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Abstract

We study a BSDE with random terminal time that appears in the modeling of coun-
terparty risk in finance. We model the terminal time as an invariant time, i.e. a time
such that local martingales with respect to a reduced filtration and a possibly changed
probability measure, once stopped right before that time, stay local martingales with
respect to the original model filtration and probability measure. Using an Azéma su-
permartingale characterization of invariant times, we establish the equivalence between
the original and a reduced BSDE.

Keywords: BSDE, Progressive enlargement of filtration, Counterparty risk.

Mathematics Subject Classification: 60H10, 60G44, 91G40.

1 Introduction

We study a backward stochastic differential equation (BSDE) with random terminal time
ϑ = T ∧ θ, where T is a positive constant and the stopping time θ has an intensity. This
BSDE, introduced in Crépey (2015) for the modeling of bilateral counterparty risk in finance,
is a generalization of various pricing formulas in the credit risk literature. One can mention
as seminal references Duffie, Schroder, and Skiadas (1996) or Collin-Dufresne, Goldstein,
and Hugonnier (2004). See also the recovery valuation formula in the classical reduced-
form approach to credit risk, where θ is modeled as doubly stochastic (or Cox) time or,
more broadly, as a pseudo-stopping time in the sense of Nikeghbali and Yor (2005) (cf.
Bielecki and Rutkowski (2001, Corollary 5.1.3), Bielecki, Jeanblanc, and Rutkowski (2009,
Lemma 3.1.3) or Crépey, Bielecki, and Brigo (2014, Lemma 13.7.5 page 331)). In the
case of counterparty risk, the fact that we deal with an equation (BSDE) rather than
with an explicit formula is due to the nonlinear funding issue that accompanies bilateral
counterparty risk (see Crépey et al. (2014, Chapter 4)).

Independent of the financial motivation that motivates this work, BSDEs with random
terminal time (given as first exit time of a domain) were first introduced in Darling and
Pardoux (1997), in order to give a BSDE formulation to a semilinear elliptic PDE. Other
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studies in a related spirit include Briand and Hu (1998) or Royer (2004). Toldo (2006) stud-
ies the stability in the BSDEs with random terminal time with respect to the driving noise
and the random terminal time. More specifically, the problem of studying a BSDE under a
enlargement of filtration has also been considered in the literature. Motivated by the ques-
tion of hedging of defaultable claims, Blanchet-Scalliet, Eyraud-Loisel, and Royer-Carenzi
(2010) proved existence and uniqueness of the solution to a BSDE with random terminal
time under the density hypothesis of Jacod (1987) in a progressively enlarged Brownian
filtration. For insider trading modeling (of American options in particular), Eyraud-Loisel
and Royer (2010) treated the problem, posed in the initial enlargement of some reference
filtration, by changing the measure to a probability that makes the reference filtration and
the random time independent (such a changed measure always exists in the case of density
times). Other work related to BSDE and change of filtration has been developed more
recently by Kharroubi and Lim (2012) and Jiao, Kharroubi, and Pham (2013), who use a
decomposition method of a solution to a BSDE between successive marked default times
in order to reduce a multiple default risk BSDE to a family of Brownian BSDEs. By this
method they are able to solve a variety of optimal investment, utility or hedging problems.

1.1 Contributions and Outline of the Paper

Our approach is to reduce the original counterparty risk BSDE to a simpler BSDE with
relative to a smaller filtration and a possibly changed probability measure. Moreover, we
want to achieve this under minimal assumptions on θ, so that the model stays as flexible as
possible in view of applications. This requires a relaxation of the basic immersion conditions
of Crépey (2015), which leads us to model θ as an invariant time in the sense of Crépey
and Song (2014), i.e. a time such that local martingales with respect to a reduced filtration
and a possibly changed probability measure, once stopped right before that time, stay local
martingales with respect to the original model filtration and probability measure. Assuming
θ invariant, we show the equivalence between the original and the reduced BSDE. Beyond
its theoretical interest and its implications regarding existence and uniqueness of solutions,
the reformulation of the original counterparty risk BSDE as a reduced BSDE also gives
increased perspectives from the point of view of numerical solutions (see e.g. Crépey and
Song (2015)). This also generalizes various credit risk recovery pricing formulas in the
literature, with a recovery that is both nonpredictable and implicit—implicit or recursive
in the original terminology of Duffie et al. (1996) or Collin-Dufresne et al. (2004).

The paper is organized as follows. In Sect. 2, after a presentation of the financial
motivation (Sect. 2.1), the BSDE of counterparty risk is studied. The original (called “full”)
BSDE is rewritten in terms of an auxiliary BSDE with solution continuous at ϑ (Sect. 2.2).
Both equations are posed with respect to a common stochastic basis (Ω,G,Q). Sect. 3 starts
with a short review of the theory of progressive enlargement of filtration under a condition
(B) relative to a smaller filtration F and under a stronger condition (A) also involving a
changed probability measure P. Under the condition (B), we reduce the auxiliary (G,Q)
BSDE with random terminal time ϑ to an (F,Q) BSDE with a null terminal condition at the
fixed time T (Sect. 3.1). Under the condition (A), an even simpler (F,P) BSDE is obtained
(Sect. 3.2) and discussed (Sect. 3.3). The equivalence between the full and the reduced
BSDEs is first established in the special case where the data only depend on the value of
the solution, but Sect. 4 shows that this equivalence is also valid when the data also depend
on the integrands in a martingale representation of the solution, as further developed on
an example in Sect. 4.1. The concluding section Sect. 5 draws the practical consequences
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of our study for the motivating counterparty and credit risk problems. Appendix A deals
with measurability issues in relation with single step martingales that appear through the
terminal condition of the original full BSDE. An index of symbols is provided after the
bibliography.

1.2 Standing Assumptions and Notation

The real line, half-line and the nonnegative integers are respectively denoted by R, R+ and
N; B(Rk) is the Borel σ algebra on Rk (k ∈ N); λ is the Lebesgue measure on R+. We
work on a space Ω equipped with a σ-field A, a probability measure Q on A and a filtration
G = (Gt)t∈R+ of sub-σ-fields of A, satisfying the usual conditions. We use the terminology
of the general theory of processes and of filtrations as given in the books by Dellacherie and
Meyer (1975) and He, Wang, and Yan (1992). Footnotes are used for referring to compara-
tively standard results. We denote by P(F), O(F) and R(F) the predictable, optional and
progressive σ-fields with respect to a filtration F. For any semimartingale Y and predictable,
Y integrable process L, the stochastic integral process of L with respect to Y is denoted by∫ ·
0 LtdYt =

∫
(0,·] LtdYt = L � Y , with the usual precedence convention KL � Y = (KL) � Y

if K is another predictable process such that KL is Y integrable. For any càdlàg process
Y , for any random time τ (nonnegative random variable), ∆τY represents the jump of Y
at τ. Like Dellacherie and Meyer (1975) or He et al. (1992), we use the convention that
Y0− = Y0 (hence ∆0Y = 0) and we write Y τ and Y τ− for the process Y stopped at τ and
at τ− (“right before τ”), i.e., respectively,

Y τ = Y 1[0,τ) + Yτ1[τ,+∞), Y
τ− = Y 1[0,τ) + Yτ−1[τ,+∞). (1.1)

In particular, if τ ′ is another random time, one can check from the definition that

(Y τ−)τ
′− = Y τ∧τ ′−. (1.2)

We also work with semimartingales on a predictable set of interval type I as of He et al.
(1992, Sect. VIII.3) and, occasionally, with stochastic integrals on I, where Z = L � Y on
I, for semimartingales Y and Z on I, means that Zτn = L � (Y τn) holds for at least one,
or equivalently any, nondecreasing sequence of stopping times such that ∪[0, τn] = I (the
existence of at least one such sequence is ensured by He et al. (1992, Theorem 8.18 3))).
We call compensator of a stopping time τ the compensator of 1[τ,∞). For A ∈ Gτ , we denote
τA = 1Aτ + 1Ac∞, a G stopping time1. Unless otherwise stated, a function (or process)
is real-valued; order relationships between random variables (respectively processes) are
meant almost surely (respectively in the indistinguishable sense); a time interval is random.
We don’t explicitly mention the domain of definition of a function when it is implied by
the measurability, e.g. we write “a B(Rk) measurable function g (or g(x))” rather than “a
B(Rk) measurable function g defined on R”. For a function g(ω, x) defined on a product
space Ω× E, we usually write g(x) without ω (or gt in the case of a stochastic process).

Throughout the paper ϑ denotes a finite G stopping time with indicator process H =
1[ϑ,+∞) and J = 1 − H, so that Y ϑ− = Y J + Yϑ−H (cf. (1.1)) and J− = (1[0,ϑ))− =
10<ϑ1[0,ϑ]. According to He et al. (1992, Theorem 4.20), there exists A ∈ Gϑ− such that
ϑa := ϑA is accessible and ϑi := ϑAc is totally inaccessible. The compensators vi of ϑi and
va of ϑa are the continuous component and the pure jump component of the compensator

v = vi + va (1.3)

1Cf. Theorem 3.9 in He et al. (1992).
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of ϑ.

