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A Structural Model with Unobserved Default Boundary
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We consider a firm-value model similar to the one proposed by Black and Cox (1976)
where additionally the firm value is allowed to jump and instead of assuming a constant
and known default boundary, the default boundary is a random and unobserved process.
This process has a Brownian component, reflecting the influence of uncertain effects
on the precise timing of the default, and a jump component, which relates to abrupt
changes in the policy of the company, exogenous events or changes in the debt structure.
Interestingly, this setup admits a default intensity, so the reduced form methodology
can be applied. We examine consequences for the relationship between equity and debt
and consider the pricing of equity default swaps.

Keywords: structural model, equity default swaps, default boundary, jump-diffusion

1 Introduction

The seminal works Black and Scholes (1973) and Merton (1974) introduced the first structural
models for describing the default risk2 of companies. This paper belongs to the class of first-passage
time models, pioneered by Black and Cox (1976), where default of a company is announced at the
first time when the firm-value falls below a certain boundary. It has been shown by Leland and Toft
(1996) that under certain assumptions this behaviour is optimal for the company owner. However,
in these models it is a fundamental assumption that investors have complete information on the
firm’s value as well as on the default boundary. As in practice investors do not have complete
information, there are several approaches which deal with this issue. All concentrate on first-
passage time models. Duffie and Lando (2001) consider the case, where investors estimate the
firm’s value from noisy accounting reports. Coculescu, Geman, and Jeanblanc (2006) consider a
model where investors observe a correlated index and Frey and Schmidt (2006) filter the firm-value
from discretely observed news.

In contrast to these filtering approaches, there is a different branch of research where the investors
have incomplete information of either firm’s value or default barrier (or both), but no additional
information. For example, Giesecke (2006) considers the case where the firm-value or default barrier
(or both) may not be observed, while in Giesecke and Goldberg (2004) the firm value is observed,
both in the case of a time-independent default barrier.

This paper extends to the case where the default barrier is allowed to be a stochastic process.
Besides this, extending Zhou (2001), not only jumps in the firm-value but also jumps in the barrier
are considered. Considering a constant debt level has serious drawbacks. If the firm value is
observable, the default boundary necessarily must be smaller than the minimum of the firm value
on the considered time interval. If the firm value is far above its minimum, this will lead to credit
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spreads which are unrealistically small. Considering a default barrier which is a stochastic process
clearly remedies this. On the other side, structural models with a continuous firm value have
difficulties in explaining short-term credit spreads. While some models almost overcome this, see
for example Fouque, Sircar, and Sølna (2006), the model presented here is clearly able to solve this
task as it has a default intensity and hence a positive credit spread for arbitrary small maturities.

The structure of the article is as follows. First, we formulate the problem in a quite general
framework and consider several special cases thereafter. One is the case where firm value and
debt level follow Brownian motions with linear drift. The analysis of the case where firm’s value
and debt level are geometric Brownian motions immediately follows from the Brownian case by
taking logarithms. Thereafter, we consider a debt level which is allowed to jump. The jumps occur
according to a Poisson process and the jump heights are random. We are also able to compute the
default intensity in this framework. Further on, we consider the pricing of equity default swaps
and compute the default intensity in several special cases of practical interest.

2 The general framework

Consider a structural model, where the firm value is denoted by the process (Vt)t≥0. Following
Black and Cox (1976), it is assumed that company owners declare bankruptcy, if the firm value
falls below a certain boundary. This boundary is given by a stochastic process, denoted by (Dt)t≥0

with V0 > D0. As default of the company is announced at the first time where V falls below D,
the default time equals τ = inf{t ≥ 0 : Vt ≤ Dt}.

We always denote the inner filtration of a stochastic process, say V , by FV , i.e. FVt := σ(0 ≤
s ≤ t : Vs). If (V,D) is Markovian, the probability of V −D not hitting zero in the interval (t, T ]
given FV,Dt can always be written as a function of t, T and Vt −Dt and we set H(Vt −Dt, t, T ) :=
P(inf(t,T ](V − D) > 0|FV,Dt ). Markovianity of (V,D) follows for example from Markovianity of
V and D and independence. Another example is a two-dimensional Brownian motion with not
necessarily independent components. First, we give results for general H and later on show how to
compute H in several special cases.

The firm value is observable, but the default boundary is not. Investors also observe the default
state of the company. The information available to investors is therefore represented by the filtration
Gt := σ(s ∈ [0, t] : Vs,1{τ>s}).

Theorem 2.1. Assume (V,D) is Markovian and denote the conditional distribution of Dt given
Gt by µDt|Gt =: µDt . Then,

P
(
τ > T

∣∣ Gt
)

= 1{τ>t}

Vt∫

−∞
H(Vt − x, t, T )µDt (dx). (1)

Proof. As 1{τ>t} is measurable with respect to Gt, it can be taken out. It remains to consider
1{infs∈(t,T ](Vs−Ds)>0}. Set At := {inf [0,t](V −D) > 0}. Then

P
(

inf
(0,T ]

(V −D) > 0
∣∣FVt , At

)
= E

(
P
(

inf
s∈(t,T ]

(Vs −Ds) > 0
∣∣FVt ∨ FDt , At

)∣∣FVt , At
)
.

Because of the Markovian property the inner probability equals

P
(

inf
s∈(t,T ]

(Vs −Ds) > 0
∣∣FVt ∨ FDt , At

)
= P

(
inf

s∈(t,T ]
(Vs −Ds) > 0

∣∣Vt, Dt

)

= H(Vt −Dt, t, T ).
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We therefore have

E
(
H(Vt −Dt, t, T )

∣∣FVt , At
)

=

Vt∫

−∞
H(Vt − x, t, T )µDt (dx),

as the integrand is zero on {Dt > Vt}. �

For applications to credit risk it is an important question, if this model admits a default intensity.

Proposition 2.2. Under the above assumptions and on {τ > t} the default intensity, if it exists,
is given by

λt = − lim
T→t

Vt∫

−∞

∂

∂T
H(Vt − x, t, T )µDt (dx). (2)

Proof. By results of Aven (1985) the default intensity equals, if it exists,

λt = − ∂

∂T

∣∣∣
T=t

lnP(τ > T
∣∣ Gt).

Considering the case where {τ > t} one finds that P(τ > t|Gt) = 1, and therefore

1{τ>t}λt = −1{τ>t}
∂

∂T

∣∣∣
T=t
P
(
τ > T

∣∣ Gt
)

= −1{τ>t} lim
T→t

lim
h→0

Vt∫

−∞

H(Vt − x, t, T + h)−H(Vt − x, t, T )
h

µDt (dx).

