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2 ARBITRAGE PRICING OF DEFAULTABLE GAME OPTIONS

1 Introduction

It is widely acknowledged (see, for instance, [16, 24, 28]) that a convertible bond has a natural
interpretation as a defaultable bond supplemented with an option to exchange this defaultable bond
for a given number k of shares. Thus, convertible bonds are often advertised as products with upside
potential and limited downside risk. However, after years of steady growth, the market of convertible
bonds has suffered an unprecedented drawback in April-May 2005. Many hedge funds closed their
convertible bond positions, while new convertible bond issues became more and more rare. This was
largely due to persistently low credit default swap (CDS) spreads and low volatilities that limited
the potential benefit of convertible bond arbitrage and to regulatory changes that made financing
by means of convertible bond a less attractive alternative to straight bond financing than before. In
addition, some practitioners blamed this crisis on inadequate understanding of the product, that let
people think for a while that convertible bonds were a win-win mixture to both issuers and holders,
up to the point where disappointment changed their mind the other way around. So, many actors
in the equity-to-credit universe closed their positions after the unexpected simultaneous rise in the
General Motors CDS spreads and stock price in May 2005 (see Zuckerman [29]). Accordingly, the
industry realized more urgently the need to switch from Black—Scholes to more pertaining models,
and to reconsider the approach and use of models in general (see Ayache [3]).

In this paper, we attempt to shed more light on the mathematical modeling of convertible bonds,
thus continuing the previous research presented, for instance, in [1, 4, 14, 16, 18, 24, 26, 27, 28]. In
particular, we consider the problem of the decomposition of a convertible bond into bond component
and option component. This decomposition is indeed well established in the case of an ‘exchange
option’, when the conversion can only occur at maturity (see Margrabe [24]). However, it was not yet
studied in the case of a real-life convertible bond. More generally, we shall consider generic defaultable
game options and defaultable convertible securities, which encompass defaultable convertible bonds
(and also more standard defaultable American or European options) as special cases. Moreover,
we shall examine these contracts in the framework of a fairly general market model in which prices
of primary assets are assumed to follow semimartingales (see Delbaen and Schachermayer [15] or
Kallsen and Kiihn [18]) and a random moment of default is exogenously given.

The paper is organized as follows. In Section 2, we describe the general set-up. In the present
paper, we work in a general semimartingale model, which is arbitrage-free, but possibly incomplete.
In Section 3, the valuation of game options is reviewed. As a prerequisite for further developments,
we provide in Proposition 3.1 a characterization of the set of ex-dividend arbitrage prices of a game
option with dividends in terms of related Dynkin games. The proof of this result is based on a rather
straightforward application of Theorem 2.9 in Kallsen and Kiithn [18]. In Section 4, we introduce
the concepts of defaultable game option and defaultable convertible security. As a consequence of
Proposition 3.1, we obtain a result on arbitrage pricing of these securities. In Section 5, defaultable
convertible bonds are formally defined and their basic properties are analyzed. Also, we introduce
the concept of reduced convertible bond, in order to handle the case of a convertible bond with a
positive call notice period. Section 6 is devoted to pertinent decompositions of arbitrage prices of
game options and convertible bonds. The main result of this section is Theorem 6.1, which furnishes
a rigorous decomposition of the arbitrage price of a defaultable game option as the sum of the price of
a reference straight bond and an embedded game exchange option. Using this result and referring to
the intensity-based jump-diffusion model for equity price examined in [8], we conclude the paper by
discussing the commonly used terms of the implied spread and the implied volatility of a convertible
bond (see Definition 6.1).

The present paper provides also a theoretical underpinning for a more extensive research contin-
ued in Bielecki et al. [6, 7, 8], where more specific market models are introduced and more explicit
valuation and hedging results are established. In [6], we derive valuation results for a game option in
the framework of a default risk model based on the hazard process and we provide a characterization
of minimal hedging strategies for a game option in terms of a solution of the related doubly reflected
backward stochastic differential equation. In [7, 8], we introduce Markovian pre-default models of
credit risk and we show how the pricing and hedging problems for convertible bonds can solved using
the associated variational inequalities.
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2 Primary Market

The evolution of the primary market is modeled in terms of stochastic processes defined on a fil-
tered probability space (€2, G,P), where P denotes the statistical probability measure. We can
and do assume that the filtration G = (G;);ecr, satisfies the usual conditions, and that all (G, P)-
semimartingales are cadlag (recall that (G, P)-semimartingales are also (G, Q)-semimartingales for
any Q ~ P; see [11, 25]). Moreover we declare that a process has to be (G-)adapted, by definition.
We assume that the primary market is composed of the savings account and of d risky assets
that satisfy, for a given a finite horizon date T > 0:
e the discount factor process (3, that is, the inverse of the savings account, is a finite variation,
continuous, positive and bounded process;
e the prices of primary risky assets are semimartingales.
The primary risky assets, with R%-valued price process X, pay dividends, whose cumulative value
process, denoted by D, is assumed to be a finite variation R?-valued process. Given the price X, we
define the cumulative price X of primary risky assets as

X, =X, + Dy, (1)

where

D, = ;" By dD,,.
[0.4]

By default, we denote by fot integrals over (0,t]; otherwise, the domain of integration is given as

a subscript of f . In the financial interpretation, D; represents the current value at time ¢ of all
dividend payments from the assets over the period [0, ], under the assumption that all dividends
are immediately reinvested in the savings account.

