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Abstract

In general, contingent claims on assets which may default during the dura-
tion of the contract cannot be priced and hedged consistently. This is due to the
fact that the possibility of a default event brings in an extra uncertain factor,
and there are therefore too few assets to construct a hedge against all sources of
uncertainty. In this paper we show that consistent pricing and hedging is still
possible if we assume that (1) we can estimate the size of the loss in value (as a
percentage) upon default and (2) default is the only non-systematic risk factor
involved. Moreover, we show that the resulting formulas for prices and hedges
do not depend on the intensity of the default process, but on a new riskfree
intensity which is an explicit function of other parameters in the model, in con-
trast to most other models. We derive a simple tree method to implement the
methodology that is proposed, and show how other pricing methods for claims
on defaultable assets are linked to our method.

1 Introduction

Many assets in finance carry an inherent risk that they may default i.e. that they
may experience a sudden loss in value at a time which cannot be predicted before
the actual default event takes place. Such a default event creates a downward
’jump’ in the value of the asset, and the usual methodology for pricing and hedging
derivative contracts on assets no longer works. Indeed, it is well known that the
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assumption of continuous sample paths for the value of the underlying asset is one
of the essential ingredients for the classical Black-Scholes model for the pricing of
derivative contracts. If the value of the underlying can change suddenly by a large
amount, thus creating a discontinuity in time, the hedge proposed by Black and
Scholes can no longer be used to eliminate all risk and therefore the option cannot
be priced consistently using their methods. This important fact was already pointed
out in (Merton 1976), and many methods have been proposed since to find consistent
pricing methods for contingent claims on defaultable assets.

The most important differences in such methods arise in the modelling of the
default event and we can broadly recognize two essentially different approaches in the
existing literature. In the first approach, which is often referred to as the structural
model approach, the default event for a firm is typically modelled as the first time
that the value of the assets of a firm is smaller than the value of its liabilities. This
means that we may not know in advance when default will occur, but that we can at
least see the likelihood of default rise or fall if we assume that the value of assets and
liabilities of the firm can be observed at any time. In the second approach, which is
often called ’reduced-form modelling’, default is seen as an exogenously given event,
which only depends on the current state of the firm through its ’default intensity’
which governs the probability that a jump will occur in the next small time interval.
In mathematical terms, the first approach models the default time as a previsible
stopping time, while the second one models it as a totally inaccessible stopping time.

The main problem with the first approach is the assumption that the value of
the firm can be observed at all times, which is obviously quite problematic in prac-
tice. Therefore most models use the reduced-form formulation, and try to model
the intensity of the default process using both market-wide as well as firm-specific
factors. The default intensities cannot be observed directly either, but explicit pric-
ing formulas, which are derived by imposing absence of arbitrage conditions, can
be inverted to find estimates for them. Credit ratings, macro-economic factors and
correlation between default events for different firms can all be incorporated in such
models, but the estimation problem obviously becomes significantly harder when the
model grows in complexity. See for example (Rogers and Hilberink 2000) for recent
work on structural models, (Duffie and Singleton 1995; Lando 1994) for a general
discussion of intensity-based models, and (Jarrow and Turnbull 1995) for the special
case where a Markov chain of credit ratings is the only factor influencing the default
intensities.

An important problem for those models of the default process which are based on
many factors is the impossibility to hedge the derivative contracts. Prices for such
contracts are written in the form of conditional expectations under a risk-neutral
measure but no hedges are provided, often because replicating portfolios simply do
not exist. A lot of contracts where the underlying asset can default therefore seem
to take the form of insurance contracts, since a premium is paid to make sure that
the expected profit over all such protective contracts will be positive in the long run.

In this paper we propose a model which will provide a consistent pricing method-
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ology for derivatives on defaultable assets and explicit hedges against default risk.
We are able to do so by two important assumptions which are essential for our model
and its explicit solution:

• The decrease in value at the time of default is a known constant (given as a
percentage of the pre-default value).

• The factor which causes default is the only factor in the dynamics of the asset
price which is idiosyncratic.

Both assumptions are obviously quite restrictive and never met completely in
practice, but they are necessary if we want to be able to hedge our contingent
claims. If we do not know the decrease in value due to default (but assume instead
that we know the probability distribution for this unknown quantity) then we cannot
replicate the payoff of the derivative, see (Lamberton and Lapeyre 1996), Chapter
7. The second condition we impose is also necessary since we want to be able to
diversify away all the risk which is not associated with default by using other assets
in the market. In this sence, our approach is similar to the one reported in (Merton
1976) where the assumption that default represents risk which is uncorrelated with
the market is used in a CAPM-type argument to derive a similar option pricing
formula for this problem. The main difference between the approach we propose
here and earlier models such as Merton’s, or the models introduced in (Zhou 1997)
and (Mason and Bhattacharya 1981), is the possibility to derive perfect hedges which
replicate claims perfectly.

In (Beumee, Hilberink, Patel, and Walsh 1999) the problem of hedging derivative
credit risk has been considered, and in this paper we show how to construct such
hedges for a continuous-time model, but we will also show how hedges can be ap-
proximated on a tree in discrete time, thus highlighting the practical applicability
of our models. We also consider the case where only one default is allowed to occur
during the lifetime of the contract, which is not treated in the papers we mentioned,
but which is of obvious practical interest.

As stated before, we will model simultaneously a defaultable asset S and an asset
V that cannot default, which both depend on a common factor. In the continuous-
time model that we will want to consider later, this common factor is modeled as a
Brownian Motion process {(Wt, t ≥ 0}, while the default event is modelled using a
Poisson process {(Nt, t ≥ 0} with intensity λ:

dSt = µs St− dt + σs St− dWt + (α − 1)St− dNt (1.1)

dVt = µv Vt dt + σv Vt dWt. (1.2)

This means that the process S for the defaultable asset is a right-continuous diffusion
process with jumps, which at the default times, i.e. the jump times of the process
N , changes its current value St− to αSt−.

This setup is typical for most reduced-form models for default events; see for
example the papers (Lando 1994; Lando 1995; Zhou 1997; Davis and Mavroidis
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1997; Dempster and Gotsis 1998). In our model, however, α is a deterministic and
a priori given constant value in ]0, 1[, an assumption which we earlier specified as
being essential for the possibility of hedging. The second fundamental assumption is
the existence of the asset V which has a common factor with S but cannot default.
We will show later on that if this assumption is not satisfied, we may alternatively
assume the existence of an insurer for the default event and derive exactly the same
results.

Consider a derivative contract C whose payout at the expiration time T depends
on both S and V . Denote its value at time t ∈ [0, T ], depending on the current
values St = S and Vt = V , by C(S, V, t). We will also assume the existence of a
riskless bond (or bankaccount) the value Bt of which evolves as

dBt = rBt dt,

where r is a constant and known riskless rate of return.
We will show that within this framework we can price and hedge contingent claims

C on the underlying assets S and V . Moreover, it turns out that we to do so we will
only need market parameters with a sensible interpretation which can be estimated
using market data.