Recall, that H(·, t, T ) is the probability of not hitting in the interval (t, T ] and therefore for h > 0
we have that H(·, t, t+ h) ≤ H(·, t, t). Using monotone convergence we conclude that

1{τ>t}λt = −1{τ>t} lim
T→t

Vt∫

−∞

∂

∂T
H(Vt − x, t, T )µDt (dx). �

In the last equation it is typically not allowed to interchange limit and integration, as will be seen
in the later examples. In the case whereD is simply a constant random variable and V is a geometric
Brownian motion an intensity does not exist, as shown in Giesecke (2006). Responsible for this
is that default can only happen when V is at its running minimum. Therefore the compensator
of 1{τ>t} will not be absolutely continuous and hence its derivative, the default intensity, will not
exist.

In the following case we consider the case where D and V are both jump-diffusions and as will
be noted in Remark 3.5, then a default intensity always exists.

Remark 2.3. Models where D is a constant have difficulties if the firm’s value decreases and there-
after rises substantially, such that V is far above its running minimum. In this case credit spreads
for small maturities are too small, as may be seen in Figure 2 in Giesecke (2006). Letting D be a
stochastic process, and in particular one admitting upward jumps, clearly helps to overcome this.
In particular, this is also reflected in the existence of a default intensity of the latter models.
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3 The Brownian case

In this section we derive the conditional distribution of D given V and 1{τ>t}. Then we draw an
interesting connection to Doob’s h-Transform3 and the survival measure.

We assume that V and D are two independent Brownian motions. Denote the probability that
a Brownian motion stays below a given function v : [0, t] 7→ R in the interval [s, t] by N(v, s, t). We
will show later on how to derive this probability approximately. Denote by δt the dirac-function in
t, i.e. δt(s) = 1{s=t} and recall that At = {inf [0,t](V −D) > 0}. Because of the independence of V
and D we have

P
(
Dt ≤ x

∣∣ FVt , At
)

=
P
(
Dt ≤ x,At|FVt

)

P
(
At|FVt

) =

{
1 for x > Vt
N(V−(Vt−x)δt,0,t)

N(V,0,t) otherwise.

The above probability is similar to a change to the survival measure which has been discussed
in Collin-Dufresne, Goldstein, and Hugonnier (2004) and Schönbucher (2004). More precisely we
show that this is the case conditional on V = v, and under this survival measure D is a Brownian
motion with drift. Starting point is

P
(
Dt ≤ x

∣∣ FVt , At
)

=
P
(
Dt ≤ x,At|FVt

)

P
(
At|FVt

) = E
(

1At

P(At|FVt )
1{Dt≤x}

∣∣ FVt
)

In the following we aim at computing the factorization, ie

E
(
1{inf[0,t](v−D)>0}
P(At|V = v)

1{Dt≤x}
∣∣ V = v

)
= E∗

(
1{Dt≤x}

∣∣ V = v
)
, (3)

where the last expectation E∗ is computed under the probability measure P∗, to be defined as
follows: set Avt := {inf [0,t](v −D) > 0}. Then we define P∗ by

dP∗ =
1Avt
P(Avt )

dP.

Note that this is not an equivalent change of measure. Under P∗, the event that a default occurs
prior to t has the probability zero (conditionally on V = v). The likelihood process of the measure
transform is given by

Ls = E
( 1Avt
P(Avt )

∣∣ FDs
)

= 1As
1

P(Avt )
E
(

inf
[s,t]

(v −D) > 0
∣∣ FDs

)
.

As the Brownian motion has independent increments, the likelihood process can be written as

dLs = 1As
1

N(v, 0, t)
N
(
v −Ds, s, t

)
=: 1Ash(s,Ds).

Here v − Ds is short for the function given by u 7→ vu − Ds. The function h(s, x) denotes the
h-transform. By Equation (39.4) in Rogers and Willams (1994) the Brownian motion D under P∗
has the drift

∂

∂x
lnh(t, x) =

1
N(v −Ds, s, t)

∂

∂x
N
(
v −Ds, s, t

)
.

3See Rogers and Willams (1994).



3 The Brownian case 5

3.1 Approximation in the Brownian case

In the structural model considered by Black and Cox (1976) the firm value follows a geometric
Brownian motion. Taking logarithms, one arrives at a Brownian motion with drift where default
refers to hitting an affine barrier. To generalize this model to a random barrier we therefore need
to consider a Brownian motion with drift hitting a second Brownian motion with possibly different
drift.

Denote by BV a Brownian motion and assume V = v0 + σVB
V with a volatility σV > 0

and v0 > 0. The default boundary is assumed to be a Brownian motion with drift mt, so that
Dt = σDBt +mt for σD > 0 and a Brownian motion (Bt)t≥0 which is assumed to be independent
of V and w.l.o.g. starting at zero. Recall, that a default happens at the first time V hits D, i.e.
τ = inf{s ≥ 0 : Vs = Ds}. As previously, the information of the investor is Gt = σ

(
s ∈ [0, t] :

Vs,1{τ>s}
)
. We are interested in the default probability

P
(
τ > T

∣∣ Gt
)

= 1{τ>t}P
(
τ > T

∣∣ FVt , inf
[0,t]

(V −D) > 0
)
.

Because a Brownian motion has independent increments and its boundary crossing probabilities
are well known for affine barriers, one easily reaches the following result.

Proposition 3.1. Denote the distribution of Dt conditioned on Gt by µDt . Then, with σ :=√
σ2
V + σ2

D,

P
(
τ > T

∣∣ Gt
)

= 1{τ>t}

Vt∫

−∞
H(Vt − x, T − t, σ)µDt (dx),

where H is given by

H(y, t, σ) := Φ
(
y −mt
σ
√
t

)
− e 2my

σ2 Φ
(
− y +mt

σ
√
t

)
. (4)

Proof. According to Theorem 2.1 we have to derive the conditional probability of V −D not hitting
zero in the interval [t, T ]. We therefore consider

{
inf
(t,T ]

(V −D) > 0
}

=
{

inf
s∈(t,T ]

(
Vs − Vt − (Ds −Dt)

)
> −(Vt −Ds)

}

=
{

inf
s∈(t,T ]

(
σV (BV

s −BV
t )−m(s− t)− σD(Bs −Bt)

)
> −(Vt −Ds)

}

Note, that σVBV − σDB is again a Gaussian process, which is equivalent (in distribution) to σB.
As Brownian motions have independent and stationary increments, the conditional probability of
this event can be derived using Corollary A.2. We obtain

P
(

inf
(t,T ]

(V −D) > 0
∣∣Vt, Dt

)
= Φ

(−mt+ (Vt −Dt)√
σ(T − t)

)
− e

2m(Vt−Dt)
σ2 Φ

(−mt− (Vt −Dt)
σ
√

(T − t)

)

and the conclusion follows. �

Hence, to compute the default probability it is sufficient to compute the conditional distribution
of Vt −Dt, i.e. µD.
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3.1.1 The conditional distribution

Next, we derive an approximation of the conditional distribution of D. Note that the structure
of the observation is quite complicated. Essentially we observe a realization of V , which will be
denoted by v : [0, t] 7→ R and that D stayed below v in the whole interval [0, t].

