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INTRODUCTION

Moody’s ratings of Asset-Backed Securities (ABS), Residential Mortgage-Backed Securities (RMBS),
Commercial Mortgage-Backed Securities (CMBS) or Collateralised Debt Obligations (CDO) are ultimately
based on the expected loss concept. An accurate determination of the default or loss distribution for a
portfolio of securitised assets is essential since it allows the computation of the expected loss on the
notes according to their terms and conditions and therefore allows for the quantitative derivation of the
notes’ ratings.1

At Moody’s, we often use two well-known methods to compute the assets’ default or loss probability
distribution: the Binomial Expansion Technique2 (BET) for CDO or, to a lesser extent, CMBS portfolios
and the Lognormal Method3 (LNM) for granular ABS portfolios or even RMBS portfolios. Like all
modelling methods, the BET and the LNM have their limits. Neither method is perfectly adapted to
analyse asset heterogeneity in terms of rating/credit risk, size or maturity or to analyse portfolios
with an intermediate number of assets. Ideally, the BET should be used to approximate the default
distribution of a portfolio with a limited number of homogeneous assets while the LNM should be used for
granular portfolios with a large number of assets.

Moody’s improved – and keeps improving – its existing methodologies. For instance, we developed the
Multi-Binomial Technique4 in order to extend the BET to heterogeneous portfolios. We also developed
rating approaches based on Monte Carlo simulations to deal with complex pools of assets, for instance
like in some CMBS transactions5 or ith-to-default Basket Credit-Linked Notes.6 The Fourier Transform
Method (FTM) is one of such improvements, that presents interesting advantages compared to Monte
Carlo simulations: speed, accuracy, and adaptability.

A general introduction to the FTM is provided in Moody’s special report: “The Fourier Transform
Method – Overview”7, while this technical document aims at detailing some technical, theoretical
and practical aspects of the FTM.
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OVERVIEW OF THE FOURIER TRANSFORM METHOD

The FTM aims at determining the default or the loss distribution of a portfolio of assets over a certain
time horizon. The quickest and most accurate way to determine such distributions would be derived from an
explicit analytical formula. For instance, such analytical formulas exist for the BET and the LNM. However, in
more general cases, getting such explicit formulas proves impossible. The alternative to estimate the
distribution lies in finding numerical algorithms or techniques that are both highly accurate and quick to run.
The FTM is a numerical technique that offers both accuracy and rapidity. The chart below depicts an
example of a default distribution determined with the FTM for a small heterogeneous portfolio.
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With the FTM, the computation of the distribution is done numerically in two steps:

1. The Aggregation Step: the assets’ risk behaviour and default correlation between assets are modelled
with a factor model: the credit risk of each asset result from a dependence to common market or
economic factors (systemic risks) and from individual risks (idiosyncratic risks). Under such modelling
assumptions, it is possible to numerically compute the Fourier transform )(ˆ tf  of the portfolio’s
aggregate default/loss distribution )(xf – hereafter often simply referred to as the portfolio Fourier
transform.

2. The Inversion Step: the portfolio’s default/loss distribution )(xf  is obtained by numerically computing

the inverse Fourier transform of the portfolio Fourier transform )(ˆ tf . This computation is almost
immediate thanks to the use of Fast Fourier Transform algorithms (such algorithms are implemented
under common spreadsheet softwares like Microsoft Excel).

The factor models realising the aggregation step of the FTM are presented in the following section, The
Underlying Models. Technical details regarding the implementation of the inversion step of the FTM may be
found in Appendix 1: Computer Implementation of the Inverse Fourier Transform. The two sections The
FTM Applied to ABS/MBS Analysis and The FTM Applied to CDO Analysis deal with the tailoring of the
FTM to the specific respective characteristics of ABS/MBS or CDOs: the major difference lies in the way the
assets in the portfolio are accounted for, individually in CDO deals or regrouped in homogeneous
subportfolios in ABS/MBS deals. The section Further Uses of the FTM essentially explains how to compute
portfolio loss distributions with the FTM.

INDIVIDUAL
ASSETS
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TRANSFORM
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DEFAULT/LOSS
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The Two Steps of the FTM
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The Fourier Transform Theory in a Nutshell

A default distribution is a mathematical function )(xf , which indicates how likely defaults of a given level are:
the probability that defaults –over a certain time horizon- will be comprised between x  and xx ∆+ will be

xxf ∆).(  for a small default bucket x∆ . Such default distribution is a function of a space variable x , which
“measures” the amplitude of default.

Most generally, to each – good – function )(xf  of a space variable x  can be associated its Fourier

transform  )(ˆ tf . The Fourier transform can be defined by the following formula:

( )dxitxxftf .exp).()(ˆ �
+∞

∞−

−= , where 1−=i is the imaginary unit.

The Fourier transform )(ˆ tf  is not a function of the space variable x , but a function of a frequency variable
t : in other words, by applying the Fourier transform, we translate ourselves from the “real space” –where
things can be measured with functions of the space variable x – to another “dual space” – a frequency space
where things are measured as a function of the frequency variable t . We will refer to the “real space” as the
space domain and to the “dual space” as the Fourier domain (or Fourier space).

Conversely, it is also possible to associate to any function )(tg of the Fourier domain its inverse Fourier
transform )(xg� which is a function of the space domain. The inverse Fourier transform can be defined by
the following formula:

( )dtitxtgxg .exp).(
2
1)( �

+∞

∞−

=
π

�

.

The inverse Fourier transform name comes from the fundamental “Inversion Formula” ff =
�

ˆ : by applying

the above defined Inverse Fourier transform to the Fourier transform f̂ of a function f of the space domain,
you’ll find the original function – f – again.

The Fourier transform of a probability distribution – also called the characteristic function in probability
theory – is another representation of the probability distribution. There is a one to one relationship between
each probability distribution and its characteristic function (only valid under circumstances, which for all
practical purposes will always be true…). The relationship is intimate: for instance, the moments of the
probability distribution can be inferred from the derivatives of the characteristic function at the origin. A key
theoretical bridge between the probability theory and the Fourier transform theory is the following: if a random
variable X  (like a portfolio default/loss rate) has the probability distribution )(xf X  then its Fourier transform

will also be defined by: [ ]itX
X etf −Ε=)(ˆ . It is often referred indifferently to the Fourier transform of a random

variable X  or to the Fourier transform of its associated probability distribution )(xf X . Another very powerful
property of Fourier transforms is the following: for two independent random variables X  and Y , the Fourier
transform of their sum is: )(ˆ).(ˆ)(ˆ tftftf YXYX =+  In other words, the Fourier transform of the sum of
independent random variables is the product of the transforms.

Now, why use the Fourier transform for computing the default or loss distribution of a portfolio? In most cases,
it is impossible to derive tractable formulas for default distributions in the space domain. However, under
certain sets of modelling assumptions, the formulas simplify if we translate ourselves in the Fourier domain.
As a matter of fact, it proves possible to find a tractable formula for the Fourier transform of the portfolio’s
default distribution. In order to get back to our good old “real” space, there will “only” need to apply the inverse
Fourier transform. However, this is the other good news: computing an Inverse Fourier transform basically
costs nothing in terms of computation time. This computation is achieved almost immediately thanks to Fast
Fourier Transform (FFT) algorithms. These algorithms were discovered some 50 years ago and are
considered to be one of the most important discoveries in numerical mathematics during the last century. The
combination between their speed and the growing computation capacity revolutionised some industries
(electronics, radio, telecommunications, medical systems, etc.).
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THE UNDERLYING MODELS

As described previously, the first step of the FTM consists in computing the Fourier transform of the
portfolio’s default distribution. In order to do so, we need to model the credit risk behaviour of the assets and
how the default correlation is created between them. We will first introduce a very simple factor model,8 the
Single Factor Model. We will then mention other possible models, for a Portfolio of Uncorrelated Assets,
or Multifactor Models that account for the simultaneous effects of several common factors. We will then
discuss How to Calibrate the Factor Loadings, which are the default correlation parameters used in the
factor modelling framework, and also How to Deal With Amortising Assets. Finally, we will present an
important particular case, The Single Factor Model for a Large Portfolio of Homogeneous Assets, where
it is possible to derive a closed form formula for the default distribution, the Normal Inverse default
distribution.

•  The Single Factor Model
Let us consider a portfolio of N assets (bonds, loans, debentures…).  The kth asset has an initial outstanding
amount of kS and is assumed to have a default probability of kp over the time horizon for which we want to
determine the portfolio’s default distribution. For the sake of simplicity, we will assume that each asset
corresponds to a different debtor and that all assets have a bullet amortisation. The first assumption may be
achieved by aggregating the assets relating to the same debtor. We’ll see later how to deal with the second
assumption in order to account for amortising assets.

For each asset N to  k 1= , let us define kZ  as its normalised credit risk indicator at the end of the time

horizon. The lower kZ will be, the higher the credit risk of the kth debtor. Debtor k  will default during the time

horizon if kZ  falls below a certain default threshold kα . kα  will be determined by the following equation:

( ) kkk pZ =<αPr . Since kZ was assumed to have a standard normal probability distribution (with a mean

of 0 and a variance of 1), we have: ( ) ( ) ( ) ( )duux  wherepZ
x

kkkk .2exp.
2
1,Pr 2−=Φ=Φ=< �

∞− π
αα is

the standard normal cumulative distribution function (NORMSDIST(z) function in Microsoft Excel). Therefore
( )kk p1−Φ=α  (NORMSINV(p) function in Microsoft Excel). The chart below illustrates how the default

threshold kα  fits to the normal probability distribution of the normalised credit risk indicator kZ .

Default Threshold ααααk 

-6 -4 -2 0 2 4 6
kα

The area  under the curve
from minus infinite to αk  

is the default probability pk

Zk

                                                     
8 The presented factor model is derived from an article by Christopher C. Finger: “Conditional Approaches for
CreditMetrics Portfolio Distributions” (1999). Another founding article for the portfolio factor models is certainly: “The
Loan Loss Distribution”, O. Vasicek, KMV Corporation, 1987.
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The next step for this single factor model consists in modelling the default correlation –or rather the credit risk
dependence– between the different individual assets. The starting point is quite general: the credit risk for
each individual asset can be split between a systemic risk and an idiosyncratic risk, i.e. a risk that can only be
attributed to a particular debtor. The systemic risk represents a common exposure to common factors such
as the changes of a market index, interest rates or oil prices, the economic growth, the evolution of the real
estate market, etc.

In a first step, we’ll only consider one single factor Z  (hence the name of the Single Factor Model). In this
case, the factor Z is often referred to as the state of the economy (in reference to the macroeconomic
conditions that influence the credit-worthiness of both companies and individuals).

Z  will be assumed to have a standard normal probability distribution. Similarly, the idiosyncratic risks kε will
be assumed to have a standard normal probability distribution. Consistently with the definitions of the
systemic risk and the idiosyncratic risks, the sk 'ε  and Z  will be assumed to be independent random
variables.

The major assumption of the Single Factor Model lies in how the systemic risk and the idiosyncratic risk
combine together to make up the individual risk. They are assumed to add to each other: kkkk ZwZ εθ+= ,

where kw  is the level of correlation9 of the kth asset to the common factor Z  and kθ  the weight of the

idiosyncratic risk for the kth asset. The swk '  reflect the contribution of the systemic factor Z  to the individual

risks kZ : therefore the  swk '  are often referred to as the factor loadings. Since kZ , Z  and kε  were

assumed to have normal standard probability distributions, and since Z and kε  are independent, taking the

variance of kZ , it can be shown that 21 kk w−=θ . Therefore, for each asset, we will have:

kkkk wZwZ ε21−+= .

