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Part I

Introduction and Preliminaries

1 Outline

These notes bear on computational �nance (pricing, Greeking and calibration methods),
with a focus on algorithmic aspects. The related theoretical results (convergence analysis,
etc) are generally stated without proof.

Since the object of these notes is methods, not models, we present most methods on simple
models, like the Black�Scholes model (in general), the Merton model, the Heston model, etc.
Of course the methods themselves are always generic to some degree, hence applicable in a
broad range of models to a broad range of �nancial instruments. In Part II, we recall the
basic facts of �nancial theory necessary to understand how a generic contingent claim pricing
equation is derived (equation (57)), in a Markovian risk-neutral primary market model. We
then review in Part III the benchmark models on the main derivative markets (equity,
interest rate and credit), with the related closed pricing formulae for vanilla derivatives
(so no computational methods are required in these models, as far as pricing vanillas is
concerned).

In Parts IV and V, we discuss deterministic pricing methods (general �nite di�erences meth-
ods in Part IV, and more speci�c tree methods in Part V). Part VI is about stochastic sim-
ulation pricing methods (Monte Carlo methods).
Note that there is no hermetic frontier between deterministic and stochastic methods. In a
sense, Monte Carlo (MC) methods are special cases of tree methods. This is more clearly
visible on the problem of pricing by simulation an American option (see section 34.4). Yet
it is also true of a standard Monte Carlo algorithm for pricing an European option. Indeed
the latter may be interpreted as a one-time-step multi-nomial tree, which provides an exact
discretization for the option price in the limit where the number of discretization points
in space (tree branches) goes to in�nity. In essence, all these numerical schemes are based
on the idea of propagating the solution from a surface of the time-space domain on which
it is known, along suitable (randomized) `characteristics' of the problem, in the sense of
Riemann's method of characteristics for solving hyperbolic �rst-order equations (see , e.g.,
[143, Chapter 4]). From the alternative point of view of control theory, all these numerical
schemes are based on Bellman's dynamic programming principle [25].
Of course the di�erence between tree methods in the usual sense and Monte Carlo methods
is that the computation mesh is stochastically generated and unstructured in the case of
Monte Carlo methods.

Note that the prices of �nancial instruments are essentially given by the market, and made
by o�er-and-demand (unless very exotic structures are considered). Market prices are in
fact used (rather than computed) by models, in the �reverse-engineering� mode that consists
in calibrating the model to market prices, so that the model be consistent with the market
for suitable values of its parameters. This calibration process is the object of Part VII. Once
calibrated to the market, the model is e�ectively used for Greeking (and/or pricing exotic
structures), that is, computing the risk sensitivities of a position, in order to set up a related
hedge, or complementary position required for o�-setting such or such undesired source of
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risk.

2 General Set-Up

The evolution of a �nancial market model is modeled throughout in terms of stochastic pro-
cesses de�ned on a continuous time stochastic basis (Ω,F, P̂), where P̂ denotes the objective
(or physical, statistical..) probability measure. We may and do assume that the �ltration
F satis�es the usual completeness and right-continuity conditions, and that all semimartin-
gales are càdlàg. Finally, since we are always in the context of pricing a contingent claim
with maturity T, we further assume that F = (Ft)t∈[0,T ] with F0 trivial and FT = F , for
simplicity. Moreover, we declare that a process on [0, T ] (resp. a random variable) has to be
F-adapted (resp. F-measurable), by de�nition.
We shall typically work under a risk-neutral (RN) probability measure P ∼ P̂, or, more gen-
erally, under a martingale probability measure P relative to a suitable numeraire, such that
the prices of the primary assets, once properly discounted and adjusted for any dividends,
are P � local martingales. Recall that, under mild technical conditions, existence of such a
martingale measure P is equivalent to a suitable notion of no-arbitrage (NFLVR condition
[72], see Part II). In practical applications, it is convenient to think of P as �the pricing
measure chosen by the market� to price a contingent claim. We denote by Tt (or simply T ,
in case t = 0) the set of [t, T ]-valued stopping times, and by E (resp. Et) the P-expectation
(resp. P � conditional expectation given Ft) operator.
Note that pricing theory can also be developed in discrete time (see, e.g., [87, 124]). The
tree (including Monte Carlo) computational methods presented in these notes are directly
applicable in this case (in Markovian set-ups), and they are then of course exact in the time
direction, since they involve no approximation in time. In particular, these methods can be
used in static (one-period) set-ups, such as often encountered in multi-name credit (like with
static copula models, see Section 12).

As for single-name credit applications, namely the pricing of defaultable claims with terminal
payo�s of the form 1T<τdφ(ST ) (or 1τ<τdφ(Sτ ) upon exercise at a stopping time τ, in case
of American claims), where τd represents the default-time of a reference entity, it happens
that such defaultable claims can be handled in exactly the same way as default-free ones,
provided a suitably credit-risk adjusted discount factor is used, instead of the usual riskless
discount factor (see the references given in the introductory paragraph to Part II). Up to this
simple amendment, defaultable contingent claims can be treated in exactly the same way as
default-free ones, both from the theoretical and from the practical point of view. This means
in particular that all the numerical methods presented in these notes can be used for pricing
and Greeking defaultable claims (or calibrating credit-risk models), provided the credit-risk
adjusted discount factor is used instead of the original default-free discount factor.
Incidentally, note that the original �default-free� discount factor can itself be interpreted as
a default probability (or killing rate, in stochastic processes terminology, see, e.g., [161]).

3 Accuracy Requirements and Computational Cost Consider-
ations

A typical benchmark of accuracy in computational �nance (this varies of course with the
application at hand) is a 1bp (=10−4) error on normalized prices and Greeks, namely prices
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and Greeks for a value of the spot scaled to unity.
As for computation times, the benchmark also greatly varies with the application at hand,
but as far as `real-time' option pricing is concerned, `instantaneous' pricing is the target,
and more than half-an-hour computation time (!!) is prohibitive.
Now a resolution within a 1bp normalized error by a �nite di�erences ADI method (the
industry standard today as far as deterministic methods are concerned, see Section 18),
in space dimension d, typically requires 300 grid points per space dimension (most used
numerical schemes are of order 2 of accuracy in space and 1 in time), whence a computation
time (and storage cost) as O(300d), i.e. a computation time ranging from a few milliseconds
for d = 1 to twenty minutes or so for d = 3. This limits in practice the range of applicability
of deterministic pricing methods to problems in space dimension ≤ 3, unless sophisticated
sparse grid or grid re�nement techniques (mostly available with �nite element methods)
are used to counter Bellman's `curse of dimensionality' (referring to the fact that in space
dimension d, the computational cost of numerical integration grows exponentially like md

1,
where m1 is the number of discretization points in each space direction).

Table 1 provides a crude comparison of the computational costs of typical Monte Carlo and
deterministic methods (Monte Carlo algorithm with time discretisation of the underlying
factor process, cf. section 33.5, versus ADI PDE method). A rough conclusion (note that
we don't detail the constants involved in those computational cost estimates) is that deter-
ministic methods are more e�cient (but often harder to implement!) in space dimension
≤ 3, otherwise Monte Carlo methods (if applicable) are the best.

Number of Operations Convergence rate Memory Cost

MC O(nm) O(n−1 +m−
1
2 ) O(1)

PDE O(nm) O(n−1 +m
−2
d ) O(m)

Table 1: Compared computational costs of Stochastic methods (m simulation runs) versus
Deterministic methods (m1 mesh points per space dimension, i.e. m = md

1 space mesh
points), in space dimension d; n is the number of discretization points in time.

This leads to the following dictionary (Table 2) of the method to use, depending on the
space-dimension and the nature of a pricing problem.
In the upper left corner of this Table, the choice between PDE and Monte Carlo pricing
methods should be dictated by the relative interest of performance level with respect to
implementation cost and risk, generally higher with deterministic methods.
In the lower right corner of the Table, FBSDE (Forward-Backward Stochastic Di�erential
Equations) methods refers to speci�c Monte Carlo methods which are available for control
problems, cf. the introductory paragraph to Part VI. These methods are not treated in these
notes.
Note that our recommendations in the case of American Problems are in fact valid for more
general Control Problems, e.g., for pricing game contingent claims, like convertible bonds
(see [28, 31]), or for pricing problems in (classes of) model(s) in which the spot volatility is
stochastic, but known to remain in a range (σ, σ) for sure, where σ and σ are given constants
or functions of (t, S) (Uncertain Volatility model [15]), etc.

Finally an interesting issue hardly mentioned in these notes (see Figure 5(b) p. 65 and Table
3 p. 146, however) is parallel computing. Provided dedicated machines or/and networks are
used, parallel computing allows one to divide computation time by a factor going from 3 or
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European Problem American Problem

d ≤ 3 PDE or MC PDE

d > 3 MC FBSDE

Table 2: Which method to choose?

4 to 100 or 1000, depending on the application at hand.

4 Bibliographic Guidelines

Bibliographic references are given along the text and gathered at the end of this document.
Various aspects of computational �nance are already introduced in Hull's textbook [100]
(see in particular Chapter 16 �Numerical procedures�). Here are some more comprehensive
references, among others:
• On �nancial modeling (Part II): [72, 144];
• On market models (Part III): [92, 47, 159, 144, 34, 167];
• On deterministic pricing methods (Parts IV and V): [171, 180, 143, 1, 14, 122, 124, 181, 26];
• On stochastic simulation methods (Part VI): [94, 126, 37, 118];
• On calibration of �nancial models (Part VII): [57, 82, 149].

Finally, let us mention some related web resources:

www-rocq.inria.fr/mathfi/Premia/index.html

screpey.free.fr

www.mathfinance.de/frontoffice.html

quantlib.org

www.nr.com

www.gro.creditlyonnais.fr

www.iro.umontreal.ca/~lecuyer

www.optioncity.net

www.defaultrisk.com
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Part II

Martingale Modeling

This Part may be skipped at �rst reading.

The material in this part is contained in Bielecki et al. [28, 30], where a more general notion
of defaultable option is considered. Here we only consider the case of default-free European
and American options. Note that defaultable claims with terminal payo�s like 1T<τdφ(ST )
(or 1τ<τdφ(Sτ ) upon exercise at a stopping time τ, in case of American claims), where τd
represents the default-time of a reference entity, can be handled in exactly the same way
as below, provided the default-free discount factor process β is replaced by a credit-risk
adjusted discount factor α = βG, where Gt represents a suitable survival probability beyond
t (see [28, 29, 30, 31]).

5 Arbitrage Theory

To model a derivative with maturity T, we consider, in the abstract set-up of Section 2, a
primary market composed of the savings account B and of d primary risky assets such that
on [0, T ] :
• the discount factor process β, that is, the inverse of the savings account B, is a �nite
variation, continuous, positive and bounded process, with β0 = 1;
• the risky assets are locally bounded semimartingales.

The discount factor β is supposed to be absolutely continuous with respect to the Lebesgue
measure, namely βt = exp(−

∫ t
0 ru du) for a bounded from below short-term interest rate

process r.

The primary risky assets, with Rd-valued price process X, may pay dividends, whose cumu-
lative value process, denoted by D, is assumed to be an Rd-valued process of �nite variation.
Given the price process X, we de�ne the cumulative price X̂ of the asset as

X̂t = Xt + β−1
t

∫
[0,t]

βu dDu. (1)

In the �nancial interpretation, the last term in (1) represents the current value at time t
of all dividend payments of the asset over the period [0, t], under the assumption that all
dividends are immediately reinvested in the savings account B.

De�nition 5.1 A primary trading strategy (ζ0, ζ) built on the primary market is an R ×
R1⊗d-valued process, with ζ predictable and locally bounded, representing the number of
units held in the savings account and in the primary risky assets, respectively. The related
wealth process V is thus given as, for t ∈ [0, T ] :

Vt = ζ0
tBt + ζtXt , t ∈ [0, T ] (2)

Accounting for dividends, we say that the strategy is self-�nancing if

dVt = ζ0
t dBt + ζt (dXt + dDu)
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or, equivalently1

d(βtVt) = ζt d(βtX̂t) (3)

If, moreover, the discounted wealth process βV is bounded from below, we say that the
strategy is admissible.

Given the initial wealth V0 of a self-�nancing primary trading strategy and the strategy ζ
in the primary risky assets, the related wealth process is given by, for t ∈ [0, T ] :

βtVt = β0V0 +
∫ t
0 ζu d(βuX̂u) (4)

and the process ζ0 (number of units held in the savings account) is thus uniquely determined
as

ζ0
t = βt (Vt − ζtXt) .

In the sequel we restrict ourselves to self-�nancing trading strategies. We thus
may and do rede�ne a (self-�nancing) primary primary trading strategy as a pair (V0, ζ),
for an initial wealth V0 ∈ R and a R1⊗d-valued predictable locally bounded primary strategy
in the risky assets ζ, with related wealth process V de�ned by (4).

We assume that the primary market model is free of arbitrage opportunities (though pre-
sumably incomplete), in the sense that the so-called No Free Lunch with Vanishing Risk
(NFLVR) condition is satis�ed. This is a speci�c no arbitrage condition involving wealth
processes of admissible self-�nancing primary trading strategies (see [72]).
By the now classic arbitrage theory (see, e.g., [72, 53, 28]), the NFLVR condition in a per-
fect market (without transaction costs, in particular) is equivalent to the existence of a
risk-neutral measure P ∈ M, where M denotes the set of probability measures P ∼ P̂ such
that βX̂ is a P � local martingale.

De�nition 5.2 (i) An European derivative is a �nancial product with bounded variation
dividend process D = (Dt)t∈[0,T ], and with payment at maturity T, as seen from the perspec-
tive of the option holder, ξ, where ξ denotes a bounded from below real random variable.
(ii) An American derivative is a �nancial product with bounded variation dividend process
D = (Dt)t∈[0,T ], and with payment at terminal time t ∈ [0, T ] at the holder's convenience
given by, as seen from the perspective of the option holder,

1{t<T}Lt + 1{t=T}ξ , (5)

where:
• the early exercise payment process L = (Lt)t∈[0,T ] is a real-valued, bounded from below,
càdlàg process;
• the payment at maturity T, ξ, is a bounded from below random variable.

In the simplest case, D = 0 and ξ = (ST − K)±, for an European vanilla call/put option
with maturity T and strike K on S = X1, the �rst primary risky asset.

1This equivalence is very general (cf. Section 8), and it is an easy exercise in the present context where
β is a �nite variation and continuous process.
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Theorem 5.1 (i) For any P ∈M, the process Π = (Πt)t∈[0,T ] de�ned by

βtΠt = Et
∫ T
t βu dDu + βT ξ, t ∈ [0, T ] (6)

is an arbitrage price of the related European derivative. Moreover, any arbitrage price is of
this form provided

sup
P∈M

E
∫

[0,T ]
βu dDu + βT ξ <∞ . (7)

(ii) For any P ∈M, the process Π = (Πt)t∈[0,T ] de�ned by

βtΠt = esssupτ∈Tt
Et
∫ τ
t βu dDu + βτ

(
1{τ<T}Lτ + 1{τ=T}ξ

)
, t ∈ [0, T ] (8)

is an arbitrage price of the related American derivative as soon as it is a semimartingale.
Moreover, any arbitrage price is of this form provided

sup
P∈M

E sup
t∈[0,T ]

∫
[0,t]

βu dDu + βt
(
1{t<T}Lt + 1{t=T}ξ

)
<∞ . (9)

In view of this result, one may interpret an European derivative as a special case of an
American derivative with βL = −(c + 1), where −c is a minorant of

∫ T
t βu dDu + βT ξ.

Henceforth, by default, `option' means American derivative, including European derivative
(with L as above) as a special case. Arbitrage prices like (6)�(8) are called P � arbitrage
prices.

6 Connection with Hedging

Given a risk-neutral measure P ∈ M, we shall now postulate suitable integrability and
regularity conditions embedded in the standing assumption that a related re�ected Backward
Stochastic Di�erential Equation (BSDE, see, e.g., [81]) has a solution. We shall thus intro-
duce a re�ected BSDE (E) under the probability measure P, with data de�ned in terms of
those of a derivative. Assuming that (E) has a solution (for which various sets of su�cient
regularity and integrability conditions are known in the literature [98, 68]), we shall deduce
explicit hedging strategies with minimal initial wealth for the related derivative.

We assume further that dDt = Ctdt
2, for some progressively measurable time-integrable

process C, and we consider the following re�ected BSDE (E) with data ξ, L :

Πt = ξ +
∫ T
t (Cu − ruΠu)du+ (KT −Kt)− (MT −Mt), t ∈ [0, T ]

Lt ≤ Πt, t ∈ [0, T ]∫ T
0 (Πu − Lu) dKu = 0

(E)

De�nition 6.1 By a (P-)solution to (E), we mean a triplet (Π,M,K) such that all condi-
tions in (E) are satis�ed, where:

2Note that even if it is not so a priori, it is most of the time possible to transform the pricing problem
into an equivalent pricing problem for which this is satis�ed, see [30].
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• the state process Π is a real valued, càdlàg process,
•M is a (P-)martingale vanishing at time 0,
• K is a non-decreasing continuous process (null at time 0).

Note that the �rst line of (E) is equivalent to

βtΠt = βT ξ +
∫ T
t βuCudu+

∫ T
t βu(dKu − dMu), t ∈ [0, T ] (10)

Under mild conditions a solution to (E) exists (and is also unique), with furthermore K = 0
in the case of an European derivative. Let henceforth (Π,M,K) denote a solution to (E),
with K = 0 in the case of an European derivative.

Theorem 6.1 Π is the P-price process of the related derivative.

Proof. If (Π,M,K) is a solution to (E), then Π is a semimartingale, and by a standard
veri�cation principle, we have that

βtΠt = esssupτ∈Tt
Et
∫ τ

t
βuCudu+ βτ

(
1{τ<T}Lτ + 1{τ=T}ξ

)
, (11)

which is also equal to Et
∫ T
t βuCudu + βT ξ, in the case of an European derivative. So the

state process Π corresponds to the P-price process of the derivative at hand. 2

We shall now see that under mild technical conditions, the P-prices of Theorem 6.1 can be
connected with a suitable notion of hedging.

The issuer of a �nancial derivative immediately sets up a primary hedging strategy such
that the corresponding wealth process reduces to a residual cost (or hedging error) Q, after
accounting for the `dividend cost' −D and for the `terminal loss' given by −L or −ξ. The
initial wealth V0 may then be used as a safe issuer price, up to the hedging error Q, for the
derivative at hand.

De�nition 6.2 An (issuer) hedge with residual cost is a triple (V0, ζ,Q), where:
• (V0, ζ) is a (self-�nancing) primary trading strategy (ζ being called in this context the
hedging strategy),
• the residual cost (or hedging error) Q is a real-valued semimartingale with Q0 = 0,
such that the wealth process V of the strategy (V0, ζ) satis�es, for t ∈ [0, T ] :

βtVt +
∫ t
0 βudQu ≥

∫ t
0 βudDu + βt

(
1{t<T}Lt + 1{t=T}ξ

)
(12)

Hedges with no residual cost (that is, with Q = 0) are also called perfect (super-)hedges.

In the special case of European derivatives, if moreover equality holds in (12) at t = T, so

βTVT +
∫ T
0 βudQu =

∫ T
0 βudDu + βT ξ (13)

we then deal with a replicating strategy with residual cost Q, or simply, in case Q = 0, a
perfect replicating strategy.
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Remark 6.3 (i) The hedging error Q can also be interpreted as a �nancing cost, that is,
cash added (dQ ≥ 0) or withdrawn (dQ ≤ 0) from the portfolio in order to get a perfect
(but no more self-�nancing) hedge (and which in the special case where ρ is a F-martingale
corresponds to a mean self-�nancing hedge in the sense of Schweizer [169]).
(ii) In relation with admissibility issues (see the end of De�nition 5.1), note that the l.h.s.
of (12) (discounted wealth process with �nancing costs included) is bounded from below, for
any hedge with residual cost (V0, ζ,Q).

Now, for any hedging strategy ζ, we de�ne the (discounted) Pro�t and Loss (or Tracking
Error) process (et)t∈[0,T ] relative to the price process Π of Theorem 6.1 by setting, for
t ∈ [0, T ] :

βtet = Π0 −
∫ t
0 βuCudu +

∫ t
0 ζud(βuX̂u)− βtΠt =

∫ t
0

(
−d(βuΠ̂u) + ζud(βuX̂u)

)
(14)

where we set (cf. (1))

βtΠ̂t := βtΠt +
∫ t

0
βuCudu .

Note that βe is a special semimartingale, by (10). Let further (the P-local martingale) ρ be
such that ρ0 = 0 and

∫ ·
0 βtdρt is the local martingale component of the special semimartingale

βe, so (cf. (14)�(10))

βt dρt = βt dMt − ζtd(βtX̂t) (15)

βtet =
∫ t
0 βudKu −

∫ t
0 βudρu (16)

and thus in particular

βtet = −
∫ t
0 βudρu (17)

in the case of an European derivative with K = 0.

Theorem 6.2 (i) For any hedging strategy ζ, (Π0, ζ, ρ), is an hedge with P � local martingale
residual cost;
(ii) Π0 is the minimal initial wealth of an hedge with P � local martingale residual cost;
(iii) In the special case of an European derivative with K = 0, then (Π0, ζ, ρ) is a replicating
strategy with P � local martingale residual cost. Π0 is thus also the minimal initial wealth of
a replicating strategy with P � local martingale residual cost.

Remark 6.4 (i) Theorem 6.2 thus characterizes the P-price (arbitrage price relative to the
risk-neutral measure P) of a derivative as the least initial wealth of a hedge with P �local
martingale residual cost, under the assumption that the related re�ected BSDE (E) has a
solution (for related results, see also Föllmer and Sondermann [110] or Schweizer [169]);
(ii) The special case ρ = 0 in the previous results corresponds to a suitable form of model
completeness (replicability of European options, cf. point (iii) of the theorem), in which the
issuer of the option may and wishes to hedge all the risks embedded in the option.
The case where ρ 6= 0 corresponds to either model incompleteness, or a situation of model
completeness in which the issuer may but wishes not to hedge all the risks embedded in the
product at hand, for instance because she wants to limit transaction costs, or because she
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wishes to take some bets in speci�c risk directions.
(iii) In case where ρ may be taken equal to 0 in Theorem 6.2, the minimality statements in
this Theorem may be used to prove uniqueness of the related arbitrage prices (see [29]).

Proof of Theorem 6.2. (i) One must show that, for any t ∈ [0, T ] :

Π0 +
∫ t

0
ζud(βuX̂u) +

∫ t

0
βudρu ≥

∫ t

0
βuCudu + βt

(
1{t<T}Lt + 1{t=T}ξ

)
(18)

or, using (15):

Π0 +
∫ t

0
βudMu ≥

∫ t

0
βuCudu + βt

(
1{t<T}Lt + 1{t=T}ξ

)
(19)

where by the �rst line in (E):

Π0 +
∫ t

0
βudMu = βtΠt +

∫ t

0
βuCudu

∫ t

0
+βudKu

Using also the facts that ΠT = ξ and Πt ≥ Lt (terminal condition and obstacle condition in
(E)), (19) follows by non-negativity of K.
(ii) There exists an (actually, in�nitely many) hedge(s) with initial wealth Π0 and P �
local martingale residual cost Π0, by (i). Moreover, for any hedge (V0, ζ,Q) with P � local
martingale residual cost, one has for every t ∈ [0, T ]:

V0 +
∫ t

0
ζud(βuX̂u) +

∫ t

0
βudQu ≥

∫ t

0
βuCudu + βt

(
1{t<T}Lt + 1{t=T}ξ

)
(20)

The l.h.s. is thus a bounded from below local martingale, hence it is a supermartingale. So,
by taking expectations in (20):

V0 ≥ E
∫ t

0
βuCudu+ βt

(
1{t<T}Lt + 1{t=T}ξ

)
.

Since this holds for every t ∈ [0, T ], it also holds for every stopping time. Hence V0 ≥ Π0

follows, by (8).
(iii) In the special case of an European derivative, the stated results follow by setting K = 0
in the previous points of the proof. 2

7 Markovian Set-Up

7.1 Markovian FBSDE Approach

For being usable in practice, a (dynamic) pricing model needs to be constructive, or Marko-
vian in some sense, relatively to a given derivative. This will be achieved by assuming that
the related BSDE (E) is Markovian (see, e.g., [66] or Section 4 of [81]).

Remark 7.1 An intuitive criterion to check that a given vector-process has the Markov
property consists in verifying that the increment of the process on the time interval (t, t+h)
may be simulated by using the value of the process at time t only, without knowledge of any
values of the process before t.
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De�nition 7.2 We say that the BSDE (E) is a decoupled Markovian Forward-Backward
SDE (Markovian FBSDE, for short), if the input data r, C, ξ and L of (E) are given by
Borel-measurable functions of some P-Markov factor process Z with values in a suitable
state space (�nite-dimensional state space with �rst component given by time t), so

rt = r(Zt) , Ct = C(Zt) , ξ = ξ(ZT ) , Lt = L(Zt) (21)

(where the related functions are denoted by the same symbols as the corresponding processes
or r.v.).

In particular, the system made of the speci�cation of a forward dynamics for Z, together with
the BSDE (E), constitutes a decoupled Markovian forward-backward system of equations in
(Z,Π,M,K). The system is decoupled in the sense that the forward component of the
system serves as an input for the backward component (Z is an input to (E), cf. (21)), but
not the other way round.

From the point of view of interpretation, the components of Z are observable factors. The
�rst component of Z (indexed by 0) is Z0

t = t. As for the other components of Z, they
are typically intimately, though non-trivially, connected with the primary risky asset price
process X, as follows:
• Most factors are typically given as primary price processes. The components of Z that are
not included in X (if any) are to be understood as simple factors that may be required to
`Markovianize' the payo�s of the derivative (factors accounting for path dependence in the
derivative's payo� and/or non-traded factors such as stochastic volatility in the dynamics
of the assets underlying the derivative);
• Some of the primary price processes may not be needed as factors, but are used for hedging
purposes.
Note that, due to the nature of our model, observability of the factor process Z in the
mathematical sense of F-adaptedness is not su�cient in practice. In order for the model to
be usable in practice, a constructive mapping from a collection of meaningful and directly
observable economic variables to Z is really needed. Otherwise, the model will be useless.

Under a rather generic speci�cation for the Markov factor process Z, we shall now derive a
related variational inequality approach for pricing and hedging the derivative.

7.2 Jump�Di�usion Setting with Regimes

7.2.1 Generator

In this view, given an integer q and a �nite set I = {y1, . . . , yk}, we de�ne the following
linear operator A acting on regular real-valued functions Π = Π(z), for z = (t, x, y) ∈ E =
[0, T ]× Rq × I :

AΠ(z) =
q∑
i=1

bi(z)∂xiΠ(z) +
1
2

q∑
i,j=1

aij(z)∂2
xixj

Π(z)

+
∫

Rq

(
δΠ(z, x′)− ∂Π(z)δ(z, x′)

)
γ(z)h(z, dx′) +

∑
y′∈I ∆Π(z, y′)λ(z)`(z, y′)

= 1
2Tr[a(z)HΠ(z)] + ∂Π(z)

(
b(z)− γ(z)δ(z)

)
+ γ(z)δΠ(z) + λ(z)∆Π(z)

(22)
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where:
• the a(z) are q-dimensional covariance matrices, with a(z) = σ(z)σ(z)T, for some q-
dimensional dispersion matrices σ(z);
• the b(z) are q-dimensional drift vector coe�cients;
• the jump intensity function γ(z) is non-negative, the h(z, ·) are conditional jump proba-
bility measures on Rq, and the δ(z, x′) are jump size functions, which are supposed to be
bounded w.r.t x′, locally uniformly in z;
• the regime switching intensity function λ(z) is non-negative, and the `(z, y′) for y′ 6= y
de�ne regime switching conditional probabilities;
• ∂Π (resp. HΠ) denotes the row-gradient (resp. the Hessian) of Π(z) with respect to x;
• for any (real-valued, vector-valued or matrix-valued) function f (like Π above) on E,
δf(z, ·) and ∆f(z, ·) (or δf(z) and ∆f(z), for short) denote the functions

Rq 3 x′ δf(z)−→ f(t, x+ δ(z, x′), y)− f(z) , I 3 y′ ∆f(z)−→ f(t, x, y′)− f(z) , (23)

and we set

δf(z) =
∫

Rq δf(z, x′)h(z, dx′) , ∆f(z) =
∑

y′∈I ∆f(z, y′)`(z, y′) ; (24)

• δ = δf and ∆ = ∆g for f and g given as the projections z = (t, x, y) 7→ x and z =
(t, x, y) 7→ y, respectively, so

Rq 3 x′ δ(z)−→ δ(z, x′) , I 3 y′ ∆(z)−→ y′ − y , (25)

and we set, accordingly, δ(z) =
∫

Rq δ(z, x′)h(z, dx′), ∆(z) =
∑

y′∈I
(
y′ − y

)
`(z, y′).

We de�ne further, for any (real-valued, vector-valued or) matrix-valued functions f and g
on E such that the matrix-product fg makes sense

δfδg(z) =
∫

Rq

(
f(t, x+ δ(z, x′), y)− f(z)

)(
g(t, x+ δ(z, x′), y)− g(z)

)
h(z, dx′)

∆f∆g(z) =
∑

y′∈I
(
f(t, x, y′)− f(z)

)(
g(t, x, y′)− g(z)

)
`(z, y′)

(26)

7.2.2 Dynamics

Under appropriate technical conditions (�rst of which, standard Lipschitz conditions on the
model coe�cients, see [66], or see Theorems 4.1 and 5.4 in Chapter 4 of Ethier and Kurtz [85]
for abstract conditions regarding the existence and uniqueness of a solution to the related
martingale problem with generator A), there exists a stochastic basis (Ω,F,P) on [0, T ],
endowed with:
• a q-dimensional Brownian motion W,
• an integer-valued random measure µ (see Jacod and Shiryaev [104, De�nition II.1.13 p.68]),
and
• an (Ω,F,P)-Markov càdlàg process Z = (t,X ,Y),
such that:
• X and Y cannot jump together;
• The P-compensated martingale measure ν̃ of the integer-valued random measure ν on I
which counts the transitions νt(y) of Y to state y between time 0 and time t, is given by

dν̃t(y) = dνt(y)− 1{Yt 6=y}λ(Zt)`(Zt, y) dt (27)
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whence the following special semimartingale canonical representation for Y :

dYt = λ(Zt)∆t dt+
∑

y∈I (y − Yt−) dν̃t(y) , t ∈ [0, T ] (28)

• The P-compensated martingale (random) measure µ̃ of µ is given by

µ̃(dx, dt) = µ(dt, dx)− γ(Zt)h(Zt, dx)dt (29)

and the Rq-valued process X satis�es, for t ∈ [0, T ],

dXt = b(Zt) dt+ σ(Zt) dWt +
∫

Rq

δ(Zt−, x) µ̃(dt, dx) (30)

Moreover, one has the following estimates, for any p ∈ [2,+∞):

sup
[0,T ]

|X |p ≤ Cp
(
1 + |x|p

)
. (31)

Given a further Borel-measurable function r = r(z), such a factor process Z and the short-
term interest rate process rt = r(Zt) can then be used as starting point in the construction
of a risk-neutral primary market model relative to (Ω,F,P). The primary risky price process
X and the related primary dividends D in (1) may thus be de�ned in terms of Z (with for
instance D =

∫ ·
0d(Zt)dt, for some Borel-measurable Markovian dividend rate function d),

under the additional constraint that, consistently with arbitrage requirements (see Section
5), β X̂ be a locally bounded P � local martingale, and without forgetting to take care about
the availability of a well-de�ned and constructive mapping between Z and X (cf. section
7.1).

Remark 7.3 (i) If we suppose that the intensity matrix λ` of Y does not depend on t, x,
then Y is an homogenous Markov chain with �nite state space I. Alternatively, if we take
δ(z, x′) = x′, and we suppose that the coe�cients σ, b, γ and h do not depend on z, then X is
a Lévy-Poisson process. This model thus de�nes a rather generic class of Markovian factor
processes Z = (t,X ,Y) for a derivative, in the form of a Y-modulated Lévy-like component
X and an X -modulated Markov chain-like component Y.
(ii) From the point of view of interpretation, Y represents regimes that modulate the dy-
namics of the risk-neutral pricing process. In order to make the calibration of the model
possible, various regimes y ∈ I should correspond to non-overlapping (vector-valued) sets of
model parameters.
For k = 1, that is, in the case when the regime indicator process is constant, the one-
dimensional process ν̃ in (27) is trivially null and plays no role whatsoever, so that we may
and do rede�ne k as zero.

For simplicity we do not consider the �in�nite activity� case, that is, the case of possibly
unbounded measures γh(z, ·). Note however that reinforcing our local boundness assumption
on the jump size function δ(z, x′) into

|δ(z, x′)| ≤ C(1 ∧ |x′|) (32)
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for some constant C locally uniform in z, then most of the results presented here can be
extended to more general Lévy jump measures γh(z, ·) such that∫

Rq

(1 ∧ |x|2)γ(z)h(z, dx) < +∞ , (33)

provided one works with the form de�ned by the �rst equality in (22) for the generator
A of Z (see, e.g., Barles et al. [18]). Regarding this last reservation note that, under
assumptions (32)�(33), δΠ(z, ·) and δ(z, ·) in (22) may not be integrable separately with
respect to γh(z, ·), whereas the di�erence δΠ(z, ·) − ∂Π(z)δ(z, ·) is always integrable with
respect to γh(z, ·).

7.2.3 Elementary Reformulation of the Model

It is possible to derive a maybe more intuitive (yet strictly limited to �nite jump measure
γh(z, ·), cf. Remark 7.3(i)) reformulation of the model dynamics (27) to (30) by introducing
the following notation, for t ∈ [0, T ] :
• Ht = ν(I × [0, t]), and It, a r.v. on I \ {Yt−} with conditional law `(Zt−, y) given Zt−;
• Nt = µ(Rq × [0, t]) and Jt, a r.v. on Rq with conditional law h(Zt−, dx) given Zt−;
• for any (real-valued, vector-valued or matrix-valued) function f on E,

δft = δf(Zt−, Jt) , δf t = E(δft | Zt−) = δf(Zt−)
∆f t = ∆f(Zt−, It) , ∆f t = E(∆ft | Zt−) = ∆f(Zt−)

and in particular

δt = δ(Zt−, Jt) , δt = δ(Zt−)
∆t = ∆(Zt−, It) = It − Yt− , ∆t = ∆(Zt−) .

Denoting further by (sl) and (tl) the ordered sequence of the (random) times of jumps of ν
and µ, respectively (note that we deal with �nite jump and regime switching measures γh
and λ` without common jumps, by assumption), then we have (cf. (27), (29)):

∑
y∈I dν̃t(y) = dHt − λ(Zt)dt∫

Rq µ̃(dx, dt) = dNt − γ(Zt)dt
(34)

and equations (30) and (28) may be rewritten as, respectively:

dXt =
(
b(Zt)− γ(Zt)δt

)
dt+ σ(Zt) dWt + d

(∑Nt
l=1 δtl

)
dYt = d

(∑Ht
l=1 ∆sl

) (35)

7.2.4 Itô formula

The following variant of the Itô formula holds (see Bielecki et al. [29] or Jacod [103, Theorem
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3.89 p.109]):

dΠ(Zt) = (∂t +A)Π(Zt) dt+ ∂Π(Zt)σ(Zt) dWt

+
∫

Rq

δΠ(Zt−, x)µ̃(dt, dx) +
∑
y∈I

∆Π(Zt−, y)dν̃t(y)

= (∂t +A)Π(Zt) dt+ ∂Π(Zt)σ(Zt) dWt

+ δΠ(Zt−)µ̃(dt, d·) + ∆Π(Zt−)dν̃t

(36)

for any su�ciently regular function Π on E. Or, equivalently to (36) (cf. (35)):

dΠ(Zt) = (∂t + Ã)Π(Zt) dt+ ∂Π(Zt)σ(Zt) dWt + d

(
Nt∑
l=1

δΠtl

)
+ d

(
Ht∑
l=1

∆Πsl

)
= (∂t +A)Π(Zt) dt+ ∂Π(Zt)σ(Zt) dWt

+

(
d

Nt∑
l=1

δΠtl − γ(Zt)δΠtdt

)
+

(
d

Ht∑
l=1

∆Πsl
− λ(Zt)∆Πtdt

) (37)

with

ÃΠ(z) =
1
2
Tr[a(z)HΠ(z)] + ∂Π(z)

(
b(z)− γ(z)δ(z)

)
= AΠ(z)− γ(z)δΠ(z)− λ(z)∆Π(z)

(38)

7.2.5 Brackets

Let Xc and Y c, resp. ∆X and ∆Y, denote the continuous local martingale components,
resp. the jump processes, of two given (real-valued) semimartingales X and Y. Recall that
the quadratic covariation or bracket [X,Y ] is given by

d[X,Y ]t = d(XtYt)−Xt−dYt − Yt−dXt (39)

= d〈Xc, Y c〉t + d

∑
s≤t

∆Xs∆Ys

 (40)

with the initial condition [X,Y ]0 = 0. The sharp bracket 〈X,Y 〉 corresponds to the compen-
sator of [X,Y ], which is well de�ned provided [X,Y ] is of locally integrable variation (see,
e.g., Protter [157]).

For processes X and Y given as Xt = X(Zt) and Yt = Y (Zt) in our jump-di�usion setting
with regimes Z, we get by application of (40):

d[X,Y ]t = ∂Xa(∂Y )T(Zt)dt+ d
(∑Nt

l=1 δXtlδYtl

)
+ d

(∑Ht
l=1 ∆Xsl

∆Ysl

)
which obviously admits the compensator < X,Y > with Lebesgue-density given as (cf.
(26)):

d<X,Y >
dt = ∂Xa(∂Y )T(Zt) + γ(Zt)δXδY (Zt) + λ(Zt)∆X∆Y (Zt) (41)
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Moreover, it comes by application of the Itô formula (36) to the functions X, Y and XY,
with �,� standing for �equality up to a local martingale term�:

d[X,Y ]t = d(XtYt)−Xt−dYt − Yt−dXt

, (∂t +A)(XY )(Zt)dt−X(Z)(∂t +A)Y (Zt)dt− Y (Z)(∂t +A)X(Zt)dt .

This comes out onto the following alternative characterization of the compensator 〈X,Y 〉 of
[X,Y ] (to be compared with (39)):

d < X, Y >t= (∂t +A)(XY )(Zt)dt−Xt(∂t +A)Y (Zt)dt− Yt(∂t +A)X(Zt)dt (42)

We are now ready to prove the following

Proposition 7.1 For processes X and Y given as Xt = X(Zt) and Yt = Y (Zt) in our
jump-di�usion setting with regimes Z, the sharp bracket 〈X,Y 〉 is absolutely continuous
w.r.t. the Lebesgue measure, with related density

d〈X,Y 〉
dt = limh→0 h

−1Covt(Xt+h −Xt, Yt+h − Yt) (43)

Proof. For any �xed h > 0, we have:

Covt(Xt+h −Xt, Yt+h − Yt) + Et(Xt+h −Xt)Et(Yt+h − Yt) = (44)

Et (Xt+hYt+h −XtYt)−XtEt (Yt+h − Yt)− YtEt (Xt+h −Xt) .

Now, we have by the Itô formula (36) applied with Π = X, Π = Y and Π = XY, respectively:

limh→0 h
−1Et(Xt+h −Xt) = (∂t +A)X(Zt)

limh→0 h
−1Et(Yt+h − Yt) = (∂t +A)Y (Zt)

limh→0 h
−1Et (Xt+hYt+h −XtYt) = (∂t +A)(XY )(Zt)

Hence, by (44):

lim
h→0

h−1Covt(Xt+h −Xt, Yt+h − Yt) = (∂t +A)(XY )(Zt)

−Xt(∂t +A)Y (Zt)− Yt(∂t +A)X(Zt) =
d〈X,Y 〉
dt

,

by (42). 2

7.2.6 Special Cases

Jump�di�usions and Lévy-like processes We stated the generic model Z above for
the sake of generality of a factor process underlying a �nancial derivative. Such a level of
generality is actually useful for applications in credit risk modeling (see, e.g., [32]). However
in most applications the process Y is trivial (k = 0), in which case Z reduces to (t,X ), and
the general Itô formula (36) reduces to the following Itô-Lévy formula:

dΠ(Zt) = (∂t +A)Π(Zt) dt+ ∂Π(Zt)σ(Zt) dWt + δΠ(Zt−)µ̃(dt, d·) (45)
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with

AΠ(z) =
1
2

q∑
i,j=1

aij(z)∂2
xixj

Π(z) +
q∑
i=1

bi(z)∂xiΠ(z)

+
∫

Rq

(
δΠ(z, x′)− ∂Π(z)δ(z, x′)

)
γ(z)h(z, dx′)

= 1
2Tr[a(z)HΠ(z)] + ∂Π(z)

(
b(z)− γ(z)δ(z)

)
+ γ(z)δΠ(z)

(46)

Or, equivalently to (45) (cf. (37)�(38)):

dΠ(Zt) = (∂t + Ã)Π(Zt) dt+ ∂Π(Zt)σ(Zt) dWt + d

(
Nt∑
l=1

δΠtl

)
(47)

with Ã as in (38).

In the context of more general Lévy jump measures γh(z, ·) under assumptions (32)�(33),
the Itô-Lévy formula (45) still holds, with A therein to be understood as de�ned by the �rst
identity in (46) (since δΠ(z) and δ(z) may not exist in the second one, cf. Remark 7.3(i)).
Note that in the context of more general Lévy�like processes , the process X is typically
given in the following form (see, e.g., Cont and Tankov [57]):

dXt = bc(Zt) dt+ σ(Zt) dWt + d

Nc
t∑

l=1

δ(Ztcl−, Jtcl ) +
∫
|x|<1

δ(Zt−, x) µ̃(dt, dx) (48)

for some coe�cient (function) bc and with N c
t = µ(Bc × [0, t]), where Bc denotes the com-

plement of the unit ball in Rq, and where the tcl s denote the successive times of jumps of
µ(Bc × [0, t]) (which are well de�ned, in the case of Lévy jump measures γh(z, ·)). By
comparison with (30), we thus have:

b(z) = bc(z) +
∫
|x′|≥1

δ(z, x′)γ(z)h(z, dx′) .

