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Abstract

Option values are well-known to be the integral of a discounted transition density times a payoff
function; this is just martingale pricing. It’s usually done in  ‘S-space’, where S is the terminal
security price. But, for Lévy processes the S-space transition densities are often very
complicated, involving many special functions and infinite summations. Instead, we show that
it’s much easier to compute the option value as an integral in Fourier space – and interpret this as
a Parseval identity. The formula is especially simple because (i) it’s a single integration for any
payoff and (ii) the integrand is typically a compact expressions with just elementary functions.
Our approach clarifies and generalizes previous work using characteristic functions and Fourier
inversions. For example, we show how the residue calculus leads to several variation formulas,
such as a well-known, but less numerically efficient, ‘Black-Scholes style’ formula for call
options. The result applies to any European-style, simple or exotic option (without path-
dependence) under any Lévy process with a known characteristic function. 
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1. INTRODUCTION AND SUMMARY

The benchmark model for security prices is geometric Brownian motion. A relatively simple yet
powerful generalization is the class of all continuous-time process where all non-overlapping
increments log( / )t t t tX X S S− =

2 1 2 1
 are independent random variables with stationary

distributions. This set of processes tX  are the Lévy processes or processes with stationary
independent increments. [see the monographs by Sato (1996) and Bertoin (1999)]. They consist
of a combination of a linear drift, a Brownian motion, and an independent jump process  Here we
provide a solution to the associated European-style option valuation problem.  

These models help explain some, but not all, of the well-documented deviations from the
benchmark model. Lévy process models can be good fits to daily stock return distributions which
are characterized by wide tails and excess kurtosis. [For example, see Eberlein, Keller, and
Prause (1998)]. The so-called jump-diffusions (which are members of the class where the jumps
are compound Poisson processes) offer a compelling explanation for the relatively steep smiles
observed in expiring index options like the S&P500.1 It should be noted that the independent
increment assumption is counter-factual in some respects.2 Nevertheless, because of their
successes, flexibility, and analytic tractability, continued financial applications are likely.  For a
recent survey of applications, in finance and elsewhere, see Barndorff-Nielsen, Mikosch, and
Resnick (2001).

Jump-diffusion models are distinguished by their jump amplitude distributions. Two examples
are Merton (1976) who solved for option prices with log-normally distributed jumps, and Kou
(2000), who did the same for a double exponential distribution. To obtain an option formula, the
authors relied upon particular properties of those distributions. Merton’s solution relies upon a
product of lognormal variates being lognormally distributed.  Kou’s derivation stresses the
importance of the memoryless property of the exponential distribution. Our results make clear
that, in fact, no special properties are needed: we obtain an option formula for any jump
distribution. 

In addition, many of the original results for these models are very complicated. Special functions
and complicated expressions are required when option formulas are given in ‘S-space’ or stock
price space.3 However, more recently, it has been recognized that option values for both the Lévy
process problem and related proportional returns problems are much simpler in Fourier space4.
For example, Carr and Madan (1999) have derived relatively simple formulas for call options on
Lévy processes, working in Fourier space. Bakshi and Madan (2000), although not working
directly on Lévy processes, derive an applicable ‘Black-Scholes-style’ formula for call options
using characteristic functions and some more complicated formulas for general claims. Raible
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(2000) obtained an option formula which is very similar to our general result (see below).
However, he presents it as a mixture of Fourier and two-sided Laplace transforms. Because we
use the generalized Fourier transform consistently, our strip condition is more transparent. In
Lewis (2000), we obtained related inversion formulas for options under stochastic volatility, a
proportional returns problem. Here we generate the value of the general claim under a Lévy
processes as an integral of Fourier transforms. Once you have our main result, the residue
calculus provides a standard approach to variations. For example, we show that the Black-
Scholes style formula is simply obtained by moving integration contours.  

The formula can be easily explained with a little background. Assume that under a pricing
measure a stock price evolves as [ ]exp ( )T TS S r q T X= − +0 , where r q−  is the cost of carry,
T is the expiration time for some option, and TX  is some Lévy process satisfying
[ ]exp( )TX = 1E . For Lévy processes, the important role of the characteristic functions

[ ]( ) exp( )t tu iu Xφ = E , u ∈ R  is well-known. Like all characteristic functions, they are Fourier
transforms of a density and typically have an analytic extension (a generalized Fourier
transform) u z→ ∈ C , regular in some strip XS  parallel to the real z-axis. 

Somewhat less appreciated, yet key to our approach, is the recognition that option payoff
functions also have simple generalized Fourier transforms.  Using the variable log Tx S= , these
transforms are ( ) exp( ) ( )ŵ z izx w x dx∞∫−∞= , where ( )w x  is the payoff function5. For example, if
K is a strike price, the call option payoff is ( ) ( )xw x e K += −  and so, by a simple integration,

( ) /( )ˆ izw z K z iz+=− −1 2 , Im z > 1 . Note that if z were real, this regular Fourier transforms
would not exist. As shown in Lewis (2000),  payoff transforms ( )ŵ z  for typical claims exist and
are regular in their own strips wS  in the complex z-plane, just like characteristic functions. Then,
the initial option value ( )V S0  is given by simply integrating the (conjugate) product of these two
transforms times a phase factor. To do the integration legally, one has to keep z within the
intersection of the two strips of regularity wS  and *

XS  ( *
XS  is the reflection of XS  across the

real z-axis). With that synopsis, the formula is 

(1.1)                           Option values:    ( ) ( ) ( )ˆ
rT i izY

T
i

eV S e z w z dz
ν

ν
φπ

− +∞ −
−∞

= −∫0 2
,     

                             where  ln ( )Y S r q T= + −0 ,  z u iν= + ,   *
V w Xz ∈ = ∩S S S .

Although very compact, (1.1) contains (as special cases), the Black-Scholes model, Merton’s
jump-diffusion model, Kou’s jump-diffusion model, and all of the pure jump models that have
been introduced. Indeed, it applies to the entire class of exponential Lévy processes which have
[ ]exp( )TX <∞E . The proof of it and our use of the residue calculus to obtain variations is our

primary contribution in this paper. 
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Any path-independent European-style payoff, plain vanilla or exotic, may be valued. The
expression (1.1) is obviously just a single integral. It’s real-valued and readily evaluated6.
Typically the integrand is a short expression, often with only elementary functions. See Tables
2.1 and 3.1 for  examples of ( )T zφ  and ( )ŵ z  respectively. 