A predictable trading strategy (¢°,¢) built on the primary market has the wealth process Y
given as

V=8 +GXe,  te[0,T), (2)

where ( is a Tow vector. Accounting for dividends, we say that a portfolio (¢%,() is self-financing
whenever ( is ﬁ)? -integrable and if we have, for ¢ € [0, T,

d(BeYy) = G d(BeXy).- (3)

Note that the related notion of stochastic integral (the one consistently used in this paper) is the
generalized notion of vector (as opposed to componentwise) stochastic integral developed in Cherny
and Shiryaev [11]. This is indeed the pertaining definition of stochastic integral to be used in relation
with the Fundamental Theorems of Asset Pricing (see [11, 15]).

In (3), we recognize the standard self-financing condition for a trading strategy (¢°,¢) in non
dividend paying primary risky assets, that we shall call the equivalent non-dividend-paying synthetic
assets, with price vector X. In view of this equivalence, the following definition is natural.

Definition 2.1 We say that (X;).c[0,7) s an arbitrage price for our primary market with dividend-
paying assets if ()A(t)te[o,T] is an arbitrage price for the equivalent market with non-dividend-paying

synthetic assets, in the sense that ()?t)te[O,T] satisfies the standard No Free Lunch with Vanishing
Risk (NFVLR) condition of Delbaen and Schachermayer [15].

By application of the main theorem in [15], we have that (X;);c[o,7) is an arbitrage price for the

primary market if and only if there exists a probability measure Q ~ P for which BJA( is a sigma
martingale under Q (see [11, 15]). In the sequel, we assume that (X;);c[o,7] is an arbitrage price for
the primary market and we denote by M the set of risk-neutral measures on the primary market,
defined as the set of probability measures Q ~ P for which X is a sigma martingale under Q.

Even though the assumption of market completeness is not formally required for our results,
the practical interest of some of them (those based on the converse part in Theorem 3.1) may be
limited to the case of complete markets since, otherwise, integrability conditions like (7) below are
typically violated (see Remark 4.3). This is not a major drawback, however, since in practice one
can often “complete the market”, so that suitable integrability conditions will be satisfied for the
unique risk-neutral measure. For an illustration of this approach, we refer the reader to [8].
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3 Game Options

As it is well known, a convertible bond with no call notice period can be formally seen as a special
case of the so-called game option, introduced in Kifer [20] (see also Kallsen and Kiihn [18]). For this
reason, we first provide a brief overview of concepts and results related to game options.

3.1 Payoffs of a Game Option

Let 0 (respectively T') stand for the inception date (respectively the maturity date) of a game option.
For any t € [0,T], we write G to denote the set of all stopping times with values in [t, T].

Definition 3.1 A game option is a contract with the terminal payoff at time 7, A 7. given by (from
the perspective of the holder)

Lr,<rpLor, + Uiy sryUn,, (4)

where 7, 7. € GY. are stopping times under the control of the holder and the issuer of a game option
respectively. Additionally, a game option pays dividends, given by a real-valued process D with
finite variation. The put payoff process L = (Lt)efo,r] and the call payoff process U = (Us)iepo,m
are cadlag, R U {4oo}-valued processes, such that £ < U and Lr = Ur. Moreover, defining the
cumulative payoffs of a game option with dividends as the processes L:=L+Dandll :=U+ 13,
where D; := (3, ! f[o, " B, dD,,, we assume that there exists a constant ¢ such that

BLy > —c, te[0,T). (5)
We refer to 7. (respectively 7,,) as the moment of call (respectively put) of a game option.

Remarks 3.1 (i) The case of dividend-paying game options is not explicitly dealt with by Kifer
[20] or Kallsen and Kiihn [18]. Nevertheless, as we shall argue in what follows, all the results in [18]
can be extended to this situation.

(ii) In [18], the payoff processes £ and U are implicitly assumed to be specified in relative terms
with respect to a certain numeraire. In the present work, we prefer to make explicit the presence of
the discount factor (.

(iii) Kallsen and Kiihn [18] postulate that the lower payoff process £ is non-negative. However, as
long as the discounted lower payoff is bounded from below (cf. (5)) all their results are applicable
by a simple shift argument.