The following equivalent form of the generator A in terms of bc follows (cf. the �rst identity
in (46)):

AΠ(z) =
1
2
Tr[a(z)HΠ(z)] + ∂Π(z)bc(z)

+
∫

Rq

(
δΠ(z, x′)− ∂Π(z)δ(z, x′)1|x′|<1

)
γ(z)h(z, dx′)

(49)

Pure Di�usions When there are no jumps in X either, so

dXt = b(t,Xt) dt+ σ(t,Xt) dWt (50)

then (45) reduces further to the standard Itô formula:

dΠ(t,Xt) = (∂t +A)Π(t,Xt) dt+ ∂Π(t,Xt)σ(t,Xt) dWt (51)

with
AΠ(z) = 1

2

∑q
i,j=1 aij(z)∂

2
xixj

Π(z) +
∑q

i=1 bi(z)∂xiΠ(z) (52)
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Continuous Times Markov Chains In other applications the process X is trivial (q =
0), in which case Z reduces to a Continuous-Time Markov Chain (t,Y), and the general Itô
formula (36) reduces to the following elementary Markov Chains Itô formula:

dΠ(Zt) = (∂t +A)Π(Zt) dt+ ∆Π(Zt−)dν̃t (53)

with
AΠ(z) = λ(z)∆Π(z) (54)

Or, equivalently to (53) (cf. (37)�(38)):

dΠ(Zt) = ∂tΠ(Zt) dt+ d

(
Ht∑
l=1

∆Πsl

)
. (55)

7.3 Variational Inequality Approach

7.3.1 Re�ected BSDEs and PIDEs with obstacles

We are now back to the general factor process Z = (t,X ,Y) above with related Markovian
FBSDE (E) for a derivative. Denote by P the F-predictable σ-algebra on Ω× [0, T ] and by
B(Rq) the Borel σ-algebra on Rq. A solution (Π,M,K) to (E) is then typically sought for
with M in the form

Mt =
∫ t
0 Ẑu dWu +

∫ t
0 Z̃u dν̃u +

∫ t
0

∫
Rq Vu(x) µ̃(du, dx) (56)

for F-predictable processes Ẑ, Z̃, and a P ⊗ B(Rq)-measurable random function V : Ω ×
[0, T ]× Rq → R such that (with the convention that k = 0 when there are no regimes):∑q

j=1 E
∫ T
0 (Ẑjt )

2 dt∑k
j=1 E

∫ T
0 (Z̃jt )

2λ(Zt)`(Zt, yj) dt <∞

E
∫ T
0

∫
Rq V

2
t (x)γ(Zt)h(Zt, dx) dt <∞

It is shown in [68] that, under mild regularity conditions, (E) has a unique solution (Π,M,K)
with M of the form (56), in suitable Hilbert spaces. In the Markovian case, [66, 65] estab-
lishes the relation between this solution and the unique solution in some sense (viscosity
solution with polynomial growth in the x variable), Π(z), to the following PIDE obstacle
problem (system of k coupled PIDEs with obstacle in space-dimension q):

min (−∂tΠ−AΠ− C + rΠ,Π− L) = 0 on [0, T )× Rq × I (57)

with terminal condition Π(T, x, y) = ξ(x, y). So,

Theorem 7.2 Under mild conditions, we have

Πt = Π(Zt), t ∈ [0, T ]

and Π0 = Π(Z0) is the minimal initial wealth of a hedge with P � local martingale residual
cost process for the Claim.



26

Moreover, in regular cases, we also have in some sense (see [67]), for t ∈ [0, T ] :

Ẑt = ∂Πσ(Zt) , Z̃t = ∆Π(Zt−) , Vt = δΠ(Zt−)

7.3.2 Discussion of Various Hedging Schemes

Let us further assume that the primary risky price process X satis�es likewise Xt = X(Zt)
for a function X with the same regularity as Π, and that, consistently with the requirement
that βX̂ is a P � local martingale:

d(βtX̂t) = βt

(
∂Xσ(Zt)dWt + ∆X(Zt−)dν̃t + δX(Zt−)µ̃(dt, d·)

)
(58)

Note that X is an Rd-valued function, so in particular ∂X lives in Rd⊗q, and identity (58)
holds in Rd.

The cost ρ relative to the strategy ζ (cf. (15)) can in turn be expressed in terms of the
pricing functions Π and X and the related delta functions.

Theorem 7.3 Under the previous conditions in the Markovian set-up, the dynamics (15)
for the cost process ρ relative to the strategy ζ (and thus the related P&L, cf. (16)) may be
rewritten as (cf. (23)):

dρt =
(
∂Πσ(Zt)− ζt∂Xσ(Zt)

)
dWt

+
(
∆Π(Zt−)− ζt∆X(Zt−)

)
dν̃t

+
(
δΠ(Zt−)− ζtδX(Zt−)

)
µ̃(dt, d·)

(59)

It is thus possible to hedge completely the source risk W (which amounts to hedging market
risk, or spread risk in a context of credit risk modeling, see section 13.2.2) by setting, provided
∂Xσ is left-invertible,

ζt = ∂Πσ(∂Xσ)−1(Zt) (60)

In the simplest case where q = d and ∂X and σ are invertible this formula further reduces
to

ζt = ∂Π∂X−1(Zt) (61)

Note that this strategy actually creates some jump risk via the dependence in ζ of the
remaining terms in (59).

At the other extreme, it is alternatively possible to hedge completely the source risk ν (which
typically amounts to hedging jump risk, or default risk, in a context of credit risk modeling,
see section 13.2.2) by setting, provided ∆X(Zt−) is left-invertible,

ζt = ∆Π(Zt−)(∆X(Zt−))−1 (62)

This strategy creates additional market risk via the dependence in ζ of the remaining terms
in (59).
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Of course a perfect hedge (ρ = 0) is hopeless unless there are no jumps (or only a �nite
number of jump sizes) in X . In the context of incomplete markets the choice of a hedging
strategy is up to one's optimality criterion, relative to the hedging cost (15)�(59). For
instance, a trader may wish to minimize the (objective, P̂ �) variance of

∫ T
0 βtdρt. Yet the

related strategy ζ̂va is hardly accessible in practice (in particular it typically depends on
the objective model drift, a quantity notoriously di�cult to estimate on �nancial data).
As a proxy to this strategy, traders commonly use the strategy ζva which minimizes the
risk-neutral variance of the error. Note that under mild conditions

∫ ·
0 βdM and βX̂ are

square integrable martingales, by estimate (31) on X combined with the polynomial growth
of the functions Π and X in x. The risk-neutral minimal variance strategy ζva is then given
by the following Galtchouk-Kunita-Watanabe decomposition of

∫ ·
0 βdM with respect to βX̂

(see, e.g., Protter [157, IV.3, Corollary 1]):

βtdMt = ζvat d(βtX̂t) + βtdρ
va
t (63)

for some Rd-valued βX̂-integrable process ζva and a real-valued square integrable martingale
βtdρ

va
t strongly orthogonal to βX̂. Denoting in vector-matrix form < X,Y >= (< Xi, Y j >

)ji , < X >=< X,X >, we thus have by (63):

ζvat = d<Π,X>
dt (d<X>dt )−1 (64)

where, by (41):

d<Π,X>
dt = ∂Πa∂XT(Zt) + γ(Zt)δΠ(δX)T(Zt) + λ(Zt)∆Π(∆X)T(Zt)

d<X>
dt = ∂Xa∂XT(Zt) + γ(Zt)δX(δX)T(Zt) + λ(Zt)∆X(∆X)T(Zt)

(65)

Remark 7.4 (i) For every �xed t ∈ [0, T ] and h > 0 it follows from (63) that (ζvau )u∈[t,t+h]

minimizes

Vart
( ∫ t+h

t
βudMu −

∫ t+h

t
ζud(βudX̂u)

)
over the set of all (self-�nancing) trading strategies ζt on the time interval [t, t + h]. Let
likewise ζht =: ζva,ht minimize

Vart
( ∫ t+h

t
βudMu − ζht

∫ t+h

t
d(βudX̂u)

)
over the set of all buy-and-hold (self-�nancing) strategies ζht on the time interval [t, t + h].
The strategy ζva,ht is given as the solution of the linear regression problem of

∫ t+h
t βudMu

against
∫ t+h
t d(βudX̂u), so:

ζva,ht = Covt
( ∫ t+h

t βudMu,
∫ t+h
t d(βudX̂u)

)
Vart

( ∫ t+h
t d(βudX̂u)

)−1

In view of (44) we deduce that ζvat = limh→0 ζ
va,h
t , as one could expect.

(ii) In case of the pure di�usion model X of section 7.2.6 (cf. formulas (50) to (52)),
then sharp brackets coincide with (square) brackets and are independent of the equivalent
probability measure under consideration. It follows that the risk-neutral minimal variance
strategy ζva de�ned by (64) satis�es ζvat = limh→0 ζ̂

va,h
t where the strategies ζ̂va,ht are the
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counterpart under the objective probability measure P̂ of the strategies ζva,ht introduced in
part (i). In the case where there are no jumps in the model the risk-neutral minimal variance
strategy ζva is thus also an objective locally (but possibly not globally) minimal variance
strategy.

8 More General Numeraires

Up to this point, as it is always the case by default henceforth, we implicitly chose the
savings account B, assumed to be a positive �nite variation process, as a numeraire, namely
a primary asset with positive price process, devoted to be used for discounting other price
processes. However for certain applications, like dealing with stochastic interest rates in the
�eld of interest rate derivatives, this choice may not be available (inasmuch as there may
not be a riskless asset in the primary market), or it may not be the most appropriate (even
if there is one, the choice of another asset as a numeraire may be more convenient). This
motivates the extension of the previous developments to the case where B is a general locally
bounded positive semimartingale, not necessarily of �nite variation. The interpretation of
B as savings account and of β = B−1 as a riskless discount factor is now replaced by the
interpretation of B as a simple numeraire, referring to the fact that other price processes
will be typically expressed as relative (rather than discounted) prices βX.

Understanding discounted price as relative price, risk-neutral model as martingale model rel-
ative to the numeraire B, etc., the risk-neutral modeling approach developed in the previous
sections holds mutatis mutandis under this relaxed assumption on B. Note in particular that
the self-�nancing condition still writes (3) (see, e.g., [158]), though this is not as obvious as
in the special case where B was a �nite variation and continuous process. Also note that the
notion of arbitrage is now to be understood as the one relative to the numeraire B, where
the set of admissible strategies is a numeraire dependent notion.

In this more general situation, let us de�ne a formal correspondence between processes
(Π,M,K) and (π,m, k) by setting

πt = βtΠt , dmt = βt dMt , dkt = βt dKt with m0 = 0 and k0 = 0 (66)

where β now refers to the discount factor relative to an arbitrarily �xed numeraire. Equation
(E) to be solved in (Π,M,K) (with β as just mentioned above) is then equivalent to the
following re�ected BSDE with data (c, η, `) := (βC, βT ξ, βL), to be solved in (π,m, k) (cf.
(10)):

πt = η + cT − ct + kT − kt − (mT −mt), t ∈ [0, T ]
`t ≤ πt, t ∈ [0, T ]∫ T
0 (πu − `u) dku = 0

(67)

Note that equation (67) has the same structure as (E) (it is in fact equation (E) with input
data r, C, ξ, L de�ned as 0, c, η, `).

The conclusions of Theorems 6.1, 6.2 are still valid in this context, provided that �a solution
(Π,M,K) to (E)� therein is understood as the process (Π,M,K) de�ned via (66) in terms
of a solution (π,m, k) to (67).



29

The Markovian case now corresponds to the case where (to be compared with (21)):

ct = c(Zt) , η = η(ZT ) , `t = `(Zt) (68)

for a suitable Markov factor process Z.
Remark 8.1 Of course, in order to ensure (68), one needs as a rule to include the numeraire
asset B as a component of the factor process Z, which increases by one the dimension of
the model, and by a factor 100 or more (number of mesh points in the direction B) the
numerical cost of solving the related systems of PIDEs. An important exception to this
rule is the case when βT = 1 and there are no dividends D nor barrier L involved (case of
European derivatives without dividends, see Section 11).

In the Jump�Di�usion Setting with Regimes for Z with generatorA given as (22) and drivers
W , ν and µ (under a valuation measure corresponding to the numeraire under consideration),
a solution (Π,m, k) to (67) is typically sought for with m in the form (cf. (56))

mt =
∫ t
0 ẑu dWu +

∫ t
0 z̃u dν̃u +

∫ t
0

∫
Rq vu(x) µ̃(du, dx) (69)

The system of PIDEs formally related to the BSDE (67) writes:

min (−∂tπ −Aπ − c, π − `) = 0 on [0, T )× Rq × I (70)

with terminal condition π(T, x, y) = η(x, y). Under suitable conditions, the BSDE (67)
admits a unique solution (Π,m, k) with m of the form (69), and the PIDE (70) admits
a unique solution (in some sense) π = π(z). The connection between them writes, for
t ∈ [0, T ] :

πt = π(Zt)

and in regular cases:

ẑt = ∂πσ(Zt) , z̃t = ∆π(Zt−) , vt(x) = δπ(Zt−)

Let us further assume that the primary risky price process X satis�es likewise βX = χ(Zt)
for a function χ such that (cf. (58))

d(βtX̂t) = ∂χσ(Zt)dWt + ∆χ(Zt−)dν̃t + δχ(Zt−)µ̃(dt, d·) (71)

We then have the following analogs to Theorems 7.2, 7.3.

Theorem 8.1 Under the previous conditions in the Markovian set-up, Π0 = B0π(Z0) is
the minimal initial wealth of a hedge with P � local martingale residual cost process for the
related derivative. Moreover the cost process ρ and the related P&L process e (cf. (14), (15),
(16)) may be rewritten as, respectively (with ρ0 = 0):

dρt =
(
∂πσ(Zt)− ζt∂χσ(Zt)

)
dWt

+
(
∆π(Zt−)− ζt∆χ(Zt−)

)
dν̃t

+
(
δπ(Zt−)− ζtδχ(Zt−)

)
µ̃(dt, d·)

(72)

βtet = π0 −
∫ t
0 cudu +

∫ t
0 ζud(βuX̂u)− πt =

∫ t
0 dku −

∫ t
0 βudρu (73)
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It is thus possible to hedge completely the market risk represented byW by setting, provided
∂xσ is left-invertible,

ζt = ∂πσ(∂χσ)−1(Zt) (74)

In the simplest case where q = d and ∂χ and σ are invertible this formula further reduces
to

ζt = ∂π∂χ−1(Zt) (75)

Alternatively, it is possible to hedge completely the jump risk ν by setting, provided χ(t,Xt−)−
χ(Zt−) is left-invertible,

ζt = ∆π(Zt−)(∆χ(Zt−))−1 (76)

Still another possibility is to use the strategy ζva which minimizes the risk-neutral variance
of the error, and which is given by

ζvat = d<π,χ>
dt (d<χ>dt )−1 (77)

where

d<π,χ>
dt = ∂πa∂χT(Zt) + γ(Zt)δΠ(δχ)T(Zt) + λ(Zt)∆Π(∆χ)T(Zt)

d<χ>
dt = ∂χa∂χT(Zt) + γ(Zt)δχ(δχ)T(Zt) + λ(Zt)∆χ(∆χ)T(Zt)

(78)

8.1 Changes of Numeraire

In order to assess the e�ect of a change of numeraire, let us be given another numeraire B̃
(primary asset with price process de�ned as a locally bounded positive semimartingale). Let
us set νt := B0B̃t

B̃0Bt
. Note that ν is a P � local martingale, by arbitrage. Assuming that ν is

in fact a P � martingale (for instance because ν is bounded, or in virtue of suitable moment
conditions on ν), let us de�ne the measure P̃ on (Ω,F) (with F = FT as usual) by

dP̃
dP

= νT . (79)

Recall that a càdlàg process π is a P̃ � local martingale if and only if νπ is a P � local
martingale (see e.g. Jacod�Shiryaev [104, Proposition III.3.8] or Jeanblanc et al. [111]). So

X̂

B̃
= ν−1 νX̂

B̃
= ν−1B0X̂

B̃0B

is a P̃ � local martingale, and P̃ is a martingale measure relative to B̃.

Consistently with this, denoting by Π the P-price of an European derivative with integrable
payo� ξ and no dividends (so D = 0 in (6)), the abstract Bayes rule (see, e.g., [111]) and
the fact that ν is a P-martingale yield:

B̃t EP̃(B̃−1
T ξ | Ft) = B̃t

EP(B̃−1
T ξνT | Ft)

EP(νT | Ft)
= BtEP(B−1

T ξ | Ft) = Πt , t ∈ [0, T ] .
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So
Πt = B̃t EP̃(B̃−1

T ξ | Ft) , t ∈ [0, T ] (80)

and Π

B̃
is a (Doob) martingale under P̃.

Also note that νt is the Ft-measurable Radon-Nikodym density dP̃
dP |Ft

of P̃ with respect to
P on Ft, for any t ∈ [0, T ]. Indeed, for any Ft-measurable and bounded random variable X,
we have:

EP̃(X) = EP(XνT ) = EP [XEP(νT | Ft)] = EP(Xνt) . (81)

Remark 8.2 These results will be intensively used in Section 11 with P̃ = PT , the so-called
T � forward-neutral measure, with related numeraire B̃ = BT

t corresponding to a discount
bond maturing at time T. Since BT (T ) = 1, (80) rewrites in this case:

Πt = BT
t EPT (ξ | Ft) , t ∈ [0, T ] (82)

For further study of changes of numeraires from the point of view of the connection between
arbitrage prices and hedging through the related BSDEs and/or PIDEs, we refer the reader
to Bielecki et al. [32] and Crépey [66].

9 Towards Real-Life Models

9.1 Model Calibration

The knowledge of the martingale valuation measure P ∈M `chosen by the market' (assuming
no arbitrage) is the key to fair valuation and hedging of �nancial derivatives. For hedging
purposes or/and in order to be able to implement de�nite bets on speci�c risk factors, and
also, to be able to sell exotic or structured products at fair price, traders need to know the
market martingale valuation measure P.

There are two sets of constraints that P should satisfy, and that can help in the quest for
the market martingale valuation measure.

Firstly, P should satisfy structural requirements coming from the equivalence between P and
the objective probability measure P̂. For instance, if there are jumps in the time series of
the factor process Z, resp. of the market price process X, then Z, resp. X, should also be
a jump process under the valuation measure. More generally, the factor process, resp. the
primary price process, should have the same trajectorial properties under the objective and
under the market valuation measure.

Secondly, the discounted cumulative value process βX̂ must be a P � local martingale, and
the cross-section Π±

t of the market prices of European vanillas quoted at time t on S must
satisfy (assuming ST integrable, for call options; cf. Theorem 5.1(i)):

Π±
t (T,K) = β−1

t EtβT (ST −K)± , (T,K) ∈ obs±t (83)

where obs±t is the set of quoted European vanilla call/put options on S at time t. Constraints
of type (83) are called calibration constraints. A model is said to �t the smile at a given time
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t, if it satis�es the calibration constraints (83). We shall see in the sequel that quite a few
classes of models can �t the smile within the bid-ask spread, provided their parameters are
suitably calibrated. A further requirement is that a model �ts the smile dynamics under the
market valuation measure. This corresponds to additional calibration constraints associated
with exotic options prices (see, e.g., [42, 43]).

Finally, for being usable in practice, a pricing model needs to be constructive and im-
plementable in real time. Concretely this leads to seek for (preferably low-dimensional)
Markovian approximations of the factor process and of the primary price process under the
market valuation measure, with related hedging strategies ζ computed in view of the related
cost process given as (59) (see also the discussion of section 7.3.2), rather than for the mar-
tingale valuation measure itself (assuming no arbitrage) with abstract hedging strategies
and related cost process given as (15). A consequence of this shift of interest is that we
shall relax the calibration equality constraints (83) into inequality constraints. So we shall
consider in practice approximate Markovian pricing models Z with related generator AZ
belonging to the class de�ned by (22)3, calibrated to the market within the bid-ask spread.

9.2 Hedging in Practice

Given a model calibrated to the market, it may may then be used for consistent hedging
(and also pricing, in the case of exotic options or structured products) purposes. Indeed,
when banks sell derivatives, they are left with the responsibility to �nd ways to be able to
provide the derivative's payo� at termination. To this end, they immediately set up a hedging
portfolio by combination of liquidly traded instruments, such as the asset(s) underlying the
derivative, and/or further vanilla derivatives. Of course, for feasibility as well as transaction
cost reasons (note that transaction costs are not explicitly considered in our formalism),
they restrict themselves to piecewise constant self-�nancing strategies in the primary market
(cf. (3)) ζh such that

ζht = ζhti for ti < t ≤ ti+1 (84)

where (ti)0≤i≤n is a (deterministic here, for simplicity) partition of [0, T ] (assuming that the
product was sold at time 0). In practice n may vary from 1 (static hedging) to the number
of (working) days or weeks between 0 and T (the most common forms of dynamic hedging,
in discrete time). So, at the two extremes of the spectrum:
• in the static hedging approach, one uses a buy-and-hold hedging portfolio in order to
synthetically replicate the derivative's payo�;
• in the dynamic hedging approach, one aims at replicating the derivative by a dynamic
self-�nancing portfolio, with the same initial value and the same risk sensitivities as the
derivative. Since derivative's (at least, options') payo�s are typically nonlinear with respect
to the value of the underlying assets at termination, these sensitivities change all the time,
so that, in order to get a perfect hedge, the composition of the hedging portfolio would have
to be updated continuously (see (15), (59) and the discussion of section 7.3.2).

Let us thus consider an European option with maturity T (without dividends). The picture
is the following: A trader sells the option at time 0 at price Π0, that is she receives at time
0 the amount of money Π0, but in turn it is mandatory for her to pay at time T the payo�
ξ, which may be very high depending on the movements of the underlying(s) between 0 and

3Of course in most applications the pricing model corresponds to a rather speci�c subcase of (22): di�usion
model without jumps nor regimes, jump-di�usion model, pure jump Markov chain model..
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T. Her strategy consists in rebalancing at every time step ti a self-�nancing hedge in the
primary market. Accounting also for the facts that V0 = Π0 and for the �nal payment by
the trader of ξ at time T , the discounted P&L of the trader at T is therefore (cf. (14)):

βT eT = Π0 +
∫ T
0 ζht d

(
βtX̂t

)
− βT ξ = Π0 +

∑n−1
i=0 ζ

h
ti

(
βti+1X̂ti+1 − βtiX̂ti

)
− βT ξ (85)

or, equivalently:

βT eT =
∑n−1

i=0 βtiδie (86)

with

βtiδie = −(βti+1Πti+1 − βtiΠti) + ζhti

(
βti+1X̂ti+1 − βtiX̂ti

)
(87)

In the case of an American option exercised at the stopping time τ, assumed for simplicity to
be of the form τ = νh, for a random integer ν ∈ {0, . . . , n}, formulas (85) and (86) become:

βτeτ = Π0 +
∑ν−1

i=0 ζ
h
ti

(
βti+1X̂ti+1 − βtiX̂ti

)
− βτΠτ =

∑ν−1
i=0 βtiδie (88)

In the case of a complete primary market and for ζ∗ making ρ∗ equal to 0 in (15), then (cf.
(16))

eτ = Π0 +
∫ τ

0
ζ∗t d

(
βtX̂t

)
− βτΠτ =

∫ τ

0
βudKu −

∫ τ

0
βtdρ

∗
u =

∫ τ

0
βudKu ≥ 0

for any stopping time τ in the case of an American option, and eT = 0 in the case of an
European option with K = 0. Now there are (at least) two sets of reasons why a practical
strategy ζh typically leads to negative P&Ls in some scenarii of the economy.

First, ζh necessarily di�ers from ζ∗, due to:
• Model misspeci�cation: ζh is typically computed in a Markovian approximation Z of the
real (obviously non-Markovian) market, so even if ζh makes the related cost ρ given by (59)
equal to 0 in the model Z, however the cost (15) of the strategy ζh in the real market is only
approximately equal to zero. Note that hedging ratios are typically model-dependent, and
even calibrated model dependent. So the composition of the hedging portfolio varies between
models, and even between models calibrated to the same set of hedging instruments.
• Hedge slippage: the strategy ζh is applied at discrete times only, whereas it should be
applied in continuous time to have a chance to make the (approximate Markovian) cost
process ρ given by (59) identically equal to 0.

The second set of reasons includes:
• Market incompleteness;
• Arbitrages which may occur in the market, and are excluded by standing assumption in
the standard theory of mathematical �nance;
• Transaction costs, and more general forms of market imperfections, which are not explicitly
accounted for in our formalism.

The conclusion of this part is that in our generic Markovian market model Z, derivative
prices and Greeks are given as solutions to the related risk-neutral pricing BSDEs/PIDEs.
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We shall see in the next part that in the simplest models (and in fact also in all a�ne
jump-di�usion AJD models, see [75], or in the SABR model [96]), semi-analytic formulae
are available for the prices and Greeks of European vanillas. This is very useful for model
calibration, which typically goes through intensive pricing of European vanillas (cf. Part
(VII)). However, as far as pricing exotic products or dealing with less standard models is
concerned, the pricing BSDEs/PIDEs will have to be solved numerically by stochastic sim-
ulation methods, or, provided the dimension of the model is not too large, by deterministic
PIDE or tree numerical schemes (cf. Parts (IV) to (VI)).
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Part III

Benchmark Models

In this part we gather basic facts regarding the benchmark models on the main derivatives
markets: equity-derivatives markets (Black�Scholes model and simple extensions), interest-
rate derivatives markets (BGM model) and credit derivatives markets (one factor Gaussian
copula model).

10 Black�Scholes and Beyond

10.1 Black�Scholes Basics

Let us start by the undisputed star of mathematical �nance: the Black�Scholes formula. We
consider a primary market composed of the savings account B = β−1 and of an underlying
S, which may represent a stock, an index, a future price, an exchange rate, a forward interest
or swap rate, etc. The riskless interest rate r in the economy and the dividend yield q on
S are assumed to be constant4. So in particular Bt = ert. Recall that by arbitrage (cf.
Section 5 and [72]), the discounted wealth process of any admissible self-�nancing trading
strategy in S and B must be a local martingale under a risk-neutral probability measure
P. In particular, βtSteqt = Ste

−κt, where we set κ = r − q, must be a P � local martingale.
Consistently with this requirement, (the risk-neutral form of) the Black�Scholes(�Merton)
model [36, 1973] [139, 1973], or BS model for short in the sequel, postulates the following
spot di�usion, driven by a standard P � Brownian motion W on [0, T ] :

dSt = St(κdt+ σdWt) (89)

or, equivalently:

d
(
βtSte

qt
)

= σ
(
βte

qtSt
)
dWt , (90)

for a constant volatility parameter σ. as The T � forward price Ft = Ste
κ(T−t) of S is thus a

P � Brownian martingale with constant volatility σ. Note for further use that (89) may also
be rewritten in terms of the cumulative price Ŝ (cf. (1)) as:

d(βtŜt) = d(βtSt) + βtqStdt = e−qtd(βtSteqt) = βtσStdWt . (91)

The arbitrage price process of an European vanilla option with (integrable, let us say mea-
surable and bounded for simplicity) payo� φ(ST ) at T is in turn given by (cf. Section
5):

Πt = e−r(T−t)Etφ(ST ) , t ∈ [0, T ] . (92)

In particular, the discounted price e−rtΠt is a (Doob) martingale under the risk-neutral
measure P. Moreover, by the Markov property of the risk-neutral BS stock S, we have that

Etφ(ST ) = E (φ(ST ) |St) ,
4In fact the interpretation of r and q depends on the nature of the underlying S : stock, interest rate,

exchange rate..
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and it is possible to show that Πt = v(t, St), for a suitable Borel-measurable function v.
Assuming v of class C1,2([0, T ]× (0,∞)), an application of the Itô formula (51) yields:

ertd(e−rtv(t, St)) = (∂tv + Lv)(t, St)dt+ σSt∂Sv(t, St)dWt

where Lv = κS∂Sv + σ2S2

2 ∂2
S2v − rv. As e−rtv(t, St) = e−rtΠt is a martingale, thus

∂tv + Lv = 0 .

Accounting for the fact that ΠT = φ, this leads to the following Black�Scholes valuation
PDE: {

v(T, S) = φ(S), S ∈ (0,+∞)
∂tv + κS∂Sv + 1

2σ
2S2∂2

S2v − rv = 0 in [0, T )× (0,+∞) (93)

Conversely, for regular enough and bounded φ, this PDE is known to have a unique classic
solution v bounded on [0, T ]×(0,+∞) (see, e.g., Friedman [90]). We then have by application
of the Itô formula:

βTφ(ST ) = βtv(t, St) +
∫ T

t
βu∂Sv(u, Su)σSudWu

where
βu∂Sv(u, Su)σSudWu = ∂Sv(u, Su)d(βuŜu) ,

by (91). So

βTφ(ST ) = βtv(t, St) +
∫ T
t βu∂Sv(u, Su)d(βuŜu) , P-a.s. (94)

This demonstrates, in the simple set-up of the Black�Scholes model, the following outputs
of Theorem 7.2�7.3:
• Firstly, in view of (92), taking expectations in (94) yields v(t, St) = Πt (note that the
stochastic integral in the r.h.s. of (94) is a bounded P � local martingale and therefore a
P-martingale);
• Secondly, the self-�nancing hedging strategy de�ned by, for t ∈ [0, T ]

ζbsu = ∂Sv(u, Su) (95)

units of stock S (cf. formula (61) with X = X(t, S) = S, here, since the hedging instrument
under consideration corresponds to the model factor S) and βu (v(u, Su)− Su∂Sv(u, Su))
units of the riskless asset Bu = eru at time u ∈ [t, T ], replicates the option's payo� φ(ST ),
starting from the wealth v(t, St) = Πt at time t.

Remark 10.1 Since P ∼ P̂, (94) also holds P̂-a.s.. This replicability of Contingent Claims
in the Black�Scholes model explains why the Black�Scholes price does not depend on the
physical drift µ, even though µ may be responsible for fat tails or skewness in the physical
spot returns (under P̂).

In order to illustrate the �exibility of Theorem 7.3 and of the related formulas, let us now
consider the case of a primary market de�ned by the savings account B as before, and a T
� forward contract on S (instead of S above) with strike F0. The arbitrage price process V
of the T � forward contract on S is thus given as, for t ∈ [0, T ] :

Vt = Ste
−q(T−t) − F0e

−r(T−t) = V (t, St)
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so ∂SV (t, St) = e−q(T−t). By application of Theorem 7.3 (starting from time t), a perfect
replication strategy for the option with initial wealth v(t, St) at time t is de�ned by, at any
time u ∈ [t, T ],

ζ̃bsu = ∂Sv(u, Su) = eq(T−u)∂Sv(u, Su) (96)

units of T � forward contracts on S, and, therefore, βu
(
v(u, Su)− ζ̃bsu Vu

)
units of B.

In the special case of an European call option with payo� function φ(S) = (S − K)+, a
direct computation based on (92) (or veri�cation on (93)) shows that the Black�Scholes call
pricing function Πbs and delta function ∆bs = ∂SΠbs are given by the so-called Black�Scholes
formulae:

Πbs(T,K; t, S, r, q, σ) = Se−qτN (d+)−Ke−rτN (d−)
∆bs(T,K; t, S, r, q, σ) = e−qτN (d+)

(97)

where τ = T − t, N is the Gaussian cumulative distribution function and

d± = ln( S
K

)+κτ

σ
√
τ

± 1
2σ
√
τ (98)

These results admit straightforward extensions to the case where r, q and σ are Borel-
measurable bounded functions of time: simply replace rτ, qτ and σ

√
τ by

∫ T
t r(u)du,

∫ T
t q(u)du

and Σ, with Σ2 =
∫ T
t σ2(u)du, in (97)�(98).

As is well known, the Black�Scholes model is strongly misspeci�ed, which leads to consider
natural extensions of this model, adding stochastic volatility (Heston model) or/and jumps
(Merton and Bates model) in the picture.

10.2 Heston Model

The best known Stochastic Volatility model is the Heston model (1993, see [99]), which
postulates, for the instantaneous variance process, an a�ne process V ≥ 0, namely, under
P (i.e., in risk-neutral form):{

dVt = −λ(Vt − θ)dt+ η
√
VtdZt

dSt = St(κdt+
√
VtdWt) ,

(99)

where:
• d〈W,Z〉t = ρdt,
• λ is the speed of mean-reversion of the instantaneous variance,
• θ is the long-term variance mean,
• η

2
√
V
is the (instantaneous) volatility of the volatility.

10.3 Merton Model

The Merton model (1976, see [138]) is obtained by adding an independent compound Poisson
jump process to the Black�Scholes model as follows, under P:

dSt
St−

= κdt+ σdWt + d(
∑Nt

l=1 Jl − γJ̄t) (100)
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with related generator AS such that, for v = v(S) (cf. (46)):

ASv =
(
κ− γJ̄

)
S∂Sv +

1
2
σ2S2∂2

S2v + γ [Ev((1 + J1)S)− v(S)] , (101)

where:
• (Nt)t≥0 is a Poisson process with deterministic jump intensity γ;
• the Jl are the jump size variables, such that jl := ln(1 + Jl) ↪→ N (α, β), so

j̄ := Ej1 = α, Ej21 = α2 + β, J̄ := EJ1 = eα+β
2 − 1 ;

•W , N and the Jl are independent.

Denoting further a = b− γJ̄, we have in particular:

AS ln(S) = κ− γJ̄ − 1
2
σ2 + γj̄ = a+ γj̄ . (102)

By application of the Itô-Lévy formula (47), the model can be rewritten in terms of the
log-spot Xt = ln(St) as follows:

dXt = adt+ σdWt + d(
Nt∑
l=1

jl) , (103)

whence XT = x+ at+ σWt +
∑Nt

l=1 jl, and

ST = S0e
at+σWt

∏Nt
l=1(1 + Jl) (104)

10.4 Bates Model

The Bates model [24, 1996] is a mixture of the Heston and Merton models (Heston model
with additional independent Merton-style jumps in S), so, under P :{

dVt = −λ(Vt − θ)dt+ η
√
VtdZt

dSt
St−

= (κ− γJ̄)dt+
√
VtdWt + d(

∑Nt
l=1 Jl) .

(105)

Note that from the practical point of view, the Heston and the Merton model are still
notoriously misspeci�ed, like the Black�Scholes model. The Bates model may often be
considered as a �exible enough and robust alternative.

10.5 Log-Spot Characteristic Functions

The (risk-neutral) characteristic function

ΦT (u) = E[exp(iuXT )] = E[Xiu
T ]

of the log-spot Xt = ln(St) is known in closed-form in the previous models (which are all
AJD models [75]), so that the related vanilla option prices and Greeks can be computed
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e�ciently by Fourier transform (see Section 37).

Proposition 10.1 We have in the Black�Scholes, Merton, Heston and Bates models, re-
spectively:

Φbs
T (u) = Φκ

T (u) exp
[
−1

2u(i+ u)σ2T
]

Φme
T (u) = Φbs

T (u)Φj
T (u) = exp

[
γT (eiuα−u

2 β
2 − 1)− u2σ2T

2 + iu

(
x0 + [b− γeα+β

2 + γ]T
)]

Φhe
T (u) = Φκ

T (u) exp [C(u, T )θ +D(u, T )v]
Φba
T (u) = Φhe

T (u)Φj
T (u) ,

with x = X0 = ln(S0), v = V0, and

Φκ
T (u) = exp

[
iu
(
x+ κT

)]
, Φj

T (u) = exp
[
−γT

(
iu
(
eα+β

2 − 1
)
−
(
eiuα−u

2 β
2 − 1

))]
C(u, T ) = λ

[
Ty− − 2

η2 ln(1−ge−pT

1−g )
]
, D(u, T ) = 1−e−pT

1−ge−pT y− (106)

p =
√
y2 − 4wz , y± = y±p

η2 , g = y−
y+

w = −1
2u(i+ u) = 1

2ui(ui− 1) = −u2

2 − ui
2 , y = λ− ρηiu , z = η2

2

Remark 10.2 Setting λ = ρ = 0 and sending η → 0+ yields

y = 0, y± =
±p
η2
, p =

√
−2wη, 1− g = 2, D(u, T ) ∼ pT

1− g
y− =

−p2T

2η2
= wT ,

and C(u, T )θ+D(u, T )v reduces to −1
2u(i+u)vT, so Φhe

T (u) reduces to Φbs
T (u) for σ =

√
v,

as expected.
Likewise, it is immediate to check that Φme

T (u) reduces to Φbs
T (u) for α = β = 0.

Proof of Proposition 10.1. In the case of the Heston model, we introduce

Ft := Ste
−κt

so F0 = S0, and we compute Φhe
T (u) as

E0S
ui
T = eκuiTE0F

ui
T = eκuiTΦ(0, F0, V0) ,

with Φ(t, F, V ) := EtF uiT on {Ft = F, Vt = V } . In particular

Φ(T, F, V ) = F ui . (107)

Consistently with (107), let us seek for an explicit solution for Φ of the form

Φ(t, F, V ) = F ui exp
[
C(u, T − t)θ +D(u, T − t)V

]
,

for suitable coe�cients C = C(u, τ) and D = D(u, τ) such that

C(u, 0)θ +D(u, 0)V = 0 . (108)

Note that Φ(t, Ft, Vt) is a (Doob) martingale. We thus get by application of the Itô formula
(51):

∂tΦ +AF,V Φ = 0 on {t < T} ,
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with

AF,V =
1
2
V F 2∂2

F 2 +
1
2
η2V ∂2

V 2 + ρηV F∂2
FV − λ(V − θ)∂V .

This yields the following equation in (C,D) :

−θ ∂τC − V ∂τD +
1
2
V (ui)(ui− 1) +

1
2
η2V D2 + ηρV (ui)D − λ(V − θ)D = 0

on {t < T}. More speci�cally, let us look for (C,D) such that for t < T :{
∂τC = λD
∂τD = w + 1

2η
2D2 + ρηuiD − λD = w + zD2 − yD = z(D − y+)(D − y−) .

(109)

along with the initial condition C(u, 0) = D(u, 0) = 0.

We recognize in the second line of (109) a Riccati equation. The solution C(u, τ), D(u, τ)
of (109) is given by (106) (with T = τ therein), as one can check by inspection. This proves
the result in the case of the Heston model.

In the case of the Bates model, let us introduce the process

Lt =
Nt∏
l=1

(1 + Jl)e−γJ̄t , dLt = Lt− d(
Nt∑
l=1

Jl − γJ̄t) . (110)

Note that, using an obvious notation:

d(Shet Lt) = Shet dLt + Lt−dS
he
t = Shet Lt−

(
κdt+

√
VtdWt + d(

Nt∑
l=1

Jl − γJ̄t)

)
,

by (110). Hence Sba = SheL, by uniqueness of a solution to (105). Thus Φba
T (u) =

Φhe
T (u)ΦL

T (u), by independence. It remains to prove that ΦL
T (u) := ELuiT = Φj

T (u) . In
this view, note that

ALLui = −γLJ̄∂LLui + γLui
(
E
[
(1 + J1)ui

]
− 1
)
.

We thus have by the Itô�Poisson formula (45), with �,� standing for �equality up to a local
martingale term�:

dLuit , Luit
(
− J̄ui+

(
E
[
(1 + J1)ui

]
− 1
))
γdt ,

whence

ELuit = Lui0 e
δγt , with δ = −J̄ui+

(
E
[
(1 + J1)ui

]
− 1
)

= −ui
(
eα+β

2 − 1
)

+ euiα−
u2β
2 − 1 ,

that is ELuit = Φj
t (u).

Finally, the results in the case of the Black�Scholes and of the Merton models follow by
passage to the limit in the previous results, by Remark 10.2. 2
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11 BGM Model

11.1 Black Formulae

Black formulae extend the Black�Scholes formulae (97)�(98) (general case with time-dependent
volatility σ(t) and dividend yield q(t)) to the case of stochastic interest rates r. These for-
mulae are derived within a martingale market model (Ω,F,PT ) relative to the numeraire BT

de�ned by the price process of a T � discount bond (cf. Section 8, Remark 8.2). We denote
βTt = 1

BT
t
. Recall that by arbitrage, the T � forward value

Ft := βTt Ste
−

∫ T
t q(u)du (111)

of S (accounting for the dividends at yield q(t) on S) must be a PT � local martingale (see
Section 8). Consistently with this requirement, Black's T � forward neutral model postulates
that the process (Ft)t∈[0,T ] is a PT � Brownian local martingale with deterministic volatility
process σ(t).

By (82) applied with ξ = (ST −K)+ = (FT −K)+, and using the Black�Scholes formulae
(97)�(98) with r = q = 0 to compute the expectation in the r.h.s. of (82), we thus get (note
that πbl and δbl thus de�ned are forward pricing and delta functions, cf. Theorem 8.1 and
the related formulas):

Πbl
t = BT

t π
bl(T,K; t, Ft, σ) , δblt := ∂Fπ

bl(T,K; t, Ft, σ) = δbl(T,K; t, Ft, σ)

with
πbl(T,K; t, F, σ) = FN (d+)−KN (d−)

δbl(T,K; t, F, σ) = N (d+)
(112)

where
d± = ln(F/K)

Σ ± 1
2Σ where Σ2 =

∫ T
t σ2(u)du (113)

Recall that δblt is a key ingredient of any hedging scheme for the option, cf. Theorem 8.1.
Let us �rst consider a primary market de�ned by the numeraire (T � discount bond) BT

t

and a T � forward contract on S with strike price F0. The relative price process βTV of the
T � forward contract on S is thus given by, for t ∈ [0, T ] (cf. (111)):

βTt Vt = βTt

(
Ste

−
∫ T

t q(u)du − F0B
T
t

)
= Ft − F0 = V (t, Ft)

So ∂F (βTt Vt)(t, Ft) = 1. By application of formula (75) (see also Section 10.1 or [41] for
a more direct proof in this particular situation), a perfect replication strategy with initial
wealth Πbl

0 at time 0 is de�ned by, at any time t ∈ [0, T ],

ζ̃blt = δbl(T,K; t, Ft, σ)(∂FβTt Vt)
−1 = δbl(T,K; t, Ft, σ)

units of T � forward contracts on S, and, therefore,

βTt

(
BT
t π

bl(T,K; t, Ft, σ)− δbl(T,K; t, Ft, σ)BT
t (Ft − F0)

)
= −KN (d−)t+δbl(T,K; t, Ft, σ)F0

units of the T � discount bond.
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Let us now consider a primary market de�ned by the T � discount bond BT
t and the stock

St = BT
t Fte

∫ T
t q(u)du. By application of formula (75) with

βTt St = Fte
∫ T

t q(u)du , ∂F (βTt St)(t, Ft) = e
∫ T

t q(u)du

(see also [41]), a perfect replication strategy with initial wealth Πbl
0 for the European call

option is thus de�ned by, at any time t ∈ [0, T ],

ζblt = e−
∫ T

t q(u)duδbl(T,K; t, Ft, σ)

units of S, and, therefore, −KN (d−)t units of T � discount bond.

As a reality check of these results, note that in the special case where BT
t is given as

e−
∫ T

t r(u)du for a deterministic function r(t), so BT = e−
∫ T
0 r(u)duB and PT = P, then

Ft = Ste
∫ T

t (r(u)−q(u))du , dbl±(T,K; t, Ft, σ) = dbs± (T,K; t, St, r, q, σ) .

So (cf. (96))
ζ̃blt = N (d+) = ζ̃bst .