2 Full BSDEs

Let gt(ω, x) be a P(G) ⊗ B(R) measurable function and G(ω, x) be a Gϑ ⊗ B(R) measur-
able function. We consider the backward martingale problem consisting of the following
integrability, martingale and terminal conditions for a (G,Q) semimartingale X on R+:

∫ ϑ
0 |gs(Xs−)|ds <∞,

MX
t := Xϑ

t +
∫ t∧ϑ
0 gs(Xs−)ds defines a (G,Q) local martingale on R+,

Xϑ = G(Xϑ−)

(2.1)

2.1 Counterparty Risk Motivation

First we present the counterparty risk motivation for this problem. See also Crépey et al.
(2014)2, Crépey and Song (2015) or Brigo and Pallavicini (2014) where related equations
are considered. For more background and details on counterparty risk in general, see Brigo,
Morini, and Pallavicini (2013) and Crépey et al. (2014) from a more financial and mathe-
matical perspective, respectively.

Remark 2.1 We refer to (2.1) or the related martingale problems henceforth as BSDEs.
In some of the above references, the data g and G depend on an additional real vector, say
u, corresponding to the integrands in a martingale representation of the martingale part of
X, making (2.1) what we call in Sect. 4 a true BSDE.

We consider a bank, the perspective of which is taken, and its counterparty in a OTC
derivative contract with maturity T . The two parties are default-prone, with a first-to-
default time θ modeled as a G totally inaccessible stopping time. If θ < T , then the
position is closed at θ, with a corresponding exposure (loss with respect to the situation in
which there would be no counterparty risk) given as a Gθ ⊗ B(R) measurable function

C(y) = Cc − (y − C)+Λ, (2.2)

where the real y represents the wealth of the bank. The random variable Cc corresponds
to the credit and debit exposure of the bank to the default of its counterparty and to its
own default, the constant (or random variable) Λ to the loss-given-default of a third party
(external lender) funding the position of the bank and the random variable C to the value of
the collateral posted by either party (depending on the sign of C) to mitigate counterparty
risk. Moreover, the risky bank incurs extra funding costs with respect to a risk free setup.
The instantaneous funding cost of the bank in excess over a risk free cost is modeled as an
R(G)⊗ B(R) measurable funding cost coefficient ct(ω, y).

As developed in the above references, the resulting counterparty risk and funding
valuation adjustment can be modeled as a solution to a BSDE of the form (2.1), where

ϑ = θ ∧ T, gt(x) = ct(Pt− − x)− rtx and G(x) = 1{ϑ<T}C(Pϑ− − x). (2.3)

2Or Crépey (2015) in the journal version available as preprint on S. Crépey’s webpage.
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Here P is a G semimartingale that represents the risk free value of the contract, ignoring
counterparty risk and assuming a R(G) measurable risk free funding rate r. The nature
of Cc in (2.2) depends on several factors, including the identity of the defaulter (bank or
counterparty), which is only revealed at the totally inaccessible time θ. This is the reason
why C in (2.2) and in turn G in (2.3) can’t be assumed more regular than Gθ ⊗ B(R)
measurable; in particular, G isn’t Gθ− ⊗ B(R) measurable. By passing to the predictable
projection in the case of r and proceeding similarly, following up on Stricker and Yor (1978,
Proposition 3), in the case of g, it is not restrictive to assume that r and g are P(G) and
P(G) ⊗ B(R) measurable, respectively. Hence, we effectively deal with an equation of the
form (2.1) (of the special kind considered in Sect. 3).

Remark 2.2 The situation depicted above where g and G only depend on x (as opposed
to an additional argument u as explained in the remark 2.1) corresponds to the case of a
securely funded hedge, which covers the vast majority of hedges that are used in practice
(see Crépey et al. (2014, Section 4.2.1 page 87)3). The case where g and G depend on u is
dealt with in Sect. 4.

Of course, the above sketched BSDE modeling approach implicitly relies on the well posed-
ness of the equation (2.1). This is the motivation for this paper, where the nonstandard
BSDE (2.1) is proven equivalent to the more tractable reduced BSDE (3.20)—at least, as-
suming an invariant time θ with a positive Azéma supermartingale S over R+, which is
typically satisfied in applications (see e.g. Crépey and Song (2015)).

2.2 Equivalent BSDEs

The BSDE (2.1) is nonstandard due to its terminal condition G(Xϑ−), which depends on
the solution X right before θ (as alluded to in the introduction, related issues were already
considered in Duffie et al. (1996) or Collin-Dufresne et al. (2004)) and with, for fixed x,
G(ω, x) only Gϑ measurable, as opposed to Gϑ− measurable in standard credit risk problems
(see Bielecki et al. (2009)). This is required in regard of the financial interpretation exposed
in Sect. 2.1. Our approach is to reduce the full BSDE (2.1) to equivalent but simpler BSDEs
relative to a reduced filtration F and a possibly changed probability measure P, ultimately
the BSDE (3.20) (in the simplest case where the Azéma supermartingale S of θ is positive
on R+), with constant terminal time T and a null terminal condition. Moreover, in view
of the applications of Crépey and Song (2015), we want to achieve this under minimal
assumptions on θ (see Crépey and Song (2014)), less restrictive than the basic immersion
conditions of Crépey (2015), where θ is modeled as a pseudo-stopping time in a classical
progressive enlargement of filtration setup.

Henceforth, we suppose the existence of Ĝ, hence of |̂G|, where ·̂ denotes the “param-
eterized conditional expectation given Gϑ−” as of Definition A.1 applied to G and ϑ here
for G and θ there. In addition to MX in (2.1), we denote

M• = (G(Xϑ−)−Xϑ−)H − (Ĝ·(X−)−X−) � v,

M◦ = MX −M•,
(2.4)

both (G,Q) local martingales on R+ if X satisfies the BSDE (2.1):

3Or Section 2.1 in the journal version Crépey (2015, Part I).
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Lemma 2.1 If X is a solution to (2.1), then∫ t

0
|̂G|s(Xs−)dvs <∞, t ∈ R+ (2.5)

and M•, hence M◦, are G local martingales.

Proof. Notice that ∆ϑM
X = ∆ϑX = G(Xϑ−)−Xϑ− on {0 < ϑ <∞}. Let (τn)n∈N denote

a nondecreasing sequence of finite stopping times tending to the infinity such that each
(MX)τn is a uniformly integrable martingale and each (MX)τn− and Xτn

− are bounded. We
write

E[
∫ τn
0 |̂G|s(Xs−)dvs] = E[|̂G|ϑ(Xϑ−)1{0<ϑ≤τn}] = E[|G(Xϑ−)|1{0<ϑ≤τn}]
≤ E[|G(Xϑ−)−Xϑ−|1{0<ϑ≤τn}] + E[|Xϑ−|1{0<ϑ≤τn}]
= E[|∆ϑM

X |1{0<ϑ≤τn}] + E[|Xϑ−|1{0<ϑ≤τn}] <∞.

This proves (2.5). Therefore, Lemma A.2 is applicable with G and ϑ here for G and θ there,
which proves that M• is a (G,Q) local martingale on R+.

We consider the following BSDE for a (G,Q) semimartingale Y on R+:

∫ ϑ
0 |gs(Ys−)|ds+

∫ ϑ
0 |̂G|s(Ys−)dvs <∞,

MY
t := Y ϑ

t +
∫ t∧ϑ
0 gs(Ys−)ds+

∫ t∧ϑ
0 Ĝs(Ys−)dvs defines a (G,Q) local martingale on R+,

Yϑ = 0.
(2.6)

Lemma 2.2 If X is a solution to the BSDE (2.1), then Y = XJ is a solution to the BSDE
(2.6). Conversely, if Y is a solution to the BSDE (2.6), then the process

X = Y J +G(Yϑ−)H.

is a solution to the BSDE (2.1).

Proof. Assuming (2.1), we have (2.5). Now, the Itô formula yields, for t > 0,

dXϑ−
t = d(XJ)t + d(Xϑ−H)t

= Jt−dXt −XtdHt +Xϑ−dHt

= dMX
t − Jt−gt(Xt−)dt−XϑdHt +Xϑ−dHt

= dM◦t + dM•t − Jt−gt(Xt−)dt−∆ϑXdHt

= dM◦t − (Ĝt(Xt−)−Xt−)dvt − Jt−gt(Xt−)dt.

Hence,

dYt = d(XJ)t
= dM◦t − d(Xϑ−H)t − (Ĝt(Xt−)−Xt−)dvt − Jt−gt(Xt−)dt

= dM◦t − (d(Xϑ−H)t −Xt−dvt)− Ĝt(Xt−)dvt − Jt−gt(Xt−)dt

= dM◦t −Xt−d(H − v)t − Ĝt(Xt−)dvt − Jt−gt(Xt−)dt.

The process (H − v) being a local martingale, this computation and (2.5) show that the
process Y = XJ solves (2.6).
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Conversely, given Y solving (2.6), let

X = Y J +G(Yϑ−)H.

