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Abstract 
 

While convertible bond models recently have come to rest on solid theoretical foundation, 
issues in model calibration and numerical implementation still remain. This paper 
highlights and quantifies a number of such issues, demonstrating, among other things, that 
naïve calibration approaches can lead to highly significant pricing biases. We suggest a 
number of techniques to resolve such biases. In particular, we demonstrate how 
applications of the Fokker-Planck PDE allows for efficient joint calibration to debt and 
option markets, and also discuss volatility smile effects and the derivation of forward PDEs 
to embed such information into model calibration. Throughout, we rely on modern finite 
difference techniques, rather than the binomial or trinomial trees that so far have dominated 
much of the literature. 
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1. Introduction. 
 While it has long been realized that a framework for pricing convertible bonds 
should ideally incorporate elements of both equity and debt modeling, practical efforts in 
this direction have long been somewhat lacking. In particular, there seems to have been 
considerable confusion and disagreement about how to appropriately and consistently 
apply a default-adjusted discount operator to cashflows generated by convertible bonds. 
Early papers with an ad hoc approach to discounting include McConell and Schwarz 
(1986), Cheung and Nelken (1994), and Ho and Pfeffer (1996). Many of these models do 
not explicitly model bankruptcy, and as compensation uniformly apply a somewhat 
arbitrary risky spread to the risk-free discount rate. More recent papers recognize that 
equity and debt components of convertible bonds are subject to different default risk and 
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attempt more nuanced schemes. An often-quoted example is Tsivioritis and Fernandes 
(TF) (1998) (later extended by Yigitbasioglu (2001) to multiple factors), which 
effectively splits the convertible bond into cash and equity components, with only the 
former being subject to credit risk. A related approach was promoted by Goldman Sachs 
(1994) and involves careful weighting of risky and risk-free discounting in a binomial 
lattice. The TF splitting scheme is analyzed in detail in Ayache et al (2002) who conclude 
that it is inherently unsatisfactory due to its unrealistic assumption of stock prices being 
unaffected by bankruptcy. 

With the advances of credit derivatives theory, in particular the reduced-form 
approachi of Jarrow and Turnbull (1995), the foundation for convertible bond models has 
recently improved significantly. A key development has been the inclusion of stock price 
dynamics that explicitly incorporate default events, as well as the explicit modeling of 
stock and bond recoveries in default. Most commonly, default is modeled as a Poisson 
event that drives stock prices into some low value and coupon bond prices (and 
convertible bonds) into a certain, fixed percentage of their notional values. 
Representative, and quite similar, papers include Davis and Lischka (1999) and 
Takahashi et al (2001). See Grimwood and Hodges (2002) and Olsen (2002) for 
comparisons of the approach in these papers against other models in the literature. In 
recent work, Ayache et al (2002) lay out a solid basis for the numerical computation of 
convertible bond prices, discussing in detail how modern finite-difference methods can 
replace the computationally sub-optimal binomial and trinomial trees that pervade most 
of the literature.  

With theory and computing techniques now on a relatively solid basis, it remains 
to be determined how to best parameterize models for convertible bonds. While a number 
of specific parameterizations have emerged in the literature, e.g. Muromachi (1999), 
Bloch and Miralles (2002), and Arvanitis and Gregory (2001), these are typically based 
on empirical observations and do generally not result in a model that will price any 
particular instrument close to market. In fact, as we shall see, when applied to such 
simple instruments as stock options and coupon bonds, naively parameterized convertible 
bond models can yield surprisingly large price biases. In a trading setting where we might 
be interested in relative value plays, or perhaps want to hedge all or pieces of the 
convertible bond with options and straight debt (or credit derivatives), this situation is 
obviously not ideal.  

In this paper, we will discuss the parameterization and calibration of convertible 
bond models to quoted prices of straight debt and equity options. That is, in the time-
honored tradition of financial engineering we will attempt to “imply” parameters from 
market quotes on actively traded securities. The treatment of this topic will proceed as 
follows: in Section 2, we outline our process assumptions and discuss a number of 
technical issues. Section 3 discusses numerical implementation and analyzes a number of 
model effects in vanilla options and straight debt. Section 4 discusses forward and 
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backward equations for transition densities, and outlines an algorithm for joint calibration 
to debt and stock options markets. A number of numerical examples are provided to 
illustrate typical calibration results. For reference and future tests, Section 5 lists prices 
for a few standard convertible bonds, while Section 6 discuss certain interesting 
extensions and avenues for future research. In particular, we briefly illustrate how, in 
theory, debt markets can be tied together with equity option volatility skews using 
forward PDEs. Finally, Section 7 concludes the paper.  
 
2. Model. 
 
2.1 Basics 

Consider the pricing of a convertible bond issued by a company with publicly 
traded equity S. For most of this paper, we assume that S is the single underlying state 
variable of our model. (Extensions to stochastic interest rates are straightforward, albeit 
labor-intensive, and will be discussed in more detail in Section 6). To incorporate the 
possibility of defaults on the underlying company, we make the standard assumption that 
default of the underlying company is governed by the first jump of a Cox processii ( )N t  
with a stochastic intensity entirely captured by a functional dependence on the stock price 
level. Specifically, we let the time t intensity of ( )N t  be denoted ( , )t Sλ , where 

2:λ + +→¡ ¡  is some well-behaved deterministic function. Before the default time 
inf{ : ( ) 1}t N tτ = =  we assume that S is a diffusion process driven by a single Brownian 

motion ( )W t , independent of ( )N t , and let the instantaneous diffusion volatility of S be 
( , )t Sσ  for some smooth, bounded function 2:σ + +→¡ ¡ . With the risk-free interest rate 

r and the instantaneous dividend yield q both assumed deterministic, the risk-neutral 
stock process can be stated as 
 
 ( )( ) ( )( ) / ( ) ( ) ( ) , ( ) , ( ) ( ) ( )dS t S t r t q t t S t dt t S t dW t dN tλ σ− = − + − + − − , (1) 
 
where t −  is defined as the limit of t ε−  for 0ε ↓ . A few comments to this SDE is in 
order. First, notice the drift term ( ), ( )t S tλ −  which compensates for the expected 
downward drift of the Cox process term: ( ) ( )( ) , ( )tE dN t t S t dtλ− = − − , where ( )tE ⋅  is 
the time t risk-neutral expectation operator. The drift compensation is required for the 
process to satisfy the arbitrage restriction that ( )0( ) exp [ ( ) ( )]tS t r u q u du− ∫ −  be a 
martingale in the risk-neutral probability measure. Second, notice that we assume that the 
stock price drops to zero upon default: when N  jumps from 0 to 1, ( ) ( )dS t S t= − −  and 
the stock is driven into 0, where it stays. The assumption that equity holders recover 
essentially nothing on default is reasonable, and consistent with much existing literature; 
see for instance Davis and Lischka (2001). However, note that if we instead wanted to 
assume, as in Ayache et al (2002), that some fraction SR  of the pre-default value of the 
stock is recovered in default, we simply multiply the terms ( )dN t  and ( ), ( )t S t dtλ −  in 
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(1) by (1 )SR− iii. For simplicity, however, we throughout use the approximation 0SR ≈ . 
As an aside, we notice that the assumption of a bounded ( , )t Sσ  ensures that the stock 
price cannot diffuse to 0 but only reach this value by a default jump. 

Consider now the pricing of a contingent claim V with maturity T. Writing 
( , )V V t S= , the claim value is governed by the following backward PDEiv, subject to a 

boundary payout condition at T: 
 

 ( ) ( )
2

2 21
2 2( ) ( ) ( , ) ( , ) ( ) ( , ) ( , ) ( , )V

V V V
r t q t t S S t S S r t t S V t S R t S

t S S
λ σ λ λ

∂ ∂ ∂
+ − + + = + −

∂ ∂ ∂
. 

 (2) 
 
Here, ( , )VR t S  is the recovery value of V in case of default at time t; the recovery value 
can be allowed to depend on both time and the pre-default value of the stock price. For 
securities, such as convertible bonds, paying intermediate coupon cash-flows, additional 
boundary conditions are obviously needed at each cash-flow date, see Section 5. Further 
intermediate boundary conditions are needed to capture early exercise options and 
put/call features, all of which are present in a typical convertible bond. The formulation 
of such boundary conditions is standard, see for instance Tavella and Randall (2000) for 
details (see also Section 5).  

