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he rapidly growing credit deriva-

tives market has created a new set

of financial instruments that can

be used to manage the most impor-
tant dimension of financial risk — credit risk.
Besides the standard credit derivatives products
such as credit default swaps and total return
swaps based upon a single underlying credit
risk, many new products are now associated
with a portfolio of credit risks.

A typical example is the product whose
payment is contingent upon the time and iden-~
tity of the first- or second-to-default in a given
credit risk portfolio. Variadons include instru-
ments with payment contingent upon the
cumulative loss before a given time in the
tuture. The equity tranche of a collateralized
bond obligation (CBO) or a collateralized loan
obligation (CLO) is yet another variation,
where the holder of the equity tranche incurs
the first loss. Deductible and stop-loss insurance
product features could also be incorporated
into the basket credit derivatives structure.

As more financial firms try to manage
their credit risk at the portfolio level, and the
CBO/CLO market continues to expand, the
demand for basket credit derivatives products
will most likely continue to grow. Central to
the valuation of credit derivatives written on
a credit portfolio is the issue of default corre-
lation. The problem of default correlation
arises even in the valuation of a simple credit
default swap with one underlying reference
asset it we do not assume independence of

default between the reference asset and the
detault swap seller.

Surprising though it may seem, the
default correlation has not been well defined
or understood in finance. The literature tends
to define default correlation on the basis of dis-
crete events divided according to survival or
default at a critical period such as one year.

For example, if we denote

Qs = Pr[EA], qg = Pr[EB], dap = Pr[E,E]

where E, and E are the default events of
two securities A and B over one year, the
default correlation p between two default
events E, and E, based on the standard def-
inition of correlation of two random vari-
ables, i1s defined as:

p= 9aB —9A98B (1)
\/CIA(l —qa)qs(l—qp)

This discrete event approach has been taken by
Lucas [1995]. Hereafter we call this definition of
default correlation the discrete default correlation.

The choice of a specific period like
one year is more or less arbitrary. It may cor-
respond with many empirical studies of the
default rate over a one-year period, but the
dependence of default correlation on a specific
time interval has disadvantages.

First, default is a time-dependent event,
and so 1s default correlation. Take the lifetime
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of a person as an example. The probability of dying
within one year for a person aged fifty years today is
about 0.6%, but the probability of dying for the same per-
son within fifty years is almost a sure event. Similarly,
default correlation is a time-dependent quantity. Consider
the survival times of a couple, both aged fifty years today.
The correlation between the two discrete events that
each dies within one vear is very small. But the correla-
tion between the two discrete events that each dies within
a hundred years is 1.0.

Second, concentration on a single period of one
year wastes important information. Empirical studies
show that the default tendency of corporate bonds is
linked to their age since issue. Also, there are strong links
between the economic cycle and defaults. Arbitrarily
focusing on a one-year period neglects this important
information.

Third, in the majority of credit derivatives valua-
tions, what we need is not the default correlation of two
entities over the next year. We may need to have a joint
distribution of survival times for the next ten years. Finally,
the calculation of default rates as simple proportions is pos-
sible only when no samples are censored during the one-
year period.!

This article describes a few techniques used in
survival analysis. These techniques have been widely
applied to other areas, such as life contingencies in actu-
arial science and industry life testing in reliability studies,
which are similar to the credit problems we encounter
here. We first introduce a random variable called “time-
until-default” to denote the survival time of each default-
able entity or financial instrument. Then, we define the
default correlation of two entities as the correlation
between their survival times.

In credit derivatives valuation, we need first to
construct a credit curve for each credit risk. A credit
curve gives all marginal conditional default probabilities
over a number of years. This curve is usually derived
from the risky bond spread curve or asset swap spreads
observed currently from the market. Spread curves and
asset swap spreads incotporate information on factors
such as default probabilities, recovery rate, and liquidity.
Assuming an exogenous recovery rate and a default treat-
ment, we can extract a credit curve from the spread curve
or asset swap spread curve.

For two credit risks, we would obtain two credit
curves from market observable information. Then, we
need to specify a joint distribution for the survival times
such that the marginal distributions are the credit curves.
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Obviously, this problem has no unique solution.