The structure of this paper is as follows. In the next section we will consider a
discrete time approximation for the processes under consideration, and construct a
tree which can be used to price and hedge contingent claims. In section 3 we prove
a convergence result, under rather mild conditions, for the case where we let the
time step in the tree models go to zero. In section 4 we show how we can derive the
partial differential equation for the pricing of the claims directly using the stochastic
calculus for jump-diffusions. In the last section conclusions and suggestions for
further research are formulated.

2 Discrete Time Models

In this section, we will not use the continuous-time processes defined by equations
(1.1)-(1.2), but instead we first consider approximations of these processes with
a discrete time parameter. To value contingent claims dependent on S and V ,
we approximate the diffusion processes on a tree with variable time grid h. The
fundamental assumption underlying the construction of such a tree will be that we
assume that at every time step t = kh, (k ∈ 1, 2, ..., N(h)) (with hN(h) ≤ T <

h(N(h) + 1)) there are three possibilities:

1. the common factor W makes a (slight) upward movement, causing both assets
to increase to S(k+1)h = usSkh and V(k+1)h = uvVkh respectively, with us, uv >

1

2. the factor W makes a (slight) downward movement, causing both assets to
decrease to S(k+1)h = dsSkh and V(k+1)h = dvVkh respectively, with ds, dv < 1
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3. the asset S defaults to a value αS which is substantially smaller than its
current value, while the asset V only changes slightly, so S(k+1)h = αSkh and
V(k+1)h = γvVkh, with γv close to 1.

The free parameters us, ds, uv, dv , γv and probabilities assigned to each of the
three possibilities may depend on the time grid h, as long as we have that

• The default process is Poisson. This means that on the relevant time interval
[kh, (k + 1)h] the probability of default happening in this interval is equal to
the length of this interval h times the intensity parameter λ, and this default
event is therefore independent of the number of defaults which have happened
before,

• The first two conditional moments of the asset S, conditioned on the event

that no default occurs in this time interval, should be the same as those of a
lognormal process, with drift coefficient µs and diffusion coefficient σs respec-
tively.

• The first two moments of the asset V should be the same as those of a lognormal
process with drift coefficient µv and diffusion coefficient σv in all cases (i.e.
both when a default occurs and if no default occurs).

Note that the factor W and the default events are not independent of each other in
this model. We will also assume that a riskfree rate of interest r is a known constant
during the entire time horizon that we wish to consider. This is for notational
simplicity only: it can easily be seen in the sequel that our analysis can be generalized
for an a priori known time-varying interest rates {r(kh), k = 1, 2, ..., N(h)}.

Taking all these assumptions into account implies that a branch in our trinomial
tree must have the following generic structure:

S
V

�
�

�

@
@

@

usS
uvV

dsS
dvV

αS
γvV

Probability: (1 − λh)p

Probability: (1 − λh)(1 − p)

Probability: λh

The free parameters in this model are us, ds, uv, dv, γv and p, and all these pa-
rameters may depend on the timestep h. Because of the second assumption we must
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have that for all k,

E[ ln S(k+1)h − ln Skh | no default ] = (µs)h

E[ (ln S(k+1)h − ln Skh)2 | no default ] = σ2
sh + (µs)

2h2

E[ ln V(k+1)h − ln Vkh | no default ] = (µv)h

E[ (ln V(k+1)h − ln Vkh)2 | no default ] = σ2
vh + (µv)

2h2,

implying that

p ln us + (1 − p) ln ds = (µs)h (2.3)

p (ln us)
2 + (1 − p)(ln ds)

2 = σ2
s h + (µs)

2h2(2.4)

(1 − λh) (p ln uv + (1 − p) ln dv) + λh(ln γv) = (µv)h (2.5)

(1 − λh)
(

p ln(uv)
2 + (1 − p)(ln dv)

2
)

+ λh(ln γv)
2 = σ2

v h + (µv)
2h2(2.6)

This gives us 4 equations for the 6 unknown parameters us, ds, uv, dv, γv and p. We
will therefore have to show in the sequel that the results we obtain do not depend
on our particular choices for the two degrees of freedom that we still have.

Suppose that at a certain time t = kh we construct a portfolio Π containing an
amount B of riskless bonds, and (possibly shorted) amounts ε and δ of the risky
assets S and V respectively. The value of this portfolio at time t = kh is then given
by

Πkh = δSkh + εVkh + Bkh.

The change in value of this portfolio Π and the derivative contract C = C(S, V, t)
over the time interval [kh, (k + 1)h] can be represented as follows:

δS + εV + B

C(S, V, kh)
�

�
�

@
@

@

δSus + εV uv + Berh

Cu = C(Sus, V uv, (k + 1)h)

δSds + εV dv + Berh

Cd = C(Sds, V dv, (k + 1)h)

δSα + εV γv + Berh

Cα = C(Sα, V γv, (k + 1)h)

Probability: (1 − λh)p

Probability: (1 − λh)(1 − p)

Probability: λh.

If we want the value of the portfolio Π to be equal to the value of the derivative
contract C on all three end points of the branch, we must have

Cu = δSus + εV uv + Berh

Cd = δSds + εV dv + Berh

Cα = δSα + εV γv + Berh.

These three equations can be solved to give us the three components of the port-
folio Π, that is δS, εV and B, in terms of the other parameters in the model. A
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standard arbitrage argument may then be used to conclude that the initial value of
the derivative contract C at time kh should be equal to the initial portfolio value
Π = δS + εV + B which is the sum of these three components. Tedious but trivial
calculations then give that

C = e−rh ( puCu + pdCd + pαCα ) (2.7)

with

pu =
(erh − α)(dv − γv) + (α − ds)(e

rh − γv)

(us − ds)(dv − γv) + (uv − dv)(α − ds)

pd =
(erh − α)(γv − uv) + (us − α)(erh − γv)

(us − ds)(dv − γv) + (uv − dv)(α − ds)

pα =
(us − ds)(dv − erh) + (uv − dv)(e

rh − ds)

(us − ds)(dv − γv) + (uv − dv)(α − ds)

Appropriate conditions are to be imposed to ensure that all three of these quantities
are in the interval ]0, 1[; these will indeed be shown to be satisfied in the sequel.

Once we know that (2.7) is correct, we can find the proper values of pu, pd and pα

by a simpler alternative method. Indeed, since C(S, V, kh) = S and C(S, V, kh) = V

and C(S, V, kh) = erkh should all satisfy this equation, we must have that

erhS = puSus + pdSds + pαSα (2.8)

erhV = puV uv + pdV dv + pαV γv. (2.9)

1 = pu + pd + pα. (2.10)

and the riskfree probabilities pu, pd and pα follow immediately from these three
equations.

3 The Partial Differential Equation

We now consider the case where we let the parameter h, which represents the time
interval between nodes of our tree, go to zero. To do so, we will need the following
asymptotic properties of the riskfree probability values.