The (F -component of the) replication strategy in the T � forward neutral Black model with
factor F and primary assets F and BT is thus the same as the one in the risk-neutral
Black�Scholes model with factor S and primary assets F and B. Likewise (cf. (95)),

ζblt = e−
∫ T

t q(u)duN (d+) = ζbst ,

so the (S-component of the) replication strategy in the Black T � forward neutral model
with factor F and primary assets S and BT is the same as the one in the Black�Scholes
risk-neutral model with factor S and primary assets S and B.

Black formulae are the standard way to quote options on forward contracts, and bond options.

11.2 LIBOR Rates

The (forward) LIBOR rate Lt(T,U) is the simple interest rate locked at time t for an
investment on the future time period [T,U ], so for t ≤ T :

BT
t = [1 + h(T,U)Lt(T,U)]BU

t , or Lt(T,U) =
1

h(T,U)
BT
t −BU

t

BU
t

, (114)

where h(T,U) = U − T and BT
t is the price at time t of a T � discount bond.

Given a tenor t1, ..., tn+1, let us set, for i = 1, . . . , n :

hi = ti+1 − ti , L
i = L(ti, ti+1) , Bi

t = B
ti+1

t , Pi = Pti+1 , Ei = EPi ,

So for i = 1, . . . , n and t ≤ ti :

hiL
i
t =

Bi−1
t −Bi

t

Bi
t

, Bi
t =

1
1 + hiLit

Bi−1
t . (115)

Setting B0
t = Bt1

t , we thus get by induction, for any 1 ≤ i ≤ l + 1 ≤ n + 1 (recall that
Bi
ti+1

= 1):

Bl
ti =

∏l
k=i

1
1+hkL

k
ti

(116)
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Note that Bi−1
t − Bi

t is the price of a (synthetic) traded asset, hence the relative price

hiL
i
t = Bi−1

t −Bi
t

Bi
t

must be a local martingale under the pricing measure Pi, by arbitrage (cf.
Section 8). Consistently with this requirement, the BGM model postulates the following
Pi-dynamics for the factor process Li :

dLit = σi(t)LitdW
i
t , or L

i
t = Li0 exp

(∫ t
0 σi(s)dW

i
s − 1

2

∫ t
0 σ

2
i (s)ds

)
(117)

for some Pi � Brownian motionW i and a deterministic volatility function σi(t) (null after ti).
The process Li is thus log-normal under Pi, and the variance of lnLit is equal to

∫ t
0 σ

2
i (s)ds.

For the speci�cation of the factor process L to be complete, we still need to specify the
correlation structure of L. This is deferred to section 11.4. Indeed, the correlation does not
a�ect the pricing of caps and �oors to be considered in the next subsection.

11.3 Caps and Floors

A caplet is a call option with arrear settlement on a LIBOR Rate. Considering the caplet
with maturity ti and strike K, the payo� to the caplet holder at ti+1 is:

Citi+1
= hi max{Liti −K, 0}.

Working in the Bi numeraire, we thus have by (82), for t ≤ ti:

Cit
Bi
t

= hiEi
[
max{Liti −K, 0}|Ft

]
.

Hence by log-normality postulated in (117) (again δit is here a forward delta):

Cit = Bi
tπ
bl(ti+1, hiK; t, hiLit, σi) = hiB

i
t

[
LitN (di1)−KN (di2)

]
δit = ∂hiLπ

bl(ti+1, hiK; t, hiLit, σi) = δbl(ti+1,K; t, Lit, σi) = N (di1)
(118)

with (since in particular σi vanishes after ti, for the last identity)

di1 = ln(
Li

t
K

)+
Σ2

i
2

Σi
, di2 = di1 − Σi, where Σ2

i =
∫ ti
t σ2

i (s)ds

Here δit is a key ingredient of the composition at time t of any hedging scheme for the caplet,
cf. Theorem 8.1 and the subsequent formulas. For instance, in a primary market de�ned by
the numeraire (ti+1 � discount bond) and a forward swap over the period (ti, ti+1), one can
show by application of formula (75) (see also [41]) that a perfect replication strategy for the
caplet with initial wealth Ci0 is de�ned by, at any time t ∈ [0, T ],

ζt = δit

units of forward swaps over the period (ti, ti+1), and the number of ti+1 � discount bonds
following from the self-�nancing condition on the replicating portfolio.

The analog formulae for a �oorlet are:

F it = hiB
i
t

[
KN (−di2)t − Li0N (−di1)t

]
, δit = −N (−di1)t . (119)
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We further get the price and delta of the cap (portfolio of caplets) with maturity t1 and
tenor t1, ..., tn+1 as

Ct =
∑n

i=1C
i
t , δt =

∑n
i=1 δ

i
t

where Cit and δ
i
t were de�ned in (118), and the analog formula for �oors, using (119). Note

in particular that due to the additively separable structure of the related payo�s, the prices
of caps and �oors only depend on the marginal laws of the Libor rates Li at times ti.

11.4 Adding Correlation

More complex derivatives, like swaptions, are also a�ected by the correlation structure of
L. We are thus going to de�ne a correlation structure between the Lis by expressing their
dynamics (until the tis) under the common terminal measure Pn.

Note that by de�nition of the Pis, we have for t ≤ ti (cf. (81)):

νit :=
dPi−1

dPi
|Ft

= Ei
[
dPi−1

dPi
| Ft
]

=
Bi

0B
i−1
t

Bi−1
0 Bi

t

=
Bi

0

Bi−1
0

(1 + hiL
i
t). (120)

We �nd it convenient to denote

dLit = si(t)LitdWi
t = σi(t)LitdW

i,i
t (121)

where si(t) = (0, ..., 0, σi(t), 0, ..., 0) is a row volatility vector and Wi = (W j,i)1≤j≤n is a
(correlated) n-dimensional Pi � Brownian motion. Let ρ = (ρi,l)1≤i,l≤n denote the correlation
matrix of Wn, so d〈W i,n,W l,n〉t = ρi,ldt .

We proceed by backward induction. We �rst want to specify Wn−1
t as Wn

t − ρ
∫ t
0 µ

T
udu,

for a properly chosen row vector process µ. In view of Girsanov theorem, it is enough, for
this to be a Pn−1 � Brownian motion on [0, tn], that µ satis�es dνnt = µtν

n
t dWn

t , where ν
n
t

is the Ft-measurable Radon-Nikodym density of Pn−1 with respect to Pn on Ft that was
introduced in (120). Now, by (120)�(121), we have that:

dνnt = νnt
hnL

n
t sn(t)

1 + hnLnt
dWn

t .

We thus choose µt = hnLn
t sn(t)

1+hnLn
t
. Hence

dLn−1
t = sn−1(t)Ln−1

t

(
dWn

t −
hnL

n
t ρs

T
n(t)

1 + hnLnt
dt

)
= σn−1(t)Ln−1

t dWn−1,n
t − hnL

n
t σn(t)ρn,n−1

1 + hnLnt
σn−1(t)Ln−1

t dt ,

and then likewise, for any i = 1, . . . , n :

dLit = σi(t)LitdW
i,n
t −

∑n
l=i+1

hlL
l
tσl(t)ρl,i

1+hlL
l
t
σi(t)Litdt (122)

Note that Ln only is a Pn-martingale. For i ≤ n − 1, Li has a non vanishing Pn-drift
depending on the Lls for l > i.

11.4.1 Correlation Structures
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The simplest way to �x ρ is to set it as an historical estimate of the correlation matrix of
the Libor rates (historical correlation structure). But such estimates are typically noisy and
hardly usable in practice.

Various parametric forms for ρ may be used instead, and calibrated to market prices of
correlation-sensitive instruments, like swaptions (cf. next Subsection). Commonly used
parameterizations for ρ are ρi,l = exp(−γ|i− l|), or (Rebonato):

ρi,l = ρ∞ + (1− ρ∞) exp [−|ti − tl|γ(ti, tl)]

with γ(ti, tl) = d1 − d2 max(ti, tl) (note that all such matrices are not correlation matrices,
however), or (Coe�ey et Schoenmakers):

ρi,l = exp
[
−|i− l|
n− 1

(ln ν∞ + η1ϕ(n, i, l) + η2ψ(i, l, n))
]
,

with

ϕ(i, l, n) =
i2 + l2 + il − 3ni− 3nl + 3i+ 3l + 2n2 − n− 4

(n− 2)(n− 3)

ψ(i, l, n) =
i2 + l2 + il − ni− nl − 3i− 3l + 3n+ 2

(n− 2)(n− 3)

The latter parameterization always produces a correlation matrix provided 0 ≤ η2 ≤ 3η1

and 0 ≤ η1 + η2 ≤ − ln ν∞, and is reported to be qualitatively acceptable and robust.

11.5 Swaptions

Recall that an interest-rate swap with tenor t1, . . . , tn+1 is a contract with cash �ows hi(Liti−
K) at the ti+1s, for i = 1, . . . , n (from the point of view of the party receiving the �oating
payments). By (82), the value of the swap at time t ≤ t1 is thus given by

n∑
i=1

hiB
i
tEi
[
(Liti −K) | Ft

]
=

n∑
i=1

hiB
i
t(L

i
t −K) ,

by the Pi-martingale property of Li, i = 1, . . . , n. A swaption (or option to enter the swap at
the maturity date t1) with tenor t1, . . . , tn+1 and strike K is thus tantamount to a product
paying at t1 the positive part of

n∑
i=1

Bi
t1hi(L

i
t1 −K) ,

that is
(
∑n

i=1 hiB
i
t1)(St1 −K)+

where the (forward) swap rate factor process S is de�ned by, for t ≤ t1 :

St = B0
t−Bn

t∑n
i=1 hiBi

t

(hence
∑n

i=1B
i
t1hiL

i
t1 = B0

t1 −B
n
t1 =

∑n
i=1B

i
t1hiSt1 , by (115)). Note that S is a martingale

under the pricing measure P∗ corresponding to the the numeraire Nt =
∑n

i=1 hiB
i
t.
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The Libor Swap Model (LSM) mentioned in the introductory paragraph to this section,
consists precisely in modeling the swap rate S as a P∗ � Brownian martingale (log-normal
process) with time-deterministic volatility, hence exact Black formulae for swaptions prices
and deltas follow in the LSM.
The swap rate St1 is not P∗-log-normal in the BGM model, yet it is numerically close to
log-normal, with integrated squared variance Σ2 given by the so-called Rebonato's formula
(see, e.g., [47, p. 248]):

Σ2 =
1
S2

0

n∑
i,l=1

wiwlLi0L
l
0ρi,l

∫ t1

0
σi(t)σl(t)dt =:

∫ t1

0
σ2

0(t)dt , (123)

where the weights wl are proportional to the hlBl
0 (recall that the Bl

0 are assumed to be
known in this model, in which the underlying primary risky market typically includes the
n+ 1 discount bonds with maturities ti, i = 1, . . . , n+ 1, which are used as numeraires for
pricing the caplets). We thus have the following approximate Black formulae for swaptions
in the BGM model (at time 0):

P0 = N0π
bl(t1,K; 0, S0, σ0) = (

∑n
i=1 hiB

i
0) [S0N (d1)−KN (d2)]

∆0 = ∂Sπ
bl(t1,K; 0, S0, σ0) = N (d1)

with

d1 =
ln(S0

K ) + Σ2

2

Σ
, d2 = d1 − Σ

where Σ is given by (123).

11.6 Model Simulation

Interest rate derivatives discounted payo� processes (working under the terminal measure
Pn as usual) are typically de�ned as suitable functions φ of the factors (Litj )1≤i≤j≤n. We
thus have for a cap, by (80):

C0 = Bn
0

n∑
i=1

En
[
hi(Liti −K)+

Bn
ti+1

]

= Bn
0 En

[
n∑
i=1

hi(Liti −K)+

Bn
ti+1

]

= Bn
0 En

[
n∑
i=1

hi(Liti −K)+
n∏

l=i+1

(1 + hlL
l
ti+1

)

]
,

by (116). To properly discount each cash-�ow hi(Liti −K)+ under Pn, we thus need to know
the values of the Llti+1

for l > i, beyond that of Liti .

For pricing and Greeking by Monte Carlo in the BGM model, it is thus su�cient to Pn-
simulate the Litj , 1 ≤ j ≤ i ≤ n. To �x ideas, assume the pricing date 0 =: t0 ≤ t1. For many
purposes (such as pricing swaptions by Monte Carlo in the LMM, see [101]), Discretizing
(the logarithmic form of) (122) by a standard Euler scheme (see section 33.3) at tenor dates
is accurate enough (provided of course t0 is close enough to the left of t1, otherwise the
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discretization must be re�ned between t0 and t1). Starting from L0 given or extracted from
(Bi

0)0≤i≤n using (114), one thus gets for l = 0, . . . , n− 1, i = l + 1, . . . , n :

Litl+1
= Litl exp

[
σi(tl)

√
hl(Λε)i−(

n∑
k=i+1

hkL
k
tl
σk(tl)ρk,i

1 + hkL
k
tl

σi(tl) +
1
2
σ2
i (tl)

)
hl

]

where ε = (ε1, ..., εn)T Gaussian standard and ΛΛT = ρ. For example, in case n = 2 :

W2 =
(
W 1,2

W 2,2

)
, d〈W 1,2,W 2,2〉t =

(
1 ρ
ρ 1

)
dt = ΛΛTdt

with Λ =
(

1 0
ρ
√

1− ρ2

)
.

In general, the computation goes like this:

t 0 t1 t2 . . . tn
L1 L1

0 L1
t1

L2 L2
0 L2

t1 L2
t2

L3 L3
0 L3

t1 L3
t2

. . . . . . . . .
Ln Ln0 Lnt1 Lnt2 . . . Lntn

For instance, assuming for notational simplicity a correlation structure of rank one (ρi,l = 1
and Λi,l = 1l=1 for any i, l, so ρ completely disappears from the picture and it is enough to
make one standard univariate Gaussian draw ε per time step), and with n = 4, σi = 15%,
hi = 0.5, and Li0 = 5% (initial term structure �at at level 5%):

t 0 t1 t2 t3 t4√
hlεl −0.371379 1.81768 −0.204069 0.512108
L1 5% 4.698%
L2 5% 4.699% 6.135%
L3 5% 4.701% 6.138% 5.918%
L4 5% 4.702% 6.142% 5.923% 6.36%

12 One Factor Gaussian Copula Model

We now move to the context of Multi-Name Credit. Let us thus be given d reference entities
(�rms), with respective default times denoted by τl, l = 1, . . . , d. Note that in this context, no
standard dynamic model of a relevant primary market model (which might typically consist
of CDS index contracts on the pool of reference entities, or of individual CDS contracts on
the reference entities, see section 13.2.2) nor of a Markovian factor process (possibly given as
the portfolio loss process, or, alternatively, as the family of the individual loss processes) have
emerged yet. The benchmark model is the one factor Gaussian copula model, or Li's model
[133] (see also Laurent�Gregory [128]). In this approach, one postulates a particular form
for the joint cumulative distribution function F of (τ1, . . . , τd), which is enough for deriving
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semi-closed pricing formulas at time 0 for standard multi-name credit derivatives like First-
to-Default Swaps or CDOs � but not enough for specifying explicit hedging strategies, nor
for pricing more complex correlation derivatives.

We thus consider d �rms with respective nominal Nl, recovery rate Rl, loss given default
Ml = (1 − Rl)Nl, and default time τl > 0 with distribution function Fl(t) = P(τl ≤ t) and
indicator process H l

t = 1{τl≤t}, l = 1, . . . , d. The cumulative portfolio loss at time t is thus
given by

Lt =
∑d

l=1MlH
l
t

Finally we denote by
F (t1, . . . , td) = P(τ1 ≤ t1, . . . , τd ≤ td)

the joint cumulative distribution function of (τ1, . . . , τd).

12.1 Single Tranche CDOs

A single tranche CDO (Collateralized Debt Obligation) with lower attachment point K,
upper attachment point K and maturity T is a contract with the following cumulative
discounted cash �ow, from the point of view of the investor (which is typically the credit
protection seller who bets on perceiving the fees and no default occurs, here):∫ T

0 βt [Σ(K −K − Lt)dt− dLt]

where:
• Lt = min ((Lt −K)+,K −K) is the cumulative tranche loss,
• Σ is the tranche spread at time 0, and
• βt = exp(−

∫ t
0 ru du) is the risk-neutral discount factor (inverse of the savings account, see

Part II).
Note that min ((Lt −K)+,K −K) = (Lt − K)+ − (Lt − K)+, so a CDO tranche can be
interpreted as a call-spread with strikes K,K on the porfolio loss Lt.
Equity (resp. senior) tranches refer to tranches with lower attachment point K = 0 (resp.
K > 0). For instance, on the DJ iTraxx market (a family of CDS indices for Europe
and Asia), CDO tranches are quoted for (K,K) equal to (0%, 3%), (3%, 6%), (6%, 9%),
(9%, 12%) and (12%, 22%).

By arbitrage, the price process of a tranche is thus given by

Et
∫ T

0
βt [Σ(K −K − Lt)dt− dLt] , t ∈ [0, T ]

under a risk-neutral probability P on the primary market (see Part II). The tranche spread
Σ at time 0 is typically set such that the tranche is entered at no cost at inception, so

Σ = E
∫ T
0 βtdLt

E
∫ T
0 βt(K−K−Lt)dt

Note that, assuming deterministic interest rates r, the values of either leg of the CDO only
depends on the expected tranche losses ELt, t ∈ [0, T ]. Indeed, we have for the fees leg:

E
∫ T
0 βt(K −K − Lt)dt =

∫ T
0 βt(K −K − ELt)dt (124)
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For the protection leg, observe that d(βtLt) = βt(dLt− rtLtdt), and L0 = 0. Hence Fubini's
theorem yields:

E
∫ T
0 βtdLt = βTELT +

∫ T
0 rtβtELtdt (125)

12.2 Li Model

By de�nition, a copula function C is the joint cumulative distribution function of an Rd-
valued random vector with uniform marginals on [0, 1]. Thus in particular C(1, . . . , 1, ul, 1, . . . , 1) =
ul, for any ul ∈ [0, 1]. Sklar's theorem states that for any joint multivariate cumulative distri-
bution function F (t1, . . . , td) with marginal cumulative distribution functions F1(t1), . . . , Fd(td),
there exists a copula function C such that

F (t1, . . . , td) = C [F1(t1), . . . , Fd(td)] . (126)

In the one-factor Gaussian copula model (market model for CDOs), it is postulated that the
dependence structure between the τl is de�ned by the Gaussian copula

Cρ(u1, .., ud) = Nρ

[
N−1(u1), ..,N−1(ud)

]
, (127)

where N and Nρ respectively stand for the standard (univariate) Gaussian cumulative distri-
bution function and the d-variate Gaussian cumulative distribution function with covariance
(correlation, in fact) matrix 

1 ρ . . . ρ

ρ 1
. . .

...
...

. . . 1 ρ
ρ . . . ρ 1

 . (128)

Let us de�ne, for every l = 1, . . . , d and t ≥ 0,

Xl = N−1(Fl(τl)) , xlt = N−1(Fl(t))

So τl = F−1
l (N (Xl)), and τl ≤ t i� Xl ≤ xlt. Using also (126),(127), it follows:

P(X1 ≤ x1
t1 , . . . , Xd ≤ xdtd) = P(τ1 ≤ t1, . . . , τd ≤ td) = F (t1, . . . , td) = Nρ

[
x1
t1 , . . . , x

d
td

]
.

Therefore X = (X1, . . . , Xd) is a Gaussian vector with covariance (correlation) matrix given
by (128). Equivalently,

Xl =
√
ρV +

√
1− ρ εl , l = 1, . . . , d (129)

for independent standard Gaussian random variables V (called the common factor) and
ε1, . . . , εd. The Xl (and then the τl) are thus conditionally independent, given V. Moreover

p
l|v
t := P(τl ≤ t |V = v) = P(Xl ≤ xlt |V = v) = N

(
xlt −

√
ρv

√
1− ρ

)
, (130)
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and for any (t1, . . . , td)

F (t1, . . . , td) = E
[
P
[
X1 ≤ x1

t1 , . . . , Xd ≤ xdtd |V
]]

=
∫ ∞

−∞

d∏
l=1

p
l|v
tl
g(v)dv ,

by conditional independence, where g denotes the standard Gaussian density. Likewise, the
moment generating function of the portfolio loss Lt satis�es

ΨLt(u) = E[euLt ] = E[E[euLt |V ]] (131)

= E[
d∏
l=1

E[euMlH
l
t |V ]] =

∫ ∞

−∞

d∏
l=1

(
1− p

l|v
t + p

l|v
t e

uMl

)
g(v)dv .

In particular, in the homogenous case p
l|v
t = pvt , Ml = M :

ΨLt(u) =
d∑
l=0

∫ ∞

−∞
C ld(1− pvt )

l(pvt )
d−leu(d−l)Mg(v)dv . (132)

12.3 Exact Methods

Assume for a start that the losses Ml, l = 1, . . . , d, are commensurate, or, more precisely
without loss of generality, Ml. We thus have, with M =

∑d
l=1Ml and qkt = P(Lt = k), k =

0, . . . ,M :

ΨLt(u) =
∑M

k=0 q
k
t e
uk , ELt =

∑M
k=0

(
(k −K)+ ∧ (K −K)

)
qkt . (133)

So the expected tranche loss ELt is a simple function of the portfolio loss probabilities
qkt , k = 0, . . . ,M. Moreover the latter can be computed by Fourier inversion from the values
of ΨLt(u) obtained by (131) forM+1 well chosen values of the argument u, in time O(M2).
ChoosingM+1 as a power of 2 (completing the involved vectors by zero padding if necessary,
see [71, 156]), the Fourier inversion may be realized in time O(M lnM), by FFT.

Alternatively, the portfolio loss probability distribution qt may be computed through the
following recursive relation between the conditional loss probabilities, denoted by q

k|v
t (i),

taking into consideration the i �rst reference entities only (so P(Lt = k|v) =: qk|vt = q
k|v
t (d)

and q·|vt (0) = δ0):

q
k|v
t (i) = p

i|v
t q

k−Mi|v
t (i− 1) + (1− p

i|v
t )qk|vt (i− 1) , (134)

i = d, . . . , 1 , k = 0, . . . ,M .

Indeed we have for any i = d, . . . , 1 and k = 0, . . . ,M :

q
k|v
t (i) = q

k,Hi
t=1|v

t (i) + q
k,Hi

t=0|v
t (i)

= q
k−Mi,H

i
t=1|v

t (i− 1) + q
k,Hi

t=0|v
t (i− 1)

= q
k−Mi|v
t (i− 1)pi|vt + q

k|v
t (i− 1)(1− p

i|v
t )
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where the two �rst identities are elementary, and the last one follows by conditional inde-
pendence w.r.t. V. This proves (134). Once the conditional loss probabilities qk|vt = q

k|v
t (d)

have been recursively computed using (134), we recover the portfolio loss probabilities by
expectation on V, as

qkt =
∫ ∞

−∞
q
k|v
t g(v)dv.

Note that recursive relations analogous to (134) can also be used for Greeking (computing
sensitivities with respect to the input data Fl(t) for l = 1, . . . , d) in the Li model as follows
(see Andersen and Sidenius [7]). One �rst computes ∂Fl(t)E(Lt|V ) as

(
∂
p

l|v
t

E(Lt|V )
)(
∂Fl(t)p

l|v
t

)
=
(
∂
p

l|v
t

E(Lt|V )
) ∂xl

t
p
l|v
t

∂xl
t
Fl(t)

. (135)

Now, by (130)

∂xl
t
p
l|v
t =

1√
2π(1− ρ)

exp(
−(xlt −

√
ρV )2

2(1− ρ)
) , ∂xl

t
Fl(t) =

1√
2π

exp(
−(xlt)

2

2
) .

Moreover (cf. (133))

∂
p

l|v
t

E(Lt|V ) =
M∑
k=0

(
(k −K)+ ∧ (K −K)

)
∂
p

l|v
t
q
k|v
t (136)

in which (cf. (134))
∂
p

l|v
t
q
k|v
t = q

k−Ml|v
t ({l})− q

k|v
t ({l})

where q·|vt ({l}) denotes the conditional distribution of the loss of the portfolio of all names
but l, which can be computed recursively along the same lines as (134). One �nally recovers
the unconditional sensitivity ∂Fl(t)ELt by taking expectation with respect to V in (135).

12.4 Approximate Procedures

As opposed to the previous exact procedures, much faster fast approximate methods may be
used to compute the qk|vt . Moreover these approximate methods don't require the assump-
tion of commensurate losses.

Regarding an e�cient, easy-to-implement and mathematically justi�ed approach based on
Gauss�Poisson approximations for the portfolio conditional loss distributions, we refer the
reader to El Karoui and Jiao [79, 80, 112].

Related (yet heuristic and harder to implement) saddle-point methods (see [8, 184]) are based
on the following inverse Laplace transform representation for the qk|vt , in a weak sense to
be detailed below and formally obtained by integration parallel to the imaginary axis in the
complex plane, for any η > 0:

q
k|v
t = 1

2πi

∫ η+i∞
η−i∞ ΨLt(u|V ) exp(−uk) du (137)
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where (cf. (131)):

ΨLt(u|V ) := E[euLt |V ] =
d∏
l=1

(
1− p

l|v
t + p

l|v
t e

uMl

)
.

Identity (137) in the weak sense means (cf. (253)�(254)):

E [ϕ(Lt)|V ] = 1
2πi

∫ η+i∞
u=η−i∞ΨLt(u|V )

(∫∞
L=0 exp(−uL)ϕ(L)dL

)
du (138)

(identity in the strong sense, now), for any regular enough function ϕ such that the condi-
tional expectation exists in (138). One thus gets by application of (138) to ϕ(Lt) = (Lt−K)+

(note that ∂x [(ux+ 1)e−ux] = −u2xe−ux, so
∫∞
0 xe−ux dx = 1

u2 ):

E [(Lt −K)+|V ] = 1
2πi

∫ η+i∞
u=η−i∞

ΨLt (u|V ) exp(−uK)

u2 du (139)

Saddle-point methods are then based on the approximation of ΨLt(u|V ) exp(−uk) in (139)
by a suitable Taylor expansion around a well chosen point u?, so that the resulting approx-
imating integral may be computed in closed form, as an integral w.r.t. a Gaussian kernel.
Depending on the expansion point u? and the order of the Taylor expansion, one thus gets
a whole family of approximate algorithms for pricing the tranche. In the simplest case, we
recover the so-called large portfolio approximation to the tranche price.

A last possibility to compute the portfolio loss probabilities qkt , or, directly, the values of
the fees leg (124) and of the protection leg (125) of the tranche, is of course to proceed by
simulation (cf. Part VI). But simulation methods are much slower on these problems than
any of the previous procedures (Gauss�Poisson or saddle-point approximations to estimate
the tranche legs, or even, assuming commensurate Ml, exact convolution FFT or recursive
methods to compute the portfolio loss distribution).

Note �nally that the numerical integrations involved in these algorithms, which all involve
the Gaussian kernel g(v)dv, may be done very quickly by Gaussian quadrature (like the
Gauss�Hermite quadrature, using for instance the function gauher of [156]; see also [71]).

13 Benchmark Models in Practice

13.1 Implied parameters

The reader should not misunderstand the meaning of the previous �benchmark models�. In
fact, the Black(�Scholes) closed formulae for single-name derivatives, or the Li semi-closed
formulas for multi-name credit, are essentially used by traders for conveying information on
the relative value of the various derivatives available in the market, in a unit of measurement
(Black�Scholes implied volatility or Li implied correlation) less sensitive to the characteristics
(maturity, strike(s), etc.) of the product at hand than its money-value. So these formulas
are but �wrong formulas into which to put a wrong number [the implied volatility of an
option or the implied correlation of a tranche] to get the right result [an option market price
or a tranche market spread]�.

13.1.1 Black(�Scholes) Implied Volatility
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Black(�Scholes ) formulae are applicable to any European vanilla option on virtually any
market (except for multi-name credit): stock, index, future or exchange rate, forward interest
or swap rate, etc. But these formulae are in fact used in the `reverse-engineering' mode
that consists in determining, given an European vanilla price observed on the market, the
corresponding value of the volatility consistent with that option price through the Black(�
Scholes) formula.

More precisely, given the values of r and q inferred from the related riskless bond market for
r and by call-put parity for q, the Black�Scholes implied volatility of an (European vanilla)
option is the value σt such that:

Πbs(T,K; t, St, r, q, σt) = Πma
t (T,K) (140)

whereΠma
t (T,K) denotes the market price of the option at time t. SinceΠbs(T,K; t, St, r, q, σ)

is monotone (increasing) w.r.t. σ (in the case of an European vanilla), equation (140) is well-
posed in σt (provided the market price lies within the related arbitrage bounds) and easy to
solve numerically (using for instance a simple dichotomy method or the Newton�Raphson
algorithm).

Proceeding in this way for a range of strikes K, one gets the so-called Black(�Scholes)
implied volatility smile (typical on foreign exchange derivatives markets), smirk (typical on
interest rates derivatives markets) or negative skew (typical on equity derivatives markets)
(or positive skew on `negative beta' assets derivatives markets, like options on gold futures,
see Figure 2).
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Figure 2: Golden smile, October 6 2003

13.1.2 Li implied correlation

The Li model (one factor Gaussian copula model) is the benchmark model for multi-name
credit. Yet, as the Black formula for single-name derivatives, it is also used in the reverse-
engineering mode for quoting CDO tranches in terms of their Li implied correlations, given



54

the cumulative distribution functions Fl inferred from the respective marginal CDS markets.
As for the last point, we have the following arbitrage relations (see [100, 33]):

Σl(T )
∫ T

0
(1− Fl(t)) dt−

∫ T

0
Ml dFl(t) = 0 for any l = 1 . . . d and T ≥ 0 , (141)

where Σl(T ) denotes the fair spread at time 0 of the CDS with maturity T on the lth name
of the reference pool. Added to the fact that Fl(0) = 0, this allows one to bootstrap the
marginal default time cumulative distribution functions Fl from the individual CDS curves
at time 0, Σl(T ) (assumed to be observable for every T ≥ 0). Thus, given the Fl:
• the compound implied correlation of a tranche is the value of the correlation ρ̃t in a Li
model such that

Σli(T,K,K; t, (Fl)1≤l≤d, ρ̃t) = Σma
t (T,K,K)

where Σma
t (T,K,K) denotes the market tranche spread at time t;

• the base implied correlation of a tranche is the value of the correlation ρt in a Li model
such that

Σli(T, 0,K; t, (Fl)1≤l≤d, ρt) = Σma
t (T, 0,K)

where Σma
t (T, 0,K) denotes a synthetic market spread computed from the observed market

spreads for the tranches with upper attachment point K and below (see, e.g., [150]).
Base implied correlation is more stable numerically than compound implied correlation,
because Σli

t (T,K,K; t, (Fl)1≤l≤d, ρ) is monotone (decreasing) w.r.t. ρ for K = 0, but not for
K > 0 [150].

Other models are assessed on their ability to reproduce the so-called market correlation skew,
for suitably calibrated values of their parameters (see, e.g., Figure 3, in which the model
correlation skew was derived in the credit migrations set-up of [32]).
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Figure 3: Market and Model implied correlation skews for CDO tranches.

13.2 Implied Delta Hedging
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The related deltas (Black�Scholes implied volatility delta or Li implied correlation delta)
and may also be used for hedging, yet there is no guarantee that the related hedges fairly
account for the volatility or correlation risk.

13.2.1 Black(�Scholes) Implied Delta Hedging

Let us thus consider the problem of discretely delta-hedging (see section 9.2), at times
ti = ih, i = 0 . . . n − 1, an European vanilla call option with maturity T on an underlying
S. We thus sell the option at time 0 at price Π0, that is we receive at time 0 the amount of
money Π0, but in turn it is mandatory for us to pay at time T the payo� ξ = (ST −K)+ . Our
strategy consists in rebalancing at every time step h a self-�nancing hedge in the underlying
and in the savings account. We assume that dividends are paid and kept as new stock shares
falling at yield q in the hedging portfolio. We are thus in fact considering a hedging strategy
of the following form (to be compared with (84))

ζt = ζtie
q(t−ti) on (ti, ti+1] , i = 0 . . . n− 1

where (cf. (91))

d(βtŜt) = d(βtSt) + βtqStdt = e−qtd(βtSteqt) (142)

resulting in

ζtd(βtŜt) = ζtie
−qtid(βtSteqt) . (143)

Accounting also for the facts that V0 = Π0 and for the �nal payment by the trader of ξ at
time T , the discounted P&L of the trader at T is therefore (cf. (14)), setting S̃t = Ste

qt :

βT eT = Π0 +
∑n−1

i=0 e
−qihζih

(
β(i+1)hS̃(i+1)h − βihS̃ih

)
− βT ξ (144)

or, equivalently:

βT eT =
∑n−1

i=0 βihδie (145)

with

βihδie = −(β(i+1)hΠ(i+1)h − βihΠih) + e−qihζih

(
e−r(i+1)hS̃(i+1)h − e−rihS̃ih

)
(146)

The previous identities are valid for any discrete hedging scheme (ζih)0≤i≤n−1. The Black�
Scholes implied delta hedging scheme corresponds to the following choice:

ζti = ∆bs(T,K; ti, Sti , σti) , i = 0 . . . n− 1

where σti denotes the Black�Scholes implied volatility of the option at time ti (given ex-
tracted values of r and q extracted from the market in a suitable way). The rationale behind
this strategy is that, were the spot to obey the following objective Black�Scholes dynamics
(under the statistical measure P̂):

dSt = St

(
µdt+ σdŴt

)
with constant interest rate r and dividend yield q on S, then we would have σt ≡ σ, and
the previous P&L would go to 0 identically as h → 0. But of course the Black�Scholes
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model is strongly misspeci�ed, so that this is far from being true in practice (see the general
discussion at the end of section 9.2, and the related simulation issues in Section 35).

To get a better hedge, one can alternatively use a �nite di�erence Black�Scholes implied
delta in which the Black�Scholes volatility used for valuing the option at the perturbed
initial value of the stock is suitably modi�ed with respect to the reference Black�Scholes
implied volatility, in order to account for the correlation between stock returns and implied
volatility changes. For instance, the sticky delta rule stipulates that the implied volatility
surface does not move with calendar time t (or moves deterministically with t) provided it
is parameterized as a (random) function of time to maturity T − t and moneyness ln(KSt

)
(rather than T and K).

13.2.2 Li Implied Delta Hedging

Our next aim is to hedge the risk of spread on a CDO tranche between two successive default
times of the reference entities. Note that we do not aim at hedging defaults in this approach
(cf. the discussion following Theorem 7.3; for an alternative approach consisting in hedging
the defaults only, see Laurent et al. [127]).
The most common hedge is delta-neutral with respect to homogenous bumps on homogenous
time buckets of the underlying CDS curves, using CDS index contracts as hedging instru-
ments. We recall that a CDS index contract is an insurance contract covering default risk on
the pool of names in the index. Index contracts di�er slightly from single-name securities.
In the case of a credit event, the related entity is removed from the index and the contract
continues (with a reduced notional amount) until maturity. CDS index contracts may be
considered as kinds of averages of individual CDSs, and they can be priced essentially like
the latter, using a relation of the form (141).
Our present goal is to hedge deformations scenarii of the underlying CDS curves given as
homogenous bumps on homogenous time buckets of all curves. By using, alternatively, in-
dividual CDSs as hedging instruments, one could hedge if wished pertaining deformations
scenarii of the related individual CDS curves.
Note that the involved CDSs (whether they are CDS index contracts or individual CDSs)
are in fact new CDSs freshly emitted at each rebalancing time t.

Given a CDO tranche with maturity T (and strikes K,K), we thus rebalance, every time
step h(=1 market day, typically) between two successive default events of the reference
entities, a hedging position in a primary market consisting of the savings account Bt = β−1

t ,
and of d CDS index contracts with increasing maturities Tj , j = 1, . . . , d (where Td−1 ≤ T ).
Considering a trader who is short one tranche (sold, i.e. tranche protection was bought) and
long ζjt units in the CDS index contract with maturity Tj , the discounted P&L increment of
the hedged position on a time interval (t, t+ h) without defaults writes, cf. (14) (neglecting
transaction costs as usual, and with all nominals conventionally taken equal to one):

βtδe = −βtδe? +
∑
j

ζjt βtδe
j

= (βt+hPt+h − βtPt)− Σ∗0(βt+hQt+h − βtQt)− βtΣ∗0h (147)

−
∑
j

ζjt

(
(1−R)βt+hP

j
t+h − Σj

tβt+hQ
j
t+h − βtΣ

j
th
)
,

where:
• δe? (resp. δej) is the increment of the P&L on a unit position on the tranche (resp. on a
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unit position on the CDS index contract with maturity Tj),
• Σ∗0 is the spread of the tranche at inception date 0, and Σj

t is the spread of the CDS index
contract with maturity Tj at the current time t,
• P and Q, resp. P j and Qj , denote the value processes of the Protection and Fees Legs of
the tranche, resp. of the CDS index contract with maturity Tj ;
• R is a (common and constant) recovery rate on the credit index contracts.

In (147), the terms βtΣ∗0h and βtΣ
j
th account for the carry of the various instruments

involved, while the remaining terms account for the slide of the portfolio between t and
t+ h. Note that the δej only depend on the value of the CDS index contracts at time t+ h.
This is due to the fact that the CDS index contracts used for hedging at time t are new
CDSs freshly emitted at t. So their value at time t is equal to zero, by de�nition of the
spread Σj

t .

Now, in order to hedge the tranche, a strategy based on the Li implied deltas of the tranche
consists in setting the (row-)vector of CDS index hedging positions ζt = (ζjt )j in (147) as

∆?
t = ζt∆t (148)

where ∆?
t and ∆t respectively stand for the vector of the deltas (sensitivities) of the tranche,

and the matrix of the deltas (sensitivities) of the CDS index contracts, with respect to
homogenous bp-bumps on the time-buckets [Ti−1, Ti] of the underlying CDS curves, for
i = 1, . . . , d (with T0 = 0). Concretely, in (148):
• The ∆j

i s are computed by assessing using (141) the impact of the jth bump on the under-
lying CDS curves on the Protection and Fees Legs of the ith CDS index contract. Note that
the ∆j

i s are independent of the dependence structure (copula function) of (τ1, . . . , τd). Also
note that individual CDS deltas (in case where an individual CDSs hedge would be wished)
could be computed in the same way;
• The ∆?

j s are computed by assessing the impact on the Protection and Fees Legs of the
tranche of the jth bump on the underlying CDS curves. More precisely:
(i) one calibrates the marginal cumulative distribution functions Fl to the underlying CDS
spread curves using (141), and one computes the related (base) implied correlation ρt of the
tranche (see section 13.1.2);
(ii) one computes the associated values P and Q of the Protection and Fees Legs of the
tranche;
And then, for j = 1, . . . , d:
(iii) one recalibrates as in (i) the marginal cumulative distribution functions F̃l to the un-
derlying CDS curves bumped by +1bp on the time interval [Tj−1, Tj ], Tj−1 ≤ T ;
(iv) one computes the values P̃ and Q̃ of the Protection and Fees Legs of the tranche in
the Li model with marginal cumulative c.d.f. F̃l and correlation parameter obtained by an
ad hoc adjustment of ρt, meant to account for the correlation between spread moves and
implied correlation changes. For instance, the sticky delta rule stipulates that the implied
correlation smile does not move with calendar time t (or moves deterministically with t)
provided it is parameterized as a (random) function of time to maturity T − t and of a
suitable notion of moneyness of the tranche (which is de�ned in analogy with the notion of
moneyness for vanilla stock options);
(v) one sets

∆?
j = Σ∗0(Q̃−Q)− (P̃ − P ) .

The matrix ∆ is obviously lower triangular, so that the linear system (148) is elementary.
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To provide a rationale for the previous choice of ζ (and also, to be able to quantify the
hedging error (147) by closed-form computations or numerical simulation), one needs to
specify a model dynamics, beyond the distribution of the portfolio losses at time 0 as de�ned
by the Li Model. Let us thus assume that the deformations of the individual CDS curves
are driven by homogenous deformations dX i

t on the time buckets [Ti, Ti+1] of the curves,
for i = 1, . . . , d, where X may be part of a more general factor process Z = (t,X ,Y) with
drivers W, ν, µ as of section 7.2. So the price of the tranche Πt, resp. of the credit index
contracts Xt, is given by Π(Zt), resp. X(Zt). By application of formula (61), it is thus
possible to hedge completely the spread risk in this model (represented by the Brownian
noise W among the model drivers) by setting, for t ∈ [0, T ] (assuming ∂X and σ invertible
in model Z, cf. Subsection 7.3)

ζt = ∂Π∂X−1(Zt)

We thus recover (148), inasmuch as ∆?
t and ∆t may be considered as reasonable proxies for

∂Π(Zt) and ∂X(Zt). This of course depends a great deal on the way ρt is readjusted at step
(iv) of the above procedure for computing ∆?

t .

As a conclusion to this Part, we wish to emphasize that for a consistent risk-management
of �nancial derivatives, the benchmark models are not good enough. More realistic models
are needed (like the Bates model of section 10.4 or beyond, in the case of equity derivatives;
see also the generic Markovian model (28)�(30) in Part II). In such models, and/or for
pricing and Greeking exotic products in any model, numerical procedures are the only way.
Numerics will thus be the subject of the remaining Parts of these notes. For simplicity of the
presentation we shall present most methods on simple models, like the Black�Scholes model
(in general), the Merton model or the Heston model. But of course, the methods themselves
are always generic to some degree.
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Part IV

Finite Di�erences Pricing Methods

Note that the deterministic pricing methods that we present here: Partial (Integro-)Di�erential
Equation (P(I)DE) methods in this part or tree methods in the next one, can be used in
any Markovian model, irrespective of any early exercise features, but with the practical
limitation that the space dimension of the model be not too large (no more than three, say;
cf. Section 3).

14 Generic Pricing PIDE

First of all, how comes that deterministic methods come into play to compute derivative
prices that are in essence stochastic processes? In order to answer this question, let us
summarize some of the �ndings of the previous parts.

In a generic Markovian risk-neutral market model Z = (t,X ,Y), where X is an Rq-valued
jump-di�usion � like component and Y is a Continuous-Time Markov chain � like component
with state space I = {y1, . . . , yk}, �nancial derivatives' prices and Greeks can be expressed
in terms of the so-called pricing function, characterized as the unique solution in some sense
to a related risk-neutral system of pricing P(I)DEs. In the simplest case this pricing P(I)DE
reduces to the well-known Black�Scholes equation, with solution explicitly given by, in the
case of European vanilla options, the usual Black�Scholes formulae. Moreover by considering
an arbitrary numeraire (which is given by the savings account, in the case of risk-neutral
models), it is possible to extend the previous statements to more general relative (instead of
risk-neutral) market models, where �relative� here is a short-hand for relative to a certain
numeraire. This more general approach comes out, in the simplest case, into the so-called
Black formulae, that allow one to cope with stochastic interest rates and discount factors.

