15.2 A stochastic volatility model with jumps: the Bates
model

As noted above, diffusion based stochastic volatility models cannot generate
sufficient variability and asymmetry in short-term returns to match implied
volatility skews for short maturities. The jump-diffusion stochastic volatility
model introduced by Bates [41] copes with this problem by adding propor-
tional log-normal jumps to the Heston stochastic volatility model. In the
original formulation the model has the following form:

%ﬁ = pdt 4 \/VidWS + dz,, (15.11)

dVy = E(n — Vi)dt + 6/ V.dWY

where (W) and (W) are Brownian motions with correlation p, driving
price and volatility, and Z, is a compound Poisson process with intensity A
and log-normal distribution of jump sizes such that if £ is its jump size then
In(1 + k) ~ N(In(1 + k) — 362, 6%). The no-arbitrage condition fixes the drift
of the risk neutral process: under the risk-neutral probability pu = r — Ak,
Applying It0’s lemma to Equation (15.11) we obtain the equation for the
log-price X; = In S;:

_ 1 _
dX, = (r— e — 5 Vi)dt + VVidWs +dz,,

where (Z,) is a compound Poisson process with intensity A and Gaussian dis-
tribution of jump sizes. This model can also be viewed as a generalization
of the Merton jump-diffusion model (see Chapter 4) allowing for stochastic
volatility. Although the no arbitrage condition fixes the drift of the price
process, the risk-neutral measure is not unique, because other parameters of
the model (for example, intensity of jumps and parameters of jump size dis-
tribution} can be changed without leaving the class of equivalent probability
measures. Jumps in the log-price do not have to be Gaussian in this model.
One can replace the Gaussian distribution by any other convenient distri-
bution for the jump size without any loss of tractability, provided that the
characteristic function is computable.

Option pricing In this stochastic volatility model as well as in other models
of this chapter the characteristic function of the log-price is known in closed
form (see below). Therefore, European options can be priced using one of the
Fourier transform methods of Chapter 11. For path-dependent options closed-
form expressions are not available and one must turn to numerical methods
(e.g., Monte Carlo).
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Characteristic function of the log-price Let us first compute the char-
acteristic function of the continuous component X; of X;, following [196].

Let

flz,v,t) = E{€* =V, =vh

Applying Itd’s formula to M, = f(X7,V},t) yields

o2 f % f 0, O2f Vi, Of
dM, = (Vtaz PV =+ 91«132 (r Ak—;a

+&(n - V,,)gi + %f)dw \/" afWS +8~f

Since f(X¢,V;, 1) is a martingale we obtain, by setting the drift term to zero:

1 9*f f 1., 8°f | f
51}8;1:2 p6' + 9 F+{r— k——)

d
+&(n —v}a + Ef =0. (15.12)

Together with the terminal condition f(z,u,7) = €** this equation allows
to compute the characteristic function of log-price. To solve it, we guess the
functional form of f:

flz,u,t) = exp{C(T — t) + vD(T —t) + iuz}, (15.13)

where C' and D are functions of one variable only. Substituting this into
Equation (15.12), we obtain ordinary differential equations for C' and D:

u? + du

D/(s) = 36°D%(s) + (ipu — D(s) - 1,
C'(s) = &nD(s) + iu(r — Ak)

with initial conditions D(0) = C(0) = 0. These equations can be solved
explicitly:

u? +iu
ycoth ¥ + & —ipbu’

D(s) = —

C(s) = ius(r — AE) + 5"?3(58—;2',091;)

2En vs E—ipbu . ys
" h — Ad
5 1 (cos 2 + sinh 5 )

where v = /02(u? + iu) + (€ — ipfu)?. The characteristic function without
the jump term can now be found from Equation (15.13). To incorporate the
jump term, since jumps are homogeneous and independent from the contin-
uous part, we need only to multiply the characteristic function that we have
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obtained by the characteristic function of the jumps which in this case is
simply

t;bg{ﬂ] — exp{tA{€~52u2f2+i[ln(l+I_r;]—%62]1; ~1)}.

Finally, the characteristic function of the price process in the model of Bates
is

exp (ﬁﬂ%—;@ + dut(r — Mk) + z'umg)
) i

be(u) = ¢f (u) .
(cosh 3’% + g%"ei‘ sinh 3’%

(u? + fu)vg
% exp | — _ (15.14)
( frcoth%t + & —ipbu

with 7 defined above.

Implied volatility patterns in the Bates model Some implied volatility
smiles attainable in the Bates model are shown in Figure 15.2. In this model
there are two ways to generate an implied volatility skew. The first way is to
introduce a (negative) correlation between returns and volatility movements,
as in diffusion-based stochastic volatility models. Alternatively, an implied
volatility skew for short-term options can be generated by asymmetric jumps
(as in exp-Lévy models) even if the noise sources driving volatility and returns
are independent.

Therefore the “intuition” — originating from bivariate diffusion models —
that the implied volatility skew is systematically linked to a “leverage effect”
is groundless: it is simply due to the symmetry (stemming from normality)
of Brownian increments and gives yet another example of a property specific
to the Brownian universe.

We have seen that correlation and jumps have similar effect on the implied
volatility smile; is there any feature which allows to distinguish them? The
answer is yes: jumps and correlation both induce an impled volatility skew
but they influence the term structure of volatility differently. It is clear from
Figure 15.2 that the smiles that are due to jumps are stronger at short maturi-
ties and flatten out much faster as the time to maturity increases. In contrast,
smiles due to correlation can be used to obtain a skew at longer maturities
but are not sufficient to explain the prices of short-maturity options. Also,
introducing jumps increases the overall level of implied volatility while corre-
lation has little effect on it. Finally, at-the-money volatility stays roughly the
same in absence of jumps and tends to increase for longer maturities when
the jumps are present.

These remarks shed light on a very nice feature of the Bates model: here
the implied volatility patterns for long-term and short-term options can be
adjusted separately. One can start by calibrating the jumps on one or two
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shortest maturities and then fix the jump parameters and calibrate the other
ones on longer maturities. This approach will not give the best possible cali-
bration quality but yields reasonable results. If instead of using this procedure
all parameters are fitted at the same time with least-squares method, the cost
function will not be convex and one may end up in a local minimum with
strange parameter values [97].
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FIGURE 15.2: Implied volatility patterns in the Bates model. Left graph
shows the smiles for various maturities when the jumps are absent but there is
a correlation between the volatility process and the price process (p = —0.5).
On the right graph the correlation is absent and the skew is due to jumps (with
intensity A = 5). The other parameters are the same for both graphs: Sy =1,
r =0, Vo = 0.2, 0 = 0.7 (volatility of volatility), £ = 10 (inverse correlation
length), 7 = 0.2 (mean square volatility), § = 0.1 (jump dispersion) and
k = —0.1 (average relative jump size).

15.3 Non-Gaussian Ornstein-Uhlenbeck processes

Using Lévy processes as driving noise, one can construct a large family of
mean-reverting jump processes with linear dynamics on which various prop-
erties such as positiveness or the choice of a marginal distribution can be im-
posed. We will call these processes, which are non-Gaussian generalizations of
the Gaussian Ornstein-Uhlenbeck process, non-Gaussian Ornstein-Uhlenbeck
processes or simply OU processes. These processes are not only convenient
to model “volatility” but also have an independent interest for modelling sta-
tionary time series of various kinds such as commodity prices or interest rates

[36, 307).
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