Lemma 3.1. Suppose that the h-dependent parameters us, uv, ds, dv, γv > 0, 0 <

p < 1 satisfy for all h > 0 the equations (2.3)-(2.6), and also assume that

lim
h↓0

p(h)(1 − p(h)) 6= 0 (3.1)

lim
h↓0

γv(h) = 1. (3.2)
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Then the solutions pu, pd and pα of the equations (2.8)-(2.10) satisfy

pu (us − 1)2 + pd (ds − 1)2 = σ2
sh + o(h) (3.3)

pu (uv − 1)2 + pd (dv − 1)2 = σ2
vh + o(h) (3.4)

pu (us − 1)(uv − 1) + pd (ds − 1)(dv − 1) = σsσvh + o(h) (3.5)

while (uv − 1)3, (dv − 1)3, (us − 1)3, (ds − 1)3 are all of order o(h) and

pα = λ̃h + o(h), λ̃ =
1

1 − α

(

µs − r − σs

σv
(µv − r)

)

. (3.6)

A proof of this lemma can be found in the Appendix at the end of this paper.
Remark that we can interpret the first equation as a condition that we do not
destroy branches in the tree as we refine our grid, while the second one states that
the expectation of the square of the increments of the V asset upon default vanishes
when the time grid converges to zero. Using these conditions, we are now in a
position to derive a partial differential equation for the value of a contingent claim
on S and V .

Theorem 3.1. Assume that we select the two free parameters p = p(h) and γv =
γv(h) such that (3.3)-(3.4) are satisfied, and let the other parameters us(h), ds(h), uv(h)
and dv(h) satisfy (2.3)-(2.6). Then the solution of the riskfree probability pricing
method on the tree given by (2.7) will converge to the solution of the following partial
differential equation

rC = (r + λ̃(1 − α))S
∂C

∂S
+ rV

∂C

∂V
+ 1

2σ2
sS

2 ∂2C

∂S2
+ 1

2σ2
vV

2 ∂2C

∂V 2
(3.7)

+ σsσv SV
∂2C

∂S∂V
+

∂C

∂t
+ λ̃ [ C(Sα, V, t) − C(S, V, t) ] .

when the time grid size h converges to zero, where

λ̃ =
1

1 − α

(

µs − r − σs

σv
(µv − r)

)

(3.8)

under the condition that this partial differential equation admits a unique solution
C(S, V, T ) which is twice continuously differentiable in S and V and once differen-
tiable with respect to t.

Proof. We have, from (2.7), that

erhC(S, V, kh) = pu C(Sus, V uv, (k + 1)h) + pd C(Sds, V dv , (k + 1)h)

+ pα C(Sα, V γv, (k + 1)h).

We perform a Taylor series expansion in h around h = 0 on both sides. Since we
have shown in the previous Lemma that terms like (us − 1)3 are in fact of small
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order o(h), we only need to consider a second order expansion for an expansion up
to order h. Such a Taylor series expansion is indeed possible since we assumed that
the solution C to the PDE satisfies the appropriate differentiability requirements.
We find

(1 + rh)C(S, V, kh)

= pu

[

C(S, V, kh) + ∂C
∂S

(S, V, kh) · S(us − 1) + 1
2

∂2C
∂S2 (S, V, kh) · S2(us − 1)2

]

+

pu

[

∂2C
∂S∂V

(S, V, kh) · S(us − 1)V (uv − 1) + ∂C
∂V

(S, V, kh) · V (uv − 1)
]

+

pu

[

1
2

∂2C
∂V 2 (S, V, kh) · V 2(uv − 1)2 + ∂C

∂t
(S, V, kh) · h

]

+

pd

[

C(S, V, kh) + ∂C
∂S

(S, V, kh) · S(ds − 1) + 1
2

∂2C
∂S2 (S, V, kh) · S2(ds − 1)2

]

+

pd

[

∂2C
∂S∂V

(S, V, kh) · S(ds − 1)V (dv − 1) + ∂C
∂V

(S, V, kh) · V (dv − 1)
]

+

pd

[

1
2

∂2C
∂V 2 (S, V, kh) · V 2(dv − 1)2 + ∂C

∂t
(S, V, kh) · h

]

+

pα C(Sα, V γv, (k + 1)h) + o(h).

Collecting and rearranging terms gives

rhC(S, V, kh) (3.9)

= ∂C
∂S

(S, V, kh) · S [ puus + pdds − (pu + pd) ] +
∂C
∂V

(S, V, kh) · V [ puuv + pddv − (pu + pd) ] +

1
2

∂2C
∂S2 (S, V, kh) · S2

[

pu(us − 1)2 + pd(ds − 1)2
]

+

1
2

∂2C
∂V 2 (S, V, kh) · V 2

[

pu(uv − 1)2 + pd(dv − 1)2
]

+

∂2C
∂S∂V

(S, V, kh) · S · V [ pu(us − 1)(uv − 1) + pd(ds − 1)(dv − 1) ] +

pα

[

−C(S, V, kh) + C(Sα, V, kh) + ∂C
∂t

(Sα, V, kh) · h + ∂C
∂V

(Sα, V, kh) · V (γv − 1)
]

+ 1
2

∂2C
∂V 2 (Sα, V, kh) · V 2(γv − 1)2

]

+

(1 − pα) ∂C
∂t

(S, V, kh) · h.

From (2.8) and (2.9) we may immediately conclude that

erh − 1 = pu(us − 1) + pd(ds − 1) + pα(α − 1)

erh − 1 = pu(uv − 1) + pd(dv − 1) + pα(γv − 1)

so we have that

puus + pdds − (pu + pd) = rh + (1 − α)pα + O(h2)

puuv + pddv − (pu + pd) = rh + (1 − γv)pα + O(h2).

Substituting these equations, and the results from Lemma 3.1 into (3.9) and dividing
by h then gives the result if we let h tend to zero. �
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We can now easily see that if we wish to price a contingent claim which only
depends on the defaultable asset S, and not on V , then the price of such an asset
also depends on S alone. However, from the proof we can see that the hedge for such
a claim does include the asset V . But the price of V never enters our calculations;
only the market price of risk of V , µv−r

σv
appears in the pricing formula, thus showing

that our results hold for a generic choice of the asset V .

4 Analysis in Continuous Time

Having found the limiting solution for trees with time steps h converging to zero,
we now turn to the full continuous time problem, which will enable us to derive
the partial differential equation for the option price C directly. We want to model
the defaultable asset S as a diffusion process with jumps which are governed by
a Poisson process. To do so, we start with a probability space (Ω,F , P ) and a
filtration {Ft, t ≥ 0} satisfying all the usual conditions (i.e. it is right-continuous
and F0 contains all P -negligible sets). We assume the space to be rich enough to be
able to define on it a Brownian Motion process {(Wt,Ft), 0 ≤ t ≤ T} and an infinite
countable number of stochastic variables {Zk, k ∈ N} which have an exponential
distribution with parameter λ. Define T0 = 0 and for all k ∈ N construct the
random variables Tk+1 = Tk + Zk so

P(Tk+1 − Tk ≤ s) =
(

1 − e−λs
)

1{s≥0}.

Then we define the asset process {St, 0 ≤ t ≤ T} to be of the following form:

St = S0 e(µs−1
2σ2

s)t+σsWt

∞
∑

k=0

αk1{ t∈ [Tk, Tk+1[ }.

Remark that we have not, so far, specified anything about the relation between
the random times between default {Zk, k ∈ N} and the Brownian motion process
{(Wt,Ft), 0 ≤ t ≤ T}, and in particular we have not assumed them to be indepen-
dent.