Instead of considering arbitrary continuous v we will approximate the observation by a piecewise
constant function, v̄. To simplify notation, we assume that the grid on which v̄ is constant is
equally spaced and therefore divides the interval [0, t] in n intervals of length ∆. Then v̄ can be
written as follows:

v̄(t) =
n∑

i=1

ai−11{t∈((i−1)∆,i∆]}. (5)

For example, we could set ai := v(i∆). We first derive the probability of D staying below the
approximating boundary, v̄, and thereafter give a result which shows that for suitably approximated
boundaries the limit will yield the desired probability. Note that we assumed that V starts in v0,
such that we have a0 = v0. To determine the conditional distribution we look at the cumulative
distribution function, and for x < Vt

P
(
Dt ≤ x

∣∣ FVt , τ > t
)

=
P
(
Dt ≤ x, inf [0,t](V −D) > 0

∣∣ FVt
)

P
(

inf [0,t](V −D) > 0
∣∣ FVt

) . (6)

First, we consider the numerator and then easily conclude for the denominator. We need some
notation. Denote by N(v̄, t) the probability that (σDBs +ms)s≥0 stays below the barrier v̄ in the
whole interval [0, t]. Define c := 2/

√
∆ · exp(−m2∆/2σ2

D), set Sn :=
∑n

i=1 yi and

g(a, b) := φ
( a

σD
√

∆

)
− φ

( 2b− a
σD
√

∆

)
.

Furthermore, we write y for the vector (y1, . . . , yn−1) and set

I(y, v̄) := 1{y1<a1,...,Sn−1<an−1}c
n−1e

mSn−1

σ2
D · g(yn−1, Sn−2 − an−2

) · · · g(y1,−a0

)
.

Theorem 3.2. For a piecewise constant default barrier v̄ with representation (5) we have that

N(v̄, t) =

∞∫

−a0

· · ·
∞∫

Sn−2−an−2

I(y, v̄)

[
Φ
(an−1 − Sn−1 −m∆

σD
√

∆

)
− e2m(an−1−Sn−1)/σ2

DΦ
(Sn−1 − an−1 −m∆

σD
√

∆

)]
dy, (7)

where dy is short for dy1 . . . dyn−1. Furthermore, µDt admits the density fDt|v̄(x), given by

fDt|v̄(x) =
1

N(v̄, t)

∞∫

−a0

· · ·
∞∫

Sn−2−an−2

I(y, v̄) (8)

1
σD
√

∆

[
φ
(x− Sn−1 −m∆

σD
√

∆

)
− e2m(an−1−Sn−1)/σ2

Dφ
(x+ Sn−1 − 2an−1 −m∆

σD
√

∆

)]
dy.

By the way, for σD = 1 and m = 0, N is the probability that a Brownian motion stays below
the piecewise constant barrier written as v̄ =

∑
ai−11(ti−1,ti] on the whole interval [0, t].
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The above results immediately leads to the following approximation of the survival probability:

P
(
τ > T

∣∣ At, V = v̄ on [0, t]
)

=

Vt∫

−∞
H(Vt − x, T − t, σD)fDt|v̄(x) dx. (9)

Proof. As V and B are independent, the numerator in (6) is a measurable function of (V )[0,t], which
we will denote by Fx(V ). For a v̄ with representation (5) we have that

Fx(v̄) = P
(
Dt ≤ x, inf

[0,t]
(v̄ −D) > 0

)
.

If x > an−1 the set {Dt ≤ x} is included in Ãt := {inf [0,t](v̄ − D) > 0}. With a slight abuse of
notation we write Ãk for Ãk∆ (and similarly Fk and Dk). The above probability can be computed
recursively. If D stays below the boundary v̄ on [0, k∆] it does stay below v̄ on [0, (k − 1)∆] and
on [(k − 1)∆, k∆] (and vice versa). Therefore

Ãk = Ãk−1 ∩
{

inf
((k−1)∆,k∆]

−D > −ak−1

}
.

We start with

Fx(v̄) = E
(
1Ãn−1

P
[
Dt ≤ x, inf

((n−1)∆,n∆]
−D > −an−1

∣∣∣ FDn−1

])
.

Fist, consider the inner probability. Its factorization (where we replace Dn−1 by d) is equal to

P
[
D∆ ≤ x− d, inf

s∈(0,∆]
−Ds > −(an−1 − d)

]
=: P (d, x).

Notice, that if d > an−1 this probability equals zero.

We will apply the formulas on boundary crossing probabilities from the appendix to calculate
P (d, x). Write m̃ := m/σ2

D. With Corollary A.2 we obtain for d < an−1

P (d, x) = P
[
−D∆ > −(x− d), inf

(0,∆]
−D > −(an−1 − d)

]

= Φ
(−m∆ + (x ∧ an−1)− d

σD
√

∆

)
− e2m̃(an−1−d)Φ

(
(x ∧ an−1) + d− 2an−1 −m∆

σD
√

∆

)
. (10)

Coming back to F , we found

F (v̄) = E
(
1Ãn−1

P (Dn−1, x)
)

= E
[
1Ãn−2

E
(
1{inf((n−2)∆,(n−1)∆]D>−an−2}P (Dn−1, x)

∣∣ FDn−2

)]
.

Set En−1(d, x) := 1{d<an−1}P (d, x) and for k ∈ {0, . . . , n− 2}

Ek(d, x) := E
(
1{inf(0,∆]D>−(ak−d)}Ek+1(d+D∆, x)

)
.

Then

F (v̄) = E
[
1Ãn−2

En−2(Dn−2, x)
]

= E
[
1Ãn−3

En−3(Dn−3, x)
]

= E
[
1Ã1

E1(D1, x)
]

= E0(0, x).

The common density of a Brownian motion and its minimum will lead to a formula for Ek. As
we primarily consider the probability of D being below a step function over the time interval [0, t]
which is divided into n subintervals, it is clear that we have to compute the probability of an
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n-dimensional Gaussian vector with dependent coordinates. In Corollary A.3 we state this density
and therewith obtain the following formula

Ek(d, x) =

0∫

d−ak

∞∫

z

Ek+1(d+ y, x)fM,B(z, y) dy dz

=

0∫

d−ak

∞∫

z

Ek+1(d+ y, x)
2(y − 2z)
(σD
√

∆)3
e2zm̃ φ

(
m∆ + 2z − y

σD
√

∆

)
dy dz

=

∞∫

d−ak

Ek+1(d+ y, x)

y∧0∫

d−ak

2(y − 2z)
(σD
√

∆)3
e2zm̃ φ

(
m∆ + 2z − y

σD
√

∆

)
dz dy.