Copula functions used in multivariate statistics
provide a convenient way to specify the joint distribution
of survival times with given marginal distributions. We
describe the concept of copula functions, their basic
properties, and some commonly used copula functions,
and provide some numerical examples of credit derivatives
valuation to demonstrate their use and the impact of
default correlation.

I. CHARACTERIZATION OF DEFAULT
BY TIME-UNTIL-DEFAULT

Detault studies look at a group of individual com-
panies for each of which there is defined a point event, often
called default (or survival), occurring after some period of
time. We introduce a random variable for a security called
the time-until-default, or simply survival time, to denote
this length of time. This random variable is the bastc build-
ing block for the valuation of cash flows subject to default.

To precisely determine time-until-default, we
need: an unambiguously defined time origin, a time scale
for measuring the passage of time, and a clear definition
of default.

We choose the current time as the time origin to
allow use of current market information to build credit
curves. The time scale is defined in terms of years for con-
tinuous models, or number of periods for discrete mod-
els. The meaning of default is defined by rating agencies
such as Moody’s.

Survival Function

Let us consider an existing security A. This secu-
rity’s time-until-default, T, is a continuous random vari-
able that measures the length of time from today to the
time when default occurs. For simplicity, we just use T,
which should be understood as the time-until-default
for a specific security A. Let F(t) denote the distribution
function of T:

F(t) = Pr(T <y t=>0 (2)
and set
S =1-F@) =Pr(T >t t=>0 (3)

We also assume that F(0) = 0, which implies S(0)
= 1. The function S(t) is called the survival function. It
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gives the probability that a security will attain age t.
The distribution of T, can be defined by specifying
either the distribution function F(t) or the survival func-
tion S(t). We can also define a probability density func-

tion as follows

<
flO)= F(t)=-S'(t) = lim —L<Tst+4]
A—0" A

To make probability statements about a security that has
survived x years, the future lifetime for this security is
T-x|T>x

Additional notation is:

G = Pr{T—x<t|T>x] t=0
b =1-q =P[T-x>t|T>x] t20 (4

The symbol q_can be interpreted as the condi-
tional probability that the security A will default within
the next t years, conditional on its survival for x years. In
the special case of x = 0, we have

Py =S x>0
Ift =1, we use the actuarial convention to omit the pre-
fix 1 in the symbols q_and p_, and we have

/ tax tx

p, = Pr[T—-x>1|T >x]
q, = Pr[T—-x<1|T >x]

The symbol q_is usually called the marginal default proba-
bility, which represents the probability of default in the
next year, conditional on survival until the beginning of
the year. A credit curve is then simply defined as the
sequence of q,, q;, .., q,, in discrete models.

Hazard Rate Function

The distribution function F(t) and the survival
function S(t) provide two mathematically equivalent
ways of specifying the distribution of the random vari-
able time-until-default, and there are many other equiv-
alent functions. The one used most frequently by
statisticians is the hazard rate function, which gives the
instantaneous default probability for a security that has
attained age x:

MARCH 2000

F(x + Ax) - F(x)

Prix < T<x+Ax|T>x] =

1-F(x)
_ f(x)Ax
1-F(x)

The function

)
1- F(x)

has a conditional probability density interpretation. It
gives the value of the conditional probability density func-
tion of T at exact age X, given survival to that time. Let’s
denote it as h(x), which is usually called the hazard rate func-
tion. The relationship of the hazard rate function to the dis-
tribution function and survival function is as follows:

) __ S 5

b = e T S

Then, the survival function can be expressed in terms of
the hazard rate function:

S(t) e J5h(s)ds

Now, we can express q_and p_in terms of the
i tix x
hazard rate function as follows:

Py = o lhlstds

A =1- o libsEx)ds i
In addition:

Ft)=1-S{t)=1—¢" [ h(9ds
and

f9) = S(h() ]

which is the density function for T.
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A typical assumption is that the hazard rate is a con-
stant, h, over a certain period, such as [x, x + 1]. In this
case, the density function is

f{t) = he™

which shows that the survival time follows an exponen-
tial distribution with parameter h. Under this assumption,
the survival probability over the time interval [x, x + t]
tor0<t<1lis

tPx = 1-qy = e_JOh(S)dS = e_ht = (px)t

where p_is the probability of survival over a one-year
period. This assumption can be used to scale down the
default probability over one year to a default probability
over a time interval shorter than one year.

