
Computing Pricing Functions by Simulation

Stéphane CRÉPEY, Évry University, France
stephane.crepey@univ-evry.fr

April 10, 2008

Contents

I American and Game Options in a Local Volatility Model 3

1 American Options 3

2 Game Options 4

2.1 No Call Protection . 4

2.2 Standard Soft Call Protection . 4

2.3 Highly Path dependent Soft Call Protection 5

2.4 Real-Life Call Protection . 6

II CDO tranches in a Local Intensity Model 7

3 Pricing 7

4 Hedging 8

Introduction

This note bears on the computation by simulation methods of �nancial derivatives pricing
functions (pricing function and delta function). Note that we want to compute the pricing
function for any possible values of its arguments (or, at least, on a �ne grid), and not only
the option price (and delta) at time 0. There are various situations in which it is important
to compute the pricing function as a whole. The �rst one is of course when there is no other
way for computing the price at 0 than computing the pricing function entirely, as it is the

2

case for options with control-theoretical features (typically: early exercise clauses, cf. part
I). Another situation (illustrated in part II) is when one wants to assess the performance of
a dynamic hedging scheme for the option, statistically on a great number of trajectories of
the underlying. In this case one needs to know the option pricing function at every point
of every simulated trajectory (in order to know by which amount one should rebalance the
hedge at every point), hence basically everywhere.

In part I the set-up is a rather standard local volatility model (Black�Scholes-like model with
local volatility, and, also, drift coe�cient). Here the motivation for computing our pricing
functions by simulation rather than by more standard (deterministic) numerical analysis
approximation schemes comes from the fact that we want to be able to deal with highly
path-dependent option payo�s, resulting in high-dimensional pricing functions. The use of
deterministic approximation schemes is thus precluded by the curse of dimensionality. In
part II deterministic approximation schemes might be considered as an alternative to our
simulation method, but our motivation is accuracy, in a context of credit-risk where the
information in the model consists of random times of jumps of a cumulative loss process on
a credit portfolio. The interest of the simulation method proposed in this note is to be able
to use this information exactly, whereas a deterministic scheme on a �xed time-grid would
involve an approximation of jump times by projecting them in some way on the time-grid.

3

Part I

American and Game Options in a Local

Volatility Model

We �rst consider the problem of computing by simulation the pricing function of American
or more general Game options (like Convertible Bonds, with possibly highly path-dependent
exotic clauses). To �x ideas, we consider the following (risk-neutral) local volatility model:

dSt = St(κ(t, St)dt + σ(t, St)dWt) (1)

for a standard P � Brownian motion W, a local (risk-neutral, accounting for riskless interest-
rates, dividend yields on S, credit-risk adjustment on S, etc.) drift coe�cient κ(t, S), and a
local volatility function σ(t, S). As is well-known, the di�usion (1) is well-posed in suitable
space of solutions under relevant regularity and growth hypotheses (assumed henceforth) on
the coe�cients, and the process S de�ned in this way is a Markov process.

1 American Options

The generic multinomial (recombining) tree algorithm for pricing American options writes
Πn(j) = φ(Sj) for j = 1 . . .m, and then for i = n− 1, . . . , 0, for j = 1 . . .m (where i and j
index the time and space step in the algorithm, respectively):

Πj
i = max

(
φ
(
Sj
)
, e−κj

i h
∑

l

plΠ
j+l
i+1

)
. (2)

For pricing an American option by Monte Carlo, a procedure consists in writing the generic
dynamic programming equation (2) on a stochastically generated (hence, non recombining)

mesh (Sj
i)0≤i≤n,1≤j≤m, using an appropriate discretization (Euler,..) scheme for the under-

lying di�usion. We thus get the following amendment to (2): Πj
n = φ(Sj

n) for j = 1 . . .m,
and then for i = n− 1, . . . , 0, for j = 1 . . .m :

Πj
i = max

(
φ
(
Sj

i

)
, e−κj

i hEi,jΠi+1

)
(3)

where Ei,jΠi+1 stands for the conditional expectation of Πi+1 given Si = Sj
i . The problem

thus reduces to computing conditional expectations (for i ≥ 1, since for i = 0 the conditional
expectation reduces to a simple expectation).