Lemma A.2 is applicable with G and ϑ here for G and θ there, which proves that

M? := G(Yϑ−)H − Ĝ·(Y−) � v

is a (G,Q) local martingale on R+. The Itô formula gives, for t > 0,

dXt = d(Y J)t + d(G(Yϑ−)H)t

= Jt−dYt − YtdHt + dM?
t + Ĝt(Yt−)dvt

= dMY
t − Jt−gt(Yt−)dt− Ĝt(Yt−)dvt − YϑdHt + dM?

t + Ĝt(Yt−)dvt

= dMY
t − Jt−gt(Yt−)dt+ dM?

t

(using the terminal condition Yϑ = 0), hence

MX = MY +M?, (2.7)

which shows that X is a solution to the BSDE (2.1).

By passing from (2.1) to (2.6), we got rid of the implicit terminal condition at ϑ in (2.1).
But, for the application in the reduced models of Sect. 3, we need still another form of the
BSDE, where, instead of a null “Dirichlet” condition Yϑ = 0 in (2.6), we have a no jump
“Neumann” condition that will become visible as ∆ϑZ = 0 in the BSDE (2.11).

Lemma 2.3 Given a (G,Q) semimartingale Z on R+, Y = ZJ solves the BSDE (2.6) if
and only if Z solves the following BSDE for a (G,Q) semimartingale on R+:

∫ ϑ
0 |gs(Zs−)|ds+

∫ ϑ
0 |̂G|s(Zs−)dvs <∞,

MZ
t := Zϑ−t +

∫ t∧ϑ
0 gs(Zs−)ds+

∫ t∧ϑ
0

(
Ĝs(Zs−)− Zs−

)
dvs

defines a (G,Q) local martingale on R+.

(2.8)

In particular, if X solves the BSDE (2.1), then X, hence Xϑ−, solve the BSDE (2.8) and
we have MZ = M◦. When the accessible component ϑa of ϑ is predictable, the BSDE (2.8)
becomes (cf. (1.3))

∫ ϑ
0 |gs(Zs−)|ds+

∫ ϑ
0 |̂G|s(Zs−)dvs <∞,

MZ
t = Zϑ−t +

∫ t∧ϑ
0 gs(Zs−)ds+

∫ t∧ϑ
0 (Ĝs(Zs−)− Zs−)dvis

defines a (G,Q) local martingale on R+,

1{0<ϑa<∞}(Ĝϑa(Zϑa−)− Zϑa−) = 0.

(2.9)

Proof. The Itô formula applied to Y = ZJ yields, for t > 0,

dYt = d(ZJ)t = d(Zϑ−J)t = dZϑ−t − Zϑ−t dHt

= dMZ
t − Jt−gt(Zt−)dt− Ĝt(Zt−)dvt + Zt−dvt − Zϑ−dHt

= dMZ
t − Jt−gt(Zt−)dt− Ĝt(Zt−)dvt − Zt−d(H − v)t,
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which proves the first part of the lemma. If ϑa is predictable, then va = 1[ϑa,∞). Hence,

MZ
t = Zϑ−t +

∫ t∧ϑ

0
gs(Zs−)ds+

∫ t∧ϑ

0
(Ĝs(Zs−)−Zs−)dvis+10<ϑa(Ĝϑa(Zϑa−)−Zϑa−)1{t≥ϑa},

where vi is continuous. As a consequence,

1{0<ϑa<∞}∆ϑaM
Z = 1{0<ϑa<∞}(Ĝϑa(Zϑa−)− Zϑa−). (2.10)

Therefore (2.9) obviously implies (2.8). Conversely, assuming (2.8), so that MZ
t is a local

martingale, by taking the conditional expectation given Gϑa− both sides of (2.10), we obtain
since ϑa is predictable:

1{0<ϑa<∞}(Ĝϑa(Zϑa−)− Zϑa−) = 0,

which is the terminal condition in (2.9).

The BSDE (2.8) seems to have no terminal condition so that (2.8), hence (2.1), could have
multiple solutions. However, observe that (2.8) has a solution if and only if the following
BSDE has a solution:

∫ ϑ
0 |gs(Zs−)|ds+

∫ ϑ
0 |̂G|s(Zs−)dvs <∞,

Zt +
∫ t∧ϑ
0 gs(Zs−)ds+

∫ t∧ϑ
0 Ĝs(Zs−)dvs −

∫ t∧ϑ
0 Zs−dvs

defines a (G,Q) local martingale on R+,

∆ϑZ = 0,

(2.11)

with Z = Zϑ− as a solution to (2.11) if Z solves (2.8) and Z = Z as a solution to (2.8
if Z solves (2.11). Hence, one may say that (2.8) hides a “no-jump terminal condition”
corresponding to the last line in (2.11).

Corollary 2.1 When the accessible component ϑa of ϑ is predictable, if Z solves (2.9),
then X = ZJ +G(Zϑ−)H solves (2.1) and we have MX = MZ +M•, where

M• = (G(X−)−X−) �H − (Ĝ·(X−)−X−) � vi

= (G(Z−)− Z−) �H − (Ĝ·(Z−)− Z−) � vi.
(2.12)

Proof. If Z solves (2.8) (equivalent to (2.9) when the accessible component ϑa of ϑ is
predictable), then, from the previous lemmas, Y = ZJ solves (2.6), X = ZJ + G(Zϑ−)H
solves (2.1), MZ = M◦ and (2.12) holds in view of the terminal condition in (2.9).

The main findings of this section are summarized in the following result that immediately
stems from Lemmas 2.1 through 2.3.

Theorem 2.1 If the BSDE (2.1) has a solution X, then∫ t

0
|̂G|s(Xs−)dvs <∞, t ∈ R+,

8



and any G semimartingale Z on R+ such that JZ = JX (e.g. Z = Xϑ−) solves the BSDE
(2.8), equivalent to (2.9) when the accessible component ϑa of ϑ is predictable. Conversely,
if Z is a solution to the BSDE (2.8), then the process

X = ZJ +G(Zϑ−)H

solves the BSDE (2.1). In both cases, we have MX = MZ +M•, where (2.12) holds when
the accessible component ϑa of ϑ is predictable.

3 Reduced BSDEs

Let θ be a (non necessarily finite) G stopping time. Let F be a subfiltration of G satisfying
the usual conditions and the following:

Condition (B). For any G predictable process L, there exists an F predictable process K,
called the F predictable reduction4 of L, such that 1(0,θ]K = 1(0,θ]L.

This condition is a relaxation of the classical progressive enlargement of filtration setup,
where the bigger filtration G is simply the smaller reference filtration F progressively en-
larged by θ (“G = F ∨ H” in a standard notation), which implies the condition (B). The
additional flexibility offered by this condition is exploited in Crépey and Song (2015) to deal
with a dynamic Marshall-Olkin copula model of counterparty risk on credit derivatives. We
write J = 1[0,θ), hence J− = 10<θ1[0,θ]. Let o· and p· denote the F optional and predictable
projections. In particular, S = oJ represents the F Azéma supermartingale of θ. We recall
that

p(J−) = S− on (0,∞) (3.1)

(see Jeulin (1980, page 63)) and

Sθ− > 0 on {0 < θ} (3.2)

(cf. Yor (1978, page 63)). Let

ς = inf{s > 0;Ss = 0} = inf{s > 0;Ss− = 0} (3.3)

(since S is a nonnegative supermartingale5) and

ςn = inf

{
s > 0;Ss ≤

1

n

}
(n > 0), (3.4)

so that, using the definitions,

ς = sup
n
ςn, {S− > 0} ∪ [0] = ∪n[0, ςn]. (3.5)

In particular:

on {S0 > 0} , we have 0 ∈ {S− > 0}, hence ∪n [0, ςn] = {S− > 0},
on {S0 = 0} (hence {S− > 0} = ∅), all the ςn are equal to 0, hence ∪n [0, ςn] = [0].

(3.6)

The next lemma assembles the main results that we need under the condition (B) (see
Crépey and Song (2014) for references).

4Also known as pre-default process in the credit risk literature (see e.g. Bielecki and Rutkowski (2001)).
5Cf. n◦17 Chapitre VI in Dellacherie and Meyer (1975).
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Lemma 3.1 1) Let (E, E) be a measurable space. Any P(G) ⊗ E (respectively O(G) ⊗
E) measurable function ht(ω, x) admits a P(F) ⊗ E (respectively O(F) ⊗ E) reduction,
i.e. a P(F)⊗ E (respectively O(F)⊗ E) measurable function ft(ω, x) such that 1(0,θ]f =
1(0,θ]h (respectively Jf = Jh) everywhere. In addition, two F predictable (resp. optional)
processes indistinguishable until (resp. before) θ are indistinguishable on {S− > 0} (resp.
{S > 0}).

2) Let M be a G local martingale on R+ with ∆θM = 0. For any F optional reduction K
of M , K is an F semimartingale on {S− > 0}, 1{S−>0}K− is an F predictable reduction
of M− and S− �K + [S,K] is an F local martingale on {S− > 0}. Conversely, for any
F semimartingale K on {S− > 0} such that S− �K + [S,K] is an F local martingale on
{S− > 0}, Kθ− is a G local martingale on R+.