Consider the call option again. Since ( ) /( )ˆ izw z K z iz+=− −1 2 ,  the integrand in (1.1) is a
regular function of  z in the larger strip *

XS , except for simple poles at z = 0  and z i= . Using
the residue calculus, you can move the integration contour around in *

XS . Of course, you pick up
residue contributions if you move contours across (or along!) Im ,z = 0 1 . We do this and obtain
a number of variations on (1.1) – including the Black-Scholes style formula that we mentioned
earlier. Finally, it turns out that exp( ) ( )TizY zφ− −  is the (conjugate of the) Fourier transform of
the transition density for log S0  to reach log TS  after the elapse of T. This allows us to interpret
(1.1) simply as a Parseval identity. In fact, the proof of that clarifies what space of payoff
functions are handled by our theory and which types are excluded.
 
In the next section, we review some fundamental aspects of Lévy processes, their applications to
finance, and their analytic characteristic functions. This material is almost entirely standard and
experts in those topics could well skim for our notation and then jump to the proof of (1.1) in
Section 3.

2.  BACKGROUND

2.1 The Framework
We consider a marketplace in which a stock price or security price tS ≥ 0  follows an
exponential Lévy process tX  (defined below) on a continuous-time probability space ( , , )Ω F Q .
We stress that Q is a fixed martingale pricing measure. The pricing measure has the same null
sets as an ‘objective’ or ‘statistical’ measure P, and the two measures are related by an
unspecified Girsanov change-of-measure transformation7. However, P  plays no direct role in our
discussion – all expectations and stochastic processes are defined relative to Q. 

A stock buyer receives a continuous dividend yield q; she could finance her purchase at the
riskless rate of interest r. The net financing cost (the cost of carry) is r q− . It is convenient to
explicitly remove this constant – we then investigate option valuation where

[ ]exp ( )t tS S r q t X= − +0  under Q, where tX  is a Lévy process. Following Sato (1999), we
adopt the following definition:
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Definition (Lévy Process) An adapted real-valued  process tX , with X =0 0 ,  is called a Lévy
process if: 

(i) it has independent increments; that is, for any choice of n ≥ 1  and nt t t≤ < < <0 10 " , 
the random variables tX

0
, t tX X−

1 0
, ,

n nt tX X
−

−
1

" are independent;
(ii) it is time-homogeneous; that is, the distribution of  { ;  }t s sX X t+ − ≥ 0  does not depend
upon s.
(iii) it is stochastically continuous; that is, for any ε> 0 , { }Pr | |s t sX X ε+ − > → 0  as
t → 0 . 
(iv) as a function of t, it is right-continuous with left limits. 

Processes that satisfy (i) and (ii) are called processes with stationary (or time-homogeneous)
independent increments (PIIS). Some authors (e.g. Bertoin) simply define a Lévy process to be a
PIIS process with X =0 0 . Such processes can be thought of as analogs of random walks in
continuous time. 

To prevent an arbitrage opportunity, the stock price (net of the cost of carry) must be a local
martingale under Q. In fact, we maintain throughout the stronger assumption: tS , net of the
carry, is a Q-martingale. That is, [ ] exp[( ) ]tS S r q t= −0E  or [exp ]tX = 1E . For those Lévy
processes with [exp ]tX <∞E , this normalization can be achieved by a drift adjustment.

Types of Lévy processes.  In general, Lévy processes are a combination of a linear drift, a
Brownian motion, and a jump process. When jumps occur, tX  jumps by \ { }tX x∆ = ∈ 0R ,
(the notation means that we exclude zero as a possible jump amplitude x). Now consider any
closed interval A∈ R  that does not contain the origin. Then, the cumulative number of jumps in
the time interval [0,t] with a size that belongs to A , call it A

tN ,  is a random variable which is
also a measure. This integer-valued Q-random measure is usually written ([ , ], )A

tN t Aν= 0 .
With A fixed,  then A

tN  has a Poisson distribution with a mean value ( )At x dxµ∫ . Here we have
introduced the Lévy measure ( )x dxµ , which measures the relative occurrence of different jump
amplitudes [see Sato, 2001, Theorem 1.4].

Two types of Lévy processes with a jump component can be distinguished. In type I (the Poisson
case),  we have ( )x dxµ∫ <∞R . Then, we can write ( ) ( )x f xµ λ=  , where ( )x dxλ µ∫= R  is the
Poisson intensity (the mean jump arrival rate), and ( ) ( )f x dx dF x= , where ( )F x  is a
cumulative probability distribution8.  We will also call this case the jump-diffusion case. An
example of this type is Merton’s (1976) jump-diffusion model, where x is normally distributed:

/( ) ( ) exp[ ( ) / ] /( )x f x xµ λ λ α δ πδ= = − − 1 22 2 22 2 . 
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In the alternative type II case, ( )x dxµ∫ =∞R  and no overall Poisson intensity can be defined. A
simple example is the Lévy α− stable process: ( ) / | |x c x αµ +

±= 1 , α< <0 2 , where c±  are
two constants for x > 0  and x < 0 . Carr and Wu (2000) have proposed a special case of this
model for stocks. Notice that in the type II example, the source of the divergence is the failure of

( )xµ to be integrable at the origin: there are too many small jumps. The divergence at the origin
is always the source of the integrability failure of ( )xµ  in type II models – the Lévy-Khintchine
representation (see below) guarantees that ( )xµ is always integrable at large | |x .

A general integral representation. One can take a differential of ([ , ], )A
tN t Aν= 0 , writing

( , )tdN dt dxν=  and use these differential random measures in an integration theory [see Jacod
and Shiryaev (1987)].  With that theory, one can decompose any Lévy process tX  into the
form9:

(2.1)                        ( )
\{ }

( , ) ( ) ( )
t

t h tX t B x ds dx h x x ds dxω σ ν µ= + + −∫ ∫0 0R
,

where tB  is a Q-Brownian motion, hω and σ are constants,  and ( )h x is a truncation function, to
be explained. The Brownian motion and the jump process are independent. This representation is
unique in the sense that, once the truncation function is fixed, then there is only one set of
characteristics { , , ( )}h xω σ µ  for a given { : }tX t ≥ 0 .  If the truncation function is changed, the
drift hω  changes but the pair { , ( )}xσ µ  is invariant. The purpose of the truncation function is to
make the integral in (2.1) exist near the origin, where the integrand must be taken as a whole.
Such a function is only necessary in some Type II models where ( )xµ diverges as ( / | | )O x ε+21 ,

ε< <0 1 ; otherwise it may be set to 0. When a truncation function is needed, ( )h x is required to
behave like x near the origin and it is frequently taken to be a bounded function away from the
origin. Some popular choices are: (i) {| | }( ) xh x x <= 11 (Sato) ; (ii) ( ) /( )h x x x= + 21  (Lukacs,
Breiman).  If | | ( )x x dxµ∫ <∞R , then the truncation function need not be bounded and the
choice ( )h x x=  may be convenient. In that special case, we see that (2.1) is the sum of a linear
drift, a Brownian motion, and an independent compensated jump-martingale.