(iv) One can deduce from (4) that we impose the priority of 7, over 7., meaning that the terminal
payment equals £, (rather than U,,) on the event {7, = 7.}. We thus follow here Kallsen and
Kiihn [18], from which we will deduce Proposition 3.1 below. Note, however, that in the general
context of game options this assumption is known to be essentially immaterial, in the sense that is
has typically no bearing neither on the price of a game option nor on the optimal stopping rules (cf.
[20)).

3.2 Arbitrage Valuation of a Game Option

The concept of an arbitrage price of a game option can be introduced in various ways. Kallsen and
Kiihn [18] make the distinction between a static and a dynamic approach. The former point of view
corresponds to the assumption that only a buy-and-hold strategy in the derivative asset is allowed,
whereas the primary assets can be traded dynamically. In the latter approach, it is assumed that
a derivative asset becomes liquid and negotiable asset, so that it can be traded together with the
primary assets during the whole period [0,T]. Consequently, in a dynamic approach, in order to
determine a price process of a derivative asset, it is postulated that the extended market, including
this derivative asset, remains arbitrage-free. In this work, we shall adopt the dynamic point of view.

For the formal definition of a (dynamic) arbitrage price process of a game option, we refer the
reader to Kallsen and Kiihn [18, Definition 2.6]. As elaborated in [18], this definition is based on an
extension to markets containing game options of the No Free Lunch with Vanishing Risk condition,



T.R. BIELECKI, S. CREPEY, M. JEANBLANC AND M. RUTKOWSKI 5

introduced by Delbaen and Schachermayer [15, Definition 2.8], using the notion of an admissible
trading strategy involving primary assets and the game option. Without entering into details, let us
note that admissible strategies in this sense include, in particular, trading strategies in the primary
assets only, provided that the corresponding wealth process is bounded from below. The case of
dividend-paying primary assets and/or game option is not explicitly treated in [18]. Nevertheless,
the results of [18] can be applied to the case of dividend-paying primary assets and/or game option
by resorting to the transformation of prices into cumulative prices described in Section 2 and that
we already used to characterize no-arbitrage prices in our primary risky market with dividends.

As a reality check of pertinency of Kallsen and Kiihn’s definition of an arbitrage price of a game
option and of our extension to the case of dividend-paying assets, we show in forthcoming papers
[6, 7, 8] that in more specific models, in which we are able to identify well determined processes as
arbitrage prices in the sense of this definition, these processes can alternatively be characterized as
minimal hedging prices.

Since we are interested in studying a problem of time evolution of an arbitrage price of a game
option, we formulate the problem in a dynamic way by pricing the game option at any time ¢ € [0, T'.
Given t € [0,T] and stopping times 7, 7. € G, let the ez-dividend cumulative cash flow of the game
option at time t stand for the random variable 8(t; 7, 7.) such that

ﬁta(t; Tp Tc) = ﬁrﬁr - ﬁtﬁt + 67 (1{T:Tp}£7'p + ]1{T<Tp}u7'c)

with 7 = 7, A 7.. We shall argue that 6(¢;7,, 7.) represents the terminal cash flow paid at time 7
of a non-dividend paying game option equivalent to the original game option with dividends. Note
that the random variable 0(¢; 7, 7.) is not G;-measurable for ¢ < T, but it is merely G,-measurable.
This is, of course, expected, since it represents payments occurring between the current date ¢t and
the exercise time 7.

We decided not to reproduce here the full statement of arbitrage price in [18] (see Definition 2.6
therein), since it is rather technical and will not be explicitly used in the sequel. It will be sufficient
for us to make use of the following characterization of an arbitrage price. The proof of the following
result relies on a rather straightforward application of Theorem 2.9 in Kallsen and Kiihn [18].

Proposition 3.1 Assume that a real-valued process (Ot)iepo,r) satisfies the following two condi-
tions:

(i) © is a semimartingale and

(ii) there exists Q € M such that © is the Q-value process of the Dynkin game related to the game
option, in the sense that

esssup,, cg: essinf, cg: Eq (0(t;7p, 7c) | Gt) = O (6)
= essinf, cgr esssup, cg: B (0(t:7p,7c) | Gi), t€0,T].

Then the R4 -valued process (X,0) is an (ex-dividend) arbitrage price for the extended market
composed of the primary market and the game option. Moreover, the converse holds true under the
following integrability condition

sup EQ( sup ,Btft
QeMm t€[0,T]

g0> < o0, as. (7)

The fact that the Dynkin game has the Q-value at time ¢ means that we have equality between
the lower Q-value of the game, corresponding to the left-hand side of (6), and the upper Q-value, as
given by its right-hand side. The lower value of a game is known to be always less or equal to the
upper value, but they do not need to coincide, in general. For general results on Dynkin games, see,
for instance, Dynkin [17], Kifer [21], and Lepeltier and Maingueneau [23].