Given a positive constant T , we say that (F,P) is a reduced stochastic basis of (G,Q)
if F is a subfiltration of G satisfying the usual conditions and the condition (B) and if P
is a probability measure equivalent to Q on FT . Note that earlier, letters of the family
“m” (e.g. MX , M◦, etc.) were used to denote G local martingales, which are all defined in
reference to the original probability measure Q. Regarding F, letters of the family “q” and
“p” are used to denote (F,Q) and (F,P) local martingales, respectively. We consider the
following:

Condition (A). (F,P) is a reduced stochastic basis of (G,Q) such that for any (F,P) local
martingale P , P θ− is a (G,Q) local martingale on [0, T ].

The condition (A) is studied from the theoretical and practical point of view in Crépey and
Song (2014) and Crépey and Song (2015), respectively. Specifically, the results of Crépey
and Song (2014) reduce the condition (A) to suitable integrability conditions, checked to
hold in Crépey and Song (2015) in concrete models where the basic immersion assumptions
of Crépey (2015) are violated. In particular, the flexibility offered by the possibility to
change the measure in the condition (A) is exploited in Crépey and Song (2015) to deal
with a dynamic Gaussian copula model of counterparty risk on credit derivatives. The
following result is proven in Crépey and Song (2014).

Lemma 3.2 Under the condition (A), if θ has an intensity, then

{S− > 0} = {S > 0}. (3.7)

and a process P is an (F,P) local martingale on {S− > 0}∩ [0, T ] if and only if S− �P+[S, P ]
is an (F,Q) local martingale on {S− > 0} ∩ [0, T ].

In practice, the choice of a reduced stochastic basis (F,P) is a degree of freedom of the
modeler. Thus, we are interested in the stopping times θ such that the condition (A) holds
for at least one reduced stochastic basis (F,P). Following Crépey and Song (2014), we call
invariant a G stopping time θ for which there exists a reduced stochastic basis (F,P) of
(G,Q) satisfying the condition (A). See the beginning of Sect. 3.3 regarding the BSDE
motivation for this invariant terminology, beyond the obvious reference to the martingale
invariance property defined by the condition (A).

3.1 Under the Condition (B)

Back to the BSDE (2.1), we assume ϑ = θ ∧ T , where T is a positive constant and θ is
a G totally inaccessible stopping time with G compensator γ � λ, for some G predictable
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intensity process γ. Hence

ϑi = θ{θ<T}, ϑ
a = T{T≤θ}, vi = 1[0,T )γ � λ, va = 1{T≤θ}1[T,∞).

In addition, we assume a terminal function of the form G(x) = 1{θ<T}G(x) in (2.1), so that

|̂G|t(x) = 1t<T |̂G|t(x), Ĝt(x) = 1t<T Ĝt(x)

(where |̂G| and Ĝ can be computed relatively to the stopping time θ, which is simpler in
practice as one then does not need care about T ). Since ϑa = T{T≤θ} is predictable, (2.1) is
equivalent to (2.9), which is rewritten as the following BSDE for a (G,Q) semimartingale
Z on R+: 

∫ θ∧T
0

(
|gs(Zs−)|+ γs |̂G|s(Zs−)

)
ds <∞,

MZ
t = Zθ∧T−t +

∫ t∧θ∧T
0

(
gs(Zs−) + (Ĝs(Zs−)− Zs−)γs

)
ds

defines a (G,Q) local martingale on R+,

ZT−1{T≤θ} = 0.

(3.8)

In addition, (2.12) is rewritten as

M• = 1[0,T )(G(X−)−X−) �H − 1[0,T )(Ĝ·(X−)−X−)γ � λ

= 1[0,T )(G(Z−)− Z−) �H − 1[0,T )(Ĝ·(Z−)− Z−)γ � λ.
(3.9)

Remark 3.1 If one adds the condition that Z is stopped at (θ−) to avoid artificially
multiple solutions, then the BSDE (3.8), constrained in this way, becomes equivalent to: Z
is stopped at (θ−) and

∫ t∧T
0

(
|gs(Zs−)|+ γs |̂G|s(Zs−)

)
ds <∞, t ∈ {J− > 0},

ZT−t +
∫ t∧T
0

(
gs(Zs−) + (Ĝs(Zs−)− Zs−)γs

)
ds

defines a (G,Q) local martingale on {J− > 0},

ZT−JT− = 0,

(3.10)

the equality between the martingale parts stemming from the identity (ZT−)θ− = (ZT−)θ

if ∆θZ = 0, by (1.2).

We are now in the position to derive reduced forms of the BSDE (2.1) or, equivalently,
(3.8). Let ϕ be the P(F) reduction of γ and let f, F and F′ be respective P(F) ⊗ B(R)

reductions of g, Ĝ+ and Ĝ− (reductions that all exist by Lemma 3.1 1)). By Lemma A.1 3),

(Ĝ+ + Ĝ−) and (Ĝ+− Ĝ−) are respective versions of |̂G| and Ĝ. Hence, (F+F′) and (F−F′)

are respective reductions of |̂G| and Ĝ. For any càdlàg process R on R+ (or on a predictable
set of interval type), we write

R = R+
(
f·(R−) + ((F− F′)·(R−)−R−)ϕ

)
� λ. (3.11)
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We consider the following BSDE for an (F,Q) semimartingale U on {S− > 0}:

IUt :=
∫ t∧T
0

(
|fs(Us−)|+ (F + F′)s(Us−)ϕs

)
ds <∞, t ∈ {S− > 0},

S− � U
T−

+ [S, U
T−

] defines an (F,Q) local martingale on {S− > 0},

UT−ST− = 0.

(3.12)

Lemma 3.3 Assume the condition (B). If Z is a solution to the BSDE (3.8), then the F
optional reduction U of Zθ− is a solution to the BSDE (3.12). Conversely, if U is a solution
to the BSDE (3.12), then Z = U θ− is a solution to the BSDE (3.8).

Proof. Assuming the BSDE (3.8) has a solution Z and U given as the F optional reduction
of Zθ−, the local martingale MZ in the BSDE (3.8) satisfies

MZ
t = Zθ∧T−t +

∫ t∧θ∧T

0

(
gs(Zs−) + (Ĝs(Zs−)− Zs−)γs

)
ds

= U θ∧T−t +

∫ t∧θ∧T

0

(
fs(Us−) + ((F− F′)s(Us−)− Us−)ϕs

)
ds

= (U θ∧T−)t = U
θ∧T−
t = (U

T−
)θ−t ,

(3.13)

by (1.2). In particular, U
T−

is the F optional reduction of MZ . Hence, by the direct part in

Lemma 3.1 2) applied with M = MZ and K = U
T−
, S− �U

T−
+ [S, U

T−
] is an (F,Q) local

martingale on {S− > 0}. Hence, U satisfies the martingale condition in the BSDE (3.12).
In addition, for any F predictable stopping time σ, we have by predictable projection and
Fσ− measurability of 1{IUσ =∞} :

0 = E[1{IUσ =∞}1{σ≤θ}] = E[1{IUσ =∞}Sσ−].

Hence, by application of the predictable section theorem6, the process 1{IU=∞}S− is in-

distinguable from 0, so that IU is finite on {S− > 0}, which proves that U satisfies the
integrability condition in the BSDE (3.12). Last, taking the FT− conditional expectation of
the terminal condition in the BSDE (3.8) and using (3.1) shows that U satisfies the terminal
condition in the BSDE (3.12).

Conversely, if U is a solution to the BSDE (3.12) and Z = U θ−, the integrability
condition in the BSDE (3.12) for U implies the integrability condition in the BSDE (3.8)
for Z, because θ ∈ {S− > 0} (unless θ = 0; cf. (3.2)). In view of the martingale condition

for U, by the converse part in Lemma 3.1 2) applied with K = U
T−
, (U

T−
)θ− = U

T∧θ−

(cf. (1.2)) is a (G,Q) local martingale, hence Z = U θ− satisfies the martingale condition in
the BSDE (3.8). Using (3.1), UT−Q[T ≤ θ|FT−] = UT−ST− = 0, hence{

0 = E[U+
T−E[T ≤ θ|FT−]] = E[U+

T−1{T≤θ}] = E[Z+
T−1{T≤θ}],

0 = E[U−T−E[T ≤ θ|FT−]] = E[U−T−1{T≤θ}] = E[Z−T−1{T≤θ}],

i.e. ZT−1{T≤θ} = 0, which is the terminal condition in the BSDE (3.8).

6Cf. He et al. (1992, Theorem 4.8).
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3.2 Under the Condition (A)

Lemma 3.3 establishes an equivalence between the (G,Q) BSDE (3.8) and the (F,Q) BSDE
(3.12) under the condition (B). However, the martingale condition in the BSDE (3.12) is
quite involved. In this section we study the reduction of the BSDE (3.8) under the condition
(A) on a reduced stochastic basis (F,P) of (G,Q). We consider the following BSDE for an
(F,P) semimartingale U on {S− > 0}:

∫ t∧T
0

(
|fs(Us−)|+ (F + F′)s(Us−)ϕs

)
ds <∞, t ∈ {S− > 0},

U
T−
t defines an (F,P) local martingale on {S− > 0},

UT−ST− = 0.

(3.14)

Lemma 3.4 Under the condition (A), the BSDEs (3.12) and (3.14) are equivalent.