Recall that under mild conditions the conditional expectation E(X|Y) is equal to the Hilbert
space projection EL(X|Y 0, Y 1, Y 2, . . .), or more generally EL(X|ϕ0(Y), ϕ1(Y), ϕ2(Y), . . .),
for a suitable basis ϕ = (ϕl)l∈N of the set of the univariate real functions. At step i ≥ 1
the involved conditional expectations may thus be computed in an elementary way by linear
regression of the (Πj

i+1)1≤j≤m (which are already known at step i of the algorithm) against

the (ϕl(Sj
i))1≤j≤m,0≤l≤q where the integer q is a parameter in the method.

The computational cost of the regression is of the order of O(m2q2), hence an overall com-
putational cost as O(nm2q2). This is obviously too much for typical values of the parameters
(e.g., n = 100,m = 105, q = 7). Fortunately this can be improved in a number of ways,

4

leading to methods perfectly amenable to a practical resolution, for problems of dimension
up to 10 or more (whereas deterministic methods are out of scope for dimensions greater
than 4).

The previous approach is the one developed in Longsta� and Schwartz [9]. For many alter-
native methods for computing the conditional expectations: more general non-parametric

regression methods, Malliavin Calculus based methods, etc., we refer the reader to the lit-
erature (see Broadie and Glassermann [5, 6], Lions and Régnier [8], Pages and Bally [10],
Tsitsiklis and VanRoy [12, 13], Bouchard et al. [2], among many).

Note that a con�dence interval is not available in this case (it is only possible to compute a
con�dence interval of the method by randomizing the seed of the (pseudo-)generator which
is used). One can however derive an upper bound on the price by resorting to a suitable
dual Monte Carlo approach (see Rogers [11]). Since most pricing methods provide lower
bounds, we thus end up with an interval.

Remark 1.1 It is also possible to compute likewise by non-parametric regression the delta
function, cf. section 4.

2 Game Options

2.1 No Call Protection

In the case of a Game Option (e.g., a non-defaultable sero-coupon convertible bond) with no
call protection, (3) simply needs to be amended as Πj

n = φ(Sj
n) (with, e.g., φ(S) = N̄ ∨ κS)

for j = 1 . . .m, and then for i = n− 1, . . . , 0, for j = 1 . . .m :

Πj
i = min

(
Ui(S

j
i) , max

(
Li(S

j
i), e−κj

i hEi,jΠi+1

))
(4)

where Li and Ui are the put and call payo� functions at step i (time ih) in the algorithme,
e.g.

Li(S) = P̄ ∨ κS , Ui(S) = C̄ ∨ κS .

2.2 Standard Soft Call Protection

We now consider a soft call protection of the form {t ≥ τ̄} with

τ̄ = inf{t ∈ R+ ; St ≥ S̄} ∧ T

The related algorithm becomes:
• First compute the no call protection pricing function Π as in the previous subsection,
• Then, setting

νj = inf{i ∈ Nn ; Sj
i ≥ S̄} ∧ T ,

compute Π̃j
i = Πj

i on {(i, j); i ≥ νj}, and then for i = n− 1, . . . , 0 for j = 1 . . .m, if i < νj :

Π̃j
i = max

(
Li

(
Sj

i

)
, e−κj

i hEi,jΠ̃i+1

)
(5)

5

For i ≥ 1 the conditional expectations in (6) may be computed by linear regression of the
(Π̃j

i+1)1≤j≤m (which are already known at step i of the algorithm) against the (ϕl(Sj
i))1≤j≤m,0≤l≤q,

, for a suitable basis ϕ of the set of univariate real functions.