Observe that Ek(d, x) = 0 for d− ak > 0. For the inner integral,

y∧0∫

d−ak

2(y − 2z)
(σD
√

∆)3
e2zm̃ φ

(
m∆ + 2z − y

σD
√

∆

)
dz

=
1

(σD
√

∆)3
e2zm̃ φ

(
m∆ + 2z − y

σD
√

∆

) ∣∣∣
y∧0

d−ak

=
2

σD
√

∆
e
−m2∆

2σ2
D

+ym̃
φ
(2z − y
σ
√

∆

)∣∣∣
y∧0

d−ak
. (11)

Because of the symmetry of φ we obtain

φ (2y ∧ 0− y) = φ (y) ,

and thus have

(11) =
2

σD
√

∆
e
−m2∆

2σ2
D

+ym̃
[
φ

(
y

σD
√

∆

)
− φ

(
2(d− ak)− y

σD
√

∆

)]
= c eym̃ g(y, v − ak),

while for Ek this yields

Ek(d, x) = 1{d<ak}

∞∫

d−ak

Ek+1(d+ y, x) c eym̃ g(y, v − ak) dy.

Recursively applied, we obtain

E0(0, x) =

∞∫

−a0

E1(y1, x)cey1m̃ g(y1,−a0) dy1

=

∞∫

−a0

∞∫

y1−a1

1{y1<a1}c
2e(y2+y2)m̃E2(y1 + y2, x)g(y2, y1 − a1)g(y1,−a0) dy2 dy1

=

∞∫

−a0

· · ·
∞∫

Sn−2−an−2

1{y1<a1,...,Sn−2<an−2}

· cn−1em̃Sn−1En−1(Sn−1, x) g(yn−1, Sn−2 − an−2) · · · g(y1,−a0) dy.
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As we have En−1(d, x) = P (d, x), inserting (10) and using the definition of I leads to

E0(0, x) =

∞∫

−a0

· · ·
∞∫

Sn−2−an−2

I(y1, v̄)1{Sn−1<an−1}

[
Φ
(−m∆− Sn−1 + x ∧ an−1

σD
√

∆

)
− e2m̃(an−1−Sn−1)Φ

(Sn−1 − 2an−1 −m∆ + x ∧ an−1

σD
√

∆

)]
dy.

To put everything together, we have to look back at Equation (6). For the denominator we can
proceed as previously. Note that the only difference occurs in the formulation of P , which is for
the denominator

P̃ (d) = 1{d≤an−1}

[
Φ
(−m∆ + an−1 − d

σD
√

∆

)
− e2m̃(an−1−d)Φ

(−m∆− an−1 + d

σD
√

∆

)]
.

Therefore we arrive at the desired expression for N(v̄, t).

For the approximation of the conditional density of D we differentiate (6) w.r.t. x and obtain
zero for x > an−1 and on {x ≤ an−1} the given expression for f . �

It remains to be shown, that the approximating probability N(v̄, t) is close to the target prob-
ability, N(v, t). Surprisingly, a quite crude approximation already shows that for ‖ v̄ − v ‖:=
sups∈[0,t](v̄(s)− v(s))→ 0, the considered probabilities converge.

Proposition 3.3. Consider a piecewise linear function v̄ with representation (5) and assume that
‖ v − v̄ ‖≤ ε for a ε > 0. Then

|N(v, t)−N(v̄, t)| ≤ 1− 2Φ
( −2ε
σD
√
t

)
.

Note that the r.h.s. converges to zero with ε→ 0.

Proof. According to the representation of v̄, (5), the interval [0, t] is divided into n intervals of the
length ∆. As v̄ is a piecewise constant function and ‖ v − v̄ ‖≤ ε, we have that

sup
((i−1)∆,i∆]

v − inf
((i−1)∆,i∆]

v ≤ 2ε, i = 1, . . . , n.

For s ∈ ((i− 1)∆, i∆] set g∗(s) := sup((i−1)∆,i∆] v + ε and g∗(s) := inf((i−1)∆,i∆] v − ε, respectively.
Then any piecewise linear function ṽ with ‖ ṽ− v ‖≤ 2ε lies in between g∗ and g∗, where g∗ and g∗

are again piecewise linear and sups∈((i−1)∆,i∆),i=1,2,...,n(g∗(s)− g∗(s)) ≤ 4ε. Furthermore,

|N(v, t)−N(v̄, t)| ≤ |N(g∗, t)−N(g∗, t)|. (12)

The probability on the right hand side refers to the probability of (Ds)s∈[0,t] = (ms+ σDBs)s∈[0,t]

staying in a sequence of pipes with width 4ε which are shifted at each grid point. This probability
is smaller than the probability of (σDBs)s∈[0,t] staying in {(x, y) : x ∈ [0, t], |y| ≤ 2ε}. Hence,

(12) ≤ P
(

sup
[0,t]

(σDB) ≤ 2ε, inf
[0,t]

(σDB) ≥ −2ε
)
≤ P

(
inf
[0,t]

(σDB) ≥ −2ε
)

= 1− 2Φ
( −2ε
σD
√
t

)
,

using Corollary A.2 for the last equality. This shows the result. �

Finally, the question is if for any ε > 0 and a realization v of the Brownian motion a piecewise
linear approximation v̄ with ‖ v−v̄ ‖may be found. This is indeed the case. By Lévy ’s construction
of Brownian motion it is known that v can be uniformly approximated by piecewise linear functions.
Thus, there exists a piecewise linear ṽ, s.t. ‖ v− ṽ ‖< ε/2. Moreover, it is clear that for a piecewise
linear function on [0, t] with a finite number of kinks there exists a piecewise constant function v̄,
s.t. ‖ ṽ − v̄ ‖< ε/2 and so for this v̄, ‖ v − v̄ ‖< ε.
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3.2 The default intensity

In this section we examine the question if a non-zero default intensity exists in our framework.
As already pointed out, it is sufficient to differentiate the survival probability. Not surprisingly,
we obtain a nonzero intensity in this setup. After obtaining the intensity, pricing and hedging of
securities can be done using the standard framework for intensity based models, as may be found
e.g. in Bielecki and Rutkowski (2002). Recall the definitions prior to Theorem 3.2.