Derivation of the backward PDE (2) is straightforward and follows from the 
jump-extended Ito lemma for the stochastic differential ( )dV t , followed by an 
application of the standard arbitrage restriction that ( )( ) ( ) ( )tE dV t r t V t dt= . Its solution 
generally requires the application of numerical methods, although it frequently is possible 
– by the Feynman-Kac Theorem – to state the solution probabilistically, as an 
expectation. Consider for instance the important special case of a risky zero-coupon bond 

( , )B t T  which pays out $1 at time T if no default takes place before time T, 0 otherwise. 
In other words, the PDE boundary condition is ( , ) 1B T T =  and the recovery rate in 
default is 0. From the Feynman-Kac Theorem, the time 0 solution of this PDE is simply 

 

 
( ) ( )

0 0 0
( ) [ ( ) , ( ) ] , ( )

(0, ) 1 (0, )
T T T

r u du r u u S u du u S u du

TB T E e E e P T E e
λ λ

τ

− − + −

>

     ∫ ∫ ∫= = =     
     

, (3) 

 
where we have defined (deterministic) default-free zero-cupon bond prices as 

( )( , ) exp ( )T
tP t T r u du= − ∫ , and where 1A  denotes the indicator function for the event A. 

As shown in Appendix A, the prices of coupon bonds and credit default swaps can be 
stated in terms of risky zero-coupon bonds, and vice-versa, making risky zero-coupon 
bonds an obvious and convenient target for model calibration to non-convertible debt 
markets. 
 
2.2. Intensity process and specification. 
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 An application of Ito’s lemma results in the following pre-default ( )t τ<  
dynamics of the intensity process λ  (suppressing dependency on S): 

 

 
( )

2
2 21

2 2

( ) ( ) ( ) ( ) ( )

( ) ( , ) ( ) ( , ) ( ), .

d t dt S t r t q t t dt
t S

S t t S dt S t t S dW t t
S S

λ λ
λ λ

λ λ
σ σ τ

∂ ∂
= + − +

∂ ∂
∂ ∂

+ + <
∂ ∂

 (4) 

 
In particular, we see that the local (log-normal) intensity volatility becomes 

1( , ) ( , ) /t S t S S Sλσ σ λ λ−= ∂ ∂ . In general we would expect the local intensity volatility to 
be negative (that is, perfectly negatively correlated to the stock) as any reasonable model 
would have / 0Sλ∂ ∂ ≤  to reflect of the fact that companies with high stock prices are 
less likely to default than are those with low stock valuations. Specific parameterizations 
suggested in the literature include: 
 
 ( , ) / ,pt S a b Sλ = +  
 ( , ) ln ,t S c d Sλ = −  
 ( , ) exp( )t S e f gSλ = + − ,  
 
where , ,...,a b g  and p are constants. The first specification can be found in Takahashi et 
al (2001) and Davis and Lischka (1999), among others. The second parameterization is 
discussed in Bloch and Miralles (2002), and the third in Arvanitis and Gregory (2001).  

While most of the methods developed in this paper are non-parametric and 
independent of the particular specification of ( , )t Sλ , for many of our numerical 
experiments we will use the first of these specifications with 0a = . Setting 0a =  is 
natural as it implies reasonable asymptotic behavior: lim 0S λ→∞ =  and 0limS λ↓ = ∞ . 
Moreover, for this specification the dynamics of λ  are particularly straightforward: 

 

 ( ) ( )21
2( ) / ( ) ( ) ( ) ( ) ( 1) , ( ) ( , ) ( ) , .d t t p r t q t t p t S t dt p t S dW t tλ λ λ σ σ τ = − − + + + − <  (5) 

 
In other words, the volatility of λ  is just the equity volatility scaled with a factor of –p: 

( , ) ( , )t S p t Sλσ σ= − . The interpretation of p representing the ratio of equity and spread 
volatility makes for particularly convenient estimation of this parameter. In a study on 
Japanese companies, Muromachi (1999) estimates for p  are in the range 1.2 to 2.0 which 
appears reasonable and consistent with the fact that short-term credit spreads are typically 
more volatile than stock prices. We notice that the dynamics (5) imply a certain amount 
of auto-correlation, with the drift of λ  involving reversion at speed p  around a level of 

( )21
2( ) ( ) ( 1) , ( )q t r t p t S tσ− + + . Appendix C takes a closer look at the long-term 

properties of (5) and demonstrates that sometimes a stationary distribution exists. In 
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particular, for constant process parameters r, q, and σ , the Appendix shows that 
( ) ( )21

2lim ( ) 0,t E t MAX r qλ σ→∞ = − + . 
 
2.3 Hedging. 
 A brief word on hedging in the model above. With two sources of uncertainty (W 
and N), hedging of contingent claims will involve taking positions in cash and two traded 
stock-dependent derivatives. For instance, we could take a position in a corporate bond 
and the stock itself. To develop the specific hedge for this example, let V be the value of 
the derivative to be hedged, and let H denote the price of the bond used in the hedge. 
Further let Sw  and Hw  be the hedge positions in stock and bond, respectively, and let Π  
be the portfolio of V and its hedges. With the recovery rate on the bond being a constant 

HR , the evolution of this portfolio is 
 

 ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ... ( ) , ( ) ( )

( ) ( ) ( ) ( ) ( )

H S

H S

S H H V

t w H t w S t V t cash

H t V t
d t dt w w S t t S t dW t

S S

w S t w H t R V t R t dN t

σ

Π = + + + ⇒

∂ ∂ Π = + + + ∂ ∂ 
− + − + −  

 

 
where for simplicity we have omitted the somewhat cumbersome t −  notation. For the 
hedge to work, the terms in the square brackets must be 0, leading to the following 
explicit expression for the hedge at time t: 
 

 

( )
( ) ( ) ( ) ( )

;
( )

( )

V

H S H

H

V t
R t V t V t H tSw w w

H t S SH R S t
S

∂
− + ∂ ∂∂= = − −

∂ ∂ ∂− −
∂

 

 
In practice, volatility (“vega”) and interest rate hedges would likely be added to the hedge 
portfolio.  
 
3. Numerical Implementation.  
 
3.1. Finite difference scheme. 

We now turn to the solution of equation (2) by finite difference methods. To this 
end, we introduce lnz S= , set ( , ) ( , )v t z V t S= , ( , ) ( , )v VR t z R t S= and rewrite (2) as  
 

 ( , ) ( , )z
V

v
Lv t e R t z

t
λ

∂
+ = −

∂
, (6) 

 
where L  is the operator 
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 ( ) ( )
2

2 21 1
2 2 2( ) ( ) ( , ) ( , ) ( , ) ( ) ( , )z z z zL r t q t t e t e t e r t t e

z z
λ σ σ λ

∂ ∂
= − + − + − +

∂ ∂
. 

 
Discretizing z-space into buckets of size z∆ , we can approximate L by the finite 
difference operator (dropping t and z dependence for brevity) 
 
 ( ) ( )2 21 1

2 2
ˆ

z zzL r q rλ σ δ σ δ λ= − + − + − +  

 
where zδ  and zzδ  are the usual first- and second-order finite difference operators, 

1
2( ) [ ( ) ( )]z zf z f z z f z zδ ∆= + ∆ − − ∆ , 2

1
( )

( ) [ ( ) 2 ( ) ( )]zz z
f z f z z f z f z zδ

∆
= + ∆ − + − ∆ . We 

then introduce a time grid 0 10 ... nt t t= < < <  with 1i i it t t+∆ ≡ − and employ a modified 
theta discretization of the PDE (6) in the time-domain: 
 

 
( ) ( )

( ) ( ) ( ) ( )

1 1
1

1 1

ˆ ˆ( , ) (1 ) ( , )

, , (1 ) , , .

i i i i

z z
i v i i v i

t L v t z t L v t z

t e R t z t e R t z

θ θ

θλ θ λ

− −
+

+ +

∆ − = ∆ + − +

+ −
 (7) 

 
In general, (7) results in a series of tri-diagonal matrix equations and is stable for 1

2θ ≥ . 
For 1

2θ =  (the Crank-Nicholson method), the precision of the scheme is at its maximum 
( 2 2( )O t z∆ + ∆ ), making this the preferred choice for most smooth payoff functions. With 
n time-steps and m z-steps, the total computational effort is ( )O mn  for all values of θ . 
 
3.2. Numerical example: pricing of European call options and risky bonds. 

For later use and as an illustration of the scheme above, consider now the pricing 
of a call option C with time T payout of ( )( )S T K

+
−  (recall the notation max( ,0)x x+ = ). 