The process S is defined to be right-continuous with left-hand limits: it belongs
to the class of corlol processes in the usual terminology. We define the left hand
limit process {St−, 0 < t ≤ T} associated with S by St− = lim

u↑t
Su, so

St− = S0 e(µs−1
2σ2

s)t+σsWt 1{ t∈ ]0, T1] } + S0 e(µs−1
2σ2

s )t+σsWt

∞
∑

k=1

αk1{ t∈ ]Tk, Tk+1] },

and we introduce the corresponding jump process

∆St = St − St−.
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This jump process is obviously equal to zero at all times except the default times
t = Tk for k ∈ N \ {0}, where one can easily show that

∆STk
= S0 e(µs−1

2σ2
s )Tk+σsWT

k (αk − αk−1 ) = (α − 1)STk−.

We will shortly start analyzing portfolios with value

Πt = ρtBt + δtSt + εtVt.

with Bt = ert and we will require the hedging processes {ρt, 0 ≤ t ≤ T}, {δt, 0 ≤
t ≤ T} and {εt, 0 ≤ t ≤ T} to be left-continuous processes:

ρt =
∞
∑

k=0

ρk
t 1{ t∈ ]Tk, Tk+1] }

δt =
∞
∑

k=0

δk
t 1{ t∈ ]Tk, Tk+1] }

εt =

∞
∑

k=0

εk
t 1{ t∈ ]Tk, Tk+1] }.

This means that we do not want the hedging strategies to anticipate the default
event, i.e. the hedging position at a certain time t should be based on all the
information about Su at times u < t but not on St itself. Remark that the definitions
imply that ρt = ρt−, δt = δt− and εt = εt− so ∆ρt = ∆δt = ∆εt = 0 for all t in [0, T ].

The left-continuity will now enable us to use the stochastic integration theory for
general processes. The integral

It =

∫ t

0
δu−dSu

is defined to be equal to

It =

∞
∑

k=0

Ik
t 1{ t∈ [Tk, Tk+1[ },

with

Ik
t = Ik−1

Tk
+ δk−1

Tk
∆STk

+

∫ t

Tk

δk
u dSu.

The key element here is that we incorporate the value of δk−1
Tk

at the jump time

Tk, and not the value of δk
Tk

, since we should not anticipate on beforehand that a
jump is about to happen. Note that I will be in the class of corlol processes as well,
i.e. it is right-continuous and has left-hand limits. Moreover, with these definitions
we can now use the following two key results from the general theory of stochastic
processes, proofs of which, and details concerning their interpretation, can be found
for example in the books (Elliott 1982; Rogers and Williams 1987) and (Shiryayev
1984).
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Lemma 4.2. (Partial Integration Formula for Semimartingales)
Using the definitions given above, we have that for all t ∈ [0, T ]

δtSt − δ0S0 =

∫ t

0
Su− dδu +

∫ t

0
δu− dSu + 〈δc, Sc〉t +

∑

0≤u≤t

∆Su ∆δu

where 〈δc, Sc〉 is the joint quadratic variation of the continuous parts of the S and
δ processes.

Lemma 4.3. (Change of Variable Formula for Semimartingales)
For every twice differentiable function F with bounded first and second order deriva-
tives we have that for all t ∈ [0, T ]

F (St) − F (S0) =

∫ t

0
F ′(Su−) dSu + 1

2

∫ t

0
F ′′(Xu−) d 〈Sc, Sc〉u

+
∑

0<u≤t

(F (Su) − F (Su−) − F ′(Su−)∆Su ),

where 〈Sc, Sc〉 is the quadratic variation of the continuous part of the S process.

We now define the Poisson process N associated with the jump times {Tk, k ∈ N}
as

Nt =

∞
∑

k=0

k 1{ t∈ [Tk, Tk+1[ }.

This Poisson process is obviously in the class of corlol processes, and its intensity
is λ. We can then easily show that our original process S solves the stochastic
differential equation

St − S0 = µs

∫ t

0
Su− du + σs

∫ t

0
Su− dWu + (α − 1)

∫ t

0
Su− dNu, (4.1)

since application of the Change of Variable Formula for F (x) = ln x gives that

ln St − ln S0 =

∫ t

0

µs Su− du + σsSu− dWu + (α − 1)Su− dNu

Su−
+ 1

2

∫ t

0

−1

S2
u−

σ2
sS

2
u− du

+
∑

0<u≤t

( ln αSu− − ln Su− − 1

Su−
· (α − 1)Su− )1{Su 6=Su−

}

= (µs − 1
2σ2

s)t + σsWt + (α − 1)Nt + Nt · ( ln α − (α − 1) )

so

St = S0 e(µs−1
2σ2

s) t + σs Wt + (ln α) Nt

= S0 e(µs−1
2σ2

s)t+σsWt

∞
∑

k=0

αk1{ t∈ [Tk, Tk+1[ },

12



which is exactly the definition of the S process we introduced earlier. But substi-
tuting (4.1) in the Change of Variable Formula then gives that for our process S we
have that

F (St) − F (S0)

=

∫ t

0
F ′(Su−) [µsSu− du + σsSu− dWu + (α − 1)Su− dNu ]

+

∫ t

0

1
2F ′′(Su−)σ2

s(Su−)2 du

+
∑

0<u≤t

[

(F (αSu−) − F (Su−) ) · 1{Su 6=Su−
} − F ′(Su−)(α − 1)Su− · 1{Su 6=Su−

}
]

=

∫ t

0
[F ′(Su−)µsSu− + 1

2F ′′(Su−)σ2
s(Su−)2 ] du +

∫ t

0
F ′(Su−)σsSu− dWu

+

∫ t

0
[F (αSu−) − F (Su−) ] dNu. (4.2)

We can use this equation to construct a (dynamic) portfolio Πt which will satisfy
the following conditions:

• the value of this portfolio will at all times during the life time of the contract
equal the value of the derivative contract C,

• the portfolio only consists of prescribed amounts δt of the risky assets S, pre-
scribed amounts εt of the riskless asset V , and a prescribed amount ρt of cash,

• the invested amounts εt, δt and ρt are left-continuous, so they do not anticipate
the default event, and they are self-financing, so no money is injected into, or
withdrawn from, the portfolio during the life time of the derivative contract.

The last requirement can be formulated as follows: we require the portfolio

Πt = ρtBt + δtSt + εtVt (4.3)

to satisfy

Πt − Π0 =

∫ t

0
ρu dBu +

∫ t

0
δu dSu +

∫ t

0
εu dVu, (4.4)

at all times 0 ≤ t ≤ T , which means that the changes in value of the portfolio are
only a result of price movements in the market and not due to our selling or buying
of assets. A self-financing portfolio which satisfies all conditions mentioned above is
called a replicating portfolio, and we equate its value at all times with the value of
the derivative C at that time, using a standard arbitrage argument. This will then
enable us to prove the following.