2.3 Highly Path dependent Soft Call Protection

Given a decreasing sequence of monitoring dates T0 = T, T1, . . . , Tk, . . . , k ∈ N, we denote
for t < T :

kt = max{k ∈ N∗; t < Tk−1} , St = (Sk
t)1≤k≤30 = (STk

)kt≤k≤kt+29 , Nt = #St := #{1 ≤ k ≤ 30;Sk
t ≥ S̄}

We consider the call protection t ≥ τ̄ with

τ̄ = inf{t ∈ R+ ;Nt ≥ 20} ∧ T

The option upper payo� process at time t is now a function of time t, St and St. Since
(S,S) is a Markov process, the option pricing function is thus in turn given as a function of
31 space variables (beyond time).

Given a time mesh (ti)0≤i≤n re�ning 0, Tk0−1, Tk0−2 . . . , T0, on [0, T], and the (observed)

value of (S0,S0) at time 0, we then generate a grid (Sj
i ,S

j
i)0≤i≤n,1≤j≤m in the obvious way,

using past values of S to �ll S. Let also N j
i stand for #Sj

i .

Example 2.1 Black�Scholes model with r = 0 and σ = 20%. Having set ti+1−ti = 1
4days:

• simulate, starting from S0 given, S6h = S0(1 + σ
√

hε1), S12h = S6h(1 + σ
√

hε2), S18h =
.., S24h, S30h, ..., S100days for standard IID Gaussian r.v. εi;
• whenever ti coincides with one the Tk's (i.e., one every fourth i), update the vector S,
so: S0 = 30 given values of S (representing past values of S corresponding to the 30 last
monitoring dates Tk preceding the pricing time t = 0), S6h = S0, S12h = S0, S18h = S0,
S1day = (S1day, S̄0) where S̄0 stands for the vector made of the components 1 to 29 of S0,
S30h = S1day, etc..until S100days

• Redo this m = 105 times, hence 105 (pairs of) trajectories (Si,Si)0≤i≤n.

The pricing algorithm at time 0 then goes as follows:
• First compute the no call protection pricing function (Πj

i)0≤i≤n,1≤j≤m as in the previous
subsection;
• Then, setting

νj = inf{i ∈ Nn ; N j
i ≥ 20} ∧ T ,

compute Π̃j
i = Πj

i on {(i, j); i ≥ νj}, and then for i = n− 1, . . . , 0 for j = 1 . . .m, if i < νj :

Π̃j
i = max

(
Li(S

j
i), e−κj

i hEi,jΠ̃i+1

)
(6)

For i ≥ 1 the conditional expectations in (6) may be computed by linear regression of the
(Π̃j

i+1)1≤j≤m (which are already known at step i of the algorithm) against the (ϕl(Sj
i ,S

j
i))1≤j≤m,0≤l≤q,

for a suitable basis ϕ of the set of 30-variate real functions.

Remark 2.2 Here the requirement to work with a basis of 30-variate real functions repre-
sents of course a huge gap of complexity with respect to the previously considered (univari-
ate) cases.

6

2.4 Real-Life Call Protection

A further di�culty is that real-life call protection clauses at time t (see, e.g., [1]) seem to
be typically of the form St ≥ S̄, rather than sup[0,t] Su ≥ S̄.

In the abstract set-up of Bielecki et al. [3], this involves considering generalized upper
barriers of the form

Ūt = 1Ωc
t
∞+ 1ΩtUt (7)

for a càdlàg event-process (Ωt)t∈[0,T], rather than

Ūt = 1{t<τ̄}∞+ 1{t≥τ̄}Ut (8)

for a stopping time τ̄ as before. So the cases considered in subsections 2.2 and 2.3 correspond
to upper barriers of the form (8) with

τ̄ = inf{t ∈ R+ ; St ≥ S̄} ∧ T , resp. τ̄ = inf{t ∈ R+ ; Nt ≥ 20} ∧ T , (9)

or, equivalently, to upper barriers of the form (7) with Ωt = {t ≥ τ̄} for τ̄ as in (9), whereas
the related real cases of interest would rather correspond to upper barriers of the form (7)
with

Ω̃t = {St ≥ S̄}, resp. Ω̃t = {Nt ≥ 20}.

This seems to pose no real problem in the abstract set-up of [3].

