11.1.3 Fourier transform methods for option pricing

Contrary to the classical Black-Scholes case, in exponential-Lévy models
there are no explicit formulae for call option prices, because the probability
density of a Lévy process is typically not known in closed form. However, the
characteristic function of this density can be expressed in terms of elemen-
tary functions for the majority of Lévy processes discussed in the literature.
This has led to the development of Fourier-based option pricing methods for
exponential-Lévy models. In these methods, one needs to evaluate one Fourier
transform numerically but since they simultaneously give option prices for a
range of strikes and the Fourier transform can be efficiently computed using
the FFT algorithm, the overall complexity of the algorithm per option price
is comparable Lo that of evaluating the Black-Scholes [orinula.

We will describe two Fourier-based methods for option pricing in exp-Lévy
models. The first method. due to Carr and Madan [83] is somewhat easier
to implement but has lower convergence rates. The second one, described by
Lewis [262] converges faster but requires one intelligent decision which makes
it more delicate to produce a robust automatic implementation. Recall the
definition of the Fourier transform of a function f:

£ - [ " e f(2)da

Usually v is real but it can also be taken to be a complex number. The inverse
Fourier transform is given by:

Ff(a) = o j_ Z eI f(0)dx

For f € IL2(R), F~'Ff = f, but this inversion formula holds in other cases
as well. In what follows we denote by k = In K the log strike and assume
without loss of generality that ¢ = 0.

Method of Carr and Madan [83] In this section we set Sy = 1, i.e.,
at time 0 all prices are expressed in units of the underlying. An assumption
necessary in this method is that the stock price have a moment of order 1+ «
for some a > 0:

(H1) Ja>0: [% pp(s)e!T™ds < oo,

where pr is the risk-neutral density of X¢. In terms of the Lévy density it is
equivalent to the condition

Ta >0 f v(dy)e' eV < oo, (11.15)
[y|=1

This hypothesis can be satisfied in all models discussed in Chapter 4 by putting
a constraint on the exponential decay parameter for positive jumps (negative
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jumps do not affect it). In order to compute the price of a call option
C(k) = e " TE[(e T+ — b))

we would like to express its Fourier transform in strike in terms of the char-
acteristic function ®7(v) of X7 and then find the prices for a range of strikes
by Fourier inversion. However we cannot do this directly because C(k) is not
integrable (it tends to a positive constant as k — —oc). The key idea of the
method is to instead compute the Fourier transform of the (modified) time
value of the option, that is, the function

ar(k) = e TTE[(e™ T — ) — (1 - )T (11.17)
Let {r(v) denote the Fourier transform of the time value:
+oo
¢r(v) = Fap(v) — ] €% 2 (K)dk. (11.18)
—o0

It can be expressed in terms of characteristic function of X7 in the following
way. First, we note that since the discounted price process is a martingale,
we can write

O
ZT(!C-) = e—?'Tf pT(x}dCl‘.‘-(ETT-'—J: - ek)(]-kgm—l-rT - ]-kS-rT)-
—o0
Condition (H1) enables us to compute {¢(v) by interchanging integrals:

In ] (a9
(r(v) =e " f dk ] dre”* pr(x) (e — ) (Lkcoter — lk<or)

o0 T
_ E—fo PT(I}da’f etvk(ek o efT+a:)dk

+T
oo eévrT(l _ Bm) e:r+ivr’i' 6{£1J+1}:r:+£vr’f
= pr(x)dx . = + —
oo iv+ 1 iv(iv + 1) iv(iv + 1)

The first term in braces disappears due to martingale condition and, after
computing the other two, we conclude that

w(l + iv)

Cr(v) = e (11.19)

The martingale condition guarantees that the mmerator is equal to zero for
v = 0. Under the condition (H1), we see that the numerator becomes an
analytic function and the fraction has a finite limit for v — (. Option prices
can now be found by inverting the Fourier transform:

“+oo
) =50 [ e e (11.20)
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Note that in this method we need the condition (H1) to derive the formulae
but we do not need the exact value of o to do the comnputations. which
makes the method easier to implement. The price to pay for this is a slower
convergence of the algorithm: since typically ®¢(z) — 0 as Rz — oo, {r(v)
will behave like |v|~2 at infinity which means that the truncation error in the
numerical evaluation of integral (11.20) will be large. The reason of such a
slow convergence is that the time value (11.17) is not smooth; therefore its
Fourier transform does not decay sufficiently fast at infinity. For most models
of Chapter 4 the convergence can be dramatically improved by replacing the
time value with a smooth function of strike. Namely, instead of subtracting
the intrinsic value of the option (which is non-differentiable) from its price, we
suggest to subtract the Black-Scholes call price with suitable volatility (which
is a smooth function). The resulting function will be both integrable and
smooth. Denote

or() = e TTE|(eT T - Y - O (k)

where C'f (k) is the Black-Scholes price of a call option with volatility o and
log-strike k for the same underlying value and the same interest rate. By a
reasoning similar to the one used above, it can be shown that the Fourier
transform of z7(k), denoted by fT{v), satisfies

