithm. This latter
and other recursive methods have been traditionally used in actuarial mathematics to

evaluate ruin probabilities and insurance premia.

4.7.1 The Asymptotic Series Expansion

We consider the k''-to-default Q-factor, at a fixed time horizon T, for the non-
homogeneous portfolio { A1, ..., A, }. By B (k,p), we denote the cumulative probability
of a random variable Y; + ... + Y,

k n
B(kp) =) P (Zn =j> :
j=0 i=1

where (Y7, ..., Y,,) are n independent Bernoulli variables with parameters p = (p1, ..., pn).

Proposition 49 Asymptotic Series Fxpansion
The k'-to-default Q-factor Q¥ (T)) for the non-homogeneous portfolio {A1, ..., Ay}

has the following series exrpansion:

+o00 +o0 n n

_AC ACl T ! ACm T m —_~

QU@ =SS o 20 B(k—l,pm,.l.,nm)], (1.43)
ni= N =

where the probability vector ,pp, . np = Pny,nm (1) ooy Prg,.oom (1)) 48 given by:

e—AO’i(T) ( )m )nm )

Py (1) = 1= 1—pi1)" o (1 = pim

Proof. As before, we proceed as follows:

1. we consider the probability generating function of the aggregate defaults counting

variable ¢ (),

2. we expand the exponentials [exp (Hier (1 —pi;) A (T))] that appear in the
sub-FTD Q-factors QE ] (1),

3. which is then substituted in the formula of the p.g.f. ¢ (x),
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4. and we arrive at the expression of ¢ (x) as a weighted average of conditional

independent probability generating functions ¢,,, ., ()

“+o00

“+o00
(p(.’L‘) = Z Z Wny,onm * Prg,.c.nm (l‘)a

n1=0 N =0
o~ Ao A% (7)™ Aem (T)"™™
n! T !

)

where
n Ny
G @) = L[ (2 (2O (1= pi)™ o (1= pin)™ ) (1= 7).,
i=1
is the probability generating function of the sum of n independent Bernoulli
variables (Y1, ...,Y;) with parameters po, . = Pny..m (1) oo Py, (1))

. __ A0,z
Prseoim (1) = 1= e 2@ (1= p; )™ (1 = pim)™™ .

Equation (4.43) follows from the inversion of the probability generating function

o (2).

|
Conditioning on Nf £ Nf* + ... + Ni™, the total number of market factor shocks

in (0,¢], we obtain the compact version of equation (4.43).

Corollary 50 The asymptotic series (4.43), for the non-homogeneous portfolio { A1, ..., An},

can be written as the follows:

+o00 c n |
QM (1) =% e A (T) S B (k= L pr)

| | |
=0 n: P rm=n nie...Mm-

(4.44)

As with the AHX method, the dominant terms in equation (4.44) are computed in
closed form, and the higher-order terms are estimated with Sobol numerical integra-

tion.

4.7.2 Recursion Methods for the Computation of Aggregate Distri-
butions

To compute the aggregate default distributions B (k, pmm) that appear in the
series expansion (4.44), we can use the standard FFT algorithm; we can also use other

recursive methods, which were studied extensively in the actuarial literature. Here,
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we present the convolution recursion and we refer the reader to the literature for other
approximate recursions by Panjer, Kornya, Hipp and DePril.
The general problem is the following: for a set of n independent discrete random

variables (Y1, ..., Yy, ), we want to derive the distribution of the sum
Shn=Y1+..+Y,. (4.45)

The generating function of the random variable S,,,

oo

s, (@) => P(S, =k) ¥,

k=0

is given by the product of the generating functions of the variables Y; (since they are

all independent):
i=1

and its distribution pg, (s) = P (S, = s) is given by the n-fold convolution of the
distributions py;:
ps, () = Q) py; (s). (4.46)
i=1

We compute this convolution product by applying the following recursion:

PSpr (5) = s, @ vy, (5)

= Zpka (y)ps, (s —y), for 1 <k <n-—1. (4.47)
y=0

In our set-up, the aggregate default distributions of equation (4.44) are sums of inde-
pendent Bernoulli variables. The distribution density of the sum S,,, when Y7, ..., Y,
are Bernoulli variables with parameters p = (p1,...,ppn), is computed recursively as
follows:

for0<k<n-1,

p5k+1 (S) = pk+1p5k (S - 1) + (1 _pk+1)p5k (S) ’ 0 S S S k + ]-7

with the convention
ps;, (_1) =0,
and the distribution of the empty sum Sy being defined as:

{ ps, (0) =1

ps, (s) =0 for s >0
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4.7.3 Numerical Comparisons

We consider a portfolio of n = 100 underlying credits, where we have 10 credits per
sector, and all the individual intensities are equal to A; = 200 bps. We assume that

the MO representation of each credit is given by:
N = AV + pi,B)\B + Di.s. A5 + /\O’i,

where the world driver is A\ = 5 bps, the Beta driver is A® = 500 bps, and the sector
drivers are A% = 250 bps. The loadings are fixed at p; p = 0.24 and p; 5, = 0.16, so
that 60% of the intensity is due to the Beta component ['pi’ sA\B ] and 20% is due to
the sector component [p@g_ e ]

We compute the break-even spreads (sm, - s[”]) of the k'-to-default swaps ref-
erencing this portfolio; and we compare the the accuracy of various approximations
with the exact asymptotic solution (4.44). We estimate the accuracy of the asymptotic
homogeneous expansion, as well as the approximation suggested by Duffie and Pan,
and the Panjer recursion based solution developed in Lindskog and McNeil.

In Duffie and Pan (2001), the default indicator Dl;p is approximated by:

m
D~ Y A;;DF + Dy, (4.48)
j=1
n .
Xp = Y Di.
i=1

where Dgf £1 and D%i £ 1{

N7 >0 Np'>0}
In Lindskog and McNeil (2003), the aggregate defaults counter is approximated

by the sum of Poisson variables, and then Panjer’s recursion is used to derive its

distribution:
. m .. .
Vb= 33 AN
I=lg <t
n .
Xp ~ Y Np. (4.49)
=1

By construction, approximation (4.48) underestimates the number of joint defaults
since it considers only the first shock of the common Poisson processes N;j. On
the other hand, approximation (4.49) overestimates the number of defaults since it
accounts for all the Poisson events N&.

Figure (4.4) shows the relative error of the three approximations.
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Figure 4.4: Comparison between the accuracy of the AHX method, the Panjer ap-
proximation and Duffie’s approximation.