Proof. The integrability and terminal conditions in (3.12) and (3.14) are the same (they
don’t depend on the filtration or probability measure). Since θ has an intensity, the mar-
tingale conditions in (3.14) and in (3.12) are equivalent by Lemma 3.2.

Next, we consider the following BSDE for an (F,P) semimartingale V on {S− > 0}:

∫ t∧T
0

(
|fs(Vs−)|+ (F + F′)s(Vs−)ϕs

)
ds <∞, t ∈ {S− > 0}

V
T
t defines an (F,P) local martingale on {S− > 0},

VTST− = 0.

(3.15)

Note that this BSDE is the same as (3.14), except that we stop at (T−) instead of T in the
martingale and terminal conditions (the integrability conditions are the same)

Lemma 3.5 Assume the condition (A). If U is a solution to the BSDE (3.14), then V =
UT− is a solution to the BSDE (3.15). Conversely, if V is a solution to the BSDE (3.15),
then U = V is a solution to the BSDE (3.14).

Proof. The direct part is obvious. We show the converse part. Let’s suppose (3.15). To
show the terminal condition in (3.14), it’s enough to prove that VT− = 0 holds on {T ≤ ςn}
for each n ∈ N, so that VT− = 0 on {ST− > 0}, by (3.5). By definition of a local martingale

on {S− > 0} in (3.15), V
ςn∧T

is an (F,P) local martingale on R+. Note that

∆T

(
V
ςn∧T )

= 1{T≤ςn}∆TV = −1{T≤ςn}VT−, (3.16)

by the terminal condition in (3.15). As T is predictable and V
ςn∧T

is an (F,P) local
martingale on R+, taking conditional expectation with respect to FT− in (3.16) yields
1{T≤ςn}VT− = 0 for each n ∈ N, as wanted, hence VT− = 0 on {ST− > 0}. In view of this,

V
T
t and V

T−
t coincide on {S− > 0}, therefore the martingale condition (3.15) implies the

one in (3.14).

Summarizing:
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Theorem 3.1 Under the condition (A), the BSDEs (3.8) and (3.15) are equivalent. Specif-
ically, if Z solves (3.8), then the F optional reduction U of Zθ− solves (3.14) and V = UT−

solves (3.15). Conversely, if V solves (3.15), then U = V solves (3.14) and Z = U θ− = V θ−

solves (3.8). In both cases, V is the F optional reduction of Zϑ− with respect to the time ϑ
and we have

MZ = V
ϑ−
. (3.17)

Proof. Everything but (3.17) directly follows from lemmas 3.3 through 3.5. Moreover, in
both cases, Z solves (2.8) and it’s easy to check that Zϑ− = V ϑ−, hence the (G,Q) canonical
Doob-Meyer local martingale parts MZ of Zϑ− (cf. the martingale condition in (2.9)) and

V
ϑ−

= U
ϑ−

= (U
T−

)θ− (a (G,Q) local martingale by the condition (A)) of V ϑ− coincide.

Theorem 3.2 Under the condition (A), the BSDE (2.1) with the data ϑ = θ ∧ T, g and
G = 1θ<TG and the BSDE (3.15) are equivalent. Specifically, if X solves the BSDE (2.1)
with the data ϑ = θ ∧ T, g and G = 1θ<TG, then any G semimartingale Z on R+ such
that JZ = JX (e.g. Z = Xϑ−) solves (3.8) and all the consequences of the direct part in
Theorem 3.1 follow (with also Zϑ− = Xϑ−). Conversely, if V solves (3.15), then all the
consequences of the converse part in Theorem 3.1 follow and

X = JV +H1{θ<T}G(Vθ−) (3.18)

solves the BSDE (2.1) with the data ϑ = θ ∧ T, g and G = 1θ<TG. In both cases, we
have (3.18), V is the F optional reduction of Xϑ− with respect to the time ϑ and we have
MX = MZ +M•, where

MZ = V
ϑ−
, M• = 1[0,T )(G(V−)− V−) �H − 1[0,T )(Ĝ·(V−)− V−)γ � λ. (3.19)

Proof. This follows by combining Theorems 2.1 and 3.1, using (3.17) and the form (3.9) of
(2.12) to obtain (3.19) (by Corollary 2.1) .

In applications (see Crépey and Song (2015)), we use the following BSDE for an (F,P)
semimartingale W on R+:

∫ T
0 (|fs(Ws−)|+ (F + F′)s(Ws−)ϕs) ds <∞,

W
T
t defines an (F,P) local martingale on R+,

WT = 0,

(3.20)

Obviously:

Theorem 3.3 Under the condition (A), if W solves the BSDE (3.20), then V = W solves
the BSDE (3.15). The two BSDEs are the same if S is a (strictly) positive process.

By definition (3.11), W
T
t = W T

t +
∫ t∧T
0 f̄s(Ws−)ds, where

f̄s(x) = fs(x) + ((F− F′)s(x)− x)ϕs. (3.21)

Under mild regularity and growth assumptions on the reduced coefficient f̄s(x), the BSDE
(3.20) is well-posed, in various senses. For instance, assuming a square integrable coefficient
f̄·(x) Lipschitz in x on [0, T ], (3.20) admits a unique square integrable solution W (see
Crépey and Song (2015) for precise statements).
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3.3 Discussion

Formally, the BSDE (3.14) is the BSDE (3.10) with J− replaced by S−, its predictable
projection (on (0,+∞); cf. (3.1)). Recall that, under the nonrestrictive constraint that
Z is stopped at (θ−), (3.10) is equivalent to (3.8), i.e. (2.9), i.e. (2.1). Hence, from the
financial point of view, Lemma 3.4 can be interpreted as an invariance principle, stating
a consistency relation between a non-arbitrable reduced pricing model (F,P) and a non-
arbitrable full pricing model (G,Q), under the condition (A). Now, from a practical point
of view, one might feel that the reduced F BSDEs (the ones beyond (3.10)) are not so useful
since our final recipe is to solve (3.20) in order to get a solution to (3.14), hence to (3.8),
i.e. (2.9), i.e. (2.1). Indeed, one may object that a shortcut would be to get a solution to
(cf. (3.10)) 

∫ T
0

(
|gs(Zs−)|+ γs |̂G|s(Zs−)

)
ds <∞,

ZTt +
∫ t∧T
0

(
gs(Zs−) + (Ĝs(Zs−)− Zs−)γs

)
ds

defines a (G,Q) local martingale on R+,

ZT = 0,

(3.22)

which is basically of the same difficulty as (3.20) and implies (3.10) in the same way as
(3.20) implies (3.8). This shortcut would also be more general since it does not need the
condition (A). The caveat, which in a sense justifies this paper, is that the solution to
(3.10) obtained in this way does not need to satisfy the constraint that Z is stopped at
(θ−), whereas it’s only under this condition that (3.10) yields a solution to (3.8), i.e. (2.9),
i.e. (2.1). By contrast, passing by (3.20) always yields a solution Z = W θ− to (3.8) (stopped
at (θ−), i.e. a solution Z stopped at (θ−) to (3.10)). We add that, in practical cases, S is
typically positive on R+ (see e.g. Crépey and Song (2015)) and (3.20) is in fact equivalent
to (3.8), whereas there is always a gap between (3.22) and (3.10). One can establish a
parallel between this comparison regarding (3.22) and (3.20) and the comparison between
a seminal defaultable cashflow pricing formula of Duffie et al. (1996, Proposition 1), where
a conditional expectation is taken given the full model σ algebra Gt but the formula is not
practical unless some nontrivial no-jump condition is satisfied, and what is now known as
the key lemma in the reduced-form approach to credit risk (see e.g. Bielecki et al. (2009,
Lemma 3.1.2 and Corollary 3.1.1 page 88-89)), where the conditional expectation is taken
given a reference σ algebra Ft, in a classical progressive enlargement of filtration setup.

4 True BSDEs

The situation where g and G, hence f̄ in (3.21), only depend on x covers the vast majority
of the counterparty risk applications that motivate this paper. With respect to the setup
of Sect. 2.1, the situation where g and G depend on an additional real vector u, interpreted
as integrands in a martingale representation of the solution, would correspond to the case
of an unsecurely funded hedge (see the remark 2.2 and Sect. 4.1). In this section we deal
with the corresponding true BSDEs in the case of a marked stopping time θ = mine∈E θ

e as
of Sect. A.1 (with E finite for the sake of the simple martingale representation properties
postulated below), for a terminal function (cf. (A.2))

G(ω, x, u) = Γθ(ω)(ω, ε(ω), x, u), u = (ψ, δ) ∈ Rd × R|E|, (4.1)
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for some P(G)⊗E ⊗B(R1+d+|E|) measurable function Γt(ω, e, x, u), where E is a σ algebra
on a finite set of marks E and where the random variable ε yields the mark of θ, i.e. e ∈ E
such that θ = θe. Hence, by Lemma A.3,

|̂G|t(ω, u) =
∑
e∈E

qet |Γt(e, u)|, Ĝt(ω, u) =
∑
e∈E

qetΓt(e, u), (4.2)

where, for every e ∈ E, qe is a G predictable process such that qeθ = Q[{θe = θ}|Gθ−] on
{θ <∞}. We assume qeγ > 0, e ∈ E, and a (G,Q) local martingale unique representation
property for a collection of processes M and Me, e ∈ E, where M is a d-variate process
without jump at θ and Me = 1{θ=θe}1[θ,+∞) − qeγ � λ, e ∈ E. Recall that an integrand in a
martingale representation is only a class of processes defined almost everywhere with respect
to the measure induced by the bracket of the corresponding local martingale integrator.
Accordingly, by uniqueness in the above (G,Q) local martingale representation property,
we mean that, for any G predictable, M integrable process ΨX and G predictable, Me

integrable processes ∆e (e ∈ E), we have:

ΨX �M +
∑
e∈E

∆e �Me = 0⇐⇒
{

ΨX = 0, d[M,M ]s-a.e.
∆e = 0, qesγsλ(ds)-a.e., e ∈ E, (4.3)

with d[M,M ]s-a.e. in the multivariate sense (see e.g. Jacod and Shiryaev (2003)).