Specifying further the results to the Markovian set-up of the Black�Scholes model and
assuming Ωt = Ω(t, St,St) for a (�nite-dimensional) Markovian factor process (S,S), then
the formally related algorithm writes, intuitively: Πj

n = φ(Sj
n), and for i = n− 1, . . . , 0, for

j = 1 . . .m :

Πj
i = min

(
Ūi

(
Sj

i ,S
j
i

)
, max

(
Li

(
Sj

i

)
, e−rhEi,jΠi+1

))
(10)

where the min plays no role on Ωc
i (S,S) , since Ūi (S,S) is then equal to +∞, and where

the conditional expectations can (in theory..) be computed by regression. So the situation
seems (slightly) simpler than previously, inasmuch as the pricing function may be computed
in one row, without having to compute the no call protection pricing function in a �rst step
as before.

But the problem in the Markovian set-up (even in the simple Black�Scholes model and
in the simplest case Ω̃t = {St ≥ S̄}) is that the related Markovian re�ected BSDE error
estimates seem out of reach, due to the fact that they involve continuous dependence of the
whole sequence of successive times of exit from and entry to a domain by (S,S), instead of
continuous dependence of the �rst exit time from a domain by (S,S) in the previous cases.

I spent some time thinking about this last aspect of the problem and at this stage I don't
know what to do about it.

7

Part II

CDO tranches in a Local Intensity Model

We now consider the problem of pricing CDO tranches in the context of multi-name credit
risk (see, e.g., [4]). For simplicity we only consider protection branches of equity tranches

with (stylized) payo�

φ(NT) =
(1−R)NT

n
∧ k

at the maturity time T (we take interest rates as 0, for simplicity). Here Nt represents the
number of �rms defaulted at time t in a reference pool of n names (e.g., n = 125 on the DJ
iTraxx market), R is a constant recovery (typically R = 40%), and the �strike� (detachment
point, in the context of CDOs) k belongs to [0, 1].

We model the cumulative loss N as a (univariate) point process with (risk-neutral) local

intensity λ(t, Nt) (see, for instance, [7]), with, in order to ensure that N is stopped at level
n (since there are n names in the pool), λ(t, i) = 0 for i ≥ n. So N0 = 0 and N jumps by
one at some (increasing) (0,+∞)-valued random times t̃i. (depending on the trajectory of
N both in number and in location), Conditionally on the information available at time t,
the probability of a jump in the next time interval (t, t + dt) is λ(t, Nt)dt. Under standard
hypotheses that we assume henceforth on the intensity function λ, N is a well-de�ned Markov
process. Since we are only interested in the time horizon [0, T], it is convenient to introduce,
for i = 1, . . . , n, ti = t̃i ∧ T (with the convention that t̃i = +∞ and so ti = T in case the
number of jumps is less than i on a given trajectory). Finally we set t0 = 0.

As opposed to the situation of part I, there are no control-theoretical features involved here
(our stylized CDO tranche is an European option with payo� function φ(i)), so the related
price process writes simply, for t ∈ [0, T] :

Πt = Etφ(NT) = u(t, Nt) , (11)

where u(t, i) or ui(t) for (t, i) ∈ [0, T] × {0, 1, . . . , n} is the pricing function (system of
time-functionals ui).

3 Pricing

Our aim in this section is to determine the pricing function u numerically by simulation.
We refer the reader to the introduction (see also section 4) regarding our motivation for
determining numerically the whole pricing function u rather than simply u(0, 0) = Π0 =
Eφ(NT) (which could of course be done very simply and at a low computational cost by a
standard �static� European Monte Carlo procedure).

Note that as expected given the nature of the model at hand, it is possible to devise a simple
tree deterministic approximation scheme for the pricing function u (see [7]). However our
intuition is that in order not to lose any information in this model, where the information
here is represented by the exact default times on every trajectory, a simulation-based ap-
proximation method might be a better (or at least, an interesting) alternative to the previous
tree method, in which jump times are discretized on a �xed time-grid (the same for any level
i of the loss process N).