Modeling a default process is equivalent to mod-
eling a hazard rate function. There are a number of rea-
sons why modeling the hazard rate function may be a
good idea. First, it provides us information on the
immediate default risk of each entity known to be alive
at exact age t. Second, the comparisons of groups of
individuals are most incisively made via the hazard rate
function. Third, the hazard rate function-based model
can be easily adapted to more complicated situations,
such as where there is censoring or there are several types
of default, or where we would like to consider stochas-
tic default fluctuations.

Finally, there are many similarities between the
hazard rate function and the short rate. Many modeling
techniques for the short rate processes can be readily bor-
rowed to model the hazard rate.

We can define the joint survival function for two
entities A and B according to their survival times T,
and Tj:

Syp,1, (50 = Pr[T, >5, Ty >
The joint distributional function is
F(s, t) = Pr[T, <5, Ty <t
=1-S, ()=S0 + Sy, (5.9

These concepts and results are described further in
some survival analysis books, such as Bowers et al. [1997]

and Cox and Oakes [1984].
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II. DEFINITION OF DEFAULT CORRELATIONS

The default correlation of two entities A and B can
then be defined with respect to their survival times T, and
T} as follows:

Cov(T,, Tg)
JVar(T, ) Var(Ty)

Pas =

— E(TATB) — E(TA)E(TB) (8)

\Var(T)Var(Ty)

Hereafter we call this definition of default correlation the
survival time correlation. The survival time correlation is a
much more general concept than a discrete default cor-
relation based on one period. If we have the joint distri-
bution f(s, t) of two survival times T,, T,
calculate the discrete default correlation. For example, if
we define

we can

E, = [T, <1]
E, = [T, < 1]

then the discrete default correlation can be calculated
using Equation (1) with calculations as follows:

qap = Pr[EpER]= '[é jé f(s, t)dsdt
qa ~— Ié f (s)ds

9 = fé fg (t)dt

Knowing the discrete default correlation over a one-year
period does not allow us to specify the survival time cor-
relation, however.

ITII. CONSTRUCTION OF THE CREDIT CURVE

The distribution of survival time or time-until-
default can be characterized by the distribution func-
tion, survival function, or hazard rate function. We have
shown that all default probabilities can be calculated once
a characterization is given. The hazard rate function used
to characterize the distribution of survival time can also
be called a credit curve due to its similarity to a yield
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curve. But the basic question is: How do we obtain the
credit curve or the distribution of survival time for a
given credit?

There are three methods to obtain the term struc-
ture of default rates:

1. Obtaining historical default information from rating
agencies.

2. Taking the Merton option-theoretical approach.

3. Taking the implied approach using the market prices

of defaultable bonds or asset swap spreads.

Rating agencies like Moody’s publish historical
default rate studies regularly. Besides the commonly cited
one-year default rates, agencies also present multiyear
default rates. From these rates we can obtain the hazard
rate function.

For example, Moody’s publishes weighted-average
cumulative default rates from one to twenty vyears (see
Carty and Lieberman [1997]). For the B rating, the first
five years’ cumulative default rates in percentages are
7.27,13.87,19.94, 25.03, and 29.45. From these rates we
can obtain the marginal conditional default probabilities.

The first marginal conditional default probability
in year 1 1s simply the one-year default probability, 7.27%.
The other marginal conditional default probabilities can
be obtained using the formula:

n+qu = nqx +'npqu+n (9)

which simply states that the probability of default over
time interval [0, n + 1] is the sum of the probability of
default over the time interval [0, n], plus the probability
of survival to the end of the n-th year and default in the
following year. Using Equation (9), we have the marginal
conditional default probability:

— n+19x " n9x
1”nqx

qx+n

which results in the marginal conditional default proba-
bilities in years 2, 3, 4, and 5 as 7.12%, 7.05%, 6.36%, and
5.90%. If we assume a piecewise constant hazard rate
function over each year, we can obtain the hazard rate
function using Equation (6). The hazard rate function
obtained is given in Exhibit 1.