In case of default, the stock price drops to 0 and the call becomes worthless, i.e. its 
recovery value is zerov and ( , ) 0CR t S =  for all t and S. When we state our computed call 
option prices, we follow the market convention of quoting European option prices in 
terms of their Black-Scholes implied volatilities ( ; , )imp t T Kσ , defined as the solution to 
the equation 
 

 
( ) ( )

( ) ( ) ( ) ( )
T T

t t
q u du r u du

C t S t e d K d
− −

+ −
∫ ∫= Φ − Φ , (8) 

 
( ) 21

2ln ( ) / [ ( ) ( )] ( )
T

impt

imp

S t K r u q u du T t
d

T t

σ

σ
±

+ − ± −
=

−
∫  

 
where the right-hand side of (8) is observed in the market. Notice that implied volatilities 
are always quoted using default-free discounting.  
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 Setting ( )( , ) / (0)
p

t S c S Sλ
−

= ⋅  and using a constant diffusion volatility of 
( , ) 30%t Sσ = , Figure 1 shows the term structure of at-the-money (ATM) implied 

volatilities (from (8)) for different values of c and p. A note: unless otherwise indicated, 
we use the term “at-the-money” for options with strikes set at the forward value (“at-the-
money forward”) rather than at the spot price (“at-the-money spot”).  
 

--------------------- 
Figure 1 here 

--------------------- 
 
Raising c causes an increase in the variance rate of the Cox process ( )N t  which is 
proportional to λ  (specifically, ( ) ( )2[ ( )] ( ) ( , )E dN t E dN t t S dtλ= = ). As implied Black-
Scholes volatility is an aggregate of diffusion and jump volatility, an increase in c causes 
an increase in implied at-the-money volatility, as evidenced in Figure 1, panel A. The 
volatility increase is typically an increasing function of maturity for short- to medium-
dated options, yet can be very substantial even for 3-months options. Figure 1, panel B 
shows that implied at-the-money volatilities fall when the power p is increased. This 
effect is a consequence of the fact that when p is increased, defaults at high stock prices 
become increasingly unlikely. As jumps associated with defaults from high stock price 
levels correspond to a large effective variance, implied volatility will decrease when p is 
increased, ceteris paribus.  

In Figure 2 below, we fix the maturity and now consider the effect of default on 
implied volatilities at different option strikes (the so-called volatility skew). Adding 
default jumps to a diffusion process will necessarily fatten the lower tail of the 
distribution, raising prices of low-struck options relative to the pure diffusion setting; this 
effect is evident in Figure 2. Not surprisingly, the steepness of the jump-induced partvi of 
the volatility skew increases in c. Comparison of panels A and B in Figure 2 also 
demonstrate that the effect of default on the volatility skew decreases with option 
maturity, a typical characteristic of jump-induced skews.  

 
--------------------- 

Figure 2 here 
--------------------- 

 
Finally, to get a feel for the impact on the skew of the stock-dependency of the jump 
intensity, Figure 3 graphs the 1-year volatility skew for various values of the power p. 
While increasing the value of p here steepens the smile somewhat, the effect is 
comparatively mild. 
 

--------------------- 
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Figure 3 here 
--------------------- 

 
 Having examined call options, we now turn to the pricing of risky bonds. Rather 
than report directly bond prices (0, )B T , we instead prefer to use the concept of a risky 
term spread ( )s T , defined as  
 

 
( )

0
, ( )( ) (0, ) / (0, )

T
u S u dus T Te E e B T P T

λ−−  ∫= = 
 

. (9) 

 
We note that ( )s T  is by definition associated with an assumption of zero recovery. For 
bonds with a recovery rate of R, the quantity ( )(1 )s T R−  is roughly equal to the bond 
credit spread (see Duffie and Singleton, 1999). Figure 4 below graph the risky term 
spread as a function of T, for various scenarios for p and c. 
 

--------------------- 
Figure 4 here 

--------------------- 
 
Broadly speaking, all figures show that risky spreads initially increase in maturity, but 
ultimately start falling. The former effect is caused by the fact that the local drift of 

( , )t Sλ  is here typically positive for small t. Indeed, from the term multiplying dt in (5) 
we see that for small t the drift of ( )( , ) / (0)

p
t S c S Sλ

−
=  becomes approximately 

( )( )21
2 ( 1)c p p p r q cσ+ − − + ; this quantity is positive for all cases in Figure 4 (although 

barely so for the case 10%c =  in Panel A). Over longer time horizons, mean reversion 
(see discussion at the end of Section 2.2) will slow down the growth of the expectation of 

( , )t Sλ  and eventually pull it towards a long-term stationary level of 
( )21

20,MAX r qσ − +  which here amounts to 2.5%. Convexity effects also contribute to 
risky spreads ultimately falling, as follows from Jensen’s inequality  
 

 
( )( ) ( )( )0

, ( )( ) 1

0
( ) , ( )

T
TE u S u dus T Te e s T T E u S u du

λ
λ

−− −∫> ⇒ < ∫ , 

 
i.e. the risky spreads will be lower than the average intensity, with the discrepancy 
between the two increasing in T. Increasing volatility will increase the hump in the spread 
curve, and lowering it will eventually remove the hump altogether; see Figure 5 for an 
example. 
 

--------------------- 
Figure 5 here 
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--------------------- 
 
4. Calibration to risky bonds and at-the-money options. 

In Section 2.4, we considered, among other things, the pricing of risky zero-
coupon bonds and at-the-money call options in the model (1). Among the conclusions we 
can draw from our numerical study is that both implied option volatilities and risky credit 
spreads depend in a complicated way on maturity and the joint parameterization of 

( , )t Sλ  and ( , )t Sσ . Indeed, even a straightforward parameterization using constant 
volatility and the time-homogenous intensity ( )( , ) / (0)

p
t S c S Sλ =  can give rise to highly 

non-flat, non-monotonic term structures of implied volatility and credit spreads. In 
practice, it is extremely unlikely that these term structures will even remotely resemble 
those observed in the market. We stress that the often-seen practice of simply importing 
into the model (1) a volatility function ( , )t Sσ  maintained on a “usual”, default-free 
equity option system is highly inappropriate as the resulting model is likely to severely 
overstate both at-the-money volatilities and the steepness of the volatility skew. 

In this section, we will dispense with naïve time-homogenous model 
parameterizations and discuss schemes to explicitly bring the convertible bond model 
into calibration with risky zero-coupon bonds and at-the-money call options. We will do 
so by introducing time-dependent functions into both ( , )t Sλ  and ( , )t Sσ . Section 6 will 
discuss generalizations of the procedure that allow for fitting to an entire strike-maturity 
surface of option prices. 
 
4.1. Fokker-Planck equation.  
 For numerical efficiency, we wish to base our calibration technique on a forward 
induction technique. For this, we introduce the concept of a (log) state price density 

( , , , )p t z s y  as the time t price of delivery of a Dirac amount ( )ln ( )S s yδ −  at time s t> , 
given that ln ( )S t z= . The density solves the usual backward Kolmogorov equation 
(compare with (6)) 
 

 ( ) ( )
2

2 21 1
2 2 2( ) ( ) ( , ) ( , ) ( , ) ( ) ( , )z z z zp p p

r t q t t e t e t e r t t e p
t z z

λ σ σ λ
∂ ∂ ∂

+ − + − + = +
∂ ∂ ∂

 (10) 

 
where s and z are considered fixed. The boundary condition is ( , , , ) ( )p s z s y y zδ= − . 
Notice that we assume that p recovers nothing in default, and consequently associate with 
p a defect transition density that excludes the singularity at 0S = . The formal adjoint to 
(10) is the Fokker-Planck (or forward Kolmogorov) equation 
 

 ( )( ) ( ) ( )
2

2 21 1
2 2 2

( ) ( ) ( , ) ( , ) ( , ) ( ) ( , )y y y yp
r s q s s e s e p s e p r s s e p

s y y
λ σ σ λ

∂ ∂ ∂
− − − + − + = +

∂ ∂ ∂
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where now t and z are considered fixed. The boundary condition is here 
( , , , ) ( )p t z t y y zδ= − . Assuming that σ  and λ  are twice and once differentiable in S, 

respectively, we can rewrite this equation as 
 

 
2

21
2 2

( , ) ( , ) ( , )yp p p
H s y s e G s y p

s y y
σ

∂ ∂ ∂
− − + =

∂ ∂ ∂
; (11) 

 21
2( , ) ( ) ( ) ( , ) ( , ) 2 ( , ) '( , )y y y y yH s y r s q s s e s e e s e s eλ σ σ σ= − + − − ; 

[ ]( )2),('),(''),('2),(),('),()(),( yyyyyyyyyy eseeseeseseeseessrysG σσσσλλ ++−++=  

 
where ' / Sλ λ≡ ∂ ∂  and 2 2' / , '' /S Sσ σ σ σ≡ ∂ ∂ ≡ ∂ ∂ .  
 