Proposition 3.4. In the case of a piecewise constant observation boundary v̄ the default intensity
is given by

λt = λt(v̄) =

∞∫

−a0

· · ·
∞∫

Sn−2−an−2

I(y, v̄)
2∆3/2N(v̄, t)

[(
Sn−1 − Vt − 2m∆

)
φ

(
Vt − Sn−1 +m∆

σ
√

∆

)

+
(
Vt + Sn−1 − 2an−1

)
e

2m
an−1−Sn−1

σ
√

∆ φ

(
Vt + Sn−1 − 2an−1 −m∆

σ
√

∆

)]
dy

Proof. As we want to apply Proposition 2.2 we need to derive H. We obtain

∂

∂T
H(x, T, σ) = −x+mT

2σT 3/2
φ
(x−mT

σ
√
T

)
+ e

2mx
σ2
−x+mT

2σT 3/2
φ
(−x−mT

σ
√
T

)

= − x

σT 3/2
φ
(x−mT

σ
√
T

)
.

For the intensity, we obtain

λt = − lim
T→t

Vt∫

−∞

∂

∂T
H(Vt − x, T − t, σ)fDt|v̄(x) dx

= lim
T→t

1
σ(T − t)3/2

∞∫

0

xφ
(x−m(T − t)

σ
√
T − t

)
fDt|v̄(Vt − x) dx. (13)

At this point Lemma A.5 enables us to directly conclude for the several limits. Inserting the form
for the conditional density (8) and consequently applying Lemma A.5 yields the desired form of
the intensity. �

The default intensity allows to apply the highly developed machinery available for reduced form
models to our setting. However, the above formulation of the default intensity is quite complicated,
such that computations directly in the structural model will be preferable, compare for example
the computation of the survival probability in (9).

Remark 3.5. From the above Proposition it immediately follows, that as long as σD > 0, a default
intensity exists. Indeed, setting v∗ := sup[0,t] V and v∗ := inf [0,t] V one immediately obtains upper
and lower bounds in the case v∗ > 0 for λt(V ) by λt(v∗) and λt(v∗). If v∗ ≤ 0, there exists an ε > 0,
s.t. vε := inf [0,ε) V > 0 and one obtains a lower boundary using v∗∗(s) := 1{0≤s<ε}vε + 1{s≥ε}v∗.
It is clear, that if an default intensity exists in the Brownian case, it also exists after introducing
jumps, compare Section 5.2.2.

4 Including Jumps

Up to now, the unobserved default boundary was not allowed to jump. For the applications to credit
risk this is a serious restriction. In the following we relax the conditions and allow the underlying
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process to have jumps. The jump times are obtained as the jump times of a Poisson process and
the jump sizes are assumed to be independent and identically distributed. It is straightforward to
allow for non identically distributed jump sizes, but at a certain notational burden, so we do not
include this here. The same applies for a time inhomogeneous intensity or for considering a Cox
process instead of the Poisson process. Consider first the case, where D is a compound Poisson
process M .

Assumption 4.1. Consider a Poisson process Ñ with intensity l and jump times (τi)i≥1. The
jump sizes (Ji)i≥1 are independent, identically distributed (i.i.d.) random variables with cumulative
distribution function FJ and have finite expectations. The considered compound Poisson process is

Dt = Mt :=
∑

τi≤t
Ji, t ≥ 0.

4.1 First hitting time distribution

We derive the probability of a Brownian motion B hitting M in the time interval [0, T ].

Denote the distribution given through FJ(dj1) · · ·FJ(djk) du1 · · · duk by µkJ,u. This is the distri-
bution of the jumps and the jump times, conditioned on having k jumps and therefore operates on
Rk × [0, 1]k. We write short dµkJ,u(mk) for µkJ,u(dj1, . . . , djk, du1, . . . , duk).

Proposition 4.2. Under assumption 4.1, the following holds for any x < B0:

P
(

inf
[0,t]
{B −M} ≥ x) =

∞∑

k=0

e−lt
(lt)k

k!

∫

[0,1]k×Rk
N
(−

k∑

i=1

ji1{tui≤·} − x
)
dµkJ,u(mk).

Proof. We condition on the number of jumps in the interval,

P
(

inf
[0,t]
{B −M} ≥ x) = P

(
inf
[0,t]
{B −M − x} ≥ 0

)

=
∞∑

k=0

P
(
Ñt = k, inf

[0,t]
{B −M − x} ≥ 0

)
. (14)

The conditional distribution of the τi’s can be replaced by an unconditional one4, because for t < T

L(τÑt+1, . . . , τÑT

∣∣ÑT − Ñt = k
)

= L(η1:k, . . . , ηk:k

)
,

where the ηi are i.i.d. U [0, T ]. Hence,

(14) =
∞∑

k=0

e−lt
(lt)k

k!
P
(

inf
s∈[0,t]

(Bs −
k∑

i=1

Ji1{ηi:k≤s} − x) ≥ 0
)
.

As the jump sizes are interchangeable, the probability does not depend on the order of the jump
times and ηi:k can be replaced by ηi. Now we condition on the jump times and the jump sizes.
Denote the obtained path of M by

mk(s) =
k∑

i=1

ji1{tui≤s}, 0 ≤ s ≤ t

4See Rolski, Schmidli, Schmidt, and Teugels (1999), p.502. The ηi:k denote the order statistics of ηi, that is the ηi
are ordered, such that η1:k ≤ η2:k ≤ · · · ≤ ηk:k.
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where we think of ui being the realizations of i.i.d. U [0, 1] random variables. The conditioned
probability is the probability that B stays above mk + x in the whole interval. In Theorem 2.1 we
derived the probability of staying below such a barrier, denoted by N(mk). Using the equivalence
of B and −B, we get

P
(

inf
s∈[0,t]

(Bs −
k∑

i=1

Ji1{ηi≤s} − x) ≥ 0
)

= P
(

inf
s∈[0,t]

(−
k∑

i=1

Ji1{ηi≤s} − x−Bs) ≥ 0
)

=
∫

[0,1]k×Rk
N
(−

k∑

i=1

ji1{tui≤·} − x
)
FJ(dj1) · · ·FJ(djk) du1 · · · duk. �

It is easy to generalize the result to the case where the boundary process is a Brownian motion
plus jump component and arbitrary volatilities are allowed. Assume that B̃ is a Brownian motion
independent from B. Then, observe that in inf [0,T ](σVB − σDB̃ −M) ≥ x the difference B − B̃ is

again a Brownian motion, and in distribution equal to σB, with σ =
√
σ2
V + σ2

D. So the previous
results apply.

Corollary 4.3. Assume, that Assumption 4.1 holds. Consider a Brownian motion B̃, independent
from all other components and x < B0. Then

P
(

inf
s∈[0,t]

{σVBs −ms− (σDB̃s +Ms)} ≥ x
)

=
∞∑

k=0

e−lt
(lt)k

k!