In the situation of Proposition 3.1, we shall briefly say in the sequel that (©;):c[o,7) is an arbitrage
price for the game option if (X¢, ©¢)seo, 1) is an arbitrage price for the extended market consisting
of the primary market and the game option.

Proof of Proposition 3.1. By the definition of arbitrage prices of dividend-paying assets, (X, ©¢)¢cjo, 1)
is an arbitrage price for the extended market with dividends, if and only if ()?t, ét)te[O,T] is an ar-

bitrage price for the equivalent extended market without dividends, where ©; := ©; + D;. Now,
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by an application of Kallsen and Kiithn [18, Theorem 2.9], under condition (7) (which is actually
only used for the converse part of the theorem), this is equivalent to the fact that 6)? is a sigma
martingale under some P-equivalent probability measure Q, and that Oisa semimartingale equal to
the Q-value of the Dynkin game without dividends and with terminal payoffs L and U. Specifically,
5 satisfies, for ¢ € [0, 7],

esssup, g essinf; cge Eq (a(t; Tp, Te) | Gi) = o, (8)

= essinf, cgr esssup, cg: Eq (g(t; Tp:Te) | Gt)

with é\(t; Tp, Te) = O(t; Tp, Te) + Dy, or equivalently,

~

Beb(t; 7p, 7e) = Br (H{T:TP}ETP + ]l{T<T,,}ZJTC)~

It now suffices to observe that (8) is equivalent to (6). O

Proposition 3.1 essentially reduces the study of an arbitrage price of a game option to the study
of the value, under a risk-neutral measure Q, of the corresponding Dynkin game, with the issuer
playing the role of the minimizer and the holder being the maximizer. It is not surprising that this
general result covers in particular the case of American and European options.

Definition 3.2 An American option is a game option with U; = oo for ¢t € [0,T). A Furopean
option is an American option such that

8Ly < BrLr, tel0,T). (9)

By applying Proposition 3.1, we deduce that the Q-value ét of an American option becomes the
essential supremum with respect to stopping times 7, € Gk, specifically,

0, = esssupreg}]EQ (G(t; 7p,T) | gt) =6t esssupreg;EQ (BTP‘CT,) ’ gt),
whereas for a European option it reduces to the following conditional expectation

0, = EQ(é\(t;T, T) | gt) =p1 EQ(ﬁTET | gt)-

4 Defaultable Game Options and Convertible Securities

In this section, we introduce fairly general subclasses of game options, namely defaultable game
option and defaultable convertible securities (CS, for short), which encompass as special cases such
financial instruments as convertible bonds, which will be discussed in some detail in Section 5.1, or
convertible preferred stocks, as well as defaultable American or European options.

4.1 Defaultable Game Options

Let an [0, +o0c]-valued stopping time 74 represent the default time of a reference entity. In broad
terms, a defaultable game option is a game option with the following cash flows that are paid by the
issuer of the contract and received by the holder of the contract:
e a dividend stream Dy subject to rules specified in the contract,
e a put payment L, made at the put time ¢t = 7, chosen by the holder if 7, < 7. and 7, < 74 AT}; the
rules governing the determination of the amount L; are specified in the contract;
o a call payment Uy made at time ¢ = 7. (chosen by the issuer) provided that 7. < 7, A 74 AT}
moreover, the call time may be subject to the constraint that 7. > 7, where 7 is the lifting time
of the call protection; the rules governing the determination of the amount U; are specified in the
contract,
e a payment at maturity { made at time 1" provided that T' < 75 and T' < 7, A 7.

Moreover, the contract is terminated at default time 74 if 74 < 7, A 7, AT. In particular, there
are no more cash flows related to this contract after 74. In this setting the dividend stream D



T.R. BIELECKI, S. CREPEY, M. JEANBLANC AND M. RUTKOWSKI 7

additionally includes a possible recovery payment made at the default time. Of course, there is also
the initial cash flow, namely, the purchasing price of the contract paid at the initiation time by the
holder and received by the issuer.

The informal description of a defaultable game option is formalized through the following defin-
ition, in which H stands for the default indicator process Hy = 1, <4 of the reference entity.