Using diftfusion processes to describe changes in
the value of the firm, Merton [1974] demonstrates that

MarcH 2000

ExHIBIT 1
Hazard Rate Function
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a firm’s default can be modeled using the Black and
Scholes methodology. He shows that stock can be con-
sidered a call option on the firm with strike price equal
to the face value of a single-payment debt. Using this
framework, we can obtain the default probability for the
firm over one period, and then translate this default
probability into a hazard rate function.

Delianedis and Geske [1998] extend Merton’s anal-
ysis to produce a term structure of default probabilities.
Using the relationship between the hazard rate and the
default probabilities, we can obtain a credit curve.

Alternatively, we can take the mmplicit approach by
using market-observable information, such as asset swap
spreads or risky corporate bond prices. This is the
approach that most credit derivatives trading desks use.
The extracted default probabilities reflect the market-
agreed perception today about the future default ten-
dency of the underlying credit.

In L1 [1998] I present one approach to building the
credit curve from market information based on the Dufhe
and Singleton [1997] default treatment. I assume that
there are a series of bonds with maturity 1, 2, ..., n years
that are issued by the same company and have the same
seniority. All the bonds have observable market prices.
From the market prices of these bonds we can calculate
their yields to maturity.

Using the yield to maturity of corresponding Trea-
sury bonds, we obtain a yield spread curve over Treasury
(or asset swap spreads for a vield spread curve over
LIBOR). The credit curve construction is based on this
yield spread curve and an exogenous assumption about the
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recovery rate depending on the seniority and the rating
of the bonds and the industry of the corporation.

This approach is contrary to the use of historical
default experience information provided by rating agen-
cies such as Moody’s. We use market information rather
than historical information for several reasons:

*  The calculation of profit and loss for a trading desk
can be based only on current market information.
This current market information reflects the market-
agreed perception about the evolution of the market
in the future, on which the actual profit and loss
depend. The default rate derived from current mar-
ket information may be much different from histor-
1cal default rates.

* Rating agencies use classification variables in the
hope of expressing homogeneous risks through clas-
sification. The technique is used elsewhere, such as in
pricing automobile insurance. Unfortunately, classi-
fication techniques often omit some firm-specific
information. Constructing a credit curve for each
credit allows us to use more firm-specific information.

* Rating agencies react much more slowly than the
market in anticipation of future credit quality. A typ-
ical example is rating agencies’ reactions to the 1997~
1998 Asian crisis.

»  Ratings are primarily used to calculate default fre-
quency instead of default severity, but much of a
credit derivative’s value depends on both default fre-
quency and severity.

» The intormation available from a rating agency 1s
usually the one-vyear default probability for each rat-
ing group and the rating migration matrix. Neither
the transition matrices nor the default probabilities are
necessarily stable over long periods of time. In addi-
tion, many credit derivatives products have maturities
well beyond one year, which requires the use of long-
term marginal default probability.

It 15 shown under the Duffie and Singleton
approach that a defaultable instrument can be valued as
if it is a default-free instrument by discounting the
defaultable cash flow at a credit risk-adjusted discount fac-
tor. The credit risk-adjusted discount factor or the total
discount factor is the product of the risk-free discount
factor and the pure credit discount factor if the under-
lying factors affecting default and those affecting the
interest rate are independent. Under this framework,
and assuming a piecewise constant hazard rate function,
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we can derive a credit curve or specify the distribution
of the survival time.

IV. DEPENDENT MODELS —
COPULA FUNCTIONS

Let us study some problems of an n-credit portfo-
lio. Using either the historical approach or the market-
implicit approach, we can construct the marginal
distribution of survival time for each of the credit risks in
the portfolio. If we assume mutual independence among
the credit risks, we can study any problem associated
with the portfolio.