4.2. Calibration scheme. 
 Now specialize to the case where ( )( , ) ; ( )t S S a tλ λ=  and ( )( , ) ; ( )t S S b tσ σ= , 
for time-dependent scalar functions a and b to be set. Assuming that r and q are known, 
we wish to set the two unknown functions a and b such that we simultaneously match at 
all maturities a) risky zero coupon bond prices (0, )B T ; and b) European at-the-money 
equity option prices. For the latter, introduce the notation 
 

 ( )0
( )

( , ) ( )
T

r u du
C T K e E S T K

− +∫= − ; 

 
that is, ( , )C T K  is the time 0 price of a T-maturity call struck at K. In terms of the state 
price densities p, we can write 
 

 
ln

( , ) ( , )( )y

K
C T K p T y e K dy

∞
= −∫ ; (0, ) ( , )B T p T y dy

∞

−∞
= ∫ , (12) 

 
where we use the abbreviated notation ( , ) (0,ln (0), , )p T y p S T y= .  

The idea is now to solve (11) forward, at each step finding ( )a T  and ( )b T  such 
that (12) is satisfied for a chosen value of the strike K. Numerically, this requires a 
discretization of (11), for instance by finite difference methods. Following the steps that 
lead to (7), we introduce a time line 0 10 ,..., NT T T= < <  and discretize y-space into 
buckets of size y∆ . On the time interval 1[ , ]i iT T +  we write 
  
 ( ) ( )1 1

1
ˆ ˆ( , ) (1 ) ( , )i i i iT D p T y T D p T yθ θ− −

+∆ − = ∆ + −  (13) 

 
where we have introduced the finite difference operator 21

2
ˆ

y yyD H Gδ σ δ≡ − + − . With y 
discretized on the grid 0 0,1,...,{ } j My j y =+ ∆ , (12) can be written as sums: 
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 0

0

0
ln

( , ) ( , )( )
i

y j y
i i i i

y j y K

C T K y p T y j y e K+ ∆

+ ∆ >

≈ ∆ + ∆ −∑ ; 0
0

(0, ) ( , )i i
j

B T y p T y j y
≥

≈ ∆ + ∆∑ (14) 

 
where iK  is the calibration strike for time iT , assumed here to be set equal to the forward 
value of the stock. 

With (14) we are ready to state our iterative scheme for finding the functions a and b 
on the time line { }iT : 
 

0. Set 0i =  and ln (0)(0, ) 1 /y Sp y y== ∆ . Make a guess for (0)a  and (0)b . 
1. Assuming that a and b are piecewise flat, solve (13) one time-step forward to find 

( )1 0,ip T y j y+ + ∆  for all j. 
2. Compute the right-hand sides of the expressions for C and B in (14). 
3. If the right-hand sides (14) equal the market-observable left-hand sides, store 

( )ia T  and ( )ib T  and make guesses for 1( )ia T +  and 1( )ib T +  (for instance, we can set 

1( ) ( )i ia T a T+ =  and 1( ) ( )i ib T b T+ = ). Otherwise update ( )ia T  and ( )ib T  and go back 
to step 2. 

4. Set 1i i= +  and go to step 1 
 
The joint root-search for ( )ia T  and ( )ib T  in Steps 2 and 3 can be done using any standard 
non-linear equation solver. As the expression for 1(0, )iB T +  is typically more sensitive to 

( )ia T  than to ( )ib T , and vice versa for 1 1( , )i iC T K+ + , one can typically simplify the two-
dimensional root-search problem to an inexpensive iteration over two simple one-
dimensional root-searches, as in 
 

a) Freeze ( )ia T  and find ( )ib T  by root-search such that 1 1( , )i iC T K+ +  is fit to market. 
b) Freeze ( )ib T  and find ( )ia T  by root-search such that 1(0, )iB T +  is fit to market. 
c) Repeat until both 1 1( , )i iC T K+ +  and 1(0, )iB T +  are jointly fit to market.  

 
For each of the one-dimensional searches, we can apply a simple root-finder such as 
Newton-Raphson, secant search, or similar. On average, we find that we only need to 
repeat a) and b) two or three times, making the algorithm fast. 
 A number of comments about the proposed calibration routine are in order. First, 
we notice that while we implicitly assumed that calibration strikes on the call options 
were set at the ATM point, nothing prevents us from picking other levels, as long as we 
restrict ourselves to a single calibration strike per time-step (see Section 6 for extensions). 
Second, we can work with a finer discretization in the finite difference grid than in the 
fitting of C and B prices. That is, steps 2 and 3 need not be performed on all points in the 
finite difference time grid, but only on a subset. Third, while not of great practical 
importance we can, if desired, easily relax the assumption of piecewise flat parameters 
through the introduction of more sophisticated interpolation schemes. Fourth, we point 
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out that the discontinuous boundary condition of (13) in Step 1) can lead to undesirable 
oscillations of the solution if the discretization parameter θ  is too low. Such oscillations 
can, however, easily be eliminated by using 1θ =  (fully implicit scheme) for the first few 
time-steps, at which point we can switch to the better-converging Crank-Nicholson 
scheme where 1

2θ = . For details on this so-called Rannacher stepping technique, see 
Pooley et al (2001). Finally, we notice that it is often beneficial to make a continuity 
adjustment of the first term in the sum for ( , )C T K  in (14) to match the proper area under 
the call payout ramp function; see e.g. Tavella and Randall (2000), p. ?? for details on 
this. Alternatively, we can adjust the grid geometry such that the option strikes all fall 
precisely halfway between grid points in y-space. 
 
4.3. Numerical example. 
 Assume now that we have estimated from straight debt and/or credit derivatives 
that the risky spread term structure is flat at 500 basis points. Further, from equity option 
markets we observe that implied at-the-money volatilities are flat at 40% for all 
maturities. Assuming that both credit spreads and equity prices have deterministic 
volatilities, we set ( , ) ( )t S b tσ =  and ( )( , ) ( ) (0)/

p
t S a t S Sλ =  where we can estimate p as 

the ratio of credit spread volatilities to equity volatilities. Estimation of the deterministic 
functions ( )a t  and ( )b t  can be done using the algorithm from Section 4.2; the results are 
shown in Figure 6 below. 

--------------------- 
Figure 6 here 

--------------------- 
 
The function ( )a t  calibrates to a U-shaped function of time that compensates for the 
humped credit spread term structures associated with constant ( )a t , see Figure 4. The 
larger the value of p, the more pronounced the U-shape of ( )a t  becomes, consistent with 
previous results. In the same vein, the volatility function ( )b t  becomes downward-
sloping to compensate for the volatility effect of the default jump. As we would expect, 
the smaller the value of p, the more pronounced this effect becomes. We notice that for 

0p =  the downward slope of b is so severe that it becomes impossible to calibrate the 
model for maturities beyond 12 years, a reflection of the fact that the intrinsic stock 
volatility induced solely by the default process exceeds the target implied volatility used 
in our example. We note that such calibration problems are fairly uncommon in practice 
as they involve the somewhat unlikely combination of low long-term implied spread 
volatilities and high credit spreads.  
 
5. Pricing of convertible bonds. 



 14

For reference, this section focuses on the pricing of a few specific convertible 
bond contracts. We demonstrate the effect of calibration, and state the boundary 
conditions needed in the finite difference solver discussed in Section 3. 
 
5.1. Boundary conditions for convertible bonds. 

Fundamentally, convertible bonds are coupon-bearing instruments with an 
embedded option to exercise into a certain number of shares of the underlying company. 
Let ( )V t  be the time t price of a T-maturity convertible bond paying an annualized 
coupon rate of κ  on some schedule 0,..., 0{ } , 0,i i K Kt t t T= = = . The stream of cash-flows 
introduce the following jump-type boundary conditions for V:  
 
 1( ) ( ) ( ), 1,2,..., 1i i i iV t V t t t i Kκ −− = + + − = − , 1( ) 1 ( )KV T T tκ −= + −  (15) 
 
where we have assumed a (normalized) notional of $1 and ignored the finer details of 
bond accrual conventions. On dates t where the bond can be exercised into shares, we 
impose the free boundary condition  
 
 ( ) ( ) ( )V t L t S t≥  (16) 
 
where L is the possibly time-dependent conversion ratio (normalized to apply to a 
notional of $1). Ayache et al (2002) shows how to appropriately formulate (16) as a 
linear complimentary problem. In a finite difference grid, the application of the boundary 
condition (16) can be done a number of ways, the simplest of which is to treat it as a 
jump condition 
 
 ( )( ) ( ), ( ) ( )V t MAX V t L t S t− = + . 
 