13



Theorem 4.2. Let C be a contingent claim paying G(ST , VT ) at the expiration
date T , and let the two assets S and V evolve in continuous time according to (1.1)-
(1.2). Assume that the diffusion factor and default factor have zero crossvariation at
all times: d 〈W,N〉t = 0 for all t ∈ [0, T ]. Then C must satisfy the partial differential
equation

rC = (r + λ̃(1 − α))S
∂C

∂S
+ rV

∂C

∂V
+ 1

2σ2
sS

2 ∂2C

∂S2
+ 1

2σ2
vV

2 ∂2C

∂V 2
(4.5)

+ σsσv SV
∂2C

∂S∂V
+

∂C

∂t
+ λ̃ [ C(Sα, V, t) − C(S, V, t) ] ,

with boundary condition

C(S, V, T ) = G(S, V )

if this PDE has a unique solution on t ∈ [0, T ] for this boundary condition, which is
twice continuously differentiable in S and V and continuously differentiable in t.

Proof. Let C(S, V, t) be the unique solution for the PDE with the given boundary
condition. Define a self-financing portfolio Π with value Πt at time t as in (4.3),
with hedging processes

δt = C(αSt−,Vt,t)−C(St−,Vt,t)
(α−1)St−

εt = ∂C
∂V

(St−, Vt, t) +
σs

σv(1−α)Vt

[

C(αSt−, Vt, t) − C(St−, Vt, t) − St−(α − 1)∂C
∂S

(St−, Vt, t)
]

,

ρt =
1

Bt
[ C(St−, Vt, t) − δtSt− − εtVt ] .

Remark that all these hedging strategy processes are left-continuous and that our
choice implies that Π0 = C(S0, V0, 0) as can be easily seen in the equation for ρt

given above. We now find that

dΠt

= ρt dBt + δt dSt + εt dVt = rρtBt dt + δt dSt + εt dVt

= rC(st−, Vt, t) dt + δt(dSt − rSt−dt) + εt(dVt − rVtdt)

(4.5)
=

(

(r + λ̃(1 − α))∂C
∂S

St− + r ∂C
∂V

Vt + 1
2

∂2C
∂S2 σ2

sS
2
t− + 1

2
∂2C
∂V 2 σ2

vV
2
t

+ ∂2C
∂S∂V

σsσvSt−Vt + ∂C
∂t

+ λ̃ [C(αSt−, Vt, t) − C(St−, Vt, t) ]
)

dt

+ C(αSt−,Vt,t) − C(St−,Vt,t)
α−1 (µs dt + σs dWt + (α − 1) dNt − r dt)

+
(

∂C
∂V

Vt + σs

σv(1−α) (C(αSt−, Vt, t) − C(St−, Vt, t) − (α − 1)∂C
∂S

St−)
)

·
· (µv dt + σv dWt − r dt)
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We collect terms to obtain

dΠt

=
(

1
2

∂2C
∂S2 σ2

sS
2
t− + 1

2
∂2C
∂V 2 σ2

vV
2
t + ∂2C

∂S∂V
σsσvSt−Vt + ∂C

∂t

)

dt

+ ( C(αSt−, Vt, t) − C(St−, Vt, t) ) ·

·
(

(λ̃ +
µs−r−(µv−r)

σs

σv

α−1 )dt + ( σs

α−1 +
− σs

σv
σv

α−1 ) dWt + dNt

)

+ ∂C
∂S

St−
(

(r + λ̃(1 − α) + σs(1−α)(µv−r)
σv(1−α) )dt − σs(α−1)

σv(1−α)σv dWt

)

+ ∂C
∂V

Vt ( r dt + µv dt + σv dWt − r dt )

=
(

1
2

∂2C
∂S2 σ2

sS
2
t− + 1

2
∂2C
∂V 2 σ2

vV
2
t + ∂2C

∂S∂V
σsσvSt−Vt + ∂C

∂t

)

dt

+ (C(αSt−, Vt, t) − C(St−, Vt, t) ) dNt

+ ∂C
∂S

St−
(

(r + (µs − r) − σs(µs−r)
σv

+ σs(µs−r)
σv

) dt + σsdWt

)

+ ∂C
∂V

Vt ( µv dt + σvdWt )

= dC(St−, Vt, t).

But since ΠT = C(ST−, VT , T ) = G(ST−, VT ) we have thus shown that the portfolio
Π is a perfect hedge for the contingent claim G, and the value of this claim at time
zero is therefore equal to Π0 = C(S0, V0, 0). �

5 Solution of the Partial Differential Equation

We may solve the PDE that we have now derived using Fourier Transforms, but
once the form of the solution has been found, it may be derived in a much simpler
way.

Let F (S, t) denote the solution of the ordinary Black-Scholes equation with ad-
justed interest rate r + λ̃(1 − α) for a contingent claim G:

0 = 1
2σ2

sS
2 ∂2F

∂S2
+ (r + λ̃(1 − α))S

∂F

∂S
+

∂F

∂t
− (r + λ̃(1 − α))F

G(S) = F (S, T ), (5.1)

and look for a solution for our PDE of the form

C(S, t) =

∞
∑

n=0

an(t)F (αnS, t). (5.2)

We immediately find the boundary conditions

a0(T ) = 1, an(T ) = 0, n ∈ N \ {0}. (5.3)
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Taking our PDE (3.7)

0 = 1
2σ2

sS
2 ∂2C

∂S2
+ (r + λ̃(1 − α))S

∂C

∂S
+

∂C

∂t

− (r + λ̃(1 − α))C + λ̃(1 − α)C + λ̃ (C(Sα, t) − C(S, t) )

and substituting (5.2) gives

0 =
∞
∑

n=0

an(t)

[

1
2σ2

sS
2 ∂2

∂S2
α2n F (αnS, t) + (r + λ̃(1 − α))αn S

∂

∂S
F (αnS, t)

+
∂

∂t
F (αnS, t) − (r + λ̃(1 − α))F (αnS, t)

]

+
∞
∑

n=0

[

F (αnS, t) d
dt

an(t) + λ̃(1 − α)an(t)F (αnS, t)

+λ̃an(t)
(

F (αn+1S, t) − F (αnS, t)
)

]

and using (5.1) for the value S → Sαn then gives

0 = 0 +

∞
∑

n=0

[

d
dt

an(t) + λ̃an−1(t) − αλ̃an(t)
]

F (αnS, t)

if we take a−1(t) = 0 for all t, and therefore

d
dt

an(t) = λ̃ (α an(t) − an−1(t)), n ∈ N \ {0},
d
dt

a0(t) = λ̃α a0(t).