For a given state of the economy zZ = , the kth debtor will default if kkZ α< , i.e. if

( ) 21 kkkk wzw −−< αε . Using the standard normality of kε , the default probability of the kth debtor

(conditionally to zZ = ) will be:

�
�

�

�

�
�

�

�

−

−
Φ=

21
)(

k

kk
k

w

zw
zp

α
.

Unsurprisingly, we remark that the expected value of the r.v. ( )Zpk  is the default probability kp  itself:

( )[ ] ( ) ( ) kkk pdzzzpZp �
+∞

∞−

==Ε ..φ , where ( ) ( )2exp
2
1 2zz −=
π

φ .

The chart below depicts the graph of ( )zpk  as a function of z  for different values of the factor loading kw .
Some comments about this chart: the default probability is higher during bad periods ( 0<z ) than during
good periods for the economy ( 0>z ). Besides, during bad periods for the economy, the debtors who are the
most sensitive to the state of the economy (i.e. those with the highest factor loading w) are the most likely to
default.

                                                     
9 With these assumptions: ( ) kk wZZCorr =,  and  ( ) lklk wwZZCorr ., = . kw  is sometimes referred to as the
asset correlation.
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p(z) for Different Values of w 
(p=5% - αααα=-1.64)
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Let us also remark that the normality of Z was not used in establishing the above expression for ( )Zpk : we

simply used that Z  had a mean of 0, a variance of 1 and was independent from the sk 'ε . Therefore, this
expression also holds for a factor Z  which is not normally distributed.10 In that case however, one must be
careful in determining the default thresholds sk 'α : the relationship ( )kk p1−Φ=α  is not valid anymore (it

resulted from the normality of  kZ , which resulted itself from the normality of Z ). Instead the default

threshold kα  will satisfy:

( )[ ] ( ) ( ) ( ) k

k

kk
kk pdzz

w

zw
dzzzpZp � �

∞+

∞−

∞+

∞−

=
�
�

�

�

�
�

�

�

−

−
Φ==Ε ..

1
..

2
φαφ ,

where ( )zφ  is the probability distribution for the (non normal) factor Z . The default threshold will be

determined by solving for kα  in this last equation. Note that most of what follows also holds when the factor
Z is not normally distributed.

Now, let us determine the portfolio Fourier transform under this simple Single Factor Model. The default
rate of the portfolio over the time horizon is:

k

N

k
k

N

NN Xs
SSS

XSXSXS
DefaultPortfolio �

=

=
+++
+++

=
121

2211(PDR) Rate  
�

�

,

where kX  is the default indicator for the kth asset ( 1=kX , if the kth asset defaults over the time horizon, 0

otherwise) and �
=

=
N

k
kkk SSs

1

 is the weight of the kth asset in the total portfolio (in %). Let us stress that the

PDR denominator would be different for amortising assets since the defaultable amounts decrease over time.

For a given state of the economy zZ = , the conditional Fourier transform of the portfolio default
distribution ( 100%x0 xf PDR <<),( ) therefore is:11

[ ] ( )[ ]zZezZetf NN XsXsXsitPit
zZPDR =Ε==Ε= +++−−

=
�2211DR.

/ )(ˆ .

                                                     
10 If the factor Z represents a variation in an equity index, it may be wiser to assume a lognormal or a Student
distribution.
11 This is nothing but the application of the key theoretical formula mentionned in the text box “The Fourier Transform
Theory in a Nutshell”.
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Using the conditional independence given Z of the default indicators kX  and the fact that the Fourier
transform of the sum of independent random variables is the product of their Fourier transforms:

[ ] [ ] [ ]zZezZezZetf NN XitsXitsXits
zZPDR =Ε××=Ε×=Ε= −−−

= �

2211)(ˆ
/ .

For the kth asset: 1=kX  with the probability ( ) ( )zpzZX kk ===1Pr  and 0=kX  with the probability

( ) ( )( )zpzZX kk -10Pr === . Therefore:

[ ] ( ) ( )
( )( ) ( ) ( )( )1.1.1

.1Pr.0Pr 1.0.

−+=+−=

==+====Ε
−−

−−−

kk

kkkk

its
k

its
kk

its
k

its
k

Xits

ezpezpzp

ezZXezZXzZe

Finally, the conditional Fourier transform of the portfolio’s default distribution will be given by:

( )( )[ ]∏
=

−
= −+=

N

k

its
kzZPDR

kezptf
1

1.1)(ˆ

The unconditional Fourier transform of the portfolio’s default distribution – in short the portfolio Fourier
transform – will be obtained by considering all the states of the economy Z  and its related density function

( )zφ :

[ ] ( )dzztftftf zZPDRZPDRPDR ..)(ˆ)(ˆ)(ˆ φ�
+∞

∞−
==Ε= ,

( )( )[ ] ( )dzzezptf
N

k

its
kPDR

k φ.1.1)(ˆ
1

�∏
+∞

∞− =

− −+=       (I),

where 
�
�

�

�

�
�

�

�

−

−
Φ=

21
)(

k

kk
k

w

zw
zp

α
 and ( ) ( )2exp

2
1 2zz −=
π

φ .

Although the formula (I) may seem complex, the portfolio Fourier transform can be computed

numerically for any given value of t.12 The difficulty lies in the way the integral ( )dzztf zZPDR ..)(ˆ φ�
+∞

∞−
=  is

computed. Gaussian quadrature formulas prove quite useful in performing this computation efficiently (see
Appendix 2).

•  Portfolio of Uncorrelated Assets

In the case of uncorrelated assets: ( ) kk pzp = , and (I) simplifies to:

( )[ ]∏
=

− −+=
N

k

its
kPDR

keptf
1

1.1)(ˆ

•  Multifactor Models

A major assumption of the previous Single Factor model lies in the way the systemic risk is modelled. It was
assumed that there was a single common factor Z . However, in certain circumstances, the default likelihood

                                                     
12 See the example of Appendix 1 for more insights on the practical computer implementation.
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of the debtors may be assumed to depend on several factors CBA ZZZ ,, … A typical example would be a
CDO portfolio: companies in the same industry are typically exposed to the same industry risk factor – for
instance ...,, eAgriculturTourismMining ZZZ  At the same time, all companies across all industries may also be

exposed to a global systemic risk factor .GlobalZ

For instance, if we simply consider two independent13 factors AZ  and BZ , the individual credit risk

indicators could be written: ( ) ( ) k
B
k

A
k

BB
k

AA
kk wwZwZwZ ε221 −−++= , Nk �1= . It would lead to the

following portfolio Fourier transform:

( )( )[ ] ( ) ( )� �∏
+∞

∞−

+∞

∞− =

− −+= BABA
N

k

itsBA
kPDR dzdzzzezzptf k ....1.,1)(ˆ

1

φφ  (II),

where 
( ) ( ) �

�
�

�

�

�
�
�

�

�

−−

−−
Φ=

221
),(

B
k

A
k

BB
k

AA
kkBA

k
ww

zwzwzzp α
.

Again, even if this formula seems complex, it can be computed numerically for any given value of t . The
computation of the double integral would however be more time consuming.

•  How to Calibrate the Factor Loadings (the swk ' )?

Input calibration is a critical step of any credit risk modelling method. The factor models use the factor
loadings swk '  as default correlation inputs. The calibration of the factor loadings is facilitated through their
translations in the various “languages” commonly used to describe and quantify default correlation. Indeed
factor loadings have a direct interpretation in terms of:

(1) standard deviation-over-mean ratio for a given portfolio,
(2) diversity score for a given portfolio,
(3) pairwise default correlation between two assets,
(4) asset (return) correlation between two assets,
(5) joint downgrade (and upgrade) probability for two rated assets.

Standard deviation-over-mean ratios are commonly used for ABS and MBS transactions. Diversity
scores, pairwise default correlations, asset correlations (and to a lesser extent joint downgrade
probabilities) are mostly used for CDO transactions. Parameters (1) to (5) are usually calibrated through
estimates based on historical data14 or by making assumptions on their value.

The existence of different possible interpretations of (1) to (5) not only makes it easier to calibrate the factor
loadings; it also makes possible to check the consistency of a correlation assumption across the board. For
instance, one may have a very good reason to believe that the pairwise default correlation between every pair
of assets in a portfolio should be of a certain level. Such an assumption implies a certain level for the factor
loadings; the factor loadings themselves imply certain levels of std dev. over mean, diversity score or asset
correlation. If such levels do not make sense, the initial assumption on the pairwise default correlation should
certainly be reviewed… Appendix 3 details the relationships between the factor loadings and
parameters (1) to (5) in the context of the Single Factor Model. It also gives some hints on the typical
values for the factor loading for different asset classes.

                                                     
13 The two factors could be considered as correlated between them: think of the GDP growth and the variation in an
equity index. However, for two normally distributed standardised factors AZ  and BZ , it is possible to come back to the

case where they would be independent by “decorrelating” them: if we define ( ) 2* 1/. ρρ −−= AB ZZZ ,  AZ  and
*Z appear to be two uncorrelated normally distributed standardised factors. For more than two factors, it would still be

possible to come back to the independent case thanks to a Cholevski decomposition.
14 It is important to remember that estimates based on historical data relate to the past: they may not be fully applicable
to the future.
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•  How to Deal With Amortising Assets?

Equation (I) was derived under the assumption that the assets have a bullet amortisation profile during the
time horizon considered for the default distribution. In many transactions, especially in ABS or MBS
transactions, the assets are amortising and this assumption is not directly applicable.

This issue may be addressed with two different approaches, a simple one and a more refined one.

Simple Approach
The simple approach consists in approximating the default distribution of the portfolio by the default
distribution of a portfolio of bullet assets with equivalent initial outstanding principal. The maturity of each
bullet asset will be assumed to be the weighted average life of the corresponding real asset while its default
probability will be assumed to be the expected default rate15 (EDR) of the real asset. This method is not
necessarly the most inaccurate: most often in ABS or MBS transactions, historical data – specifically static
vintage default curves – directly permit to estimate the assets’ default rate in the past and to make
assumptions for future EDRs.

Refined Approach
The second approach is more complex to implement. An expression of the Portfolio Default Rate (PDR) with
assets amortising over time would be:

( ) ( ) ( )��
==

=<=
N

k
kkk

N

k
kkkk XTsmTTsPDR

11
.1. , where:

•  For the kth asset, kT  is a random variable that designates the time of default ( +∞=kT if the asset never
defaults)

•  km  is the minimum between the considered horizon for the PDR and the maturity of the kth asset

•  ( ) ( ) kkk SSs ττ =  , where ( )τkS  represents the scheduled outstanding amount of the kth asset at time
τ  in the future

•  ( ) 11 =A  if A is true and ( ) 01 =A  if A is false. By definition, the default indicator for the kth asset over the

                                                     
15 Expected default rate (EDR) means the expected defaulted amount during the time horizon divided by the initial
outstanding principal. The expected default rate is the same as the default probability for a bullet asset: it is lower than
the default probability for an amortising asset since the defaultable amount decreases over time. It is worth noticing that
we have the following first order relationship for each asset: MaturityWALpEDR /.≈ .
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considered horizon is ( )kkk mTX <=1 .

The portfolio Fourier Transform then becomes:

( ) [ ] ( )
�
�

�
�
�

�== ∏
=

−−
N

k

XTitsitPDR
PDR

kkkeEeEtf
1

ˆ

Since the assets (and the default times kT ’s) are independent conditionally to Z=z:

( ) ( )[ ] ( ) ( )[ ]∏∏
=

<−

=

−
= ====

N

k

mTTits
N

k

XTits
zZPDR zZeEzZeEtf kkkkkkk

1

1.