- B iorr Pr(v — 1) — PF(v — 1)
Gr(v) = iv(1 + i;)

, (11.21)

where ®7.(v) = exp(— "L’TT(t'2+it=)). Since for most models of Chapter 4 (more
precisely, for all models except variance gamma) the characteristic function
decays faster than every power of its argument at infinity, this means that the
expression (11.21) will also decay faster than every power of v as Rv — oq,
and the integral in the inverse Fourier transform will converge very fast. This
is true for every o > 0 but some choices, or course, are better than others.
Figure 11.4 shows the behavior of |(1| for different values of ¢ compared to
the behavior of |(r| in the framework of Merton jump-diffusion model with
volatility 0.2, jump intensity equal to 5 and jump parameters p = —0.1 and
& = 0.1 for the time horizon 7" = 0.5. The convergence of (7 to zero is clearly
very fast (faster than exponential) for all values of o and it is particularly
good for o = 0.3575. the value of ¢ for which {(0) = 0.

Method of Lewis [262] We present this method from a different angle
than the previous one, in order to show how arbitrary payoff structures (and
not just vanilla calls) can be priced. Since for an arbitrary payofl the notion of
strike is not defined, we will show how to price options for a range of different
initial values of the underlying. Let s = In Sy denote the logarithm of current
stock value and f be the payoff function of the option. The price of this option
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FIGURE 11.4: Convergence of Fourier transforim of option’s timme value to
zero in Merton model — see page 363. Left graph: linear scale; right graph:

logarithmic scale.

C(S) — e—rT jm f(€8+$+TT}ﬂT(CC}d$.

In this method, instead of subtracting something from the call price to obtain
an integrable function. one computes the Fourier transform for complex values

of the argmuent: the Fourier transforin is defined, as nsmal, by

Fg(z):/ ¢ g(u)du

=0

but z may now be a complex number.

For a.b € R we say that g(u) is Fourier integrable in a strip (a.b) if
[ e |g(u)|du < co and [, e "|g(u)|du < co. In this case Fg(z) exists
and is analytic for all z such that ¢ < $z < b. Moreover, within this strip the
generalized Fourier transform may be inverted by integrating along a straight
line parallel to the real axis (see [262]):

FETIE N g
g(z) = i/ e “Fg(z)dz (11.22)
i

27 S e

with @ < w < b. To proceed, we need an additional hypothesis (S denotes
the complex conjugate set of S):

pr(z) is Fourier integrable in some strip .Sy,
(H2) F5(z) = F(e“"T) is Fourier integrable in some strip So and

the intersection of S, with S5 is nonempty: S = §; N S, # (.
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Using this hypothesis we can now compute the generalized Fourier trans-
form of C(s) by mterchanging integrals: for every z € §

f {_ézsc(sjds _ e—r’i'f pfj'(.f[f:lﬂ'.l‘[ E£z3f(es+x+?-1")ds

—x i

[= ] (o wl
:e_’T] e_izipqw(.s}d;rf Fle? T T)et2vdy,

—

Finally we obtain
FC(z) = e "Top(—2)Ff*(z) VzeS.

Option prices can now be computed from (11.22) for a range of initial values
using the FF'T algorithm (see below).

Application to call options The payoff function of a European call op-
tion is Fourier integrable in the region 3z > 1, where its generalized Fourier
transform can be computed explicitly:

oo et kr Ek+iz{k—rT)
Ff* = el (L dy = ————.
I(z) _/;oo ( ) dy iz(iz + 1)

The hypothesis (H2) now requires that pr(z) be integrable in a strip (u,b)
with ¢ < —1. Since pr(zx) is a probability density, 0 belongs to its strip of
integrability which means that b > (. Therefore, in this setting the hypothesis
(H2) is equivalent to (H1).