See Forsyth and Vetzal (2002) for a more sophisticated (and better-converging) 
alternative to this approach.  

Many convertible bonds also contain a periodic option for the issuer to buy back 
(or “call”) the bond at some time-dependent level H , typically close to par. In case the 
issuer calls the bond, the investor has the option to convert the bond to shares, rather than 
receive the call amount H. That is 
 
 ( )( ) ( ) , ( ) ( )V t MAX H t L t S t≤  (17) 
 
on dates t for which the bond can be called. Typically, the issuers right to call the bond 
early becomes active only after a certain period of time (the non-call protection period) 
has lapsed since the original issue datevii. We point out that the free boundary condition 
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(17) assumes rational exercise on the issuer’s behalf, an assumption that appears to often 
be violated in practice (see e.g. the discussion in Ho and Pfeffer, 1996).  

A third feature of many convertible bonds is an embedded right of the buyer to 
sell (or “put”) the bond back to the issuer for some possibly time-dependent amount h. 
This option provides the buyer with protection against interest rate increases, as well as 
against deterioration in the financial health of the underlying company. The put option on 
a convertible bonds normally involves only a limited number (two or three, say) exercise 
opportunities during the life of the bond. On a date t in the put schedule, the free 
boundary condition is  

 
 ( ) ( )V t h t≥ . (18) 
 

For our purposes, the conditions (15)-(18) are sufficient to describe a convertible 
bond. In practice, it is not uncommon for convertible bonds have additional features, 
some of which may be strongly path-dependent. See Olsen (2002) and Grimwood and 
Hodges (2002) for terminology and discussions of more advanced features in convertible 
bonds. 
 
5.2. Recovery rate assumption. 

Consistent with market practice in bond and credit derivatives markets, we will 
here assume that the recovery value is a fixed fraction 0 1φ≤ ≤  of the bond notional. The 
constantφ  depends on the seniority of the bond and is typically somewhere around 40-
50%. We point out that many papers on convertible bonds make the alternative 
assumption that convertible bonds and coupon bonds recover a fixed percentage of their 
pre-default value (not the notional), see e.g. Takahashi et al (2001), Bloch and Miralles 
(2001), and Ayache et al (2002). This recovery-of-value approach was first proposed by 
Duffie and Singleton (1999), but while it often allows for certain technical 
simplifications, it does not seem to be consistent with typical bankruptcy proceedings.  
 
5.3. Numerical example. 

We now turn to the pricing of some particular convertible bond. To stress our 
algorithms, we consider two cases: a) a fairly long-dated contract with a significant non-
call protection period and high equity volatility (case A); and b) a medium-term contract 
with a relatively short non-call protection period and medium equity volatility (case B). 
Table 1 below lists the specifics: 
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Table 1: Market and contract data for convertible bond pricing example. 
 
 Case A Case B 
Bond Maturity T 10 years 5 years 
Bond Coupon κ  3% 1.5% 
Bond Payments Every 0.5 years Every 0.5 years 
Notional Amount 100 100 
Recovery Value φ  40% of notional 40% of notional 
Credit spreadviii s 300 basis points 200 basis points 
Conversion Ratio L 1 1 
Equity Price S(0) 50 50 
Equity Impl. Volatility  40% 25% 
Equity Dividend Rate q 2% 2% 
Interest rate r 4% 4% 
Call Price H 100 100 
Call Dates Anytime after 5t =  years Anytime after 3t =  years 
Put Price h 100 100 
Put Date(s) Years 6 and 8 Year 4 
 
We assume that all observable yield, spread, and implied volatility term structures are 
flat. From the formulas in Appendix A, we compute that the pure fixed income part of the 
convertible bond (the so-called bond floor) trades at $79.5 at time 0 for case A, and at 
$83.9 for case B. The conversion premia are thus $29.5 and $33.9, respectively. On the 
model side, we assume as in Section 4.3 that ( , ) ( )t S b tσ =  and ( )( , ) ( ) (0)/

p
t S a t S Sλ = , 

with the deterministic parameters a and b calibrated as outlined in Section 4. 
For test cases A and B, Figure 7 below shows how the value of the convertible 

bond, as well as the bond floor, depend on the current stock price and on the parameter p 
in the function ( , )t Sλ . For 0p >  the model implies that both the bond floor and the 
convertible bond approach the recovery value of $40 when the stock price goes to zero; 
this effect is sometimes referred to as the “collapsing bond floor”. As a consequence, the 
convertible bond can locally be a concave function of stock (“negative gamma”), a 
situation that is not uncommon in practice for convertible bonds issued by companies in 
financial distress. 

 
--------------------- 

Figure 7 here 
--------------------- 

 
Let us now briefly turn to a comparison of the results above for the properly calibrated 
model against similar results for a naively calibrated model, that is, a model where the 
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volatility function σ  is assumed constant, and where ( )( , ) (0)/
p

t S c S Sλ =  for some 
constant c. Here, we set 40%σ =  and 25%σ =  for cases A and B, respectively, and set 
c s= , where s is the quoted spreadix (300 and 200 basis points, respectively). From our 
earlier tests, we would expect both the effective volatility and credit spread of the “naïve” 
model to be too high. As these effects has opposing impact on the prices of convertible 
bond (the first effect increases its price, the second lowers it) we could perhaps hope that 
the naïve model on average would on average not do too poorly. To investigate this, 
Table 2 compares today’s price of the convertible bond and the bond floor for various 
values of p; Figure 8 graphs the errors (as a percentage of the difference between the 
convertible bond and the bond floor) of the convertible bond price as a function of the 
stock price.  
 

Table 2: Prices of convertible bonds and bond floors  
 
               Convertible Bond            Bond Floor  
Test 
Case 

 
p 

Calibrated 
Price 

Naïve 
Price 

Price 
Diff. 

Percentage 
Diff.a 

Calibrated 
Price 

Naïve 
Price 

Percentage 
Diff.b  

 2 94.1 90.5 -3.5 -24.4% 79.5 72.7 -8.5% 
A 1 93.8 93.8 0.0 -0.2% 79.5 76.0 -4.4% 
 0.5 93.8 95.4 1.7 11.7% 79.5 78.1 -1.8% 
 0 93.7 96.6 2.9 20.5% 79.5 79.5 0.0% 
 2 87.8 87.7 -0.1 -2.3% 83.9 83.1 -1.0% 

B 1 87.7 88.3 0.6 14.6% 83.9 83.7 -0.2% 
 0.5 87.7 88.5 0.8 20.1% 83.9 83.9 0.0% 
 0 87.7 88.6 0.9 23.4% 83.9 83.9 0.0% 

    aPrice difference as a percentage of price spread between convertible bond and bond floor 
    bPrice difference as a percentage of bond floor value 
 

Notes: The table shows today’s (S(0)=50) prices for convertible bonds and bond floors in test 
cases A and B. “Calibrated price” refers to prices computed by the model fully calibrated to 
call options and debt prices; “Naïve price” refers to prices computed by the simplified 
parameter estimation approach outlined above.  

 
--------------------- 

Figure 8 here 
--------------------- 

 
It is clear from the table and the figure that the convertible bond price errors introduced 
by a naïve calibration scheme can be highly significant, easily reaching 20-50% and more 
of the price spread between the bond floor and the convertible bond. The absolute price 
differences reach as much as $3.9 and grow rapidly in maturity. For contracts with truly 
long maturities (20 –30 years), we find that the absolute errors can easily reach $5-$10 on 
a $100 bond. 
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6. Extensions. 
 
6.1. Stochastic interest rates. 
 The model framework outlined so far assumes that risk-free interest rates are 
deterministic. As interest rate volatilities are generally much lower than equity 
volatilities, this assumption is generally defensible for the purpose of pricing plain-vanilla 
convertible bonds. Indeed, as stated in Grimwood and Hodges (2002), “..the stochastic 
modeling of the spot interest rate appears the least important model feature” in their 
investigations. See also Olsen (2002) and Brennan and Schwarz (1980)  for similar 
comments. Inclusion of stochastic interest rates into the model is, however, not 
conceptually difficult, as we shall now demonstrate. First, assume that the interest rate 
dynamics satisfy the one-factor short-rate SDE 
 
 ( ) ( )( ) , ( ) , ( ) ( )r rdr t t r t dt t r t dZ tµ σ= +  
 
where 2, :r rµ σ →¡ ¡  are smooth well-behaved functions, and where ( )Z t  is a 
Brownian motion under the risk-neutral probablity measure. We assume that rµ  has been 
calibrated such that the model fits zero-coupon bond prices; that is, 
 

 0
( )

(0, )
T

r u du
P T E e

− ∫=  
 

. 