1
/

ˆ

Let ( )zUk ,τ  be the probability density function of kT conditionally to Z=z and let ( )zuk ,τ  be the probability

density function of kT  conditionally to Z=z and to kk mT <  (i.e conditionally to a default of the kth asset over

the horizon). The link between ( )zUk ,τ  and ( )zuk ,τ  is simply ( ) ( ) ( )zpzuzU kkk ×= ,, ττ , where ( )zpk  is
the conditional default probability of the kth asset over the considered horizon introduced in precedent
sections.

The term of the above product may be re-written:
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Hence the expression for the conditional portfolio Fourier Transform:
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And finally, the portfolio Fourier Transform will be:

( ) ( ) ( ) ( ) ( )dzzdzuezptf
N

k
k

m
its

kPDR

k

k ..1.,..1ˆ
1 0

φτττ
�∏ �
∞+

∞− =

−

�
�
�

�

�
�
�

�

�
�

�

	






�

�
−+=

Let us say a few words on the time distribution for default for the kth asset, ( )zuk ,τ . For instance, in its
discretised version, this time distribution corresponds to a probability of 5% that a defaulted asset defaults
during the first period, of 10% during the second period, etc… The sum of all these probabilities over all the
considered periods is of 100%.

In ABS or MBS transactions, these timing assumptions will most likely be inferred from the study of the
vintage default curves over time. In CDO deals including amortising assets, these assumptions will rather be
inferred from the rating of the underlying obligors and from the timing of the default generally associated to a
given rating category.
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As a matter of fact, the time distribution for default ( )zuk ,τ  may depend on the state of the economy Z=z.
Further assumptions about how this time distribution may change with Z=z may be made. For z<0
(depressed economy), defaults should generally be frontloaded (i.e. defaults tend to occur more in the short
term) while they should generally be backloaded for z>0 (growing economy).

Once these timing assumptions are made, it is possible to compute the above expression for the portfolio
Fourier Transform and therefore to invert it in order to find the portfolio default rate distribution.

•  The Single Factor Model for a Large Portfolio of Homogeneous Assets

In the case of a large portfolio of homogeneous assets, it is worth mentioning that the Single Factor Model
gives an explicit formula for the default distribution, the so-called Normal Inverse distribution. As
suggested by the following chart, the Normal Inverse distribution closely compares to the Lognormal
distribution Moody’s often uses for these kinds of portfolios.

Normal Inverse Vs Lognormal Distributions
M e a n ( p)  5 . 0 % /  S t d De v / M e a n 4 0 % /  For  NI ,  w a dj ust e d so t o ha v e  S t d  D e v / M e a n= 4 0 %

0% 5% 10% 15% 20%

LogNormal
Normal Inverse

The explicit formula for the Normal Inverse distribution is directly derived from the Law of the Large Numbers
(LLN). According to the LLN, the average of N random variables sharing the same probability distribution
converges towards their common mean as N increases. For a given state of the economy zZ = , this means

that the portfolio default rate ��
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(the homogeneity of all the assets means that they all have the same relative size Nsk 1= , the same factor

loading wwk =  and the same default threshold αα =k  ).

The LLN therefore implies that the portfolio default rate ( PDR ) will be equal to ( )zp  for a large portfolio

( N large) and a given state of the economy zZ = . In other words: ( )ZpPDR = . As a consequence, the
cumulative default distribution will be:
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which gives the Normal Inverse distribution, using the symmetry of the normal distribution for Z :
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THE FTM APPLIED TO ABS/MBS ANALYSIS

ABS and MBS transactions are characterised by granular portfolios of homogeneous assets. At Moody’s, we
often use the LNM to model the default distribution of the assets. However the LNM may not always be well
adapted to non granular portfolios (i.e. with a limited number of assets) nor to heterogeneous portfolios
(i.e. that present heterogeneities in terms of credit risk or size).

Here are a few examples of non granular or heterogeneous portfolios Moody’s has encountered in rating ABS
and MBS:
� Residential mortgage portfolios with an intermediate number of loans (in practice less than 500 loans

originated by a small originator);
� Commercial mortgages + residential mortgages (heterogeneities in terms of size and credit risk and

potentially non granularity of the commercial mortgages subportfolios);
� Real estate leases + car leases + trucks leases + equipment leases (heterogeneities in terms of size and

credit risk and potential non granularity for the real estate subportfolio);
� Residential Mortgages + securities such as investment grade ABS/MBS or corporate bonds

(heterogeneities in terms of size and credit risk and non granularity of the securities subportfolio).

The analysis of the risk profile of a given portfolio presenting limited granularity or heterogeneities can be
successfully addressed by the FTM using the Single Factor Model. The heterogeneous portfolio must be split
in homogeneous subportfolios sharing the same size ( SubPFs  bucket) and the same default probability

( SubPFp  bucket). All the SubPFN  assets in subportfolio SubPF  are assumed to share the same factor

loading SubPFw . The table below illustrates this bucketing process for a € 500m portfolio comprising 2000
residential mortgages, 200 commercial mortgages and 10 large commercial mortgages.

Example of Buckets for a € 500m Portfolio Comprising 3 Different Subportfolios

Breakdown of the number of loans Values for the Factor Loadings (w)

Default Probability Default Probability
Individual Asset Size 5.0% 10.0% Individual Asset Size 5.0% 10.0%

€ 100,000 2,000        -                € 100,000 18.93% -                
€ 1,000,000 -                200           € 1,000,000 -                27.63%

€ 10,000,000 -                10             € 10,000,000 -                27.63%

The portfolio Fourier transform in equation (I) may be re-written as:

( ) ( )( )[ ] ( )dzzezptf
SubPF
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N
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 and ( )SubPFSubPF p1−Φ=α .

Let us come back to the above example of a mixed mortgage portfolio. The three factor loadings
(the swSubPF ' ) were calibrated so have a ratio of std dev. over mean of 40% for the 2000 residential
mortgages and of 50% for the commercial mortgages (the 200 intermediate ones and the 10 big ones).16 The
use of equation (III) and the inversion techniques described in Appendix 1 permit to numerically compute the
following default distribution for the aggregate portfolio:

                                                     
16 The calibration of the three factor loadings was made assuming three large subportfolios of assets similar to those
included in the three subportfolios. More specifically, the three factor loadings have been calibrated so to have a
corresponding ∞σ –such as defined in appendix 3– equal to respectively 40%, 50% and 50% of the respective average
default rate of the three subportfolios.
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Default Distribution
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The tables below provide key figures associated with this default distribution as well as a rough Aaa / Aa2 /
A2 / Baa2 / equity tranching assuming a 60% recovery rate for all three subportfolios and that all losses are
concentrated at year 5.17 Observe that no Aa2 tranche can be carved out with this portfolio and the assumed
structure. The tranching was done by maximising the size of the Aaa tranche and each subsequent
subordinated tranches: in fact, it would be possible to structure a small Aa2 tranche mostly by carving it out of
the Aaa tranche (and slightly out of the A2 tranche).

Key Figures about the Default Distribution Rough Tranching

95% percentile 16.2% Tranche %
99% percentile 21.1% Aaa 89.7%

99.9% percentile 27.4% Aa2 0.0%
99.99% percentile 33.0% A2 1.3%

WADP 8.0% Baa2 1.6%
Std Dev. Over Mean 54.0% NR 7.5%

Equivalent Diversity Score 39.4

Going further and more realistically, assuming a time distribution for defaults and a given waterfall for the
cash flows in the deal, it would be possible to determine the expected losses of each tranche and therefore
their “quantitative” rating. The use of the default distribution would be exactly the same as described in the
BET and LNM Moody’s special reports.18

                                                     
17 The tranching assumes a pure sequential loss allocation with no benefit for excess spread or any other enhancement
mechanism.
18 For a detailed example on how to use a default distribution and a time distribution for defaults in a cash flow model,
see Moody’s special report “The Lognormal Method Applied to ABS Analysis”,  and particularly the section An Example
of a Lognormal Method Application.
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THE FTM APPLIED TO CDO ANALYSIS

CDO (or CMBS)19 transactions are characterised by limited portfolios of assets. At Moody’s, we most often
use the BET to model the default distribution of CDO portfolios. Although the BET is a very flexible method
that can be extended in many ways to many complex situations, it is not always applicable. In particular, the
BET may not be easily adapted to CDO portfolios with:

- significant heterogeneities in terms of credit risk or size,20 or
- very few industries,21 or
- very few assets, typically less than 15,22 or
- an intermediate number of assets, typically between 250 and 500.23

In these cases, the FTM may prove very helpful. As previously mentionned, corporates in the same industry
are assumed to be exposed to the same industry risk factor.24 At the same time, corporates across all
industries may also be exposed to a global systemic risk factor. All factors are assumed independent.25

Assuming the industries are A,B,…,X , the portfolio Fourier transform can be written:
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If no global systemic risk is assumed, all the swGlobal
k '  are nil and a close look at (IV) would lead to the

following simplified expression:
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Computation of )(ˆ tf PDR  in equation (V) is almost as fast as computation of )(ˆ tf PDR  in equation (I) where

there is only one factor. Unfortunately, computation of )(ˆ tf PDR  in equation (IV) is more time consuming.

Consider the following example:

                                                     
19 This section may also be applied to CMBS portfolios where CDO-like techniques are used.
20 The main assumption of the BET consists in assuming that the aggregate default distribution of the N correlated
assets in the portfolio is approximated by the default distribution of D (Diversity Score) uncorrelated assets with similar
financial characteristics, including default probability and size. Therefore the BET will not address ideally significant
heterogeneities in the portfolio.
21 Few industries or few assets in the portfolio results in a low portfolio diversity score. With low diversity scores, the
outputs of the BET are very sensitive to the value of the diversity score itself.
22 Cf. Moody’s special report “Moody’s Approach to Rating-ith-to-Default Basket Credit-Linked Notes,” 17 April 2002.
23 When the number of assets increases and thus when coming closer to the ABS/MBS territory, the computation of the
Diversity Score becomes more subtle and certainly less intuitive.
24 The industry classification can also be done geographically: for instance Agriculture in Europe and Agriculture in
Northern America could be considered as two independent industries.
25 The rationale for the industry classification is precisely to regroup companies into groups considered to behave
almost independently from a credit risk perspective.



The Fourier Transform Method – Technical Document                                             Moody’s Investors Service • 15

Example of a Heterogeneous and Poorly Diversified Portfolio

Total Outstanding Amount:  € 598m
Weighted Average Rating:  Ba1

Bond Size (€m) Maturity (Y) Industry Rating Factor 
Loading

Bond 1 200 5 A Baa2 35%
Bond 2 40 5 A A2 35%
Bond 3 30 5 A A3 35%
Bond 4 20 5 A Ba1 35%
Bond 5 25 5 A Baa1 35%
Bond 6 30 5 A A2 35%
Bond 7 70 5 A Aa3 35%
Bond 8 3 5 A B3 35%
Bond 9 100 5 B Ba3 40%
Bond 10 80 5 B Ba2 40%

Using equation (V) and the inversion techniques of Appendix 1 leads to the default distribution26 depicted in
the two following charts with two different scales on the Y axis:

Default Distribution
(Truncated on the Y axis  at 20%)
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4%
6%
8%

10%
12%
14%
16%
18%
20%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Default Distribution
(Truncated on the Y axis at 0.01%)

0.000%
0.001%
0.002%
0.003%
0.004%
0.005%
0.006%
0.007%
0.008%
0.009%
0.010%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

                                                     
26 For each bond in the portfolio, the default probability over the 5 year horizon was deduced from the bond’s rating by
dividing the associated expected loss –as shown in Appendix 4– by an assumed average LGD of 55%. As with the BET,
please note that stress factors should be applied on these default probabilities in order to account for the fact that a
rating corresponds to a range of expected loss values and not to a single value of expected loss. For the sake of
simplicity, these stress factors were not applied in the given example.



