PRICING PARISIAN-STYLE OPTIONS WITH A LATTICE METHOD
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ABSTRACT. A Parisian-style barrier option expires if the price of the underlying asset re-
mains above or below some level(s) continuously over a specified period of time(the “win-
dow”). A trinomial-lattice scheme is developed for calculating the price and the sensitivities
of such options. Monte-Carlo simulation of hedging events using the resulting deltas show
errors which are of the same magnitude as for hedging vanilla options, confirming the va-
lidity of proposed scheme. We use these results to price callable and convertible bonds with
this “window” feature.

1. INTRODUCTION

Parisian options are variations on the standard barrier option contracts. They are
option contracts that are either “knocked in” or “knocked out” once the asset price remains
above or below some level(s) continuously over some pre-specified length of time. For exam-
ple, a Parisian-style up-and-out put option with 5-day window, with strike 100 and barrier
110, will have terminal payoff V(Sr,T) = max(100 — Sr, 0) subject to the condition that the
asset price S; over the life of the contract never exceeds 110 continuously for a period of more
than 5 days. If the asset price remains above 110 for more than 5 days, the option expires
worthless. We shall denote the time-window defining the Parisian option by D, measured
in years. At any moment ¢, the asset path is therefore monitored over the time window
(t — D,t) in order to determined whether the option has been knocked out or not. In the
extreme cases D = 0 and D = T, the Parisian put option reduces to the standard knock-out
put option and vanilla put option, respectively.

Parisian options can be attractive alternatives to standard knock-out(KO) options.
Standard KO barrier options are cheap but they are vulnerable(from the investor’s point of
view) to “spikes” in the asset price or to market manipulation in the case of thinly traded
underliers. The window feature arises as a natural remedy to these disadvantages. On the
other hand, it is intuitively clear that the value of a Parisian option increases with the length
of the window. The window feature gives a tradeoff between protection(near the barrier) and

cost. Over the years there have been strong interests in the options with window feature.
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In Hong Kong, it is quite common for callable convertible bonds traded in the OTC market
to carry the window feature in their call provision. The accurate pricing of the window
provision(the embedded Parisian option) is a recent practice.

Chesney, Picque and Yor(1995) pioneered the rigorous pricing of Parisian options. They
derived a formula for pricing Parisian options using Browning motion excursion theory. The
formula involves the density of excursion for a period greater than D, which has to be
solved by using numerical inverse Laplace transform. In particular, this method is limited
to constant model parameters(volatility, cost-of carry, etc). Cornwall and Kentwell(1995)
implemented the results of Chesney et al using a semi-analytical approach and extended
their results to discrete monitoring as well.

In this paper we model and price Parisian-style options by formulating the problem as
a partial differential equation(PDE) which is solved numerically by trinomial lattice method.
Our derivation is based on the following observations: (i) if the asset price is beyond the
barrier, the option can be viewed as a knock-in option, because it will be “restored” if the
asset price crosses the barrier again within a specified period of time. (ii) If the asset price
has never crossed the barrier, the option can be regarded as a knock-out option with rebate,
with the rebate being equal to the (unknown) option value along the barrier. (iii) The option
value along the barrier is determined by imposing continuity of the derivative with respect to
the asset price, i.e., by “smoothly pasting” the values on both sides of the barrier. Continuity
of delta is justified using standard no-arbitrage arguments.

In a continuous-time formulation, our model consists essentially of a Black-Scholes
PDE to be solved in the interior of the domain (before crossing the barrier) and a special
boundary condition along the barrier which is simple to compute. This formulation translates
easily into a finite-difference scheme which applies without major changes to models with
non-constant coefficients and to various window features.

This paper is organized as follows. In section 2, we describe an explicit roll-back scheme
on a trinomial lattice for numerical valuation of the option and its sensitivities. In section
3, we derive the PDE formulation and boundary conditions. Experiments of dynamical
hedging using the numerical deltas are given in section 4, where option values and deltas are
examined for different window duration. In section 5 we model and price a convertible bond

with window feature in its call provision. Finally in section 6 we draw conclusion.