Definition 4.1 A defaultable game optzon (GO) is a game option with cumulative put and call
payoff processes L= (Ct)te[o 7] and U= (Ut)f,e[o,T] given by

Ly =Dy + N iryny (pary Le + Tmmyf), (10)
Uy = Dy + Lz, (TiaryUs + Lp=1y8), (11)

where:

oD, = Bt f[O,t] Bu dDy, where the dividend process D = (Dy)iejo,1) equals

D, = / (1-H,)dC, +/ R, dH,;
[0,] [0,]

here, the coupon process C' = (Ct);eo,7 is a process with bounded variation and the recovery process
R = (Rt)teo0,r) is a real-valued process;

e the put/convfersz’oq payment process L = (Ly)iecjo,7) is a real-valued, cadlag process;

e the process U = (Uy)icjo, 1) equals

Up = Lpperyoo + Lgsny Uy,

where the lifting time of a call protection is modeled as a given stopping time 7 € G9 and where the
call payment U = (Uy)yepo,77 is a real-valued, cadlag process such that Ly < U; for t € [0,7q AT'), or
equivalently

L, <U; for t€[tg AT, 7q ANT); (12)

e the payment at maturity £ is a Gp-measurable real random variable.
Moreover, R, L and £ are assumed to be bounded from below, hence (5) is satisfied.

Convention. In what follows, we shall consider various sub-classes of defaultable game options. For
brevity, we shall usually omit the term defaultable so that we shall refer to game options, American
options, convertible securities, etc., rather than defaultable game options, defaultable American
options, defaultable convertible securities, etc. The general notions of game options, American
options and European options introduced in Section 3 are no longer used in the sequel.

Rgcall that Gt denotes the set of all stopping times with values in [¢t,T]. For any ¢ € [0,7T], let
also G4 stand for {r € Gt ; 7 A 7q > T A 74}, where the lifting time of a call protection of a game
optzon 7, is given in G.. Note that in the case of a game option, given the specification (10)-(11) of

L and U with U, = Tgt<7300 + 1 4>7, Uy, condition (6) can be rewritten as follows

esssup,, g essinf, g1 Eq (7(t; 7, 7e) | Ge) =11, (13)
= essinf,_cg: esssup, gt Eq (m(t;7ps7e) | Ge), T € 10,7,

where for t € [0,T] and (7, 7.) € G& x Gk, the ex-dividend cumulative cash flow of a game option is
given by

ﬁtﬂ'(t; Tp, Tc) = ﬂ‘l’DT - ﬁtDt + ]1{T4>T}67' (]l{T:Tp<T}LTp + ]1{7'<7'1D}U‘rC + ]]‘{T:T}€> (14)

with 7 = 7, A 7.. We thus have the following theorem, as a rather straightforward consequence of
Proposition 3.1.
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Theorem 4.1 If a process II is a semimartingale and if there exists Q € M such that (13) is
verified, then I1 is an arbitrage price for the game option with ex-dividend cumulative cash flow .
Moreover, the converse holds true provided condition (7) is satisfied for L given by (10).

In what follows, an arbitrage price associated with a risk-neutral measure QQ as in Theorem 4.1,
will be called the Q-price of a game option.

Remarks 4.1 (i) The restriction that the issuer of game option is prevented from making a call on
some random time interval [0,7) where 7 € GJ (see the informal description of a game option) is
implicitly enforced in Definition 4.1 by putting U; = oo on the random interval [0, 7).

(ii) Note that 7(t; 7, 7c) = 0 for any ¢ > 74. Therefore, the (ex-dividend) arbitrage price of a game
option is necessarily equal to 0, for ¢t > 74.

(iii) In view of our formulation of the problem, the put or call decisions may take place after the
default time 74. Nevertheless, the discounted cumulative payoff processes ﬁ/j and ﬁZ/A{ are constant
on the set {t > 74} (note that the processes D and 3D are stopped at 74). Thus, effectively, the
game is stopped at the default time 74 unless the decision to stop it was already made prior to 74.

Recall that we also have the companion concepts of an American option and a European option,
namely, a game option that is either an American or a European option in the sense of Definition 3.2.
An American option, namely a game option with U = oo, can equivalently be seen as a non-callable
game option, namely a game option with 7 =T
An American option becomes an European option provided that L is chosen to be a negatively large
enough constant (depending on the other data of the American option).

Definition 4.2 An elementary security (ES) refers to the special case of an European option in
which R and ¢ are bounded (from below and from above).

Remarks 4.2 Consider a defaultable coupon-paying bond with (positive or negative) bounded
coupons, bounded recovery payoff and a bounded face value. This bond can be formally treated as
an ES, provided that we take UA: oo and we additionally introduce the constant process L which
makes the inequality 8;£; < BrLr hold for every t € [0,T]. Of course, the choice of L is somewhat
arbitrary, in the sense that L will not appear explicitly in the valuation formula for the bond (see
part (ii) in Theorem 4.2).

We shall now apply Theorem 4.1 to characterize arbitrage prices of an American option and a
European option.