The Fourier Transform Method – Technical Document                                             Moody’s Investors Service • 16

These charts illustrate the peculiar nature of the default distribution of small and heterogeneous CDO
portfolios:

- the default distribution is not as “smooth” as the distribution of a granular portfolio: it is characterised by
spikes,

- there are ranges of default rate values that are impossible or very unlikely  (in the example: 1% to 3%,
5% to 6%, 19% to 20%, 32% to 33%, 47% to 50%, etc.).

The tables below provide key figures associated with this default distribution and a rough Aaa / Aa2 / A2 /
Baa2 / Ba2 / equity tranching assuming a 30% recovery rate and that all losses are concentrated at year 5.27

No Baa2 tranche can be carved out with this portfolio and the assumed structure. As already mentionned in
the previous section, a more realistic way to compute the notes’ expected losses and their associated
“quantitative” ratings would consit in incorportating the default distribution in a cash flow model that requires
assumptions about the time distribution of defaults.

Key Figures about the Default Distribution Rough Tranching
No Default Probability 54.6% Tranche %

95% percentile 17.2% Aaa 59.7%
99% percentile 33.4% Aa2 5.3%

99.9% percentile 50.7% A2 11.5%
99.99% percentile 64.0% Baa2 0.0%

WADP 4.1% Ba2 17.4%
Std Dev. Over Mean 196.3% NR 6.1%

Equivalent Diversity Score 6.1

                                                     
27 The tranching assumes a pure sequential loss allocation with no benefit for excess spread or any other enhancement
mechanism.
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FURTHER USES OF THE FTM

The FTM may also be easily adapted and used for instance to determine the loss distribution, the market
value distribution and the return distribution of a portfolio of assets during a given time horizon. We will
specifically focus on the loss distributions.

•  The Theoretical Background for Loss Distributions

The first step of the FTM requires to determine the Fourier transform of the portfolio loss rate (that is the
portfolio Fourier transform). Using the same terminology as the one introduced in the Single Factor Model
section of the Underlying Models part, the loss rate of the portfolio over the time horizon is:
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where kX  and kLGD  are respectively the default indicator and the Loss Given Default (or indifferently the

loss severity) for the kth asset. The sLGDk '  are random variables that typically range between 0% and 100%.

For a given state of the economy zZ = , the conditional Fourier transform of the portfolio loss distribution
( 100%x0 xf PLR <<),( ) is therefore under the Single Factor Model:
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As seen previously, the default indicators kX  are conditionally independent given zZ = . Assuming the

same conditional independence for the sLGDk ' :28
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Finally, the conditional portfolio Fourier transform will be given by:
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and the unconditional portfolio Fourier transform will therefore be:
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28 This assumption means that the potential correlation between LGDs would only be created through a common
dependence to the factor Z , the very one that is the source of default correlation between the debtors. This assumption
may be a bit simplistic in certain cases. Consider a portfolio of residential mortgage loans: the main factor driving
defaults would rather be the growth of the economy (for instance measured by the GDP growth), while the factor driving
the LGDs would be the state of the real estate market. Both factors are certainly strongly correlated but are nonetheless
different.
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Comparing (I) and (VI) shows that the portfolio default rate or the portfolio loss rate have very similar Fourier
transforms: the loss Fourier transform is obtained by substituting kitse−  by ( )kzZLGD tsf

k =
ˆ  in the expression of

the default Fourier transform.

There are three types of modelling assumptions for the LGDs: fixed LGDs, variable LGDs or variable
LGDs correlated with the defaults in the portfolio. Each of these assumptions gives a different expression
for ( )tf zZLGDk =

ˆ  and leads to a different computation formula for the portfolio Fourier transform )(ˆ tf PLR .

•  Computation of the Portfolio Loss Distribution with Fixed LGDs

The LGDs are assumed to be deterministic. The LGD for the kth asset takes a fixed value kkLGD µ= . In

that case, ( ) [ ] kk
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•  Computation of the Portfolio Loss Distribution with Variable LGDs

The LGDs are assumed to be random variables ranging between 0% and 100%. In addition, the LGDs are
assumed to be independent from the factor Z  and therefore from the portfolio default rate. Here are the
formulas29 giving ( ) ( )tftf
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ˆˆ ==  for some workable LGD distributions with mean µ  and standard
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� Beta LGD: Beta distributions are a common assumption (that seems empirically justified) for LGD
distributions. Unfortunately, there does not seem to be any closed form formula for the Fourier transform.
It can however be approximated by the Fourier transform of the its discretised distribution :
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29 These formulas are obtained by applying the Fourier Transform definition, as it can be seen for the Normal LGD.
30 The Normal, Triangular or the Gamma distributions may not always be fully suitable LGD distributions: high standard
deviations or low means may yield non negligible probabilities for negative LGD values or LGD values larger than 100%.
However, the impact is generally limited to the left part of the loss distribution and does not affect its tail (it is a
consequence of the Law of the Large Numbers –see next footnoote for more details).



The Fourier Transform Method – Technical Document                                             Moody’s Investors Service • 19

where M is the number of discretisation points of the LGD distribution, ( ) ( )pn
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As a consequence, the portfolio Fourier transform of a portfolio with normally distributed LGDs will be:
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where kµ  and kσ  are the respective mean and standard deviation for kLGD .

The chart below depicts different loss distributions for different types of LGD distributions. Observe that the
tail of the loss distribution does not depend on the assumed LGD distribution.31

Portfolio Loss Distributions for Different Kinds of LGD Distributions
(100 assets / same size / p=3% / w=20% / MeanLGD=55% / StDevLGD=25%)

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Normal
Triangular
Gamma

The chart below shows the evolution of the shape of the loss distribution when the standard deviation of the
LGD increases while the following table provides the key numbers associated with these loss distributions,
including a rough Aaa / Baa2 / equity tranching.32 It should be noticed that the expected losses in the portfolio
do not change and are equal to the product of the average default probability and the LGD mean. As
expected, an increase of the LGD volatility translates into increased unexpected losses.

                                                     
31 According to the Law of the Large Numbers, the average of a given number of random variables sharing the same
probability distribution converges towards their common mean as their number increases. As a direct consequence, the
average LGD will be almost equal to its expected value for high default rates: the right tail of the loss distribution won’t
depend on the shape of the LGD distribution for each asset. Going further, as a consequence of the Central Limit
Theorem, the average LGD distribution given n default even converges towards a normal distribution (with a standard
deviation decreasing with the inverse of the square root of n or the default rate) whatever may be the shape of the
individual LGD distribution (provided however that the LGDs have the same probability distribution and are
independent).
32 The tranching assumes a pure sequential loss allocation with no benefit for excess spread or any other credit
enhancement mechanism and that all losses occur at year 5.
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Portfolio Loss Distributions for Different Values of LGD Std Deviations
(100 assets / same size / p=3% / w=20% / Mean LGD=55% / Gamma LGD distributions)

0% 1% 2% 3% 4% 5% 6% 7% 8%

10%
20%
30%
40%

LGD Std Dev 0% 10% 20% 30% 40%
Mean Loss 1.65% 1.65% 1.65% 1.65% 1.65%

Std Dev. Loss 1.21% 1.23% 1.26% 1.32% 1.40%
Std Dev./Mean 73.61% 74.35% 76.54% 80.06% 84.70%
99% percentile 5.51% 5.42% 5.56% 5.79% 6.11%

99.9% percentile 7.16% 7.36% 7.57% 7.93% 8.44%
99.99% percentile 9.36% 9.21% 9.49% 9.99% 10.64%

Aaa 93.45% 93.36% 93.14% 92.77% 92.26%
Baa2 2.23% 2.29% 2.44% 2.69% 3.01%
NR 4.32% 4.34% 4.42% 4.55% 4.73%

Credit Enhancement Aaa 6.55% 6.64% 6.86% 7.23% 7.74%

Impact of the LGD Std Deviation on the Loss Distribution
Portfolio and LGD Characteristics: 100 assets / same size / p=3% / w=20% / Mean LGD =55% / Gamma LGD distributions

•  Computation of the Portfolio Loss Distribution with Variable LGDs Correlated With the Defaults in
the Portfolio

As with variable LGDs, the variable correlated LGDs are assumed to be random variables ranging between
0% and 100%. However, the LGDs are assumed to be correlated with the portfolio default rate (PDR). Recent
studies33 suggest that this correlation level was approximately of 20% to 30% for US bonds during the three
past decades.

Assumptions on the LGDs

A (positive) correlation between defaults in the portfolio and LGDs reflects that, on average, LGDs increase
when the porfolio default rate increases. Let ( )zkµ  designate the expected LGD for the kth asset conditionally
to the state of the economy Z=z:

( )[ ]zzZLGDE kk µ== .

                                                     
33 See Appendix 5: References.



The Fourier Transform Method – Technical Document                                             Moody’s Investors Service • 21

( )zkµ  is expected to be a decreasing function of the state of the economy Z=z: on average, LGDs tend to
decrease during bad times for the economy while they rather decrease during good times. A simple and
natural choice is to assume a linear relationship between ( )zkµ  and z :

( ) zz kkk .Σ−= µµ        (VII),

where [ ]kk LGDE=µ  and  kΣ  is a positive coefficient that will further be determined in function of

correlation assumptions between kLGD  and the defaults in the portfolio.34

Let us make a further natural assumption on kLGD :

( ) kkk ZLGD ηµ +=        (VIII),

where kη  and Z  (or ( )Zkµ ) are independent random variables. We obviously have

[ ] [ ] 0=== zZEE kk ηη .

Correlation inputs

Natural inputs to consider in the modelling process would be the correlation between kLGD  and the portfolio

default rate PDR , that is ( )PDRLGDCorr k , . However the theoretical expressions for ( )tf zZLGDk =
ˆ  quickly

become complicated. It proves much easier to consider the correlation between the sLGDk '  and the factor
Z , that is:

( )ZLGDCorr kk ,−=θ , where %100%100 ≤≤− kθ       (IX).

Indeed the factor Z  drives the defaults in the portfolio. As a matter of fact, it can be verified that
( )ZPDRCorr ,  is very close to –100% for many portfolios: in practice, the sk 'θ  may be considered as the

level of correlation between the portfolio default rate (PDR) and the corresponding LGDs (the sLGDk ' ) .

Expression for the Portfolio Fourier Transform

Equation (VI) for the portfolio Fourier Transform ( )tf PLR
ˆ  requires an explicit expression for ( )tf zZLGDk =

ˆ . We

will naturally assume that all the conditional distributions for zZLGDk =  belong to the same family of

distributions when z  fluctuates. For instance, assuming that all conditional distributions for zZLGDk =  are
normal distributions will yield:

( ) ( ) ( )( )2...expˆ 22 tztzitf kkzZLGDk
σµ −−== ,

where ( ) ( )zZLGDVarz kk ==σ  is the conditional standard deviation of zZLGDk = . The only

                                                     
34 More elaborate choices may be made for the function ( )zkµ . Let ( ) ( )[ ]xZxF k <= µPr  be the cumulative

distribution function of the LGD average , i.e. the r.v. ( )Zkµ . In that case, it can be proved that

( ) ( )[ ]zFzk −Φ= −1µ .
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unknown variables in the expression above (as with other expressions for ( )tf zZLGDk =
ˆ  when other families of

distribution are used) are ( )zkµ  and ( )zkσ . They will be determined thanks to (VII), (VIII) and (IX).