8

In view of (11) we have the following identity, for every i = 0, . . . , n− 1 :

u(ti, Nti) = Eiu(ti+1, Nti+1) , a.s. (12)

The above considerations motivate the following algorithm, based on (12), for computing
the pricing function ui(t) by a backward recursion on the loss levels (rather than on time
levels as in the tree method).

First observe that the time-functional un is known and constant, equal to φ(n). This is
because, as the loss process N is stopped at the level n, we have that NT = n on {Nt = n},
almost surely for any t ∈ [0, T]. One then simulates m = 105 (say) trajectories of N over
[0, T] and the related payo� values φ(NT), recorded as (tji)0≤i≤n,1≤j≤m and (φj)1≤j≤m,
respectively. Note that this can be done exactly by standard simulation methods (see, e.g.,
section 7 of [4] for a presentation in the context of a much more general model of credit risk),
without any discretisation error (whereas in the tree method default times are discretised
on a �xed time-grid). The main loop in the algorithm then goes as follows, for i decreasing
from n− 1 to 1 :
• For j = 1 . . .m set Πj

i+1 = ui+1(t
j
i+1) (where ui+1 is already known from step i + 1 in the

algorithm) if tji+1 < T and Πj
i+1 = φj if tji+1 = T ;

• Compute the time-functional ui by non-parametric regression (cf. section 1) of the Πj
i+1's

wrt to the tji 's, where the non-parametric regression is performed over the subset Ωi of the

indices j such that tji < T (so u(ti, Nti) = ui(ti) on Ωi, and ui can indeed be computed by

regression of the Πj
i+1's wrt to the tji 's over Ωi).

Finally de�ne the Πj
1's as above with i = 1 therein and set Πj

0 equal, for any j, to the

arithmetic average Π̂0 of the Πj
1's (no regression is possible nor needed here).

In practice at the �rst steps of the algorithm the set Ωi will typically be very small, even
possibly empty, so that the regression in the second point will be numerically ill-posed and
work badly in practice. For such indices i the second point above should be replaced by:
• Set ui = φ(i) (which is a known constant).
Note that, replaced in the context of deterministic numerical schemes, this amendment to
the algorithm can be understood as a rather natural boundary condition.

4 Hedging

In our formalism the (stylized) credit index corresponds to the tranche with k = 100%. In
practice we are interested in hedging a given tranche (with k < 100%, referred to as the

tranche in what follows) with the index. Let u and v denote the pricing functions of the
tranche and of the index, numerically determined by simulation using the method of section
3, run on a common set of simulated trajectories (tji)0≤i≤n,1≤j≤m of N. Let (Πj

i)0≤i≤n,1≤j≤m

be de�ned as in section 3 (relative to the tranche to be hedged), and let (Θj
i)0≤i≤n,1≤j≤m

denote the analog quantity relative to the index.

The related delta-function of the tranche wrt to the index, δ(t, i) = δi(t) for (t, i) ∈ [0, T]×
{0, 1, . . . , n− 1}, can then be obtained by computing, for every i ∈ {0, . . . , n− 1}, δi(t) as
δu
i (t)

δv
i (t) , where:

• δu
i (t) denotes the non-parametric regression of the (Πj

i+1 − Πj
i)(Θ

j
i+1 − Θj

i)'s wrt to the

tji 's, and

• δv
i (t) denotes the non-parametric regression of the (Θj

i+1 −Θj
i)

2's wrt to the tji 's,

9

where again the regressions are performed over Ωi. At least, this procedure de�nes δi(t) for
i not too large�such that Ωi is large enough in order for the regressions to be numerically
well posed, say for 0 ≤ i ≤ i(≤ n− 1).

Note that the computations of u, v and δ can (and should better) be made within the same
loop, where at step i in the algorithm one �rst computes ui and vi, which are then used for
computing δi.

It is then interesting to assess numerically the performance of the discrete-time delta-hedging
strategy de�ned by ζt = δi(ti) on (ti, ti+1]. Denoting

νj = max{i ∈ {0, . . . , i} ; tji < T} ,

the related tracking error (or pro�t-and-loss) ej at time tνj+1 writes (from the point of view
of the buyer of the tranche):

ej =
∑

0≤i≤νj

(Πj
i+1 −Πj

i)− δi(t
j
i)(Θ

j
i+1 −Θj

i) .