4.8 Conclusion

In this chapter, we have considered the problem of pricing large basket credit deriva-
tives in the Marshall-Okin framework with semi-analytic approaches. We have shown
that the direct approach explodes exponentially as the basket size increases. As an
alternative, we have explored a wide spectrum of methods that evolved from the repli-
cating portfolio method to the asymptotic series expansion of the basket. We have
presented how to compute each conditional distribution in the series expansion with
a Fourier transform method, or a recursive convolution method. Recursion methods
are very popular in insurance mathematics, and have been studied extensively in the
actuarial literature. Combining the tools of stochastic calculus, numerical analysis and
actuarial mathematics offers a very powerful platform for addressing the issues raised
by large portfolio credit derivatives. This may prove to be a very promising area for

further research.



Chapter 5

Correlation of Correlation

In this chapter, we analyze the “correlation of correlation” risk in the Marshall-Olkin
copula framework. The valuation of compounded correlation products such as “CDOs
of CDOs” (also known as “CDO-Squared”) or “baskets of baskets” is mainly driven
by correlation of correlation effects. First, We extend the first-to-default replication
method to baskets of basket products. Then, we develop an intuitive methodology
for analyzing this type of structures. The idea is to model each underlying basket
security as a single name process, and to derive its equivalent intensity process and its
equivalent decomposition on the MO common market factors. This, in turn, defines

the multivariate dependence between the underlying basket securities in the portfolio.

5.1 Introduction

In this chapter, we study the default correlation risk for a new credit derivatives asset
class known as CDOs of CDOs. The payoff of a traditional CDO tranche depends
on the performance of a pool of underlying single name assets. For a portfolio of n
obligors, with notionals (n;);,,, and recovery rates (0;);<,<,, the aggregate loss at
time ¢ is defined by o o

Lt £ an (1 — 61) 1{T7;§t}‘
=1

The CDO tranche with attachment points 0 < K7 < Ko < 1 covers all the losses
between a lower bound o £ K7 > 1 n; and an upper bound 8 £ Ky > " n;. Its

present value is given by the Stieljes integral

E [/OT exp (— /Ot rsds> de’ﬁ] , (5.1)

122
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where 74 is the risk-free rate and the tranche loss M} P is defined as a the payoff of a

“call-spread” on the portfolio loss L;:
Mta’ﬂ £ min (max (L; — @,0),3 —a). (5.2)

M B is a pure jump process; it jumps each time a default occurs. The integral (5.1)

is a discrete sum over the portfolio default times

T t T
E [/ exp <—/ 7’st> tha’ﬁ} =E Z exp (—/ 7’st> (Mf‘ﬂ — M:‘,’B>
0 0 0

T
(5.3)
Using the integration by parts formula and interchanging the order of integration, we

can re-write the integral (5.1) as

T t T
E [ / exp <— / rsds> thaﬁ] = BorE [Mtaﬂ] - / E[Mfﬂ] dBos,  (5.4)
0 0 0

where By is the risk-free discount factor: By ; e [exp (— fg Tsdsﬂ ; and the interest

rate and credit processes are assumed to be independent.

Summary 51 The value of a CDO tranche is the sum of call spread oplets on the

pure jump process Ly.

For CDOs of CDOs the underlying portfolio is a basket of CDO tranche securities.
And the payoff of the structure depends on the aggregated losses of the underlying
tranches. CDOs of CDOs are also referred to in the market as CDO-Squared. For a

universe of n credits, we can define p portfolios with a matrix of notionals {

J
i |1<j<p
1<i<n

if a credit ¢ is not included in portfolio j, then nz = 0. For each portfolio, we define a
CDO tranche with the lower and upper loss bounds [a;], <j<p and [ﬂj] 1<j<p’
The loss for each portfolio 1 < j < m is

n

Lg = an (1 - 61) 1{T7;St}'

i=1
Each CDO tranche 1 < j < p, with attachment points 0 < K{ < K% < 1, covers the
losses from a LK f o ni to 3, = K% S ni The tranche loss variable is given
by

Mg’ajﬂj £ min (max <L§ — aj,0> B — aj) .
Now, we can define the aggregate loss on the portfolio of CDO tranches as the sum of
the tranche losses v
'» '7/8'
Lt A ZMtJ Qi J’
j=1
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and the (a, B)-tranche of the CDO of CDOs is given by
Mta’ﬂ £ min (max (L; — @,0),3 —a).

The valuation of CDOs of CDOs depends on a compounded type of default cor-
relation that we call “correlation of correlation” risk. In the same way that “options
on options” are sensitive to the “volatility of volatility” parameter, CDO-Squareds
are sensitive to correlation of correlation. The choice of the copula function used to
model the default times’ multivariate dependence and its calibration becomes partic-
ularly relevant to the pricing problem. While the mis-calibration of a copula model
may have a first order effect on standard CDOs, this error can be much larger for a
CDO-Squared.

Similarly, we can also define baskets of baskets i.e., nth-to-default swaps referencing
a basket of nth-to-default securities.

CDO-Squareds are very popular with investors seeking to boost their portfolio re-
turns in a tight-spread, low-default environment. Historically, the first CDOs of struc-
tured notes were introduced for ABS (Asset Backed Securities), CMBS (Commercial
Mortgage Backed Securities) and RMBS (Residential Mortgage Backed Securities).
The rationale for this type of products is mainly spread enhancement and diversifica-
tion through portfolio-based pooling. Recently, pure synthetic CDO-Squareds, where
the underlying pool is a portfolio of synthetic CDO tranches, gained a lot of popu-
larity. They offer a higher diversification than simple CDOs, and they have a higher
spread compared with equally rated CDO tranches. From an investor point of view,
this provides a better alternative for taking a moderately bullish credit view. Typical
CDO-Squareds use a master pool of 250 to 350 single-name credits. The names in the
master pool are used to reference a number of CDO tranches (typically, 6 to 10 Mezza-
nine tranches). Then, these CDO tranches are used as the underlying portfolio for the
CDO-Squared structure. Figure (5.1) illustrates the mechanics of the CDO-Squared.

The aim of this chapter is to provide an intuitive method for analyzing the correla-
tion of correlation risk in the Marshall-Olkin copula framework. Our first contribution
is to extend our FTD replication method (see Chapter 4) to basket of basket prod-
ucts. Secondly, we develop a simple intuitive approach to modelling basket of basket
structures. The idea is to look at each underlying basket as a single name security
and to derive its intensity process and its multivariate representation.