In fact, the independence assumption for credit
risks is obviously not realistic; in reality, the default rate
for a group of credits tends to be higher in a recession and
lower when the economy is booming. This implies that
each credit is subject to the same set of macroeconomic
influences, and that there is some form of positive depen-
dence among the credits.

To introduce a correlation structure into the port-
folio, we must determine how to specify a joint distribu-
tion of survival times, with given marginal distributions.
Obviously, this problem has no unique solution. Gener-
ally speaking, knowing the joint distribution of random
variables allows us to derive the marginal distributions and
the correlation structure among the random variables, but
not vice versa.

There are many different techniques in statistics
that allow us to specify a joint distribution function with
given marginal distributions and a correlation structure.
Among them, the copula function is a simple and con-
venient approach.

Definition and Basic Properties
of Copula Function

A copula tunction is a function that links or mar-
ries univariate marginals to their full multivariate distri-
bution. For n uniform random variables, U, U, ..,
U., the joint distribution function C, defined as

Clu, v,y oyu, p)=PrlU, <y, U,<u,, .., U
can also be called a copula function.

Copula functions can be used to link marginal
distributions with a joint distribution. For given univari-
ate marginal distribution functions F (x,), F,(x,), ...,
F_(x_), the function

n
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C[F,(xy), F,(xy), ..., F (x )] = F(x|, %,, ..., X)
which is defined using a copula function C, results in a
multivariate distribution function with univariate marginal
distributions as specified F,(x ), F,(x)), ..., F_(x ).

This property can be easily shown as follows:

C(F,(x)), Fy(x), -y F_(x), P)

= Pr[U, <F,(x,), U, < Fy(x,), ..., U, <F (x)]
= Pr{F;'(U) < x,, F'(U,) <x,, ...
= Pr[X, <x,, X, £ x5, .

= F(xl, X5, oo Xn)

The marginal distribution of X, s

C(F,(t o), Fy(+ 00), ..., Fi(x), ..., F_(+ 9), p)

IV

= Pr[X, < +oo, X, < +oo, ..., X, S x,, X, < +oo]
= Pr[X, < x|
= F(x)

Sklar [1973] establishes the converse. He shows that
any multivariate distribution function F can be written in
the form of'a copula function. He proves that if F(x,, X,,
..., X ) 1s a joint multivariate distribution function with
univariate marginal distribution functions F (x,), F,(x,),
..., F_(x ), there exists a copula function C(u,, u,, ..., u )
such that

F(x,, x5, ..., x) = C[F,(x)), F,(x,), ..., F (x))]

If each F, is continuous, then C is unique. Thus, copula
functions provide a unifying and flexible way to study
multivariate distributions.

For simplicity’s sake, we discuss only the proper-
ties of bivariate copula functions C(u, v, p) for uniform
random variables U and V, defined over the area [(u,
v)[0<u<1,0<v<1], where p is a correlation param-
eter. We call p simply a correlation parameter since it does
not necessarily equal the usual correlation coefficient
defined by Pearson (nor Spearman’ rho, nor Kendall’s tau).

The bivariate copula function has properties as
follows:

MarcH 2000

¢ Since U and V are positive random variables, C{0, v,
p) = C(u, 0, p) = 0.

* Since Uand V are bounded above by 1, the marginal
distributions can be obtained by C(1, v, p) = v, C(u,
1, p) =u

¢ For independent random variables U and V, C(u, v,

p) = uv.

Frechet [1951] shows there exist upper and lower
bounds for a copula function:

max (0, u + v—1) £ C(u, v) < min (u, v)

The multivariate extension of Frechet bounds is given by
Dall’Aglio [1972].

Some Common Copula Functions

We describe a few copula functions commonly
used in biostatistics and actuarial science.

Frank Copula. The Frank copula function is
defined as

ou _ ov _
Clu, v) = —1—1 1+ (e DG ) for —oo < ( < o0
o e -1

Bivariate Normal. The bivariate normal is

C(u, v) = O, (@ '(u), @ !(v),p) for-1<p<1 (10)
where @, is the bivariate normal distribution function
with correlation coefficient p, and @' is the inverse of a
univariate normal distribution function. As we shall see
later, this is the copula function used in CreditMetrics.