2. RISK-NEUTRAL VALUATION WITH TRINOMIAL TREE

Let V denote the value of a Parisian option, (¢,S) be time and asset price, T' be the
time to expiration, X be the strike price, H be the barrier, and D be the length of the
window over which the asset price is monitored. To describe the payoff of the Parisian put
option in concise terms, we define excursion age associating the asset price as

0, if S, < H,
t—gt, lfSt>H,

D(S.8) = { 1)

where ¢; is the last time before ¢ at which the asset price crossed H from below:
ge = sup{r < 1S, = H}. 2)

The terminal payoff of a Parisian put option can be expressed as

max(X — S7,0), if D(S,t) <D, D<t<T,
0 otherwise.

V(Sr,T) = { (3)

We make the usual assumptions that the option value depends only on the underlying

asset price S and time £, and S follows the usual risk-neutral lognormal process:
dS = (r — ¢)Sdt + 0Sdz, (4)

with constant coefficients. For numerical option valuation we approximate the lognormal

process by trinomial discrete random walks. A one-period trinomial tree is sketched in

Figure 1,
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A multi-period trinomial tree is displayed on Figure 2,
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FIGURE 2. Multi-period trinomial Tree

The solid line represents the barrier S = H.
The pricing methodology introduced below is based on two observations. First, the
principle of risk-neutral valuation is valid as long as the option is alive. This means that the

relation of backward induction
V(S,t) = e ™ [p,V(Su,t + At) + p, V(S,t + At) + pgV (Sd, t + At)] (6)

holds for option values at all nodes. Such relation is visualized in Figure 3.
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FIGURE 3. One-period tree of option

Second, for any asset price S outside the barrier, the option should be priced as a knock-in
option with time to expiration equal to D — D(S, t), since the asset price has drifted outside

the barrier for time D(S,¢). The interpretation of knock-in option avoid the troubles caused
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by the path-dependent nature of the Parisian option. These observations suggest a procedure
for computing the option value by backward induction.

We classify the nodes into three groups as shown in Figure 2. Namely, nodes inside
the barrier, like A; nodes at the barrier, like B; and nodes outside the barrier, like C. For

nodes in different groups we apply different schemes.

e For nodes inside the barrier, the scheme is just the standard trinomial backward induc-
tion (6).

e For nodes at the barrier, the scheme begins with (See Figure 4)
V(H,t) = e (puVis(Hu, t + At) + prV (H, t + At) + pgV (Hd, t + At)), (7)

where the subindex #i is used to highlight the knock-in nature of the option at node
(Hu,t 4+ At). The window for knock-in is (¢ + 2At,¢ + D]. Let a,, be the possibility
for the underlying asset to cross node (H,t+mAt) for the first time. According to the

risk-neutral valuation, we should have

Vii(Hu, t + At) = ape ™V (H, t + 2At) + aze 2™V (H, t + 3At) +
(8)
o+ e UMY (H 4 nA),
where n = D/At and the nodes involved span the time window (¢ + 2At, ¢ + D](this is

the value of the “knock-in option” alluded in the introduction).

V(Hu,t+dt)
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Window et

FIGURE 4. Node right at the barrier

e For nodes beyond the barrier, we use backward induction in the partial tree displayed
in Figure 5, where the payoff is set to zero at time ¢+ D — D(S, t) and option values are
given along the barrier. Notice that Vj; in (8) is a special case of this category, which

corresponds to a knock-in option with window (¢ + 2At,¢ + D).
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FIGURE 5. Node outside the barrier

This gives a well-defined method for pricing Parisian-style options in a trinomial tree!. In the
next section we present a PDE formulation that can be used to generate a boundary-value

problem for V' (S, t) with lateral boundary S = H.