Solving for the functions an satisfying these equations and the boundary conditions
(5.3) gives

an(t) =
[λ̃(T − t)]n

n!
e−λ̃α(T−t),

so if we define

r̃ = r − 1
2σ2

s + λ̃(1 − α)

a solution is given by

C(S, t)

=

∞
∑

n=0

[λ̃(T − t)]n

n!
e−λ̃α(T−t) ·

E

[

e−(r+λ̃(1−α))(T−t)G(ST ) | ln ST ∼ N(ln Sαn + r̃(T − t), σs

√
T − t)

]

=

∞
∑

n=0

[λ̃(T − t)]ne−λ̃(T−t)

n!
· (5.4)

E
[

e−r(T−t)G(ST ) | ln ST ∼ N(ln Sαn + r̃(T − t), σs

√
T − t)

]

.
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Let P (λ̃) denote a Poisson process with parameter λ̃. We have then proven

Theorem 5.3. The solution to the partial differential equation (3.7) can be written
in the form of the following conditional expectation:

C(S, t) = EQ
[

e−r(T−t) G(ST · αNT−t)
]

for all t ∈ [0, T ], where Q is a measure under which the stochastic variables N and
ST are assumed to be independent with marginal distributions

ln ST ∼ N(ln S + r̃(T − t), σs

√
T − t)

N ∼ P (λ̃)

and where

r̃ = r − 1
2σ2

s + λ̃(1 − α)

Note that this means that calculation of the price of the derivative contract may
be interpreted as calculating an expectation by conditioning on n jumps having
occurred, where the jump intensity has changed in the riskfree world to a new value

λ̃ , instead of the real world jump intensity λ.
If α = 1 or λ̃ = 0 we find back the usual Black-Scholes equation, as was to be

expected. In particular, note that the intensity of the default process Nt does not
enter the partial differential equation. If we hedge perfectly, it should not make any
difference how often we have to hedge, since we have to be ready for the possibility
of a jump occurring at all times during the lifetime of the contract.

Equation (5.4) shows how we may easily compute the value of a call option on a
defaultable asset S. Indeed, it is simply a linear combination of terms indexed by
n, with weight

[λ̃(T − t)]ne−λ̃(T−t)

n!

while the main term

E

[

e−r(T−t)G(ST ) | ln ST ∼ N(ln Sαn + r̃(T − t), σs

√
T − t)

]

.

can easily be shown to be the value of a vanilla Black-Scholes call option with
strike price K, time to maturity T − t, volatility σ and riskfree interest rate r, if
we substitute Sαne−λ̃(1−α)(T−t) for the stock price into the Black-Scholes formula,
instead of S. The term e−λ̃(1−α)(T−t) may be interpreted as a negative dividend on
the risky asset S.
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If the derivative asset C only depends on the defaultable asset S, while the other
asset V is priced in a Black-Scholes complete market with market price of risk equal
to ϕ, the equation simplifies to

rC = (µs − σsϕ )S
∂C

∂S
+ 1

2σ2
sS

2 ∂2C

∂S2
+

∂C

∂t
− (µs − σsϕ − r )C(Sα,V,t)−C(S,V,t)

α−1 .

Note that if we define an analogous market price of default risk ϕdef by

µs − r

σs
= ϕ + ϕdef

then we may write

rC = r S
∂C

∂S
+ 1

2σ2
sS

2 ∂2C

∂S2
+

∂C

∂t
− σsϕdef

C(Sα,V,t)−C(S,V,t)−∂C
∂S

(Sα−S)

α−1 .

which shows clearly that we arrive yet again at the ordinary Black-Scholes formula
if there is no default risk (i.e. if ϕdef = 0). As we noted before, the price of V itself
never enters our pricing formula, and any non-defaultable asset V with this market
price of risk can therefore be used to hedge our position.

We can give a nice and simple interpretation of the new riskfree default intensity
in terms of an insurance contract for default risk. Suppose we construct a portfolio
consisting of σsSt− assets V and −σvVt (i.e. shorted) assets S. The value of this
portfolio will then be

Πt = σsSt−Vt − σvVtSt.

If we use λ̃ to denote the intensity which makes Ñt = Nt − λ̃t a martingale under
the risk-neutral measure Q, so

EQ[Nt − Ns | Ns] = λ̃(t − s)

then we have, under the assumption that the portfolio is self-financing,

dΠt = σsSt−(µvdt + σvdWt)Vt

− σvVt( (µs + λ̃(α − 1))dt + σsdWt + (α − 1)(dNt − λ̃dt) )St−
= (σsµv − σvµs + σvλ̃(1 − α))St−Vt dt + σv(1 − α)λ̃dÑt

but since Ñt is a martingale under the risk-neutral measure, the first term must
equal rΠt− dt and since

rΠt− = r(σs − σv)St−Vt

we thus have

σsµv − σvµs + σvλ̃(1 − α) = r(σs − σv)
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or

λ̃ =
1

1 − α

(

µs − r − σs

σv
(µv − r)

)

This result helps to give an appropriate interpretation of the new market parameter
λ̃ that we have introduced. The decomposition

dNt = λ̃ dt + dÑt (5.5)

under the risk-neutral measure can be interpreted as the decomposition of an in-
surance contract Nt (which pays $ 1 at time T for every default that has happened
during the time interval [0, T ], i.e. the lifetime of the contract) into a martingale
part Ñt and a risk premium λ̃ per time unit. The derivation above therefore shows
that our original assumption, that all risk due to the diffusion term dWt in the asset
dynamics can be diversified away using the asset V , is in fact equivalent with the
existence of an insurance contract with this premium. The assumption that an asset
V exists which shares the diffiusion term with S but cannot itself default is therefore
no longer necessary if one can find someone who is willing to ’insure jumps’. This
statement should actually be of help in risk management problems which involve
default or credit derivatives. The statement that risk which cannot be diversified
away in defaultable assets should be interpreted as insurance seems logical, and the
derivation above may constitute a first step to the explicit quantification of such a
statement.

6 Exclusion of Multiple Default Events.

For some markets it is more realistic to model the default process in such a way
that either zero or one default can occur, but not more than one. It is relatively
easy to describe this process in stochastic calculus: one may simply stop the Poisson
process Nt at its first jump time τ to give a new process Ñt = Nmin(t,τ). It can be

shown (Davis 1993) that the compensator for Ñt is equal to λ(1− Ñt−) at all times
t ≥ 0. by the optional stopping theorem. By a slight abuse of notation, we will
again use the notation Nt for the stopped process, instead of Ñt. We thus have for
this case

dSt = µsSt− dt + σsSt− dWt + (α − 1)St−(1 − Nt−) dNt (6.1)

Having maximally one jump means that the information structure of the problem
changes. When we considered a Poisson process Nt, the value of the derivative
contract C(S, V, t) did not depend on the current value Nt, the number of defaults
so far. This is because the conditional distribution of the future of a Poisson process
does not depend on the number of jumps which have occurred in the past. This is no
longer true for the stopped Poisson process. Once a jump has occurred no jump can
occur in the future, so the conditional distribution of the future changes at the time
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of the jump (to a trivial one, in fact). This means that the contingent claim will now
depend on the jump having or not having occurred: C = C(St, Vt, Nt, t), and we
need to consider the cases C(S, V, 0, t) and C(S, V, 1, t) separately. We will from now
on only consider contingent claims which do not depend on V , so C(S, V,N, t) =
C(S,N, t). The case where the claim does depend on V can be treated using an
obvious extension of the analysis presented here.

It is not hard to see that if the contingent claim at time T is of the form G(S),
i.e. it does not depend on NT , then C(S, 1, t) will evolve according to the ordinary
Black-Scholes equation:

C(S, 1, t) = E[ e−r(T−t)G(ST ) | ln ST ∼ N(ln S + (r − 1
2σ2)(T − t), σ

√
T − t) ]

since no jumps are to be expected after the jump has occurred, and we will simply
be able to hedge our position using the standard hedge, as prescribed by Black and
Scholes. The price of the contract from then on must then be equal to the price
of constructing these hedges, which is the solution to the ordinary Black-Scholes
equation.