Bivariate Mixture Copula Function. We can form
a new copula function using existing copula functions. If
the two uniform random variables u and v are indepen-
dent, we have a copula function C(u, v) = uv. If the two
random variables are perfectly correlated, we have the cop-
ula function C(u, v) = min (u, v).

Mixing the two copula functions by a mixing
coefficient (p > 0), we obtain a new copula function as
follows

Clu,v) =(1—-pluv+pmin(u,v) ifp>0

If p £ 0 we have
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Clu,v) =1 +puv—-pu-1+v)Qu-1+v)
where
Ox) = 1ifx>0

=01fx<0

Copula Function and
Correlation Measurement

To compare different copula functions, we need to
have a correlation measurement independent of marginal
distributions. The usual Pearson’s correlation coefficient,
however, depends on the marginal distributions (see
Lehmann [1966]). Both Spearman’s rho and Kendall’s
tau can be defined using a copula function only as follows

p, =12 ] [C(u, v) — uv]dudv
T=4 J_[ C(u, v)dC(u, v) — 1

Comparisons between results using different copula func-
tions should be based on either a common Spearman’s tho
or Kendall’s tau.

Copula functions are further described in Frees and
Valdez [1988] and Nelsen [1999].

Calibration of Default Correlation
in Copula Functions

Having chosen a copula function, we need to
compute the pairwise correlation of survival times. Using
the Gupton, Finger, and Bhatia [1997] asset correlation
approach, we can obtain the default correlation of two dis-
crete events over a one-year period. As it happens, they
use the normal copula function in their default correla-
tion formula even though not explicitly.

First let us summarize the calculation of the joint
default probability of two credits A and B. Suppose the
one-year default probabilities for A and B are q, and gj.
The steps would be:

*  Obtain Z, and Z; such that
qu =Pr{Z2<2Z,]

qg = Pr[Z < Zj]

50 ON DEFAULT CORRELATION: A COPULA FUNCTION APPROACH

where Z is a standard normal random variable.
» If p is the asset correlation, the joint default proba-
bility for credits A and B is calculated as follows:

Zaly
.[ J ¢2(X5Y|p)dxdyz¢2(ZA$ZB’ p) (11)

—00 —00

where ¢,(x, y|p) is the standard bivariate normal
density function with a correlation coefficient p, and
®@, is the bivariate accumulative normal distribution
function.

If we use a bivariate normal copula function with
a correlation parameter Y, and denote the survival times
for A and B as T, and T, the joint default probability can
be calculated as follows

PT, <1, T, <1]=
D, @' [F ()], D7 [Fu(D]. V) (12)

where F, and Fj; are the distribution functions for the sur-
vival times T A and T,
If we notice that

q, = Pr[T, < 1] = Fj(l)
and

Z.=®d'(q) fori=A B
we see that Equation (12) and Equation (11) give the same
joint default probability over a one-year period if p = ¥.

We can conclude that this process uses a bivariate
normal copula function, with the asset correlation as the
correlation parameter in the copula function. Thus, to
generate survival times of two credit risks, we use a bivari-
ate normal copula function with correlation parameter
equal to this asset correlation.

Note that this correlation parameter is not the
correlation coefficient between the two survival times.
The correlation coefficient between the survival times 1s
much smaller than the asset correlation. Conveniently,
the marginal distribution of any subset of an n-dimen-
sional normal distribution is still a normal distribution.
Using asset correlations, we can construct high-dimen-
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sional normal copula functions to model a credit port-
folio of any size.

V. NUMERICAL ILLUSTRATIONS

Assume there are two credit risks, A and B, which
have flat spread curves of 300 bp and 500 bp over LIBOR..
These spreads are usually given in the market as asset
swap spreads. Using these spreads and a constant recov-
ery assumption of 50%, we build two credit curves for the
two credit risks. For details, see Li [1998].

The two credit curves are given in Exhibits 2 and
3. These two curves are used in the numerical illustrations.