 
Further, we assume that ( )Z t  is correlated to the Brownian motion of the equity price, 

( ) ( ) ( )dZ t dW t t dtρ⋅ = , for some deterministic correlation function ρ  (extensions to 
state-dependent correlation are trivial). The backward equation for a contingent claim 

( , , ), lnV V t z r z S= =  then becomes 
 

 
( )

( )

2
2 21 1

2 2 2

2 2
21

2 2

( ) ( , ) ( , ) ( , ) ( , )

( , ) ( ) ( , ) ( , ) ( , ) ( , ) ( , , )

z z z
r

z z z
r r V

V V V V
r q t t e t e t r t e

t z r z
V V

t r t t r t e r t e V t e R t z r
r z r

λ σ µ σ

σ ρ σ σ λ λ

∂ ∂ ∂ ∂
+ − + − + + +

∂ ∂ ∂ ∂
∂ ∂

+ = + −
∂ ∂ ∂

 (19) 

 
where the recovery value default VR  can depend on both equity and interest rates. The 
numerical solution of this equation in a finite difference grid is most easily accomplished 
by an alternating direction implicit (ADI) method; see e.g. Craig and Schneyd (1988) for 
a scheme that can handle mixed second-order derivatives. The computational order of 
such a scheme is ( )r SO n n m , where m is the number of time steps, and rn  and Sn  are the 
numbers of interest rate and equity steps, respectively. In practice rn  often needs to be 
around 50, making the two-factor model above significantly slower to evaluate than the 
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one-factor model discussed previously (which as discussed ealier has compuational order 
( )SO n m ).  

To calibrate the model above, we again would turn to an iterative scheme relying 
on forward induction in a finite difference scheme. From standard theory for adjoint 
operators, the necessary Fokker-Planck equation here becomes  

 

 
( )( ) ( ) ( )

( ) ( ) ( )

2
2 21 1

2 2 2

2 2
21

2 2

( ) ( , ) ( , ) ( , ) ( , )

( , ) ( ) ( , ) ( , ) ( , )

y y y
r

z y
r r

p
r q s s e s e p s r p s e p

s y r y

s r p s s r s e p r s e p
r z r

λ σ µ σ

σ ρ σ σ λ

∂ ∂ ∂ ∂
− + − + − + − −

∂ ∂ ∂ ∂

∂ ∂
− = +

∂ ∂ ∂

(20) 

 
where 0( , , , , , )p t s r r z y  denotes the state price density for transition from state 0( , )z r  at 
time t to state ( , )r y  at time s t>  (and where 0, ,t r z  are considered fixed). The 
boundary condition is 0 0( , , , , , ) ( ) ( )p t t r r z y r r y zδ δ= − − . Using the same steps that lead 
to (11), equation (20) above can be rewritten to only contain derivatives of p. The 
calibration algorithm outlined in Section 4 then holds unchanged: use a finite difference 
(ADI) method to solve (20) forward in time, at each step taking care to adjust σ  and λ  
such that the relations (14) are satisfied. With two state variables involved, the 
computational effort here obviously increases significantly over that of the one-factor 
model discussed earlier.  
 
6.2. Calibration to full equity volatility surface. 
 Reverting to the one-factor model of Sections 2-5, we now wish to explore the 
possibility of fitting such a model to more than one equity option per maturity. As a first 
observation, we notice that if option prices of sufficiently low strikes are known, it 
becomes unnecessary to consider risky bonds, as the prices of these are already contained 
in equity options. Specifically, consider a T-maturity, K-strike put option with time 0 
price of ( , )pV T K . For sufficiently low values of K, the put option will practically only 
pay out if a default takes place and the stock goes to zero; that is, 
 

( ) ( ) ( )( , ) (0, ) Pr (0, ) 1 (0, ) / (0, ) (0, ) (0, )pV T K P T K T P T K B T P T K P T B Tτ≈ ≤ = − = −  
 
for low values of K. This relationship is, in fact, frequently used to trade equities against 
straight debt. Taking the limit, we get 
 

 
0 0

( , ) ( , )
(0, ) (0, ) lim limp

K K

V T K C T K
B T P T

K K↓ ↓

∂ ∂
= − = −

∂ ∂
, 

 
where the second equality follows from put-call parity. (These equations also follow from 
first principles, see Appendix B).  



 20

 As we have seen in Section 3, the possibility of default induces a significant 
volatility skew in option prices. To the extent that this skew does not fit the observed 
market skew, it is natural to adjust the volatility function ( , )t Sσ  in order to correctly 
price options with different strikes expiring at the same date. To perform this task, we 
follow the literature of forward volatility fitting (see e.g. Dupire, 1996, and Andersen and 
Andreasen, 2000) and work with a forward PDE for call option prices expressed as 
functions of strike and maturity. Appendix B derives this PDE for our model framework: 
 

 
( ) ( )

2
2 21

2 2

( , ) ( , )
( ) '( , ) ( , ) ( ) ( ) ( , )

( , )
( , ) ( , ) ''( , ) ,

K

C T K C T K
q T K T K C T K r T q T T K K

T K
C T K

K T K K C T k T k dk
K

λ λ

σ λ
∞

∂ ∂
= − − − − + +

∂ ∂
∂

+
∂ ∫

(21) 

 
with boundary condition ( )(0, ) (0)C K S K

+
= − . 'λ  and ''λ  denote the first and second 

derivatives of λ  with respect to K (which we assume exist; otherwise, we can use 
equation (B.5) in Appendix B). There are a number of different ways this forward PDE 
can be used in a calibration exercise. First, if we assume that a continuum of option prices 
is known for all T and K (which in practice requires application of interpolation 
techniques) the PDE can be rearranged to (omitting some function arguments for space 
considerations) 
 

 
( ) ( )

2
2

21
2 2

'( , ) ( , ) ( , ) ''( , )
( , )

K

C Cq K T K C r q T K K K C T k T k dk
T KT K

C
K

K

λ λ λ
σ

∞∂ ∂+ − + − + −
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∂
∂

∫
 

 
where we assume that ( , )T Kλ  is known. For the equation above to work in practice, 
great care needs to be taken in ensuring that the option price surface is sufficiently 
smooth; see Andersen and Andreasen (2000) for more on this.  

Rather than assuming that a full continuum of option prices are observable, 
alternatively we could attempt to fit only a discrete set of options directly observable in 
the market. Such a fit would typically involve iterating on σ  until a) all observable 
option prices are reproduced with adequate accuracy; and b) some smoothness norm is 
maximized. See e.g. Lagnado and Osher (1997) for a typical approach. The forward PDE 
(21) is crucial for this approach to be practical, as it allows for quick pricing of call 
options with different maturities and strikes. In particular, we notice that solving a single 
log-K finite difference grid gives us the prices of call options at numerous strikes and 
maturities, with each node ( , )i jT y  in the finite difference grid representing the time 0 
price of a call option maturing at time iT  with strike jye . This is obviously much faster 
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than pricing the call options using the backward equation, which involves one finite 
difference grid per option.  

As yet, we have assumed that ( , )t Sλ  is known and that ( , )t Sσ  is fitted to the 
smile. In pricinciple, we could also fix ( , )t Sσ  and attempt to solve for ( , )t Sλ  such that 
the option smile is replicated. Using (21) (or alternatively equation (B.5) in Appendix B) 
this leads to a Volterra integral equation for ( , )t Sλ . As we have seen earlier in Figure 3, 
however, the effect on the volatility smile from changing ( , )t Sλ  is rather limited, so it is 
doubtful that this equation actually has a reasonable (or even stable) solution in practice.  

Finally, we point out that the forward equation (21) is a special case of a 
somewhat broader theory for forward PDEs associated with jump-diffusions with time- 
and state-dependent intensity. The interested reader can find some additional results 
along these lines at the end of Appendix Bx.  
 
6.3. Other extensions. 
 In (1), the model for the pre-default stock dynamics are purely diffusive, with the 
stock being the single state-variable. Many recent models for stock dynamics are 
considerably more complicated than this and may involve discontinuities and additional 
state variables (such as unspanned stochastic volatility). In principle, such additional 
features could also form the basis for a model for convertible bonds, although it remains 
to be seen under what circumstances such models could be made practical. This is an 
interesting avenue of future research. 

Finally, we note that while imposing a deterministic functional dependence 
between stock prices and default intensities appears to capture a number of salient 
characteristics of convertible bond markets well, some authors (e.g. Davis and Lischka, 
1999) have pursued models where the default intensity is driven by a Brownian motion 
different from that of the stock. While some of these models imply that credit spreads can 
become negative, this approach has the potential to more accurately capture the fact that 
the relationship between spreads and equity prices is often quite noisy. For regular 
convertible bonds, where such effects are likely to only have secondary effects on prices, 
it is doubtful that this approach justifies the additional computational effort of introducing 
an extra state variable.  
 