From (IX):

[ ] [ ]
( ) ( )

[ ]
k

k

k

k

k

kkk

k

k
kk

ZZCov
ZVarLGDVar

ZLGDCov
ZLGDCorr

σσσ
ηµθ Σ

−=
−Σ−

=
−Σ−

===−
1.

00
1.

,.
..

,
, ,

which means:

kkk σθ .=Σ

and:
( ) zz kkkk ..σθµµ −=

From (VIII):

( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ] ( )kkkkkkkk VarVarZVarZLGDVarZLGDVarLGDVar ηηµσ +Σ=Ε+=Ε+Ε== 22 .

Therefore:
( ) ( )22222 1)( kkkkkk Varz θσσησ −=Σ−== ,

and:
21.)( kkk z θσσ −=

Coming back to the example of normal conditional LGD distributions:

( ) ( ) ( )[ ]2.1....expˆ 222 ttitf kkkkkzZLGDk
θσσθµ −−−−== ,

which permits to compute the portfolio Fourier transform with (VI):

( ) ( ) ( )[ ]( )[ ] ( )dzzsttsizptf
N

k
kkkkkkkkPLR φθσσθµ .12..1.....exp.1)(ˆ

1

2222
�∏

+∞

∞− =

−−−−−+= .

The chart below depicts different loss distributions for different levels of correlation between defaults and
LGDs. As in the previous section, a table then provides key numbers associated with these loss distributions,
including a rough Aaa / Baa2 / equity tranching.35

Observe that the expected losses in the portfolio increase with the correlation between defaults and LGDs: in
the case where LGDs are correlated to defaults, the expected losses in the portfolio are no longer the product
of the average default probability and the LGD mean (in the example, respectively 3.0% and 55% regardless
of the LGD/default correlation level).

Note also (as a rule of thumb) that the additional required Aaa credit enhancement resulting from the
correlation between LGDs and defaults corresponds more or less to the correlation percentage itself. For
instance, for a correlation of 20%, the required Aaa CE is of 8.66%, which represents an increase of 23.3%
(close to 20%) compared to the case where there is no such LGD/default correlation.

                                                     
35 The tranching assumes a pure sequential loss allocation with no benefit for excess spread or any other credit
enhancement mechanism and that all losses occur at year 5.
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Portfolio Loss Distributions for Different Levels of Correlation 
Between LGDs and Defaults in the Portfolio

(100 assets / same size / p=3% / w=20% / Mean LGD=55% / Std Dev LGD =25% /
Gamma conditional LGD Distributions) 

0% 2% 4% 6% 8% 10% 12%

0%
10%
20%
30%
70%

Portfolio and LGD Characteristics: 100 assets / same size / p=3% / w=20% / Mean LGD =55% / Std Dev. LGD = 25% / Gamma conditional LGD distributions

Correlation LGD/Default 0% 10% 20% 30% 70%
Mean Loss 1.65% 1.68% 1.72% 1.75% 1.89%

Std Dev Loss 1.29% 1.36% 1.44% 1.52% 1.87%
StdDev/Mean 78.1% 81.0% 83.9% 86.9% 98.9%

99% percentile 5.65% 6.04% 6.44% 6.85% 8.58%
99.9% percentile 7.72% 8.44% 9.20% 9.98% 13.18%
99.99% percentile 9.70% 10.82% 11.99% 13.20% 17.60%

Aaa 92.97% 92.19% 91.34% 90.43% 86.73%
Baa2 2.55% 3.18% 3.90% 4.66% 7.71%
NR 4.48% 4.62% 4.76% 4.91% 5.56%

CE Aaa 7.03% 7.81% 8.66% 9.57% 13.27%
% chge CE Aaa / no correlation 0.0% 11.1% 23.3% 36.2% 88.9%

Impact of the correlation between LGDs and Defaults on the Loss Distribution
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CONCLUSION

The FTM is a powerful tool. It presents interesting advantages compared to Monte Carlo-based
approaches. The strongest feature of the FTM is its speed: in most cases, it runs in five to thirty seconds. At
the same time, it gives accurate outputs and therefore avoids the convergence issues that are encountered
with Monte Carlo simulations. Its adaptability permits its use for a wide range of portfolios. It is also simple to
implement with common spreadsheet softwares such as Microsoft Excel, thanks to their pre-programmed
Fast Fourier Transform (FFT) routines.

The FTM is only a tool, however. As with any other modelling methodology, one must be aware of its
limits:
•  The FTM is a one-period model: it does not address the issue of the timing of the defaults or the

losses in the analysed portfolio. Additional timing assumptions should be made in the cash flow analysis
integrating the default or loss distribution generated by the FTM.

•  The FTM makes assumptions on how default correlation is created between assets, namely
through exposure to systemic risk. Besides, the FTM requires an adequate calibration of the level of
correlation to the systemic risk for each asset.

Moreover, the FTM only deals with quantifying the aggregate risk profile of a portfolio of assets. Although an
important step, it is only one step in Moody’s overall rating process for a structured finance deal.
Analysing, understanding and questioning the data is often a more critical step than the choice of the
modelling methodology itself.

Moody’s views the FTM as an additional quantitative methodology to analyse the risk profile of complex
portfolios of assets. We intend to use it mainly once our usual methods become difficult to apply. We may
also use the FTM in conjunction with other methods such as Monte Carlo simulations, as we prefer not to rely
on a single model in the case of complex transactions.

We believe that – apart from being a useful tool for the analysis of structured finance transactions – the FTM
can also help credit risk professionals to model, understand and quantify complex credit risk phenomena
at a portfolio level, for instance, in the complex cases where defaults and LGDs are correlated.
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APPENDIX 1: COMPUTER IMPLEMENTATION OF THE INVERSE FOURIER TRANSFORM

INTRODUCTION

The first step of the FTM – the aggregation step – makes it possible to compute the portfolio Fourier

transform ( )tf̂   for any value of t . This technical appendix deals with the practical implementation of the
second step of the FTM, the inversion step. Precisely, this appendix aims at answering the following question:

knowing the portfolio Fourier transform ( )tf̂ , how is it possible to compute its inverse Fourier
transform, i.e. the portfolio distribution ( )xf ?

Answering this question requires a minimum understanding of some key notions or tools like the Discrete
Fourier Transform, the Discrete Inverse Fourier Transform, the Fast Fourier Transform algorithm, the MS
Excel Fourier Analysis tool. We must stress that any computer implementation of the inversion step of
the FTM will prove very difficult or even impossible without this minimum understanding. This being
said, readers mostly interested in the computer implementation may skip the theoretical sections
below in a first step and only refer to the two grey “Inversion Recipe” textboxes.

The inversion must be computed differently depending on the discrete or continuous nature of the
portfolio default/loss distribution ( )xf . Portfolio default distributions are generally discrete distributions:

the number of possible values for the default rate is at most N2 for a portfolio of N  assets. They converge to
a continuous distribution for large values of N . Portfolio loss distributions are also discrete distributions if
LGDs are assumed to take discrete values between 0% and 100%, while they are (almost) continuous
distributions if the LGDs are assumed to take continuous values between 0% and 100%.

Before going any further, let us notice that the kind of distributions )(xf we are trying to determine are

concentrated in an interval [ ]max;0 V : )(xf is equal to zero outside this interval. For instance, if )(xf  is a

default distribution, maxV can be equal to 100% if the distribution refers to the default rate distribution (there
cannot be more defaults than 100% of the portfolio principal outstanding); if )(xf  refers to the defaulted

amount distribution, maxV can be equal to the total principal outstanding of the portfolio.

In practice, it is more interesting to choose the lowest possible value for maxV in order to reduce the
computation time. For instance, we may a priori think that the default/loss rate distribution will be
concentrated in the interval [ ]%25%;0 ; defaults/losses larger than 25% are theoretically possible but their
probability is so small – for instance lower than 1E-14, close to the double precision computation limit for
most computers – that their corresponding probabilities can be assumed to be zero. In that case, we may
make an a priori guess of  %25max =V  and run the computation in order to get the default rate distribution

)(xf ; this a priori guess for maxV  would however need to be validated ex post by checking that the
probabilities obtained for the end of the interval – let’s say in the 24% to 25% area for the sake of the
example36 – are effectively negligible. Making such an a priori guess for maxV speeds the computation of
the distribution )(xf . For instance, in the previous case, the computer won’t lose time in computing the
default/loss rate distribution between 25% and 100%, because it will have been assumed to be equal to zero.

                                                     
36 As a matter of fact, the end of the computation interval will be larger than maxV ( see point 6 in the first Inversion

Recipe grey textbox: ( ) xsFx sF ∆−=− .1Re1Re , the last point of the computation interval, is larger than maxV ).
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COMPUTING DISCRETE DISTRIBUTIONS )(xf

•  Determination of the Step of the Distribution x∆

Let x∆  designate the “Greatest Common Divisor” (GCD) of the discrete values that may be taken by the
default (or loss) distribution. The distribution will take its values at the discrete points

1N,0,n ,. max −=∆= �xnxn , where [ ] 1N maxmax +∆= xVInt : x∆  will be the distribution’s step.

If we refer to a default distribution,  the default rate step x∆  will be the GCD of the size percentages ks  of
the assets. If we refer to a discrete loss distribution, the loss rate step will be the product of the default rate
step and the LGD step.

For instance, if we consider the default distribution of a portfolio of three assets with respective principal
outstanding amount of € 3.5 m, € 8.5 m and € 10.0 m, the “GCD” of the principal outstanding amounts will be
of € 0.5 m,37 and therefore %27.222/5.0)0.105.85.3/(5.0 ≈=++=∆x . If we add a € 5.56m asset to
this portfolio, the GCD of the principal outstanding amounts is changed to € 0.02m38 and therefore

%07.056.27/02.0)56.50.105.85.3/(02.0 ≈=+++=∆x .

For a discrete LGD distribution taking values at 100% 5%, 0% ,, � , the LGD step will be of  5% . As a result,
the step of the loss distribution will be of %11.0%5%27.2 ≈×  for the portfolio of three assets and of

%0035.0%5%07.0 ≈× for the portfolio of four assets.

Computing the discrete distribution )(xf  consists in determining the sfn ' , the “values” that ( )xf  “takes” at

the points 1N,0,n ,. max −=∆= �xnxn  (recall that ( )xf  is equal to zero for values of x  different from the

sxn ' ).

•  Theoretical Expression for the Distribution )(xf  and its Fourier Transform )(ˆ tf

Strictly speaking, the last sentence in the previous section is an abuse of language. Strictly speaking, ( )xf
was not defined as the probability distribution function. It was defined as the density probability function.
However, the density function ( )xf  for a discrete probability distribution is not a classical function taking
values at some points but rather as a mathematical distribution39 which is a sum of “Dirac spikes”  with
energy nf  concentrated at the points 1N,0,n ,. max −=∆= �xnxn :

( ) ( )xfxf xn

N

n
n ∆

−

=
�= δ.

1

0

max

 (A),

where ( )xaδ  is the so called Dirac distribution or Dirac delta function at point a :

� ( ) a x for xa ≠= 0δ , and

� ( ) 1. =�
+∞

∞−

dxxaδ .