Theorem 4.2 (i) If a process Il = (I;)ico,7) is a semimartingale and there exists Q € M such
that

I, = esssupregtTEQ (ﬁ(t; Tp) | gt), t €[0,T],

where the ez-dividend cumulative cash flow 7(t;7,) of an American option can be represented as
follows, fort € [0,T] and 7, € Gf,

By (t; ) = Br, Dy, — BiDy + LirysryBry (Liry <y Ly + Lir =1 €),
then II is an arbitrage price of the related American option. Moreover, the converse holds true
provided that (7) is satisfied for L given by (10).
(ii) If there exists Q € M such that
P, = Eq(o(t)|G), te[0,T],

where the ex-dividend cumulative cash flow ¢(t) of a European option can be represented as follows,
fort e (0,7,

Bed(t) = BrDr — B Dy + 1 (7,51 Bré, (15)
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then the process ® = (®¢)¢cjo,1) s an arbitrage price of the related European option. Moreover, the
converse holds true provided that

sup Eg (ﬁT/jT ‘ go) <00, a.s., (16)
Qem

where ET = ET + Lgr>mié.

Proof. Since an American option and a European option are special cases of a game option, their
ex-dividend cumulative cash flows are given by the general formula (14). By saying that they
can be represented as 7(t;7,) and ¢(t), respectively, we mean that for the valuation purposes the
general payoff 7(t; 7, 7.) can be reduced to either 7(¢;7,) or ¢(t). Note that, consistently with the
notation, an American cash flow 7(¢;7,) does not depend on 7, whereas a European cash flow ¢(t)
is independent of both 7, and 7.

Part (i) of the theorem follows by a direct application of Theorem 4.1. To prove the second part,
we observe that

3:®; = Eq(Bi0(t) | Gi) = Bo(BrDr + Lir,s1yBr€ | Gi) — Bi D,

and thus ® given by (15) is a semimartingale. O

4.2 Defaultable Convertible Securities

Let us now introduce the concept of a defaultable convertible security, referred to as a convertible
security or briefly a CS in what follows. A CS is a financial contract, which can be situated somewhere
between a defaultable game option and a much more specific defaultable convertible bond (the latter is
analyzed in some detail in Section 5). Let S denote one of the primary risky assets, to be interpreted
as the underlying asset of a CS.

In broad terms, a convertible security (CS) with underlying S is a game option with recovery
process R such that:
e the put payment L; represents in fact a put/conversion payment made at the put/conversion time
t = 7,; usually, the payment L; depends on the value S; of the underlying asset and it corresponds
to the right of the holder of the CS to convert it to a predetermined number of shares of this asset
— hence the name of convertible — or to receive a predetermined cash flow;
e conversion is typically still possible at default time 74 or at maturity time 7T, provided that the
CS is still alive.

The specific nature of CS payments motivates the following definition.

Definition 4.3 A defaultable convertible security (CS) with the underlying asset S is a game option
such that the processes R, L and the random variable ¢ satisfy the following inequalities, for some
positive reals a, b, c:

—CSRtSCL\/bSt, tE[O,T],
—C S Lt S aV bSt, te [O,T], (17)
—c<¢<aVvbSr.

Given our assumptions, we then have for (modified) positive reals a,b :
Zt S aV bSt/\‘rd; te [O,T], (18)

so that in the case of a CS, the following condition enforces (7):

go) <00, a.s. (19)

sup ]EQ( sup St
Qem te[0,TA7q]
Remarks 4.3 In view of (19), it should be emphasized that whether condition (7) holds or does not
hold crucially depends on what is chosen as primary market (S and the other primary risky assets).
So in a simple jump-diffusion model for S, condition (19) typically fails to hold if the underlying
market consists of the savings accounts and S alone, whereas it is satisfied in a market completed
by a CDS (see [8]).

Let us finally note that an ES (see Definition 4.2) is a special case of a CS.



10 ARBITRAGE PRICING OF DEFAULTABLE GAME OPTIONS

5 Defaultable Convertible Bonds

We shall now address the issue of arbitrage valuation of a convertible bond with real-life features,
including the call notice period. As will be explained in Section 5.3, it is rather difficult to directly
value a convertible bond with a positive call notice period, since it does not fulfill conditions of the
definition of a game option, in general. To circumvent this difficulty, we shall introduce the concept
of a reduced convertible bond, that is, a convertible bond whose value upon call is exogenously given
as a certain stochastic process. In that case, we may assume, without loss of generality, that the bond
has no call notice period. Since a reduced convertible bond is a special case of a convertible security
(hence it is a game option) the valuation results in the previous sections are directly applicable to
a reduced convertible bond.