The previous approaches thus cover the basic needs for equity and �xed-income derivatives
modeling, for which a reasonable model reduces to a (scaled) Brownian motion for the
returns X of the underlying asset (so q is equal to one and there are no jumps in the model,
in particular no Markov Chain Y is needed, meaning that k = 1 in the above formalism). Of
course, in the context of credit risk, �nancial derivatives are typically given as derivatives on
a loss process L, which in the simplest case reduces to a standard Poisson process. So the
main component in the model here consists of the jump part of X , or a Markov Chain�like
component Y in case of more general credit derivatives on the ratings on a pool of reference
names (or for a model of portfolio loss derivatives susceptible to account for the impact of
implied ratings on the product at hand, see Bielecki et al. [32]). In the simplest case of
an underlying Poisson process or Markov chain the related pricing equation reduces to a
related system of Ordinary Di�erential Equations.

Let us thus be given, in the jump-di�usion setting with regimes Z = (t,X ,Y) of section 7.2,
a �nancial derivative with payo�s given as suitable Borel-measurable functions of Z. Then
under mild technical conditions (see Part II), the P � arbitrage price Πt of a �nancial deriva-
tive may be represented as Πt = u(Zt), for a Borel-measurable (deterministic) function u of
t and Xt. So all the randomness in Π is embedded in that of Z. The related pricing problem
is thus reduced to the computation of the (deterministic) function ui(t, x) := u(t, x, yi).
This is the basic device through which deterministic methods come into play to compute
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derivative prices that are in essence stochastic processes.

Now, a generic Markov process Z admits an in�nitesimal generator A = AZ with a canon-
ical structure in three parts: a drift, a di�usion and a jump component (where the jump
component may be given as a Poisson � like or/and a Markov chain � like component).
This canonical structure of the generator of a Markov process Z implies that the P � pric-
ing function u solves a system (because of the Markov chain � like component, if any) of
parabolic PIDEs of the following type on the time-space domain E = [0, T ]×Rq × I, where
T is the maturity of the product (cf. the generic pricing equations (57) or (70) and further
comments below):{

Fi(t, x, u(t, x), ∂tui(t, x), Iui(t, x), ∂ui(t, x),Hui(t, x)) = 0 on [0, T )×D
ui(t, x) = φi(t, x) on E \

(
[0, T )×D

) (149)

where:
• D is an open subset of Rq×I. In particular the terminal condition at T, which is embedded
in the boundary condition φ in (149), is given by the derivative payo� at maturity;
• Iu is a non-local term de�ned as

Iui(t, x) = γ(t, x)
∫

Rq

(ui(t, x+ f(t, x, y))− ui(t, x))h(t, x, dy) ,

for a non-negative jump intensity function γi(t, x) and a jump size probability measure
hi(t, x, dy),
• ∂u and Hu denote the (row-)gradient and Hessian matrix of u with respect to x, and
u(t, x) := (ui(t, x))1≤i≤I .

The precise de�nition of the space domain D and of the operator F depend on the speci�ca-
tions of the derivative at hand. So, in the case of a European vanilla option, D = R× I (or
(0,∞) × I), and F is a linear operator. In the case of American (or Game) options, there
are further obstacles in F. In case there are barriers involved, D is a part of Rq× I delimited
by the barriers, etc. But the structure of the generator A of Z implies that the operator
F is always monotone in the sense that, for any (t, x, i) ∈ [0, T ]×D, u, v ∈ Rq, I, J, a ∈ R,
p ∈ R1⊗q and M,N ∈ Rq⊗q :

Fi(t, x, u, I, a, p,M) ≤ Fi(t, x, v, J, a, p,N) whenever u ≤ v, I ≥ J, N ≥M (150)

where the inequality u ≤ v is to be understood componentwise and the inequality N ≥ M
in the sense of the usual order on the space of real-valued symmetric non-negative matrices
(non-negative eigenvalues of N −M).

14.1 Maximum Principle

A classic solution to the pricing equation (149) is a system u = (uj)1≤j≤I of functions
uj ∈ C([0, T ]× Rq) ∩ C1,2({i = j} ∩ ([0, T )× D)) that satis�es (149) everywhere. Likewise,
a classic subsolution (resp. supersolution) satis�es (149) everywhere, with = replaced by ≤
(resp. ≥) therein.
Let us consider for simplicity the case where D is bounded and where the monotonicity of
F is strict in its third argument u, in the sense that the left inequality is strict in (150) as
soon as the inequality is strict for at least some component j in u ≤ v (to be understood
componentwise) in (150). We then have the following comparison principle.

Proposition 14.1 u ≤ v, for any classic subsolution u (resp. supersolution v) of (149).
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Proof. The proof essentially relies on the classic maximum principle, according to which

∂v(z) = 0, Hv(z) ≤ 0 ,

for any real-valued function v ∈ C2(Rd) locally maximum at z.

We proceed by contradiction. Assume that u ≤ v does not hold. Then w = u− v admits a
positive global maximum at a point (t, x, i) ∈ [0, T )×D, so by the classic maximum principle
and by de�nition of Iu,

∂tu
i(t, x) = ∂tv

i(t, x) , Iui(t, x) ≤ Ivi(t, x)
∂ui(t, x) = ∂vi(t, x) , Hui(t, x) ≤ Hvi(t, x) .

Hence the fact that

Fi(t, x, u(t, x), ∂tui(t, x), Iui(t, x), ∂ui(t, x),Hui(t, x)) ≤ 0
≤ Fi(t, x, v(t, x), ∂tvi(t, x), Ivi(t, x), ∂vi(t, x),Hvi(t, x))

implies by monotonicity of F :

Fi(t, x, u(t, x), ∂tui(t, x), Iui(t, x), ∂ui(t, x),Hui(t, x)) ≤
Fi(t, x, v(t, x), ∂tui(t, x), Iui(t, x), ∂ui(t, x),Hui(t, x)) ,

which is in contradiction with ui(t, x) > vi(t, x), given our strict monotonicity assumption
on F. 2

Interpreting the problem at hand as comparing the distribution of the temperature in two
identical systems of glasses �lled with hot liquid, our comparison principle says that the
liquid is hotter at a (distributed) inner point of the �rst system of glasses than at the
corresponding point in the second system of glasses, should it be hotter at any corresponding
points outside the two systems (or at any corresponding points on the boundary of the two
systems, in the case where there are no jumps in X (case where γ = 0).

Proposition 14.1 immediately implies that there may be at most one classic solution to the
pricing equation (149). In very speci�c cases, assuming in particular that F is linear, there
may be a chance that the pricing equation has a classic solution. However, in general, there
is no hope that a classic solution to the pricing equation does exist, and one must resort to
suitable notions of weak solutions of (149).

14.2 Weak Solutions

We thus need to extend the de�nition of a solution to (149) so that a solution does exist
under rather general circumstances, while preserving uniqueness.

14.2.1 Viscosity Solutions

The theory of viscosity solutions [60, 86, 2, 18, 4, 3, 58, 106, 107, 65] de�nes suitable notions
of weak (continuous, or even semi-continuous) solutions, subsolutions and supersolutions
of non-linear monotone systems of PIDEs such as (149), such that related maximum and
comparison principles still hold true. Thus viscosity solutions of (149) (bounded, or satisfying
suitable growth conditions) are unique.
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Existence of a viscosity solution of (149) can be established by various means, such as the
Perron's method, itself based on the related comparison principles.

The precise de�nition of a viscosity solution to (149) is outside the scope of these notes and,
in fact, irrelevant here. It will be enough for us to keep in mind that under mild technical
assumptions, the pricing equation (149) is well-posed (admits a unique solution continuously
depending on its input data) in a suitable space of viscosity solutions with growth conditions.
This will enable us to analyze convergence properties of naturally related �nite di�erences
approximation schemes (including approximation trees) for (149).

14.2.2 Weak Solutions in Weighted Sobolev Spaces

Alternatively to working with viscosity solutions, it is possible to derive weak (variational)
formulations of the pricing equation (149) in suitable weighted Sobolev functional spaces H.
In this approach, the boundary condition φ is typically accounted for by a judicious choice
of H.
Existence and uniqueness of a solution to the variational formulation of the problem typically
results by application of the Lax�Milgram Theorem.
Various choices for H are possible, all giving rise to well-posed variational problems (see,
e.g., Bally et al. [17, 16], Barles�Lesigne [20], Achdou�Pironneau [1], Matache et al. [137],
Jaillet et al. [105], Ern et al. [84]). The choice made in [20, 17, 16] has the advantage to give
rise to a clear connection (Feynman-Kac formula) between the solution of the PDE problem
and the option price process as probabilistically de�ned by arbitrage (see Part II).
Again, the precise variational formulation of the pricing problem, including the de�nition
of the spaces, is outside the scope of these notes and irrelevant here. We shall simply keep
in mind that under mild technical assumptions, a weak (re)formulation of the pricing PIDE
problem (149) is well-posed in a suitable weighted Sobolev space H. This underlies the theory
of naturally related �nite elements and �nite volumes approximation schemes.

15 Numerical Approximation

In the case of European vanilla options in simple models (models of the AJD class [75], SABR
model [96],etc.), the pricing equation (149) can be solved analytically (or semi-analytically
by Fourier analysis, see Section 37). But in general, (149) must be solved numerically. In
order to approximate (149), one can either use �nite di�erences methods [171], or resort to
more general �nite elements (or even �nite volumes) methods [1]. Note that there is in fact
no hermetic frontier between these methods. Indeed, schematically:

Tree Methods ⊂ FD Methods ⊂ FE Methods ⊂ FV Methods

(and also in a sense, for a complete picture: MC Methods ⊂ Tree Methods, cf. Section
1).

15.1 Finite di�erences methods

Finite di�erence methods are naturally connected with viscosity solutions of monotone equa-
tions expressing related maximum principles (cf. section 14.1). A practical reason to use
�nite di�erences is that �nite element methods are potentially more powerful, but they are
also heavier, than �nite di�erences methods. The related cost is justi�ed in cases where the
geometry of the domain makes it necessary to use a sophisticated unstructured and adapta-
tive discretization mesh. But pricing problems in �nance are typically posed on rectangular
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domains, for which a simple �nite di�erence grid is good enough (with the limitation that
a �nite di�erences grid does not o�er as many possibilities as a �nite elements mesh for
re�ning the mesh in multi-dimensional problems, however).

15.1.1 Localization, Discretization

The numerical resolution of the pricing equation (149) by �nite di�erences is a four steps
process:
(1) Transformation(s) of the problem, whenever judged useful, such as:
• changes of variables (e.g. as x = lnS, in the Black�Scholes case),
• changes of unknowns (e.g. solving the equation for e−rtu rather than u),
• changes of probabilities (see [89, Part II A] or [65, III,3.1.3] for a PDE interpretation of
the Girsanov transform for di�usion processes);
(2) Localisation of the problem, that is, truncating the integration domain in the non-local
term Iu, and the problem domain:
• replacing the integration domain Rq by bounded domains Dε(t, x) ⊂ Rq such that∫

Rq\Dε(t,x)
hi(t, x, dy) ≤ ε ,

in the non-local term Iu;
• replacing D by an open bounded sub-domain in (149) (in case D was not bounded from
the beginning), still denoted by D henceforth, and introducing a suitable Dirichlet boundary
condition ϕ on a boundary layer ∂D (�thick� boundary to account for jumps, see for instance
section 16.4.1) around the new domain D (we also de�ne ϕ = φ at T );
(3) Discretizing the localized time�space domain and choosing a suitable �nite di�erences
numerical scheme for the localized problem;
(4) We thus get a problem of linear algebra (typically: a sparse linear system, or a �system
of systems� in the most general case where q ≥ 1 and k ≥ 2) in the values of the approximate
solution at mesh nodes, to be programmed and solved numerically on a computer.

Note that to exploit the parabolic structure of pricing equations in �nance, the time dimen-
sion is typically treated separately in (3) (as in the so-called `theta-schemes'), in order to
`save' one dimension in terms of storage cost. The problem is then solved `linearly in time'
(one time step after the other) at step (4).

Convergence, convergence rate (and, of course, computational cost!) of the resulting approx-
imation scheme, are then the main issues.

15.1.2 Convergence and Convergence rates

Given a suitable mesh with time step h and space step vector k = (k1, . . . , km) on [0, T ]×Rq,
let {

F kh (ukh) = 0 on [0, T )×D
ukh = ϕ on E \

(
[0, T )×D

) (151)

stand for a fully-discrete �nite di�erences approximation scheme for (149) (or a localized
version of (149), in case where the original domain D or the support of h are unbounded,
cf. section 15.1.1). By (151) we mean that the related equalities are satis�ed at every mesh

point in [0, T )×D or E \
(
[0, T )×D

)
. We assume that the discrete problem (151) admits

a unique solution ukh = (uj,kh )1≤j≤I de�ned at grid points.
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Recall that under mild technical assumptions, the pricing equation (149) has a unique solu-
tion u = (uj)1≤j≤I in a suitable space of viscosity solutions with growth conditions. More-
over we assume that the boundary data φ and the solution u are bounded, for simplicity.

In the scalar and purely di�erential case (no jumps, γ in X and k = 1) and in the case
of a linear operator F, u is typically a classic solution of (149). Then the well-known Lax
Equivalence Theorem states that any stable and consistent numerical scheme F kh (ukh) = 0
is convergent, which loosely means that ukh converges to u at mesh points as h, k → 0+,
provided:
• ukh is bounded, uniformly over h, k (stability),
• F kh (u) → 0 at mesh points as h, k → 0 (consistency).
We refer the reader to [143] for the detail of this theorem. In particular, the previous
statements are relative to the speci�cation of a given norm in which ukh is bounded and
F kh (u) → 0, ukh → u, hence the notions of stability/convergence in norm l∞, l2, etc.
There is a further notion of order of consistency, which measures the speed at which F kh (u) →
0 at mesh points as h, k → 0. Note however that the order of consistency of a numerical
scheme has no immediate implication in terms of convergence rates of ukh to u. Convergence
rates only follow under additional assumptions, regarding in particular the regularity of the
boundary data φ, etc.

Now, a nice feature of the theory of viscosity solutions is that the Lax Equivalence Theorem
can be generalized to the case of a general non linear monotone operator F and to systems
and jumps in (149).
So, for a general monotone, yet still scalar and purely di�erential, operator F in (149), Barles
and Souganidis [21] proved the convergence of any monotone, stable and consistent approx-
imation scheme for (149), provided (149) satis�es a suitable viscosity solutions comparison
principle. We already observed that such comparison principles can indeed be obtained
under mild technical conditions on the data of problem (149). The monotonicity condition
on the scheme is a discrete version of that on F (cf. (150)), which is typically satis�ed by
natural �nite di�erences approximation schemes for (149). So the convergence conditions
in the Barles�Souganidis theorem are essentially reduced to those in the Lax Equivalence
Theorem, namely stability and consistency of the scheme.
Finally, the latter results were extended to (scalar) non-linear equations with jumps (includ-
ing the case of unbounded jump measures, hence beyond the case of probability measures h
postulated in (149)) by Briani, La Chioma and Natalini [46], and to systems of non-linear
equations with jumps in Crépey [65]. Note however that in presence of jumps, the mono-
tonicity of the related numerical schemes does not follow as universally as in the purely
di�erential case (see, e.g., [178]).

15.2 Finite Element Methods and Beyond

Finite element and �nite volume methods are based on energetic, variational (re-)formulations
of the pricing PIDE problem (149).These methods give approximate solutions de�ned on the
whole state space of the continuous (localized) problem (see Figure 4), as opposed to ap-
proximate solutions at grid points by �nite di�erences methods. They are most naturally
connected with equations expressing (energy) conservation principles.

As already mentioned in section 15.1, they are heavier and harder to implement (�nite vol-
ume methods in particular) than �nite di�erences methods. By heavier, we mean that they
are computationally intensive, particularly in terms of storage cost. Indeed, a prerequisite in
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Figure 4: Convergence of �nite elements approximations.

a �nite element method is the construction of a suitable discretization mesh, which is typi-
cally unstructured and adaptative, and which has to be handled by the computer program
all along the numerical resolution. This also means that �nite element methods are harder
to implement. One typically then has to use �nite element toolboxes (many of them are
available for free, see, e.g., http://www.inria.fr/valorisation/logiciels/calcul.en.html), which
may induce less �exibility in programming.

However, the related cost is justi�ed in cases where the geometry of the domain makes it
necessary to use a sophisticated unstructured and adaptative discretization mesh, such as
it is typically the case in �uid dynamics (see Figure 5), but also occasionally so in �nance.
This is for instance the case for pricing barrier options with curved boundaries (see, e.g.,

Figure 5: (a) Detail of viscous mesh for wind tunnel model in aircraft design, (b) Parallel
computation on an unstructured mesh showing the domain decomposition of 16 processors
of a distributed memory computer.

Crépey [64]; barrier options with curved boundaries are common on interest-rates), or for
the precise approximation of exercise boundaries in the case of American problems (see, e.g.,
[51], also reported in Crépey [64]).
Another motivation for using �nite elements is to counter the curse of dimensionality (see
Section 3), by re�ning the approximation mesh in a more clever way than simply taking the
product of uni-dimensional adaptive meshes, as is typically done with �nite di�erences (see
Figure 6 and section 15.2.2).

Practically speaking, the numerical resolution of problem (149) by �nite elements is a �ve
steps process (cf. the analogous description of �nite di�erences methods in section 15.1.1):
(1) Transformation(s) of the problem, whenever judged useful;
(2) Localisation of the problem, that is, truncating the integration domain and the problem
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Figure 6: Finite elements mesh re�nement.

domain, and introducing a suitable Dirichlet boundary condition ϕ which prolongates φ on
a �thick� (because of jumps) boundary layer ∂D around the localized domain;
(3) Derivation of a weak formulation of the localized problem in a suitable weighted Sobolev
functional space H (the boundary condition ϕ is typically accounted for by a judicious choice
of H);
(4) Projection of the resulting problem onto a �nite-dimensional sub-space of �nite elements
Hh ⊂ H;
(5) We thus get a high-dimensional, sparse linear system, in the coe�cients of the approx-
imate solution on a �nite element basis, to be programmed and solved numerically on a
computer.

Existence and uniqueness of a solution to the weak form of the localized problem at step (3)
typically follows by application of the Lax�Milgram Theorem (see section 14.2.2).

With the same motivation as for �nite di�erences methods, the time dimension is typically
(yet not always, see, e.g., [51, 84]) treated separately at steps (3)�(4). So the problem may be
solved `linearly in time' at constant storage cost. Like with �nite di�erences methods, con-
vergence, convergence rate, and computational cost of the resulting approximation scheme,
are the main issues.
An interesting feature of �nite elements methods is that a powerful error theory (a priori
and a posteriori error estimates) is available.

To solve the high-dimensional sparse linear system arising at step (5), an iterative solver is
required. The Generalized Minimal Residual (GMRES) algorithm [165], a special form of
conjugate gradient method which is both e�cient and relatively easy to code, is the industry
standard in this regard.

15.2.1 Finite Volumes

Finite volumes methods can be seen in an informal way as counterparts of �nite element
methods in which the test functions used in the variational formulation of the problem are
indicator (discontinuous) functions, instead of regular test functions as usual. Finite volumes
methods are especially dedicated to PDE convection (or convection dominant) problems with
discontinuous data. For instance, the �nite volume discretization of the pricing function of
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a digital option is exact in a Black�Scholes model with no volatility (σ = 0).

15.2.2 Sparse Grids

Sparse grids denote numerical techniques to represent, integrate or interpolate high dimen-
sional functions, relying on the seminal works of the Russian mathematician Smolyak, who
found a clever quadrature rule to (partially) escape the curse of dimensionality.
This direction of research underlies active developements in �nite elements methods (or
�nite di�erences methods; see Figure 7). But the related algorithms are di�cult to imple-
ment, and we shall not go further in this direction at the level of these notes, referring the
interested reader to [160, 91].

Figure 7: Sparse Grids Re�nement.

For simplicity, we shall focus on �nite di�erences methods in the sequel. Regarding �nite
element methods in �nance, we refer the reader to Achdou�Pironneau [1] or Matache et al.
[137].

16 Finite Di�erences for European Vanilla Options

16.1 Black�Scholes Equation

Recall from section 10.1 that in the risk-neutral Black�Scholes model
dSt
St

= κdt+ σdWt

for a standard P � Brownian motion W (and with κ = r − q), the price process of an
European vanilla option with (integrable) payo� φ(ST ) at T is given by Πt = v(t, St), where
the pricing function v solves the following Black�Scholes valuation PDE:{

v(T, S) = φ(S), S ∈ (0,∞)
∂tv + κS∂Sv + 1

2σ
2S2∂2

S2v − rv = 0 in [0, T )× (0,∞) (152)

After logarithmic transformation Xt = ln(St), the option price process is given as Πt =
u(t,Xt), where u solves the parabolic equation{

u(T, x) = ψ(x), x ∈ R
∂tu+ b∂xu+ 1

2σ
2∂2

x2u− ru = 0 in [0, T )× R (153)
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where b = κ− σ2

2 and ψ(x) = φ(ex), the payo� in the x variable.

For nice enough terminal conditions, these equations are well-posed (i.e. have one and only
one solution, which depends continuously on the data of the problem), in a suitable space
of classic solutions [90] (and in suitable spaces of viscosity or weak solutions in weighted
Sobolev spaces as well, cf. section 14.2).

16.2 Localization and Discretization in space

Let x = ln(S0). To solve numerically the Black�Scholes equation in log-returns variable
(153), we start by truncating the integration domain in space: the problem will be solved
on the bounded domain D̄ = [x− `, x+ `] . One chooses ` so that

P (∃s ∈ [0, T ], |Xx
s − x| ≥ `) ≤ ε , (154)

which can be achieved by setting

` = |b|T + fσ
√
T (155)

for a related quantile f of the Gaussian law (like f = 4 or 5, see, e.g., Crépey [64]). Once D
is chosen, one discretizes it in space, constructing a uniform grid {xj} with

xj = x− `+
2j`
m+ 1

, for 0 ≤ j ≤ m+ 1

(with m odd, so that x lies in the space grid; otherwise some kind of interpolation has to be
used, cf. Remark 16.2).

One then approximates the di�erential spatial operator

Au = 1
2σ

2∂2
x2u+ b∂xu− ru

by a discrete operator Ak acting on Rm-valued vectors uk = (uk(t, x1), . . . , uk(t, xm)). The
easiest and most natural is to take:

Akuk(xj) =
1
2
σ2δ2x2u

k(xj) + bδxu
k(xj)− ruk(xj) (156)

with

δxu
k(xj) = 1

2k (u
k(xj+1)− uk(xj−1))

δ2x2u
k(xj) = 1

k2 (uk(xj+1)− 2uk(xj) + uk(xj−1))

where uk(x0) = uk(x − `) and uk(xm+1) = uk(x + `) are notations for quantities to be
de�ned below using the uk(xj), j = 1 . . .m. By suitable Taylor expansions, it is possible to
show that δx and δ2x2 are consistent approximations of order two of the spatial di�erential
operators ∂x and ∂2

x2 , respectively, meaning that for regular test functions ϕ :

|δxϕ(t, xj)− ∂xϕ(t, xj)| = O(k2) , |δ2x2ϕ(t, xj)− ∂2
x2ϕ(t, xj)| = O(k2) .

Remark 16.1 If |κ| /σ2 is not small, a less precise but more stable �nite di�erence approx-
imation for ∂x is

δxu
k(xj) =

{
1
k (u

k(xj)− uk(xj−1)) if b < 0
1
k (u

k(xj+1)− uk(xj)) if b > 0 .

This alternative discretization for ∂x, called upwind discretization, is based on the consider-
ation of the characteristics of the limiting hyperbolic transport equation with σ = 0.
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One then seeks an Rm-valued time functional uk(t) such that:
• In the case of Dirichlet boundary conditions,

uk(T, xj) = ψ(xj)
uk(t, x± `) = ψ(x± `)
d
dtu

k(t, xj) +Akuk(t, xj) = 0 for 0 ≤ t < T, 1 ≤ j ≤ m ;
(157)

• In the case of Neumann boundary conditions,
uk(T, xj) = ψ(xj)
uk(t, x1) = uk(t, x− `) + k∂xψ(x− `)
uk(t, xm) = uk(t, x+ `)− k∂xψ(x+ `)
d
dtu

k(t, xj) +Akuk(t, xj) = 0 for 0 ≤ t < T, 1 ≤ j ≤ m .

(158)

Set

α =
σ2

2k2
− b

2k
, β = −σ

2

k2
− r , γ =

σ2

2k2
+

b

2k
(159)

In this notation, the operator Ak applied to uk(t) writes:

Akuk(t) = Akuk(t) + vk,

with in the case of Dirichlet boundary conditions:

Ak =



β γ 0 , . . . , 0 0
α β γ 0 , . . . , 0
0 α β γ , . . . , 0

0
...

. . . . . . . . .
...

0 0 , . . . , α β γ
0 0 0 , . . . , α β


, vk =


ψ(x− `)α

0
...
0

ψ(x+ `)γ

 (160)

and in the case of Neumann boundary conditions:

Ak =



β + α γ 0 , . . . , 0 0
α β γ 0 , . . . , 0
0 α β γ , . . . , 0

0
...

. . . . . . . . .
...

0 0 , . . . , α β γ
0 0 0 , . . . , α β + γ


, vk =


−αk ∂ψ∂x (x− `)

0
...
0

γk ∂ψ∂x (x+ `)

 . (161)

Remark 16.2 (i) If m was even, x would not belong to {xj ; 0 ≤ j ≤ m+ 1}. In this case
one could use linear interpolation to compute the option value corresponding to the initial
stock price at time 0. This price would thus be approximated by 1

2

(
uk(0, xm/2) + uk(0, xm/2+1)

)
.

(ii) In the case of Dirichlet boundary conditions of variant of (160) (propagation of the
Dirichlet condition at terminal time), simpler to implement, consists in

Ak =



1 0 0 , . . . , 0 0
α β γ 0 , . . . , 0
0 α β γ , . . . , 0

0
...

. . . . . . . . .
...

0 0 , . . . , α β γ
0 0 0 , . . . , 0 1


(162)
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and vk = 0.

16.3 Theta-schemes

We now discuss discretization in time. The standard theta-scheme (θ ∈ [0, 1]) for the
parabolic equation (153) may be summarized as follows (see, e.g., [124, 143]): Fix a time
discretization step h such that T = nh, and construct a fully discrete approximation
ukh(ti, xj) = ui(xj) where the ui, i = 0 . . . n are Rm-valued vectors such that:{

un = ψk
ui+1−ui

h +Ak(ui+1 + θ(ui − ui+1)) = 0 for 0 ≤ i ≤ n− 1

or {
un = ψk[
Id− hθAk

]
ui =

[
Id + h(1− θ)Ak

]
ui+1 for 0 ≤ i ≤ n− 1

(163)

or, equivalently{
un = ψk[
Id− hθAk

]
ui =

[
Id + h(1− θ)Ak

]
ui+1 + hvk for 0 ≤ i ≤ n− 1

(164)

For θ = 0, we get the so-called Euler explicit scheme. For θ = 1 the scheme is the fully
implicit Euler scheme, and for θ = 1

2 it is the Crank-Nicholson scheme.

Once we have computed ukh, we recover the delta ∆ = e−x∂xu by its approximation given
by

∆k
h(ti, xj) = e−xj

ui(xj+k)−ui(xj−k)
2k

16.3.1 Explicit Method

First, let us discuss the case θ = 0 (explicit scheme). Using the de�nition of Ak (considering
say Dirichlet conditions), the approximating scheme (163) is reduced to (cf. (159)){

un = ψk , and for 0 ≤ i ≤ n− 1 , 1 ≤ j ≤ m :
ui(xj) = hαui+1(xj−1) + (1 + hβ)ui+1(xj) + hγ ui+1(xj+1)

with ui+1(x± `) = ψ(x± `).

Considering (159), one can then show that the explicit approximation scheme for the Black�
Scholes pricing equation (153) is (cf. section 15.1.2):
• stable, provided h ≤ k2

σ2+rk2 (and σ2 > |b|k, but this is always satis�ed for k small enough);
• consistent of order one in time and two in space.

16.3.2 Implicit Methods

When we choose 1 ≥ θ > 0, we have to solve at each time step, a linear system

Aui = Bui+1 + hvk (165)
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where A = Id − hθAk and B = Id + h(1 − θ)Ak cf. (164)) are tridiagonal matrices of the
type 

b1 c1 0 , . . . , 0 0
a2 b2 c2 0 , . . . , 0
0 a3 b3 c3 , . . . , 0

0
...

. . . . . . . . .
...

0 0 , . . . , am−1 bm−1 cm−1

0 0 0 , . . . , am bm


.

For example, in the case of natural Dirichlet boundary condition, A is given by, for every
j:

aj = θh( b
2k −

σ2

2k2 ), bj = 1 + θh(r + σ2

k2 ), cj = −θh( b
2k + σ2

2k2 )

and B is given by, for every j:

aj = (1− θ)h( σ2

2k2 − b
2k ), bj = 1− (1− θ)h(r + σ2

k2 ), cj = (1− θ)h( b
2k + σ2

2k2 )

The fully implicit and the Crank�Nicholson schemes correspond to θ = 1 and θ = 1
2 , re-

spectively. One can show that the implicit (θ 6= 0) approximation theta-schemes for the
Black�Scholes pricing equation (153) are:
• stable inconditionally for θ ≥ 1

2 ;
• consistent of order one in time and two in space, with the notable exception of the Crank�
Nicholson scheme which is consistent of order two in time and space.

On Figure 8, we plotted the relative error at time 0 as a function of the spot price S0,
obtained when pricing an European vanilla call option with the explicit, fully implicit and
Crank�Nicholson theta-schemes, respectively (for r = 10%, σ = 20%, T = 1y,K = 100).
The Crank�Nicholson is more accurate (at least around the money), as expected.

-4

-3

-2

-1

0

1

2

3

50 100 150 200

lo
g_

10
 (

 %
 e

rr
 r

el
)

Spot value

Crank-Nicholson Scheme; NT = 50 , NX= 101
implicit Scheme ; NT = 50 , NX = 101
Explicit scheme; NT = 50 , NX = 101

Figure 8: Pricing of an European call option by theta-schemes for θ = 0, 1
2 , 1.
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All implicit theta-schemes require at each time step the resolution of a linear system Au = v,
where u and v are m-dimensional vectors. Let us describe two algorithms of resolution of
such linear systems.

Gauss Factorization This algorithm is based on the fact that a regular matrix can be
factorized as A = LU, where L is a lower triangular matrix, and U is an upper triangular
matrix with all ones on its diagonal. The linear system LUz = v is decomposed into
Ly = v, Uz = y. It is easy to see that A tridiagonal implies that L,U are also tridiagonal
and so only the upper diagonal of U and the two diagonals of L need to be found. This
results in the following procedure, known as Thomas' algorithm [143, 124]:

b′m = bm, ym = vm
For 1 ≤ j ≤ m− 1, j decreasing:
b′j = bj − cjaj+1/b

′
j+1,

yj = vj − cjyj+1/b
′
j+1.

, followed by


z1 = y1/b

′
1

For 2 ≤ j ≤ m, j increasing:
zj = (yj − ajzj−1)/b′j .

Remark 16.3 Note that this method presupposes that all the b′j (called the pivots) are non
zero.

SOR Iterative Methods An alternative, which in the case of tridiagonal systems is jus-
ti�ed only by its programming simplicity, is to use the Successive Over-Relaxation iterative
scheme. The idea is to decompose A as A = D+R where D is the diagonal part of A. The
linear system Au = v is then rewritten Du = v−Ru. The solution is computed as the limit
of a converging sequence

up+1 = D−1(v −Rup) , (166)

or better, given a relaxation paramater 1 < ω < 2 :

up+1 = up + ω(ũp+1 − up)

where ũp+1 stands for the r.h.s. of (166). More precisely, the algorithm writes as follows:
• Step 0 Choose u0 ≥ 0, ε > 0, 1 < ω < 2. Set p = 0.
• Step 1 (Jacobi iteration) Form an intermediate vector ũp+1 = (hp+1

j )1≤j≤m by

hp+1
j =

1
Ajj

(vj −
∑
l<j

Ajlu
p
l −

∑
l>j

Ajlu
p
l ) , 1 ≤ j ≤ m (167)

Here a possible re�nement (Gauss�Seidel iteration) is to use hp+1
l instead of upl in the �rst

sum in the r.h.s. of (167).
• Step 2 (Over-relaxation) De�ne up+1 by

up+1 = up + ω(ũp+1 − up) , (168)

and set p = p+ 1.
• Step 3 Repeat steps 2 and 3 until |up+1 − up| < ε.
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16.4 Adding Jumps

Let us now add jumps in S, assuming that the underlying asset price evolves according to
the following risk-neutral jump-di�usion :

dSu
Su−

= (κ− γJ̄)du+ σdWu + d(
Nu∑
l=1

Jl), ST−t = s (169)

where:
• N is a Poisson process with deterministic jump intensity γ;
• the Jl are iid r.v. > −1 with law ν of j1 := ln(1 + J1), and we set J̄ = EJ1;
• the other data in (169) are de�ned as usual.
Moreover, N , W , and the Jl are independent. So in case ν = N (α, β) we recover the
risk-neutral Merton model of section 10.3.

One can show as in section 16.1 (see also Part II) that the price of an European option
in the risk-neutral jump-di�usion (169) can be formulated in terms of the solution to a
related Partial Integro-Di�erential Equation (PIDE, cf. (57)). So, u denoting the pricing
function in the returns variable x = lnS, we have formally as in section 16.1 (resorting to the
Itô�Poisson formula (45)), with �,� standing for �equality up to a local martingale term�:

ertd(e−rtu(t,Xt)) , (∂tu+AXu− ru)(t,Xt)dt ,

where given (103), by (38):

AXu = a∂xu+
1
2
σ2∂2

x2u+ γ [Eu(x+ j1)− u(x)] .

By the usual arbitrage argument, the price at time t of the option is thus given by Πt =
u(t,Xt) where u solves the integro-parabolic equation{

u(T, x) = ψ(x), x ∈ R
∂tu+Au+ Bu = 0 in [0, T )× R (170)

with

Au =
1
2
σ2∂2

x2u+ a∂xu− ru , Bu = γ

∫
R
(u(t, x+ z)− u(t, x))ν(dz)

(note that the operator A of this Section reduces to the operator A of the previous Section
when γ = 0, since in this case a = b− γJ̄ = b ).

16.4.1 Localization

Localization works essentially as in Subsections 16.2, except for the fact that:
• b is replaced by a in (155),
• the boundary ∂D = {x − `} ∪ {x + `} is replaced by the �thick� boundary layer ∂D =
[x − ` − z−min, x − `] ∪ [x + `, x + ` + z+

max] (cf. step (2) in section 15.1.1), where zmin and
zmax are such that ∫ zmax

zmin

ν(dz) ≈
∫ ∞

−∞
ν(dz)− ε = 1− ε, ε� 1 ;
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• we solve the following localized problem on D̄ := D∪ ∂D :
u(T, x) = ϕ(T, x) = ψ(x) , x ∈ R
u(t, x) = ϕ(t, x) , (t, x) ∈ [0, T )× ∂D
∂tu+Au+ B`u = 0 , (t, x) ∈ [0, T )×D

(171)

where ϕ is a suitable Dirichlet condition such that ϕ(T, x) = ψ(x) (e.g., ϕ(t, x) ≡ ψ(x)),
and B` is such that, for x ∈ D :

B`u(x) = γ
∫
D−x u(t, x+ z)ν(dz)− γu(t, x)+

γ
∫
∂D−x ϕ(t, x+ z)ν(dz)

(172)

16.4.2 Discretization

We de�ne:

xmin = min D̄, xmax = max D̄
k = xmax−xmin

m , xj = xmin + jk (j = 0, . . . ,m)

jl =
[
z−min
k

]
, ju = n−

[
z+max
k

]
.

B` approximation In order to approximate B`, we set ν(dz) = ζ(z)dz, where ζ is the
density of ν, assumed to exist. Then the B` operator is decomposed as

B`u(t, x) =
[
γ
∫
D−x u(t, x+ z)ζ(z)dz − γu(t, x)

]
+[

γ
∫
∂D−x ϕ(t, x+ z)ζ(z)dz

]
= B̄`u(t, x) + Φ(t, x)

Standard approximation For j = jl, . . . , ju, we approximate

B̄`u(·, xj) ≈ Bku(·, xj) = γk
∑ju−j

i=jl−j u(·, xj+i)ζ(·, xi)− γu(·, xj)
Φ(·, xj) ≈ Φk(·, xj) = γk

∑
{i+j<jl}∪{i+j>ju} ϕ(·, xj+i)ζ(·, xi)

FFT approximation Recall that the discrete correlation f of two real-valued functions gj ,
hj , each periodic with period m, is de�ned by

fj =
m−1∑
l=0

gj+lhl.

The discrete correlation theorem says that the discrete Fourier transform F of f is such that

Ff = (Fg)(Fg) (173)

where Fh denotes the complex conjugate of Fh. We can thus compute f by FFT as follows:
FFT the two data sets g and h, multiply one resulting transform by the complex conjugate
of the other and inverse transform the product. The result will formally be a complex vector
of length m. However, it will turn out to have all its imaginary parts equal to zero since the
original data sets were both real.
We can apply this procedure to the Bk and Φk operator (with the related vectors suitably
prolongated by zero padding outside jl, . . . , ju, see,e.g., [97, 156]).
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Finite di�erences in space For the di�erential operator A, we write:

Aku(·, xj) = [aδx + σ2

2 δ
2
xx − r]u(·, xj)

where
δ2x2u(·, xj) = u(·,xj+1)−2u(·,xj)+u(·,xj−1)

k2 ,

δxu(·, xj) = u(·,xj)−u(·,xj−1)
k + α

u(·,xj+1)−2u(·,xj)+u(·,xj−1)
k ,

where α is chosen such that (for stability reasons): ka ≤ σ2

2 α = 1
2

ka > σ2

2

{
α = 0 a > 0
α = 1 a < 0

Theta-schemes We de�ne the time grid {ti | ti = hi, i = 0, . . . , n}. Denoting uji =
u(ti, xj), we consider the following discrete operator:

uj
i+1−u

j
i

h +Ak[θAuji + (1− θA)uji+1]+

+θB[Bkuji + (Φk)ji ] + (1− θB)[Bkuji+1 + (Φk)ji ]

(174)

where θA, θB ∈ [0, 1]. We consider in particular two cases.
Explicit scheme θA = θB = 0: Computationally feasible but potentially unstable and su�ers
from the drawback that convergence in time is only of the �rst order (in O(h)).
For every i = n− 1, . . . , 0 we solve

uji = ϕji , j = 0, . . . , jl − 1 and j = ju + 1, . . . , n

uji = p1u
j−1
i+1 + p2u

j
i+1 + p3u

j+1
i+1 + hγ(k

∑iu
i=il

ζiu
j+i
i+1 − uji+1

+k
∑

{i+j<jl}∪{i+j>ju}

ζiϕ
j+i
i+1), j = jl, . . . , ju,

(175)

where

p1 = h
( σ2

2k2
+
a

k
(1− α)

)
, p2 = 1− h

(σ2

k2
+
a

k
(1− 2α) + r

)
, p3 = h

( σ2

2k2
− a

k
α
)
.

`Asymmetric' scheme: θA = 1
2 , θB = 0: Stable and e�cient but some accuracy is lost due

to the asymmetric treatment of the continuous and jump part.
We have to solve, for i = n−1, . . . , 0, the linear systemAui = Bi+1, where ui = (u0

i , . . . , u
jl
i , . . . , u

ju
i , . . . , u

m
i )T,

A =

 Il 0
Ã

0 Iu

 , (176)
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in which Il and Iu are two identity matrices, jl × jl and (m − ju) × (m − ju) respectively,
and Ã is the (ju − jl + 1)× (ju − jl + 1) tridiagonal matrix such that

Ã =



a1 a2 0 · · 0
a0 a1 a2 0 · 0
0 a0 a1 a2 0 ·
· 0 0
· · 0 a0 a1 a2

0 · · 0 a0 a1


a0 = −h

2

(
σ2

2k2 + a
k (1− α)

)
a1 = 1 + h

2

(
σ2

k2 + a
k (1− 2α) + r

)
a2 = −h

2

(
σ2

2k2 − a
kα
)

and �nally
Bi+1 = (ϕ0

i+1, . . . , ϕ
jl−1
i+1 , f

jl
i+1, . . . , f

ju
i+1, ϕ

ju+1
i+1 , . . . , ϕmi+1)

T, (177)

where, for j = jl, . . . , ju,

f ji+1 = −a0u
j−1
i+1 + (2− a1)u

j
i+1 − a2u

j+1
i+1 + hγ

(
k

iu∑
i=il

ζiu
j+i
i+1 − uji+1

+ k
∑

{i+j<jl}∪{i+j>ju}

ζiϕ
j+i
i+1

)
.

17 Finite Di�erences for American Vanilla Options

17.1 Black�Scholes Variational inequalities

Using the formalism of viscosity or variational solutions of PDEs, the arguments of section
16.1 can be extended to American options. It can thus be shown (see Part II) that the price
of an American vanilla option in the Black�Scholes model at time 0 is given by

sup
τ∈T

Ee−rτψ(Xτ ) = u(0, x) ,

withXt = ln(St) andX0 = x, where u is the unique viscosity solution with growth conditions
to the following obstacle problem in the log-return space variable x = lnS :{

u(T, ·) = ψ(T, ·) on R
max(∂tu+Au, ψ − u) = 0 on [0, T )× R (178)

Note that at the intuitive level, the second line of (178) expresses the facts that the American
option pricing function is ≥ to the related payo�, and also to the related European option
pricing function.

Equivalently to (178), u can be characterized as the unique solution to the following varia-
tional inequality problem:{

u(T, ·) = ψ(T, ·)
〈∂tu+Au, v − u〉 ≤ 0 for any v ≥ ψ

(179)

where 〈·, ·〉 denotes the scalar product in a suitable weighted Sobolev space.
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To support this equivalence, note that provided u ≥ ψ, (178) implies that, for any v ≥ ψ :

〈∂tu+Au, v − u〉 = 〈∂tu+Au, v − ψ〉+ 〈∂tu+Au, ψ − u〉 = 〈∂tu+Au, v − ψ〉 ≤ 0,

hence (179). Conversely, still assuming u ≥ ψ, (179) implies that for any non-negative test-
function ϕ, we have 〈∂tu+Au, ϕ〉 ≤ 0, hence ∂tu+Au ≤ 0 and 〈∂tu+Au, ψ− u〉 ≥ 0. But
taking v = ψ in (179) gives 〈∂tu + Au, ψ − u〉 ≤ 0, so that �nally 〈∂tu + Au, ψ − u〉 = 0,
hence (178).

17.2 Splitting methods

Let us �rst describe the computational treatment of the obstacle problem (178), using the
so-called splitting method. The idea is to construct recursively, by dynamic programming,
the approximate solution uji , starting from un = ψk(T ), and computing ui from ui+1, for
0 ≤ i ≤ n− 1, in two steps as follows (cf. (165)):

Aũi = Bui+1 + hvk

ui = max
(
ψk(ti), Aũi

) (180)

By Barles et al. [19, 21], this scheme converges to the unique viscosity solution of (178)
satisfying suitable growth conditions, namely the pricing function u.