∫

[0,1]k×Rk
N

(
− 1
σ

( k∑

i=1

ji1{tui≤·} + x
)
,
m

σ
, σ

)
dµkJ,u(mk),

where N(·,m, σ) is the probability that (σBs +ms)s∈[0,t] stays below a piecewise linear barrier.

For later references we denote the above probability by M∗(x,m, t).

Note that N is given in Theorem 3.2, where at this place we write N(v̄,m, σD) to state the
explicit dependance on m and σD. For practical purposes, it is important to note that for small l
the series converges very fast, so possibly just few summands must be considered.

4.2 The conditional probability

Consider the piecewise constant default boundary from (5). Now, V is a Brownian motion and
Dt = Bt +Mt, i.e. the sum of a Brownian motion and a marked point process. Similar to the case
without jump we compute

P
(
Dt +Mt ≤ x, inf

[0,t]
(V −D −M) > 0

∣∣ FVt
)

(15)

considering piecewise constant paths for V . This can be achieved by conditioning on M .

Theorem 4.4. Under Assumption 4.1 the probability of default is

P
(
τ > T

∣∣ Gt
)

=

V∫

−∞
M∗(Vt − x,m, T − t) fDt|v̄(x) dx,

where the density fDt|v̄(x) is given in (16).
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Proof. Consider a realization of M with k jumps, denoted by mk or
(∑k

i=1 ji1{ui≤s}
)
s∈[0,t]

, respec-

tively. Then the two piecewise constant functions v̄ and mk add up to a piecewise linear function
ṽ := v̄ −mk. Now the previous results can be applied.

After conditioning on the number of jumps we need to consider

P
(
Dt ≤ x−mk(t), inf

[0,t]
(ṽ −D) > 0

∣∣ V = v̄,M = mk
)

= E0(0, x, b̃),

where E0(0, x, v̄) was calculated in the proof of Theorem 3.2. We just state the dependence on v̄
explicitly, which now is replaced by b̃.

Also recall, that N(b̃) denotes the probability for D staying below b̃ in the interval [0, t]. There-
fore, we obtain

P
(
Dt ≤ x

∣∣ FVt , At
)

=
∞∑

k=0

e−lt
(lt)k

k!

∫

[0,1]k×Rk

E0(0, x, v̄ −mk)
N(v̄ −mk)

dµkJ,u(mk).

Coming to the conditional density we have to derive w.r.t. x. Here, the conditional density comes
into play and we find that in our case the conditional density of D is

fB̃t+Mt|v̄(x) =
∞∑

k=0

e−lt
(lt)k

k!

∫

[0,1]k×Rk
fB̃t|v̄−mk(x) dµkJ,u(mk). (16)

The conditional density fB̃t|·(x) may be found in (8). Applying the results of Section 4.1 immedi-
ately yields the conclusion. �

4.3 Joint distribution of a jump-diffusion and its minimum

For considering barrier options on jump-diffusions it is necessary to determine the joint distribution
of the underlying and its minimum. The following result will also be used to derive the equity value
of the considered company in the next chapter.

Theorem 4.5. Let d̄ be a piecewise constant function of the form (5). Under Assumption 4.1 the
joint distribution of V and its minimum is given by

FV,min(V0, T, x, d̄) := P(VT ≤ x, inf
[0,T ]

(V − d̄) > 0)

=
∞∑

k=0

e−lt
(lt)k

k!

∫

[0,1]k×Rk
E0(0, x,mk − d̄)dµkJ,u(mk). (17)

Proof. Recall that a realization with k jumps was denoted by mk or mk(s) =
∑k

i=1 ji1{ui≤s},
respectively. Proceeding as in Theorem 4.4 immediately gives the result. �

5 Applications

This section will present several applications of the considered frameworks. As the model integrates
equity as well as credit risky securities, pricing of securities which are related to both of this quantity
is of interest. We show how to proceed for pricing equity default swaps.
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5.1 Application to equity default swaps

Besides integrating nicely into the reduced form models, our approach offers a direct connection
between equity and default as in the structural models. In this section we exploit this connection
to show how the obtained results can be used for pricing so-called equity default swaps (EDS).

Equity default swaps are similar to credit default swaps: a fixed premium is exchanged with a
payment at ”default”, just that in this case the payment is done, when equity falls to a very low
level, typically 30% from the equity value at initiation of the contract. Also the payment is fixed,
so that there is no recovery risk. For ease of exposition we assume a constant interest rate r.

Denote by τ∗ the first time where the equity, denoted by (St)t≥0, hits the pre-specified boundary
S∗ which is typically 30% of S0. The fee leg of an EDS pays the premium κ regularly at time
T1, . . . , TN provided Ti < τ∗. If τ∗ ≤ T then the insurance payment, normalized to 1, is paid at τ∗.
The κ is chosen such that the initial value of the EDS is zero, ie

κ =
E
(
e−rτ∗1{τ∗≤TN}

)

∑N
i=1 E

(
e−rTi1{τ∗>Ti}

) .

Assume for a moment that we have Fτ∗(x) := Q(τ∗ ≤ x) at hand. Then

E
(
e−rτ

∗
1{τ∗≤TN}

)
=

TN∫

0

e−rxFτ∗(dx),

thus for pricing the EDS it is sufficient to compute F .

In Black and Scholes (1973) equity was modelled as a call on the firm value with strike equal to
the debt level. In first-passage time models, equity equals a down-and-out call on the firm’s value.
In the considered framework the debt level obviously can be different from the default boundary;
however, we concentrate on the case where these two boundaries equal. We assume that the debt
level is a known constant K, while noting that the previously developed theory also allows to price
the EDS when the debt level is a jump-diffusion process. However, not to obstruct ideas with
technical difficulties we concentrate on the easier case. Recall that the firm value V is given by a
jump-diffusion. Then, Theorem 4.5 allows to compute the price of this down-and-out call.

Corollary 5.1. The price of a down-and-out call on V at time t with barrier K and maturity T
is given by

Cdo(Vt, T ) = 1{Vt>K}

∞∫

K

(v −K) dFV,min(Vt, T − t, v,K),

where the joint distribution of V and its minimum is given in (17).

Writing short Cdo(Vt−) for Cdo(Vt−, T − t), we obtain by Itô ’s formula the following dynamics
for the firm’s equity:

dEt =
∂

∂t
Cdo(Vt−) dt+

∂

∂x
Cdo(Vt−)dV c

t +
1
2
∂2

∂x2
Cdo(Vt−)d[V, V ]ct + ∆Cdo(Vt)

which again is a jump-diffusion. The first hitting time of equity with the debt level K can be
computed with Proposition 4.2 which in turn leads to the price of the EDS.