                                                     
37 10/)1010;105.8;105.3(5.0 ×××=   GCD  : all outstanding amounts are multiplied by 10 so as to make them
integers.
38 100/)10056.5 ;10010 ;1005.8 ;1005.3(02.0 ××××= GCD .
39 For more details on the Theory of Distributions, see for instance: “Introduction to the Theory of Distributions”, F.G.
Friedlander, Cambridge University Press, 1982 or “The Analysis of Linear Partial Differential Operators: distributions
theory and Fourier analysis”, L. Hörmander, Springer Verlag, NY, 1990.
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For readers not accustomed to mathematical distributions, let us mention how equation (A) is connected with
the classical discrete probabilities. The cumulative default distribution function implied by (A) is:

( ) ( ) ( ) ( )� ���
∞− <∞−<

===≤=
X

Xx
n

X

x
Xx

nPDR
n

n

n

fdxxfdxxfXPDRXF ..Pr δ ,

which is equivalent to say that the discrete probability ( )nxPDR =Pr  is equal to nf .

Going further, it can be proved that the Fourier transform of the Dirac distribution ( )xaδ  is the function iate− .
Therefore after application of the Fourier transform to equation (A) :

t
T

inN

n
n

xtin
N

n
n efeftf

π21

0

1

0

..)(ˆ maxmax −−

=

∆−
−

=
�� ==  (B),  where 

x
T

∆
= π2

.

Observe that ( )tf̂  is a periodic function of t , with a period T : ( ) ( )Ttftf += ˆˆ  (remember that 12 =− πie ).
As a matter of fact, it is not difficult to see that discrete probability distributions are characterised by a
periodic Fourier transform.   

At this stage, recall that ( )tf̂  can be computed for any value of t  (for instance with (VI)). Equation (B) and

the Discrete Fourier Transform theoretical framework will lead to the values of the sfn ' , 10 −= maxN to  n  .

•  The Discrete Fourier Transform Framework

The Discrete Fourier Transform of a given vector [ ]110 ,,, −Mhhh �  of  M complex numbers is defined itself

as a vector of M complex numbers [ ] [ ]( )110110 ,,,,,, −− = MM hhhDFTHHH ��  where:

[ ]( ) 1-M0,m    ehhhhDFTH
M

k

Mikm
kmMm ,,.,,,

1

0

2
110 �� === �

−

=

−
−

π .

Similarly the Discrete Inverse Fourier Transform of the vector [ ]110 ,,, −MHHH �  is defined as the vector

[ ] [ ]( )110110 ,,,,,, −− = MM HHHDIFThhh ��   where:

[ ]( ) 1-M0,m    eH
M

HHHDIFTh
M

k
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kmMm ,,..1,,,
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110 �� === �

−

=
−

π .

Like their continuous Fourier transform counterparts f̂  and g� , the DFT and the DIFT vectors are defined in
almost the same way: the only differences are a different sign in the exponential and a normalising factor
( M/1 ) for the DIFT. The inversion formula also holds for the discrete case. If the DFT is applied to a
given vector,  then the DIFT to the resulting vector, it yields the original vector; that means 1−= DFTDIFT
(hence the name of the Discrete Inverse Fourier Transform).

The major interest of the DFT and the DIFT comes from the existence of the Fast Fourier Transform (FFT)
algorithms. A rapid examination of the above formulas would suggest that the DFT or the DIFT require in the
order of 2M computer operations (a number of  operations – additions, multiplications…– linear in M  is
required to compute each of the M component of the transform vector). In fact, the FFT algorithms allow the
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computation of the DFT or the DIFT in the order of ( )MLogM .  operations. The gain ( )MLogM /  is

absolutely considerable in terms of computing time. For example, for 610=M , it would take approximately 2
weeks of CPU time for a microsecond cycle time computer to do what could be done in 30 seconds of CPU
time with the FFT.40 FFT’s only constraint is that M must be a power of 2, i.e. pM 2= .

M  , the number of points of the vectors of complex numbers, will be referred to as the Fourier resolution:
the need for higher accuracy (i.e. the need to have a good “resolution” to be able to capture enough details)
will indeed mean larger values for M .

FFT computations of the DFT and the DIFT are already implemented under MS Excel in its Analysis
ToolPak add-in.41 To install the Analysis ToolPak add-in in MS Excel, go to Tools/Adds-In. To compute a DFT
or a DIFT of a vector of p2 complex numbers, go to Tools/Data Analysis/Fourier Analysis. Complex numbers
are in the format “x+/-yi” or “x+/-yj” in MS Excel and are treated as strings (for instance “5.32-7.213i”).

There is however one important practical constraint to remember: the maximum available Fourier resolution
for the DFT under MS Excel is 4096212 = . It can create resolution issues for portfolios with a large
number of assets, or in general when x∆ , the step of the distribution, is very small. Not using a high enough
resolution will give strange results, most often a distribution having non-zero probabilities at the end of the
computation interval. This maximum resolution constraint may be overcome, alternatively and by order of
increasing efficiency, by trying to:

� reduce maxV : generally the maximum gain in resolution is limited to a factor 2;

� increase x∆ , the step of the distribution, by slightly modifying the size of the assets in the portfolio.
This is the replication principle: the real portfolio is approximated by a replicated one. The sizes of
the assets in the replicated portfolio are rounded to the closest integer multiple of the desired step.
This replication mechanism works quite well for CDO portfolios;

� program and use your own FFT VB macro;

� switch to the computation algorithm of the continuous distributions by assuming an LGD distribution
with mean 100% and with a very small standard deviation (for instance 0.1%).

•  Computation of the Discrete Probabilities sfn '

This last step in order to achieve the inversion consists in computing ( )tf̂  for appropriate values of t . It will
generate a vector of complex numbers, the Fourier vector. The application of the DIFT to this Fourier vector
will give the discrete probabilities sfn '  .

Let M  be an integer superior or equal to  maxN , the number of points nx  between 0 and maxV . As a matter
of fact, M  will be the Fourier resolution introduced in the previous section. It will be chosen to be the lowest
power of 2 larger than maxN .

Let us define xMmMmTtm ∆== π2  for  1,,1,0 −= Mm � . With equation (B):

[ ]( ) 1.-M,0,m  ,,,,..)(ˆ
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40 Example taken from “Numerical Recipes in C”, Chapter 12 “Fast Fourier Transform”, to which readers may refer for a
much more detailed presentation of the Discrete Fourier Transform.
41 Refer to “Numerical Recipes in C”  to write a Visual Basic FFT macro. Alternatively, existing VB FFT code may be
downloaded from the Internet (for instance at www.fullspectrum.com/deeth/programming/fft.html).
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Thus, applying the inversion formula to the Fourier vector  ( ) ( ) ( )[ ]110
ˆ,,ˆ,ˆ

−Mtftftf � :

[ ] ( ) ( ) ( )[ ]( )110110
ˆ,,ˆ,ˆ,,, −− = MM tftftfDIFTfff �� .

Noticing that the values of ( )mtf̂  for m = 1 + M / 2 to M - 1 are given by ( ) ( )mMm tftf −= ˆˆ ,42 where z
designates the complex conjugate of z :

[ ] ( ) ( ) ( ) ( ) �
�
�

�
�
�

��
	


�
�= −− 112/2/0110

ˆ,,ˆ,ˆ,,ˆ,,, tftftftfDIFTfff MMM ��� ,

which concludes the determination of the sfn ' .

The textbox below summarizes the main points of the inversion algorithm (it also determines the appropriate
Fourier resolution M as a power of 2 in function of the other main parameters).

Inversion Recipe #1
How to Invert the Portfolio Fourier Transform )(ˆ tf  and Get the (Discrete) Distribution ( )xf ?

1. Choose the lowest possible value for maxV , a percentage level above which ( )xf  is assumed to be
equal to zero.

2. Compute the step of the distribution x∆  as the “Greatest Common Divisor” (GCD) of the discrete
potential values that may be taken by the distribution. If ( )xf  refers to a default distribution, x∆  is the

“GCD” of the relative weights of the assets (the ssk ' ). If ( )xf  refers to a loss distribution, x∆ is the

product of the step of the default distribution (the “GCD” of the ssk ' ) by the step of the discrete (or

discretised) LGD distribution. )(ˆ tf is a T-periodic function, with xT ∆= π2 .

3. Compute [ ] 1maxmax +∆= xVIntN , the number of points of the distribution between 0 and maxV .

4. Compute ( ) ( )[ ] .121maxmin +−= LnNLnIntp  ResF min2 p=  is the Fourier resolution required for the
inversion, i.e. the number of points of the Fourier Transform vector or the number of computed default (or
loss) probabilities.

5. Compute ( )mtf̂  where sFmTtm Re/=  for m = 0 to ResF/2.
6. Apply the Discrete Inverse Fourier Transform to the Fourier vector

( ) ( ) ( ) ( )
��
�

��
�

− 112/Re2/Re0
ˆ,,ˆ,ˆ,,ˆ tftftftf sFsF ��   to obtain the vector [ ]1Re21 ,,, −sFfff �  ( z designates

the complex conjugate of z ). In MS Excel, go to Tools/Data Analysis/Fourier Analysis to run the Discrete
Inverse Fourier Transform. The resulting sfm ' are the values of the inverse Fourier transform ( )xf at

the points 1-ResF,0,m ,. �=∆= xmxm  (provided that the sfm ' are negligible for m close to ResF). In

other words, the resulting sfm '  are the probabilities associated with the potential default (or loss) levels

(the sxm ' ).

7. ….Serve the sfm '  with a nice and colourful chart.

                                                     
42 Given the T-periodicity of ( )tf̂  and the fact that ( )xf  takes real values,

( ) ( ) ( ) ( ) ( )tfdxexfdxexftftTf ixtixt ˆ....ˆˆ ===−=− ��
− , which leads  to ( ) ( )mMm tftf −= ˆˆ . This symmetry

divides the computation time by a factor 2.
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AN EXAMPLE OF A DEFAULT DISTRIBUTION COMPUTATION

Consider the following portfolio:

•  50 assets  (50 different debtors) – bullet amortisation after 5 years

•  Individual asset size goes from € 1 m to € 10.8 m with a step of € 0.2m

•  The individual default probability of the smallest asset is 1.0% and goes up to 15.7% for the biggest asset
with a step of 0.3% on the default probability for each asset in between (ranked by increasing principal
outstanding); the resulting weighted average default probability – WADP – is of 10.47%

•  No default correlation exist between the assets (for the sake of simplicity)

As mentionned in the Underlying Models section, the portfolio Fourier transform for a portfolio of uncorrelated
assets is:

( )[ ].11)(ˆ
1

∏
=

− −+=
N

k

its
kPDR

keptf .