The rest of the chapter is organized as follows. Section 5.2 describes the modelling
framework. In Section 5.3, we show how the FTD replication method applies to baskets
of baskets. In Section 5.4, we develop the “Equivalent Single Name Process” approach

for baskets of baskets. And we conclude in Section 5.5.
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: | Credit 1 | | Credit 2 | | Credit 3 | | Credit 4 |

|
- _
|
|
\ | [
CDO A CDOB YC CDO D CDOE CDOF

Senior / Super
Senior

Senior Mezz.

Junior Mezz.
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CDO Squared

Figure 5.1: Typical CDO Squared Structure
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5.2 Set-up

We consider a portfolio of n obligors with default times (71, ...,7,). All random vari-
ables are defined on a probability space (2, G,P).

We assume that we have a set of (m + n) independent Poisson processes (Ntc I ) >0
with intensities A% (¢), which can trigger joint defaults. To each Poisson process
(Ntcj)tz(y we associate the sequence of jump times {9? }r€{1,2,...}’
For every event type c;, and for all £ > 0, we define a set of independent Bernoulli

variables (Ai’j, ey A?’j> with probabilities (p1j, ..., Pnj), pi,j € [0,1].
We assume that for j # k, the vectors A{ = (Ai’j, ceey A?’j> and AF = <A%’k, ey A?k>

are independent.

We assume that for ¢ # s, the vectors AJ = (Atl’j, vy A?’J) and A = (Ai’j, s A?’j)
are independent.

At time 0,7 (i.e., at the r*" occurrence of the market event of type j), we draw the

set of n independent Bernoulli variables (A;’% s eee AZC’Z ) The variable A;’% indicates if

obligor ¢ has defaulted or not. We classify the market factors (Ntc I ) >0 sorthat the first
m factors are common market events, which impact more than two obligors, and the
last n factors are idiosynratic events. We shall denote the latter by Nto t A N, (and
A () & Aem+i (1)), for 1 < i < n. The corresponding factor loadings are: p; i = 1

and p;mqr =0, for 1 <k #1i <n.

We define the process (Nf)t>0 as
m—+n Ntcj
DY ZA;’%. (5.5)
j=1 r=1

(Nt’) >0 18 also a Poisson process since it is obtained as the superposition of indepen-

dent (thinned) Poisson processes. Its intensity is given by

m-+n

Ai(t) = ) i (1)
j=1
= > pigAT () + A (1),
j=1
The single-name survival probability of obligor 7 is given by

T
Qi (T) 2 P(r; > T) =P (Ni = 0) = exp <— /O i (1) dt> : (5.6)

We denote by D! = 14,<4 the default indicator process of the ith credit. The multi-

variate dependence structure can be alternatively described by the following SDE (as
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in Duffie (1998))

m—+n

dD} = (1-Dj ) Y AYdN;.
j=1

The copula function implied by this Poisson shock model is called a Marshall-Olkin

copula.

5.3 Replication Method

In Chapter 4, we have shown that any nth-to-default payoff can be replicated with
a set of first-to-defaults referencing sub-baskets of the original pool of credits. For
example, the second-to-default on a three-name basket { A, B, C'} can be replicated by
first-to-defaults on the sub-baskets {4, B}, {A4,C}, {B,C} and {A, B,C} as:

STD (A, B,C) = FTD (A, B) + FTD (A,C) + FTD (B,C) — 2FTD (A, B,C).

The third-to-default on the basket {A, B,C} can be replicated by second-to-defaults
on the sub-baskets {A, B}, {A,C}, {B,C} and {A, B,C} as:

TTD (A, B,C) ==[STD (A,B)+ STD (A,C) + STD (B,C) — STD (A, B,C)].

1
2
The STDs can then be decomposed into first-to-defaults on smaller sub-baskets
[FTD (A)+ FTD (B) — FTD (A, B)]
FI'D(A)+ FTD —FTD(A
2 +[FTD(B)+ FTD (C) — FTD (B,C)]
—|[FTD(A,B)+ FTD(A,C)+ FTD (B,C)—-2FTD (A, B,C)]

In general, we can show that an nth-to-default payoff can be replicated by (n — 1)-th-
to-default payoffs, which in turn can be replicated by (n — 2)-th-to-default payoffs, and
so forth. Applying this replication recursively, we get the complete F'TD expansion.
The generic FTD replication result is given in the following proposition.
Let VM (A, ..., Ay) denote the value of a k'"'-to-default on the n-name basket
{41, ..., An}. And let us define the [-subsets of {1,2,...,n} (i.e. the subsets containing
exactly [ elements) by the mappings 7! (.) for 1 < s < (P):

() {1,2,..,01} = {1,2,....n}.

We also assume, without loss of generality, that the elements of each [-subset are sorted

in an increasing order
) <al@ <. <a@.



5. Correlation of Correlation 128

Proposition 52 (First-to-Default Expansion). A k'-to-default on n names Vi can
be replicated with first-to-defaults on sub-baskets of [ names Vlm, forn—k+1<1<n,

as follows

V(AL A = Y S dl vt (Awls(l), Aﬂls(l)> , (5.7)

where
oM (1) = (=)l (nk+D (i;lk> s forn—k+1<1<n.

n

To apply the FTD replication to baskets of baskets, we need to introduce some
additional notations.

Suppose we have a master pool of credits {41, ..., Ay} which contains all the
names in the underlying basket securities. And we have n underlying basket secu-
rities {51, ..., Sp} defined as

Si = VE (Asy1), s Assi(ma)) »

where n; specifies the number of credits in the underlying basket S;, k; specifies the
order of the nth-to-default (e.g. FTD, STD, ...) and the mapping

S () {1,200} — {1,2,..., N}

specifies the names included in the underlying basket .S;.
The objective is to find the FTD replication of the master basket of baskets
(S, )
To start with, we apply the expansion (5.7) formally to the basket Vik]

no ()
Vrgk] (517 X STL) = Z Za’l[’lbd (l) Vi[l} (Sﬂ'ls(l)7 ) Sﬂé(l)) ;

l=n—k+1 s=1

then, we compute each first-to-default term

VIS, . 8.

PR

To this end, we expand the securities S; into their FTD representation and we apply
the following algebraic rules to the FTD operator V1 = Vzm(...)