5.2 Special cases

This section considers several special cases which illustrate the applicability of the obtained results.
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5.2.1 Brownian case with simplified observation

It the firm’s value did not change very much in the past, the past observation may be well approx-
imated by a constant (also, upper and lower bounds can be obtained this way). In this paragraph
we therefore consider the case where v̄s = K ∈ R for all s ∈ [0, t]. The previously obtained results
immediately allow to derive the default intensity. Observe that the default intensity depends on
the barrier K, as well as on volatility σD and drift m of D. Setting

N := Φ
(
K −mt
σD
√
t

)
− exp

(
2Km
σ2
D

)
Φ
(
−K +mt

σD
√
t

)

we have the following result.

Proposition 5.2. Consider the constant K > 0. Conditional on inf [0,t](K −D) > 0, the default
intensity equals

λt =
K

2NσDt3/2
φ

(
mt−K
σD
√
t

)(
1 + e

2Km

σ2
D

)

Proof. We proceed analogously to the proof of Proposition 3.4, in particular we use Equation (13).
First, we need to compute the conditional density of D using (6). Observe that for x < K

P
(
Dt ≤ x, inf

[0,t]
(V −D) > 0|FVt

)
= P

(
σDBt +mt ≤ x, inf

s∈[0,t]
(K − σDBs −ms) > 0

)

= P
(
σDB

∗
t −mt ≥ −x, inf

s∈[0,t]
(σDB∗s −ms) > −K

)
, (18)

where B∗ := −B is also a standard Brownian motion. The last probability is given in Corollary
A.2; as −x > −K we obtain

(18) = Φ
(
x−mt
σD
√
t

)
− exp

(
2Km
σ2
D

)
Φ
(
x−mt− 2K

σD
√
t

)

and

P
(

inf
[0,t]

(V −D) > 0|FVt
)

= P
(

inf
s∈[0,t]

(σDB∗s −ms) > −K
)

= Φ
(
K −mt
σD
√
t

)
− exp

(
2Km
σ2
D

)
Φ
(
−K +mt

σD
√
t

)
= N.

According to (6) the conditional distribution is given by the fraction of these two expressions and
we immediately obtain the conditional density

fDt|K = 1{x≤K}
1
N

(
1

σD
√
t
φ

(
x−mt
σD
√
t

)
− exp

(
2Km
σ2
D

)
1

σD
√
t
φ

(
x−mt− 2K

σD
√
t

))
. (19)

Inserting this into (13) we obtain, letting τ := T − t,

λt =
1

NσD
√
t

lim
τ→0

1
σDτ3/2

∞∫

0

xφ
(x−mτ
σD
√
τ

)(
φ

(
Vt − x−mt

σD
√
t

)
− e

2Km

σ2
D φ

(
Vt − x−mt− 2K

σD
√
t

))
dx.

To compute the limit we make use of Lemma A.5. Hence,

λt = − σD

Nσ2
D

√
t

[
(mt− Vt)σ2

D −mσ2
Dt

2σ2
Dt

φ

(
mt− Vt
σD
√
t

)

− e
2Km

σ2
D

(mt+ 2K − Vt)σ2
D −mσ2

Dt

2σ2
Dt

φ

(
mt+ 2K − Vt

σD
√
t

)]

=
1

2NσDt3/2
φ

(
mt−K
σD
√
t

)[
K + e

2Km

σ2
D K

]
,

where we used Vt = K for the last step. �
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Figure 1: The default intensity λ1 in the Brownian case for (v̄s)s∈[0,1] ≡ K for different volatilities
σD and zero drift m.

In Figure 1 we show the default intensity in dependence on K. It is seen from the graph that with
decreasing K the default intensity increases. In particular, for very small K the default boundary
D is quite likely to be close to K, so the default intensity rises sharply. Also, for increasing volatility
σD the default intensity increases. Further simulations (not shown) also show that with decreasing
drift m the default intensity increases, as was to be expected.

5.2.2 Debt with jumps

In practice, debt levels will typically jump. The default intensity when the debt is a jump-diffusion
is a sum of the default intensity of the diffusive part and the default intensity of the pure-jump
part. We therefore analyse the default intensity of the pure-jump case in this section.

First, we assume that the debt level at time t is known. Since jumps occur with intensity l and
we have that P(Vτ1 ≤ Dτ1 |F V,Dτ1− ) = 1−FJ(Vτ1/Dτ1−). If we assume that V is continuous, we obtain

λt = l ·
(

1− FJ
( Vt
Dt−

))
.

If V also admits jumps, one can proceed analogously.

In the case where the debt level is not known at time t, one has to use the results from Section
4 to obtain the conditional distribution of D. This is more interesting in the case where D has also
a diffusion part. It may be reasonable to assume that the jumps in the history are known; and
this jumps are incorporated in the default boundary. Hence, from the perspective of our model, D
will not have jumps in the past. Then the approximation of the conditional distribution becomes
much easier, for example the results in the previous section could be used. The default intensity is
the sum of the intensity for the diffusion part and of the intensity for the jump part. Assuming no
jumps in V and, as before, that the past default boundary is simply K we obtain

λt =
K

2NσDt3/2
φ

(
mt−K
σD
√
t

)(
1 + e

2Km

σ2
D

)
+

K∫

−∞
l
(
1− FJ(K/y)

)
fDt|K(y)dy,

where fDt|K is given in (19).
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6 Conclusion

This article propose a generalization of several structural models with incomplete information.
Default is triggered by the firm value crossing a random barrier, which itself is allowed to be a
stochastic process. Both, firm value and default boundary may have jumps. While the firm value is
observed, the default boundary is not. It is shown that under this assumption, generally a default
intensity exists and how to compute it. This makes use of boundary crossing probabilities for jump-
diffusions. A main criticism of incomplete information models with constant default boundary is
remedied, namely that for firm values far above its running minimum credit spreads are to small.

A Appendix

We need some results on boundary crossing probabilities of Brownian motions. Results A.1 - A.3
are well-known and we state them here in for convenience of the reader. Results A.4 - A.5 compute
certain integrals or limits used in the text. We start with the joint distribution of a Brownian
motion with drift and its minimum in the following lemma.

Lemma A.1. For c < 0 and a standard Brownian motion B it holds for c < d

P
(

inf
[0,t]

(Bs +ms) ≤ c,Bt +mt > d
)

= e2cm Φ
(
mt+ 2c− d√

t

)
(20)

while, for c ≥ d, this probability equals

Φ
(
d−mt√

t

)
− Φ

(
c−mt√

t

)
+ e2cmΦ

(
c+mt√

t

)
.

Proof. By the Girsanov theorem we can change to a measure P ∗, where B∗t := Bt+mt is a Brownian
motion. Define

dP∗ := exp
(
−mBt − m2t

2

)
dP = exp

(
−mB∗t +

m2t

2

)
dP.