5.1 Covenants of a Defaultable Convertible Bond

To describe the covenants of a typical defaultable convertible bond (CB), we introduce the following
additional notation:

N: the par (nominal) value,
cgb : the continuous coupon rate, a bounded process,

T;, ¢ty i=0,1,...,K (Ty = ¢ = 0): coupon dates and amounts; the coupon dates Ty, ..., Tx are
deterministic fixed times with Tx_1 < T < Tk; the coupon amounts ¢* are Fr,_,-measurable
and bounded, for i =1,2,..., K,

Ay: the accrued interest at time ¢, specifically,

t—T;,1
T;

it

A = ,
‘ — Ty

t

where i, is the integer satisfying 73,1 < ¢ < 13,; in view of our assumptions on the coupons,
(A¢)tcio,m is a cadlag process,

R;: the recovery process on the CB upon default of the issuer at time ¢, a bounded process,
K : the conversion factor,

R = Ry V KkS; : the effective recovery process,

Dg? . the cumulative dividend process (to be specified below),

€ = NV kSt + Ar : the payoff at maturity,

P < C : the put and call nominal payments, respectively,

0 > 0 : the length of the call notice period (see the detailed description below),

t9 = (t +0) AT : the end date of the call notice period started at t.

We shall now present a detailed description of specific CB covenants. Let us consider a CB at
any date ¢ € [0,T] at which it is still alive. Then we have the following provisions:

put/conversion provision — at any time 7, € [t, 7. A 7q A T, where 7. is a stopping time under the
discretion of the issuer, the bond holder may convert a CB to k shares of equity. In addition,
at any time 7, € [t,7. A 7q A T), and possibly also at 7. if 7. < 74 A T, the holder may put
(return) the bond to the issuer for a nominal put payment P pre-agreed at time of issuance.
Only one of the two above decisions may be executed. Since the bond holder is also entitled to
receive a relevant accrued interest payment, the effective put/conversion payment collected in
case of put or conversion (depending on which one is more favorable to the holder) at time 7,
(if 7, < T) equals L%IZ = PV kS, + A,,, where x denotes the conversion ratio. The effective
put payment in case 7, = T is considered separately (see the promised payment below).

call provision — the issuer has the right to call the bond at any time 7. € [t, 7, ATy /\_T), where 7, is
a random time under the discretion of the holder, for a nominal call payment C pre-agreed at
time of issuance. More precisely, there is a fixed call notice period § > 0 (typically, one month)
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such that if the issuer calls the bond at time 7, then the bond holder has either to redeem
the bond for C or convert the bond into x shares of stock, at any time u at its convenience in
[7e, 78], where 70 = (7, + §) AT. Accounting for accrued interest, the effective call/conversion

payment to the holder at time u is C' V kS, + A,.

call protection — typically, a CB also includes call protections, either hard or soft. For instance,
the issuer’s right to call a CB early becomes active only after a certain period of time has
lapsed since the original issue date. A CB, which can’t be called under any circumstances
during the initial time period [0,7T'), is subject to hard call protection. Alternatively, a CB
that is non-callable unless the stock price reaches a certain predetermined level, say S, is
subject to soft call protection. The introduction of the stopping times 7 in G% and of the
associated class GI. C GL allow one to model quite general kinds of call protections. So hard
call protections correspond to 7. € G4 with 7 = T and standard soft call protections to 7. € G
with 7 = inf{t € R, ; S; > S} AT.

promised payment — the issuer agrees to pay to the bond holder, at any coupon date T; such that
T; < 1gand T; < 7, AT, AT, a bounded coupon amount c’. He also agrees to pay the par value
N at the maturity date T, provided that T < 74 and T < Tp A Te. Since the bond holder may
still convert at time T', we define the effective payment at maturity as € = N V Sy + Arp; it
is collected at time T if the CB is still alive at T

recovery structure at default — it is assumed throughout that in the case of default at time 74 <
Tp N T AT, the effective recovery Rig = R, V kS;, is recovered. Indeed, we assume that the
CB can still be converted at default time 74.

It is typically assumed that P < N < C, which we also suppose in the following.

Remarks 5.1 (i) As specified above, at maturity the bond holder is allowed to convert, but not to
put, the bond. Some authors allow for a put decision at maturity date as well. In fact, allowing put
decisions at maturity would not change anything, as long as one supposes (as we do) that P < N.
Indeed, if P < N, we have Ny = (N V kS7) + Ar = (PV N V kS7) + Ar.

(ii) It should be stressed that we do not consider the default decision to be a decision variable
in the sense of ‘optimal default’ studied in corporate finance. In other words, the default time is
exogenously given random time, as opposed to call and put/conversion times. It would be possible
to extend our study by allowing for two possible times of default: the exogenous time 75 chosen by
the nature and the endogenous default time 75" which is optimally chosen by the bond issuer. Note
that 73" must not be identified with 7. since call provisions are parts of the contract, whereas the
bankruptcy provisions are not.