2.2 Analytic Characteristic Functions.
As an application of (2.1), we show that it leads immediately to the celebrated Lévy-Khintchine
representation for the characteristic function ( )t zφ . This representation is important to our
development because it provides an explicit and simple formula for ( )t zφ  for all the Poisson-
type models and some type II models. First, a definition of ( )t zφ  and infinite divisibility, then a
remark that we will use later, and then the statement of the theorem.
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Definition (Characteristic Function). For z ∈ C  (z a complex number) and Ima z b< < ,  we
call  [ ]( ) exp( )t tz iz Xφ = E  the characteristic function of the process tX . 

Remark. Let ( )tp x  be the transition probability density for a Lévy process to reach tX x=  after
the elapse of time t. For Ima z b< < , the characteristic function of the process is identical to
the characteristic function of this transition density, which is also the generalized Fourier
transform of the transition density10. 

                                           [ ]( ) ( ) exp( ) ( ) ,t t tz p x izx p x dxφ = ∫� R
F       Ima z b< < .

Definition (Infinitely Divisible Characteristic Functions) . A characteristic function ( )t zφ  is said
to be infinitely divisible, if for every positive integer n, it is the nth power of some characteristic
function. 

The characteristic function of Lévy processes are infinitely divisible; this is a simple
consequence of the PIIS properties.11

THEOREM (Lévy-Khintchine Representation). If ( )T zφ , Ima z b< < , is an infinitely divisible
characteristic function, then it has the representation

(2.2)                { }\{ }
( ) exp ( ) ( )izx

T hz iz T z T T e izh x x dxφ ω σ µ = − + − − ∫2 21
2 0

1
R

,

where min( , ) ( )x x dxµ <∞∫ 21R .

PROOF:  For a proof (when z is real), we refer to Sato (1999, Theorem 8.1). For an extension to
complex z, we refer to Lukacs’ Theorem below. However, just proceeding formally, it’s easy to
see how the representation (2.2) follows from the representation (2.1). We will only take the
simplest case where the deterministic part of the integral in (2.1) exists on its own. Using that
assumption, and the independence of the Brownian motion and the jump process, we have
immediately from (2.1):

                       { }\{ }
[exp( )] exp ( ) ( )T hiz X iz T izT h x x dsω µ= − ∫ 0R

E

                                                   [ ] ( )\{ }
exp( ) exp ( , )

T
Tiz B iz x dt dxσ ν × ×    ∫ ∫0 0R

E E

Now it is well-known that [ ] ( )exp( ) expTiz B z Tσ σ= − 2 21
2E .  It is also well-known12 that
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   ( ) ( )\{ } \{ }{ }exp ( , ) exp ( ) ( )t
t t

T izx izx

t T
N Niz x dt dx e T e x dxν µ−

< ≤
≠

  = = −    ∏∫ ∫ ∫0 0 00
1 1

R R
E E .

Combining these results yields (2.2). 

The Lévy-Khintchine representation has the form [ ]( ) exp ( )T z T zφ = − Ψ , where ( )zΨ  is called
the characteristic exponent13. The normalization  ( )T zφ = =0 1  and the martingale identity

( )T z iφ =− = 1  imply that ( ) ( )iΨ = Ψ − =0 0 14.  Since, for a sensible stock market model,
( )t zφ  must exist at both z = 0  and z i=− , it would be helpful if it existed for all z  ‘in

between’. Indeed, all the examples in Table 2.1 exist for z within a horizontal strip
{ : Im }z a z b= < <XS . Here a and b are real numbers, such that b a> .  Analyticity in strips

is typical, based on this theorem:

THEOREM (Lukacs, 1970, Theorem 7.1.1): If a characteristic function ( )zφ is regular15 in the
neighborhood of z = 0 , then it is also regular in a horizontal strip and can be represented in
this strip by a Fourier integral. This strip is either the whole z-plane, or it has one or two
horizontal boundary lines. The purely imaginary points on the boundary of the strip of regularity
(if this strip is not the whole plane) are singular points of ( )zφ .     

Remarks. Because of the representation [ ]( ) exp ( )t z t zφ = − Ψ , singularities of ( )t zφ  are
singularities of ( )zΨ . Hence, an immediate corollary of Lukacs’ theorem is that the strips of
regularity for the analytic characteristic functions of Lévy processes are time-independent16.
Clearly, a ‘good’ Lévy process (good for the purpose of building a stock price model), has an
analytic characteristic function regular within a strip: Ima z b≤ ≤ , where a ≤−1 , b ≥ 0 .  If a
particular Lévy process is a good one, say at t = 1 , then it is a good one for all t. Our option
valuation formula only applies to good Lévy processes.

Examples. Example of characteristic functions for Lévy processes that have been proposed for
the stock market are shown in Table 2.1. [Three entries are adapted from Raible (2000)]. For
each process, there is a constant drift parameter ω ,  determined by solving ( )t iφ − = 1 . We have
already mentioned the first two models in the table, both of which have Brownian motion
components and are type I or Poisson types. 

The remaining (pure jump) models are all type II. The third table entry is the Variance Gamma
process. The option value was obtained by Madan, Carr, and Chang (1998). The process is built
up by sampling Brownian motion with drift at random times, time increments which themselves
are described by another Lévy process. Clearly, the sampled process is a pure jump process. 
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The next table entry is the Normal Inverse Gaussian (NIG) process, another pure jump process
applied to stock returns by Barndorff-Nielsen (1998).  There are 4 real parameters: ( , , , )α β ω δ
where, roughly speaking, α  and β  are shape parameters (steepness, tail decay), and ω  and δ
are drift and scale parameters, respectively. [Also see Lillestøl, (1998)]. 