Remark 4.1 These assumptions fit the concrete models of Crépey and Song (2015) (see
also Sect. 4.1). In particular, the fact that M doesn’t jump at θ means that the invariant
time θ satisfies the avoidance property, discussed at the theoretical level in Crépey and Song
(2014, Sect. 4.1) and verified in the concrete models of Sect. 4.1 (see also Sect. 4.1). In the
case where it’s only g that depends on u (but not G), there is no need to suppose a marked
stopping time setup, which is only required, in conjunction with the condition (J) below,
for analyzing the jump of X at default when G depends on u.

Given the terminal function G in (4.1) and a P(G) ⊗ B(R1+d+|E|) measurable coefficient
gt(ω, x, u), we consider the true BSDE form of the counterparty risk equation (2.1) given
as 

(
|g·(X−,ΨX ,∆)| � λ

)
ϑ
<∞,

MX :=
(
X + g·(X−,Ψ

X ,∆) � λ
)ϑ

= X0 + ΨX �M +
∑

e∈E ∆e �Me on R+,

Xϑ = 1{θ<T}Γθ(ε,Xθ−,Ψ
X
θ ,∆θ),

(4.4)

to be solved for (X,ΨX ,∆ = (∆e)e∈E), where X is a (G,Q) semimartingale on R+ and
ΨX (resp. ∆e, e ∈ E) is a G predictable, M (resp. Me) integrable process on R+. As we
will see in the remark 4.2, the following jump consistency condition is a prerequisite for the
well-posedness of the true BSDE (4.4).

Condition (J) There exists a P(G)⊗E ⊗B(R1+d) measurable function ∆?
t (ω, e, x, ψ) such

that, ω almost surely: for each t ≥ 0 and (x, ψ) in R1+d, the vector (δe)e∈E given as
δe = 1qet γt>0∆

?
t (ω, e, x, ψ), e ∈ E, is the unique solution to the system of equations

δe = 1qet γt>01{t<T} (Γt(e, x, ψ, (δe′)e′∈E)− x) , e ∈ E. (4.5)
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The feasibility of this condition is illustrated on an example in Sect. 4.1.
First we reduce (4.4) to the following true BSDE analog of (3.8) for a (G,Q) semi-

martingale Z on R+ and a G predictable, M integrable process ΨZ on R+:

(
(|g|+ γ |̂G|)·(Z−,ΨZ , (∆?

· (e, Z−,Ψ
Z))e∈E) � λ

)
ϑ
<∞,

MZ :=
(
Z + g·(Z−,Ψ

Z , (∆?
· (e, Z−,Ψ

Z))e∈E) � λ

+
∑

e∈E
(
Γ·(e, Z−,Ψ

Z , (∆?
· (e
′, Z−,Ψ

Z))e′∈E)− Z−
)
qeγ � λ

)ϑ−
= Z0 + ΨZ �M on R+,

ZT−1{T≤θ} = 0.

(4.6)

The following result is the true BSDE analog of Theorem 2.1.

Theorem 4.1 Given a terminal condition G as of (4.1) for a marked stopping time θ
satisfying the condition (J), assume a (G,Q) local martingale unique representation property
for some process M jointly with the Me = 1{θ=θe}1[θ,+∞)− qeγ �λ, e ∈ E. If the true BSDE

(4.4) has a solution (X,ΨX ,∆), then(
γ |̂G|·(X−,Ψ

X ,∆) � λ
)
T
<∞ (4.7)

and, for any G semimartingale on R+ such that JZ = JX (e.g. Z = Xϑ−), the process
(Z,ΨX) solves the true BSDE (4.6). Conversely, if (Z,ΨZ) is a solution to the true BSDE
(4.6), then the process (X,ΨZ ,∆) such that

∆e = ∆?
· (e, Z−,Ψ

Z) (e ∈ E) , X = JZ +H1{θ<T}Γθ(ε, Zθ−,Ψ
Z
θ ,∆θ), (4.8)

solves the true BSDE (4.4). In both cases, we have (cf. (3.9))

MX = MZ + 1[0,T )(Γ·(ε,X−,Ψ
X ,∆)−X−) �H − 1[0,T )

∑
e∈E

(Γ·(e,X−,Ψ
X ,∆)−X−)qeγ � λ

= MZ + 1[0,T )(Γ·(ε, Z−,Ψ
Z ,∆)− Z−) �H − 1[0,T )

∑
e∈E

(Γ·(e, Z−,Ψ
Z ,∆)− Z−)qeγ � λ

(4.9)

Proof. By application of the direct part in Theorem 2.1 (cf. also (3.8)), if the true BSDE
(4.4) has a solution (X,ΨX ,∆), then (4.7) holds and any G semimartingale Z on R+ such
that JZ = JX satisfies

(
(|g|+ γ |̂G|)·(Z−,ΨX ,∆) � λ

)
ϑ
<∞,

(
Z + g·(Z−,Ψ

X ,∆) � λ +
∑

e∈E
(
Γ·(e, Z−,Ψ

X ,∆)− Z−
)
qeγ � λ

)ϑ−
defines a (G,Q) local martingale on R+,

ZT−1{T≤θ} = 0

(4.10)
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and (cf. (3.9) and (4.1)-(4.2)):

MX = MZ + 1[0,T )

(
Γ·(ε, Z−,Ψ

X ,∆)− Z−
)
�H

− 1[0,T )

(∑
e∈E

qeΓ·(e, Z−,Ψ
X ,∆)− Z−

)
γ � λ

= MZ + 1[0,T )

(∑
e∈E

Γ·(e, Z−,Ψ
X ,∆)− Z−

)
�Me

= X0 + ΨX �M +
∑
e∈E

∆e �Me,

(4.11)

by the martingale representation in (4.4). Hence, (4.3) implies that MZ = X0 + ΨX �M
and

∆e = 1[0,T )

(∑
e∈E

Γ·(e, Z−,Ψ
X ,∆)− Z−

)
, qesγsλ(ds)-a.e., e ∈ E. (4.12)

By the uniqueness in the condition (J), it follows that

∆e = ∆?
· (e,X−,Ψ

X ,∆), qesγsλ(ds)-a.e., e ∈ E, (4.13)

which, together with (4.10), shows that (Z,ΨX) solves the BSDE (4.6).
Likewise, by application of the converse part in Theorem 2.1, if the true BSDE (4.6)

has a solution (Z,ΨZ), then, letting ∆e = ∆?
· (e, Z−,Ψ

Z), e ∈ E, the process

X = JZ +H1{θ<T}Γθ(ε, Zθ−,Ψ
Z
θ ,∆θ)

satisfies

(
|g·(X−,ΨZ ,∆)| � λ

)
ϑ
<∞,

(
X + g·(X−,Ψ

Z ,∆) � λ
)ϑ

= X0 + ΨZ �M
+1[0,T )

(
Γ·(ε, Z−,Ψ

Z ,∆)− Z−
)
�H − 1[0,T )

∑
e∈E

(
Γ·(e, Z−,Ψ

Z ,∆)− Z−
)
qeγ � λ on R+,

Xϑ = 1{θ<T}Γθ(ε, Zθ−,Ψ
Z
θ ,∆θ),

where the martingale representation follows from (3.9), the martingale representation in
(4.6) and (4.1)-(4.2). In addition, the jump consistency condition (J) yields that

1[0,T )

(
Γ·(ε, Z−,Ψ

Z ,∆)− Z−
)
�H − 1[0,T )

∑
e∈E

(
Γ·(e, Z−,Ψ

Z ,∆)− Z−
)
qeγ � λ

= ∆ε �H −
∑
e∈E

∆eqeγ � λ =
∑
e∈E

∆e �Me.

Hence, the process (X,ΨZ ,∆) solves the true BSDE (4.4).
Last, (4.9) follows from Corollary 2.1 and the form (3.9) of (2.12).