The following table is a copy of the first rows of the MS Excel spreadsheet:43

Example of computation of a portfolio default distribution for uncorrelated assets

N 50 WADP
Vmax 66.00% 10.47%
GCD Size (EURm) 0.20
Total Porfolio Size (EURm) 295.00
GCD Size (%) (=DeltaX) 0.068%
Fourier Transform Period (T) 9267.7
Nmax 974 Size Multiplier
pmin 10 100
ResF 1024 GCD Multiplied#
Distribution goes up to 69.36% 20

(Column A) (B) (C) (D) (E) (G) (H) (I) (K) (L)

# Asset Size (EURm) Size (%) Default 
Proba

GCD 
Determinat

ion

m (0 to 
ResF-1) tm Fourier 

Vector xm Default Distribution

1 1.00 0.34% 1.0% 100 0 0.00 1 0.00% 1.20878314315226E-002
2 1.20 0.41% 1.3% 120 1 9.05 0.531045844593 0.07% 0
3 1.40 0.47% 1.6% 140 2 18.10 -0.175512330582 0.14% 0
4 1.60 0.54% 1.9% 160 3 27.15 -0.351304304111 0.20% 0
5 1.80 0.61% 2.2% 180 4 36.20 -0.195193147742 0.27% 0
6 2.00 0.68% 2.5% 200 5 45.25 -6.463086848861 0.34% 1.22099307389113E-004
7 2.20 0.75% 2.8% 220 6 54.30 -1.757028368970 0.41% 1.59211558875167E-004
8 2.40 0.81% 3.1% 240 7 63.35 -6.062814911846 0.47% 1.96550104577593E-004
9 2.60 0.88% 3.4% 260 8 72.40 -3.103651662501 0.54% 2.3411702059014E-004

10 2.80 0.95% 3.7% 280 9 81.45 -1.744314232357 0.61% 2.71914408480051E-004
11 3.00 1.02% 4.0% 300 10 90.50 -8.003355780704 0.68% 3.09944395680058E-004
12 3.20 1.08% 4.3% 320 11 99.56 -1.029167670550 0.75% 3.49817333451871E-004

In this spreadsheet, a Visual Basic macro was used to compute the Fourier

vector ( ) ( ) ( ) ( )
��
�

��
�

− 112/Re2/Re0
ˆ,,ˆ,ˆ,,ˆ tftftftf sFsF ��  in column (I) and to invert it and get the default

distribution in column (L). The resulting default distribution is depicted in the chart below.
                                                     
43 In this spreadsheet, columns (A) to (E) have 50 rows corresponding to N=50 assets. Columns (G) to (L) have 1024
rows corresponding to a Fourier resolution of ResF=1024.
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Default Distribution
Mean: 10.47% / Std Dev: 5.05% /

 P(Default=0)=1.21% / Equivalent Diversity Score = 36.77

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

0% 5% 10% 15% 20% 25% 30%

COMPUTING (ALMOST) CONTINUOUS DISTRIBUTIONS )(xf

This case refers to loss distributions where the LGD distributions take continuous values between 0% and
100%. Although for quite different reasons, the inversion recipe will surprisingly prove – almost – similar to the
discrete case.

•  Introducing the Bandwith Limited Function ( )xf BWL

For most continuous (or almost continuous) LGD distributions such as the ones seen in the Further Uses of
the FTM section, ( )tf LGD

ˆ  is a continuous function converging towards zero for large values of t . A close

look at expression (VI) permits to conclude that ( ) ( )tftf PLR
ˆˆ =  is a continuous function converging towards a

positive value ∞f̂  for large values of t .44

If we define the function ( ) ( ) ∞−= ftftf BWL
ˆˆˆ , ( )tf BWL

ˆ  is a continuous function converging towards zero for

large values of t . Besides, the symmetry property for ( )tf̂ : ( ) ( )tftf ˆˆ =−  will translate into

( ) ( )tftf BWLBWL
ˆˆ =− . Therefore, in practice, ( )tf BWL

ˆ  will be assumed to be negligible for numerical purposes

outside a certain interval [ ]maxmax ,TT− . Its inverse Fourier Transform ( )xf BWL  is therefore a so called
bandwith limited function (hence the index BWL), namely a function whose Fourier transform is equal to
zero outside an interval centered in zero.

As will be obvious later, ( )xf BWL  is a continuous function.  As the application of the inverse Fourier

Transform to ( ) ( ) ∞+= ftftf BWL
ˆˆˆ  yields ( ) ( ) ( )xfxfxf BWL δ.ˆ

∞+= , it means that ( )xf  is an almost

                                                     

44 ( )[ ] ( )dzzzpf
N

k
k φ.1ˆ

1
�∏
+∞

∞− =
∞ −= . Note that ∞f̂ is a positive real number.
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continous density function. More precisely, it is not continous in zero where there is a Dirac spike with energy

∞f̂ : ∞f̂ can be intrepreted as the probability of no loss associated with the scenario where no asset defaults
in the portfolio.

According to the Nyquist Sampling Theorem, bandwith limited functions may be sampled (i.e. recorded)
using a sampling step xδ smaller than a critical value maxTx π=∆ without any loss of information. In

other words, the knowledge of the sampled values ( )nBWL xf  for integern  ,. xnxn δ=  permits to completely

and exactly determine ( )xf BWL  for any value of x .

A key step in the inversion of ( )tf̂  will be to determine the critically sampled values of ( )xf BWL  (i.e.

( )nBWL xf  for integern  ,. xnxn ∆= ) in order to get an expression for ( )xf BWL . ( ) ( ) ( )xfxfxf BWL δ.ˆ
∞+=

will then obviously be known once ∞f̂ will have been computed.

•  Expressions for ( )tf BWL
ˆ  and ( )xf BWL

As a continuous function on [ ]maxmax ,TT− , ( )tf BWL
ˆ  can be expanded into a Fourier series:

max
.. tfor  ,..)(ˆ max Tecectf txin

n
n

t
T

in

n
nBWL ≤== ∆−

+∞

−∞=

−+∞

−∞=
��

π

 (C),

Introducing the functions ( )tga  defined for a real number a  by ( ) max, Tt for etg iat
a ≤= − , and

( ) max,0 Tt for tga >= :

( ) t of valueany  for ,tgctf
nx

n
nBWL .)(ˆ �

+∞

−∞=

=  (D), where integern  ,. xnxn ∆= .

Going further, it can be proved that the inverse Fourier transform of ( )tga  is:

( ) ,1
�
�

�
�
�

�

∆
−

∆
=

x
axsc

x
xga

�

 where ( ) ( ) 1,sin =≠= 0 scand 0,u for 
u

uusc .

The sc(u) Function
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Notice that ( ) nm if 0 andn m if ,1 ≠=∆= xxg mxn

�

.

If we therefore invert (D):

( ) ( ) �
�

�
�
�

�

∆
−

∆
== ��

+∞

−∞=

+∞

−∞=

n

n
nx

n
nBWL

xxscc
x

gcxf
n

..1x. �  (E),

and combining (E) with the previous remark:

( )
x

cxf m
mBWL ∆

=  (F), for m  integer.

Since ( ) ( ) ( )xfxfxf BWL δ.ˆ
∞+=  is equal to zero outside [ ]max;0 V , we will have: ( ) 0. =∆= xxfc nBWLn  for

0<n  and [ ] 1maxmax +∆=≥ xVIntNn , and therefore (E) becomes:

( ) �
�

�
�
�

�

∆
−

∆
= �

−

= x
xxscc

x
xf n

N

n
nBWL ..1 1

0

max

 (G),

while (C) becomes:

max
..

1

0

tfor  ,.)(ˆ max

Tectf txin
N

n
nBWL ≤= ∆−

−

=
�  (H).

The explicit expression for ( )xf BWL  in (G) proves that ( )xf BWL  is indeed a continuous function. This

expression also leads to an explicit determination of ( ) ( ) ( )xfxfxf BWL δ.ˆ
∞+=  provided we manage to

compute ∞f̂  and 110 max
,,, −Nccc � . Like in the discrete case, the latter computation will be possible thanks to

the Discrete Fourier Transform theoretical framework.

•  Using the Discrete Fourier Transform Framework

Let M  be an even integer superior or equal to [ ] 1maxmax +∆= xVIntN . Let us define

xM
m

M
Tmtm ∆

== π2.
2

. max , for 1,,0 −= Mm � . Let us distinguish two cases according to the values of m .

� For 2/,,0 Mm �= , maxTtm ≤ and therefore using (H):

[ ]( )mM
Mnmi

M

n
n

xM
mxinN

n
n

txin
N

n
nmBWL cccDFTececectf m

110
/.2.

1

0

2..1

0

..
1

0

,,,...)(ˆ maxmax

−
−

−

=

∆
∆−−

=

∆−
−

=

==== ��� �

π
π

 (I).

� For 1,,2/1 −+= MMm � , unfortunately (H) can not be applied since maxTtm > . However it

can be applied to mMm ttT −=−max2 :

Mnmi
M

n
n

tTxin
N

n
nmMBWL ecectf m /.2.

1

0

)2.(.
1

0

..)(ˆ max
max

π+
−

=

−∆−
−

=
− �� ==

and therefore, since the scn ' are real numbers (according to (F)):

[ ]( )mM
Mnmi

M

n
nmMBWL cccDFTectf 110

/.2.
1

0
,,,.)(ˆ

−
−

−

=
− == � �

π  (J).
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Combining (I) and (J):

( ) ( ) ( ) ( ) [ ]( )110112/2/0 ,,,ˆ,,ˆ,ˆ,,ˆ
−− =

��
�

��
�

MBWLMBWLMBWLBWL cccDFTtftftftf ���  (K)

Besides, it can be proved that:
[ ] [ ]( )0,,0,0,11,,1,1,1 �� DFT=  (vectors with M points),

so that:
[ ] [ ]( )0,,0,0,ˆˆ,,ˆ,ˆ,ˆ

�� ∞∞∞∞∞ = fDFTffff  (L).

Adding (K) to (L) and remembering that ( ) ( ) ∞+= ftftf BWL
ˆˆˆ :

( ) ( ) ( ) ( ) [ ]( )110112/2/0 ,,,ˆˆ,,ˆ,ˆ,,ˆ
−∞− +=

��
�

��
�

MMM ccfcDFTtftftftf ��� .

Applying the discrete inversion formula to the Fourier vector ( ) ( ) ( ) ( )
��
�

��
�

− 112/2/0
ˆ,,ˆ,ˆ,,ˆ tftftftf MM �� :

[ ] ( ) ( ) ( ) ( ) �
�
�

�
�
�

��
	


�
�=+ −−∞ 112/2/0110

ˆ,,ˆ,ˆ,,ˆ,,,ˆ tftftftfDIFTccfc MMM ���

In the end, we are able to determine all the scn '  and ( ) ( )max
ˆˆlimˆ Tftff

t
==

+∞→∞ : the inversion is finished.

The main points of the inversion algorithm are summarized in the textbox below.

Inversion Recipe #2
How to Invert the Portfolio Fourier Transform )(ˆ tf and Get the (Continuous) Distribution ( )xf ?

1. Choose the lowest possible value for maxV , a percentage level above which ( )xf  is assumed to be
equal to zero.

2. Choose x∆ , the step of the distribution. This step must be small enough so to ensure that the Fourier

transform )(ˆ tf  will be practically equal to a constant for xTt ∆=> πmax .

3. Compute ( ) ( )max
ˆˆlimˆ Tftff

t
≈=

+∞→∞ , the probability that no asset in the portfolio defaults. ( )xf is the

sum of a continuous function ( )xf BWL  corresponding to the loss distribution when there are defaulted

assets and a (Dirac) spike with energy ∞f̂  in x=0 corresponding to the scenario when there are no

defaulted assets. ( )xf  and ( )xf BWL  coincide everywhere except in x=0.

4. Compute [ ] 1maxmax += QVIntN  and ( ) ( )[ ] .121maxmin +−= LnNLnIntp  ResF min2 p=  is the lowest
Fourier resolution required for the inversion, i.e. the number of points of the Fourier Transform vector or
the number of computed (loss) probabilities.