17.3 Linear Complementarity Problem

Let us now describe the computational treatment of the variational inequalities (179). We
refer to [105, 95] for a detailed presentation. It is well-known that after localization and
discretization the variational inequalityproblem (179) can be expressed as a Linear Comple-
mentarity (LC) problem. At each time step i, we thus have to solve:

AX ≥ G
X ≥ Φ
(AX −G,X − Φ) = 0

(181)

with (using Dirichlet boundary conditions)
A = I − hθAk

X = ui
G = (I + h(1− θ)Ak)ui+1 + hvk

Φ = ψk .

So A is the following tridiagonal matrix:

A =


b c , . . . , , . . . , 0
a b c , . . . , 0
...

. . . . . . . . .
...

...
... a b c

0 , . . . , , . . . , a b

 with


a = θh

(
− σ2

2k2 + 1
2k b
)

b = 1 + θh(σ
2

k2 + r)
c = −θh

(
σ2

2k2 + 1
2k b
)
.

There exist three classic algorithms to solve the LC problem (181).

A method by Brennan and Schwarz [45] This method consists in introducing an
auxiliary LC problem. A rigorous justication of the convergence of this algorithm, in the
case of an American put option, was given in Jaillet et al. [105].
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PSOR Method The LC problem (181) can be written as follows: �nd vectors W =
(wi)1≤j≤m and Z = (zj)1≤j≤m in Rm such that

W = AZ + V (182.1)
W ≥ 0, Z ≥ 0 (182.2)
(W,Z) = 0 (182.3)

(182)

where we have set Z = X − Φ and V = AΦ − G. Such a LC problem can be solved by a
Projected SOR scheme (cf. section 16.3.2). Convergence was established in Cryer [69].

An Algorithm of Cryer This algorithm is based on a direct method, which is an adap-
tation to LC problems of Saigal's linear programming algorithm. The basic idea of this kind
of algorithm is: Choose an initial value which satis�es both (182.1) and (182.2), maintain
the two conditions during all steps and have gradually satis�ed the null condition (182.3).
The solution of problem (182) is then obtained.
Note that the matrix A is a Minkowski matrix, namely a matrix with positive principal
minors, positive diagonal entries and non-positive o�-diagonal entries. This implies in par-
ticular that A−1 ≥ 0. The Cryer algorithm is valid for all Minkowski matrix. In the
particular case, such as ours, where A is a tridiagonal Minkowski matrix, an implementation
of this basic method which minimizes the amount of computation can be found in [70].

18 Finite Di�erences for bi-dimensional Vanilla Options

The purpose of this Section is to describe various algorithms for pricing options in the Black�
Scholes bidimensional setting, relying upon the ADI (Alternate Direction Implicit) method.
The ADI method can in fact be used in any multi-dimensional Markov model. It is actually
the current industry standard to solve multi-dimensional pricing problems by PDE methods.

In the risk-neutral Black�Scholes bidimensional model, the underlying stock-prices satisfy
the following stochastic di�erential equations:{

dS1
t = S1

t (κ1dt+ σ11dW
1
t + σ12dW

2
t ), ln(S1

0) = x1

dS2
t = S2

t (κ2dt+ σ21dW
1
t + σ22dW

2
t ), ln(S2

0) = x2

for independent Brownian motions W 1, W 2, with(
κ1

κ2

)
=
(
r − q1
r − q2

)
, Σ =

(
σ11 σ12

σ21 σ22

)
=
(

σ1 0
ρσ2

√
1− ρ2σ2

)

so that in particular ΣΣT = Γ , where Γ is the following covariance matrix:

Γ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
In order to apply the ADI method, we'd rather work with the underlying decorrelated bidi-
mensional Brownian motion. In this view we introduce

ϕ(t, w1, w2) := φ(t, ex1+b1t+σ1w1 , ex2+b2t+σ2(ρw1+
√

1−ρ2w2) ,
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with (b1, b2) = (κ1 − 1
2σ

2
1, κ2 − 1

2σ
2
2), so that the payo� of the option writes ϕ(t,W 1

t ,W
2
t ).

The price at time 0 of an European option on (S1
T , S

1
T ) is then given by:

Ee−rTφ(T, S1
T , S

2
T ) = v(0, S1

0 , S
2
0) = u(0, 0, 0) = Ee−rTϕ(T,W 1

T ,W
2
T )

where u is the unique viscosity solution with suitable growth conditions to the following
two dimensional PDE:{

u(T,w1, w2) = ϕ(T,w1, w2) on R2

∂tu(t, w1, w2) + 1
2∂

2
w2

1
u(t, w1, w2) + 1

2∂
2
w2

1
u(t, w1, w2)− ru(t, w1, w2) = 0 on [0, T )× R2

(183)

and v satis�es the analog equation in the S variables. Observe that(
lnS1

lnS2

)
=
(
x1 + b1T
x2 + b2T

)
+ Σ

(
W 1

W 2

)
.

Hence (
S1∂S1

S2∂S2

)
= Σ−1

(
∂W 1

∂W 2

)
=

1

σ1σ2

√
1− ρ2

(
σ2

√
1− ρ2 0

−σ2ρ σ1

)(
∂W 1

∂W 2

)
.

The deltas ∂Sv(0, S1
0 , S

2
0) are thus given in terms of u as

∆1 = e−x1

σ1
∂w1u , ∆2 = e−x2√

1−ρ2
(−ρ∂w1u

σ1
+ ∂w2u

σ2
) (184)

For the numerical resolution of problem (183) by �nite di�erences:
• we localize in space the problem on a domain D̄ = [−`, `]2, introducing a suitable boundary
condition on (0, T )× ∂D;
• we introduce a grid of mesh points (t, w1, w2) = (ih, j1k1, j2k2) on [0, T ] × D̄, for mesh
steps (which can be thought of as tending to zero) h, k1, k2, and we discretize the localized
problem on the time-space grid by a suitable �nite di�erences scheme, such as the ADI
scheme described in the next section.
Let uj1,j2i denote the solution of the discrete problem. The deltas are then retrieved by using
suitable �nite di�erences approximations for ∂w1u and ∂w2u in (184), like

∂w1u ≈
uj1+1,j2

0 − uj1−1,j2
0

2k
, ∂w2u ≈

uj1,j2+1
0 − uj1,j2−1

0

2k
.

18.1 Numerical integration by an ADI Method

Alternate Direction Implicit (ADI) methods (see Peachman�Rachford [153], Morton�Mayers
[143]) consist in decomposing each discrete time step in two half-steps, the �rst one in the
�rst space variable and the second one in the other, as{

2
h(ui+1 − ui+ 1

2
) + 1

2δ
2
w2

1
ui+ 1

2
+ 1

2δ
2
w2

2
ui+1 − 1

2rui+ 1
2
− 1

2rui+1 = 0
2
h(ui+ 1

2
− ui) + 1

2δ
2
w2

1
ui+ 1

2
+ 1

2δ
2
w2

2
ui − 1

2rui+ 1
2
− 1

2rui = 0 ,

that is: {
[(1 + hr

4 )Id− h
4 δ

2
w2

1
]ui+ 1

2
= [(1− hr

4 )Id + h
4 δ

2
w2

2
]ui+1

[(1 + hr
4 )Id− h

4 δ
2
w2

2
]ui = [(1− hr

4 )Id + h
4 δ

2
w2

1
]ui+ 1

2

(185)
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with

(δ2w2
1
u)j1,j2i =

uj1−1,j2
i − 2uj1,j2i + uj1+1,j2

i

k2

(δ2w2
2
u)j1,j2i =

uj1,j2−1
i − 2uj1,j2i + uj1,j2+1

k2
.

The system (185) is of the form (Au·,j2
i+ 1

2

)j2 = (Bu·,j2i+1)j1 , for any j2

(Cuj1,·i )j1 = (Duj1,·
i+ 1

2

)j2 , for any j1
(186)

for tridiagonal matrices A, B, C, D. So each time step consists in the resolution of m1 +m2

implicit one-dimensional problems, solvable by the Gauss method. This is in general a
far better alternative than having to solve the m1m2-dimensional linear system that would
arise from a two-dimensional implicit scheme (the sparseness of the related matrix may be
fruitfully used in an iterative approximation scheme, however).

In less elementary situations where the correlation cannot be eliminated of the problem, the
correlation terms are treated in an explicit way (i.e., aggregated to the r.h.s. of (185) or
(186)), which induces a related stability condition.

Also note that the ADI method admits suitable extensions in arbitrary space dimension q.

18.2 American Options

Likewise, the price of a 2D American vanilla option at time 0 is given by (see Part II)

sup
τ∈T

Ee−rτϕ(τ,W 1
τ ,W

2
τ ) = u(0, 0, 0)

where u is the solution to the following variational inequality (obstacle problem):{
max

(
ϕ− u, ∂tu+ 1

2∂
2
x2u+ 1

2∂
2
y2u− ru

)
= 0 on [0, T )× R2

u(T, x, y) = ϕ(T, x, y) on R2 .
(187)

Again:
• we localize in space problem (187) on a domain D̄ = [−`, `]2, introducing a suitable
boundary condition u = ϕ on (0, T )× ∂D;
• we introduce a grid of mesh points (t, x, y) = (ih, j1k1, j2k2) on D̄ and we discretize and
solve the localized problem on the grid.
A suitable �nite di�erences approximation scheme on the grid can be obtained by combining
the previous ADI �nite di�erence method with the splitting method of section 17.2 (see, e.g.,
[177]).

19 Finite Di�erences for Exotic Options

19.1 Lookback Options

Lookback otions are options with payo�s of the form φ(S,M), where Mt = sup0≤s≤t Ss.
The Black�Scholes pricing function v of a lookback option satis�es the usual Black�Scholes
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pricing PDE in the (t, S) variables, but in the subdomain S ≤M of a three-dimensional state
space (t, S,M). On the boundary {S = M}, v satis�es an homogenous oblique Neumann
condition ∂Muv = 0 (see [180]).

This can be established by a formal application of the Itô semimartingale formula to the price
process Πt = v(t, St,Mt). Note that M is a non-decreasing process, yet it is not absolutety
continuous w.r.t. the Lebesgue measure, thus the relevant Itô formula is not contained in
(36). Here the relevant Itô formula is the general Itô formula for semimartingales (see, e.g.,
[57, 104]), yielding:

dvt =
(
∂tv + 1

2σ
2S2∂2

S2v + κS∂Sv − rv
)
dt+ ∂Mv dMt + σS∂Sv dWt

We thus deduce from the local martingale property of the discounted price e−rtΠt that on
{t < T} :

∂tv + 1
2σ

2S2∂2
S2v + κS∂Sv − rv = 0 on {S < M}
∂Mv = 0 on {S = M} .

Remark 19.1 (i) This can also be derived by letting n tend to ∞ in the pricing PDE of
the option with approximating payo� φ(ST ,MT (n)), where

Mt(n) = (
∫ t

0
Snds)

1
n , dMt(n) =

1
n

Snt
Mt(n)n−1

dt .

(ii) When St gets close to Mt, then it becomes very likely that the related value Mt of
M (running maximum of S) will have changed by T. It follows that the option value is
insensitive to small changes in the value of M in this case, which provides an intuitive
insight into the fact that ∂Mv = 0 on {S = M}.

19.2 Barrier Options

A barrier option is a type of �nancial option where the option to exercise depends on the
underlying crossing or reaching a given barrier level. For instance, barrier up and out options
at level H correspond to the following payo� process φ(St,Mt), involving in particular the
rebate R :

φ(St,Mt) = 1{Mt<H}φ(St) + 1{Mt≥H}R (188)

which is paid at time
τ = inf{t ≥ 0;St ≥ H} ∧ T .

The related price process is thus given as Πt = β−1
t Etβτφ(Sτ ,Mτ ), t ∈ [0, T ].

Such options were created as a way to provide the insurance value of an option without
charging as much premium. For instance, if a trader believes that IBM will go up this year,
but she is willing to bet that it won't go above 100, then she can buy the barrier and pay
less premium than the vanilla option.

Other common forms of barrier options are up and in, down and out, down and in, double
in, and double out options. In some cases, the rebate may be paid at the maturity time T
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rather than at the time of the barrier event. Barrier options are then special cases of lookback
options, so they may be handled as in the previous section. Their pricing functions then
solve related two-dimensional Cauchy problems in the set of variables (t, S, M).

However, in any case, it is better to use the fact that the Black�Scholes pre-barrier event
pricing function u = u(t, x) = v(t, S) of a barrier option, where

1t≤τΠt = 1t≤τv(t, St)

and x = ln(S), generically solves a uni-dimensional Cauchy�Dirichlet problem of the follow-
ing kind: 

∂tu+ 1
2σ

2∂2
x2u+ b∂xu− ru = 0 on [0, T )×D,

u(T, x) = ϕ(x) on D,
u(t, x) = R(t, x) on [0, T ]× ∂D .

(189)

More precisely, in the case of a rebate paid at the time of the barrier event, we have with
l = ln(L), h = ln(H), and denoting also by C(t, x) is the pricing function of an European
vanilla call with maturity T :
• Up Out Barrier h : D = (x− `, h), ϕ(x) = φ(S), R(t, h) = R;
• Up In Barrier h : D = (x− `, h), ϕ(x) = R, R(t, h) = C(t, h);
• Down Out Barrier l : D = (l, x+ `), ϕ(x) = φ(S), R(t, l) = R;
• Down In Barrier l : D = (l, x+ `), ϕ(x) = R, R(t, l) = C(t, l);
• Double Out Barriers l, h : D = (l, h), ϕ(x) = φ(S), R(t, l) = R(t, h) = R;
• Double In Barriers l, h : D = (l, h), ϕ(x) = R, R(t, l) = C(t, l), R(t, h) = C(t, h).

For computing the (pre-barrier event) pricing function of a barrier option, one may thus
apply a standard theta-scheme to (189) (or the analog problem in the x = ln(S) variable).
The use of implicit schemes is recommended, for stability issues.
For the sake of accuracy of the resulting scheme, grid points should be put on the barrier.
In the case of curved barriers, arti�cial Dirichlet boundary conditions may be imposed along
the barrier (Dirichlet boundary conditions on �ctitious grid points along the barrier, see,
e.g., [143, 65]).

Linear interpolation may be used to �nd the price and delta corresponding to the initial
stock price if need be. If the initial stock price is close to barrier, a one-sided second-order
�nite di�erence approximation should be used for getting the delta.

19.3 Asian options

Asian options are options with factors S and I =
∫ ·
0 Stdt, the running time-average of S.

Let us consider a few speci�c examples, in the simple set-up of the Black�Scholes model.
The pair (S, I) is then a Markov process with generator AS,I given by

AS,I =
1
2
σ2S2∂2

S2 + κS∂S + S∂I . (190)

Note that the generator AS,I is degenerate in the I variable.

19.3.1 European Fixed Strike Asian Put option

This is the option with the following payo� at T :

ξ =
(
K − IT

T

)+

= φ(IT ) , (191)
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and related price process

Πt = β−1
t EtβT ξ = v(t, St, It), t ∈ [0, T ]. (192)

The formally related bi-dimensional pricing problem writes:{
∂tv +AS,Iv = rv, 0 ≤ t < T
v(T, S, I) = φ(I)

(193)

One can thus show that Πt = v(t, St, It), t ∈ [0, T ], where v is the unique bounded viscosity
solution of (193).

Note that the numerical resolution of the PDE (193) requires special care to cope with the
degeneracy of the generator AS,I in the I variable (`PDE in dimension 1

1
2 ', see Zvan et al.

[186]).

Alternatively to the previous approach, it is possible to reduce the pricing problem to a
one-dimensional one (see Rogers-Shi [164]), by working in the numeraire S (see section 8.1).
To start with, observe that φ(IT )

ST
= η+

T , where the process η is de�ned by

ηt =
1
St

(
K − It

T

)
, dηt = − dt

T
− ηt(κ− σ2)dt− ηtσdWt

with related generator

Aη = −
[

1
T

+ (κ− σ2)η
]
∂η +

1
2
η2σ2∂2

η2 . (194)

Now, in the numeraire S, the price process (192) writes (cf. (79), (80)):

Πt = StẼtS−1
T φ(IT ) = StẼtη+

T = Stu(t, ηt), t ∈ [0, T ] (195)

where a process X is a P̃ � local martingale if and only if βtStXt is a P � local martingale.
This last property allows one to derive the dynamics of η under the valuation measure P̃ and
to check that η is a P̃ � Markov process, which justi�es the last equality in (195)5. Moreover,
since u(t, ηt) is a (Doob) P̃ � local martingale, thus βtStu(t, ηt) is a P � local martingale.

In order to guess the form of the equation solved by u, note further that for u of class C1,2,
Itô calculus yields, with �,� standing for �equality up to a local martingale term�:

ertd
[
e−rtStu(t, ηt)

]
,
(
−rStu(t, ηt)+u(t, ηt)κStdt+St (∂tu+Aηu) (t, ηt)−σStησ∂ηu(t, ηt)

)
dt .

Should Stu(t, ηt) be equal to the price process Πt, u would then solve the PDE (196) below.
Now, this PDE has a unique classic solution u, by Frieman [90]. Conversely, the previous
computations thus show that u(t, ηt), with u de�ned as the solution to (196), satis�es (195).
This yields the following

Proposition 19.1 Πt = Stu(t, ηt), t ∈ (0, T ], where the pricing function in the numeraire
S, u = u(t, η), is the unique (classic) solution to the following one-dimensional PDE:{

∂tu−
(

1
T + κη

)
∂ηu+ 1

2σ
2η2∂2

η2u− qu = 0
u(T, η) = η+ (196)

5On the general issue of the preservation of the Markov property by change of numeraire, see the con-
cluding remarks to section 8.1 and the references given therein.
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We thus reduced the original two-dimensional degenerate pricing PDE to a one-dimensional
non-degenerate PDE which can be solved numerically by standard �nite di�erences theta-
schemes. Note that the advection term is dominant in this equation (due to the �rst-order
coe�cient 1

T ), which requires special care from the numerical point of view. This can be
handled by a further transformation of the problem, however (see [74]).

19.3.2 American Fixed Strike Asian Put option

This is the American counterpart to the previous option, thus the option with the following
payo� process which is paid at a stopping time τ at the holder's convenience between 0 and
T : (

K − Iτ
τ

)+

= φ(τ, Iτ ) , t ∈ [0, T ] (197)

The related price process writes:

Πt = β−1
t esssupτ∈Tt

Etβτφ(τ, Iτ ) = v(t, St, It), t ∈ [0, T ] (198)

with associated pricing (obstacle) problem{
min(−∂tv −AS,Iv + rv , v − φ(t, I)) = 0 , 0 < t < T
v(T, S, I) = φ(T, I)

(199)

where AS,I was de�ned in (190). Note that the obstacle function φ(t, I) is singular at
inception time t = 0, so that the pricing problem (199) is only de�ned on (0, T ]× (0,+∞)2.

Proposition 19.2 (see Crépey [64]) Πt = v(t, St, It), t ∈ (0, T ], where v is the unique
bounded viscosity solution to (199). Moreover, the price at inception time 0 is given by the
radial limit

Π0 = limt→0+ v(t, S0, tS0)

Figure 9 provides a numerical illustration of the last point in Proposition 19.2 (radial con-
vergence at time 0). Numerically it seems that convergence also occurs along radii α other
than S0, yet at a slower rate than for α = S0.

Let us stress again that the two-dimensional PDEs in this Section (PDEs (193) and (199))
are degenerate in the I variable, so that speci�c treatments are necessary to solve them
numerically, particularly in the singular American case (see Zvan et al. [186]).

19.4 Discretely Path-Dependent Options

Discretely path dependent payo�s ξ = φ(St0 , St1 , . . . , Stn) paid at T, relatively to a set of
monitoring dates (t0 = 0, . . . , tn = T ), can often be priced e�ciently by PDE methods after
an appropriate extension of the state space. In this Section we shall exemplify this technique
on the case of cliquet options, volatility and variance swaps and discretely sampled Asian
options (see, e.g., [180, 181, 73, 183]).

Note that the pricing of such products by Monte Carlo methods is obvious in the Black�
Scholes model, but it becomes very di�cult in the case of American options, or in simple
extensions of Black�Scholes like the Uncertain Volatility model in which the volatility process
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Figure 9: Convergence of the price and delta of an American Asian put at (t, S0, αt) as
t→ 0, for α = 0, S0 or 2S0.

is only known to remain in a constant range (σ, σ) (see Avellaneda et al. [15]). Yet the PDE
method can easily cope with such situations (see, e.g., Windcli� et al. [179, 182]).

19.4.1 Cliquet Options

Let Ri =
Sti−Sti−1

Sti−1
denote the (simple) spot return on the period [ti−1, ti], for i = 1, . . . , n.

The payo� of a cliquet is de�ned by (up to a constant notional factor):

ξ = max(Fg,min(Cg,
∑n

i=1 max(Fl,min(Cl, Ri)))

for given numbers Fl, Cl, Fg and Cg. In order to markovianize this payo�, we introduce two
additional state variables: P and Z, such that

P (ti ≤ t < ti+1) = S(ti)
Z(ti ≤ t < ti+1) = 1

i

∑i
k=1 max(Fl,min(Cl, Rk))

(200)

Note that the factor process (S, P, Z) is Markovian in the risk-neutral Black�Scholes model
for S, with related generator AS,P,Zu(S, P, Z) given by ASu(S, P, Z) on each time interval
(ti−1, ti), where AS denotes the usual risk-neutral Black�Scholes generator. Moreover, we
have

ξ = max(Fg,min(Cg, nZT )) = φ(ZT )

In the Black�Scholes model we thus have Πt = v(t, St, Pt, Zt), for a Borel-measurable
(deterministic) function v. Given the further jump conditions de�ned by (200), whereas by
arbitrage the pricing process Π must be time-continuous at the tis, the pricing function v is
thus given by v = φ =: vn at T and

v = vi on [ti, ti+1) , for i = n− 1, . . . , 0

where (vi)0≤i≤n−1 is the unique sequence of (viscosity) solutions with suitable growth con-
ditions to the following PDE cascade, de�ned for i decreasing from n− 1 to 0:{

vi(ti+1, S, P, Z) = vi+1(ti+1, S, P+, Z+) on (0,∞)3

∂tvi + 1
2σ

2S2∂2
S2vi + κS∂Svi − rvi = 0 on [ti, ti+1)× (0,∞)3

(201)
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where P+ and Z+ in the third line are obtained via the jump conditions stemming from
(200) at the monitoring date ti+1, as (cf. (200))

P+ = S , Z+ = i
(i+1)Z + ρ

(i+1) (202)

with ρ = max(Fl,min(Cl, S−PP )).

In order to solve (201), we localize in space the problem on a compact set

D̄ = [S, S]× [S, S]× [Z,Z]

with
S = 0 , S = S0(1 + fσ

√
T ) , Z = min(0, Fl) , Z = Cl

for a suitable factor f , e.g., f = 5. Suitable boundary conditions are ∂2
S2u = 0 on S = S and

S = S. We then put a �nite di�erences mesh on D. It is recommended to use a non uniform
P -mesh (P j1)1≤j1≤m1 concentrating the mesh points near the spot price S0 (and containing
in particular S0) and to resort to an adaptive grid in S �ner near the diagonal of (S, P ),
de�ning for instance a (P, S)-grid of the form, for 1 ≤ j1 ≤ m1, 1 ≤ j2 ≤ m2 :

(P, S)j1,j2 = (P j1 ,
P j1P j2

S0
)

(see Windcli� et al. [182]). An independent uniform grid may be used in Z.
The jump conditions (202) can then be implemented by linear interpolation.
Between monitoring dates, the Black�Scholes equation (201) can be discretized by a stan-
dard �nite di�erences scheme (theta-scheme) in the (t, S) variables, de�ned on the three-
dimensional state space (S, P, Z).
Finally, interpolation of degree two in space is used for computing the price, the delta and
the gamma of the option at 0, S0, P0, Z0.

19.4.2 Volatility and Variance Swaps

Variance Swaps, resp. Volatility Swaps, correspond to the payo�s at T de�ned in terms of
the realized variance V 2 =

∑n
i=1 ln( Sti

Sti−1
)2 and the strike K as

ξ = V 2 −K2 , resp. V −K

We use the same notation as in the case of cliquet options, except for the facts that Ri and
Z are now to be understood as, respectively, the continuous spot return Ri = ln( Sti

Sti−1
), and

Z(ti ≤ t < ti+1) = 1
i

∑i
k=1R

2
k (203)

In this notation we have in either case:

ξ = φ(Z)

for a suitable terminal payo� function φ. Like in the case of cliquet option, the Black�
Scholes pricing function v of a volatility or variance swap is thus given as v = v(t, S, P, Z)
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where v = (vi)0≤i≤n (with vn = φ) solves a PDE cascade of the same form as (201) along
with the jump conditions (202), where ρ is now to be understood as ρ = ln( SP )2.

19.4.3 Discretely Monitored Asian Options

In real-life contracts, Asian options are in fact de�ned in terms of discretely sampled payo�s,
like

ξ =

(
K − T

n

n∑
i=1

Stk

)+

, (204)

Let us introduce the process Y such that

Y (ti ≤ t < ti+1) = 1
i

∑i
k=1 Sti (205)

The factor process (S, Y ) is Markovian in the risk-neutral Black�Scholes model for S, with
related generator AS,Y v(S, Y ) given by the usual Black�Scholes generator ASv(S, Y ) on
each time interval (ti−1, ti). Moreover, we have

ξ = (K − TYT )+ = φ(YT )

In the Black�Scholes model we then have Πt = v(t, St, Yt), for a Borel-measurable (deter-
ministic) function v. We proceed like in the case of cliquet options, obtaining in this case
v = (vi)0≤i≤n such that vn = φ, and for i decreasing from n− 1 to 0:{

vi(ti+1, S, Y ) = vi+1(ti+1, S, Y+) on (0,∞)3

∂tvi + 1
2σ

2S2∂2
S2vi + κS∂Svi − rvi = 0 on [ti, ti+1)× (0,∞)2

(206)

where Y+ is obtained via the following jump conditions at the monitoring date ti+1 (cf.
(205)):

Y+ = i
(i+1)Y + S

(i+1) (207)

Remark 19.2 In the case of discretely monitored Asian options:
(i) The situation is thus simpler (and the computation faster) than for cliquet options or
volatility and variance swaps, since the related payo� is a function of the Markovian pair
(S, Y ), instead of the triple (S, P, Z);
(ii) This approach is both closer to the clauses of the product, and also easier from the
numerical point of view, than the approach by time-continuous integals of S of section 19.3.
Indeed, the cost of solving (206) is essentially that of solving m1 one-dimensional PDE
problems, where m1 is a generic number of mesh points per space dimension. This is a far
better alternative than having to solve the two-dimensional degenerate PDEs of section 19.3
(problems in dimension `1

1
2 ', unless speci�c dimension reduction techniques are available,

see section 19.3).
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Part V

Tree Pricing Methods

Tree methods (historically starting with binomial tree methods) are but another point of
view on explicit �nite di�erences methods, interpreted probabilistically in terms of a related
Markov chain.
Tree methods are natural in �nance because the related Markov chains can also be considered
as realistic and arbitrage-free models of trading and hedging in discrete time, that can be
used per se, without reference to a continuous-time model.
Moreover, tree methods compute prices and Greeks in a cone starting from the state Zt0 of
the factor process at the pricing time t0, rather than on the whole state space by (implicit)
�nite di�erences methods. In �nance, the main concern is to get prices and Greeks at
Zt0 . So the extra-work furnished by �nite di�erences methods for computing the solution
everywhere, is in a sense waste of time.

Today it is fair to see that from a practical point of view, binomial trees are obsolete as
compared with more sophisticated �nite di�erences (or �nite elements) technologies. How-
ever, in a number of situations, trinomial trees remain a simple, �exible and good enough
alternative. Moreover, tree methods are easy to customize due to the visualization of the
paths of the underlying in the related Markov chain. So it is often straightforward to design
a tree algorithm for the pricing of a somewhat involved contingent claim.

Yet from the theoretical point of view (convergence analysis of the related numerical schemes),
the Markov chain interpretation opens the way to alternative probabilistic convergence proofs
of the related numerical pricing schemes, as we shall now see.

20 General Markov Chain Approximation Results

Let thus Zht = (t,X h
t ,Yht ) stand for a continuous-time Markov chain approximation of our

generic Markovian jump-di�usion setting with regimes Z = (t,X ,Y) on the state space
E = [0, T ]× Rq × I (cf. section 7.2). Assume (0, xh0 , y) =: zh0 = Zh0 → Z0 = z0 := (0, x0, y)
as h→ 0, as well as

limh→0 h
−1Et(Π(Zht+h)−Π(Zht )) = (∂t +A)Π(z) (208)

on the random set {limh→0Zht = z}, for any z ∈ E and any su�ciently regular function Π on
E. Note that the r.h.s. of (208) can also be interpreted as �limh→0 h

−1Et(Π(Zt+h)−Π(Zt))
on {Zt = z}�, by application of the Itô formula (36) to the process Π(Zt).
Then, under suitable technical assumptions (see Ethier and Kurtz [85], Kushner and Dupuis
[121], Jacod and Shiryaev [104]): the process Zh converges in law to Z as h→ 0, thus

Πh(zh0 ) := supτ∈T Ee−
∫ τ
0 r(t,Zh

t )dtφ(Zhτ ) → supτ∈T Ee−
∫ τ
0 r(t,Zt)dtφ(Zτ ) =: Π(z0) (209)

as h→ 0, for any bounded and Borel-measurable function φ on E.

20.1 Kushner's theorem

Note that (208) implies in particular, by taking Π(z) = Πi(z) := xi therein, for i = 1 . . . q :

limh→0 h
−1Et(X h,i

t+h −X
h,i
t ) = (∂t +A)Πi(z) = bi(z) (210)
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on {limh→0Zht = z}, for any z ∈ E. Moreover, for any �xed h > 0, we have for any
i, j = 1 . . . q : (cf. the proof of Proposition 7.1):

Covt(X h,i
t+h −X

h,i
t ,X h,j

t+h −X
h,j
t ) + Et(X h,i

t+h −X
h,i
t )Et(X h,j

t+h −X
h,j
t ) =

Et
(
X h,i
t+hX

h,j
t+h −X

h,i
t X h,j

t

)
−X h,i

t Et
(
X h,j
t+h −X

h,j
t

)
−X h,j

t Et
(
X h,i
t+h −X

h,i
t

)
.

Now, on {limh→0Zht = z}, we deduce from (208) applied to Π = Πi = xi, Π = Πj = xj and
Π = ΠiΠj , respectively:

limh→0 h
−1Et(X h,i

t+h −X
h,i
t ) = AΠi(z) , limh→0 h

−1Et(X h,j
t+h −X

h,j
t ) = AΠj(z)

limh→0 h
−1Et

(
X h,i
t+hX

h,j
t+h −X

h,i
t X h,j

t

)
= A(ΠiΠj)(z)

As h→ 0 we thus deduce from (211), on {limh→0Zht = z} :

lim
h→0

h−1Covt(X h,i
t+h −X

h,i
t ,X h,j

t+h −X
h,j
t ) = A(ΠiΠj)(z)− xiAΠj(z)− xjAΠi(z) . (211)

Note that the r.h.s. can also be interpreted as � d〈X
i
t ,X

j
t 〉

dt on {Zt = z}�, by (42). Therefore,
by application of (41) (cf. (26)):

limh→0 h
−1Covt(X h,i

t+h −X
h,i
t ,X h,j

t+h −X
h,j
t ) = ai,j(z) + γ(z)δiδj(z) (212)

In summary, we have by (210) and (212) for any z ∈ E, on {limh→0Zht = z} (cf. (26)):

limh→0 h
−1Et(X h

t+h −X h
t ) = b(z)

limh→0 h
−1Vart(X h

t+h −X h
t ) = a(z) + γ(z)δδT(z)

(213)

In the pure di�usion model X of section 7.2.6 (cf. formulas (50) to (52)), Kushner's theo-
rem (see [121, 120]) states that the so-called local consistency conditions (213) (with γ = 0
therein), that is, the matching of the �rst and second conditional moments of the incre-
ments of an approximating Markov chain with those of a continuous-time limiting di�usion
process with accuracy o(h), grants the convergence in law of the process X h to X . Hence
the convergence of (optimally controlled) expectations of usual functionals follows (see also
[121, page 129] for an extension to jump-di�usions).

21 Trees for vanilla options

21.1 Cox-Ross-Rubinstein Binomial Tree

The Cox-Ross-Rubinstein tree [59] may be seen as the approximation to the Black�Scholes
model obtained by replacing the risk-neutral Black�Scholes dynamics with the following
Markov chain: Sh0 = S0, and for i = 0, . . . , n− 1 :

Sh(i+1)h =
{
uShih with probability p
dShihwith probability 1− p

(214)

with h = T
n , where T is the time to maturity of an option (the current date is taken to be

zero), n is the number of time steps, and

u = eσ
√
h, d = e−σ

√
h, p = eκh−d

u−d (215)
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We �nd it convenient to denote the time in the tree by i rather than ih. In particular,
Shi ≡ Shih, Ei refers to the conditional expectation with respect to the σ-algebra generated
by (Sh0 , . . . , S

h
i ), and T hi (with T h0 = T h) stands for the set of stopping times ν taking their

values in {i, . . . , n}.
The following Proposition shows that the Cox-Ross-Rubinstein tree model shares all the key
properties of the Black�Scholes model.

Proposition 21.1 p is the unique risk-neutral probability in the Cox�Ross�Rubinstein tree,
in the sense that the unique replication price process of an European option with payo�
φ
(
Shn
)
at time T in the Cox�Ross�Rubinstein tree is given by, for i = 0, . . . , n :

Πh
i = e−r(T−i)Eiφ(Shn) = Πh

i (S
h
i ) (216)

with an associated replication strategy given as

ζhi = ∆h
i (Si) =

Πh
i+1(uSh

i )−Πh
i+1(dSh

i )

(u−d)Sh
i

(217)

If the option is American, the (unique) minimal super-hedging price is given by, for i =
0, . . . , n :

Π̃h
i = maxν∈T h

i
Eie−r(ν−i)hφ(Shν ) = Π̃h

i (S
h
i ) (218)

with a related (minimal super-)hedging strategy de�ned as

ζ̃hi = ∆̃h
i (S

h
i ) =

Π̃h
i+1(uSh

i )−Π̃h
i+1(dSh

i )

(u−d)Sh
i

(219)

Moreover, denoting here by Sh a generic space level in the tree, the Cox�Ross�Rubinstein
pricing function of an European option introduced at the r.h.s. of (216) satis�es Πh

n(S
h) =

φ(Sh), and for i = n− 1, . . . , 0 :

Πh
i (S

h) = e−rh
[
pΠh

i+1(uS
h) + (1− p)Πh

i+1(dS
h)
]

(220)

whereas the pricing function Π̃h of an American option introduced at the r.h.s. of (218)
satis�es Π̃h

n(S
h) = φ(Sh), and for i = n− 1, . . . , 0 :

Π̃h
i (S

h) = max
(
φ(Sh), e−rh

[
pΠ̃h

i+1(uS
h) + (1− p)Π̃h

i+1(dS
h)
])

(221)

Note that Proposition 21.1 actually holds irrespective of the precise de�nition of u and d,
provided d < u (with furthermore 1 ∈ [d, u], if one insists on having p = 1−d

u−d ∈ [0, 1];
otherwise p only de�nes a signed probability measure).

Proof. See, for instance, Shreve [170, I] or Lamberton and Lapeyre [124]. 2

Moreover, as we shall see now, the Cox-Ross-Rubinstein tree model `converges' in some sense
to the related Black�Scholes model as h→ 0. This convergence results by an application of
Kushner's theorem where in (209) X may be taken as the Black�Scholes log-spot ln(S) and
X h as the piecewise constant and càdlàg continuous-time Markov chain interpolation of the
Cox-Ross-Rubinstein Markov chain (lnShi )0≤i≤n on the time intervals [ih, (i+ 1)h)0≤i≤n−1.
However, in the simple situation of the Cox-Ross-Rubinstein model, convergence (at least,
for European options) can be established directly as follows.
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Convergence of the marginal law of ShT Assume S0 = 1, without loss of generality.
For λ ∈ R, we have:

E
[
exp

(
iλ lnShn

)]
= E

[
exp

(
iλ ln

n−1∏
l=0

Shl+1

Shl

)]

=
(
E
[
exp

(
iλ lnSh1

)])n
=

(
p exp

(
iλσ

√
h
)

+ (1− p) exp
(
−iλσ

√
h
))n

.

Since p = eκh−d
u−d ∼ 1

2 + b
2σ

√
h+O (h), we get as h→ 0 :

E
[
exp

(
iλ lnShn

)]
∼

(
1 +

[
iλb− λ2σ

2

2

]
T

n

)n
→ exp

([
iλb− λ2σ

2

2

]
T

)
= E [exp (iλ (bT + σWT ))]
= E [exp (iλ ln(ST ))]

where S denotes the risk-neutral Black�Scholes spot process. We thus have convergence
of the characteristic function Φh

n(λ) = E
[
exp

(
iλ lnShn

)]
of the risk-neutral Cox�Ross�

Rubinstein log-spot ln(Shn) to the characteristic function ΦT (λ) = E [exp (iλ ln(ST ))] of
the risk-neutral Black�Scholes log-spot ln(ST ), hence

Shn
L−→ ST as n→∞ . (222)

Remark 21.1 (i) The limit law depends only on peiλ ln(u) + (1− p) eiλ ln(d) through its
Taylor expansion up to o(h). Thus u, d or/and p can be altered as long as the involved terms
of the development are not modi�ed.
(ii) The upper and lower value of the spot at maturity are un = eσ

√
T
√
n and dn = e−σ

√
T
√
n

whereas the ratio of two successive points is u
d = e2σ

√
h = e

2σ
√

T
n . Thus the scan of the law

of Shn goes to (0,+∞) whilst the grid gets more and more dense. It is easy to show that the
points visited by the process Sh become eventually dense in [0, T ]× (0,+∞) as h→ 0.

Convergence of Option Prices The convergence in law (222) grants the convergence of
the price of European vanilla options with continuous and bounded payo�s, e.g., put options.
The convergence of call prices follows by call�put parity, since the Cox�Ross�Rubinstein
scheme satis�es the call-put parity relationship.

Convergence of Option Deltas Observe that (cf. (217))

S0∆h
0(S0) =

Πh
1(uS0)−Πh

1(dS0)
(u− d)

= e−r(n−1)hE
[
φ
(
uS0X

h
)]
− E

[
φ
(
dS0X

h
)]

u− d
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where Xh is a random variable independent from S0. Thus

S0∆h
0(S0) = e−r(n−1)hE

[
φ
(
uS0X

h
)
− φ

(
dS0X

h
)

u− d

]
Assume that φ is a function of class C1. Then

φ
(
uS0X

h
)
− φ

(
dS0X

h
)

=
∫ u

d
S0X

hφ′
(
xS0X

h
)
dx

so

S0∆h
0(S0) = e−r(n−1)h 1

(u− d)

∫ u

d
E
[
S0X

hφ′
(
xS0X

h
)]
dx

= e−r(n−1)hE
[
S0X

hφ′
(
xhS0X

h
)]

for some xh ∈ [d, u] , by the mean value property. Assuming further y 7→ ψ(y) = yφ′ (y) to
be Lipschitz and bounded, then

lim
h→0

E
[
S0X

hφ′
(
xhS0X

h
)]

= lim
h→0

E
[
ψ
(
S0X

h
)]

(223)

where by the standard convergence in law result

lim
h→0

E
[
ψ
(
S0X

h
)]

= E [ψ (ST )]

= erTS0∆bs(0, S0) .

To sum-up, we showed that for bounded and su�ciently regular payo�s, the Cox�Ross�
Rubinstein delta of an option S0∆h

0(S0) (cf. (217)) converges towards the Black�Scholes
delta ∆bs(0, S0) = ∂SΠbs(0, S0) as h→ 0+. This results can be extended to the vanilla put
payo� by density, and then to the vanilla call payo� by call�put parity.

Convergence of the prices and deltas still holds true for American options, though this cannot
proven by elementary computations as in the European case.

21.1.1 Cox�Ross�Rubinstein Algorithm

Input parameters (Black�Scholes parameters,) StepNumber n

Output parameters Price, Delta

The Cox�Ross�Rubinstein algorithm is a backward computation of the option price, based
on the dynamic programming equations (220) or (221), after a forward computation of the
n+ 1 possible values of the underlying at maturity Shn. Since the Cox�Ross�Rubinstein tree
is a �at tree, it is easily seen that the value of the underlying at time i and level j (indexing
space levels from the bottom of the tree) is the same as that at time i+2 and level j+1. In
particular there are only 2n+ 1 possible values of the underlying between time 0 and time
n.

For computational purposes, it is clever, in the American case, to compute the corresponding
values of the payo� of the option only once at the beginning of the algorithm (storing them
in an array for later use).

21.2 Other Binomial Trees
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To achieve the convergence in law (222), many other choices of u, d and p may be done,
regardless of any arbitrage or �nancial consideration: the tree algorithm becomes a purely
numerical approximation algorithm, the only purpose being to get a good convergence to
the limiting price and delta.

Note that a binomial tree is recombining as soon as u and d remain constant within the tree.

21.2.1 The Random Walk scheme

A natural scheme consists in approximating the Brownian motion W by the standard Ran-
dom Walk in ST = S0 exp (bT + σWT ) . This leads to

u = ebh+σ
√
h, d = ebh−σ

√
h, p =

1
2
.

Convergence may be proved in the same way as before. Note that the discretized process is
not a martingale.

21.2.2 The matching-three-moments scheme

An alternative route to convergence is Kushner's Theorem (see the introductory paragraph
to this part). This leads to the idea of matching the mean and variance of the conditional
laws of the approximating chain with those of the continuous risk-neutral Black�Scholes
process. The local consistency conditions thus give the following equations in u, d, p :

pu+ (1− p) d = eκh

pu2 + (1− p) d2 − e2κh = e2κh
(
eσ

2h − 1
)
.

Since one degree of freedom remains, a natural idea is to match the third moment further,
so

pu3 + (1− p) d3 = e3κhe3σ
2h .

The solution of this system is

u =
eκhQ

2

[
1 +Q+

√
Q2 + 2Q− 3

]
d =

eκhQ

2

[
1 +Q−

√
Q2 + 2Q− 3

]
p =

eκh − d

u− d

with Q = eσ
2h. Note that ud = e2κhQ2 > 1 : this tree is not symmetric any more.

21.3 Trinomial trees

Along this line there is no need to remain stuck with the one node-two sons constraint. One
may as well choose a three-points scheme, or a l-points scheme, or even a scheme involving
a number of points depending on n (this is useful for other kinds of limiting continuous-time
dynamics, like Lévy processes). From the previous computations it is easy to see that the
points and probabilities of the chosen scheme should satisfy, for every λ ∈ R :

∑
pj exp (iλ lnuj) = 1 +

[
iλb− λ2 σ2

2

]
h+ o(h)
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in the sense that this condition ensures convergence of the characteristic functions, hence
convergence of the marginal laws of S (cf. section 21.1). Actually we shall see in section
21.4.1 that these conditions are in fact tantamount to the local consistency conditions, which
ensure a convergence of a much more general type, by Kushner's theorem.