Remark 4.2 In view of the first part of the proof, for the well-posedness of (4.4) in
(X,ΨX ,∆), a prerequisite is the well-posedness in ∆ of (4.12), given tentative solution
components X and ΨX . This is the motivation for the condition (J).
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Let (F,P) be a reduced stochastic basis satisfying the condition (A). By virtue of
Lemma 3.1 1), we may and do assume P(F) ⊗ E ⊗ B(R1+d+|E|) measurable and P(F) ⊗
E ⊗ B(R1+d) measurable data Γt(ω, e, x, u) and ∆?

t (ω, e, x, ψ), respectively. In addition, we
assume the existence of a d-variate (F,P) local martingale P endowed with the (F,P) local
martingale property and such that, consistent with the condition (A),

M θ = P θ−. (4.14)

Writing
k·(V−,Φ

V ) =
(
|f |+ (F + F′)ϕ

)
·(V−,Φ

V , (∆?
· (e, V−,Φ

V ))e∈E)

h·(V−,Φ
V ) =

(
f + (F− F′)ϕ

)
·( V−,Φ

V , (∆?
· (e, V−,Φ

V ))e∈E),

the true BSDE analog to (3.15) is written as

(
k·(V−,Φ

V ) � λ
)
T
<∞ on {S− > 0} ,

(
V + h·(V−,Φ

V ) � λ
)T

= V0 + ΦV � P on {S− > 0} ,

VTST− = 0,

(4.15)

where V is an (F,P) semimartingale on {S− > 0} and ΦV is an F predictable, P integrable
process on {S− > 0}.

Theorem 4.2 Assuming the condition (A) as well as the relation (4.14) between the (G,Q)
local martingale M and a (F,P) local martingale P endowed with the (F,P) local martingale
property, the true BSDEs (4.6) and (4.15) are equivalent. Specifically, if (Z,ΨZ) solves
the true BSDE (4.6), then the pair process (V = UT−,ΦZ), where U (resp. ΦZ) is the
F optional (resp. predictable) reduction of Zθ− (resp. ΨZ), solves the true BSDE (4.15).
Conversely, if (V,ΦV ) is a solution to the true BSDE (4.15), then (Z,ΨZ) = (V θ−,1[0,θ]Φ

V )

solves the true BSDE (4.6). In both cases, V is the F optional reduction of Zϑ− with respect
to the time ϑ and we have

MZ =
(
V + h·(V−,Φ

V ) � λ
)ϑ−

. (4.16)

Proof. By the direct parts in lemmas 3.3 through 3.5, if (Z,ΨZ) solves (4.6), then (V,ΦZ)
defined as in the direct part of the theorem satisfies

((
|f |+ (F + F′)ϕ

)
·(V−,Φ

Z , (∆?
· (e, V−,Φ

Z))e∈E) � λ
)
T
<∞ on {S− > 0} ,

P V :=
(
V +

(
f + (F− F′)ϕ

)
·( V−,Φ

Z , (∆?
· (e, V−,Φ

Z))e∈E) � λ
)T−

=
(
V +

(
f + (F− F′)ϕ

)
·( V−,Φ

Z , (∆?
· (e, V−,Φ

Z))e∈E) � λ
)T

defines an (F,P) local martingale on {S− > 0},

VT−ST− = VTST− = 0,

(4.17)

and (P V )θ− is a (G,Q) local martingale (via the condition (A)). Moreover, Zϑ− = V ϑ−,
hence the (G,Q) canonical Doob-Meyer local martingale parts MZ of Zϑ− and (P V )θ− of
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V ϑ− (by the above) coincide. In addition, by the martingale condition in (4.17) and the
(F,P) martingale representation property of P, we have

P V = V0 + Φ � P on {S− > 0}, (4.18)

for some F predictable, P integrable process Φ on {S− > 0}. Hence (cf. (4.14) and the
martingale representation in (4.6)),

V0 + 1[0,θ]Φ �M = V0 + Φ �M θ = V0 + Φ � P θ− = (P V )θ− = MZ = Z0 + ΦZ �M,

thus
1[0,θ]Φ = ΦZ , d[M,M ]s-a.e., hence d[M θ,M θ]s-a.e.,

hence (cf. (4.14))

Φ = ΦZ , d[P θ−, P θ−]s-a.e.., i.e. 1[0,θ)d[P, P ]s-a.e..

By optional projection, we obtain

SΦ = SΦZ , d[P, P ]s-a.e.,

under Q as under P. In view of (4.17), (3.7) and of the first line in (4.3), (V,ΦZ) solves

(
k·(V−,Φ

Z) � λ
)
T
<∞ on {S− > 0},

(
V + h·(V−,Φ

Z) � λ
)T−

= V0 + ΦZ � P on {S− > 0},

VT−ST− = VTST− = 0,

(4.19)

so that (V,ΦZ) solves the true BSDE (4.15).
Conversely, by the converse parts in lemmas 3.3 through 3.5, if (V,ΦV ) solves (4.15),

then, one the one hand, V cannot jump at T if ST− > 0, hence(
V + h·(V−,Φ

V ) � λ
)ϑ−

=
((
V + h·(V−,Φ

V ) � λ
)T−)θ−

=
((
V + h·(V−,Φ

V ) � λ
)T)θ−(4.20)

is a (G,Q) local martingale (via the condition (A)) and, on the other hand, Z = V θ−

satisfies

(
(|g|+ γ |̂G|)·(Z−,ΦV , (∆?

· (e, Z−,Φ
V ))e∈E) � λ

)
ϑ
<∞,

NZ :=
(
Z + g·(Z−,Φ

V , (∆?
· (e, Z−,Φ

V ))e∈E) � λ

+
∑

e∈E
(
Γ·(e, Z−,Φ

V , (∆?
· (e
′, Z−,Φ

V ))e′∈E)− Z−
)
qeγ � λ

)ϑ−
defines a (G,Q) local martingale on R+,

ZT−1{T≤θ} = 0.

(4.21)

Moreover, Zϑ− = V ϑ−, hence the (G,Q) canonical Doob-Meyer local martingale parts NZ

of Zϑ− (cf. the martingale condition in (4.21)) and(
V + h·(V−,Φ

V ) � λ
)ϑ−

=
((
V + h·(V−,Φ

V ) � λ
)T)θ−
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of V ϑ− (by (4.20) and the surrounding comments) coincide, i.e., in view of the martingale
representation in (4.15):

NZ = ((V + h·(V−,Φ
V ) � λ)T )θ− = V0 + (ΦV � P )θ− = V0 + ΦV �M θ = V0 + 1[0,θ]Φ

V �M,

by (4.14). Thus, (Z,ΨZ) = (V ϑ−,1[0,θ]Φ
V ) solves (4.6).

Theorem 4.3 Under the assumptions of Theorems 4.1 and 4.2, the true BSDEs (4.4) and
(4.15) are equivalent. Specifically, if (X,ΨX ,∆) solves the true BSDE (4.4), then the process
(V = UT−,ΦX), where U (resp. ΦX) is the F optional (resp. predictable) reduction of Xθ−

(resp. ΨX), solves the true BSDE (4.15). Conversely, if (V,ΦV ) is a solution to the true
BSDE (4.15), then (X,ΨX ,∆), where (cf. (3.18))

ΨX = 1[0,θ]Φ
V , ∆e = ∆?

· (e, V−,Φ
V ) (e ∈ E), X = JV +H1{θ<T}Γθ(ε, Vθ−,Φ

V
θ ,∆θ), (4.22)

solves the true BSDE (4.4). In both cases, V is the F optional reduction of Xϑ− with respect
to the time ϑ and we have (cf. (3.19)):

MX = V ϑ− + J−h·(V−,Φ
X) � λ

+ 1[0,T )(Γ·(ε, V−,Φ
X ,∆)− V−) �H − 1[0,T )

∑
e∈E

(Γ·(e, V−,Φ
X ,∆)− V−)qeγ � λ.(4.23)

Proof. This follows by combining Theorems 4.2 and 4.3, using (4.16) to obtain (4.23) from
(4.9).

Comments similar to those made after Theorem 3.3 are applicable.

4.1 Example

This section illustrates the semimartingale approach of this paper on a Black-Scholes case
considered from a Markov point of view in Crépey et al. (2014, Section 4.6 pages 106
through 113)7, based on Burgard and Kjaer (2011a, 2011b). We refer to Sect. 2.1 for the
broad financial background and to Crépey et al. (2014, Chapter 4) for all the financial
details.

We consider a European option with payoff φ(ST ) on a Black-Scholes stock S sold
by the bank to its counterparty at time 0. Both parties are defaultable but they cannot
default simultaneously. The option position is hedged by the bank with the stock S and
zero-recovery risky bonds Bc and Bb issued by the counterpartyand the bank, respectively.
Repo markets (with zero repo bases) are assumed to exist for S, Bc and Bb. Assuming a
constant risk free rate r, the gain process of a buy-and-hold position into the hedging assets,
if securely funded through their repo markets, is written in differential form as dSt − rStdt

dBc
t − rBc

tdt

dBb
t − rBb

tdt

 .