5. Compute ( )mtf̂  where sFmTtm Re/max=  for m = 0 to ResF/2.
6. Apply the Discrete Inverse Fourier Transform to the Fourier vector

( ) ( ) ( ) ( )
��
�

��
�

− 112/Re2/Re0
ˆ,,ˆ,ˆ,,ˆ tftftftf sFsF ��  to obtain the vector [ ]1Re10 ,,,ˆ

−∞+ sFccfc �  ( z

designates the complex conjugate of z ). In MS Excel, go to Tools/Data Analysis/Fourier Analysis to run
the Discrete Inverse Fourier Transform.

7. xcm ∆/  is the value of ( )xf BWL   at the point 1-ResF,0,m ,. �=∆= xmxm ( provided to check that the

scm '  are negligible for m close to ResF). For other values of x , ( ) �
�

�
�
�

�

∆
−

∆
= �

−

= x
xxscc

x
xf n

N

n
nBWL ..1 1

0

max

.

8. In practice, the sum of ∞f̂ and the scm ' equals 100%, and 1Re10 ,,,ˆ
−∞+ sFccfc � may be used as the

discrete probabilities associated with the discretised loss levels 1-ResF,0,m ,. �=∆= xmxm .

9. ….Serve ∞f̂ and  the scm '  with a nice and colourful chart.
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APPENDIX 2:
COMPUTATION OF PORTFOLIO FOURIER TRANSFORMS WITH GAUSSIAN QUADRATURES45

As seen for instance in the Underlying Models section, the portfolio Fourier transform requires the
computation of improper integrals such as:

( ) ( )dxxxg ..φ�
+∞

∞−

,  where ( ) ( )2exp
2
1 2xx −=
π

φ .

This integral does not usually have any analytic expression and therefore must be computed numerically. The
first approach would be to use a “classic“ formula like:

( ) ( )� �
∞+

∞−
=

∆≈
N

j
jxhdxxh

0

.. , where N ,1, 0,j  jxx j �=∆+= ,0 , for ( ) ( ) ( )xxgxh φ.= .

With this approach, N  must typically be larger than 200 to achieve a sufficient accuracy. An equivalent level
of accuracy may be reached with the Gaussian quadrature approach with N  roughly divided by a factor of
10, therefore significantly enhancing the computation speed.

The Gaussian quadrature consists in approximating the integral:

( ) ( )�
+∞

∞−
dxxWxg .. ,

where ( )xW  is a known function – the weight function – by the following formula:

( ) ( ) ( ) j

N

j
j wxgdxxWxg ...

0
� �

∞+

∞−
=

≈ ,

where the N,0,j sx j �=,'  are appropriately chosen abscissas and the sw j '  the corresponding

appropriate weights. Algorithms leading to the values of the abscissas sx j '  and the weights sw j '  have

been determined for certain key weight functions ( )xW , including the Hermite function ( ) 2xexW −≡ .  Let us

call them the sxGH
j '  and the swGH

j '  (the GH exponent stands for Gauss-Hermite). Now, making the

substitution xx ′= .2  in ( )xφ , it can be proved that:

( ) ( ) ( )   ww  and  xx    with,wxgdxxxg GH
j

FTM
j

GH
j

FTM
j

FTM
j

N

j

FTM
j .,.2... 2/1

0

−∞+

∞−
=

==≈� � πφ .

An interesting theoretical result is that the sw j '  and the sx j '  can be determined by studying the set of

orthogonal polynomials associated to )(xW . For the Hermite function ( ) 2xexW −≡ , these polynomials are
generated by the recurrence:

( ) 01 =− xH , ( ) 4/10
1

π
=xH , ( ) ( ) ( )xH

j
jxH

j
xxH jjj 11 11

2
−+ +

−
+

= .

The N abscissas GH
jx are the N  roots of ( )xH N . A classical Newton algorithm46 may be used to

determine them.

The N  Gauss Hermite weights are given by: ( )[ ]2
1

2
GH
jj

GH
j

xH
w

−′
= , with ( ) ( )xHjxH jj 12 −=′ .

                                                     
45 This appendix draws heavily from chapter 4.5 of  “Numerical Recipes in C: the Art of Scientific Computing” (see
References). Chapter 4.5 also includes a computer code that permits to determine the sxGH

j '  and the swGH
j ' .

46 The Newton algorithm starts at a point 
0

x , the initial guess for the root , then usually converges with the iteration:

)('
)(

1
n

n
nn xf

xf
xx −=+ .
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APPENDIX 3: CALIBRATION OF THE FACTOR LOADINGS

This appendix details the interpretation of the factor loadings in terms of:

•  standard deviation of the default distribution,
•  diversity score of the portfolio,
•  pairwise default correlations between two assets,
•  asset (return) correlations between two assets,
•  joint downgrade (and upgrade) probability for two rated assets,

in the context of the Single Factor Model (however the appendix does not detail the proofs).

For two assets A and B, let us define:
( )[ ] ( ) ( )dzzzpZp AAA ..222

�=Ε= φφ ,

( )[ ] ( ) ( )dzzzpZp BBB ..222
�=Ε= φφ ,

( ) ( )[ ] ( ) ( ) ( )dzzzpzpZpZp BABAAB .... �=Ε= φφ ,

where 
�
�

�

�

�
�

�

�

−

−
Φ=

21
)(

A

AA
A

w
zwzp α

,
�
�

�

�

�
�

�

�

−

−
Φ=

21
)(

B

BB
B

w
zwzp α

 and ( ) ( )2exp
2
1 2zz −=
π

φ .

� Factor Loadings and Standard Deviation of the Default Rate Distribution

•  Standard deviation of the default distribution for a large portfolio of assets with similar characteristics
(each asset has the same size, the same maturity, the same default probability Ap ):

22
AA p−=∞ φσ .

•  Standard deviation of the default distribution for a portfolio of N assets with similar characteristics (each
asset has the same size, the same maturity, the same default probability Ap ):

( ) ( ) ( ) NqpNpp AAAAAAN
22222 . ∞∞ −+=−+−= σσφφσ

In these expressions, the terms depending on the value of the factor loadings are Aφ  and ∞σ .

� Factor Loadings and Diversity Score

The Diversity Score of a portfolio of assets (non necessarily homogeneous) with a weighted average default
probability of p is:

2/σpqD = ,

where pq −=1 , and where σ  is the standard deviation of the portfolio default rate derived from the

computed default standard deviation ( )xf PDR : ( )( ) dxpxxf PDR .. 22 −= �σ .

In the expression for D , the term depending on the value of the factor loadings is .σ
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� Factor Loadings and Pairwise Default Correlation

Pairwise Default Correlation between two assets: 
BBAA

BAAB
AB qpqp

pp−
=

φρ

In this expression, the term depending on the value of the factor loadings is ABφ .

� Factor Loadings and Asset Return Correlation

•  If the factor Z represents the return of a market index (typically an equity index for a given industry or a
given geographical region), then the correlation between the return of A and the return of the index over
the considered time horizon is given by:

( ) AAIndexA wZZCorr == ,,ρ

•  If there is no avalaible index, one may consider the equity return of one relevant asset as the reference
and estimate the asset correlation using this asset as a reference. Alternatively, if one looks at three
assets A, B and C simultaneously, we shall have:

BCACABAw ρρρ .=

� Factor Loadings and Joint Downgrade (and Upgrade) Probability

The factor model is not only adapted to the modelling of default events, but also to the modelling of
downgrade or upgrade events for rated assets. Similarly to the case of the default event, a downgrade
threshold DWN

Aα  can be defined for asset A:

[ ] DWN
A

DWN
AA pZ =<αPr  or equivalently ( )DWN

A
DWN
A p1−Φ=α ,

where DWN
Ap  is the downgrade probability, typically derived from a rating transition matrix.

The downgrade probability conditionally to Z=z would be found to be:

( )
( ) ��

�

�

�

��
�

�

�

−

−
Φ=

21

.
DWN
A

A
DWN
ADWN

A
zwzp

α

α
,

while for the joint downgrade probability for assets A and B would be given by:

( ) ( ) ( )dzzzpzpp DWN
B

DWN
A

DWN
BA ..., �= φ  (A).

Similarly, the joint upgrade probability for assets A and B would have the expression:

( ) ( ) ( )dzzzpzpp UP
B

UP
A

UP
BA ..., �= φ  (B),

where ( )
( ) ��

�

�

�

��
�

�

�

−

−
Φ=

21

.
UP
A

UP
AAUP

A
zwzp
α

α
 is the conditional upgrade probability for asset A , ( )UP

A
UP
A p1−Φ−=α  its
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upgrade threshold (similar definitions obviously hold for asset B).

The knowledge of both the joint downgrade and upgrade probabilities ( DWN
BAp ,  and UP

BAp ,  are typically derived

from a joint rating transition matrix) permits to solve for Aw  and Bw  in (A) and (B).

� Hints for the factor loadings
(indicative levels subject to changes according to the considered assets)

•  w =10% to 25% for consumer loans, leases, mortgages

•  w= 20% to 35% for middle market loans

•  w = 15% to 80% for large corporate bonds or loans

•  The shorter the time horizon, the lower the factor loading w.47

•  The more concentrated the industry (sector) of a debtor, the higher its w (for the industry risk factor).48

•  The higher the rating (or the lower the credit risk), the higher w.49 See the following indicative table for
large corporates :

                                                     
47 It seems that pairwise default correlation increases in a linear way with the time horizon up to approx. 3 years.
48  In a concentrated industry, an industry player shapes and influences the industry as a whole.
49 The rating of a company generally reflects the level of diversification of its activities (although diversification is
obviously only one parameter for the rating).  As a result, the higher the rating, the closer the risk profile of a company to
the systemic risk.

Factor Loading w
Aaa 80%
Aa 65%
A 55%

Baa 45%
Ba 35%
B 25%

Caa-C 15%
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APPEN
D

IX 4: M
O

O
D

Y’S EXPEC
TED

 LO
SS TAB

LE

10

0.005500%

0.055000%

0.110000%

0.220000%

0.385000%

0.660000%

0.990000%

1.430000%

1.980000%

3.355000%

5.170000%

7.425000%

9.713000%

12.210000%

14.960000%

19.195000%

35.750000%

9

0.004510%

0.045100%

0.090200%

0.179850%

0.315150%

0.540100%

0.836000%

1.248500%

1.782000%

3.063500%

4.779500%

6.957500%

9.190500%

11.682000%

14.421000%

18.579000%

33.962500%

8

0.003630%

0.036850%

0.074250%

0.149600%

0.264000%

0.455950%

0.715000%

1.083500%

1.567500%

2.733500%

4.339500%

6.413000%

8.640500%

11.126500%

13.832500%

17.919000%

32.175000%

7

0.002860%

0.029700%

0.061050%

0.124850%

0.223300%

0.390500%

0.610500%

0.918500%

1.325500%

2.381500%

3.883000%

5.885000%

8.041000%

10.521500%

13.205500%

17.050000%

30.387500%

6

0.002200%

0.023100%

0.048950%

0.100650%

0.181500%

0.320650%

0.500500%

0.753500%

1.083500%

2.035000%

3.437500%

5.373500%

7.419500%

9.839500%

12.457500%

16.060000%

28.600000%

Years
5

0.001600%

0.017050%

0.037400%

0.078100%

0.143550%

0.256850%

0.401500%

0.605000%

0.869000%

1.677500%

2.904000%

4.625500%

6.523000%

8.866000%

11.390500%

14.877500%

26.812500%

4

0.000990%

0.011550%

0.025850%

0.055500%

0.103950%

0.189750%

0.297000%

0.456500%

0.660000%

1.309000%

2.310000%

3.740000%

5.384500%

7.617500%

9.971500%

13.222000%

24.134000%

3

0.000390%

0.005500%

0.014300%
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