But from a simple discrete tree argument we can then find the partial differential
equation for C(S, 0, t). In fact, we should now combine two trees, one for the case
where a default has already occurred, and one for the case where a default has not
(yet) occurred.

As we remarked above, on the lower tree the contract simply evolves according to
the Black Scholes equation, while on the upper tree we have to use the riskneutral
probabilities pu, pd and pα which we introduced before. We can then go through
exactly the same calculations. Since C(S, 1, t) follows the Black-Scholes equation
we use the notation C(S, t) = C(S, 0, t). Calculations eventually lead to the partial
differential equation

rC = (r + λ̃(1 − α))S
∂C

∂S
+ 1

2σ2
sS

2 ∂2C

∂S2
+

∂C

∂t
+ λ̃ [ C(Sα, 1, t) − C(S, t) ] ,

which may be solved explicitly
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Theorem 6.4. Let C(St, Nt, t) be a contingent claim paying GNT
(ST ) at the ex-

piration date T , and let the asset S evolve in continuous time according to (6.1).
Assume that the diffusion factor and default factor have zero crossvariation at all
times: d 〈W,N〉t = 0 for all t ∈ [0, T ]. Then C must satisfy

C(S, 0, t)

= e−r(T−t) EQ
[

G0(ST eλ̃(1−α)(T−t))1{τ≥T} + G1(αST eλ̃(1−α)(τ−t))1{τ≤T}
]

C(S, 1, t)

= e−r(T−t) EQ [ G1 (ST ) ]

where Q is a measure such that ST and τ are independent with

ln ST ∼ N(ln S + (r − 1
2σ2

s)(T − t), σ
√

T − t)

while τ has an exponential distribution with parameter λ̃, as in (3.8) conditioned on
the event that τ ≥ t.

Proof. We solve the PDE, with boundary conditions

C(S, 0, T ) = G0(S)

C(S, 1, T ) = G1(S)

by Fourier analysis. First we use the coordinate transformation S = ex with

C(S, 0, t) = C(ex, 0, t) = φ0(x, t),

C(S, 1, t) = C(ex, 1, t) = φ1(x, t),

which gives that

∂φ0

∂x
= S

∂C

∂S
,

∂2φ0

∂x2
= S2 ∂C

∂S
+ S

∂C

∂S
,

so the transformed PDE becomes

rφ0 = (r + λ̃(1 − α) − 1
2σ2

s)
∂φ0

∂x
+ 1

2σ2
s

∂2φ0

∂x2
+

∂φ0

∂t
+ λ̃ [φ1(x + ln α, t) − φ0(x, t) ] .

Denoting the Fourier transforms1 as

Φk(ω, t) =
1√
2π

∫ ∞

−∞
e−iωxφk(x, t) dx

1We will not go into details concerning the existence and uniqueness of the Fourier transforms
here. The Fourier Transform of G(ex) may not be well defined but one can show that such problems
can be circumvented when we incorporate the boundary conditions G(ex) into the PDE itself by
solving the PDE’s for C(ex, i, t) − G(ex) instead of the PDE’s for C(ex, i, t). It then turns out
that the solutions do exist for vanilla products such as ordinary calls or puts. We do not introduce
this (rather cumbersome) method here but proceed formally, since we may always check that the
solution we find does indeed satisfy the PDE.
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(for k = 0, 1) we find that







∂Φ0

∂t
= Φ0(ω, t) [ r + λ̃ − iω(r + λ̃(1 − α) − 1

2σ2
s) + 1

2σ2
sω

2 ]

− λ̃Φ1(ω, t)eiω lnα

Φ0(ω, T ) = ΦG0(ω)

(6.2)

where ΦGk(ω) denotes the Fourier Transform of Gk(e
x). We can solve this to find

Φ0(ω, t) (6.3)

= ΦG0(ω)e[ R(ω)+λ̃(1−iω(1−α)) ](t−T )

− λ̃eiω ln α

∫ t

T

e[ λ̃(1−iω(1−α))+R(ω) ](t−s)Φ1(ω, s)ds

with

R(ω) = r − iω(r − 1
2σ2

s) + 1
2σ2

sω
2.

For λ̃ = 0 we must have that the resulting expression is the Fourier transform of the
solution of the Black Scholes equation. But Φ1(ω, s) is the Fourier transform of the
solution of the Black Scholes equation, which must therefore equal

Φ1(ω, s) = ΦG1(ω)eR(ω)·(s−T ) (6.4)

= 1√
2π

∫ ∞

−∞
eiωx E

[

e−r(T−s)G1(ST ) | ln ST ∼ N(x + (r − 1
2σ2

s)(T − s), σs

√
T − s)

]

dx

We can then substitute this result in (6.3) to find

Φ0(ω, t)

= eλ̃(t−T )eiωλ̃(1−α)(T−t) ·
[

ΦG0(ω)eR(ω)(t−T )
]

+ λ̃eiω ln α

∫ T

t

eλ̃(1−iω(1−α))(t−s)
[

eR(ω)·(t−s)eR(ω)·(s−T )ΦG1(ω)
]

ds

and substituting (6.4) in the terms in brackets gives

Φ0(ω, t)

= e−λ̃(T−t) 1√
2π

∫ ∞

−∞
eiω(x+λ̃(1−α)(T−t)) ·

E

[

e−r(T−t)G0(ST ) | ln ST ∼ N(x + (r − 1
2σ2

s)(T − t), σs

√
T − t)

]

dx

+ 1√
2π

∫ T

t

λ̃e−λ̃(s−t)

∫ ∞

−∞
eiω(x+λ̃(1−α)(s−t)+ln α) ·

E

[

e−r(T−t)G1(ST ) | ln ST ∼ N(x + (r − 1
2σ2

s)(T − t), σs

√
T − t)

]

dx
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and applying the inverse Fourier transform then gives the solution

φ0(x, t)

=

(
∫ ∞

T

λ̃e−λ̃(s−t) ds

)

E[e−r(T−t)G0(ST ) | ln ST ∼ N(x + a(T ), σ
√

T − t)]

+

∫ T

t

λ̃e−λ̃(s−t)E[e−r(T−t)G1(ST ) | ln ST ∼ N(x + ln α + a(s), σ
√

T − t)] ds

with

a(s) = (r − 1
2σ2

s)(T − t) + λ̃(1 − α)(s − t)

which proves the result. �

Notice that in this new formula we can no longer calculate the value of a vanilla call
option as a countable infinite sum of solutions of the usual Black-Scholes formula,
since the stochastic time of default τ enters our calculations explicitly. This is due
to the changed nature of the problem: the distribution of the future of the default
process does not depend on time when we allow an infinite number of defaults, but if
only one default can maximally occur, this is no longer the case. In our earlier result
we could substitute S → Sαneλ̃(1−α)(T−t) in the ordinary Black-Scholes call formula,
but we see that in the present case we must substitute S → Sα0eλ̃(1−α)(T−t) for the
first term and S → Sα1eλ̃(1−α)(τ−t) for the second term. Taking the expectation of
the second term then involves an integration over the whole (riskfree) conditional
distribution of τ , thus making the pricing formula more complex.