Note that from a computational point of view, the condition that uj+1/uj be independent
of j must be imposed in order to get a recombining tree.

A feature common to all more-than-binomial trees is that they give an accurate computation
of the Greeks (delta, gamma, and theta) at time 0, by �nite di�erences at time h.

21.3.1 The Kamrad�Ritchken tree

The Kamrad�Ritchken tree (see [114]) is the archetype of a trinomial tree. This is a �at
tree with 2n + 1 possible values of the underlying S throughout the option's life. Kamrad

and Ritchken take a symmetric 3-points approximation with space step k to ln
(
Sh

h
S0

)
and

match the related �rst two moments in the risk-neutral Black�Scholes model, so:

k (pu − pd) = bh

k2 (pu + pd)− k2 (pu − pd)
2 = σ2h .

Note that one may simplify the last equality, still maintaining an o (h) matching of the
variance (which is enough to ensure convergence of the characteristic functions), as

k2 (pu + pd) = σ2h .

This yields �nally, in terms of a new parameter λ de�ned by k = λσ
√
h :

pu =
1

2λ2
+
b
√
h

2λσ

pf = 1− 1
λ2

pd =
1

2λ2
− b

√
h

2λσ

The parameter λ appears as a free parameter of the geometry of the tree. It is called the
stretch parameter, and must satisfy λ ≥ 1 to ensure stability of the algorithm. The value
λ = 1.22474 which corresponds to pf = 1

3 is reported to be a good choice for an at-the-money
call (or put).

Remark 21.2 When they are applied to the discounted pricing function ũ(t, x) = e−rtu(t, x),
the Kamrad�Ritchken tree and the �nite di�erences explicit scheme of section 16.3.1 result
in the same approximation scheme, provided one sets the domain half-size ` as nλσ

√
h for

localizing the Black�Scholes equation (153). Otherwise said, the Kamrad�Ritchken tree and
the explicit �nite di�erences scheme for (153) are essentially the same scheme, except for the
treatment of the discount factor (ru term in the equation). From the implementation point
of view, the Kamrad�Ritchken tree is the better alternative of the two, unless the explicit
�nite di�erences scheme is coupled with an implicit scheme in the context of a more general
theta-scheme for θ 6= 0, 1 (like a Crank�Nicholson scheme). Indeed in this particular case
the explicit scheme needs to be solved on the same (and on the whole) rectangular domain
as the coupled implicit scheme.
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Figure 10: European vanilla call priced by a Cox�Ross�Rubinstein binomial tree, resp. a
Kamrad�Ritchken trinomial tree.

21.3.2 Trinomial schemes with matching �rst two moments

Let u > f > d be the possible values of
Sh

i+1

Sh
i

, with respective probabilities pu, pf , pd. In order

to get a recombining tree we impose ud = f2. The two �rst moment matching conditions
give

puu+ pff + pdd = eκh

puu
2 + pff

2 + pdd
2 = e2κhQ

where Q = eσ
2h. Since pu + pf + pd = 1, thus two unknowns remain. The solution corre-

sponding to the additional constraint

pu = pf = pd =
1
3

is

u = V +
√
V 2 − f2

d = V −
√
V 2 − f2

f =
eκh (3−Q)

2

with V = eκh(3+Q)
4 .

21.4 Miscellaneous Remarks

21.4.1 Local consistency and convergence in law

In a general l-points scheme, let us come back to the equality ensuring convergence in law:

∑
pj exp (iλ lnuj) = 1 +

[
iλb− λ2σ

2

2

]
h+ o(h) , (224)
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to be compared with the risk-neutral Black�Scholes local consistency conditions:{ ∑
pjuj = exp (κh) + o(h)∑
pju

2
j = exp

((
2κ+ σ2

)
h
)

+ o(h) (225)

Proposition 21.2 For a multinomial tree of the following form:{
uj = 1 + uj,1

√
h+ uj,2h+ o(h)

pj = pj,0 + pj,1
√
h+ pj,2h+ o(h) ,

(226)

convergence in law and local consistency are equivalent.

In view of Kushner's Theorem, the fact that local consistency implies convergence in law
was expected; what this proposition really says is that for multinomial trees of the form
(226), convergence in law implies a convergence of a much more general form.

Proof. Assuming (226), (224) obviously implies∑
pj,0 = 1,

∑
pj,1 =

∑
pj,2 = 0 .

We have

exp (iλ lnuj) = exp

(
iλ

(
uj,1

√
h+ uj,2h−

u2
j,1

2
h

)
+ o(h)

)

= 1 + iλuj,1
√
h+

(
iλ

(
uj,2 −

u2
j,1

2

)
− λ2

2
u2
j,1

)
h+ o (h) ,

so that (224) is in fact equivalent to ∑
pj,0iλuj,1 = 0∑

pj,0(iλ(uj,2 −
u2

j,1

2
)− λ2

2
u2

j,1) +
∑

pj,1iλuj,1 = [iλb− λ2σ
2

2
] .

That is, since p and u are real-valued: ∑
pj,0uj,1 = 0∑

pj,0

(
uj,2 −

u2
j,1

2

)
+
∑

pj,1uj,1 = b∑
pj,0u

2
j,1 = σ2 ,

or 
∑
pj,0uj,1 = 0∑
pj,0uj,2 +

∑
pj,1uj,1 = κ∑

pj,0u
2
j,1 = σ2 .

(227)

Now, this may be rewritten: ∑
pj,0uj,1 = 0∑

pj,0uj,2 +
∑

pj,1uj,1 = κ

2
∑

pj,0uj,1 = 0∑
pj,0u

2
j,1 + 2

∑
pj,0uj,2 + 2

∑
pj,1uj,1 =

(
2κ+ σ2

)
,
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which is another form of the local consistency equations (225). 2

21.4.2 Flat trees and American options

The generic multinomial recombining tree algorithm for pricing American options is the
natural backward scheme Πh

n(S
h) = φ(Sh), and for i = n− 1, . . . , 0 :

Πh
i (S

h) = max
(
φ
(
Sh
)
, e−rh

∑
pjΠh

i+1(ujS
h)
)
. (228)

The algorithm requires the computation of the intrinsic value at each node of the tree.
A computational advantage of a �at tree (like the Cox�Ross�Rubinstein or the Kamrad�
Ritchken trees) is that one can compute once for all the intrinsic values across all the possible
values of the underlying (n+1 or 2n+1 values in the cases of the Cox�Ross�Rubinstein or the
Kamrad�Ritchken tree) before performing the backward scheme. This reduces signi�cantly
the computational cost of the algorithm.

For pricing time-dependent American options, the natural way to modify the basic American
tree algorithm is to replace φ(Sh) by φ(ih, Sh) in the backward formula (228), where φ (t, S)
is the time-dependent payo� of the option. In this case the previous reduction is of course
not applicable.

22 Trees for exotic options

22.1 Barrier options

Let us consider the simple case of a Down and Out Call with constant rebate R attached
to the barrier L. The �rst idea to price this option within the Cox�Ross�Rubinstein scheme
is to apply the usual backward induction scheme, with price level at or above the barrier
constrained to R.
It is indeed possible to show that the resulting price converges to the right Black�Scholes
limit. Nevertheless, the convergence is very slow compared with that for vanilla options.
The reason is clear: let l denote the node index such that

S0d
l ≥ L > S0d

l+1 .

Then the algorithm, n being �xed, yields the same result for any value of the barrier between
S0d

l and S0d
l+1. Therefore the convergence cannot be faster than

∂LΠbs
(
dl − dl+1

)
= O(n−

1
2 )

(where Πbs denotes the Black�Scholes price of the option), whereas the convergence of the
tree for European vanilla options is known to be of the order of O(n−1).

An alternative method due to Ritchken [162] is to feed the algorithm with the right value
of the barrier. The idea is to set the stretch parameter λ of a trinomial Kamrad�Ritchken
tree (see section 21.3.1) such that the barrier is hit exactly. Recall that λ must be greater
than one to ensure stability of the scheme. Intuitively, among the many possibilities for λ,
the closer λ to one, the better. The natural way to choose λ is thus the following:
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• compute the value of l above, i.e. l =

[
ln

(
S0
L

)
σ
√
h

]
, where [t] denotes the integer part of t

(greater integer less than or equal to t);

• then set λ = 1
l

ln
(

S0
L

)
σ
√
h
.

Proceeding in this way, convergence is reported to be as fast as for vanilla options.

22.2 Bermudean Options

In the case of Bermudean options, the American right is in force only at a set of prescribed
periods, for instance between a �xed date T1 (included, say) and maturity T . In this case
a natural algorithm is to apply the backward formula (228) between step n− 1 and n1 and
the standard Cox�Ross�Rubinstein scheme before n1, where (n1 − 1)h < T1 ≤ n1h.

This �rst algorithm is very crude since it gives the same price, n being �xed, for any value
of T1 between (n1 − 1)h and n1h. A way to feed the algorithm with the right value is to use
a Kamrad�Ritchken tree with a stretch parameter and number of steps λ1 and n1 between
times 0 and T1, and another stretch parameter and number of steps λ2 and n2 between T1

and T. In order to get a recombining tree one imposes the following pasting condition at
time T1 :

λ1

√
T1

n1
= λ2

√
T − T1

n2
.

Recall that λ1 and λ2 must be greater than one. A possible way to choose the parameters
is: �rst �x λ1 ≥ 1 (for instance λ1 = 1.2274) and n1, then set

n2 =
[
n1 (T − T1)

T1

]
+ 1 .

So n2T1 ≥ n1 (T − T1) , thus λ2
2 = λ2

1
T1

n1(T−T1) n2 ≥ λ2
1 ≥ 1.

23 Bidimensional Trees

23.1 Cox-Ross-Rubinstein Tree for Lookback Options

We consider a Lookback Option with payo� function of the form φ(S,M), where Mt =
sup0≤s≤t Ss. In a Cox�Ross�Rubinstein bi-dimensional tree model (Shi ,M

h
i )0≤i≤n, the re-

lated dynamic programming equation writes: Πh
n(S

h,Mh) = φ(Sh,Mh), and for i = n −
1, . . . , 0 :

Πh
i (S

h,Mh) = e−rh
[
pΠh

i+1(uS
h,max(uSh,Mh)) + (1− p)Πh

i+1(dS
h,Mh)

]
(229)

Indeed since d = e−σ
√
h < 1 thus dShi+1 ≤Mh

i holds identically.

23.2 Kamrad�Ritchken Tree for Options on Two Assets

Assume
(
S1, S2

)
follows the Black-Scholes dynamic under the risk-neutral probability, so

for l = 1, 2 :

dSlt = κlSltdt+ σlS
l
tdW

l
t Sl0 = xl
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where (W 1,W 2) is a bidimensional Brownian Motion with correlation ρ. Setting X = ln(S),
then: {

dX1
t = b1dt+ σ1dW

1
t

dX2
t = b2dt+ σ2dW

2
t

with
(
b1

b2

)
=

(
κ1 − σ2

1
2

κ2 − σ2
2
2

)
.

In order to approximate X we introduce the bidimensional Markov chain ξhi such that
(
∆ξhi

)
1

=
(
κ1 − σ2

1
2

)
h+ σ1

√
hε1i(

∆ξhi
)
2

=
(
κ2 − σ2

2
2

)
h+ σ2

√
hε2i

where
(
ε1i , ε

2
i

)
is a sequence of iid r.v. with

P
(
ε10 = 1, ε20 = 1

)
= P

(
ε10 = −1, ε20 = −1

)
= 1+ρ

4

P
(
ε10 = 1, ε20 = −1

)
= P

(
ε10 = −1, ε20 = 1

)
= 1−ρ

4

Then one can show that

lim
h→0

h−1Ei∆ξhi =
(
b1

b2

)
, lim

h→0
h−1Covi∆ξhi =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
So Kushner's conditions hold and convergence is granted for the related vanilla options
pricing tree algorithms.

Note that the corresponding algorithm is of complexity n3.
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Part VI

Monte Carlo Pricing Methods

This part is a short overview of Monte Carlo Methods in �nance. More comprehensive
references are given in Section 4. As deterministic methods, stochastic simulation methods
(the terminology `Monte Carlo' was introduced in [140]) can also be used in any Markovian
model. In the case of European products, they consist of the classic Monte Carlo (MC)
loops. For products with early exercise features, stochastic simulation methods are available
too, as there are numerical methods, more generally so, for Forward-Backward Stochastic
Di�erential Equations (methods based on dynamic programming and Monte Carlo compu-
tation of conditional expectations, see, e.g., [38] and references therein), but this is outside
the scope of these notes.

Monte Carlo methods are attractive by their genericity (genericity of the related theoretical
properties, that are insensitive to the dimension of the problem or to the regularity of the
payo� function, and genericity of implementation as well), and by the con�dence interval
they provide on the solution (at least for pseudo Monte Carlo methods, as opposed to quasi
Monte Carlo methods, as we shall see below).
But (pseudo) Monte Carlo methods are slow (convergence in σm− 1

2 , where m is the sample
size and σ is the standard deviation of the sampled payo�), unless speci�c variance reduction
techniques are applicable.
An alternative to variance reduction methods is to use quasi Monte Carlo methods, which
converge faster in practice than (pseudo) Monte Carlo methods. Note however that quasi
Monte Carlo methods don't furnish con�dence intervals (unless sophisticated randomized
forms of quasi Monte Carlo methods are used), and that the performances of quasi Monte
Carlo algorithms are strongly altered in high dimension. Note that high dimension is to be
understood here as (high e�ective dimension, as measured for instance by the number of
signi�cant risk dimensions in a PCA of the sampled payo�, as opposed to nominal dimension.
In �nancial problems, e�ective dimension if often much less than nominal dimension, which
explains the popularity and success of quasi Monte Carlo methods in �nance).
Note �nally that Monte Carlo methods are typically very easy to parallelize.

24 Random numbers

To sample `random' vectors in Rd with speci�c distributions, one �rst draws sequences of
`uniform' random vectors uj over [0, 1]d. Then one transforms the uj into xj with the
required distribution.

`Uniform' random vectors uj over [0, 1]d may be obtained:
• either by sampling `iid' random variables over [0, 1] with a (pseudo) random generator,
and grouping them in buckets of size d,
• or by using quasi random generators (low-discrepancy sequences) in dimension d.

The quotes are here to indicate that simulated pseudo � or quasi � random numbers aim
at emulating as well as possible the statistical properties of randomness and uniformity
(and independence, in the case of pseudo-random numbers). Note however that since the
simulated sequences are generated deterministically on a computer, we can always �nd a
statistical test of randomness, uniformity or independence that the sequence will fail.
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Of course the quality of a generator puts an upper bound on the quality of any simulation
method using it.

25 Pseudo random generators

Pseudo-random generators are used to simulate independent uniform variables over [0, 1]
[131, 130, 129, 147, 145, 119].

De�nition 25.1 (see L'Ecuyer [131, 130]) A pseudo-random number generator is a struc-
ture G = (s, S, T, U,G) where S is a �nite set of states, s ∈ S is the initial state, the mapping
T : S → S is the transition function, U is a �nite set of outputs symbols, and G : S → U is
the output function.

Since S is �nite, the sequence of states is ultimately periodic. The period is the smallest
positive integer ν such that for any j ≥ some j0, sj+ν = sj .

25.1 Properties required for a good pseudo-random numbers generator

• Large period length At least 260.
• Good equidistribution properties and statistical independence of successive pseudo-random
draws The generator should pass statistical tests for uniformity and independence [119,
130]: general tests like chi-square or Kolmogorov-Smirnov tests, and more speci�c tests like
equidistribution test, serial test, gap test, partition test, etc.
• Little intrinsic structure Successive values produced by some generators produce a lattice
structure in any given dimension.
• E�ciency, fast generation algorithm, requiring not too much memory space Especially if
we use many generators together or in parallel.
• Repeatability (�xing a given seed) Very useful for practical applications. Otherwise one
can use the current time (computer clock) to initialize the generators.
• Portability The generator should produce exactly the same sequence on di�erent computers
or with di�erent compilers.
• Unpredictability It means that one cannot predict the next generated value by the algorithm
from the previous ones (though this is less important in �nance than for other applications
like cryptography).

Note that from the point of view of period length the function rand() of the C++ standard
library may behave very poorly. So rand() is a pseudo-random integral number in the range
0 to RAND_MAX. RAND_MAX is a constant de�ned in <cstdlib>. Its default value may vary
between implementations but it is only granted to be at least 32767.

25.2 Constructing pseudo-random number generators

The simplest methods to construct random number generators are linear methods. Linear
methods use a linear recurrence relation to compute the next value from the previous ones

Linear Congruential Generators (LCG) The jth random number is given by

uj =
Uj
N

∈ [0, 1]
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where
Uj = (aUj−1 + b) mod N

for �xed integers a > 0, b and N > 0. For instance (this is the choice of the Fortran IMSL
Library):

a = 397204094 , b = 0 and N = 231 − 1 .

Such generators are prone to produce a lot of regularity in sequences and a lattice structure.

Random numbers generator of L'Ecuyer with Bayes & Durham shu�ing pro-
cedure This is a combination of two short periods LCG, resulting into a longer period
generator with good properties.

25.3 Rejection method

The following lemma is, of course, elementary.

Lemma 25.1 For every real x ∈ (−1, 1),∑
l≥0

xl =
1

1− x
,
∑

l≥1
lxl−1 =

1
(1− x)2

.

The rejection method allows one to draw pseudo-uniform points on �general� subsets of Rd.

Proposition 25.2 Suppose the Uj are iid uniform random variables over a subset D of Rd.

So Uj has density
1D
λ(D) where λ denotes the Lebesgue measure over Rd. Let λ(D)

λ(D) = α ∈ (0, 1)
for some D ⊆ D. Denoting ν1 = inf {l > 0;Ul ∈ D} and for j ≥ 1,

νj+1 = inf {l > νj ;Ul ∈ D} , Vj = Uνj .

Then
E (νj+1 − νj) = 1

α = Eν1

and the Vj de�ne iid uniform random variables over D.

Proof. We have
P (ν1 = l) = (1− α)l−1 α ,

so
Eν1 =

∑
l≥1

lP (ν1 = l) =
∑

l≥1
l (1− α)l−1 α =

1
α
.

Moreover, for any ∆ ⊆ D :

P (Uν1 ∈ ∆) =
∑

l≥1
P (ν1 = l, Ul ∈ ∆) =

∑
l≥1

(1− α)l−1 λ (∆)
λ (D)

=
1
α

λ (D)
λ (D)

λ (∆)
λ (D)

=
λ (∆)
λ (D)

and for any (∆j)1≤j≤m with ∆j ⊆ D for every j = 1 . . .m :

P
(
Uνj ∈ ∆j , j = 1 . . .m

)
=
∑

j≥1,l≥m−1 P
(
Uν1 ∈ ∆1, . . . , Uνm−1 ∈ ∆νm−1 , νm−1 = l, νm = l + j, Ul+j ∈ ∆m

)
=
∑

l≥m−1 P
(
Uν1 ∈ ∆1, . . . , Uνm−1 ∈ ∆νm−1 , νm−1 = l

)∑
j≥1 (1− α)j−1 λ(∆m)

λ(D)

=
(∑

l≥m−1 P
(
Uνj ∈ ∆j , . . . , Uνm−1 ∈ ∆νm−1 , νm−1 = l

)) λ(∆m)
λ(D) = P

(
Uνj ∈ ∆j , . . . , Uνm−1 ∈ ∆νm−1

) λ(∆m)
λ(D) ,
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By induction, there comes

P
(
Uνj ∈ ∆j , j = 1 . . .m

)
=

m∏
j=1

λ (∆j)
λ (D)

so

P (Vj ∈ dvj , j = 1 . . .m) =
m∏
j=1

1D (vj) dvj
λ (D)

.

2

Note in particular that the average rejection time equals 1
α , which goes to 1 (resp. ∞) as

α→ 1 (resp. 0).

26 Low-discrepancy sequences

Quasi-random numbers, or successive values of low-discrepancy sequences [148, 147, 146, 142],
are not independent. But they have good equidistribution properties on [0, 1]d, implying
good convergence properties of 1

m

∑m
j=1 ψ(uj) to

∫
[0,1]d ψ(u)du as m→∞.

Let [|0, x|] stand for {y ∈ [0, 1]d , y ≤ x}, with y ≤ x if and only if yj ≤ xj , j = 1 . . . d.
Given a [0, 1]d-valued sequence u = (uj)j≥1, and x ∈ [0, 1]d, we denote

Dm(u, x) = 1
m

∑m
j=1 1[|0,x|](uj)−Vol([|0, x|])

with Vol([|0, x|]) =
∏d

1 xl.

De�nition 26.1 • A sequence (uj)j ≥ 1 is said to be equidistributed on [0, 1]d if

∀x ∈ [0, 1]d, lim
m→∞

Dm(u, x) = 0 .

• The value Dm(u) de�ned by

Dm(u) = sup
x∈[0,1]d

|Dm(u, x)|

is called the (star) discrepancy for the �rst m terms of the u sequence.
• A sequence u is said to be a low-discrepancy sequence if (the terminology is not completely
�xed yet) if its discrepancy satis�es

Dm = O( (lnm)d

m )

or if it is asymptotically better than O(( ln lnm
m )

1
2 ), the discrepancy of a sequence of inde-

pendent uniform variables (by the law of the iterated logarithm).
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26.1 General Remarks on low discrepancy sequences

The discrepancy measures how a given set of points is distributed in [0, 1]d. It can be viewed
as a quantitative measure for the deviation from the uniform distribution.

Quasi-random numbers combine the advantage of a lattice with the advantage that points
can be added incrementally (like points of a random sequence).

But for large dimension d, the theoretical bound (lnm)d

m may be meaningful for extremely
large values of m only.
Low discrepancy sequences perform very well in low dimension. In high dimension d, a
lattice can only be re�ned by increasing the number of points by a factor 2d.

Orthogonal projections If a d-dimensional sequence is uniformly distributed in [0, 1]d,
then two-dimensional sequences formed by pairing coordinates should also be uniformly
distributed. The appearance of non-uniformity in such projections (see Figure 11) is an
indication of potential problems in using a quasi-random sequence [142].
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Figure 11: Orthogonal projection on the �rst, resp. last two coordinates of the �rst 104 points
of the Sobol sequence in dimension 160.

26.2 Sobol sequences

The Sobol sequence is one of the most used sequences for Quasi Monte Carlo simulation,
and one of the most successful for �nancial applications. Its construction is based on prim-
itive polynomials in the �eld Z2 and its implementation relies on the use of bitwise XOR
(Exclusive Or) operations (see [94, 168]).

27 Simulation of non-uniform random variables or vectors

27.1 Inverse method

The inverse method allows one to simulate a random variable with known (computable)
(generalized) inverse cumulative distribution function F−1, as follows:
• First, simulate a variable u uniformly distributed on [0, 1], using a pseudo-random numbers
generator or a quasi-random number generator;
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• Then set x = F−1(u).

Example 27.1 To simulate an exponential random variable with parameter γ, draw Eγ =
− 1
γ ln(1− U) (or − 1

γ lnU), with U uniform.

Example 27.2 A Poisson random variable with parameter µ is such that P(Pµ = n) =
exp (−µ) µ

n

n! . So, to simulate Pµ, draw a uniform number U on the unit segment, and set
Pµ = ν such that

ν∑
n=0

exp (−µ)
µn

n!
≤ U <

ν+1∑
n=0

exp (−µ)
µn

n!
.

Recall that the number of clients at time t in a queue with exponential inter-arrival times of
parameter γ follows a Poisson distribution with parameter µ = γt. So, to simulate Pµ, an-
other possibility is to draw iid exponential random variables Ejµ = − 1

µ lnU j until
∑j

l=0 E
l
µ > 1

and to set

Pµ = sup{j ∈ N;
j∑
l=0

E lµ ≤ 1} = sup{j ∈ N;
j∏
l=0

U l ≥ e−µ} .

In the context of simulation by the inverse method, the following result is useful.

Lemma 27.1 (Change of variables formula for densities) Let φ denote a di�eomor-
phism between subsets of Rd. The density of Y ≡ φ ◦ X at y = φ (x) is given in terms of
that of X at x (assumed to exist) as

pY (y) =
∣∣det

(
Jφ−1

)
(y)
∣∣ pX (x) , (230)

where Jφ−1 stands for the Jacobian matrix (∂yjφ
−1
i )1≤i,j≤d.

Proof (sketched). Perform the change of variables Y ≡ φ ◦ X in the integral expression of
Ef (Y ) with respect to pY , where f denotes a generic bounded Borel-measurable real-valued
function on Rd. 2

Example 27.3 (Log-Normal density) For Y = St in Black�Scholes, X = σWt and

φ−1 = x (S) = ln(
S

S0
)− bt,

we get

pSt (S) = 1
σS
√

2πt
e−

x(S)2

2σ2t = 1
SpσWt [x (S)] .

27.2 Simulation of Gaussian variables

One direct method to generate Gaussian variables is the Box-Müller transformation.

Box-Müller transformation If (U, V ) is uniformly distributed on [0, 1]2, then the pair
(X,Y ) de�ned by

X =
√
−2 lnU sin(2πV )

Y =
√
−2 lnU cos(2πV )



106

is standard Gaussian.

Proof. Let θ be uniform over [0, 2π] and ρ2 be exponential with parameter 1
2 , independent

from θ. Then the pair (X,Y ) = (ρ cos θ, ρ sin θ) is standard Gaussian. Indeed, for every
measurable and bounded function φ, we have:

Eφ(X,Y ) =
∫ ∞

0

∫ 2π

0
φ(ρ cos θ, ρ sin θ)

1
2
e
−ρ2

2 d(ρ2)
dθ

2π

=
∫ ∞

0

∫ 2π

0
φ(ρ cos θ, ρ sin θ)ρdρe

−ρ2

2
dθ

2π

=
∫

R

∫
R
φ(x, y)e−

x2+y2

2
dxdy

2π
.

2

Note that this method requires two independent random values to obtain two Gaussian
variables. So it must not be used when the random numbers u and v are generated from
two successive values of a one-dimensional low-discrepancy sequence, because u and v are
not independent in this case. To use the Box-Müller transformation with quasi-random
numbers, one should thus take special care to generate u and v independently, e.g., from
two di�erent one-dimensional sequences, or from a two-dimensional sequence.

Simulating Gaussian variables by the rejection (or polar) method Simulate by
the rejection method a uniform point (U, V ) on the unit disk. Then the pair (X,Y ) de�ned
by

X =
√

−2 log(ρ2)
ρ2

U

Y =
√

−2 log(ρ2)
ρ2

V

where ρ2 = U2 + V 2, is a standard Gaussian pair.

Proof. Let (ρ, θ) denote the polar coordinates of (U, V ) . Then
(
ρ2, θ2π

)
is uniformly dis-

tributed over the square (0, 1)2, by the densities change of variables formula (230) (at the
intuitive level, it is clear that ρ is uniformly distributed over the unit disk and that ρ and θ
are independent. Moreover, we have dPU,V (r, α) = drrdα

π , hence dPρ(r) = 2rdr = d
(
r2
)

=
dPρ2(r2)). As

(
ρ2, θ2π

)
is uniformly distributed over the square (0, 1)2, we deduce by Box-

Müller that√
−2 log (ρ2)

(
cos
(
2π θ

2π

)
sin
(
2π θ

2π

) ) =

√
−2 log (ρ2)

ρ2

(
ρ cos (θ)
ρsin (θ)

)
=

√
−2 log (ρ2)

ρ2

(
U
V

)
is Gaussian standard. 2

The interest of the polar method is to avoid resorting to trigonometric functions. The
disadvantage is that one must proceed by rejection to simulate a uniform point (U, V ) on
the unit disk, with an average rejection time of π4 draw.

Simulating Gaussian variables by the inverse method The inverse Gaussian cumu-
lative distribution function N−1 is not known in closed form. To use the inverse method for
simulating Gaussian variables, we thus need an approximation of N−1. Moro's algorithm
furnishes a very good and quick approximation.
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27.3 Simulation of Gaussian vectors

Simulating a d-dimensional Gaussian vector V with zero mean and covariance matrix Γ can
be done as follows:
(i) Compute a square root of Γ, namely a matrix Σ such that

Γ = ΣΣT

(ii) Generate d independent standard Gaussian variables εi;
(iii) Compute V = ΣG, with G = (ε1, . . . , εd);
So V ↪→ N (0,Γ).

For Σ in (i), one may take the lower triangular matrix obtained by Cholesky decomposition
of Γ, so for p = 1 . . . d :

Σpp =
√

Γpp −
∑p−1

r=1 Σ2
pr

Σqp = Γpq−
∑p−1

r=1 ΣprΣqr

Σpp
for q = p+ 1, . . . , d ;

An alternative is to proceed to the Principal Component Analysis (PCA) of Γ, setting Σ =
PΛ

1
2 , where PΛPT = Γ with P orthonormal and Λ diagonal is the singular decomposition

of Γ. A variant of this method consists in computing the singular decomposition QΥQT of
the related correlation matrix Ω = Diag(σi)−1ΓDiag(σi)−1, setting Σ = Diag(σi)QΥ

1
2 .

For instance, denoting in the two-dimensional case:

Γ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, so Ω =

(
1 ρ
ρ 1

)
,

the Cholesky decomposition of Γ yields

Σ =
(

σ1 0
ρσ2

√
1− ρ2σ2

)

whereas the singular decomposition of Ω yields (up to a reordering of the PCA factors)

Σ =

 σ1

√
1+ρ
2 σ1

√
1−ρ
2

σ2

√
1+ρ
2 −σ2

√
1−ρ
2


28 Principle of the Monte Carlo Simulation

We want to estimate the following parameter Θ:

Θ = E[φ(X)]

where φ is some function on D ⊆ Rd and X is a D-valued random vector. Note that Θ can
be expressed as the integral

Θ =
∫
D
φ(x)dPX(x) .
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(Pseudo) Monte Carlo simulation is a general method for evaluating an integral as an ex-
pected value, based on the Strong Law of Large Numbers and the Central Limit Theorem.
It provides an unbiased estimator and the error on the estimate is controlled within a con-
�dence interval.

28.1 Limit theorems

Strong Law of Large Numbers For xj , X iid with E[|φ(X)|] <∞, then

1
m

∑m
j=1 φ(xj)

a.s.−→ E[φ(X)] as m→∞

Central Limit Theorem If, moreover, σ2 = Var[φ(X)] < ∞, the normalized error con-
verges in law to the Gaussian distribution:

√
m
σ

(
1
m

∑m
j=1 φ(xj)− E[φ(X)]

)
L−→ N (0, 1) as m→∞

28.2 Estimation principle

• An unbiased estimator with m trials for Θ is thus given by

Θm = 1
m

∑m
j=1 φ(xj)

• The variance of this estimator is given by

σ̃2
m =

σ2

m
,

with unbiased estimator

σ2
m =

1
m− 1

 1
m

m∑
j=1

φ2(xj)−Θ2
m


This variance of the estimator thus decreases to 0 as m→∞. It means that the greater m,
the more accurate the estimator. The speed of convergence of Θm to Θ is σ√

m
, independently

of the dimension d.
• A con�dence interval IC = [A,B] at the threshold (con�dence level) 1− 2α for Θ is built
as

IC = [Θm − zασm; Θm + zασm]

with zα = N−1(1− α). So P(A < Θ < B) = 1− 2α. For instance, if the threshold is set at
95%, then α = 2.5% and zα ≈ 1.96.
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A natural stopping criterion consists in breaking the Monte Carlo loop when zασm becomes
less than some proportion (e.g. 10bp = 10−3) of Θm, so that one knows the price with a
10bp relative error, with con�dence 1− α.

28.3 Properties

We brie�y summarize some advantages and disadvantages of the Monte Carlo method.
• Advantages:
� One can implement this method very easily if one is able to simulate the variable X;
� It does not require regularity or di�erentiability properties of the function φ;
� The estimator is unbiased;
� The error on the estimate can be controlled by the Central Limit Theorem, and one can
build a con�dence interval.
• Disadvantages: One has to realize a lot of simulations to obtain an accurate estimator.
Therefore computing time can be very high.

29 Variance Reduction Techniques

The main disadvantage of the standard Monte Carlo Simulation is its =computing time,
which is proportional to σ√

m
. So to increase the accuracy by a factor 10, one must increase

the number m of simulations by a factor 100.
A better option (this is the topic of Variance reduction techniques, or Accelerated Monte
Carlo) is to rewrite Θ in terms of a new random variable with variance smaller than φ(X).

29.1 Antithetic Variables

The principle of antithetic variables is to introduce some correlation between the terms of
the estimate. When simulation is done by the inverse method, we use uniform numbers uj
on [0, 1]. In the antithetic variables method, we use each uj twice, as uj and 1 − uj . Note
that these two variables have the same law, but they are not independent. Let us denote by
xj and x̄j the variables respectively generated from uj and 1 − uj . An unbiased estimator
of Θ with m trials is de�ned by

Θ̄m =
1

2m

m∑
j=1

(φ(xj) + φ(x̄j))

with xj , X iid. The variance of the estimator is given by

σ̄2
m =

1
2m

(
Var[φ(X)] + Cov(φ(X), φ(X̄))

)
,

with X̄ = 1−X. The following result gives a simple condition ensuring variance reduction
with this method.

Proposition 29.1 If φ is a monotone function, then σ̄2
m ≤ 1

2 σ̃
2
m.

Proof. Introducing an independent copy V of U, we have by monotonicity of ϕ = φ ◦ F−1
X :

(ϕ(U)− ϕ(V )) (ϕ(1− U)− ϕ(1− V )) ≤ 0 ,

identically. Taking expectations, there comes:

E [ϕ(U)ϕ(1− U) + ϕ(V )ϕ(1− V )] ≤ E [ϕ(U)ϕ(1− V ) + ϕ(V )ϕ(1− U)] .
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Using the fact that U and V are independent and uniformly distributed over [0, 1], it follows
that Cov(φ(X), φ(X̄)) = Cov(ϕ(U), ϕ(1− U)) ≤ 0. 2

Note that the estimator Θ̄m is based on 2m terms, instead of m terms for the standard
Monte Carlo estimator Θm, and that variance reduction by a factor 1

2 is also ensured by
using the standard Monte Carlo estimate based on 2m simulations instead of m.

29.2 Control Variables

The principle of this method is to introduce another model for which we have an explicit
solution and to estimate the di�erence between the original parameter Θ and the new one,
decomposing

Θ = E[φ(X)] = E[φ(X)− ψ(X)] + E[ψ(X)]

where ψ is a function such that E[ψ(X)] = c is known.

An unbiased estimator with m trials of Θ is de�ned by

Θ̂m = 1
m

∑m
j=1 (φ(xj)− ψ(xj)) + c

with xj , X iid. The variance of the estimator is given by

σ̂2
m = 1

mVar[φ(X)− ψ(X)]
= 1

m [Var[φ(X)] + Var[ψ(X)]− 2Cov(φ(X), ψ(X))] .

Variance reduction is not guaranteed with regard to standard Monte Carlo simulation, unless
the functions φ and ψ have a large positive correlation. This supposes an appropriate choice
for the control variate ψ.

29.3 Importance Sampling

The basic idea of importance sampling is to concentrate the distribution of the sample
points in the most contributive parts of the space. To this end we introduce a new D-valued
random vector Y . Assume that the law of X and Y have respective densities µ and ρ, with
Supp(φµ) ⊂ Supp(ρ). Denoting ϕ = 1φµ6=0

φµ
ρ , there comes:∫

D φ(z)dPX(z) =
∫
D φ(z)µ(z)

ρ(z)dP
Y (z)

so
Θ = E[φ(X)] = E[ϕ(Y )]

This yields the following estimator for Θ :

_

Θm = 1
m

∑m
j=1 ϕ(yj)

with yj , Y iid. The variance of the estimator
_

Θm is given by

_
σ

2
m =

1
m

Var [ϕ(Y )] .
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Variance reduction with regard to standard Monte Carlo simulation is not guaranteed. It
depends on the choice of the importance function ρ. The minimum variance is reached for
the following importance function ρ∗ :

ρ∗ = |φ(x)|µ(x)∫
|φ(y)|µ(y)dy (231)

Usually ρ∗ is unknown (note that Θ sits in the denominator of the r.h.s. of (231), for φ > 0).
In practice, one chooses ρ by using formula (231) applied to an approximation of the payo�
φ such that the corresponding optimal density is computable.

29.4 E�ciency of the Monte Carlo methods

We now introduce a criterion to compare the e�ciency of the various simulation methods:
standard simulation or simulation with variance reduction techniques. This criterion takes
into account the computing time required by the simulation for each method. E�ciency of
the method q with regard to the method p is de�ned by:

ε(p, q) = lim
mp,mq→∞

σmp(p)
σmq(q)

√
tmp(p)
tmq(q)

.

The method q is considered to be more e�cient than the method p if ε(p, q) ≥ 1. For
instance, ε(p, q) = 3 means that method p requires 9 times more time to obtain the same
accuracy (as measured by the standard error) than method q, or, equivalently, that for a
same computing time the standard error is three times smaller for method q than for method
p.

Note that assuming the computing time proportional to the sample size, so tmp(p) = kpmp

where kp is a factor which expresses the complexity of the algorithm for method p, then

ε(p, q) ≈ σp
σq

√
kp
kq

.

The previous e�ciency criterion is thus essentially independent on the sample size.

30 Quasi Monte Carlo Simulation

De�ning ψ = φ ◦ F−1
X , then φ(X)

(law)
= ψ(U), so Θ = E[φ(X)] = E[ψ(U)]. Quasi Monte

Carlo simulation methods consist in estimating

E[ψ(U)] =
∫

[0,1]d
ψ(u)du

by 1
m

∑m
j=1 ψ(ξj), where ξ is a d-dimensional low-discrepancy sequence.

30.1 Koksma-Hlawka inequality

Theorem 30.1 For any ξ1, . . . , ξm ∈ [0, 1]d, we have:∣∣∣∣∣∣ 1
m

m∑
j=1

ψ(ξj)−
∫

[0,1]d
ψ(x)dx

∣∣∣∣∣∣ ≤ V (ψ)Dm(ξ) , m ≥ 1

where V (ψ) denotes the Hardy-Krause variation of ψ.
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The de�nition of the Hardy-Krause variation of ψ is rather technical and irrelevant for our
purposes. Simply note that in dimension one, the Hardy-Krause variation of a function
coincides with the usual notion of variation of a function, e.g.,

∫
[0,1] | ∂uψ | du, for ψ of class

C1. Through the Koksma-Hlawka inequality, we understand the interest to have sequences
with discrepancy Dm as small as possible.

The Koksma-Hlawka inequality gives an a priori deterministic bound for the error in the
approximation of

∫
[0,1]d ψ(x)dx by 1

m

∑m
j=1 ψ(ξj). This error is expressed in term of the

discrepancy of the sequence and the variation of the function ψ. But it is often di�cult
to calculate or even to estimate the variation of ψ. Moreover, since for large dimensions d
the asymptotic bound (lnm)d

m of a low-discrepancy sequence may be meaningful for extremly

large values of m only, and because (lnm)d

m increases exponentially with d, thus the bound in
Koksma-Hlawka inequality typically gives no relevant information for realistic sample sizes
m.

Moreover, unlike the (pseudo) Monte Carlo method, the Quasi Monte Carlo approach does
not provide a con�dence interval for the estimator. The empirical variance of the sample is
not meaningful because successive terms of the sequence are not independent. This is due
to the construction of low-discrepancy sequences.

Another di�erence with standard Monte Carlo is that the convergence rate of Quasi Monte
Carlo methods depends on the dimension d of the considered model through the discrepancy
of the related quasi random sequence.

Let us stress again that low-discrepancy sequences (Sobol sequences in particular) are often
more fruitful in �nance than in other application areas. This is because the e�ective dimen-
sion of �nancial problems is often much lower than their nominal dimension. In such cases,
one can bene�t from all the power of low-discrepancy sequences by assigning the main risk
factors of the problem, ordered by decreasing amount of explained variance, to the successive
components of the points of a multi-dimensional low-discrepancy sequence. Thus, though
we use a low-discrepancy sequence in the nominal dimension of the problem, which may
be high, the fact that the �rst coordinates of the quasi-random points are assigned to the
main risk factors of the problem avoids much of the drawbacks generally associated with
high-dimensional low-discrepancy sequences.

31 Greeking by (Quasi) Monte Carlo

Prices sensitivities, or Greeks, are actually the main issue in �nancial modeling. Indeed,
unless very exotic products are considered, derivatives prices are made by o�er-and-demand
in the market (prices are e�ectively used in the reverse-engineering mode to calibrate the
models, see Part VII). Greeks, on the contrary, must be computed within models. They are
used to determine the composition of a dynamic hedging portfolio (see Subsections 9.2 and
13.2).

Now it happens that in many cases, Greeks are also given by expressions of the form Θ =
E[φ(X)], so that all the Monte Carlo pricing techniques can also be used for Greeking.

In this Section we illustrate this on the problem of (Q)MC computing the delta of an option
in a Markovian model. We thus want to compute ∆0 = ∂sE[φ(SsT )] , where SsT is the risk-
neutral spot with initial condition s at time 0 (we should in fact write Ss,s̄T where s̄ is the
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initial condition of the remaining model factors; since s̄ plays no role in the sequel, we omit
it for simplicity).

One obvious method consists in perturbing the initial condition s, computing (Q)MC prices
for the original and perturbed initial condition, and deducing a �nite di�erences estimator
for ∆0. But this procedure is both costly (since it involves resimulation) and parameterized
and biased (via the perturbation on s). In many cases, direct (without resimulation) ap-
proaches are possible: by derivation of the payo�, provided the latter is smooth enough, or
by derivation of the transition probability density pT (s, S) (as a shorthand for pT (s, s̄;S))
of S, provided the latter exists and is smooth enough.

Note that in the case of the Black�Scholes model the related computations are elementary,
however in general the latter two approaches ultimately rely on the theory of stochastic �ows
and on Malliavin calculus, respectively (see, e.g., [94, 50, 88, 89]).

31.1 Finite Di�erences

For �xed h > 0, we may approach ∆0 by decentered �nite di�erences

1
εs

(
E[φ(S(1+ε)s

T )]− E[φ(SsT )]
)

or, leading to better convergence properties, by centered �nite di�erences

1
2εs

(
E[φ(S(1+ε)s

T )]− E[φ(S(1−ε)s
T )]

)
(232)

The expectations in (232) are estimated by (Q)MC simulation. In order to optimize the
algorithms, common random numbers should be used to estimate both expectations in
(232). Thus, in the Black�Scholes model, ∆0 can be best estimated in these approaches
by

1
2εsm

m∑
j=1

(
φ[(1 + ε)sebT+σ

√
Tεj ]− φ[(1− ε)sebT+σ

√
Tεj ]

)
,

where the εj are standard Gaussian (Q)MC draws.