3. CONTINUOUS-TIME MODEL

We now sketch a derivation of the continuous-time formulation corresponding to the
above trinomial schemes. It is well-known that, when taking limit At — 0, the trinomial
backward induction gives rise to the Black-Scholes equation. The value of the knock-in

option alluded to in the last section is
t+D—D(S,t)
Via(S,t) = [ e"O-OTI(H,6; S,)V(H,0)dd, S > H, (9)
t

where the kernel II(H,#;S,t) represents the density function of first passage time across
S = H at time # from above and V (H, 6) is the value of the Parisian at the barrier (Rubinstein
and Reiner, 1991).

In the special case of a lognormal model, the density function II(H,#;S,t) is (see, for
instance, Kwok, Wu and Yu, 1997)

9 2
In £ In24+(r—g—%2)0—t
T(H,0;5,8) = — T exp _mireoa-5)6-9]) (10)

o4/2m(0 — t)3 202(0 — t)

Because the value of the knock-in option in equation (9) involves the boundary value V (H, §),

we can use this equation to construct a boundary condition for V'(S,t) in the region {S <

!The reader should note that this backward-induction procedure can be implemented, if necessary, as a
semi-implicit Crank-Nicholson scheme.
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H}. Clearly, we have V;(H,t) = V(H,t). Therefore, the matching conditions will involve
matching the normal derivatives along the boundary. 2
Using equation (9), we compute exterior normal derivative of the value of the “knock-

out” option, viz., (see the Appendix)

OV(H,t) C(p,0,D)

V(H 1 rt+D  e—u(0-1)
_ gL
H )+ 4 |

(e"OV(H,0) - V(H,t)) df,

a3 H J2r(6 - t)? (11)
where
2 b puv'D
C D)= ——— 202 — — 12
D) =2t = Loy (M), 12
p=r—q—02/2, and er f(-) is the error function
2 z 2
erf(z) = ﬁ/o e dt. (13)

This gives a continuous-time formulation of the computational scheme of the previous section,
which corresponds to letting the mesh-size tend to zero and matching the first non-trivial
terms in the boundary expansion. Notice that equation (11) corresponds to a Dirichlet-to-
Neumann boundary condition.

Using (11), we can implement a scheme in the domain S < H as opposed to solving the
two coupled problems. A similar treatment can be used in the domain S > H to determine

the value of the option after the boundary has ben crossed.

4. EXAMPLES OF DELTA HEDGING

The main result presented here is the hedging performance of our PDE model, which
we regard as a way to validate the model. For the short position of Parisian put options,
we form a hedging portfolio consisting of shares and cash in a money market account, and
re-balance the portfolio according to the delta until the termination of the option. For
simplicity we ignore transaction costs and other market friction. The distribution of hedging
error(or profit and loss) is obtained by using large number of simulated asset paths. It will
be seen that the hedging error is comparable with that for delta-hedging the vanilla put
option. We also tested the effects of window length on the option values and delta with an
up-and-out call option and a corridor knock-out option. For the corridor option we observe
that the option values increase notably when the window lengthens.

Two Parisian put options are replicated. One has barrier out of money(H > X),
another has barrier in the money. The particulars of the put options are

2This corresponds to requiring that “delta” be continuous across the boundary.
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e Annualized interest rate r = 0.1;

e Annualized dividend rate ¢ = 0.0;

e Annualized volatility ¢ = 0.3;

e Time to maturity 7' = 1;

e Current asset price S = 100;

e Length of window D = 0.1;

e (i) Strike X = 100, barrier H = 120; or
(ii) Strike X = 120, barrier H = 110.

Starting with the current asset price, we simulate the asset path down to contract maturity

with N = 50 discrete lognormal random shocks. For each new asset price, we adjust the asset

holding according to A = g—‘g. The adjustment is financed by the money market account.

The initial replicating portfolio is AySy + By, where By = —AySy + Vj is the initial balance
of the money market account. The hedging error is measured by the percentage difference

between the terminal values of option and the replicating portfolio:

—rT(__
PL — e ( Vi +VATST+BT)- (14)
0

Note that the present value is taken. For each option, a total of 200 paths are simulated.