Hlustration 1. Default Correlation
versus Length of Time Period

The first example examines the relationship
between the discrete default correlation (1) and the sur-
vival time correlation (8). The survival time correlation
1s a much more general concept than the discrete default
correlation defined for two discrete default events at an
arbitrary period of time, such as one year. Knowing the
former allows us to calculate the latter over any time
interval in the future, but not vice versa.

Using two credit curves, we can calculate all
marginal default probabilities up to any time t in the future:

Qo =Pr[t<t]=1- ¢ hhlds

EXHIBIT 2

Credit Curve A: Instantaneous Default Probability
(spread = 300 bp, recovery rate = 50%)
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ExXHIBIT 3

Credit Curve B: Instantaneous Default Probability
(spread = 500 bp, recovery rate = 50%)
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where h(s) 1s the instantaneous default probability given
by a credit curve. If we have the marginal default proba-
bilities qf and g7 for both A and B, we can also obtain
the joint probability of default over the time interval [0,
t] by a copula function C(u, v):

Pr[T, <t Ty <t] = C(tq’?‘), tql?))

Of course we need to specify a correlation parameter p
in the copula function. Knowing p would allow us to cal-
culate the survival time correlation between T, and T,.
We can now obtain the discrete default correlation
coefficient p, between the two discrete possibilities that
A and B default over the time interval [0, t] according to
Equation (1). Intuitively, the discrete default correlation
p, should be an increasing function of t since the two
underlying credits should have a higher tendency of joint
default over longer periods. Using the bivariate normal
copula function (10) and p = 0.1, we obtain Exhibit 4.
In this graph we see explicitly that the discrete
default correlation over time interval [0, t] is a function of
t. For example, the default correlation coefficient goes from
0.021 to 0.038 when t goes from six months to twelve
months. The increase slows down as t becomes large.

IHustration 2: Default Correlation
and Credit Swap Valuation

Suppose that credit A is the credit swap seller, and
credit B is the underlying reference asset. If we buy a
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ExXHIBIT 4

Discrete Default Correlation
versus Length of Time Interval
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default swap of three years with a reference asset of credit
B from a risk-free counterparty, we should pay 500 bp
since holding the underlying asset and having a long posi-
tion on the credit swap would create a riskless portfolio.
But if we buy the default swap from a risky counterparty,
the amount we should pay depends on the credit quality
of the counterparty and the default correlation between
the underlying reference asset and the counterparty.

Knowing only the discrete default correlation
over one year, we cannot value any credit swaps with a
maturity longer than one year. Exhibit 5 shows the
impact of asset correlation (or implicitly default correla-
tion) on the credit swap premium. From the graph, we
see that the annualized premium decreases as the asset cor-
relation between the counterparty and the underlying ref-
erence asset increases. Even at zero default correlation, the
credit swap has a value less than 500 bp since the coun-
terparty is risky.

Ilustration 3: Default Correlation
and First-to-Default Valuation

The third example shows how to value a first-to-
default contract. Suppose we have a portfolio of n cred-
its. Let us assume that for each credit 1 in the portfolio we
have constructed a credit curve or a hazard rate function
for its survival time T,. The distribution function of T| is
F.(t). Using a copula function C, we also obtain the joint
distribution of the survival times as follows
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EXHIBIT 5
Asset Correlation versus Value of Credit Swap
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F(t;, ¢y, ..., t) = C[F (t,), F,(t,), ..., F (t )]

If we use a normal copula function, we have

D (@7'[F,(t)], D'[Fy(t)]. ... DT[E,(t,)])

where (Dn is the n-dimensional normal cumulative dis-
tribution function with correlation coeflicient matrix X.

To simulate correlated survival times, we introduce
another series of random variables Y, Y,, ..., Y_such that

Y, = @ F,(T)], Y, = @ [F(T,), ...,
Y, = ®'[F,(T,)]) (13)

Then there is a one-to-one mapping between Y and T.
Simulating [T, |1 = 1, 2, ..., n] is equivalent to simulating
[Y.li=1,2, .., n]. The correlation between the Ys is the
asset correlation of the underlying credits.