(iii) An important issue in the valuation of a CB is the so-called dilution effect. Dilution is the fact
that the equity price may drop upon conversion, due to the sudden increase of the number of shares
in circulation [13]. In practice, the importance of this effect depends on the number of bond holders,
who decide to convert simultaneously. In our framework, we deal with a representative holder, who
is supposed to make optimal decisions. Therefore, the whole issue of the convertible bond will be
converted at the same time, so that a jump in the stock price upon conversion is expected. To
account for dilution, one could introduce a fractional loss 0 < v < 1 of the stock price at put or
conversion, so that PV kS, = PV k(1 - v)S,—. However, in the abstract framework considered in
this paper, this would be immaterial.

(iv) A further possible covenant of a CB is resettability. Resettability means that to compensate
for fluctuations in S, the conversion ratio x may depend on .S; in a particular way specified in the
bond indenture. It is straightforward to check that all the results in this paper remain valid, if one
assumes that k; = £(S;) for some bounded Borel function .

(v) There exist soft call protection clauses more sophisticated than the one mentioned above, such
as clauses preventing the issuer to call a CB unless the stock has been above a certain level for a
given amount of time. A soft call protection always introduces a certain path-dependency to the
valuation problem (cf. [2, 22]). However, we shall see that it does not complicate much the analysis
from a general point of view. Naturally, it makes computationally heavier the numerical resolution
of the pricing variational inequalities in a Markovian model (see [8]).
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(vi) In practice, coupons of a CB are paid at discrete times. However, in the literature on CBs or in
CB software pricing models, it is common to make a simplifying assumption that coupons are paid
continuously. This is why we consider both forms of coupon payments.

(vii) In practice, R is generally specified as XY, where:

— the default claim process X is specified in the indenture of a CB. Typically, X is simply equal to
the bond par value, or the bond par value plus the accrued interest;

— the recovery rate process Y depends on legal specifications, such as the seniority of the related
debt, etc. In practice, Y tends to be lower in periods with more defaults. However, this statistical
observation holds under the real-world probability, with no obvious consequences under the market
pricing measure [5]. A common recovery assumption is the so-called face recovery assumption, which
means that X is equal to NV and that Y is a given constant (typically, Y = 40% for investment grade
issues).

(viii) Upon default, the stock price process typically falls sharply. To account for this effect, one
should introduce, in a model for the stock process S, a fractional loss upon default 0 < n < 1, such
that S;, = (1 —n)S;,— (see, for instance, [7]). However, in the abstract framework considered in
this paper, this particular feature of the stock price is irrelevant.

Definition 5.1 In accordance with the CB covenants, the dividend process D of a CB is given
by the expression

tATg .
D = / cldut Y LRy, te0.T]. (20)
0 0<T;<t,T;<7q

As in Section 4.1, we define the auxiliary process Deb representing the cumulative dividends of
a CB by setting

Db = ;! [ ]6udD;jb, t e [0,7].
0,t

Recall also that we write

R® = R.,VKSr, L®=PVkSi+A4A, &(°=NVkKSr+Ar.

5.2 Convertible Bonds without Call Notice Period

Let us first assume that a convertible bond has no call notice period so that é = 0.

Definition 5.2 A convertible bond with no call notice period is a convertible security with the
cumulative put and call payoff processes £ and U given by the expressions

Efb = [A)fb + 150 (]l{t<T}L§b + ]l{t:T}€Cb) ’ (21)
Ufb = be + 1,50y (ﬂ{t<T}Uth + I[{t:T}gd)) ’ (22)

where we set - -
Uth = ]l{t<7:}00+]l{t2%}(cv"@st +At)7 te [OvT] (23)

It is a routine task to check that the processes L and U satisfy all technical assumptions
stated in Section 4.1. The arbitrage valuation of a convertible bond with no call notice period is
thus covered by Theorem 4.1. A more challenging issue is the arbitrage valuation of convertible
bonds with a positive call notice period.

5.3 Reduced Convertible Bonds

In Section 5.4, we shall discuss a CB with a positive call notice period and we shall propose a
recursive procedure to value such a bond. In the first step, we shall value this bond upon call. In
the second step, we shall use this price as the payoff at call time of a CB with no call notice period.
This idea motivates us to introduce the following auxiliary concept.
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Definition 5.3 A reduced convertible bond (RB) is a convertible security with the cumulative put
payoff process L% given by (21) and the cumulative call payoff process U* given by (22) with

Ut = Lit<ryoo + ]l{tzf}Ufba te 0,7,
where (Utcb)te[o,T] is a cadlag process that is required to satisfy the following inequality
U >CVES;+ Ay, tel0,T). (24)

The financial interpretation of the exogenously given process U is that U® represents the value
of our reduced convertible bond upon a call at time .

Note that a CB with no call notice period is an RB (with U defined by equality in (24)). The
same remark applies to a puttable bond (PB), that is, a convertible bond with no call clause. In the
latter case, we also set 7 = T'; hence a puttable bond is a special case of an American option.

Since a reduced convertible bond is a 