31.2 Derivation of the payo�

In case where φ is regular and we know how to derive SsT with respect to s, ∆0 may
alternatively be computed as

∆0 = ∂sEφ(SsT ) = E∂sφ(SsT ) = Eφ′(SsT )∂sSsT .

In multiplicative models (like the Black�Scholes model, or more general homogenous models,
see section 37.3), we have ∂sSsT = Ss

T
s , so

∆0 = 1
sE[φ′(SsT )SsT ]

provided φ is di�erentiable. Note that φ′ is allowed to be a weak derivative in the sense of
distributions, yet it needs to be a well de�ned function (unlike a Dirac mass for instance) for
applicability of the method. So this method is applicable to the computation of the delta of
a call option, but not to that of a digital option.

31.3 Derivation of the spot transition probability density
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Assuming that S admits a transition probability density pT (s, S) between 0 and T, di�er-
entiable in the �rst variable s, then under mild conditions:

∆0 =
∫

R
φ(S)∂1pT (s, S) dS =

∫
R
φ(S)

∂1pT (s, S)
pT (s, S)

pT (s, S) dS ,

so
∆0 = E [φ(SsT )∂1 ln(pT (s, SsT ))]

For instance, in the Black�Scholes model:

pT (s, S) =
1

S
√

2πσ2T
e−

(ln( S
s )−bT)2

2σ2T , ∂1 ln(pT (s, SsT )) =
WT

sσT
,

so

∆0 = E
[
φ(SsT )WT

sσT

]
which can be easily computed by (Q)MC.

32 (Quasi) Monte Carlo Algorithms for Vanilla Options

32.1 (Q)MC BS1D Algorithm

Description Computation, for an European call, put or digital option, of its price and
delta by (Pseudo) Monte Carlo or Quasi Monte Carlo simulation. The Pseudo Monte Carlo
method provides estimations for price and delta with a con�dence interval. The Quasi Monte
Carlo method only provides price and delta estimates, without con�dence interval. For a
call, the implementation is based on the call-put parity relationship.

Input parameters StepNumber m, Generator_Type, Increment ε, Con�dence Value.

Output parameters Price Π, Error Price σΠ, Delta ∆, Error Delta σ∆, Price Con�dence
Interval ICΠ =[Inf Price, Sup Price], Delta Con�dence Interval IC∆ =[Inf Delta, Sup Delta].

The underlying asset price evolves according to the Black�Scholes model, so, under P:

ST = s exp(bt+ σWt) ,

where ST denotes the spot at maturity T , s is the initial spot, and t is time-to-maturity.

The price of an option at T − t is:

Π = E
[
e−rtφ(K,ST , R)

]
where φ denotes the payo� of the option, K is the strike and R the rebate (for the digital
option only). The delta is given by:

∆ = ∂sE[e−rtφ(K,ST , R)] .

The estimators write:

Πm =
1
m
e−rt

m∑
j=1

π(j)
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with π(j) = φ(K,ST (j),K), and

∆m =
1
m
e−rt

m∑
j=1

∂sπ(j) =
1
m
e−rt

m∑
j=1

δ(j)

The values for π(j) and δ(j) are detailed for each option.

• Put: The payo� is (K − ST )+, hence

π(j) = (K − ST (j))+

δ(j) =
{
−∂sST (j) = −ST (j)

s if π(j) ≥ 0
0 otherwise

• Call: The payo� is (ST −K)+. The call-put parity relations for price and delta write:

C = P + se−qt −Ke−rt

∆C = ∆P + e−qt ,

where C and P respectively denotes the call and the put prices. These relations may be
used for the call simulation (in order to limit variance).

• Digital option: The payo� is R1{ST−K≥0}, hence

π(j) = R1{ST (j)−K≥0} .

To have an estimation of the delta in the case of a digital option, we proceed by �nite
di�erences, so

δ(j) =
1

2εs
[φ ((1 + ε)ST (j),K,R)− φ ((1− ε)ST (j),K,R)] .

32.1.1 Adding Jumps

Let us now add jumps in S, assuming that the underlying asset price evolves according to
the risk-neutral Merton model, so, by (104):

ST = seat+σWt
∏Nt
l=1(Jl + 1)

with a = b − γJ̄, where N is a Poisson process with deterministic jump intensity γ and
ln(1 + Jl) ↪→ N (α, β).

From the point of view of (Q)MC pricing European path-independent options with payo�
φ(ST ) (like the European call, put or digital options of section 32.1), essentially nothing
changes, except for the fact that ST (j) in section 32.1 is now given by (cf. (104))

ST (j) = seat+σWt(j)
∏Np

l=1 exp(α+
√
βεlj)



116

12.75

12.8

12.85

12.9

12.95

13

13.05

13.1

13.15

13.2

0 5000 10000 15000 20000 25000 30000

P
ri
c
e

N iterations

"Standard0.dat" using 1:2
"Standard1.dat" using 1:2
"Antithetic2.dat" using 1:2

0.695

0.7

0.705

0.71

0.715

0.72

0.725

0 5000 10000 15000 20000 25000 30000

D
e

lt
a

N iterations

"Standard0.dat" using 1:3
"Standard1.dat" using 1:3
"Antithetic2.dat" using 1:3

Figure 12: European vanilla call priced by Pseudo Monte Carlo simulation (L'Ecuyer's gener-
ator), Quasi Monte Carlo simulation (Sobol sequence), and Pseudo Monte Carlo simulation
with antithetic variables.

where:
• Np is a simulated Poisson variable with parameter γT,
• the εlj are independent standard Gaussian draws, and
•Wt(j) =

√
tεj for a further independent standard Gaussian draw εj .

32.2 (Q)MC BS2D Algorithm

Description Computation, for a Call on Maximum, Put on Minimum, Exchange or Be-
stOf European option, of its Price and Deltas by (Pseudo) Monte Carlo or Quasi Monte
Carlo simulation. The Pseudo Monte Carlo algorithm also provides con�dence intervals.

Input parameters StepNumber m, Generator_Type, Increment ε, Con�dence Value.

Output parameters Price Π, Error Price σΠ, Deltas ∆1,∆2, Errors delta σ∆1 , σ∆2 , Price and
Deltas Con�dence Intervals.

The underlying asset prices evolve according to the two-dimensional Black�Scholes dynam-
ics, that is, under P: {

dS1
u = S1

u(κ1du+ σ1dW
1
u ), S1

T−t = s1

dS2
u = S2

u(κ2du+ σ2dW
2
u ), S2

T−t = s2

where:
• κl = r − ql,
• sl is the initial spot value,
•W 1 and W 2 denote two real-valued Brownian motions with instantaneous correlation ρ.
So {

S1
T = s1 exp(b1t+ σ11W

1
t )

S2
T = s2 exp(b2t+ σ21W

1
t + σ22W̃

2
t ) ,

with (
b1

b2

)
=

(
κ1 −

σ2
1
2

κ2 −
σ2
2
2

)
,

(
σ11 σ12

σ21 σ22

)
=
(

σ1 0
ρσ2

√
1− ρ2σ2

)
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and where W̃ denotes a real-valued Brownian motion independent of W 1. The price of an
option is

Π = E
[
e−rtφ(K,S1

T , S
2
T )
]
,

where φ denotes the payo� of the option, K is the strike, and t is time to maturity.
The deltas are given by

∆1 = ∂s1E[e−rtφ(K,S1
T , S

2
T )] , ∆2 = ∂s2E[e−rtφ(K,S1

T , S
2
T )] .

The estimators write:

Πm = 1
me

−rt∑m
j=1 π(j)

∆l
m = 1

me
−rt∑m

j=1 ∂sl
π(j) = 1

me
−rt∑m

j=1 δ
l(j)

The values for π(j) and δl(j) are detailed for each option.

• Put on the Minimum: The payo� is (K −min(S1, S2))
+
, so

π(j) =
(
K −min(S1

T (j), S2
T (j))

)+
If π(j) ≥ 0, then

δ1(j) =
{
− exp(b1t+ σ11W

1
t ) if S1

T (j) ≤ S2
T (j)

0 otherwise
δ2(j) ={
− exp(b2t+ σ21W

1
t + σ22W̃

2
t ) if S1

T (j) ≤ S2
T (j)

0 otherwise .

Otherwise δ1(j) = δ2(j) = 0.
• Call on the Maximum: The payo� is (max(S1, S2)−K)+ , so

π(j) =
(
max(S1

T (j), S2
T (j))−K

)+
If π(j) ≥ 0, then

δ1(j) =
{

exp(b1t+ σ11W
1
t ) if S1

T (j) ≥ S2
T (j)

0 otherwise
δ2(j) ={

exp(b2t+ σ21W
1
t + σ22W̃

2
t ) if S1

T (j) ≥ S2
T (j)

0 otherwise .

Otherwise δ1(j) = δ2(j) = 0.
• Exchange Option: The payo� is (S1 −KS2)+, so

π(j) =
(
S1

T −KS2
T

)+
δ1(j) =

{
exp(b1t+ σ11W

1
t ) if π(j) ≥ 0

0 otherwise
δ2(j) ={
−K exp(b2t+ σ21W

1
t + σ22W̃

2
t ) if π(j) ≥ 0

0 otherwise

• BestOf Option: The payo� is [max(S1 −K1, S2 −K2)]
+
, so

π(j) =
[
max(S1

T −K1, S
2
T −K2)

]+
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If π(j) ≥ 0, then

δ1(j) =
{

exp(b1t+ σ11W
1
t ) if S1

T (j)−K1 ≥ S2
T (j)−K2

0 otherwise
δ2(j) ={

exp(b2t+ σ21W
1
t + σ22W̃

2
t ) if S1

T (j)−K1 ≥ S2
T (j)−K2

0 otherwise .

Otherwise δ1(j) = δ2(j) = 0.

33 Simulation of Processes

Simulating random variables is enough to (Q)MC-compute prices of vanilla options, in cases
where the value of the underlying at the maturity time T of the option can be simulated
directly, without discretizing the associated SDE. However, to be able to deal with more
complex models, or, even in simple models, with path dependent options, one needs to
simulate the whole trajectory of the underlying between the pricing time t and the maturity
T. Even for simple options in simple models, simulating spot trajectories is necessary for
testing the hedging performances of a model (see Section 35). In this case, the `payo�' we
are interested in typically consists of the Pro�t and Loss at maturity of an option's seller,
who rebalances a delta hedge in the underlying at regular time intervals. The Pro�t and
Loss at maturity is a path dependent quantity, so that the simulation problem in this case is
similar to that of Monte Carlo pricing a path dependent option.

33.1 Brownian Motion

We recall that a Brownian motion on the probability space (Ω,F,P) is a continuous process
W with the properties thatW0 = 0 and for 0 ≤ s < t, the incrementWt−Ws is independent
of Fs and is normally distributed with mean zero and variance t− s.

Simulation of WT , (Wt|WT ) and (Ws,Wt|WT ) for 0 ≤ s ≤ t ≤ T By Cholesky, we have
for a standard Gaussian triple (εs, εt, εT ) :

WT =
√
TεT

Wt =
√
t
(√

t
T εT +

√
1− t

T εt

)
Ws =

√
s
(√

s
T εT +

√
ρ2εt +

√
1− s

T − ρ2
)

where ρ is such that s =
√
st
(√

ts
T 2 +

√
1− t

T ρ
)
. So, in particular:

WT
(law)
= N (0, T ) , (Wt|WT )

(law)
= N

(
t

T
WT ,

t (T − t)
T

)
(233)

and

Cov(Ws,Wt|WT ) =
√
ts

√
1− t

T
ρ =

√
ts
(√s

t
−
√
ts

T 2

)
= s(1− t

T
) (234)

Simulation (discretization) of a Brownian trajectory on [0, T ] We present two
approaches for simulating a Brownian path. Typically, for path dependent options, we have
to simulate W over {t0 = 0, t1, . . . , tn = T}. Let hi = ti+1 − ti for i = 0 . . . n − 1 (so
hi = h = T

n , in the case of a uniform discretisation).
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Forward simulation of W is given by

W0 = 0
Wti+1 = Wti +

√
hiεi

where (ε1, ..., εn) are independent standard Gaussian variables.

Attention: Simulating independently each Wti as
√
tiεi would be incorrect (e.g., incorrect

variance for Wti+1 −Wti).

Backward simulation with Brownian Bridge An alternative method is based on the
following Brownian Bridge property (cf. (233)):

L(Wu, s < u < t|Ws = x,Wt = y) = N ( t−ut−sx+ u−s
t−s y,

(t−u)(u−s)
t−s ) ,

hence in particular
L(W t+s

2
|Ws = x,Wt = y) = N (x+y2 , t−s4 ) .

The related scheme consists in simulating W as

W0 = 0
WT =

√
Tε1

WT
2

= W0+WT
2 +

√
T
4 ε2

WT
4

=
W0+WT

2
2 +

√
T
8 ε3

W 3T
4

=
WT

2
+WT

2 +
√

T
8 ε4

. . .

where (ε1, ..., εn) are independent standard Gaussian variables.

For this algorithm, one must choose n as a power of 2. The �rst step is directly from 0 to
T. Intermediates steps are �lled by taking successive subdivisions of the time intervals into
halves. The algorithm can be adapted to non-uniform time subdivisions by considering the
conditional law of the Brownian Bridge between s and t.

Remarks on these two schemes for Monte Carlo and Quasi Monte Carlo simu-
lations Both schemes require a vector of n independent Gaussian variables. In the case
of a Monte Carlo method, these n variables can be simulated using successive draws from a
pseudo random numbers generator. However for a Quasi Monte Carlo simulation we need
to take care about the independence property. In this regard a good point with the back-
ward scheme is that the values of W successively determined on each trajectory, are drawn
by order of decreasing variance. Therefore the �rst components (which are also `the best
ones', i.e. `the more uniform ones') of the simulated Quasi Monte Carlo points are naturally
a�ected to the main directions of risk in the problem.

33.2 Black�Scholes Model
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In the risk-neutral (might be objective with constant drift µ) Black�Scholes model: St =
S0 exp(bt+σWt), St is a function of Wt. The simulation of price paths is then directly based
on the simulation of Brownian motion described in section 33.2.

Forward simulation We have

Sti+1 = Sti exp(bhi + σ
√
hiεi) ,

Backward simulation Denoting xt = ln(St) = x0 + bt+ σWt , we get

xT = x0 + bt+ σ
√
Tε1

xT
2

= x0+xT
2 + σ

√
T
4 ε2

xT
4

=
x0+xT

2
2 + σ

√
T
8 ε3

x 3T
4

=
xT

2
+xT

2 + σ
√

T
8 ε4

. . .

We �nally set Sti = exp(xti).

33.3 General di�usions: Euler and Milshtein schemes

We now consider the d-dimensional di�usion process

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

(under suitable Lipschitz continuous conditions on the coe�cients). Unless an explicit
solution is known for X (like in the Black�Scholes model, cf. section 33.3), we have to
approximate the process by time-discretization. The two best known schemes are the Euler
and the Milshtein schemes.

33.3.1 Euler Scheme

It is de�ned by

X̂ti+1 = X̂ti + b(ti, X̂ti)hi + σ(ti, X̂ti)(Wti+1 −Wti) .

Simulation is obtained with a forward algorithm by

X̂ti+1 = X̂ti + b(ti, X̂ti)hi + σ(ti, X̂ti)
√
hiεi

with εi Gaussian iid, for i = 0, . . . , n− 1.

In the following Theorem we assume hi = h, for notational simplicity.

Theorem 33.1 • Lq-Convergence and Trajectorial Convergence For b, σ regular
enough, such that in particular

|b(t, x)− b(s, x)|+ |σ(t, x)− σ(s, x)| ≤ C(1 + |x|)(t− s)α

for positive constants C and α, we have:

E
(
sup0≤i≤n |Xih − X̂ih|2q

)
≤ Ch2qβ , q ≥ 1 (235)

limh→0+ h
−α sup0≤i≤n |Xih − X̂ih| = 0 a.s. , α < β (236)
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with β = min(α, 1
2). Moreover, in the homogenous case b = b(x), σ = σ(x), one may take

β = 1
2 in (235)�(236).

• Convergence in law For b, σ and φ regular enough, there exists a constant CT such that

|Eφ(XT )− Eφ(X̂T )| ≤ CTh .

So L2-convergence is basically of order h
1
2 , and almost sure (trajectorial) convergence is of

order h
1
2
−ε, for any ε > 0. Convergence in law (the kind of convergence which is relevant for

pricing and Greeking applications) is linear in h, in regular cases.

Continuous Euler scheme (d = 1) This is the continuous time approximation scheme
(X̄t)t≥0 de�ned by interpolation of the previous Euler scheme by a Brownian Bridge (see
[115, 161]) between (ti, X̂ti) and (ti+1, X̂ti+1), for i = 0, . . . , n− 1. So, on [ti, ti+1]:

X̄t = X̂ti + b(ti, X̂ti)(t− ti) + σ(ti, X̂ti)B
i
t

where X̂ is a (discrete) trajectory of the Euler scheme for X, and Bi is a Brownian Bridge
on [ti, ti+1], such that X̄ = X̂ at ti and ti+1.

33.3.2 Milshtein Scheme (d = 1)

It is de�ned by (assuming d = 1 and in the homogenous case b = b(x), σ = σ(x)):

X̂ti+1 = X̂ti + (b(X̂ti)−
1
2
σ′(X̂ti)σ(X̂ti))hi+

+σ(X̂ti)(Wti+1 −Wti) +
1
2
σ′(X̂ti)σ(X̂ti)(Wti+1 −Wti)

2 .

Simulation is obtained with a forward algorithm by

X̂ti+1 = X̂ti + (b(X̂ti)− 1
2σ

′(X̂ti)σ(X̂ti))hi+
+σ(X̂ti)

√
hiεi + 1

2σ
′(X̂ti)σ(X̂ti)hiε

2
i

for Gaussian iid r.v. εi, i = 0, . . . , n− 1.

Theorem 33.2 • Lq-Convergence and Trajectorial Convergence Assume hi = h. For
b = b(x), σ = σ(x) regular enough, we have

E
(

sup
0≤i≤n

|Xih − X̂ih|2q
)
≤ Ch2q , q ≥ 1

lim
h→0+

h−α sup
0≤i≤n

|Xih − X̂ih| = 0 a.s. , α < 1 .

• Convergence in law Same result as for the Euler scheme.

As for pricing and Greeking, (weak) convergence is thus again linear in h, in regular cases.
But the rate of trajectorial (or strong) convergence is improved with respect to the Euler
scheme.
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33.3.3 Example: Heston model

We consider the risk-neutral Heston model (cf. (99)):{
dVt = −λ(Vt − θ)dt+ η

√
VtdZt

dSt = St(κdt+
√
VtdWt)

(237)

with d〈W,Z〉 = ρdt. A classic discretization for (237) consists in discretizing V by the
Milshtein scheme and ln(S) by the Euler scheme, as follows: V̂ti+1 − V̂ti = −(λ(V̂ti − θ) +

η2

4
)hi + η

√
V̂tihiε1 +

hiη
2ε21
4

ln(Ŝti+1)− ln(Ŝti) = (κ− V̂ti
2 )hi +

√
V̂tihi(ρε1 +

√
1− ρ2ε2)

where (ε1, ε2) is a standard Gaussian pair. The interest of using the Milshtein scheme for
the variance process is to bene�t from a better trajectorial convergence than with the Euler
scheme. So the process V̂ obtained in this way is less prone to take negative values than it
would be the case with an Euler scheme (see also Andersen [5]).

33.4 Jump�Di�usions

Finally we consider the following jump�di�usion, driven by a multidimensional Brownian
motionW and a Poisson random measure J (under suitable Lipschitz continuous conditions
on the coe�cients):

dXt = b(t,Xt)dt+ σ(t,Xt)dWt +
∫
x∈Rd δ(t,Xt−, x)µ(dx, dt)

= b(t,Xt)dt+ σ(t,Xt)dWt + d
(∑Nt

l=1 δ(t,Xτl−, Jτl)
) (238)

where µ(dx, dt) is a Poisson randommeasure with compensator measure g(t,Xt)h(t,Xt, dx)dt,
for some intensity g and jump size probability measure h (so Nt = µ(Rq × [0, t]) and Jτl is a
r.v. with law h(t,Xτl−, dx) in the second line). Depending on the application at hand, we
may be interested at simulating X at �xed times, or at the jump times of X.

Euler scheme at �xed times To simulate (238) at �xed times 0 < t1 <, . . . , < tn, set
X̂0 = X0, and for i = 0, . . . , n− 1 :
• simulate

X̃ti+1 = X̂ti + b(ti, X̂ti)hi + σ(ti, X̂ti)
√
hiεi ,

• compute X̂ti+1 by adding to X̃ti+1 , with probability 1 − e−g(ti,X̂ti )hi (as dictated by the

position of an independent uniform draw ui with respect to e−g(ti,X̂ti )hi), a jump term equal
to δ(ti, X̂ti−, x) with probability h(ti, X̂ti−, dx).

Euler scheme at jump times To simulate (238) at the n �rst jump times 0 < t1 < . . . <
tn of X (so the ti and hi are random, here), set X̂0 = X0, and for i = 0, . . . , n− 1 :
• simulate ti+1 as ti plus an independent draw in an exponential law with parameter
g(ti, X̂ti),
• simulate

X̃ti+1 = X̂ti + b(ti, X̂ti)(hi) + σ(ti, X̂ti)
√
hiεi ,
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• compute X̂ti+1 by adding to X̃ti+1 a jump term equal to δ(ti+1, X̃ti+1−, x) with probability
h(ti+1, X̃ti+1−, dx).

Continuous Euler scheme (d = 1) This is the continuous time approximation scheme
de�ned by interpolation of the previous Euler scheme at jump times by a Brownian bridge
between (ti, X̂ti) and (ti+1, X̂ti+1−), for i = 0, . . . , n− 1.

33.5 Monte Carlo Simulation for Processes

In the case of Monte Carlo simulation for processes, we have

E[φ(X)]− 1
m

∑m
j=1 φ(X̂j) = (E[φ(X)]− E[φ(X̂)]) + (E[φ(X̂)]− 1

m

∑m
j=1 φ(X̂j))

So the error is the sum of two terms, a discretization error and a Monte Carlo error (simu-
lation error):
• for usual discretization schemes such as the Euler or the Milshtein scheme, the weak con-
vergence rate is linear in h, so the discretization error is of the order O(h);
• after scaling bym− 1

2 , the Monte Carlo error is asymptotically distributed asN (0,Var[φ(X̂)]).

Remark 33.1 The overall error is thus of the order of O(h)+O(m− 1
2 ), to be compared with

O(h) + O(m−2
1 ), in the case of a typical �nite di�erences numerical scheme with a generic

number m1 of mesh points per space dimension. Taking m as md
1 so that both schemes have

comparable computing costs, we thus see that the Monte Carlo method is more e�cient for
d > 4, and less e�cient for d < 4 (cf. Table 1 and the related discussion in Section 3).

Therefore in order to balance the two terms in the error a natural choice is to take m of the
order of n2.

34 (Quasi) Monte Carlo methods for Exotic Options

A nice feature of Monte Carlo methods is that they can easily deal with path dependent
payo�s. Note however that speci�c treatments must be applied in order to preserve con-
vergence rates. The idea to e�ciently (Q)MC price path dependent payo�s is to use the
continuous Euler scheme for the underlying assets. (see sections 33.3.1 and 33.4).

34.1 Lookback options

We consider a Lookback option with payo� φ(XT ,MT ) at T, where X is given by the
following one-dimensional di�usion:

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

(under suitable Lipschitz continuous conditions on the coe�cients), and Mt = sup0≤s≤tXs.
The following results give a way of simulating the pair (X̄, M̄), where M̄t = sup[0,t] X̄.

Lemma 34.1 Denoting

W λ
t = Wt + λt , Mλ

t = sup
0≤s≤t

W λ
s ,
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where λ is a real number (drift parameter), the random variable

Zλt = (2Mλ
t −W λ

t )2 − (W λ
t )2

is, conditionally on W λ
t ,

1
2t � exponentially distributed.

Proof By the Cameron�Martin formula, we have for any x, y ∈ R :

P̂(W λ
t ≤ x) = νλP̂(W ≤ x) , P̂(W λ

t ≤ x, Mλ
t ≤ y) = νλP̂(W ≤ x, Mt ≤ y)

for a suitable factor νλ. Therefore

P̂(Mλ
t ≤ y |W λ

t ≤ x) = P̂(Mt ≤ y |Wt ≤ x) .

This shows that the law of Mλ
t conditional on W λ

t does not depend on λ. So we may and
do reduce attention to the case where λ = 0. Now it is well known that the law of the pair
(Wt,Mt) admits the following transition probability density between times 0 and t :

p(x, y) = 1y≥x+
2(2y − x)√

2πt3
exp

[
−(2y − x)2

2t

]
(239)

This can for instance be established by taking −∂2
xy in the following identity (mirror's

lemma, see, e.g., [115, 161]), which is valid for any x ∈ R and y ∈ [x+,+∞):

P̂(Wt ≥ 2y − x) = P̂(Wt ≤ x, Mt ≥ y) .

Denoting Zt = (2Mt −Wt)2 − (Wt)2 and introducing the one-to-one mapping

[x+,+∞) 3 y 7→ z = (2y − x)2 − x2 ∈ R+ ,

we have:
P̂(Zt ∈ dz |Wt = x) = P̂(Mt ∈ dy |Wt = x) .

So, by (239):

P̂(Zt ∈ dz |Wt = x) =
1
2t

exp(
−z
2t

)dz .

2

Proposition 34.2 Set X̂ = (X̂ti)0≤i≤n. The law of (M̃ i)0≤i≤n−1, with M̃
i = (supih≤t≤ti+1

X̄t | X̂), i =
0, . . . , n− 1, can be simulated by, for i = 0, . . . , n− 1 :

1
2

(
X̂ti + X̂ti+1 +

√
(X̂ti − X̂ti+1)2 − 2σ(ti, X̂ti)2hi ln(1− Ui)

)
=: F−1

i (U ; X̂ti , X̂ti+1)(240)

where (Ui)0≤i≤n−1 is a sequence of independent uniform r.v. on [0, 1].

Proof. Setting λi = b(ti,X̂ti )

σ(ti,X̂ti )
, we have in the notation of Lemma 34.1, for t ∈ [ti, ti+1] :

(X̄t | X̂)− X̂ti

σ(ti, X̂ti)
=

(
W λi
t −W λi

ti
|W λi

ti+1
−W λi

ti
=
X̂ti+1 − X̂ti

σ(ti, X̂ti)

)
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and
M̃ i − X̂ti

σ(ti, X̂ti)
=

(
sup

t∈[ti,ti+1]
W λi
t −W λi

ti
|W λi

ti+1
−W λi

ti
=
X̂ti+1 − X̂ti

σ(ti, X̂ti)

)
By application of Lemma 34.1 to the drifted Brownian motion W λi

ti+h
−W λi

ti
on [0, hi], we

thus get, conditionally on X̂ti and X̂ti+1 :(
2
M̃ i − X̄ti

σ(ti, X̂ti)
−
X̂ti+1 − X̂ti

σ(ti, X̂ti)

)2 (law)
= (

X̂ti+1 − X̂ti

σ(ti, X̂ti)
)2 + E 1

2h
,

where E 1
2h

(law)
= −2h ln(U). 2

Thus, to generate a pair (X̄T , M̄T ) :
• �rst simulate a (discrete) trajectory X̂ of the Euler scheme for X, using n independent
uniform random draws;
• then simulate (M̃ i)0≤i≤n−1 as in Proposition 34.2, using n further independent uniform
random draws;
• set X̄T = X̂T , M̄T = maxi M̃ i.

Note that if quasi-random numbers are used, one must use a 2n-dimensional low-discrepancy
sequence. Yet the use of high-dimensional low-discrepancy sequences should be considered
with caution.

In the special case of the Black�Scholes model, the Euler discretization is exact, provided
one works in returns variable x = ln(S). In this case one can take n equal to one and use a
2-dimensional low-discrepancy sequence.

Remark 34.1 In the case of a Lookback option on the running minimum of X, one can
proceed likewise, relying on the following transition probability density q (deduced by sym-
metry from (239)) for the law of the pair (Wt,mt), where mt denotes the running minimum
of W between 0 and t:

q(x, y) = 1y≤−x−
2(x− 2y)√

2πt3
exp

[
−(x− 2y)2

2t

]
(241)

34.1.1 Andersen and Brotherton-Ratcli�e Algorithm

Description Computation, for a Lookback option, of its Price and Delta by Monte Carlo
Simulation (see [6]).

Let ST = s exp (bt+ σWt) denote the risk-neutral Black�Scholes spot. We note S∗T =
max[T−t,T ] S the maximum reached before maturity. The price and delta of a lookback
option with payo� φ and strike K write:

Π = E
[
e−rtφ(K,ST , S∗T )

]
, ∆ = ∂sE[e−rtφ(K,ST , S∗T )] ,

with related estimators:

Πm = 1
me

−rt∑m
j=1 π(j)

∆m = 1
me

−rt∑m
j=1 ∂sπ(j) = 1

me
−rt∑m

j=1 δ(j)



126

• Fixed Strike Lookback Call The payo� is (max[T−t,T ] S −K)+, so

π(j) = (S∗T (j)−K)+

δ(j) =

{
∂sS

∗
T (j) = S∗T (j)

s if π(j) ≥ 0
0 otherwise

• Floating Strike Lookback Put The payo� is (max[T−t,T ] S − ST ), so

π(j) = (S∗T (j)− ST (j))

δ(j) = ∂sS
∗
T (j)− ∂sST (j) =

S∗T (j)− ST (j)
s

=
π(j)
s

Simulation of the maximum S∗T The conditional cumulative distribution function of
the maximum M of X = lnS given XT−t = x1 and XT = x2 writes:

F (x;x1, x2) =
(

1− exp
[
− 2
σ2t

(x− x1)(x− x2)
])

1x>x1∨x2

so for y ∈ [0, 1], consistently with (240):

F−1(y;x1, x2) =
1
2

(
x1 + x2 +

√
(x1 − x2)2 − 2σ2t ln(1− y)

)
.

At run j, (S∗T )j is simulated as follows:

• SjT is generated as s exp
(
Xj
T

)
, with Xj

T = bt + σ
√
tεj for a standard Gaussian variable

εj ;
• Uj is generated as a uniform variable on [0, 1];
• (S∗T )j = exp(F−1(Uj ; ln(s), Xj

T ));

34.2 Barrier options

We now consider the special case of a Lookback option corresponding to a Barrier Up and
Out option with payo� function (considering the case of a rebate R paid at T ):

ψ(XT ,MT ) = φ(XT )1{MT<L} +R1{MT≥L}

(similar techniques are applicable to the other common forms of barrier options). An ap-
proximation of the option price is thus given by

e−r(T−t)Eψ(X̄T , M̄T )

with (M̄T | X̂) = max0≤i≤n−1 M̃
i as before. Now, we have:

E
(
φ(X̄T )1{M̄T≤L} | X̂

)
= φ(X̂T )

n−1∏
i=0

P( sup
ih≤t≤ti+1

X̄t ≤ L | X̂)

= φ(X̂T )
n−1∏
i=0

Fi(L; X̂ti , X̂ti+1) ,
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with

Fi(L;x, y) =
(

1− exp(− 2
σ(ti, x)2hi

(L− x)(L− y))
)
1L>x∨y .

Likewise,

E
(
R1{M̄T>L}

)
(X̂) = R

(
1−

n−1∏
i=0

Fi(L; X̂ti , X̂ti+1)

)
.

Therefore the desired approximation writes

= R+ E

[(
φ(X̂T )−R

) n−1∏
i=0

Fi(L; X̂ti , X̂ti+1)

]
.

In this case, no random draws are needed other than those used for simulating X̂T , namely
n random draws by simulation run � where n can be taken equal to one, in the special case
of the Black�Scholes model.

34.3 Asian options

We next consider (European) Asian options with payo�s of the form φ (ST , IT ) with It =∫ T
0 Su du (e.g., φ(x, y) = ( IT −K)+ in the case of a �xed strike Asian call), on a Black�Scholes
underlying S.

Straightforward application of the Euler scheme suggests to approximate IT by the Rie-
mann sum Î1

T =
∑n−1

i=0 hiŜti . But this discretization works poorly in practice. A better

discretization is given by the trapezoid rule Î2
T =

∑n−1
i=0 hi

Ŝti+Ŝti+1

2 . However one can show
by appropriate Taylor expansions that this is tantamount to approximating

Eφ
(
S̄T , ĪT

)
= E

[
E
[
φ
(
S̄T , ĪT

)
|Ŝ
]]

(242)

by E
[
φ
(
S̄T ,E

[
ĪT |Ŝ

])]
, where we set Īt =

∫ T
0 S̄u du. To eliminate the related bias (due to

the non linearity of φ), a better alternative (see Lapeyre and Temam [125]) is to compute
directly the r.h.s. in (242), which can be done by noting that, conditionally on Ŝ, ĪT is well
approximated by

n−1∑
i=0

Ŝti

∫ ti+1

ti

(
1 + κ(t− ti) + σ(ti, Ŝti)B

i
tdt
)

≈
n−1∑
i=0

hiŜti

(
1 +

κhi
2

+
σ(ti, Ŝti)

hi

∫ ti+1

ti

Bi
tdt

)
=: Î3

T ,

where Bi is a Brownian bridge between (ti,Wti) and (ti+1,Wti+1), so that
∫ ti+1

ti
Bi
tdt =: εi

is a Gaussian random variable with mean

Eεi =
∫ ti+1

ti

(
Wti +

(t− ti)
hi

(Wti+1 −Wti)
)
dt =

hi
2

(Wti +Wti+1) ,

and variance, using the fact that Cov(Bi
t, B

i
u) = (t− ti)(1− u−ti

hi
) (cf. (234)):

Varεi = 2
∫ ti+1

u=ti

∫ u

t=ti

Cov(Bi
t, B

i
u)dtdu = 2

∫ hi

v=0
(1− v

hi
)
v2

2
dv =

h3
i

12
.
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The previous discretizations schemes can be used in conjunction with suitable variance
reduction techniques, �rst introduced on this problem (see Kemna and Vorst [116], Lapeyre
and Temam [125]). Thus note that the arithmetic average AT = IT

T is close to the geometric

average GT exp
(

1
T

∫ T
0 ln(St) dt

)
, for r and σ small. This suggests to choose the modi�ed

payo� φ (ST , TGT ) as a control variable to price the payo� φ (ST , IT ). In the case of the
�xed strike Asian call in the Black�Scholes model, we have

φ (ST , TGT ) = (TGT −K)+

with GT log-normally distributed, so that Eφ (ST , TGT ) is known explicitly. More precisely,
we have

GT = exp
(

1
T

∫ T

0
ln(St) dt

)
= S0 exp

(
1
T

∫ T

0
(σWt + bt) dt

)
= S0 exp

(
σ

T

∫ T

0
Wt dt+

bT

2

)
with Var(

∫ T
0 Wt dt) = 2

∫ T
u=0

∫ u
t=0 tdtdu = 2

∫ T
u=0 du = T 3

3 . Therefore

TGT = S̃0 exp
(
σ̃
√
Tε− σ̃2T

2

)
with σ̃ = σ√

3
, S̃0 = TS0 exp

(
bT
2 + σ̃2T

2

)
. So

E(TGT −K)+ = πbl(T,K; 0, S̃0, σ̃) .

34.4 American Options

Recall the generic multinomial (recombining) tree algorithm for pricing American options
(cf. (228)): Πn(j) = φ(Sj) for j = 1 . . .m, and then for i = n − 1, . . . , 0, for j = 1 . . .m
(where i and j index the time and space step in the algorithm, respectively):

Πj
i = max

(
φ
(
Sj
)
, e−rh

∑
l∈Z

plΠ
j+l
i+1

)
. (243)

For pricing an American option by Monte Carlo, a procedure consists in writing the generic
dynamic programming equation (243) on a stochastically generated (hence, non recombining)
mesh (Sji )0≤i≤n,1≤j≤m, using an appropriate discretization (Euler,..) scheme for the under-
lying di�usion. We thus get the following amendment to (243): Πj

n = φ(Sjn) for j = 1 . . .m,
and then for i = n− 1, . . . , 0, for j = 1 . . .m :

Πj
i = max

(
φ
(
Sji

)
, e−rhEi,jΠi+1

)
(244)

where Ei,jΠi+1 stands for the conditional expectation of Πi+1 given Si = Sji . The problem
thus reduces to computing conditional expectations (for i ≥ 1, since for i = 0 the conditional
expectation reduces to a simple expectation).

Recall that under mild conditions the conditional expectation E(X|Y ) is equal to the Hilbert
space projection EL(X|Y 0, Y 1, Y 2, . . .), or more generally EL(X|ϕ0(Y ), ϕ1(Y ), ϕ2(Y ), . . .),
for a suitable basis ϕ = (ϕl)l∈n of the set of the univariate real functions. At step i ≥ 1
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the involved conditional expectations may thus be computed in an elementary way by linear
regression of the (Πj

i+1)1≤j≤m (which are already known at step i of the algorithm) against
the (ϕl(Sji ))1≤j≤m,0≤l≤q where the integer q is a parameter in the method.

The computational cost of the regression is of the order of O(m2q2), hence an overall com-
putational cost as O(nm2q2). This is obviously too much for typical values of the parameters
(e.g., n = 100,m = 105, q = 7). Fortunately this can be improved in a number of ways,
leading to methods perfectly amenable to a practical resolution, for problems of dimension
up to 10 or more (whereas deterministic methods are out of scope for dimensions greater
than 4).

The previous approach is the one developed in Longsta� and Schwartz [135]. For many al-
ternative methods for computing the conditional expectations: more general non-parametric
regression methods, Malliavin Calculus methods, quantization methods, etc., we refer the
reader to the literature (see Broadie and Glassermann [49, 48], Lions and Régnier [134],
Pages and Bally [152], Tsitsiklis and VanRoy [174, 175], Bouchard et al. [39], among many).

Note that a con�dence interval is not available in this case. It is possible however to derive
an upper bound on the price by resorting to a suitable dual Monte Carlo approach (see
Rogers [163]). Since most pricing methods provide lower bounds, we thus end up with an
interval.

34.5 Adding Jumps

The previous Monte Carlo schemes for Exotic Options in di�usion models, can be extended
to more general jump-di�usion models of the form (238), using if need be the related con-
tinuous time Euler approximation scheme (see the last paragraph of section 33.4). In the
generic market model Z of section 7.2, a further Continous-Time Markov Chain � like model
component is considered. For simulation in this generic model, see Bielecki et al. [32].

35 Backtesting

Before a model may be used in production, it is backtested, so the hedging performances
of the model are assessed using both simulated trajectories in relevant market models and
real data sets. Let us thus consider the problem of discretely delta-hedging at times ti =
ih, i = 0 . . . n− 1, an European vanilla call option with maturity T on an underlying S (cf.
section 9.2 and section 13.2.1). To �x ideas, let us assume that the spot obeys the following
objective Black�Scholes dynamics (under the statistical measure P̂):

dSt = St

(
µtdt+ σdŴt

)
with constant interest rate r and dividend yield q on S. If a trader were able to hedge
continuously, she could perfectly hedge the option and her P&L would be equal to 0. But
in practice the trader hedges at discrete times, for example every day at closing price, so
that her P&L deviates from 0. More precisely, her discounted P&L at maturity is given by
(144), (145) as

e−rT eT =
n−1∑
i=0

e−rihδie (245)
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with

e−rihδie = −(e−r(i+1)hΠ(i+1)h − e−rihΠih) + ∆ihe
−qih

(
e−κ(i+1)hS(i+1)h − e−κihSih

)
(246)

The behavior of the P&L process may then be assessed numerically by simulation. Assuming
constant µ, the solution of the objective Black�Scholes SDE satis�es:

S(i+1)h = Sih exp
((

µ− σ2

2

)
h+ σ

(
Ŵ(i+1)h − Ŵih

))
(247)

where Ŵ(i+1)h − Ŵih =
√
hε and ε ↪→ N (0, 1). Thus we can simulate the value of the

spot step by step (see section 33.2), multiplying Sih by exp
((
µ− σ2

2

)
h+ σ

√
hε
)
with

ε ↪→ N (0, 1) to get S(i+1)h. We then get the related values of Π(i+1)h by application of the
Black�Scholes formulae, and deduce the corresponding increment of the P&L process by
application of formula (246).

In the course of this process, it is interesting to be able to �lter some noteworthy paths of
the spot, selecting for example spot trajectories passing by a target level at a target time.
We can thus observe the behaviour of a pricing routine or a hedging scheme when the spot's
trajectory passes at a critical point. For example, in the case of a (reverse) barrier option,
we can impose the spot to reach the barrier level at an interesting date like the maturity
(recall that the delta of a reverse barrier option explodes at this point).

This can be done with the Brownian Bridge, wich may be de�ned as a centered Gaussian
process de�ned on [0, 1] with covariance Γ (s, t) = s (1− t) on s ≤ t (see also Subsections
33.1 and 34.1). The easiest way to prove that Γ is a covariance is to observe that the process
Bt = Ŵt − tŴ1 satis�es Ê [BsBt] = s (1− t) for s ≤ t. This also gives us a continuous
version of the Brownian Bridge. Observe that B1 = 0, so (almost) all the paths go from 0
at time 0 to 0 at time 1, hence the name of this process. Of course the notion of Brownian
Bridge may be extended to higher dimensions and to intervals other than [0, 1].

In our case, we want the spot trajectory to pass by ST1 at time T1. For this we would like to
replace the Brownian motion in (247) by a Brownian Bridge so that S passes by the desired
target point. We thus set:

BT1,y
0,x (t) = x+

t

T1
(y − x) + Ŵt −

t

T1
ŴT1 ,

where T1 is the target time, and x and y are the Brownian Bridge's starting and target
levels, respectively. This gives us a Brownian Bridge between (0, x) and (T1, y). Since we
want:

ST1 = S0 exp
[(
µ− σ2

2

)
T1 + σBT1,y

0,x (T1)
]
,

we choose x and y such that

BT1,y
0,x (0) = x = 0

BT1,y
0,x (T1) = y = 1

σ

(
ln
(
ST1
S0

)
−
(
µ− σ2

2

)
T1

)
.

We �nally obtain

St+h = St exp
[(
µ− σ2

2

)
h+ σ

(
BT1,y

0,x (t+ h)−BT1,y
0,x (t)

)]
,
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with x and y thus determined. All we need now is to simulate the quantity

Γ = BT1,y
0,x (t+ h)−BT1,y

0,x (t) .

After some computations, we �nd that

Γ ↪→ N

((
y −BT1,y

0,x (t)
) h

T1 − t
;h
(

1− h

T1 − t

))
.

This gives us the formula for the next value of the spot:

St+h = St exp

(µ− σ2

2
)h+ σ

(
(y −BT1,y

0,x (t))
h

T1 − t
+

√
h(T1 − t− h)

T1 − t
ε
) , (248)

where ε ↪→ N (0, 1) . Note that formula (248) is only applicable for t ≤ T1; for (t > T1) we
have to use formula (247).