7 Conclusions

In this paper we have presented a hedging strategy for contingent claims on de-
faultable assets, under the important assumption that we know the size of the (rel-
ative) loss in value upon default, and the assumption that market-wide risk in the
asset can be hedged away using other assets in the market. The usefulness of the
model therefore critically depends on whether these two assumptions are a reason-
able approximation for a particular case that one wants to consider. However, more
important is the general conclusion that if one manages to hedge away (part of) the
market risk in a defaultable security, hedging the default risk should in principle be
possible if the underlying asset can be shorted. We have shown that the resulting
equations may be interpreted as the introduction of an insurance contract Nt against
default risk, which pays one dollar at the end of the contract for every default that
has occurred. The parameter λ̃, which was shown in (5.5) to determine the risk
premium on such an insurance contract, is a market parameter which is not directly
observable but it could be estimated using statistical estimation techniques. Note
that we do not need to estimate λ̃ directly since we have shown that λ̃ follows from
the drift and volatility parameters of S and any asset V which cannot default.
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This is the important difference with earlier models such as (Merton 1976) in
which it is shown that an option pricing formula based on a hedge with just the two
assets S and B cannot be constructed, but that one may still find an option pricing
formula if one assumes that the defaults represent ’non-systematic’ risk which will
be uncorrelated with the market, having a β of zero. The option formula which is
derived there is very similar to our result when the number of defaults is not limited
to one, but in that model the parameter λ which is used represents the original

intensity of the default process.
The difference with our model is that we find a new riskneutral intensity λ̃, due to

our consideration for the rest of the market, modelled by the asset V . Indeed, in our
model the original intensity of the default process does not play a role in the pricing
or hedging formulas. And if our position is properly hedged all the time the average
number of default that may happen should indeed not enter our calculations. The
fact that the intensity of the jump process should be changed to a new riskneutral
value in the pricing formula has been remarked upon earlier in (Aase 1988). In that
paper a more general setup is used and it is shown that claims can be replicated, but
the equivalent martingale measure (and hence prices) are not unique. Also the new
intensity λ̃ under the martingale measure is not linked to other default-free assets
V in the market. The same is true for the paper (Lando 1995) in which a special
case of our setup (with α = 0 and no restriction on the number of defaults that may
happen) has been solved.

Note that the only characteristic of V which enters our equations is its market
price of risk (which should be the same for all default-free assets in our model) and
the price of V at any given moment is only used to calculate the hedge for the
option; it does not play a role in the option price when the payoff at maturity does
not involve V . This suggests that our framework may also be applicable in more
complicated models for defaultable assets, and these are now the topic for ongoing
research.

Appendix

Proof of Lemma 3.1. Subtracting the square of equation (2.3) from (2.4) gives

p(1 − p) ( ln us − ln ds )2 = σ2
sh,

and so we have (since we assumed that us > ds)

ln us − ln ds =
σs

√

p(1 − p)
·
√

h. (7.1)

If we substitute this back into (2.3) we find that

ln ds = (µs)h − p(ln us − ln ds) = −σs

√

p
(1−p) ·

√
h + (µs)h (7.2)
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and using (7.1) this means that

ln us = σs

√

1−p
p

√
h + (µs)h. (7.3)

Similar calculations for (2.5) and (2.6) show that

ln uv =
√

1−p
p

·
√

σ2
v − 2λ ln γ2

v ·
√

h + (µv − λ ln γv) · h + O(h
√

h)

ln dv = −
√

p
1−p

·
√

σ2
v − 2λ ln γ2

v ·
√

h + (µv − λ ln γv) · h + O(h
√

h)

We conclude that under the conditions stated in (3.1)-(3.2), ln us, ln ds, ln uv, ln dv

are all O(
√

h).
To simplify future notation, define

p̄ =

√

1 − p

p
+

√

p

1 − p
=

1
√

p(1 − p)
.

Using the asymptotic expansions in h of the parameters as derived previously, we
find that

us = eln(us) = 1 + ln(us) + o(h)

so (us − 1)3 = O(h
√

h) and analogous expressions can be derived for ds, uv and dv.
The equations (3.3)-(3.4) of the Lemma now follow immediately from (2.4)-(2.6),
while

uv − dv = (uv − 1) − (dv − 1) = ln(uv) − ln(dv) + o(
√

h)

= p̄
√

σ2
v − λ ln γ2

v

√
h + o(

√
h) (7.4)

us − ds = (us − 1) − (ds − 1) = ln(us) − ln(ds) + o(
√

h) (7.5)

= p̄σs

√
h + o(

√
h) (7.6)

ds − erh = (ds − 1) − (erh − 1)

= −σs

√

p
1−p

√
h + (µs − r)h + o(h) (7.7)

dv − erh = (dv − 1) − (erh − 1)

= −
√

σ2
v − λ ln γ2

v

√

p
1−p

·
√

h + (µv − r − λ ln γv)h + o(h). (7.8)

Since

pα =
(us − ds)(dv − erh) + (uv − dv)(e

rh − ds)

(us − ds)(dv − γv) + (uv − dv)(α − ds)
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we calculate for the numerator

(us − ds)(dv − erh)

= (p̄σs

√
h + o(

√
h))(−

√

σ2
v − λ ln(γv)2

√

p
1−p

√
h + (µv − r − λ ln(γv))h + o(h))

(uv − dv)(e
rh − ds)

= (p̄σv

√
h + o(

√
h))(σs

√

p
1−p

√
h − (µs − r)h + o(h))

(us − ds)(dv − erh) + (uv − dv)(e
rh − ds)

= ((µv − r)σs − (µs − r)σv)h
√

h + o(h
√

h)

and for the denominator

(us − ds)(dv − γv)

= (p̄σs

√
h + o(

√
h))(1 − γv −

√

σ2
v − λ ln γ2

v

√

p
1−p

·
√

h + (µv − r − λ ln γv)h + o(h))

(uv − dv)(α − ds)

= (p̄
√

σ2
v − λ ln γ2

v

√
h + o(

√
h))(α − 1 + σs

√

p
1−p

√
h − (µs − r)h + o(h))

(us − ds)(dv − γv) + (uv − dv)(α − ds)

= (σs(1 − γv) − σv(1 − α))
√

h + o(
√

h)

and since limh↓0 γv = 1 we have that

pα =
(µv − r)σs − (µs − r)σv

σv(α − 1)
h + o(h)

which proves (3.6). To prove (3.5) we note that

pu(us − 1)(uv − 1) + pd(ds − 1)(dv − 1)

= pu

(

σs

√

1−p
p

√
h

)(

σv

√

1−p
p

√
h

)

+ pd

(

−σs

√

p
1−p

√
h
) (

−σv

√

p
1−p

√
h
)

= σsσvh
(

1−p
p

pu + p
1−p

pd

)

.

Using an argument which is similar to the one given above one may show that

pu = p + o(
√

h)

pd = 1 − p + o(
√

h)

and (3.5) follows. �
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