The distribution of hedging errors are illustrated with histograms. Figure 6 shows the
hedging errors for the “out-of-the-money” barrier, with X = 100, H = 120. The initial
premium obtained is V(100,0) = 7.0392. In the distribution, the mean of the percent-
age errors is 3.5496 - 1074, and the standard deviation is 0.0236. The hedging error for
the “in-the-money” barrier, with X = 120, H = 110, is given in Figure 7. The mean of
the errors is —1.0961 - 102 and the standard deviation is 0.0394, and the option value is
V(100,0) = 14.1047. The hedging errors obtained are comparable to that of delta-hedging
the corresponding vanilla European put option, which is known to have standard deviation
around o/v/N = 0.042. In our trinomial tree, the resolution of At = 1/365 is used, which
is seven times finer than the interval of re-balancing. Such resolution is not needed for the
option values, but for the deltas.

Next we will price an up-and-out call option and a corridor option. These options are
more popular than the up-and-out put options. We want to know the effect of window length
on option value and delta. Such effect is particularly interesting when the underlying is near
a barrier. The underlying in these options is the exchange rate between US dollar(USD) and

Japanese yen(JPY). For the spot exchange rate and the exchange rate one yen away from
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the (upper) barrier, we compare the option values and deltas for various window lags. The
inputs of the options are taken as the market data of September 15, 1997.
Example 1: Up-and-out Japanses Yen call option. The characteristics of the option

are

e US interest rate r = 0.056;

e Japan interest rate ¢ = 0.007;

e Volatility of spot exchange rate o = 13%);
e Strike exchange rate X = 1/125;

e Knock-out level H = 1/110;

e Time to maturity T = 0.5yr = 180days;
e Spot exchange rate S = 1/120.5,

and the payoff will be max(S — X, 0) if the option is never knocked out. The option value and
delta for different time lags are summerized in Table 1. As expected, the option becomes
more valuable for larger time lag, in consistence with the increased protectiveness of the
option. Meanwhile, the delta changes sign from negative to positive, indicating the change
from long position to short position of yen in the replicating portfolio. Note that analytical
formula exists for the case lag=0(Rubinstein and Reiner, 1991), and the analytical solution
is 1.4060e — 04.

The results for exchange rate S = 1/111 are displayed in Figure 8 and Figure 9, where
option values and deltas are plotted against time to maturity for different time lags. As is
seen in Figure 8, an option is more valuable for bigger lag, and the values are decreasing
function of time to maturity, admitting the bigger probability to be knocked out during
the rest of the life of the option. In Figure 9, we see that the deltas are negative for all
lags, indicating the short-asset position for hedge. Yet, delta has sharp turn when time to
maturity is comparable with the time lag. In fact, when the time to maturity is close to the
time lag, the probability of knock-out reduces significantly, so does the need for short asset

hedging position.

lags values delta
0 day |1.4068e-04 | -7.1689¢-02
5 days |2.1537e-04 | -2.1307e-02
10 days | 2.5052e-04 | 1.0961e-02
15 days | 2.7907e-04 | 4.0949e-02

TABLE 1. Option Values and Deltas
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Example 2: This is a corridor option of in USD/JPY exchange rate. The payoff of
such option is one million Japanese yen, subjected to the provision that the exchange rate
stays between 1/115 and 1/125 for the next six months (monitored continuously). Other
relevant parameters are the same as those in Example 1. The option values and deltas for
S = 1/120.5 with different time lag are shown in Table 2. Note that, unlike what we have

seen in Example 1, the delta is not a monotonic function of the time lag.

lags values delta
0day |2.9775e+03 | 1.7402e+06
5 days | 7.4550e+04 | 8.9374e+06
10 days | 1.4230e+05 | 4.2076e+06
15 days | 2.0249e+05 | -3.5378e+06

TABLE 2. Option Values and Deltas

Again, the option value and delta for S = 1/116, one yen away from the upper barrier
S = 1/115, are calculated. The results are plotted in Figure 10 and Figure 11. The patterns
are similar to those of Figure 8 and 9: bigger option values for larger time lags, the values
are decreasing function of time to maturity, and turn of delta occurs when time to maturity
is comparable to lag.