Following is the Generalized Hyperbolic process. This pure jump Lévy process incorporates the
VG and NIG process as special cases, as well as another special case just called the hyperbolic
process. There are 5 real parameters: ( , , , , )α β ω δ λ  where the first 4 have a similar interpretation
as before and λ  is an additional shape parameter. [For surveys, see Bibby and Sørensen (2001)
and the dissertation of  Prause (1999)]

The last entry is the (maximally) skewed α− stable process of Carr and Wu (2000).  The general
α− stable Lévy process has four parameters ( , , , )α β ω σ , where ( , ]α ∈ 0 2  is the index,

[ , ]β ∈ −1 1  is a skewness, ω ∈ R  is a drift, and σ ≥ 0  is a scale parameter. The transition
probability distribution ( )t tp X x=  typically has a power-law decay as x → ∞  when α< 2
and so [exp( )]tXE  does not exist. However, Carr and Wu have noted that for β =−1 , which
they term maximum skewness, then the decay is more rapid, [exp( )]tX <∞E , and the
characteristic function is given by the entry in the table. Note that (unless ,α = 1 2 ) the
characteristic function has a branch point singularity at z = 0  and we need a branch cut.  [The
authors estimated . .α = ±1 61 01 , based upon daily option quotes for S&P500 index option over
a year ending in May, 2000. They generally suggest that ( , )α ∈ 1 2 for stock prices]. For a stock
price model, we want the characteristic function to be regular for at least Im z− < <1 0 . Given
this, the natural choice is to place the branch cut along the imaginary z-axis extending upward
from z = 0 . With that choice, the strip of regularity is Im z < 0  as shown in the table.

How are characteristic functions calculated? Many of the Type II models are built up by a
subordination of a Brownian motion process and this leads to a determination of their
characteristic function from the characteristic function of the driving process. Examples of this
type are the Variance Gamma, Normal Inverse Gaussian, and Generalized Hyperbolic models,
where the first two are special cases of the last. We refer the reader to the original literature for
those calculations. With the Type I models and some Type II models, the Lévy-Khintchine
representation provides the answer. 

To see that, consider the  jump-diffusion models, which are type I models. We need to relate the
representation (2.1) to the stochastic differential (SDE) that is the usual starting point for these
models. For example, both Merton and Kou’s jump-diffusion models may be defined by the SDE
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 (2.3)                       [ ]( ) ( ) ( , ) ( )xt
t

t

dS r q dt dB e dt dx x dt dx
S

σ ν µ
−
= − + + − −∫ 1

R
,

where ( )xµ integrates ( )xe −1 . Under (2.3), tS  (net of the carry) is clearly a local martingale.
For every type I model, ( ) ( )x f xµ λ= . For example, in Kou’s double exponential model,

( )f x = ( )exp | | / /( )x κ η η− − 2 ,  η< <0 1 , where κ  and η  are two real parameters.

Starting from (2.3), it is straightforward17 to integrate this general SDE to the exponential form
[ ]exp ( )t tS S r q t X= − +0 . The result is again the canonical form (2.1) with ( )h x = 0 . Given

that result, then the Lévy-Khintchine representation (2.2) provides the following:

 (2.4)               In all Type I models:    ( ){ }ˆ( ) exp ( )T z iz T z T T f zφ ω σ λ= − + −2 21
2 1 ,   

                       where [ ]ˆ ( ) ( )f z f x= F ,   fz ∈ S ,  is the characteristic function of ( )f x . 

The exponentiation of (2.3) determines the drift. But we can also get it from the martingale
identity ( )t iφ − = 1  applied to (2.4). Both procedures give ˆ/ [ ( ) ]f iω σ λ=− − − −2 2 1 . For
example, with Kou’s model again, ˆ ( )f z =  ( ) /( )ize zκ η η− +2 2 21 1 ,  ( / ) Im ( / )zη η− < <1 1 .
Since η< <0 1 ,  the strip of regularity contains Im z− < ≤1 0  and the model is a good one.
This shows how to obtain the second entry in Table 2.1. The first entry is obtained similarly18.  

We also mentioned that the Lévy-Khintchine representation can also be used effectively in some
cases of type II models19. An example is the last entry in Table 2.1, which may be calculated
from ( ) / | |x c x αµ +

±= 1 . [See, for example, Breiman (1992, Theorem 9.32)]. 

3.  THE OPTION FORMULA

As discussed, characteristic functions ( )zφ  are typically regular functions in z-plane strips. We
next show that the same holds true for the transform of typical option payoff functions. 

Using ln Tx S= , let ( )w x  be an option payoff function and let [ ]( ) ( )ŵ z w x= F , z ∈ C  be its
generalized Fourier transform. For example, consider the call option payoff, ( ) ( )xw x e K += − ,
and so by a simple integration 

(3.2)                                   ( )
ln

exp[( ) ] exp( )( )ˆ
x

x K

iz x izxw z K
iz iz

=∞

=

+= −
+
1
1
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The upper limit x =∞  in (3.2) does not exist unless Im  z > 1 . Applying this restriction, then
(3.2) is well-defined, in fact, regular in that strip:

(3.3)                                 Call option:    ( )ˆ
izKw z

z iz
+

=−
−
1

2 ,     Im  z > 1                  

This result is typical: option payoffs have Fourier transforms (w.r.t. log TS ) as long as we admit
a complex-valued transform variable.  Then, ( )ŵ z  exists for Im z  restricted to an interval; i.e.,

wz ∈ S ,  just like a characteristic function. We can go through the same exercise for various
standard payoff functions and see what restrictions are necessary for their Fourier transforms to
exist. The results are given in Table 3.1 below.

So by introducing generalized transforms, we are able to handle standard payoffs which are
unbounded at x =∞  (the call), or constant at x =−∞  (the put) and which have no regular
Fourier transform. All of the typical payoff functions that one might encounter in practice are
handled. But, not every mathematically possible payoff function has a generalized Fourier
transform. 

Definition.  We say a  function ( )f x  is ‘Fourier integrable in a strip’ if there exists a pair of
real numbers a and b, where a b−∞≤ < ≤∞ , such that the generalized Fourier transform

[ ]ˆ ( ) ( )f z f x= F  exists and is regular for z u i v= +  , u ∈ R , and ( , )a bν ∈ . 