VIS, Ss, .y Sy) = VI (sl,v[ll (S, ...,sk)) : (5.8)
VI (S, + 855,95 = aVI(S),S3) + VI (S, Ss), (5.9)
vIl(s, 8 = vIi(s,,s)). (5.10)

For example, consider two baskets {A, B,C} and {A, D, E'}. And let us generate the
FTD expansions of the following baskets of baskets
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1. vl (viu(4,B,C), vl (4, D, E))
2. VP (VI (A, B,C), VI (4,D, E))

3. VI (V2 (4, B,C), VI (A, D, E))

The first example is simple. It suffices to observe that a first-to-default of first-to-

defaults is a first-to-default on the union of the two baskets
v (VM (A, B,0), vl (4, D,E)) —vlU(4,B,0,D,E).
To do the second example, we expand the master STD, then we apply our algebra

Ve (vl (4, B,0), v (4,D, )
vl (Vi (4, B,)) + VI (VI (4, D, B)) - VI (VU (4, B,C) , VIl (4, D, E))
= v, B.0)+ v (4,D,E) -V (4, B,C, D, E).

To expand the third example, we apply the FTD expansion to the STD sub-securities,
then do the algebra

vl (v (4, B,C), v (4,D,E))
a ( vIl(4,B)+ VI (B,C)+ VI (4,0) — v (4, B,C), )
vil(A, D)+ Vvl (D,E)+ V(A E) - V(A D, E)
= v, B, D)+ Vv (4,B,D,E)+ V(A B,E) -V (A B,D,E)
+vila,B,c,D)+ Vv (B,c,D,E)+ V1 (4,B,C,E) - VI (A, B,C,D,E)
+vila, ¢, D)+ v, e,D,E)+vil(A c E)-vI(A 0 D, E)
—vil,B,c,D)- v (A,B,C,D,E)-—VvI(A,B,C,E)+ V(A B,C,D,E).

For CDO-Squared structures, where we have the same notional n and same recovery
6 for all the names in the master pool, we can easily convert each CDO payoff to a
portfolio of NTD baskets.

The portfolio loss is given by

n

Lt = Zn (1 — (S) 1{T¢§t},

=1

and the portfolio aggregated defaults counter is

Xt é Z 1{Tz§t}
=1
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A CDO tranche that covers the losses between a lower bound « and an upper bound
0, is equivalent to the default slices between

a B8
=8 =S a=g)

If we define mq = [ﬁ] and mg = [ﬁ}, where [a] denotes the integer part of
a, then the value of the CDO tranche V(@8 will be expressed in terms of the default

slices V¥ as follows

mg
@8 _ (1 e Wy (B8 [ms]
1% < n(1_5)+ma>v + >V +<n(1_5) mg | VImsl,
k=mq+1
(5.11)
We can then apply the replication for baskets of baskets as explained before.

5.4 Equivalent Single Name Process

The idea of the “Equivalent Single Name Process” method is to consider each basket
security in the underlying portfolio as a single name security whose default time is
driven by a Poisson process, and to derive the probabilistic properties of this process.
We shall use a similar technique to our “Homogeneous Portfolio Approach”?.

We start with a first-to-default payoff to illustrate the method, then we tackle the

general k'"'-to-default case, where k > 1.

5.4.1 First-to-Default Case

We consider a portfolio of n names {A,..., A, } with intensities (i (£));<;<p-
The decomposition of each credit {A;} in the Marshall-Olkin model is given by a

vector of loadings [p; ;] and an idiosyncratic intensity (A% (¢)). We need to find

1<j<m
an equivalent single name process (7¢7), which has the same intensity and the same
MO multivariate representation as the FTD basket.

In the first-to-default case, the default time (Tf td 2 min (14, ..., Tn)> is a Poisson

process and its intensity is given by

M, m)) = Z [ H —Dpij ] [\ (¢

=1

o)

On the other hand, the intensity of the equivalent process is

)\eq Zpeq /\cj P\O,eq (t)] )

1See Chapter 4.
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To ensure that the values of the FTD basket and the single name security are the

same, we need to have
MA@ {1, o)) = X9(1), VA9 ()] e RT, 1< j <m,

which implies for each market factor, 1 < j <m

n

i =1-J]=piy), (5.12)
=1

and for the idiosyncratic term

n

A€ () = A (1) (5.13)
i=1
This defines the equivalence transformation for first-to-default payoffs.

5.4.2 The Equivalence Transformation

In the general case, we want to define the transformation

e 0,i eq 0,eq
<[pl’]]11<<}§?1’ 9 )19'S"> - ((pﬂ' )1§j§m’/\ ) ’

such that the intensity of a k™-to-default time 7¥ of the portfolio (T1,..., ™) and its
multivariate properties are the same as the equivalent single name default time 7¢9.
As usual, we fix a time horizon T" and we consider the distribution of the random

variable .
Xp £ Dy
i=1

DiT is the default indicator for issuer 7, and Xpcounts the number of defaults in the
basket that occurred before time T. The Q-factor associated with the k"™-to-default

time 7% is given by

ol () 2 p (ﬂ’ﬂ > T) =P(Xr < k). (5.14)
For fixed T, we consider the probability generating function of the r.v. Xp
p(x) 2 P(Xp=k) o~ (5.15)
k=0
We denote by II,, the set of all subsets of {1, ...,n}. For each subset = € Il,,, we define
the first-to-default random time TL}] = min{7; : i € 7}, and its associated Q-factor
()

QU 2P (7l >T) =R

I DiT)] : (5.16)

1ET
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We know that the probability generating function ¢ (x) can be expressed in terms of
the first-to-default Q-factors [QE} ] (T)} as follows?.

7T€Hn

Proposition 53 The probability generating function ¢ (x) of the random variable Xt
s given by

p(x)= > QE(T) 2" (1 —2)™. (5.17)

melly
) . (5.18)

We also know that the FTD Q-factor QE} ] (T) is given by

> (1 -1 —%)) A5 (T) > A%(T)

j=1 iem 1€

QEWT)GM)(

where A% (T) and A% (T) are the cumulative intensities
T

A (T) = / A% () dt,
0

T
0,i A 0
AY(T) & /O A0 (t) dt.