It is expected that this tracking error should be small, given that our model for N is complete
(see [7]).

Note �nally that all these computations can be made using a set of trajectories (tji)0≤i≤n,1≤j≤m

simulated in an arbitrary model of multi-name credit risk, like for instance the general model
of [4], which includes the model N above as a (very) special case. In this extension of the
method the pricing function u should probably be interpreted as some kind of `projection'
of a complex model, used as a proxy for the (risk-neutral) real market, on the class of lo-
cal intensity models λ(t, Nt). Since the knowledge of the pricing function u allows one to
deduce λ in a local intensity model, our methodology allows one to `calibrate' a `tangent'
local intensity model to a `big' market model. A proxy of the `calibration error' is given
by the di�erence Π̂0 − Π0 where Π̂0 is the price in the `tangent' local intensity model thus
calibrated (arithmetic average of the Πj

1, see the �nal step of the algorithm in section 3)
and Π0 is the `true' option price in the big model, or an accurate standard Monte Carlo
approximation computed on the m trajectories (tji)0≤i≤n,1≤j≤m.

References

[1] Boughanim N., Ouzou A.: IHG, ADI Quantitative Research Internal Report, 2006.

[2] Bouchard B., Ekeland I. and Touzi N. The Malliavin approach to Monte Carlo ap-
proximations to conditional expectations, Preprint, 2002.

[3] Bielecki, T.R., Crépey, S., Jeanblanc, M. and Rutkowski, M. Arbitrage pricing of
defaultable game options with applications to convertible bonds, Quantitative Finance,
Forthcoming.

[4] Bielecki, T.R., Crépey, S., Jeanblanc, M. and Rutkowski, M., Valuation of basket credit
derivatives in the credit migrations environment. Handbook of Financial Engineering,
J. Birge and V. Linetsky eds., Elsevier, 2006.

[5] M.Broadie P.Glassermann. Pricing American-style securities using simulation, J. of
Economic Dynamics and Control, 21, 1323-1352, 1997.

10

[6] M.Broadie P.Glassermann. A Stochastic Mesh method for Pricing High-Dimensional
American Options, Journal of Computational Science 7, pp. 35-72, 2004.

[7] J.-P. Laurent, A. Cousin and J.-D. Fermanian, Hedging default risks of CDOs in
Markovian contagion models, Preprint.

[8] Lions, P.-L., Regnier, H.: Calcul du prix et des sensibilités d'une option américaine
par une méthode de Monte Carlo, Working Paper, 2001.

[9] F.A.Longsta� E.S.Schwartz. Valuing American Options by simulations:A Simple
Least-Squares Approach, Review of Financial Studies, Volume 14, Number 1, 2001,
pp. 113-147(35).

[10] G.Pages V.Bally. A quantization method for the discretization of BSDE's and Re-
�ected BSDE's, Technical report 628, université Paris 6, 2000.

[11] L.C.G. Rogers. Monte Carlo Valuation of American Options, Mathematical Finance,
32(4):1077�1088, 1995. Vol. 12, pp. 271-286, 2002.

[12] J.N.Tsitsiklis B.Van Roy. Regression methods for Pricing complex American-style Op-
tions, Working Paper MIT, 1-22, 2000.

[13] J.N.Tsitsiklis B.Van Roy. Optimal Stopping of Markov Processes: Hilbert Spaces the-
ory, Approximations Algorithms and an application to pricing high-dimensional �nan-
cial derivatives, IEEE Transactions on Automatic Control, 44, 10, 1840-1851, 1999.

	I American and Game Options in a Local Volatility Model
	American Options
	Game Options
	No Call Protection
	Standard Soft Call Protection
	Highly Path dependent Soft Call Protection
	Real-Life Call Protection

	II CDO tranches in a Local Intensity Model
	Pricing
	Hedging