Our valuation theorem below will apply to payoff functions which are (i) Fourier integrable in a
strip, and (ii) bounded for | |x <∞  ( , )S ≠ ∞0 . Let us discuss these two requirements in turn.
From the definition above, property (i) means that the payoff functions have no worse than
exponential growth in x, as | |x → ∞ . That is, there exist an ( , )a b  such that

( )exp( )w x xν− → 0  as | |x → ∞  for every ( , )a bν ∈ . Equivalently, as  x→+∞ , we have
[ ]( )exp ( )w x a xε− + → 0  for every ε> 0 . Similarly, as  x→−∞ , we have
[ ]( )exp ( )w x b xε− − → 0  for every ε> 0 .  For example, for a call option with strike K,  the

requirement is that ( )x xe K e ν+ −− → 0 , as x →+∞ . This condition again implies that
( , )ν ∈ ∞1 , as we found before. Similarly, for the put option, the requirement is that

( )x xK e e ν+ −− → 0 , as x →−∞ . This condition implies that ( , )ν ∈ −∞ 0 . Note that
exponential growth in | |x  means power law behavior in TS  as ,TS → ∞0 .

Property (ii) arises from a technical requirement (see below) that ( )exp( )w x xν−  be bounded.
We already know this term is bounded at ±∞  (since it’s zero). To keep ( )exp( )w x xν−
bounded everywhere, we also need  ( )w x  bounded for | |x <∞ . This is a very mild restriction,
in the sense that it only excludes payoff functions that would be unlikely to be offered in the
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marketplace. For example, consider a payoff that behaves like / /| | | log( / ) |x x S K− −− =1 2 1 2
0  as

S K→ , where K< <∞0 . While this payoff is integrable with respect to x near x x= 0 , it’s
not bounded and so excluded. In practice, such a  payoff would be a pretty dangerous offering
for the seller. 
 
Generalized Fourier transforms are inverted by integrating along a straight line in the complex z-
plane, parallel to the real axis, with z within the strip of regularity.20 For example, fixing

Im zν = , then the payoff functions are given by: 

                                                      ( ) ( )ˆ
i izx

i
w x e w z dz

ν

νπ
+∞ −
−∞

= ∫12 ,        wz ∈ S . 

If ( )f x  is a complex-valued function of a real variable x, then by f L∈ 1 , we mean that
| ( )|f x dx∞∫−∞ <∞ , where | |f  is the modulus of f . With that notation, we need the following

Parseval-style identity adapted from Titchmarsh (1975), and using our ( )π2  normalization: 

THEOREM 3.1 (Titchmarsh, Theorem 39): Let both ( ), ( )f x g x L∈ 1 and one of them is bounded. 
Assume that *( ) ( )f x y g x dx∞∫−∞ −  is continuous at y = 0 . In addition, assume that, with u ∈ R ,
the Fourier transforms [ ]ˆ ( ) ( )f u f x= F  and [ ]( ) ( )ĝ u g x= F  exist. Then,

(3.4)                        * *ˆ( ) ( ) ( ) ( )ˆf x g x dx f u g u duπ
∞ ∞

−∞ −∞
=∫ ∫12 .

We need a notation for a reflected strip. If ( , )a bν ∈  and u is any real number, then S  consists
of all z u iν= +  and *S consists of all z u iν= − . 

THEOREM 3.2. (Option Valuation). Let ( )V S0  be the current price of a European-style option
with a payoff function ( )w x ≥ 0 , where log Tx S= .  Assume that ( )w x  is Fourier integrable in
a strip and bounded for | |x <∞ , with transform ( )ŵ z , wz ∈ S . Let

[ ]exp ( )t tS S r q t X= − +0 , where tX  is a Lévy process and [ ]exp tX  is a martingale. Assume
that TX  has the analytic characteristic function ( )T zφ , regular in the strip

{ : ( , )}X z u i a bν ν= = + ∈S , where a <−1  and b> 0 . Then, if  *
V w X∩�S S S  is not

empty, the option value is given by 

(3.5)          ( ) ( ) ( )ˆ
rT i izY

T
i

eV S e z w z dz
ν

ν
φπ

− +∞ −
−∞

= −∫0 2
,   where Im zν = ,    *

V w Xz ∈ = ∩S S S ,

and ln ( )Y S r q T= + −0 .  Moreover, VS is not empty when the payoff is a call or put option. 
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PROOF:  From martingale pricing, since the payoff function is (ln )Tw S , then 

(3.6)             [ ]( ) (ln )rT
TV S e w S−=0 E   ( )ˆ

rT i iz
T

i
e S w z dz

ν

νπ
− +∞ −

−∞

 =    ∫2
E ,      Im zν = ,  wz ∈ S

                             [ ]{ }exp ln ( ) exp( ) ( )ˆ
rT i

T
i

e iz S r q T izX w z dz
ν

νπ
− +∞

−∞

 = − + − −   ∫ 02
E .

In the first line we just inserted the transform representation for (ln )Tw S . In the second line, we
inserted [ ]exp ( )T TS S r q T X= − +0 . Next, we bring the expectation inside the integral, which
requires an exchange of integration order. This exchange is just made formally here; we validate
it by Theorem (3.4) below, an alternative proof of (3.5). Certainly a necessary condition for the
exchange to be valid is that [ ]exp( ) ( )TizX zτ φ− = −E  exists.  Now ( )T zφ −  exists if *

Xz ∈ S , but
z is already restricted to wz ∈ S . So the whole integrand exists and is regular if

*
V w Xz ∈ = ∩S S S .  Substituting ln ( )Y S r q T= + −0 , we have (3.5). Now

* { : ( , )}X u iν ν α β= + ∈S , where α< 0  and β > 1 . So *
XS  intersects both Im z < 0  and

Im z > 1 , which shows that VS is not empty for puts or calls  

Next, an alternative proof will show that (3.5) is a consequence of Theorem 3.1. To accomplish
that, first let  lns S=0 0  and lnT Ts S=  and consider the distribution function for the log-stock
price to reach a terminal value after the elapse of T.  Define both the distribution function and its
density with 

                                        ( , ) Pr{ | } ( , )
x

T T TQ x s s x s q s dξ ξ
−∞

= < = ∫0 0 0 .

LEMMA  3.3.  Equation (3.5) is true if the following two integrals are equal: 

(3.7)       ( , ) ( ) ( , ) ( )ˆ ˆT T T T Tq x s w x dx q u i s w u i duν νπ
∞ ∞

−∞ −∞
= − − +∫ ∫0 0
1
2

,    *
w Xu iν+ ∈ ∩S S .