We expand the exponential to first order and we define a new set of loadings p; ; =
1—e 20 (1= piy)

QU(T) ~ exp ( i AC (T)) lexp (— D A (T)) + i (H (1- @,})) A% (T)

j=1 e icm
(5.19)
Substituting equation (5.19) in the expression of the p.g.f. yields
m 2m )
exp Z AS (T) © (aj) = E exp (_ E AH0 (T)) xn—d(ﬂ”) (1 _ x)d(ﬂ')]
Jj=1 s=1 =
m on
+) AT > (H (1- @-3)) 2" (1 - m)d(ﬂ)] .
Jj=1 s=1 \iem

We define the idiosyncratic p.g.f. ¢, () and the market factor conditional p.g.f. ¢ ()

as

on
po(z) 2 ) exp (- > A0 (T)) 2" (1 — )4 (5.20)
s=1

s

i) &2 > (H (1- 5;,-)) 2" (1 = ) (5.21)

s=1 \iem

2See Chapter 4.
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Using the result in Proposition 53, we know that ¢ (x) is the characteristic function of
a sum of independent Bernoulli variables X?, where P (XiO = 1) =1—exp (—Ai’o (T ))
and P (X = 0) = exp (—A"%(T')). Similarly, ¢ (z) is the characteristic function of a
sum of independent Bernoulli variables Xf , where P (Xf = 1) =p;jand P (XZJ = 0) =
1 —p;j. Thus

o (x) = H (1 = exp (A" (T)))  + exp (—A™° (1)), (5.22)
i=1
@) = [Toe+0—-py). (5.23)

Using the fact that

B(X 1) w(l;!(x)’

the k™-to-default Q-factor P (X7 < k) can be expressed as a linear combination of

market factor contributions and the idiosyncratic term

P (X7 < k) ~ exp ZA% P(iX?<k>+iP(in<k> A% (T)
=1

i=1

(5.24)
On the other hand, the Q-factor of the equivalent single name default time 77 is given
by

QU(T) 2P (79 >T) = exp ZpquCJ — [A% ()] |, (5.25)

where A%€? (T) is the cumulative idiosyncratic intensity

T
A% (T) & /0 Ao, (1) dt.

We expand the exponential and we replace with the adjusted set of loadings p;q =
_ e A(T) (1 _ pea
1 — e ea (1 P; )

Q% (T) ~ exp ZACJ exp (—A%1(T)) + i ( -q> A (T)|. (5.26)

J=1

The equivalence transformation will be defined as the one that keeps the Q-factors

invariant

QWN(TY ({71, ..., mn}) = Q°U(T), VA% (T)] e R*, 1 < j < m. (5.27)
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We substitute (5.24) and (5.26) in (5.27). This implies that the market factor compo-

nents and idiosyncratic terms are equal

P (zn: X! < k) = exp (—A"(T)),
=1

P (ng < k) = 1-p.
i=1

The probabilities P (}_1 ; X? < k) and P (Z?:l X! < k;) can be computed as usual
with the standard methods: Fourier Inversion or Convolution Recursion.

The equivalent single name process is therefore completely defined by its idiosyn-
cratic intensity and its market factor loadings as

P (i X9 < k:)] . (5.28)
=1

A% (T) = —log

pil=1-

exp (A% (T)) P (zn: X! < k;)] : (5.29)

In summary, the equivalence transformation can be described algorithmically by

the following steps:
1. Find A\

(a) Generate the idiosyncratic default distribution [P (31 | X? = j)]

Fourier inversion or Convolution recursion

o<j<n PY

(b) Solve for \%¢? using equation (5.28)
2. For each market factor, find p;q

(a) Transform the p; ;’s to the p; ;’s: pi; =1 — e AT (1 — Dij)

(b) Generate the conditional market factor default distribution [IP’ (Z?:l X Z = j>:|

by Fourier inversion or Convolution recursion

(c) Solve for p? using equation (5.29)

5.4.3 Equivalence Transformation for CDOs

In this section, we construct the “Equivalence Transformation” for CDO tranches.

We fix a time horizon T and we consider the aggregate portfolio loss variable Ly

Lr & Xn: L; Dk
=1

0<j<n
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D?;p and L; are the default indicator and the loss variable for issuer 1.

The Q-factor associated with the («, 3)-tranche is given by

QY (T)2E |1- ;W_%Z] , (5.30)
where Mff’ﬁ is the tranche loss
M5P 2 min (max (L — o,0), 8 — a).
We consider the Fourier transform ¢ : R — C of the r.v. Ly, defined by
¢ (u) = Elexp (iuLr)]. (5.31)

First, we derive a similar result to Proposition 53. We express ¢ (u) in terms of the
first-to-default Q-factors [QQ ] (T )}

ﬂ'EHn‘
Proposition 54 The Fourier transform ¢ (u) of the random variable Lt is given by

= > QUm ([Tw: ]I - ] (5.32)

welly i¢mr €T

where ¥; = exp (iuL;)

Proof. See Appendix B.1. =
If we denote by ¢ (u, p,:\/nm) the Fourier transform of the random variable > " | L;Y;,

where (Y7, ..., Y,,) are n independent Bernoulli variables with parameters p = (p1, ..., pn)

¢ (u,pmm) £ H ((1 = pi) + piexp (iuly)), (5.33)
i=1

we can show that ¢ (u) admits the following asymptotic series expansion.

Proposition 55 (Asymptotic Series Expansion). The loss Fourier transform function

¢ (u) has the following series expansion

¢ (u) =

400 400 n n
Y () G pp—
e AS(T) Z ( ) ( ) ¢(U,pn1,...,nm) ’

n! T ny!
n1=0 Ny =0 1 m

where A€ (T) £ Yo A% (T) and the probability vector, pmm = Pryoum (1) 5 ooy Py

s given by
—AYT) (

Pni,c.nm (7/) =1l-e 1 _pi,l)nl (1 - pi,m)nm

nm (1))
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Proof. See Appendix B.2. =

We define the idiosyncratic loss variable L% £ > L; X?, where (X?)1 <i<n
vector of independent Bernoulli variables, given by P (X 0= 1) =1—exp (—Ai’o (T))
and P (X? =0) = exp (- Aio( )). Similarly, for each market factor, we define the

loss variable L £ > | L; X7, where (X] e is a vector of independent Bernoulli
<i<n

variables, given by P (Xf = 1) = p;; and P <XZJ = 0) =1—pi;. pi; is the duration

is a

adjusted loading p; j = 1 — e~ AM(T) (1 —pij)-
We also define the (a, 8)-tranche loss variables MY and M7

M{,)w = min(max(LT—a,O),ﬁ—oz),
M;j £ min (max (Lgﬂ —a,O),ﬂ—a).