Then

(20) =
∫
1{inf[0,t](Bs+ms)≤c,Bt+mt>d}e

mB∗t−m
2t
2 dP∗

= E∗
[
emB

∗
t−m

2t
2 P∗

(
inf
[0,t]

B∗ ≤ c,B∗ > d
∣∣∣ B∗t

)]
.

First, consider the inner probability. We have that

P∗
(

inf
[0,t]

B∗ ≤ c,B∗ > d
∣∣∣ B∗t

)
= 1{B∗t>d}P

∗
(

inf
[0,t]

B∗ ≤ c
∣∣∣ B∗t

)
.

The conditional probability on the right side is easily computed (see Schmidt (2003, p. 142)) and
equals on {B∗t > c}

P∗
(

inf
[0,t]

B∗ ≤ c
∣∣∣ B∗t

)
= exp

(2c
t

(B∗t − c)
)
.

We therefore have

(20) = E∗
(
1{B∗t>d} exp

(
mB∗t −

m2t

2
+

2c
t

(B∗t − c)
))

= exp
(
− m2t

2
− 2c2

t

)
E∗
(
1{B∗t>d} exp

(
(m+

2c
t

)B∗t
))

.
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For the expectation it is easy to see that

E
(
1{Bt>d}e

αBt
)

=

∞∫

d

1√
2πt

eαx−
x2

2t dx = e
α2t
2 Φ

(
αt− d√

t

)

and alltogether we get that

(20) = exp
(
− m2t

2
− 2c2

t
+

(
m+ 2c/t

)2
t

2

)
Φ
(
mt+ 2c− d√

t

)
= e2cm Φ

(
mt+ 2c− d√

t

)
.

Proceeding similarly, one also obtains the second equation. �

On the other side, if the case where the minimum is greater than a certain level is of interest,
we may use the following:

P
(
Bt +mt > d

)
= P

(
inf
[0,t]

(Bs +ms) ≤ c,Bt +mt > d
)

+ P
(

inf
[0,t]

(Bs +ms) > c,Bt +mt > d
)
,

such that we immediately get for c < d and c < 0

P
(

inf
[0,t]

(Bs +ms) > c,Bt +mt > d
)

= Φ
(
mt− d√

t

)
− e2cm Φ

(
mt+ 2c− d√

t

)
.

For the case c ≥ d, we have that5

P
(

inf
[0,t]

(Bs +ms) > c,Bt +mt > d
)

= P
(

inf
[0,t]

(Bs +ms) > c
)

= Φ
(
−c−mt√

t

)
− e2cm Φ

(
c+mt√

t

)
. (21)

Obviously the last formula equals the previous formula with c = d. We thus have the following:

Corollary A.2. Denote d∨ c := max{d, c}. For constants c < 0, σ > 0 and a standard Brownian
motion B it holds that

P
(

inf
[0,t]

(σBs +ms) > c, σBt +mt > d
)

= Φ
(
mt− d ∨ c

σ
√
t

)
− e 2cm

σ2 Φ
(
mt+ 2c− d ∨ c

σ
√
t

)

and

P
(

inf
[0,t]

(σBs +ms) > c
)

= Φ
(
mt− c
σ
√
t

)
− e2 cm

σ2 Φ
(
c+mt

σ
√
t

)
.

These results enable us to compute the common density of a Brownian motion and its minimum.

Corollary A.3. For c < 0, a Brownian motion with drift mt and its minimum have the common
density

fM,B(c, d) = 1{c<d}
2(d− 2c)
t3/2

e2cm φ

(
mt+ 2c− d√

t

)
.

5See, e.g., Pechtl (1996) for a proof of P� inf [0,t](Bs +ms) ≤ c� = Φ
�
c−mt√

t

�
+ e2cm Φ

�
c+mt√

t

�
.
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Proof. The density is obtained by partially deriving the distribution function. As we want to apply
(20), we have to take care the second part is {· · · > d}, which leads us to the negative sign in the
following:

fM,B(c, d) = − ∂2

∂c∂d
e2cmΦ

(
mt+ 2c− d√

t

)

=
2m√
t
e2cmφ

(
mt+ 2c− d√

t

)
− 1√

2πt
2(mt+ 2c− d)

t
e2cm− (mt+2c−d)2

2t

=
2(d− 2c)
t3/2

e2cm φ

(
mt+ 2c− d√

t

)
. �

Finally, we state two auxiliary results.

Lemma A.4.
∞∫

0

xφ

(
x+ a√

b

)
φ

(
x+ d√

c

)
dx

=
bc

b+ c
φ

(
a− d√
b+ c

)
φ

(
ac+ db√
bc(b+ c)

)
−
√
bc
ac+ db

(b+ c)
3
2

φ

(
a− d√
b+ c

)
Φ
(
− ac+ db√

bc(b+ c)

)
.

Proof. We have

0∫

−∞
x e−

(x−a)2

2b dx = b

0∫

−∞

x− a
b

e−
(x−a)2

2b dx+ a

0∫

−∞
e−

(x−a)2

2b dx

= −b exp(−a
2

2b
) + a

√
2πb

1√
2πb

0∫

−∞
e−

(x−a)2

2b dx = −b exp(−a
2

2b
) + a

√
2πb Φ

(
− a√

b

)
. (22)

Therefore,

0∫

−∞
x exp

(− (x− a)2

2b
− (x− d)2

2c
)
dx

=

0∫

−∞
x exp

(
−
(
x− ac+db

b+c

)2
2bc/(b+ c)

− (a− d)2

2(b+ c)

)
dx

(22)
= exp

(
− (a− d)2

2(b+ c)

)[
− bc

b+ c
exp

(
− (ac+ db)2

2bc(b+ c)

)
+
√

2πbc
ac+ db

(b+ c)
3
2

Φ
(
− ac+ db√

bc(b+ c)

)]
.

Substituting −x for x we end up with the desired result. �

Lemma A.5. Consider τ := T − t and σ > 0. For the limit τ → 0 we obtain

1
τ3/2

∞∫

0

xφ

(
x+ a√

b

)
φ

(
x+mτ

σ
√
τ

)
dx→ −σσ

2a+mb

2b
φ

(
a√
b

)
.

Proof. By Lemma A.4 the integral is a sum of two terms. For the first term the leading factors are

1
τ3/2

b σ2τ

b+ σ2τ
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such that the first term converges to zero. The second term equals

−
√
b σ2τ

τ3/2

σ2aτ +mτb

(b+ σ2τ)3/2
φ

(
a−mτ√
b+ σ2τ

)
Φ
(
−σ

2aτ +mτb

(b+ σ2τ)3/2

)
.

Note that Φ(·)→ 1
2 and so we conclude by observing that the second term converges to

− σσ
2a+mb

2b
φ

(
a√
b

)
. �
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