Finally, the generalized Fourier transform of call option price takes the form

‘I’T(—Z)ﬂn ‘iz k—+T)

F = 1<S 1 .
C(z) P <SQz<l+a

The option price can be computed using the mversion formula (11.22), which
simplifies to

C(z) =

exp(wz + (1 — w)(k — rT)) f“‘ k=T §op((—jaw — u)du
27 o (u—w)(1 +iu — w)

for sowe w € (1,1 + a@). The integral in this formula is much easier to ap-
proximate at mfinity than the one in (11.20) because the integrand decays
exponentially (due to the presence of characteristic function). However, the
price to pay for this is having to choose w. This choice is a delicate issue
because choosing big w leads to slower decay rates at infinity and bigger trun-
cation errors and when w is close to one, the denominator diverges and the
discretization error becomes large. For models with exponentially decaying
tails of Lévy measure. w camnmot be chosen a priori and must be adjusted
depending on the model parameters.
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Computing Fourier transforms In order to implement the algorithms
above, one needs to numerically compute Fourier transform in an efficient
manner. This can be done using the discrete Fourier transform

N-1
/= Z f;,-_t'_2m"k"w. n=0...N—1.
k=0
To compute Fy,...,Fn_1, one needs a priori N? operations, but when N is

a power of 2, an algorithm due to Cooley and Tukey and known as the fast
Fourier transform (FET) reduces the computational complexity to O(N In V)
operations, see [321]. Subroutines implementing the FFT algorithm are avail-
able in most high-level scientific computation environments. A C language li-
brary called FETW can be downloaded (under GPL license) from www. fftw.org,

Suppose that we would like to approximate the inverse Fourier transform
of a function f(«) with a discrete Fourier transform. The integral must then
be truncated and discretized as follows:

fos) . Af2 . A N—1 .
j e M f(x)de ~ f e M f(x)dr = — Z wi f(xg)e ek,
— o0 —A[2 N k—0
where o, = —A/2 + kA, A = A/(N — 1) is the discretization step and wy,
are weights corresponding to the chosen integration rule (for instance, for
the trapezoidal rule wy = wy_; = 1/2 and all other weights are equal to
1). Now, setting u,, = ?\%‘ we see that the sum in the last term becomes a
discrete Fourier transform:

N—1

A .
Ff(un) o Eeauﬂ_fi‘ Z wkf(xk)e—%ankfhf

k—0

Therefore. the FF'T algorithm allows to compute F f(u) at the points u,, =

?E- Notice that the grid step d in the Fourier space is related to the initial
grid step A:
27
dA = ==
N

This means that if we want to compute option prices on a fine grid of strikes,
and at the saine thme keep the discretization error low, we must use a large
mumnber of points. Another limitation of the FFT method is that the grid must
always be uniform and the grid size a power of 2. The functions that one has
to integrate are typically irregular at the money and smooth elsewhere but
increasing the resolution close to the money without doing so in other regions
is not possible. These remarks show that the use of FFT is only justified
when one needs to price a large number of options with the same maturity
(let us say, more than 10) — for pricing a single option adaptive variable-step
integration algorithms perform much better.
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When one only needs to price a single option, Boyarchenko and Levendorski
[T1] suggest to transform the contour of integration in the complex plane
(using Cauchy theorem) to achieve a better convergence. Their method, called
“integration along cut” is applicable to tempered stable model with o < 1 and
in many other cases and performs especially well for options close to maturity.
However, when one only needs to price a single option, the speed is not really
an issue since on modern computers all methods can do this computation
quickly. Speed becomes an issue when one repeatedly needs to price a large
number of options (as in calibration or in scenario simulation for portfolios).
If one is interested in pricing several options with the same maturity. FFT is
hard to beat.

11.2 Forward start options

A forward start (or delayed) option is an option with some contractual
feature, typically the strike price, that will be determined at some future date
before expiration, called the fixing date. A typical example of forward start
option is a stock option. When an employee begins to work, the company
may promise that he or she will receive call options on the company’s stock
at some future date. The strike of these options will be such that the options
are at the money or, for instance, 10% out of the money at the fixing date
of the strike. Due to the homogeneous nature of exponential-Lévy models,
forward start options are easy to price in this framework.

The simplest type of a forward start option is a forward start call, starting
at 77 and expiring at 75, with strike equal to a fixed proportion m of the
stock price at T (often m = 1: the option is at the money on the date of
issue). The payoft of such an option at 75 is therefore

H = (87, — mSq)*. (11.23)

At date 77 the value of this option is equal to that of a European call with
maturity 75 and strike mS7,. Denoting the price of a forward start option by
P we obtain

PTI_ — STIE—T{TQ—T1:IE{(6T(T2—T1:|+XT2—T]_ _m)+}'

Notice that the expectation is not conditional: the result is deterministic.
Therefore the value of option at T} is equal to Sy, times a constant. This
option is then simply equivalent to a certain number of forward contracts and
its price at ¢ is given by
P = e—'r‘{Tl—t}E{STl |-:Ft }e—‘i"(Tz—Tl:lE{ (ET(TQ—T1}+XT2 T m}-l-}
= ST pr(en(Te=To+ X —n )+, (11.24)
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