Note that we use adaptive trees in both Example 1 and Example 2, which automatically

place branch(es) at the barrier(s). The resolution of the trees is At = T'/360.

5. EXTENSION TO CALLABLE CONVERTIBLE BONDS

A callable convertible bond is a portfolio consisting of (i) a straight bond, (ii) a call
option for the holder to exchange bond for stocks, (iii) and a call option for the issuer to
buy back the bond. The holder is entitled to the scheduled coupon payments and principle
at maturity. Yet, at any time before maturity the holder can convert the bond to certain
number(namely, “conversion ratio”) of shares of the stock. The issuer, meanwhile, can buy
back(“call”) the bond with the so-called call price, provided that the stock price stays above
some call level continuously for some duration of time. Once the bond is called, holders can
still choose to convert. Hence in practice, call provision is often a way to force conversion.
Most existing callable bonds have the one-touch call term, corresponding to the window of
zero duration. A positive window duration makes the call-back harder to be triggered, and
thus add more protection against possible price manipulation aiming at forcing conversion.

Bonds with one-touch trigger level have been well understood and priced, but that is not
10



the case for bonds with window feature. Here we will show that the value added by window
feature can be priced with the technique developed for Parisian options.

A number of simplifications are made in order to make the model simpler and to
highlight the analysis of window feature. We assume that the only source of price dynamics
is the stochastic movement of the underlying stock. Both risk-free interest rate and the
credit spread of the straight bond are assumed deterministic, and the latter impounds all
information of default risk. Also, conversion is made immediately once the bond is called.
These simplifications lead to a one-factor model with stock price and time to be the only
variables. Let P denote the price of a bond, S the underlying stock, ¢ for calendar time,
and d the discount rate. Under the above assumptions, the discount rate is a deterministic
function of S and ¢ as well. Further, let r be the risk-free interest rate, y the yield of the
straight bond, Z the principle, K the annual coupon(paid semi-annually), n the conversion
ratio, H the call level, and D the duration of the window, and D(S,¢) the excursion age.

Assume, as usual, that the stock price follows the risk-neutral lognormal process
dS = (r — q)Sdt + 6SdZ, (15)

then we have the following governing equations for bond price

oP 1 , ,0°P oP K

2T o4 Z - _ 7 —_+) o — 1
5 T3¢ S 532 +(r q)SaS dP+> 6(t tz)2 0, (16)
od 1 , ,8%d ad

The final and boundary conditions prescribed according to S < H and S > H:

For S< H,
V(S,T) = max(nS, Z), V(0,t) = Ze 4T, (18)
r, fornS > Z,
ds,T) = {y, for nS < Z. (19)
For S > H,
V(S,t + D — D(S,t)) = nS, (20)
d(S,t+ D — D(S,t)) =r. (21)

Except the discount rate used, equation (16) is the same as the Black-Scholes equation.
For the discount rate d, equations (17), (19) and (21) point to the evolution according

to the probability of the bond to end up in redemption or conversion. This idea for the
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determination of discount rate is borrowed from a research note of Goldman Sachs®, where
binomial method is used to valuate the one-touch callable bond. As part of the modelling,
V and g—‘g are required to be continuous across S = H. When D = 0, we have solution for
S > H such as V(S,t) = nS, implying that conversion occurs with certainty. Note that the
above model does not involve the call price, since, as commented earlier, calling-back only
enforces conversion.