PROOF: Recall from the definition that ( ) exp( ) ( )T Tz izx p x dxφ ∫= R , where ( )Tp x  is the
transition density for the  Lévy process. Introduce a distribution function for that:

                         ( ) Pr{ } ( )
x

T T TP x X x p dξ ξ
−∞

= < = ∫ .

Now                  Pr{ | } Pr{ ( ) | } Pr{ },T T Ts x s s r q T X x s X x Y< = + − + < = < −0 0 0

recalling that ln ( )Y S r q T= + −0 . In other words, ( , ) ( )T TQ x s P x Y= −0  and so by
differentiating w.r.t. x, we have ( , ) ( )T Tq x s p x Y= −0 . By taking the Fourier transform of both
sides of this last identity, we have ( , ) ( )exp( )ˆ ˆT Tq z s p z izY=0  for z in some strip, call it qS . But,
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of course, ( ) ( )ˆT Tp z zφ≡ , so ( )exp( ) ( , )ˆT Tz izY q z sφ = 0  and the strip is q X=S S . Taking
z z→− , we have ( ) exp( ) ( , )ˆT Tz izY q z sφ − − = − 0 , where *

Xz ∈ S . Now the first expression on
the right-hand-side of (3.6) may also be written as the (discounted) integral of the transition
density and the payoff function. This shows that (3.5) is equivalent to the statement:    

       ( ) ( , ) ( ) ( , ) ( )ˆ ˆ
rT irT

T T T T T
i

eV S e q x s w x dx q z s w z dz
ν

νπ
−∞ +∞−

−∞ −∞
= = −∫ ∫0 0 02

,     *
w Xz ∈ ∩S S .

Letting z u iν= +  in this last equation shows that (3.5) is true if (3.7) is true. 

THEOREM 3.4  Under the assumptions of Theorem 3.2,  equation (3.7) is true; hence, so is (3.5)

PROOF: Let u be real. Also, let ν0  be any fixed real number, such that *
w Xu iν+ ∈ ∩0 S S .  Also

define ( ) ( , ) exp( )Tf x q x s xν= 0 0  and ( ) ( )exp( )g x w x xν= − 0 ,  where s0  is fixed and need not
be displayed.  Note that if z u iv= + 0 , then ˆ( , ) exp( ) ( , ) *( )ˆT Tq z s iux v x q x s dx f u∫− = − + =0 00

and ( ) exp( ) ( ) ( )ˆ ˆw z iux v x w x dx g u∫= − =0 . Thus, proving (3.7) valid is equivalent to proving
that, regardless of the choice for ν0 : 

(3.8)                           *ˆ( ) ( ) ( ) ( )ˆf x g x dx f u g u duπ
∞ ∞

−∞ −∞
=∫ ∫12 ,      *

w Xu iν+ ∈ ∩0 S S

We showed above that ( , )Tq x s0  is Fourier integrable in XS . That is, ( , )exp( )Tq x s izx dx∞∫−∞ 0
( , )exp( )Tq x s iux x dxν∞= ∫−∞ −0  exists for all Xz u iν= + ∈ S .  In particular, choose u = 0  and

ν ν=− 0 . Obviously any real part is a valid choice. And ν ν=− 0  is a valid choice because if ν0
is the imaginary part of some number in *

XS  (which it is), then ν− 0  is the imaginary part of
some number in XS . With that choice, we have shown that ( , )exp( )Tq x s x dxν∞∫−∞ 00

( )f x dx∞= ∫−∞ exists. Since ( )f x  is a non-negative real, then ( ) | ( )|f x dx f x dx∫ ∫= <∞ ; i.e.,
( )f x L∈ 1 . Similarly, both ( )w x  and exp( )xν−  are real and non-negative. Since ( )w x  is Fourier

integrable in the strip wz u iν= + ∈ S , then ( )exp( )w x iux x dxν∞∫−∞ − <∞ . Taking u = 0  and
ν ν= 0  is a valid choice here (note that ν0  is also the imaginary part of some number in wS ).
So, we have shown that ( )g x L∈ 1 . In addition, under the assumptions of Theorem 3.2, ( )w x  is
bounded for | |x <∞ . Hence ( )g x  is bounded. We have shown that the requirements of
Theorem (3.1) are met and so (3.8), (3.7), and (3.5) are all proven. 

We note again that Raible (2000) obtained an integral very similar to (3.5), but he presents it as a
mixture of Fourier and two-sided Laplace transforms. Because we use the generalized Fourier
transform consistently, our strip condition seems to us much more transparent. 
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Contour variations. The general formula (3.5) , with wS  taken from Table 3.1, provides a
starting point formula that has many variations. The variations are obtained by the use of the
residue calculus. We stress that we maintain the assumptions of the theorem, which means that

* { : Im }X z zα β= ≤ ≤S , where α< 0  and β > 1 . We illustrate with the call option. Then,
using the Table 3.1 entries, we see that call option price ( , , )C S K T  is given by 

(3.9)                    ( , , ) ( )
rT i izk

T
i

Ke dzC S K T e z
z iz

ν

ν
φπ

− +∞ −
−∞

=− −
−∫

1

1
22

,          ( , )ν β∈1 1     

                                                  using  ( )log ( )Sk r q T
K

= + − . 

Since β > 1 , the open interval ( , )β1  is not empty and the integral exists. The phase factor uses
the dimensionless ‘moneyness’ k, which is also a natural moneyness measure for the implied
volatility smile. With that variable,  ‘at-the-money’ means that the forward stock price (the price
for delivery at expiration) is equal to the strike.       

The integrand in (3.9) is regular throughout *
XS , except for simple poles at z = 0  and z i= .

The pole at z = 0  has a residue /( )rTKe i π−− 2  and the pole at z i=  has a residue /( )qTSe i π− 2 .
Let’s move the integration contour to ( , )ν ∈2 0 1 ; then by the residue theorem, the call option
value must also equal the integral along Im z ν= 2  minus iπ2  times the residue at z i= . That
gives us a first alternative formula

(3.10)                     ( , , ) ( )
rT iqT izk

T
i

Ke dzC S K T Se e z
z iz

ν

ν
φπ

− +∞− −
−∞

= − −
−∫

2

2
22

,         ( , )ν ∈2 0 1

This is actually our preferred integration formula for the call option21. For example, with
/ν =2 1 2 , which is symmetrically located between the two poles, this last formula becomes

(3.11)                ( )( ) /( , , ) ReqT r q T iuk i
T

duC S K T Se SKe e u
u

φπ
∞− − +  = − −  +∫ 2

2
120
4

1 .