Using the order-one truncated expansion, we have
m m
E [M;ﬂ ~exp [ =Y A% (T) | |BE[MY] + S E[MP]) A% (T)]
j=1 Jj=1

and the (o, 3)-tranche Q-factor is given by

«a c MO = Mcj Cj
0 (T) =~ exp ZAJ E[l_ﬁ_ﬂ+;E{1—ﬁja]wm

(5.34)
On the other hand, we have from equation (5.19) the expression of the Q-factor for

the single name equivalent process

Q1 (T) ~ exp Z A% ( exp (=A% (T)) + Z <1 — 13?) A% (T)
j=1

Hence, by matching the idiosyncratic term and the market factor components, we get
0
My ]
)

exp (—Ao’eq (T))

(1-;3571) - E[1—6M_;;].

the (a, B)-tranche equivalence transformation is completely defined by

I
<3|
—

|

A%“4(T) = ~log [E [1 - ﬂ]\{%aﬂ : (5.35)
Pyl =1- [exp (A% (T)) E [1 - ﬁM_Tja” : (5.36)

In summary, the («, 3)-tranche equivalence transformation can be described algo-

rithmically as follows:
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1. Find \0¢¢

(a) Generate the idiosyncratic loss distribution [P (L9 =1)] by Fourier inver-

sion® or Convolution recursion?

(b) Compute the Expected value of the idiosyncratic («, §)-tranche loss

B
E[Mp] =) (I-a)P(Ly=1)+(8—-a)P(L} > 5).

l=a

(c) Solve for \%¢¢ using equation (5.35)
2. For each market factor, find qu

(a) Transform the p; ;’s to the p;;’s: pi; =1— e AT (1 — Dij)

(b) Generate the conditional market factor default distribution [P (L;ﬁ =1)]

by Fourier inversion or Convolution recursion

(¢) Compute the Expected value of the market factor (a, §)-tranche loss

8
E[MF]=> (I—a)P (L7 =1)+(B—a)P (L7 > 3).

l=a

(d) Solve for p? using equation (5.36)

5.4.4 Numerical Examples

In this section, we use the results derived in the previous section to study the default
correlation properties of basket securities.

We use a 100-name investment grade diversified portfolio. The average credit
spread is 120 bps, the maximum spread is 500 bps and the minimum spread is 30
bps. The portfolio is diversified across 19 industry sectors, where the industry con-
centrations vary from 2% to 11%. The portfolio spread distribution is given in Figure
(5.2).

The portfolio industry concentrations is given in Figure (5.3).

31f ¢ (u) = Elexp (iuL (T))] is the characteristic function of the r.v. L (T), then its probability
distribution is given by the standard Fourier-inversion formula

PIL(T) <ol =5 - = / * Im(6 ) exp (iual

where Im[z] denotes the imaginary part of a complex number z. See, for example, Duffie and Pan
(1999) for a discussion of the numerical integration of the Fourier-inversion formula and control of the
discretization error.

4See Appendix C.3.
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Figure 5.2: Portfolio Spread Distribution
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Figure 5.3: Portfolio Industry Concentration
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We assume that the intensity of each issuer is has the following Marshall-Olkin

decomposition:

X)) =[N ()] +pis [N ()] + zm:pz‘,sj (A% (8)] + [A% (¢)]

where

Aw (t) is the intensity of the “World” driver

Ap () is the intensity of the “Beta” driver, and p; g is the loading on that driver

As; (t) is the intensity of the “Sector” driver S;, and pi,s; 1s the loading on that
sector”

M (t) is the intensity of the idiosyncratic events

The “World” driver represents the global Armageddon risk, which triggers the
joint defaults of all the credits in the universe. The world driver event is a very low-
probability event. However, the loading of each credit on this driver is equal to 1.
The world driver is used to calibrate to the super AAA risk in the CDO market. The
“Beta” driver is responsible for the correlation between names in different sectors. And
the “Sector” drivers make names in the same sector more correlated than the rest of
the universe.

The intensity of the World driver is A\ = 2.5 bps. The intensity of the Beta driver
is AP = 400 bps. The Sector driver intensities vary from 100 bps to 300 bps. We
assume that 50% of the spread is Beta, 25% is sector and 25% is idiosyncratic. On
average, the implied 5 year default correlation in this model is 7% inter-sector and
14% intra-sector.

Using the equivalence transformation in Subsection 5.4.2, we generate the equiv-
alent single name process and its MO decomposition for all the default slices on this
portfolio i.e. FTD, STD, ... The MO representation for the intensity of a k'"-to-default

time 7% of the portfolio (71, ...,7) is then given by

AL () = AW ()] + piE [AB (¢ —|—Zp[k] S ( [A[M»O(z&)}. (5.37)

Obviously, the loading of the k™-to-default on the world driver will also be equal to
1. The world driver triggers the defaults of all the names in the portfolio, therefore

7 will also trigger for all default slices 1 < k < n.

Figure (5.4) shows how the loading on the Beta driver p[ ]

[]

of the Sector drivers Pg, Vary across the default slices £k =1,2,...,n

and the loading on one

Sfie S; then pi,s; > 0 otherwise pi,s; =0
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Figure 5.4: Loading of the default time 7/¥/ on the Beta driver and one of the sector

drivers as a function of the slice index &

Clearly, for the high-order tranches (i.e. super-senior risk) from k& = 30 to

k = 100, the default event 7% becomes a pure World driver event. It is very unlikely

that a super-senior tranche will be hit by defaults unless there is a global meltdown

where everyone defaults. So, the intensity of 7/¥ reduces to A\ (t) = AW (¢) and
p%} =0, p[slfj =0.

On the other side of the default spectrum (low values of k), we know that for a

FTD intensity the loadings are given by

P =1- [T—pip) <1- <1 — max (1%8)) :

- 1<i<n
=1

For large portfolios n — oo,

(1 —piB) — 0asn— oo,

n
=1

)

and the order of magnitude of pg will be around 1

p%] ~ 1.

For the loadings on the sector drivers, pgj is equal to 1 —J],¢ s (1 — pi,sj)- Since the
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Figure 5.5: 5-year default correlation surface of the k*'-to-default times
(7[11,7[2],...,7'["])

portfolio is diversified, the loading pgj will be of the order of
1
ps, = 1= (-ns)
i€S;
S,
1 - (1 _pi,S]')| ]I
~ 1- (1 - |Sj| *pi“gj)

~ number of names in S; * average sector loading.

12

Now, if we look at the implied 5y default correlation of the default times (T[l] e 7'[”]),
we get the surface depicted in Figure (5.5).