The above initial-boundary value problem can be solved with trinomial method in the
way similar to that for Parisian options. Yet, at each node we have three instead of two
values, namely, stock price, bond price and discount rate. In each step of backward induction
the discount rate is calculated first and immediately used in the calculation of bond price
for discounting. Let us now look at the values of a callable convertible bonds for different

time lags. The particulars of the bonds are

e Par value Z = 100;
e Maturity 7' = 1;
e Coupon rate K = 0;
e Conversion ratio n = 2;
e Call price M = 103;
e Call level H = 52.5,
e Credit spread y — r = 5%.
Assume the current stock price is S = $50, risk-free interest rate is 7 = 10% and dividend

rate is zero. This gives the yield of straight bond as 15%. The bond values for different time

lags are given in Table 3.

lags | values | delta
0yr |[102.28 |1.2042
0.1 yr | 104.65 | 1.3886
0.2 yr | 105.01 | 1.4298
0.4 yr | 105.24 | 1.4617
0.8 yr | 105.31 | 1.4750
1lyr |105.31]1.4752

TABLE 3. Bond values and deltas for different window length

One can see that, from lag=0 to lag=0.2, the value of the bond increases by about 2.6%.

Beyond that, the increase of value is insignificant. Note that the call level is usually quoted

3The binomial tree approach is described in “Valuing Convertible Bonds as Derivatives,” Quantitative
Strategies Research Notes, Goldman Sachs, November 1994.
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as 150% of the conversion price, defined as the principle divided by conversion ratio(Z/n).
In our case this corresponds to H = 75. For this call level the bond value increases from
105.2996 to 105.3056 for the increasing time lag as in Table 3. This result indicates that the
window feature is almost valueless for high call level. In fact, when stock price is considerably
higher than the conversion price, the embedded call option is deep in the money, and the

holder is indifferent as to convert or not.

6. CONCLUSION

We showed that Parisian-style options can easily be modelled using a boundary condi-
tion which arises by assuming continuity of delta across the barrier. We present an explicit
scheme that uses a trinomial lattice. This procedure can also be used to generate a semi-
implicit Crank-Nicholson finite-difference scheme with the same template. We also charac-
terized the value function in the continuous limit. It is shown that the value of the Parisian
option before hitting the barrier satisfies a boundary-value problem in which the boundary
condition is of Dirichlet-to-Neumann type. Therefore, an alternative PDE method would
be to solve the equation in the domain limited by the barrier, by implementing the integral
equation using a quadrature. We believe that the first method is more robust and easy to
implement in practice, especially in the case of one-factor models where the computational
time is negligible. Finally, we presented numerical results supporting this numerical scheme

and an application to analyze the value of the window feature in pricing callable bonds.
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APPENDIX A. DERIVATION OF BOUNDARY CONDITION

Immediately (At) after the last exit from the barrier, V' (S, ¢ + At) satisfies

t+D
V(S,t+ At) = /tw e~TO-ITI(H, 0; S, )V (H, §)df. (A1)

For geometric Brownian motion, there is

t+D
II(H,0;5,t)d0 = Prob. t+ D|S(t+ At) =S
[, TUH, 8;5,8)d8 = Prob.{7 < t + D|S(t + At) = 5) a2)

=1—C(p,0,D)In(S/H) + o(In(S/H)).
The constant C'(u, o, D), given in (12), is obtained from direct calculation. Now we multiply

V(H,1) to (A.2), and then subtract the equation from (A.1). The equation so obtained is
t+D—-At
V(S, 1) — V(H,1) = / [(H,0; 5,t) (e "IV (H,0) - V(H,t)) df
t
+ C(p,0,D)In(S/H)V (H,t) + o(In(S/H)).
Dividing both sides by S — H and passing to the limit gives

OV(H) _ Cw,0. D)y, /tt+DQ(H,0,t) (v (H,0) - V(H,1)) do.

Here
OI(H,0; S,t) 1 e HO-t)
QH,0,¢) = LD 2 e T
(6.1 os """ H. fx(6—1p

This completes the derivation.
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