Next, we move the contour from (3.9) to ( , )ν α∈3 0 . Then you pick up both poles. Moreover,
the integral along Im z ν= 3  is also the put option formula ( , , )P S K T , since Im z < 0  (see
Table 3.1). The net result is simply the put/call parity relation,  qT rTC P Se Ke− −= + − , which
is our second alternative formula. 

Finally, we can move the contours to exactly Im z = 1  and Im z = 0 . Then the integrals become
principal value22 integrals and you pick up one-half of the residues.  For example, start with the
integral in  (3.9) written in the form
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                                  ( )( )
rT i izk

T
i

Ke i ie z dz I I
z z i

ν

ν
φπ

− +∞ −
−∞

− − − = +
−∫

1

1
1 22

Now move I1  to exactly Im z = 0 ; the residue theorem combined with letting z u=−  yields 

                                       ( )( ) ( )
rT rT iuk

T
Ke i Ke iI i e u du

u
π φπ π

− − ∞

−∞
= + ∫1
1 2 2 2 2

P ,

where P  denotes the Cauchy principle value and we have taken u z=− . Similarly,  move I2  to
exactly Im z = 1 ; the residue theorem yields 

                             ( )( ) ( )
qT rT i izk

T
i

Se i Ke iI i e z dz
z i

π φπ π
− − +∞ −

−∞
=− + −

−∫1
2 2 2 2 2

P .

Now let z u i=− + , and we have

                         ( )( ) ( )
qT qT iuk

T
Se i Se iI i e u i du

u
π φπ π

− − ∞

−∞
=− − −∫1
2 2 2 2 2

P .

The integrals are real and may be simplified by taking the real part. Putting the results together
yields the call option price in the ‘Black-Scholes’ form:

(3.12)                                          ( , , ) qT rTC S K T Se Ke− −= Π − Π1 2 ,

where      ( )Re
iuk

Te u i du
iu

φ
π

∞  − Π = +
  ∫1

0
1 1
2

,         ( )Re
iuk

Te u du
iu
φ

π
∞  

 Π = +
  ∫2

0
1 1
2

.

The first term /qTe C S− Π = ∂ ∂1  is also the ‘delta’. The second term Pr ( )TS KΠ = >2 . These
integrands are integrable as u → 0  because ( )uφ  is an analytic characteristic function in a
neighborhood of u = 0  and u i=− . For example, near u = 0 , ( ) ( )u uφ φ′≈ +1 0 , where
| ( ) |φ′ <∞0  because of analyticity23. Hence, the integrand in Π2  tends to
( )Re / ( ) Im ( )i u i k kφ φ′ ′− − + = +0 0  as u ↓ 0 , which is finite. Because of the martingale

identity ( )iφ − = 1 , the Π1  integrand is also finite as u ↓ 0 . For numerical work (3.11) is more
efficient: in the Black-Scholes form (3.12) not only are there two integrations, but the integrand
falls off more slowly then (3.11) by a factor of u.  

As we have shown, the residue calculus provides a general mechanism for obtaining a number of
variation on the basic formula, most of which have been obtained before. For example, (3.9) was
derived by Carr and Madan (1999) in a specialized attack on the call option. The Black-Scholes
form (3.12) was obtained in a more general setting by Bakshi and Madan (2000). A formula of
the same style as (3.10) was obtained by Lewis (2000) in a stochastic volatility setting. 
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4.  CONCLUSIONS

The generalization of the Black-Scholes’ theory to the martingale pricing theory began a
competition in mathematical finance between the PDE approach and the probabilistic approach
to solving certain problems. For the simple ones, it’s a tie because both methods usually work in
a few steps. But for some complicated problems, one method seems to win out24. For option
valuation under general Lévy processes, the probabilistic approach, in my opinion, is the clear
victor. One can introduce PDEs, but to get to the same results is a long trek around – I know this
because, in fact, I originally obtained a version of (3.5) from a PDE.
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Table 2.1
Characteristic Functions for Lévy Processes in Stock Price Models 

Lévy Process Characteristic Function: [ ]T Ti XE=(z) exp( z )φ Strip of
Regularity XS

Lognormal Jump-
diffusion ( ){ }/exp iz ziz T z T T e α δω σ λ −− + −

2 22 2 21
2 1

Entire z-plane

Double
Exponential

Jump-diffusion
exp iziz T z T T e

z
κηω σ λ

η
  −  − + −     +  

2
2 21

2 22
1 1
1

Im zη η− < <1 1 ,

η< <0 1

Variance Gamma
( )( ) /exp Tiz T iz z νω νθ σ ν −− + 2 21

21 Im zβ α β α− < < +
(see notes)

Normal Inverse
Gaussian { }exp ( )iz T T izω δ α β α β + − − − +  

2 2 2 2
Im zβ α β α− < < +

Generalized
Hyperbolic ( )

( )
( )

/ ( )( )exp
( )

T
T K iz

iz T
iz K

λ
λ

λ

δ α βα βω
α β δ α β

 − +   −       − + −  

2 222 2

2 2 2 2 Im zβ α β α− < < +

Finite Moment
Logstable { }exp ( ) seciz T iz Tα παω σ− 2 Im z < 0

Notes:  The stock price evolution is [ ]exp ( )T TS S r q T X= − +0 , where r is the interest rate, q
is the dividend yield, and TX  is a Lévy process. For the Variance Gamma model, the strip of
regularity uses /[ /( ) ( / )]α νσ θ σ= +2 2 4 1 22 ,  /β θ σ= 2 . For each model, the drift parameter ω
is determined by ( )T iφ − = 1 . For the Variance Gamma, Normal Inverse Gaussian, and
Generalized Hyperbolic models, we need α β+ ≥ 0  and β α− ≤−1  for a good stock market
model.
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                                              Table 3.1
              Generalized Fourier Transforms for Various Financial Claims

Financial
          Claim

(Option)

Payoff
Function: 

w x( )

Payoff
Transform:

[ ]ŵ z w x( ) ( )= F

Strip 
of 

regularity wS

Call option ( )xe K +− izK
z iz

+
−

−
1

2

Im z > 1

Put option ( )xK e +− izK
z iz

+
−

−
1

2

Im z < 0

Covered call or

cash-secured put
( )min ,xe K izK

z iz
+

−
1

2

Im z< <0 1

Delta function ( ln )x Kδ − izK Entire z-plane

Money market 1 ( )zπδ2 Im z = 0

Notes:  The table uses log Tx S= , where TS  is the security price at expiration, and
max( , )x x+ = 0 . The parameter K is a strike (exercise) price. The expression ( )x xδ − 0  is the

Dirac delta function. The symbol [ ]iF  indicates taking a Fourier transform. 
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Notes
                                                          
1 First, when there is the possibility of a significantly negative jump (a ‘crash’), then expiring out-of-the-money puts
become worthless like Tλ . (see Merton’s 1976 series solution). Here λ  is the jump arrival rate under the
martingale pricing distribution, and T  is the time to option expiration. This is a much slower decay in T than the
Black-Scholes formula, and if you try to fit the Black-Scholes formula to it (with an implied volatility), the only way
it works is for the implied volatility to grow very large as T → 0 . Second, the jump rate λ  is very sensitive to
preferences. Statistically, you might expect a market crash once every 10 years for example ( . )λ = 0 10 . But since
you are risk-averse, your effective rate for λ , which you use to price options is once every 4 years for another
example ( . )λ = 0 25 . These two effects both work in the same direction to substantially boost the implied volatility
above the statistical volatility of the index. Very steep smiles are easy to fit because the model generates arbitrarily
large implied volatilities as  T → 0 .  For preferences effects in Merton’s model, see Bates (1991,1998) and Naik
and Lee (1990).  For general measure changes in jump-diffusions,  see Aase (1998) and Colwell and Elliott (1993).

2 The independent increment property is too idealized for the real world. For example, while actual security returns
have very low autocorrelations, squared or absolute returns often have significant positive autocorrelations, and
volatility clustering effects are well-documented. These effects are missing from a pure Lévy process model.

3 See, for example, the S-space call option formula obtained by Madan, Carr, and Chang (1998).

4 Proportional returns problems, which may have many stochastic factors, have /t tdS S  independent of tS .

5 Equivalently, this transform is a complex Mellin transform using TS  as the integration variable.

6 We tested our results in the Mathematica system, where (1.1) is generally set up in just a few lines of code and
takes typically a couple seconds (on an old desktop system) to evaluate any of the half-dozen Lévy examples from
the literature. Since Mathematica is an interpretive system, this is a worst case scenario for run-times. When the
highest numerical efficiency is important, consider applying the Fast Fourier Transform method of Carr and Madan
(1999) to (1.1) or any of the variants given in Sec. 3.

7 For example, the change of measure induced by an equilibrium model with a power utility function ( )u S S θ−′ =  is
very popular, often applied in an ad-hoc manner as an Esscher transform. This particular measure change causes a
simple translation z z i θ→ +  in the Fourier transform of the Lévy measure ˆ ( )zµ , defined below. Some, but not all
of the models in Table 2.1 can maintain their parameterized form under this particular change of measure.

8 A cumulative probability distribution ( )F x  is any non-decreasing function with ( )F −∞ = 0  and ( )F ∞ = 1 .

9 This is a rearrangement of terms in Jacod and Shiryaev (1987) Theorem II.2.34.



                                                    

23

                                                                                                                                                                                          
10 Sometimes the term complex Fourier transform is used. A comprehensive reference is Titchmarsh (1975). The
reason for the limitation to the strip Ima z b< < will be explained below.

11 Write ( )( )t i t i tX X X∆ − ∆= −∑ 1 , where t n t= ∆ .  For simplicity, take z to be real. We can compute
( ) [exp( )]t tu iuXφ = E , u ∈ R , as a product of n independent expectations because tX  has independent increments.

Each individual term is identical: )exp( ) (tiux p x dx∫ ∆R , and exists because u is real and p  is a probability density.

12 See, for example, Breiman (1992), p.310 or Bremaud (1974).

13 This is Bertoin’s form; some authors call ( )iuΨ − or ( )iu−Ψ −  the characteristic exponent. The general expression
follows simply from the same argument in footnote 11.

14 Warning: there is no uniformity in the finance literature regarding the normalization of ( )zφ  at z i=− .

15 A function ( )f z is analytic at a complex-valued point z if it has a derivative there. If it’s both analytic and single-
valued in a region, it’s called  regular.

16 This is not always the case in other proportional returns models such as stochastic volatility models, where the
strip of regularity of the characteristic function of log tS  can depend upon t. [see Lewis, 2000, p.55]

17 Any SDE of the form t ttdS S dZ−= , where tZ  is a given semimartingale can be integrated by writing
c d

t t tZ Z Z= + ,  a continuous part and a purely discontinuous part. Then, apply the Doléans-Dade exponential
formula (see Jacod and Shiryaev,  1987,  Theorem  4.61):

                                           ( )exp , ( ) sc c Z
t t st

s t
S Z Z Z Z e−∆

< ≤
= − +∆∏1

2
0

1 .

18 The characteristic function for Merton’s model was previously obtained by Carr and Wu (2000).

19 Of course, in principle, the representation can always be used, but sometimes the Lévy measures are very
complicated and the formula is not helpful

20 By Cauchy’s Theorem, the integration contour can be deformed as long as it remains within the strip of regularity
and extends to ±∞ .

21 I checked the formula numerically and found agreement with several known results: (i) the power series in λ
solution of Merton’s lognormal jump-diffusion; (ii) the special function solution for the double exponential model,
using the Mathematica code that S.G. Kou has made available on the Internet; (iii) The finite moment logstable
model, using some high precision call option results graciously supplied by Liuren Wu and Peter Carr.

22 The Cauchy principal value is defined by
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                           ( ) ( ) ( )lim
b u b

a a u

f u f u f udu du du
u u u u u u

ε

ε ε

−

→ +

 = + − − −  ∫ ∫ ∫
0

000 0 0
P ,   where ε  is positive

23Analyticity will fail, although the final result may still be valid in borderline cases where
* { : Im }X z a z= ≤ ≤ 1S or * { : Im }X z z b= ≤ ≤0S . For example, the finite moment logstable model is not analytic

at z = 0 , but | ( ) |φ′ <∞0 for α< <1 2  (see Table 2.1). Hence (3.12) exists in that case, but we make no general
claims and leave those cases as an open question

24 For example, a pure probabilistic approach  might  have difficulty solving  the two problems in Lewis (1998).