7. Conclusion. 
 This paper adds to the newly resurgent literature on convertible bonds modeling 
by addressing the important question of how to efficiently calibrate reduced-form models 
to observed market information. Our primary approach involves application of the 
Fokker-Planck equation for simultaneous calibration to at-the-money options and straight 
debt (or credit derivatives). Through a number of numerical experiments we 
demonstrated practicality of the suggested techniques and documented a number of 
economically significant effects associated with naïve, yet apparently widespread, model 
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parameterizations. In situations where liquid option data is plentiful, we developed theory 
to guide more ambitious calibration to the full option volatility smile. Applying this 
theory in practice – and testing impact on prices -- is a challenging and interesting avenue 
of future research. Similarly, more research is needed in gauging the impact of applying 
more sophisticated, possibly discontinuous, pre-default stock dynamics than those used in 
this paper.  
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Appendix A 
Coupon bonds and credit default swaps in terms of risky zero-coupon bonds 

 
Calibration of convertible bond models to straight debt markets is most 

conveniently done through term structures of risky zero-coupon bonds. While risky zero-
coupon bonds normally do not trade directly, their use as calibration instruments entail no 
difficulties as they can be implied from credit default swap (CDS) or coupon bond quotes 
by bootstrap techniques. For reference, this appendix briefly derives the necessary 
equations for this exercise.  

First, consider a regularly spaced schedule , 1,2,...,it i i nδ= =  and consider a 
security A that pays an annualized coupon of $1 on this schedule (i.e. a net payment of δ  
is made on each schedule date), up to either the time default or the final maturity nt , 
whatever comes first. Assuming that no accrued interest is due on default times falling 
between schedule dates, the time 0 value of this security is given as a risky annuity 
factor: 
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n
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i

A B tδ
=

= ∑ . 

 
Second, consider a security F that pays $1 precisely at the time of default, under the 
condition that default takes place before the final schedule maturity nt . Working, strictly 
for convenience, on a time-grid that coincides with the schedule dates { }it , we can write 
the time 0 value of this security as follows:  
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where Pr()⋅  denotes risk-neutral expectation, and where 0 0(0, ) (0, ) 1B t P t= ≡ . The third 
equality follows directly from (3), as by definition Pr( ) (1 )

ii tt E ττ >> = . Notice that we 
have assumed that defaults anywhere inside the bucket 1[ , ]i it t−  can on average be 
associated with a payment at time 1

12 ( )i it t −+ . This is obviously an approximation, but a 
highly accurate one and sufficient for our purposes. (In general, we could easily make 
this time-discretization finer, or even take the continuous-time limit).  
 We now turn to the pricing of a risky coupon bond D paying an annualized 
coupon rate of κ  on the { }it  schedule discussed above. Consistent with market practice, 
we assume all coupons are lost in case of a default with only a certain fraction φ  of 
notional recovered (see also Section 5.2). For a normalized notional of $1, the value of 
the coupon bond can thereby be written as 
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 (0) (0, ) (0) (0)D B T A Fκ φ= + +   (A.1) 

 
We recognize the first two terms as representing the value of a bond with zero recovery 
on both the back-end notional (the first term) and the coupons (the second term). The last 
term represents the add-back of the value associated with non-zero recovery. 
 Consider now a CDS where we pay a premium rate θ  on the { }it  schedule in 
return for a payment of (1 )φ−  if a default happens before the final maturity nt . Again 
assuming a normalized notional of $1, the time 0 value of this instrument is 
straightforward: 
 
 (0) (1 ) (0) (0)CDS F Aφ θ= − −  (A.2) 
 
 With (A.1) and (A.2), the relations linking risky zero-coupon bonds to CDS and 
coupon bond prices are complete. There are, of course, generally less CDSs and coupon 
bonds trading than the total number of different dates in the various payments schedules, 
meaning that we normally have too few equations to directly back out all risky zero-
coupon bonds in equations (A.1) and (A.2). As a consequence, one typically applies some 
type of bootstrap interpolation technique to reduce the number of independent unknown 
variables.  
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Appendix B 
Derivation of forward equation for European call options 

 
Define ( )( ) ( )t S t K

+
Ψ = −  for some positive strike K. By the Ito-Tanaka Theorem for 

continuous non-differentiable functions, we get 
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where we have omitted the tedious usage of t −  in the understanding that all terms are to 
be evaluated to the left of any jump time. Integrating over time, taking expectations, and 
noting that ( ) ( ) ( )22 2 2( ) ( ) , ( ) ( ) ( , )S t K S t t S t S t K K t Kδ σ δ σ− = −  gives 
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To relate this equation to observable quantities, first notice that ( )( )( )E S t Kδ −  is the 
density of ( )S t  in K. As before, we now let ( , )C t K  denote the time 0 price of a call 
option with strike K and maturity t. From Breeden and Litzenberger (1978), we then have 
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where 2 2( , ) /C t K K∂ ∂  will contain a mass in 0K =  to reflect the probability of default in 
[0, ]T :  
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We also notice that  
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where the last equation follows, for instance, from integration of (B.2). Finally, we notice 
that the third and fifth integrand in (B.1) combine to 
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Inserting expressions (B.2)-(B.4) into (B.1), noting that ( )( , ) (0, ) ( )C T K P T E T= Ψ , and 
taking the derivative with respect to T yields 
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where we have used (B.2) in the last term. Assuming that λ  is twice differentiable, we 
can rewrite the equation above by integrating the last term by parts twice: 
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Under some regularity on ( , )T kλ  (e.g. that it and its k-derivatives are bounded for large 
enough K), the two first terms in the equation above approach 0 as k → ∞ . As such, we 
can write 
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Inserting this into (B.5), we get the alternative expression: 
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(B.6) 

 
It is of interest to note that the forward equation above is just a special case of 

forward equations for jump-diffusion stock processes with state-dependent jump 
intensity. For instance, consider the stock process   
 
 ( )( ) ( ) ( )( ) / ( ) ( ) ( ) ( ) , ( ) , ( ) ( ) ( ) 1 ( )dS t S t r t q t m t t S t dt t S t dW t J t dN tλ σ− = − + − + − + −  
 
where ( )J t  is some positive random variable with deterministic density 

( )Pr ( ) / ( , )J t dz dz t zξ∈ = , and ( )( ) 1 ( )m t E J t≡ − . (We can easily extend further to stock 
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and time-dependent density ( , , )t S zξ ). Following the same steps as above, we arrive at 
the forward PDE  
 

( )

( )

2 2
2 21

2 2 2

2 2
*

2 20 /

( , ) ( , )
( ) ( , ) ( ) ( )

( , ) ( , )
( , ) ( , )

( , ) ( , )
( ) ( / ) ( , ) ( , ) ( , )

K

K z K

C T K C T K
q T C T K r T q T K

T K
C T K C T k

K T K K T k dk
K k
C T k C T k

E J t k K z T z T k dkdz k T k dk
k k

σ λ

ξ λ λ

∞

∞ ∞ ∞

∂ ∂
= − − − +

∂ ∂
∂ ∂

+ +
∂ ∂

 ∂ ∂
− − ∂ ∂ 

∫

∫ ∫ ∫
  (B.7) 
 
where ( )*( , ) ( , ) / ( )T z z T z E J Tξ ξ=  is a density function. Let us consider some special 
cases. First, when ( ) 0J t =  we are left with the same expression as earlier. Second, if 

( )J t  is some deterministic function ( )tη , ( )( , ) ( )t z z tξ δ η= −  and the equation 
simplifies to  
 

 
( )

( )
2 2/ ( )2 21

2 2 2

( , ) ( , )( ) ( , ) ( ) ( )

( , ) ( , )
( , ) ( ) ( , )

K t

K

C T K C T Kq T C T K r T q T K
T K

C T K C T k
K T K K k T T k dk

K k
η

σ η λ

∂ ∂= − − − +
∂ ∂

∂ ∂
+ −

∂ ∂∫
 

 
And third, when λ  is independent of S, (B.7) degenerates into the forward equation 
derived in Andersen and Andreasen (2000). 
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Appendix C 
Constant-parameter stationary distribution of intensity process ( , ) pt S cSλ −=  

 
To understand the asymptotic behavior of ( , ) pt S cSλ −= , 0p > , for large t, consider the 
case where all stock process parameters ( , ,r q σ ) are constants. From equation (5), we 
have that 
 