We have the simulation scheme:

* Simulate Y, Y,, ... Y from an n-dimension normal
distribution with correlation coefficient matrix X.
" - -
. thaln T, T, ..., T using T, = F'[N(Y)],
1=1,2,...,n

With each simulation run, we generate the survival
times for all the credits in the portfolio. With this infor-
mation, we can value any credit derivative structure writ-
ten on the portfolio. We use a simple structure for
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illustration. The contract is a two-~year transaction that
pays one dollar if the first default occurs during the first
two years.

We assume each credit has a constant hazard rate
of h = 0.1 for 0 < t < +eo. From Equation (7), we know
the density function for the survival time T is he ™. This
shows that the survival time is exponentally distributed
with mean 1/h. We also assume that every pair of cred-
its in the portfolio has a constant asset correlation 6.2

Suppose we have a constant interest rate r = 0.1.
If all the credits in the portfolio are independent, the haz-
ard rate of the minimum survival time T = min(T,, T,,

.., T ) is easily shown to be

h.=h,+h,+ .. +h =nh
If T < 2, the present value of the contract is le™ T The

survival time for the first-to-default has a density function
flt) = hTe’hT‘, so the value of the contract is given by

V = [Jle ™ f(tde
= [21e " hpe "Tde

ﬁ—(l _ 6—2.0(r+hv, )) (14)
r+hy

I

In the general case, we use the Monte Carlo sim-
ulation approach and the normal copula function to
obtain the distribution of T. For each simulation run, we
have one scenario of default times t Gy o
which we have the first-to-default time simply as t = min
(€ tyr oms €)-

Let us examine the impact of the asset correlation
on the value of the first-to-default contract of five assets.
If 6 = 0, the expected payoff function, based on Equa-
tion (14), should give a value of 0.5823. Our simulation
of 50,000 runs gives a value of 0.5830. If all five assets are
perfectly correlated, then the first-to-default of five assets
should be the same as the first-to-default of one asset since
any one default induces all the others to default. In this
case, the contract should be worth 0.1648. Our simula-
tion of 50,000 runs produces a result of 0.1638.

Exhibit 6 shows the relationship between the value
of the contract and the constant asset correlation coefhi-
cient. We see that the value of the contract decreases as
the correlation increases. We also examine the impact of

., t, from
n
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EXHIBIT 6
Value of First-to-Default versus Asset Correlation
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correlation on the value of the first-to-default of twenty
assets in Exhibit 6. As expected, the first-to-default of five
assets has the same value as the first-to-default of twenty
assets when the asset correlation approaches 1.0.

VI. SUMMARY AND CONCLUSIONS

This article introduces a few standard techniques
used in survival analysis to study the problem of default
correlation. We introduce a random variable called the
time-until-default or survival ime to characterize the defaul,
and define the default correlation between two credit
risks as the correlation coefficient between their survival
times. In practice, we usually use market spread infor-
mation to derive the distribution of survival times. When
it comes to credit portfolio studies, we need to specity a
joint distribution with given marginal distributions. The
problem cannot be solved uniquely.

The copula tunction approach provides one way
of specifying a joint distribution with known marginals.
This article introduces the basic concepts of copula func-
tions into credit studies, and shows how to calibrate the
parameter in the normal copula function using Credit-
Metrics’ asset correlation approach to default correlation.
It is shown that CreditMetrics essentially uses the normal
copula function in its default correlation formula, though
not explicitly. We have presented several numerical exam-
ples to illustrate the use of copula functions in the valu-
ation of credit derivatives, such as credit default swaps and
first-to-default contracts.
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ENDNOTES

The author thanks Christopher C. Finger for helpful
discussions and comments.

'A company that is observed, default-free, by Moody’s
for five years and then withdrawn from the Moody sample must
have a survival time exceeding five years. Another company
may enter into Moody’s study in the middle of a year, which
means that Moody’s observes the company for only half of the
one-year observation period. In the survival analysis of statis-
tics, such incomplete observation of default time is called cen-
soring. According to Moody’s studies, such incomplete
observations do occur in Moody’s credit default samples.

>To have a positive-definite correlation matrix, the
constant correlation coefficient has to satisfy the condition ¢ >
—[1/(n - 1)].
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