The default correlation between the low-default slices is close to zero. The cor-
relation between the super-senior slices is equal to 1. And we have a hump in the
middle where the correlation increases to 0.95 and drops again to 0.15. This can be
seen more easily on Figure (5.6) where we plot the upper-diagonal (i.e. the pairs
P1,2: P23 P3.45 > Pr—1,n)-

For the higher slices, the default event 7% degenerates to a pure world driver
event, therefore, by construction the default correlation between all senior slices will
be a perfect 1. For the lowest slices, as one would expect we have exactly the opposite
effect. Equity slices are mostly driven by idiosyncratic events, therefore the default
correlation between these events is close to zero. The hump that we observe for
the middle Mezzanine slices can be explained by the Beta driver. The slices k£ =

8,9,10,11,12 have a high probability of triggering almost simultaneously if a Beta



5. Correlation of Correlation 142

1.2

Figure 5.6: Upper-diagonal correlation curve [pl’z, 02,3 P3.45 -+ pn,Ln]

event occurs. Therefore, their default correlation is exceptionally high. This effect
can also be exhibited if we superpose on our correlation plot the ATM spreads of
the corresponding slices (Figure (5.7)). We can immediately spot that there are two

plateaus in the graph:

1. The super-senior plateau where all the slices k£ > 30 have an ATM spread of 2.5

bps i.e. the world driver spread.

2. The Beta plateau where the slices & = 8,9,10,11,12 have roughly the same
spread ~ 400 - 450 bps.

If we remove the Beta driver and Sector driver dependencies, the Mezzanine hump
will disappear and the default correlation plot will vary from 0 for low slices to 1 for
high slices (Figure (5.8)). The speed of switching from the 0O-correlation regime to the

1-correlation regime will depend on the level of the world driver.

5.5 Conclusion

The new generation of portfolio credit derivatives such as CDOs of CDOs and baskets
of baskets offer a new modelling challenge in default correlation space. In this chapter,
we have presented a simple approach to this problem, which provides a better intuitive
understanding of the compound correlation effects. First, we have shown that the

first-to-default replication techniques can easily be extended to this type of products.
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Figure 5.7: Upper-diagonal correlation and ATM spreads for the corresponding

tranches
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Figure 5.8: Upper-diagonal correlation curves for different values of the world driver
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Then, we have shown that each underlying basket security could be viewed as a single-
name process. Deriving the probabilistic characteristics of the single-name process,
i.e., its intensity and its Marshall-Olkin decomposition, has allowed us to study the
basket correlation behaviour and its dependence on the choice of the copula function
parameters. One extension to this work would be to apply the equivalent single-name
technique to other copula models such as the often-used Gaussian or t-copula. A second
extension would be to study the effects of the basket securities portfolio overlaps on

the correlation properties of the basket of baskets.



Appendix A

Additional Proofs of Chapter 4

A.1 Proof of Theorem 44

Proof. We proceed by induction: we assume that the property is verified for n, and
we prove that it holds for n + 1.

The probability generating function for a basket of (n + 1) underlying credits is
defined by:

n+1 n+1 '
) =3 r (L pr o] ot
k=0 i=1
Conditioning on Dgfl, we can re-write the p.g.f. as:
Pt (.’L‘) ) |:$D%~+...+D;+1] - E |:E |:l,D%~+...+D;+1 |D%+1i|i| ) (Al)
D&’}H takes two values: 0 or 1, hence,
1 n
ot (@) = B(DF = 0)B [sPh+-+Dh g+t o] (A2
+P (D = 1) -2 B [oPHH PR Dt 1]

Applying the induction relationship to the conditional p.g.f. of the n-sum D%F—i—...—i—Dr_’ﬁ,

we have

E |:xD%~+...+D% ‘D%+1} — Z P (H (1 _ D%_’) }D?—’_l) :Enfd(wn) (1 _ m)d(ﬂ’n) ]

T €Il 1€y,

Replacing in (A.2), and observing that

P(D;E“:@)P(H (1 - DY) yD;lfl:o> = IP’([H (1—DiT)] (1—D;2+1)>,

1€y 1ETH
P(DEl=1)P (H (1-D%) | Dyt = 1) - P ([H (1- Dg‘r)] D;;“) ,
1€y 1ET R

145
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we get
Pppr (@) = D> P ([H (1- DiT)] (1- D;ﬁ-l)) =) (1 _ gyd(mn)
T €My 1€y
- 5 e ([Ia-on] o) s st s
Tn €Il 1€

Observing that

(|00 o) <2 (T0-00)) -2 (| T -2 a-0).

z€7rn Zeﬂn lGﬂ'n
(A4)

equation (A.3) becomes

Pr+1 (l’) = Z P ([H (1 — D%)] (1 — D?f1)> ;L'n_d(wn) (1 _ x)l""d(”n)

T €Xn iemn
+ 2P (H (1- D?r)) phtn=dm) (1 — gy, (A.5)
Tn€lln  \i€my,
Recall that II, 41 is partitioned into two sets H:: 11 and IT L
HI+1 = {mpi1: 71 € Mpy1, (R+1) €y},
M., = {m1: 7y €Mpya, (n+1) ¢ g}

For 741 € H;Lrl: Tnt+1 = T U {n + 1}, we have

QE&LJT)E( I1 (10;;)) :E(

1€MTn+1

1o —Dw] G —le)) ,

PETY
and
d(ﬂn—kl) = d(ﬂ'n) + 1.

For 71 € Il 1 Tpq1 = ™y U, we have

QELl(T)E( 1T (1DiT)> =E<H (1—DiT)),

1€ETn+1 iC€Tn
and
d (7Tn+1) =d (7Tn+1) .
Substituting in equation (A.5) yields
poa@) =Y QUL (@) e (1 gy

Tn+1 EHL_I

+ Z QE}LH (T) anrlid(TrnH) (1 - x)d(wnﬂ) )

T 1 €10, 4y
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which ends the proof. m

A.2 Fourier Transform Inversion

In this appendix, we give the Fourier transform inversion formula for a discrete random
variable X. Let p = {po,p1, ..., pn—1} be its probability function, and ¢ (s) its discrete

Fourier Transform,
n—1
_ isk
¢(s)= Z € Dk-
i=0

Evaluating the Fourier transform ¢ (s) at the points s; = 2—21 for j =0,1,....,n — 1,

gives the following system of equations:
n—1
{90(53') :Zemjpk} :
=0 0<j<n—1

By letting @ = {¢(s0),9©(s1),...,0(Sn—1)} denote the vector of Fourier transform

values, the system of equations can be written in matrix form as:
¢ = Fp,
where F' is the n X n matrix
F = (6iSjk)0§j§n—1 )
0<k<n—1

Since we have ( )

n—1 ei sj—s] n_l O f i

o e = =0forj#I

Y eivheioh = { il ,

k=0 n for j =1
then, the inverse matrix F~! is given by:

-l le—iskj
n 0<j<n—1’
0<k<n-—1

and the probability function p is recovered from the Fourier transform values ¢ (s;)

as:
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Additional Proofs of Chapter 5

B.1 Proof of Proposition 54

Proof. We proceed by induction. We assume the property is verified for n, and we
prove that it holds for n + 1.