 ( )( ) / ( ) ( ) ( )d t t a p t dt p dW tλ λ λ σ= − −  
 
where ( )21

2 ( 1)a p p r qσ≡ + − + . If 0a < , no stationary distribution exists as the origin 
becomes an attractive point and ( )lim ( ) 0t E tλ→∞ = . For sufficiently positive values of a, 
however, a stationary density ( )ψ λ  might exist. From standard theory (e.g. Karlin and 
Taylor, 1981, p. 220), ψ  satisfies, should it exist, 
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Integrating once (and arguing that the integration constant must be zero) and separating 
variables yields the result 
 
 1 /( ) C eµ λ αψ λ λ − −=  (C.1) 
 
where C is an arbitrary constant, 2 22 /( ) 1a pµ σ≡ − , and 21

2 pα σ≡ . For the density to be 
integrable, we obviously must assume that 0µ ≥ . Recognize (C.1) as the density of a 
Gamma distributed variables, the constant C must equal ( )1/ ( ) µµ αΓ  to ensure that ψ  
integrates to 1. More importantly, from the properties of the Gamma distribution, we see 
that 
 

 2 21 1
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To summarize, 
 
 ( ) ( )21

2lim ( ) 0,t E t MAX r qλ σ→∞ = − + . (C.2) 
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Figure 1: Term structures of ATM implied volatilities vs. intensity specification 
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Panel B, c = 5%: 
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Notes: the graphs show term structures of implied volatility for options struck at the stock 
forward price. The model specification is as follows: ( ) 4%r t = , ( ) 2%q t = , (0) 50S = , 

( , ) 30%t Sσ = , and ( , ) ( /50) pt S c Sλ −= ⋅  with c and p varying as noted in panels A and B. All 
numbers in the graphs are based on a Crank-Nicholson finite difference grid with 150 spatial 
steps. For 1T < , we used daily time-steps; for [1,7]T ∈  weekly time-steps; and for 

(7,30]T ∈  monthly time-steps.  
 
 



 32

Figure 2: 6-month and 5-year implied volatility skews vs. intensity parameter c 
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Panel B, T = 5: 
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Notes: the graphs show implied volatility skews for 6-month (panel A) and 5-year (panel B) 
call options. All strikes are reported as percentages of the forward stock price. The model 
specification is as follows: ( ) 4%r t = , ( ) 2%q t = , (0) 50S = , ( , ) 30%t Sσ = , and 

2( , ) ( /50)t S c Sλ −= ⋅ , with c varying as reported in the graphs. Finite difference grid 
dimensions were as in Figure 1. 
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Figure 3: 5-year implied volatility skew vs. intensity parameter p 
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Notes: the graph show implied volatility skews for 6-month call options. All strikes are 
reported as percentages of the forward stock price. The model specification is as follows: 

( ) 4%r t = , ( ) 2%q t = , (0) 50S = , ( , ) 30%t Sσ = , and ( , ) 5% ( /50) pt S Sλ −= ⋅ , with p 
varying as specified in the graph. All numbers were generated in a 150× 150 finite difference 
grid. 
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Figure 4: Term structures of risky spreads vs. intensity specification 
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Panel B, c = 5%: 
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Notes: the graphs show term structures of spreads on risky bonds, as defined in equation (9). 
The model specification is as follows: ( ) 4%r t = , ( ) 2%q t = , (0) 50S = , ( , ) 30%t Sσ = , and 

( , ) ( /50) pt S c Sλ −= ⋅  with c and p varying as noted in panels A and B. Finite difference grid 
dimensions were as in Figure 1.  
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Figure 5: Term structures of risky spreads vs. stock volatility 
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Notes: the graphs show term structures of spreads on risky bonds, as defined in equation (9). 
The model specification is as follows: ( ) 4%r t = , ( ) 2%q t = , (0) 50S = , 

2( , ) 10% ( /50)t S Sλ −= ⋅ , and ( , )t Sσ σ= , with σ  varying as shown in the graph. Finite 
difference grid dimensions were as in Figure 1.  
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Figure 6: Result of Calibration to Risky Bonds and ATM options  
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Notes: the graphs show the calibrated functions a, b in the model ( , ) ( ) ( /50) pt S a t Sλ −= ⋅  

( , ) ( )t S b tσ = . ATM call options (with strikes equal to the stock forward values) quote at 40% 
implied volatility for all maturities; the risky credit spread quotes at 5% for all maturities. The 
remaining parameters were as follows: ( ) 4%r t = , ( ) 2%q t = , (0) 50S = , with the parameter 
p of the λ -function varying as noted in the graphs. In the calibration algorithm, the fit was 
performed in increments of 1 month, with weekly points in the finite difference grid time line. 
The spatial direction of the finite difference grid contained 150 points.  
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Figure 7: Prices of Convertible Bonds in Test Cases A and B 
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Panel B: test case B  
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Notes: the graphs show convertible bond prices for the test cases A (in panel A) and B (in panel 
B). See Table 1 for details about the contract and the market parameter. The parameter p of the 
λ -function varies as noted in the graphs. In the calibration algorithm, the fit was performed in 
increments of 1 month, with weekly points in the finite difference grid time line. The spatial 
direction of the finite difference grid contained 250 points. The same finite difference grid was 
used for pricing and calibration. 
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Figure 8: Percentage price errors of “naively” calibrated model (case A) 
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Notes: the graph shows the convertible bond price error of the “naively” calibrated model vs. 
the level of the stock price. Errors are represented as a percentage fraction of the excess value of 
the convertible bond relative to the bond floor. All market and model data is as in test case A 
(magnitude of the percentage error is similar for test case B); see Table 1 for details about the 
contract and the market parameter. The parameter p of the λ -function varies as noted in the 
graphs. In the calibration algorithm, the fit was performed in increments of 1 month, with 
weekly points in the finite difference grid time line. The spatial direction of the finite difference 
grid contained 250 points. The same finite difference grid was used for pricing and calibration. 
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Endnotes 
                                                 
i Briefly, the reduced-form approach directly models default as a point process focusing primarily 
on the properties of the default intensity process. An alternative framework, the structural 
approach, models default as the first passage time to a barrier of some process, typically either 
the company equity or a proxy for its assets. See Merton (1974) for a classical example. While it 
is in principle possible to build convertible bond models using the structural approach (see e.g. 
Brennan and Schwarz, 1980), the reduced-form approach is, by far, the most natural for trading 
applications and shall be the sole focus of this paper. 
 
ii For a review of Cox processes, see e.g. Lando (1998). Briefly, a Cox process is a Poisson 
process with stochastic jump intensity. 
 
iii Further, we need to interpret (1) as holding only up to and including the time of default. After 
default the stock ceases to exist and we cannot allow the stock to continue diffusing and jumping. 
One option is to model the post-default stock as a cash certificate on a deposit of ( )SR S τ − , i.e. 

( ) ( ) ( ) ,dS t r t S t dt t τ= > . 
 
iv For the case where there is fractional recovery of on the stock in default, the term 

( , ) /t S S V Sλ ⋅ ∂ ∂  in equation (2) must be replaced with (1 ( , ) /)SR t S S V Sλ− ⋅ ∂ ∂ , where SR  is 
the recovery fraction. 
 
v In contrast, for a put option with time T payout ( )( )K S T +− , the recovery value would be 

( )( , ) exp ( )T
tR t S K r u du= − ∫ . 

 
vi By letting the function ( , )t Sσ  depend explicitly on S, a diffusion can itself generate a volatility 
skew or smile. We will return to this issue in Section 6. 
 
vii Like the conversion option, the issuer’s call option can be exercised American-style (that is, 
continuously). In case exercise takes place in the middle of a coupon period, the bond owner is 
normally entitled to interest accrued up to the date of exercise. This can easily be incorporated 
into the boundary condition (17) by modifying the call strike appropriately.  
viii Recall that this is the spread in zero-recovery (intensity) terms. The credit spread observable in 
the market for coupon bonds or credit default swap would then be roughly (1 ) 60%φ− =  of the 
numbers in the table (180 bp and 120 bp) 
 
ix An alternative is to set c such that bond floor is priced correctly at today’s value of the stock 
price. However, for the cases tested in the paper this approach would result in convertible bond 
prices that would be significantly too high, as the increased volatility of the “naïve” model would 
not be countered by a decrease in the value of the bond floor. To avoid overstating our case, we 
do not list the pricing results of this approach (but see the case of 0p =  in Figure 8 to get a feel 
for the magnitude of the errors).  
 
x Some of the results in Appendix B have independently been derived in Carr and Javaheri 
(2002). 