We may thus simulate a number of spot trajectories with these formulas at discrete times,
and calculate for each path the corresponding P&L given by the discrete hedging formulas
(245)�(246). We may then compute pertaining statistics, like the mean, the square deviation
or further moments of eT 6. We may also identify some relevant spot's trajectories, like those
generating extremal or median P&L positions (see Figures 13 and 14). Such dynamic tests
allow risk managers or traders to assess the performance of a hedging scheme, and they may
help developers in detecting some problems of a pricing routine behaviour.

6 The standard deviation of the P&L at maturity of a daily rebalanced delta-hedged vanilla option position
in the Black�Scholes model is commonly found to be of the order of 1% of the initial option premium Π0

(see, e.g., [151]).
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Part VII

Calibration Methods

An important issue in quantitative �nance is model calibration. In �nancial modelling,
calibrating a (class of) model(s) means �nding numerical values of its parameters such that
the related instance of the model is consistent with the market, in the sense that the prices
of some �nancial instruments at the current time, or calibration input data, are the same in
the market and in the model thus calibrated, or, practically speaking, that the model �ts
the currently observed market prices within the bid-ask spread.
The calibration problem is thus the inverse of the pricing problem. Instead of computing
prices in a model with given values for its parameters, one wishes to compute the values of
the model parameters that are consistent with observed prices (up to the bid�ask spread).

The simplest example of a calibration problem was encountered in Section 13, when we
discussed the notions of implied volatility of an option or implied correlation of a CDO
tranche. These problems can indeed be interpreted as the calibration problem of a Black�
Scholes model or a Li model, using an observed option price or a CDO tranche market
spread as calibration input data. Of course in these cases the calibration problem is very
easy, since there is only one parameter to calibrate to exactly one market data, so the task
is easily done by dichotomy.

36 The ill-posed Inverse Calibration Problem

Since the calibration input data are typically derivative prices given by (risk-neutral) ex-
pectations of the related payo�s (see Part II), the calibration problem can be seen as a
moment problem. Physicists would call this problem, the estimation of the model. However,
in �nance, the term `estimation' speci�cally refers to statistical estimation of the model,
namely the estimation of the model parameters using historical data, by Maximum likeli-
hood estimation (MLE) or any other statistical procedure. So, in �nance, estimation is a
backward-looking process (using historical data), whereas calibration is said to be a forward-
looking process, referring to the fact that derivative prices at the current time are based on
the anticipations of the market regarding the dynamics of the underlying in the future.
It is generally acknowledged that whenever option data are available, it is better to use them
to calibrate the model, rather than to estimate the model on past data. Of course, in the
absence of calibration data (no observed prices), one has no other means than to estimate
the model statistically, but this is another story.

Now, it is well-known by physicists that such inverse problems are typically ill-posed. Recall
that a problem is well-posed (as de�ned by Hadamard) if its solution exists, is unique, and
depends continuously on its input data. Thus there are three reasons for which a problem
might be ill-posed:
• it admits no solution, or/and
• it admits more than one solution, or/and
• the solution(s) of the inverse problem do(es) not depend on the input data in a continuous
way.
In the case of calibration problems in �nance, except for trivial situations, there exists typi-
cally no instance of a given class of models which is exactly consistent with a full calibration
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data set, including a number of option prices, a zero-coupons curve, an expected dividend
yield curve on the underlying, etc. But there are often various instances of a given class of
models that �t the data within the bid�ask spread. In this case, if one perturbs the data
(e.g., if the observed prices move from some small amount between today and tomorrow),
it is quite typical that a numerically determined best �t solution of the calibration prob-
lem switches from one `basin of attraction' to the other, thus the numerically determined
solution is not stable either.

Recall that option prices (or pricing functions in Markovian models, more precisely) are
solutions of PIDEs with model parameters related coe�cients (see Part II). Thus model
parameters can be expressed in terms of partial derivatives of the option prices with re-
spect to the model factors. Therefore, calibrating the model is tantamount to numerically
di�erentiating derivatives pricing functions. But numerical di�erentiation is the canonical
example of an ill-posed problem, see, e.g., [82] (so two functions may be arbitrarily close to
one another in sup norm, though their derivatives di�er signi�cantly).

In order to get a well-posed problem, we need to introduce some regularization. The most
widely known and applicable regularization method is Tikhonov(�Phillips) regularization
method [172, 154, 82].

36.1 Tikhonov regularization of non-linear inverse problems

We consider a Hilbert space H, a closed convex non-void subset A of H, a direct operator
(`pricing functional')

H ⊇ A 3 a Π−→ Π (a) ∈ Rd ,

(so a corresponds to the set of model parameters), noisy data (`observed prices') πδ, and a
prior a0 ∈ H (a priori guess for a). The Tikhonov regularization method for inverting Π at
πδ, or estimating the model parameter a given the observation πδ, consists in:
• reformulating the inverse problem as the following nonlinear least squares problem:

mina∈A
∥∥Π (a)− πδ

∥∥2 (249)

to ensure existence of a solution,
• selecting the solutions of the previous nonlinear least squares problem that minimize
‖a− a0‖2 over the set of all solutions, and
• introducing a trade-o� between accuracy and regularity, parameterized by a level of regu-
larization α > 0, to ensure stability.
More precisely, we introduce the following cost criterion:

Jδα (a) ≡
∥∥∥Π (a)− πδ

∥∥∥2
+ α ‖a− a0‖2 . (250)

Given α, δ and a further parameter η, where η represents an error tolerance on the mini-
mization, we de�ne a regularized solution to the inverse problem for Π at πδ, as any model
parameter aδ,ηα ∈ A such that

Jδα

(
aδ,ηα

)
≤ Jδα (a) + η , a ∈ A .

Under suitable assumptions, one can show that the regularized inverse problem is well-posed,
as follows. We �rst postulate that the direct operator Π satis�es the following regularity
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assumption.

Assumption 36.1 (Compactness) Π (an) converges to Π (a) in Rd if an weakly-converges
to a in H.

We then have the following stability result.

Theorem 36.1 (Stability) Let πδn → πδ, ηn → 0 when n → ∞. Then any sequence

of regularized solutions aδn,ηn
α admits a subsequence which converges towards a regularized

solution aδ,η=0
α .

Assuming further that the data lie in the range of the model leads to convergence properties
of regularized solutions to (unregularized) solutions of the inverse problem as α→ 0. Let us
then make the following additional assumption on Π.

Assumption 36.2 (Range property) π ∈ Π(A).

By an a0 � solution to the inverse problem for Π at π, we mean any a ∈ Argmin
{Π(a)=π}

‖a − a0‖.

Note that the set of a0-solutions is non-empty, by Assumption 36.2.

Theorem 36.2 (Convergence; see, for instance, Theorem 2.3 of Engl et al [83]) Let
the perturbed parameters αn, δn, ηn and the perturbed data πn ∈ Rd satisfy

(n ∈ N) ‖π − πn‖ ≤ δn,

(n→∞) αn , δ2n/αn , ηn/αn −→ 0.

Then any sequence of regularized solutions aδn,ηn
αn admits a subsequence which converges

towards an a0-solution a of the inverse problem for Π at π. In particular, in case when this
problem admits a unique a0-solution a, then a

δn,ηn
αn converges to a.

Remark 36.3 In the special case where the direct operator Π is linear, Tikhonov regular-
ization thus appears as an approximating scheme for the pseudo-inverse of Π.

Finally, assuming further regularity of Π, one can get convergence rates estimates, uniform
over all data π ∈ Π(A) su�ciently close and smooth with respect to the prior a0 (so that
the additional source condition (251) is satis�ed). Let us thus make the following additional
assumption on Π.

Assumption 36.4 (Twice Gateaux di�erentiability) There exists linear and bilinear
forms dΠ (a) on H and d2Π (a) on H2 such that

Π (a+ εh) = Π (a) + εdΠ (a) · h+ ε2

2 d
2Π (a) · (h, h) + o

(
ε2
)

; a, a+ h ∈ A
‖dΠ (a) · h‖ ≤ C ‖h‖ ,

∥∥d2Π (a) · (h, h′)
∥∥ ≤ C ‖h‖ ‖h′‖ ; a ∈ A , h, h′ ∈ H

where C is a constant independant of a ∈ A.
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In the following theorem the operator

dΠ (a)∗ : Rd 3 λ 7→ dΠ (a)∗ λ ∈ H1

denotes the adjoint of
dΠ (a) : H1 3 h 7→ dΠ (a)h ∈ Rd ,

in the sense that (see [82]):

〈h, dΠ(a)?λ〉H1 = λ′dΠ(a).h ; (h, λ) ∈ H1 × Rd .

Theorem 36.3 (Convergence Rates; see, for instance, Theorem 10.4 of Engl et al [82])
Assume

(n ∈ N) ‖π − πn‖ ≤ δn,

(n→∞) αn −→ 0 , αn ∼ δn , ηn = O
(
δ2n
)
.

Then ‖aδn,ηn
αn − a‖ = O(

√
δn), for any a0-solution a of the inverse problem for Π at π such

that

a− a0 = dΠ (a)∗ λ (251)

for some λ su�ciently small in Rd (in particular, there exists at most one such a0-solution
a).

Remark 36.5 An interesting feature of Tikhonov regularization is that the data set π does
not need to belong to the range of the direct operator for applicability of the method � even
if Assumption 36.2 is the simplest assumption for the previous results regarding convergence
and convergence rates (in fact a minimal assumption for such results is the existence of a
least squares solution to the inverse problem, see Proposition 3.2 of Binder et al [35]).

An important issue in practice is the choice of the regularization parameter α, that deter-
mines the trade-o� between accuracy and regularity in the method. To set α, the two main
approaches are:
• a priori methods, in which the choice of α only depends on δ, the level of noise on the
data (such as the size of the bid�ask spread, in the case of market prices data in �nance);
• more general a posteriori methods, in which α may depend on the data in a less speci�c
way.
In applications to calibration problems in �nance, the most commonly used method for
choosing α is the a posteriori method based on the so-called discrepancy principle, which
consists in choosing the greatest level of α for which the `distance'

∥∥∥Π(aδ,ηα )− πδ
∥∥∥ (for given

δ, η) does not exceed the level of noise δ on the observations (as measured by the bid-ask
spread).

36.2 Nonlinear Optimization

In the case of parametric models in �nance, namely models with a small number of scalar
parameters, such as the Heston model, the Merton model, etc (as opposed to models with
functional, e.g., time-dependent, parameters), the choice of a suitable regularization term



138

is generally not obvious. In this case, the calibration industry standard rather consists in
solving the unregularized non linear least squares problem (249). So Tikhonov regularization
is rather used for calibrating non parametric �nancial models.
Thus, in practice, calibration problems are essentially reduced to nonlinear minimization
problems (non linear least squares problems, typically with Tikhonov regularization, at
least for calibrating non parametric models with functional coe�cients), on suitable closed
non-void convex subsets A of related Hilbert spaces H.
Recall that a real function J on A (the cost criterion J , that will typically be given by a
regularized non linear least squares criterion J = Jδα in (250)), is said to be lower semi-
continuous at a ∈ A i� `it cannot exceed its limits at a', i.e. J(a) ≤ lim infa J . The
following theorem extends to (in�nite dimensional, presumably) Hilbert spaces, under an
additional convexity assumption, the well-known fact that a lower semi-continuous function
on a compact subset of Rk admits a global minimum.

Theorem 36.4 If J is lower semi-continuous, convex, and goes to in�nity as a goes to
in�nity in A, then J admits a global minimum on A. Moreover, if J is strictly convex on
A, this minimum is unique.

Of course, when it comes to implementation, the minimization problem (250) is discretized,
thus becoming e�ectively a nonlinear minimization problem on (some subset of) Rk (see,
e.g., [149]), where k is the number of model parameters to be estimated.

In the case of a strictly convex cost criterion J in (250), and if, additionally, J is di�eren-
tiable, one can prove the convergence to the (unique) minimum of various gradient descent
algorithms. These consist in moving at each step from some amount (�xed step descent vs
optimal step descent) in a direction de�ned by the gradient ∇J at the current step of the
algorithm, in combination with, in some variants of the method (conjugate gradient method,
quasi-Newton algorithms, etc), the gradient(s) ∇J at the previous step(s).

In the non strictly convex case, (actually, in the context of calibration problems in �nance,
J is typically not even convex w.r.t. a), or if the cost criterion is only almost everywhere
di�erentiable (as in the American calibration problem , see section 38.2), such algorithms
can still be used, in which case they typically converge to one among many local minima of
J .
When there are no constraints (case A = H), the minimization problem is, in practice, much
easier, and many implementations of the related gradient descent algorithms are available
(see for instance [156]). As for constrained problems, a state-of-the-art open-source im-
plementation of the quasi-Newton method for minimizing a function on a box, the lbfgs
algorithm, is available on www.ece.northwestern.edu/~nocedal/lbfgsb.html.

When the gradient ∇J is not computable in closed form, and not computable numerically
with the required accuracy either, an alternative to gradient descent methods is to use the
nonlinear simplex method (not to be confused with the simplex algorithm for solving linear
programming problems, see [156]). As opposed to gradient descent methods, the nonlinear
simplex algorithm only uses the values (and not the gradient) of J , but the convergence of
the algorithm is not proved in general, and there are known counter-examples in which it
does not converge.
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37 A method using the Characteristic Function for European
Vanillas

Calibrating a model typically involves massive computation of vanilla option prices for var-
ious strikes, maturities, and numerical sets of model parameters. Thus for calibration pur-
poses it is essential to have e�cient vanilla pricing methods. In many models, such methods
are provided by Fourier calculus.

37.1 Fourier Transform Miscellanea

Recall that the Fourier transform Ff of an absolutely integrable function f from R to itself
is de�ned by, for u ∈ R :

Ff(u) =
∫∞
−∞ eiuxf(x)dx

Remark 37.1 The characteristic function of a random variable X with law of density p,
de�ned by:

Φ(u) = E[exp(iuX)] =
∫∞
−∞ eiuxp(x)dx , u ∈ R

is thus given by the Fourier transform Fp.

The di�erentiation operator translates into multiplication by iu in the Fourier space:

Ff (m)(u) = (−iu)mFf(u) , u ∈ R

for di�erentiable f.

For regular f, the inverse Fourier transform formula writes, for x ∈ R :

f(x) = 1
2π

∫∞
−∞ e−iuxFf(u)du (252)

Moreover, the Fourier transform Ff may be extended to complex values of its argument
u (resulting on the so-called complex Fourier transform, still denoted Ff , of f), for u in
suitable strips of analyticity of Ff parallel to the real axis. Resorting to this notion of
complex Fourier transform, one can show that the law of any Fourier-integrable random
variable X, with characteristic function denoted by Φ, admits a weak density p formally
given by, for any η > 0 :

p(x) = 1
2π

∫ −ηi+∞
−ηi−∞ e−iuxΦ(u)du (253)

meaning that for any regular enough function ϕ such that Eϕ(X) is well de�ned, we have
(in the strong sense, now):

Eϕ(X) = 1
2π

∫ −ηi+∞
u=−ηi−∞Φ(u)

(∫∞
y=−∞ e−iuyϕ(y)dy

)
du (254)

In particular, in case where the r.v. X has a density in the usual sense, one may apply (254)
to ϕ(y) = 1y>x, for any x ∈ R. Therefore

G(x) = P
(
X > x

)
=

1
2π

∫ −ηi+∞

u=−ηi−∞
Φ(u)

(∫ ∞

y=x
e−iuydy

)
du =

1
2πi

∫ −ηi+∞

u=−ηi−∞

e−iux

u
Φ(u) du .
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Sending η → 0+, one can then show by application of the Cauchy residue formula (see, e.g.,
Titchmarsh [173] or Lewis [132]; note that the integrals in (255) are only de�ned as principal
values):

G(x) =
1
2

+
1
2π

lim
ε→0+

∫
|u|>ε

e−iuxΦ(u)
iu

du . (255)

Since eiuxΦ(−u)
−iu is the conjugate of e

−iuxΦ(u)
iu , one has:

lim
ε→0+

∫
|u|>ε

e−iuxΦ(u)
iu

du = 2 lim
ε→0+

∞∫
ε

Re

[
e−iuxΦ(u)

iu

]
du .

Hence,

F (x) = 1−G(x) = 1
2 + 1

π

∞∫
0

Re

[
ie−iuxΦ(u)

u

]
(256)

37.2 Option Pricing by Fourier Transform

Let us now consider the problem of valuing a European vanilla call of maturity T and
strike K. For simplicity we assume deterministic (constant, say) riskless interest rate r and
dividend yield q on the underlying S. We denote as usual κ = r − q. Of course in a context
of stochastic interest rates the subsequent results admit obvious amendments relative to a
T � forward neutral model of T � future price F on S (instead of a risk-neutral model on
S, in the text below; cf. section 11.1).

Theorem 37.1 Whenever a risk-neutral law of xT = ln(ST ) has a density, the related call
value at time 0, C0 = Ee−rT (ST −K)+ , is given by:

C0 = S0e
−qTΠ1 −Ke−rTΠ2 (257)

where the pseudo-probabilities Π1 and Π2 are given in terms of the characteristic function
ΦT (u) = E[exp(iuxT )] as:

Π1 = 1
2 + 1

π

∞∫
0

Re

[
e−iukΦT (u−i)
iuΦT (−i)

]
du

Π2 = 1
2 + 1

π

∞∫
0

Re

[
e−iukΦT (u)

iu

]
du

(258)

(with in the �rst line ΦT (−i) = EST = S0e
κT , by arbitrage).

Proof. In order to establish (257), we �rst decompose

C0 = E
(
e−rT exT1{xT>k}

)
−Ke−rTP(xT > k) ,

where k = lnK. Now, by (256),

Π2 = P
(
xT > k

)
=

1
2

+
1
π

∞∫
0

Re

[
e−iukΦT (u)

iu

]
du.
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Let us introduce the probability measure P̃ equivalent to P de�ned by dP̃
dP = exT

E(exT )(=
ST

S0eκT ).
So

E(e−rT exT1{xT>k}) =
∫
x∈R

e−rT ex1{x>k}dP{xT = x}

= E(e−rT exT )P̃(xT > k) = S0e
−qT P̃(xT > k) .

The characteristic function of xT under P̃ is given by:

Ẽ(eiuxT ) =
∫
x∈R

eiuxdP̃{xT = x} =
E(exT eiuxT )

E(exT )
=

ΦT (u− i)
ΦT (−i)

.

Hence, by (256) again,

Π1 = P̃
(
xT > k

)
=

1
2

+
1
π

∞∫
0

Re

[
e−iukΦT (u− i)
iuΦT (−i)

]
du .

2

37.3 Derivation of the delta in the case of homogenous models

Homogenous modelsmean models in which the European vanilla option prices are degree one-
homogenous with respect to the pair (S0,K) (for given values of the remaining parameters
and risk factors in the model), so:

C0(T, αK;αS0) = αC0(T,K;S0) , α > 0

or, equivalently:

C0(T,K;S0) = S0∂SC0(T,K;S0) +K∂KC0(T,K;S0) (259)

Note that in general

∂KC0 = e−rT∂KE(ST −K)+ = −e−rTE1{ST>K} = −e−rTP({ST > K}) = −e−rTΠ2

(where Π2 was de�ned in (258)). So in a homogenous model, using also (257):

S0∂SC0(T,K;S0) = C0(T,K;S0)−K∂KC0(T,K;S0) = S0e
−qTΠ1 .

Thus
∆0 = ∂SC(T,K; 0, S0) = e−qTΠ1

37.4 Numerical Algorithm

In many models the characteristic function ΦT is known and computable. This is for instance
the case in all AJD models [75] (see section 10.5). Knowing ΦT , (257) enables one to compute
C0 numerically by quadrature.

If ΦT (u) is computable, both Π1 and Π2 can be computed by plugging the expression
for ΦT (u) in (258), and discretizing the related integrals by the trapezoid method. More
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precisely, we choose a step h (e.g. h = 0.01) and a time mesh 0 = x0 < x1 <, . . . , < xM
h

= M

(e.g. M = 100) such that xj+1 − xj = h. Denoting by f either integrand in (258), one

approximates
M∫
0

f(u) du by h
2

(
f(x0) + f(xM

h
) + 2

M
h
−1∑

j=1
f(xj)

)
.

For implementation details, including the use of more e�cient Gaussian quadratures rather
than the simple trapezoid method above, as well as on numerical issues related to the
evaluation of the multi-valued complex functions involved in the integrands, we refer the
reader to Kahl and Jackel [113].

37.5 An alternative Formula

Unfortunately, FFT cannot be used to evaluate the integrals in (258), due to the singularity
of the integrands at u = 0. We now present an alternative formula, due to Carr and Madan
[52], which is amenable to evaluation by the FFT. A further advantage is that it allows one
to compute the prices of a whole family of options with various strikes and maturity T at
time 0, which is precisely what is required for calibration purposes (for other alternative
approaches, see [52, 57]).

The idea is to compute the Fourier transform of the call price viewed as a function C(k) of
the log-strike k = lnK. However the function C(k) is not integrable (since limk→−∞C(k) =
e−rTEST = S0e

−qT > 0). We thus de�ne the modi�ed price c(k) = eαkC(k), for a �xed
α > 0. The modi�ed price is integrable, and we have, for any u ∈ R :

Fc(u) =
∫ ∞

−∞
eikuc(k)dk =

∫ ∞

−∞
e(α+iu)kC(k)dk

= e−rT
∫ ∞

−∞
e(α+iu)k

(∫ ∞

−∞

(
ex − ek

)+
pT (x)dx

)
dk

= e−rT
∫ ∞

−∞
pT (x)

(∫ x

−∞
e(α+iu)k

(
ex − ek

)
dk

)
dx

= e−rT
∫ ∞

−∞
pT (x)

(
ex

α+ iu

[
e(α+iu)k

]x
−∞

− 1
α+ iu+ 1

[
e(α+iu+1)k

]x
−∞

)
dx

= e−rT
∫ ∞

−∞
pT (x)

(
exe(α+iu)x

α+ iu
− e(α+iu+1)x

α+ iu+ 1

)
dx ,

where the last equality follows from the fact that limk→−∞ e(a+iu)k = 0, for any a > 0 and
u ∈ R. Hence

Fc(u) = e−rT
∫ ∞

−∞
pT (x)

e(α+iu+1)x

(α+ iu)(α+ iu+ 1)
dx =

e−rTΦT (u− (α+ 1)i)
(α+ iu)(α+ iu+ 1)

(260)

where ΦT is the characteristic function of xT = ln(ST ) (assumed well-de�ned).

The call price function C(k) may then be retrieved numerically by discrete Fourier transform.
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Indeed, we have by the inverse Fourier transform formula (252):

C(k) = e−αkc(k) =
e−αk

2π

∫ ∞

−∞
e−ikuFc(u)du

=
e−αk

π
Re

[∫ ∞

0
e−ikuFc(u)du

]
,

where the second equality holds because the function c(k) is real, which implies that Fc(−u) =
Fc(u), for any u ∈ R. We thus get by numerical integration using Simpson's rule

C(k) ≈ e−αk

π

N−1∑
j=0

e−ikujFc(uj)wj (261)

with N even (for validity of Simpson's integration rule) and for j = 0 . . . N − 1:

uj = jh , wj =
h

3
(
3 + (−1)j+1 − 1j=0 or N−1

)
.

Here the motivation for using Simpson's integration rule is to have a good accuracy for a
relatively small value of N . In particular, for k of the form kn = k + 2πn

Nh where k will be
�xed later, we have:

kuj = knuj = kuj +
2πn
N

j .

Plugging this into (261), we get

C(kn) ≈
e−αkn

π

N−1∑
j=0

e−2πi jn
N e−ikujFc(uj)wj .

In the last sum, we recognize the discrete Fourier transform of

f =
(
e−ikujFc(uj)wj

)
0≤j≤N−1

at the evaluation point n. Recall that the discrete Fourier transform (Ffn)0≤n≤N−1 of a
vector f = (fj)0≤j≤N−1 writes:

Ffn =
N−1∑
j=0

e−2iπ jn
N fj , 0 ≤ n ≤ N − 1 .

Choosing k = ln(S0) + κT − π
h , we can thus price a call for N values of the strike K

distributed around the T -forward value of the stock F0 = S0e
κT by computing the discrete

Fourier transform of an explicitly known function, which provided N is a power of 2 can be
made at cost O(N lnN), by FFT.

This approach is successfully tested by Carr and Madan [52] in a Variance Gamma model
using the following method parameters: N = 4096, h = 0.25, α = 1.5. As for α, a general
recommendation in view of (260), (261) is to choose α such that

ΦT (−(α+ 1)i) = ESα+1
T < +∞ .
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38 Extracting E�ective Volatility

In this Section we consider the problem of inferring an e�ective volatility function σ(t, S)
(see Dupire [76]) from observed option prices, namely European vanilla calls and/or puts
with various strikes and maturities on the underlying S. The e�ective volatility function
thus inferred may then be used to price exotic options and/or Greeking, consistently with
the market (see, for instance, Crépey [62]).

38.1 Local versus E�ective Volatility

Local Volatility (LV) models [76] are the straightforward generalization of the Black�Scholes
model in which the volatility parameter is not a constant anymore, but is given by a (pos-
itively bounded Borel-measurable) function σ = σ(t, St) of t and St. As the Black�Scholes
model, Local Volatility models are complete, and we have under the related risk-neutral
probability measure P :

dSt = St(κdt+ σ(t, St)dWt) (262)

for a standard P � Brownian motionW. Thus European vanilla call options on S have unique
Local Volatility arbitrage price processes given by, for t ∈ [0, T ] :

Πt(T,K) = e−rτE
(
(ST −K)+ |St

)
= Π(T,K; t, St, σ) . (263)

We don't have closed pricing formulae in a general Local Volatility model. But the pricing
function Π(T,K; t, S, σ) de�ned by (263) is the unique W 1,2

p,loc-solution (for p > 2; a.e. solu-
tions with related partial derivatives in Lp,loc in time-space) of the Black�Scholes equation
in the variables (t, S) :

{
−∂tΠ− κS∂SΠ− 1

2
σ(t, S)2S2∂2

S2Π + rΠ = 0, t < T

Π|T = (S −K)+
(264)

and of the dual Dupire equation in the variables (T,K) :

{
∂TΠ + κK∂KΠ− 1

2
σ(T,K)2K2∂2

K2Π + qΠ = 0, T > t

Π|t = (S −K)+
(265)

(see [63, theorem 4.3]).

These equations can be used to compute Local Volatility option prices and Greeks nu-
merically. They also imply that whatever the market risk-neutral price process may be,
there is always, at any date t0, a Local Volatility model (dependent on t0!) with the same
spot marginals as the market risk-neutral price process at t0. Given a suitable interpolation
Π0 ∈W 1,2

p,loc of the set obs0 of observed European vanilla call prices π0 ≡ {π0(T,K) ; (T,K) ∈
obs0} at time t0, this `tangent di�usion process' of the market risk-neutral price process cor-
responds to the volatility function given by the following Dupire's formula [76], for any
(T,K) ∈ [t0,∞)× (0,∞) :

σ0(T,K)2 = 2 ∂T Π0(T,K)+κK∂KΠ0(T,K)+qΠ0(T,K)
K2∂2

K2Π0(T,K) (266)
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provided Dupire's ratio in the r.h.s. of (266) de�nes a positively bounded Borel-measurable
function. Practically speaking, it is virtually always possible to �nd an interpolation (and/or
approximation within the bid ask spread) Π0 ∈ W 1,2

p,loc of π0 for which this is satis�ed, and
we shall refer to the related volatility function σ0(T,K), as the market (or market model, in
case where the prices π0 are in fact model prices) E�ective Volatility (EV) function σ0.

The practical problem of extracting e�ective volatility from market prices is tantamount to
calibrating a Local Volatility model (see section 38.2). Once available, e�ective volatility
is a useful tool in various tasks, like hedging, calibrating more general stochastic volatility
models, arbitraging basket options, etc.

38.2 The Local Volatility Calibration problem

The Local Volatility calibration problem amounts to inferring a Local Volatility function
σ from observed option prices, namely European calls or puts with various strikes and
maturities. This is both an under-determined (since the set of observed prices is �nite
whereas the nonparametric function σ has an in�nity of degrees of freedom) and ill-posed
problem. So a naïve approach based on numerical di�erentiation using the so-called Dupire's
formula [76] gives a local volatility which is highly oscillatory (see Figure 15), and thus
unstable, for instance when performing a day-to-day calibration.
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Figure 15: Local Variance σ(t, S)2 obtained by application of Dupire's formula on the DAX
index, May 2 2001.

To meet this issue, the �rst idea that comes to mind is to look for σ within a parameterized
family of functions. However �nding classes of functions with all the �exibility required
for �tting implied volatility surfaces with several hundred of implied volatility points and a
variety of shapes, turns out to be a very challenging task (unless a large family of splines is
considered, see Coleman et al. [55], in which case the ill-posedness of the problem shows up
again).

The best way to proceed is to stay non-parametric, and to use regularization methods
to stabilize the calibration procedure. Since we use a non-parametric local volatility, the
model contains a su�cient number of degrees of freedom to provide a perfect �t to virtually
any market smile. And the regularization method guarantees that the local volatility thus
calibrated is nice and smooth.
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38.3 Approach by Tikhonov regularization

Among the various regularization methods at hand, the most popular one is the Tikhonov
regularization method of section 36.1. One thus rewrites the local volatility calibration
problem as the following nonlinear minimization problem:

min
{σ≡σ(t,S);σ≤σ≤σ}

J(σ) = ‖Π (σ)− π‖2 + α‖σ − σ0‖2
H1 (267)

where:
• the bounds σ and σ are given positive constants specifying the abstract set A of Section
36.1,
• π is the vector of market prices observed at the calibration time,
• Π (σ) is the related vector of prices in the Dupire model with volatility function σ,
• σ0 is a suitable prior (a priori guess on σ), and for u ≡ u(t, S) :

‖u‖2
H1 :=

∫ ∞

t0

∫ ∞

0

[
u(t, S)2 + (∂tu(t, S))2 + (∂Su(t, S))2

]
dtdS .

Problem (267) and a related gradient descent approach to solve it numerically (cf. section
36.2) were introduced in Lagnado and Osher [123]. Crépey [63] (see also Egger and Engl
[78]) further showed that the general conditions of Section 36.1 are satis�ed in this case.
Stability and convergence of the method follow.

In Crépey [62] an e�cient trinomial tree implementation of this approach was presented,
based on an exact computation of the gradient of the (discretized) cost criterion J in (267).
Figure 16 displays the local variance surface σ(t, S)2 (to be compared with that of Figure 15),
the corresponding implied volatility surface and the accuracy of the calibration, obtained
by running this algorithm on the DAX index European options data set of May 2, 2001
(consisting of about 300 European vanilla option prices distributed throughout 6 maturities
with moneyness K/S0 ∈ [0.8, 1.2]). At the initiation of the algorithm, the norm of the
gradient of the cost criterion J in (267) was equal to 5.73E-02, and upon convergence after
65 iterations of the gradient descent algorithm, a local minimum of the cost criterion was
found, with related value of the norm of the gradient of the cost criterion equal to 6.83E-07.
In the accuracy graph, implied volatility mismatch refers to the di�erence between the
Black�Scholes implied volatility corresponding to the market price of an option and its price
in the calibrated local volatility model, for each option in the calibration data set.

Such calibration procedures are typically computationally intensive, however it is possible
to make them faster by resorting to parallel computing (see Table 3 and Crépey [62]).

n× nproc 1 3 6

54 25s 9s 10s
101 4m30s 1m57s 1m36s

Table 3: Calibration CPU times on a cluster of nproc 1.3 GHz processors connected on a
fast Myrinet network, using a calibration tree with n time steps (thus n2/2 nodes in the tree).

This approach by Tikhonov regularization can be extended to the problem of calibrating a
local volatility function using American observed option prices as input data (see Crépey
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Figure 16: Local variance, implied volatility and calibration accuracy obtained by application
of the Tikhonov regularization method on the DAX index (European options), May 2 2001.

[62]). Figure 17 thus displays the (squared) local volatility surface σ(t, S)2, the corresponding
implied volatility surface and the accuracy of the calibration, obtained by running the algo-
rithm of Crépey [62] on the FTSE index American options data set of January 4, 1999 (about
300 option prices distributed throughout 6 maturities with moneyness K/S0 ∈ [0.9, 1.1]). At
the initiation of the algorithm, the norm of the gradient of the cost criterion (267) was equal
to 2.84E-02, and upon convergence after 61 iterations of the gradient descent algorithm, a
local minimum of the cost criterion was found, with related value of the norm of the gradient
of the cost criterion equal to 6.62E-05.

Note that this approach by Tikhonov regularization is also applicable to the problem of
calibrating a Lévy model with local jump measure (see Cont and Rouis [56], Kindermann et
al. [117]).

38.4 Approach by entropic regularization

An alternative approach is to use a pseudo-entropic regularization criterion, rewriting the
calibration problem as the following nonlinear minimization problem (see Avellaneda et al.
[13], Samperi [166]):

min
{σ≡σ(t,S);σ≤σ≤σ}

J(σ) = ‖Π (σ)− π‖2 + α‖σ − σ0‖2
L2 (268)

where
‖σ − σ0‖2

L2 := E
∫ ∞

t0

(σ(t, St)− σ0(t, St))2dt .
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Figure 17: Local Variance, implied volatility and calibration accuracy obtained by application
of the Tikhonov regularization method on the SEI index (American options), January 4,
1999.
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Using a dual formulation of a related stochastic control problem (cf. Section 39), the opti-
mization problem (268) may be solved at cost O(|obs|), versus O(n2) in the case of Tikhonov
regularization. The resolution is thus typically faster, but it also happens to be less robust,
and the regularization is less e�cient (since it does not involve the gradient of σ, but only
the di�erences σ − σ0) than with Tikhonov regularization.

Figure 18 (to be compared with Figure 16) displays the (squared) local volatility surface
σ(t, S)2, the corresponding implied volatility surface and the accuracy of the calibration,
obtained by this pseudo-entropic regularization algorithm using a calibration tree with n =
75 time steps on the DAX European options data set of May 2, 2001 (same date set as the
one of Figure 16). At the initiation of the algorithm, the norm of the gradient of the cost
criterion (267) was equal to 4.10E00, and upon convergence a local minimum of the cost
criterion was found, with related value of the norm of the gradient of the cost criterion equal
to 5.05E-03.
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Figure 18: Local Variance, implied volatility and calibration accuracy obtained by application
of the entropic regularization method on the DAX index (European options), May 2 2001.

39 Weighted Monte Carlo

Let us �nally mention a simulation based technique for Calibrating Asset Pricing Models,
the so-called Weighted Monte Carlo method of Avellaneda et al. [10, 11, 12]. In this ap-
proach, one �rst simulates m trajectories following a given (risk-neutral) prior model. The
simulated trajectories are thus equi-probable in the prior model, by construction. One then
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re-ponderates these trajectories, seeking for associated (risk-neutral) probabilities such that
option prices are the same in the re-ponderated model and in the market. Calibration here
thus takes the form of a re-ponderation of the possible model scenarii, in the spirit of the
Girsanov's theorem of stochastic analysis.

Mathematically, we are led to the following program to be solved in the probability measure
p ∈ P, where P stands for the set of (strictly, for arbitrage issues) positive probability
measures over the set of simulated trajectories: Π(p) = π, so∑m

j=1 pjξ
j
l = πl , l = 1 . . . d (269)

Here πl denotes the market price of the lth option in the calibration input data set, with
payo� ξl, and ξ

j
l stands for the payo� of the lth option on the jth trajectory.

Now, since the number of simulated trajectories m is typically much larger than the number
d of quoted vanillas (typically m = 104 at least versus d = a few hundreds at most on major
index derivatives markets), one further imposes that the probability measure p be as close
as possible to the (prior) uniform distribution on the simulated trajectories in the sense of
a suitable entropy criterion, in order to stabilize the calibration procedure.

Recall that the relative entropy of the probability measure µ relative to the probability
measure ν is de�ned as

Eν(µ) =
{

Eν ln(dµdν ) if µ� ν
+∞ otherwise

The mapping µ 7→ Eν(µ) is strictly convex, and strictly minimum and null at µ = ν.

In the present context, let us denote E(p) =
∑m

j=1 pj ln(pj), which is equal to the relative
entropy of the probability measure p relative to the uniform distribution on the space of
simulated trajectories, up to a constant ln(m). We then consider the following problem (cf.
(269)):

infp∈P ; Π(p)=π E(p) (270)

By strict convexity of E , this problem admits a unique solution provided the constraints are
feasible.

Remark 39.1 Feasibility of the constraints typically holds true in practice since the number
of unknowns m is typically much larger than the number of constraints d, however there
is no theoretical guarantee that it should hold in general (and it is easy to devise simple
examples in which it does not hold). For a robust approach not subject to this constraints
feasibility condition, see section 39.2.

39.1 Dual Approach

Introducing Lagrange multipliers, we get the following equivalent form of (270):

sup
p∈P

inf
λ∈Rd

J (λ, p) := −E(p) +
d∑
l=1

λl(
m∑
j=1

pjξ
j
l − πl) (271)
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The dual formulation of (271) writes:

inf
λ∈Rd

sup
p∈P

J (λ, p) (272)

Observe that Sion's Minimax Theorem (1958) is applicable here, so that there is no duality
gap between (271) and (272). So

sup
p∈P

inf
λ∈Rd

J (λ, p) = inf
λ∈Rd

sup
p∈P

J (λ, p) ,

and, assuming feasibility of the constraints, the unique solution (p∗, λ∗) to (271) is also the
unique solution (p∗, λ∗) to (272), the p∗ component of which is in turn the unique solution
to (270).

Now, due to the properties of the entropy criterion E , for any given λ ∈ Rd, the probability
measure pλ which maximizes J (λ, p) is explicitly known as, for j = 1 . . .m :

pλj =
1
Zλ

exp(
d∑
l=1

λlξ
j
l ) (273)

where the normalization factor Zλ is thus given as

Zλ =
m∑
j=1

exp(
d∑
l=1

λlξ
j
l ) .

So, using (273), for every 1 ≤ k, l ≤ d:

E(pλ) =
∑m

j=1 p
λ
j ln(pλj ) = − ln(Zλ) +

∑m
j=1

∑d
l=1 p

λ
j λlξ

j
l (274)

∂λl
ln(Zλ) =

∂λl
Zλ

Zλ
=
∑m

j=1 p
λ
j ξ
j
l = Epλξl (275)

∂2
λkλl

ln(Zλ) = Covpλ(ξk, ξl) (276)

In view of (274), problem (272) is thus e�ectively reduced to

inf
λ∈Rd

F(λ) := −E(pλ) +
d∑
l=1

λl(
m∑
j=1

pλj ξ
j
l − πl) = ln(Zλ)−

d∑
l=1

λlπl (277)

where we have by (275)�(276), for every 1 ≤ k, l ≤ d:

∂λl
F(λ) = ∂λl

ln(Zλ)− πl = Epλξl −Πλ
l

∂2
λkλl

F(λ) = ∂λkl
Epλξl = Covpλ(ξk, ξl)

So F in (277) is convex wrt λ, and if λ∗ is a critical point of F with related probability
measure p∗ = pλ

∗
, then λ∗ minimizes F , and for l = 1 . . . d :

0 = ∂λl
F(λ∗) = ∂λl

ln(Zλ)− πl = Ep∗ξl − πl

Thus the calibration constraints are satis�ed at the probability measure p∗ = pλ
∗
relative

to a critical (minimum) point λ∗ of F in (277), which is consistent with the fact that the
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related probability measure p∗ should then solve (270) (whereas the pair (p∗, λ∗) solves (271),
(272)).

39.1.1 Algorithm

Finally the related algorithm goes as follows:
(i) Simulate m trajectories in the prior model by using a suitable (say Euler) scheme,
(ii) Compute the related payo�s ξjl for l = 1 . . . d, j = 1 . . .m,
(iii) Use a suitable (descent gradient) optimization routine (like the lbfgs algorithm men-
tioned in section 36.2) in order to minimize F(λ) in (277),
(iv) Compute by (273) the related probabilities p∗j for j = 1 . . .m.

Note that in theory, the values of the probabilities pλ and of F(λ) are computable in closed-
form using (273) and (277), respectively. However the exponentials sitting in pλ are often
found to be in�nite numerically. A solution to this problem may be found in re-expressing
the related formulas in terms of the di�erences (typically small, or not too big) ξjl − πl as
much as possible.

39.2 Least Squares Approach

In order to get rid of the constraints feasability condition in the previous approach, and, more
generally, to improve the stability of the calibration procedure, one may relax the equality
constraints into inequality constraints in (269), which results in the following problem

inf
p∈P

Eω(p) := E(p) +
1
2

d∑
l=1

1
ωl

(Ep(ξl)− πl)2 (278)

for a further vector (parameter) of positive weights ω. Note that in the limit w → 0
problem (278) reduces to (269), whereas in the limit ω → +∞ the solution of (278) obviously
converges to U{1...m}.
Now, one can show (see Section 4 of [11]) that problem (278) admits the following equivalent
dual formulation:

inf
λ∈Rd

sup
p∈P

{−E(p) +
d∑
l=1

λl(Ep(ξl)− πl)}+
1
2

d∑
l=1

ωlλ
2
l (279)

= inf
λ∈Rd

F(λ) +
1
2

d∑
l=1

ωlλ
2
l =: inf

λ∈Rd
Fω(λ) (280)

where F(λ) is the function that was de�ned in (277).

The related calibration algorithm is then exactly the same as that of section 39.1.1, except
for the fact that Fω(λ) is minimized instead of F(λ) therein. One thus get a calibrated
model achieving a trade-o�, ruled by the vector of weights ω, between distance (in the sense
of entropy) to the prior and accuracy of the calibration (recall that market prices are in fact
de�ned up to a bid/ask spread, so that a perfect calibration �t has no meaning anyway).

Note that the quadratic term in Fω(λ) makes Fω(λ) a proper function, which means that
Fω(λ) →∞ as |λ| → ∞. This property may also help in the numerical minimization of Fω.

39.3 Applications
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The calibrated probability measure p∗ can then be used to price OTC (barrier..) options,
or to do hedging, consistently with the market smile. This approach is in fact more partic-
ularly suited to the application of statically hedging a derivative with payo� χ by using the
calibration input data options as hedging instruments.

Let us thus formalize this static hedging problem as

min
ζ

Varp∗ [−χ+ ζξ] (281)

where ζ is the (row-)vector of static positions to be held in the calibration input data
options, with vector of payo�s ξ = (ξl)1≤l≤d. We thus aim at minimizing the (risk-neutral,
here) variance of a static portfolio with a short unit position in the derivative with payo� χ
and a long position ζ in the options of the calibration data set. The solution of this problem
is then explicitly given by the multi-linear regression formula

ζ∗ = Covp∗(χ, ξ)Varp∗(ξ)−1 (282)
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