For n 4+ 1 names, the Fourier transform of the loss variable

n+1
Lptt = " LD, (B.1)

is given by
"t (u) = E [exp (—iull)].

D;‘fl , we have

Conditioning on

¢"(u) = EI[E[exp (—iull™)|DE]] (B.2)
= E[exp (=iuL™ D) E lexp (—iuL) ‘D;,EHH :

Using the induction relationship, we can write the conditional characteristic function

as

E [exp (—iuLf) |[DF ] = > E(H( — D) ]D”“) {H v [] @ ]

Tn€Iln 1€ ¢mn 1E€ETR

and equation (B.2) becomes

¢ (u) = {nﬂ {Z E(H — Df) \D”“) {H%H 1%1”.
T €1ln 1€y ¢n, €T

148
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Writing the expectation explicitly, we get

¢n+1 (u)

= P(Dptt=0) Y E(H@—D;)HD;HZO}) {Hwn 11/;1] (B.3)

Tn€Iln 1€ i¢n,  1€ETR

PO = )b Y E(Hu—ww ) {Hmn w]

T €y 1€y ¢nn €T

Observing that

(o5 =0 I 020 (05 =0} ) =5 (| TT -0 | 01 237 ).

1ETH 1ETY

and

P (D} = 1)3 (H (1- D3 |{ D3 = 1})
_ E(

I - D@] D)
B (

I] (1-D%) ) ~E (
equation (B.3) becomes

) = > E( H(l—DiT)] (1—D%“)> 1= ,11) {szﬂ 1w,]

IIo- Dw] - Df;fl)) ,

iEﬂ'n

T €1ln €Ty, i¢my 1€
+ E( H(l—DTDwnH {H@DH 1%] (B.4)
T €lIn 1€y ¢n,  1E€ETR

The set of subsets II,11 is partitioned into Hi 4 and IT ¢

I, = {mnt1: g1 € Mnyr, (R+1) € g},

Ly = {mns1 M €aga, (R +1) € T

For 741 € H1+1+1‘ T+l = Tn U{n + 1}, we have

QL}JLH(T)E( 11 (1DiT)) :E<

1€ETn4+1

I —D%)] G —D%“)) ,

iEﬂ'n
and

n+1le Tn+1-
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For mpy1 € I 1t Tpy1 = mp U, we have

Q. (T >E< 11 (1D9)) =E<H (1—D%>)7

1€ 41 1€y

and
n + 1 ¢ Tn+1-

Substituting in equation (B.4) yields

o) = > QE (D) [H v I1 (1%)}

7I'n+1€1_[n+1 S

1€ML i1 1€Tn41

which ends the proof. m

B.2 Proof of Proposition 55

Proof. Using Proposition 54, we express the probability generating function of the
r.v. Ly in terms of the FTD Q-factors QE} ] (T)

o)=Y QU@ [Tv:]]¢ 1—%]. (B.5)

melly i¢mr €T
) e
We expand the exponentials

=2 — D s Cj 5
exp (H (1 _pi,j)ACj (T)) = Z [Hierr (1 pz,])A (T)] ‘

;!
e J

Each FTD Q-factor QE] (T') is given by

QU(T) exp( {m <1—H —pw)>ch(T)

J=1

— > A% (1)

s

We substitute in equation (B.6)

QI (1)

L AD [T A f Z Micx (1= pia) A% (D] [Tiey (1= piw) A (1]

nq! T
n1=0 N =0 1 m

nl

_ A Z Z AD (D)™ AT (D)™ 5 (AT Hog(1—pi )™ )+ og(1—pem)™))
nq! Ty,

n1=0 N =0
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Substituting in the expression of the characteristic function yields

() = At (T)™  Aem ()™
QS u As( Z Z nl . Z in,...,n [szH 1_1/}1 ] )

n1=0 1n,=0 m well, ¢ 1ET

where

Qni,.ooin (T) = XP (— > (A%(T) +log (1 = pi)™) + .. +log ((1 —pi,m)”m))> :

1ET

We define the function ¢,,, ()

By (W) =Y Qoo (T [szZH 1— 1 ] (B.7)

melly i¢mw €T
Py ..y, (w) is the Fourier transform of n independent idiosycratic terms with inten-

sities (Af'll,...7nm (T))lgign
Aby o (T) = A% (T) +1og (1 = pit)™) + .. + log (1 = pim)™).

Hence

S ) = T (6 (0 (1= i)™ (= pi)™) (1= )

i=1
Thus, ¢, .. (u) is the Fourier transform of the random variable > 7", Y;, where

(Y1, ..., Yy) are n independent Bernoulli variables with parameters pn, . n.. = (D (1) ooy Pry oo (1))

. __ A0,
Prseeim (1) = 1 — e 2@ (1= py )™ (1 = py)™™

¢ (u) is a weighted average of the conditional independent characteristic functions
Praye i (2)

“+o0o +oo
So(x) = Z Z Wny oo, ¢n1,.4.,nm (u)7 (B8)
n1=0 Nm=0

ey AL (T)™ Aém (T)™™
Wny,.onm = e 7”5 l) ( |) )
1- MNm -

which ends the proof. m

B.3 Convolution Recursion for Computing the Loss Dis-
tribution
For a set of n independent discrete random variables (Y1,...,Y,,), we want to derive

the distribution of the sum
Sn = Yi+..4+Y,.
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The generating function of the random variable S,,,
(e.9]
s, (@) &> P(S, =k) ¥,
k=0

is given by the product of the generating functions of the variables Y; (since they are

all independent)

n

s (@) =[] ev (=),

i=1
and its distribution pg, (s) = P (S, = s) is given by the n-fold convolution of the

distributions py;
ps. (5) = @), (5).- (B.9)
i=1

This convolution product is computed by applying the following formula recursively

PSii1 (S) = Ps; ®ka+1 (5)
S
= ZkaJrl (y)psk (5_9)7 for1<k<n-1 (B.lO)
y=0
In our case, we need to generate the aggregate loss distribution S, = Y L; X;,

where (X1, ..., X;,) are Bernoulli variables with parameters p = (p1, ..., pn)-
The sum S,, will be computed recursively as follows:
for0<k<n-1

PSips (5) = Prraps, (s — Li1) + (1= pera) ps, (5), 0< s <Y L,

with the convention
ps,, (—ZIT) = O,ZIT > Oa

and the distribution of the empty sum Sy is defined as

Pso (0) =1,
ps, (s) =0 for s > 0.
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