Consistent with martingale no-arbitrage requirements under the pricing measure Q (see the
comments following Assumption 4.4.1 page 96 in Crépey, Bielecki, and Brigo (2014)8), we

7Or Section 5 in the journal version Crépey (2015, Part I).
8Or Assumption 4.1 in the journal version Crépey (2015, Part I).
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assume the following model for (S,Bc, Bb):
dSt − rStdt = σStdWt =: dMt

dBc
t − rBc

tdt = Bc
t− (dJct + γcdt) = −B̃c

tdM
c
t

dBb
t − rBb

tdt = Bb
t−

(
dJbt + γbdt

)
= −B̃b

tdM
b
t ,

(4.24)

where Wt is a Q Brownian motion, where Jct = 1t<θc , J
b
t = 1t<θb are the survival indicator

processes of the counterparty and the bank, with constant Q default intensities γc and γb,
and where B̃e(t) = Be

0e
(r+γe)t, e ∈ E = {c, b}. The full model filtration G is given as the

Brownian filtration F progressively enlarged by the default times θc and θb. Note that, by
independence of W, Jc and Jb, we have St = e−(γb+γc)t > 0 and the condition (A) (that
includes (B)) obviously holds with P = Q for the G stopping time θ = θb ∧ θc with intensity
γ = γc + γb. We assume that the bank trades S and Bc on their repo markets but that it
externally funds its trading in Bb. In addition, we assume that the bank can get unsecured
funding (borrow cash from an external lender) at an interest rate (r+ λ̄), for some positive
borrowing basis λ̄, but that it can only lend cash at the risk free rate r. Last, we assume
no collateralization (C = 0 in the notation of Sect. 2.1). We denote by Rb and Rc constant
recovery rates of the bank and the counterparty relative to each other and by R̄b a constant
recovery rate of the bank toward its external funder. In this case, following the methodology
that is developed in Crépey et al. (2014, Chapters 4-5)9, one can show that the counterparty
risk replication equation comes in true BSDE form as (cf. (4.4) and (4.24)):

Xϑ = 1θ<TG(Xθ−,Ψ
X
θ ,∆

c
θ,∆

b
θ) and, for t ∈ [0, ϑ],

dXt = gt(Xt,Ψ
X
t ,∆

c
t ,∆

b
t)dt+ ΨX

t dMt + (
−∆c

t

B̃c
t

)(−B̃c
tdM

c
t) + (

−∆b
t

B̃b
t

)(−B̃b
tdM

b
t)

(4.25)

(focusing on the interval of interest [0, ϑ] and omitting for brevity the integrability condition
that is implicit on the gdt term), where, for x real and u = (ψ, δc, δb) in R3:

gt(x, u) = λ̄
(
Pt − δb − x)+ − rx, G(x, u) = Γθ(ε, x, u), (4.26)

with, for t ∈ [0, T ] and e ∈ E = {c, b},

Γt(e, x, u) = 1e=c(1−Rc)P+
t − 1e=b

(
(1−Rb)P−t + (1− R̄b)(Pt− − δb − x)+

)
,

hence (cf. (4.2))

γĜt(x, u) = γc(1−Rc)P+
t − γb

(
(1−Rb)P−t + (1− R̄b)(Pt− − δb − x)+

)
. (4.27)

Note that, in contrast with (2.3), g and G in (4.26) depend on u = (ψ, δc, δb), through δb,
reflecting the fact that the position of the bank in its own bond is externally funded (see
Crépey et al. (2014, Example 4.4.3 page 97)10).

Assuming (4.25), an Itô computation yields, with Z = Xϑ− (cf. (2.11)):

dZt =
(
λ̄
(
Pt −∆b

t − Zt
)+ − rZt)dt+ ΨX

t σSt dWt −∆c
tγcdt−∆b

tγbdt on (0, ϑ), (4.28)

9Or the journal version Crépey (2015).
10Or Example 4.1 in the journal version Crépey (2015, Part I).
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along with the terminal condition ∆ϑZ = 0 and the following jump consistency conditions:

∆c
t = (1−Rc)P+

t − Zt

∆b
t = −(1−Rb)P−t − (1− R̄b)

(
Pt −∆b

t − Zt
)+
− Zt,

(4.29)

where the second line is equivalent to

0 = −Pt + (Pt −∆b
t − Zt)− (1−Rb)P−t − (1− R̄b)

(
Pt −∆b

t − Zt
)+

,

i.e.

P+
t −RbP

−
t = R̄b

(
Pt −∆b

t − Zt
)+ − (Pt −∆b

t − Zt
)−
, (4.30)

hence (assuming R̄b > 0), taking the positive parts left and right,(
Pt −∆b

t − Zt
)+

=
1

R̄b
P+
t . (4.31)

Thus, by the second line in (4.29),

∆b
t = −(1−Rb)P−t − (

1

R̄b
− 1)P+

t − Zt. (4.32)

In other words, the condition (J) is satisfied with

∆?
t (c, x, ψ) = (1−Rc)P+

t − x,

∆?
t (b, x, ψ) = −(1−Rb)P−t − (

1

R̄b
− 1)P+

t − x
(4.33)

(which in this case depend linearly on x and do not depend on ψ). Substituting the first
line in (4.29), (4.32) and (4.31) into (4.28) yields

dZt = gt(Zt)dt+ ΨX
t σSt dWt, (4.34)

where, for any real number x,

gt(x) = γc(1−Rc)P+
t − γb(1−Rb)P

−
t +

λ̃

R̄b
P+
t − (r + γ)x, (4.35)

in which λ̃ = λ̄− (1− R̄b)γb represents the liquidity borrowing basis of the bank. Observe
that in the context of this example, the risk-free price of the option Pt (price ignoring
counterparty risk and excess funding costs) is given by its Black-Scholes price Pt = v(t, St),
where v(t, S) is the unique classical solution to the following Black-Scholes PDE (assuming
φ continuous with polynomial growth in S for ensuring well posedness of (4.36) in the class
of classical solutions with polynomial growth in S):{

v(T, S) = φ(S), S ∈ (0,∞),(
∂t +Abs

)
v(t, S)− rv(t, S) = 0, t < T, S ∈ (0,∞),

(4.36)

where Abs = rS∂S + σ2S2

2 ∂2S2 . In view of (4.34)-(4.35), one could be tempted to conclude
that

Zt = z(t, St), ΨX
t = ∂Sz(t, St), (4.37)
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where z(t, S) is the unique classical solution with polynomial growth in S to{
z(T, S) = 0, S ∈ (0,∞),(
∂t +Abs

)
z(t, S) + f(t, S)− (r + γ)z(t, S) = 0, t < T, S ∈ (0,∞),

(4.38)

with

f(t, S) = γc(1−Rc)v(t, S)+ − γb(1−Rb)v(t, St)
− +

λ̃

R̄b
v(t, S)+,

so that

z(t, St) = E
[ ∫ T

t
e−(r+γ)(s−t)f(s, Ss)ds | Ft

]
. (4.39)

By the direct part in Theorem 4.3, this is in fact true regarding not exactly Z = Xϑ−

itself (obviously, thinking of the terminal no jump condition ∆ϑZ = 0), but its F optional
reduction V (recalling S > 0), which must satisfy, jointly with some F predictable, SdW
integrable process ΦV (cf. (4.15)):

VT = 0 and, for t ∈ [0, T ],

dVt = (f(t, St)− (r + γ)Vt)dt+ ΦV
t σStdWt

(4.40)

(in this case, a linear BSDE), i.e., under standard assumptions,

Vt = z(t, St), ΦV
t = ∂Sz(t, St) (4.41)

(cf. (4.37), (4.39)). In addition, the converse part in Theorem 4.3 shows that, for (V,ΦV )
defined in this way, the process (X,ΨX ,∆) defined in terms of (V,ΦV ) by (4.22), with ∆?

there given by (4.33), solves the true BSDE (4.25). These results are also consistent with
the Markov analysis in Crépey et al. (2014, Section 4.6 pages 106 through 113)11.

Remark 4.3 The case R̄b = 0 can be dealt with similarly provided P ≤ 0, otherwise (4.30)
reduces to

Pt = −
(
Pt −∆b

t − Zt
)−
,

which has no solution given that the signs of both sides differ (hence, replicability does not
hold in this case).

5 Conclusion

To conclude this paper, we draw the practical consequences of our study for the motivating
counterparty and credit risk problems.

Back to the counterparty risk setup of Sect. 2.1, assuming the condition (A) relative
to a reduced stochastic basis (F,P) of (G,Q) (a mild assumption in view of the results
of Crépey and Song (2014, 2015)), Theorem 3.3 says that in order to find the price X of
counterparty risk and funding costs, i.e. to solve the original (G,Q) BSDE (2.1) with data
(2.3), it suffices to set

X = JW +H1{θ<T}G(Wϑ−), (5.1)

11Or Section 5 in the journal version Crépey (2015, Part I).
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where W solves the reduced (F,P) BSDE (3.20) with data ϕ, f, F and F′ given as the

respective F predictable reductions (which exist under the condition (B)) of γ, g, Ĝ+ and

Ĝ− (cf. (2.3)). In fact, the BSDEs (2.1) and (3.20) are equivalent (at least for S positive; see
Theorems 3.2 and 3.3). Moreover, Theorem 4.3 says that similar equivalence is also available
for the true BSDE (4.4) with an additional dependence of the data on integrands in a
martingale representation of the solution. Beyond its theoretical interest and its implications
in terms of existence and uniqueness of solutions, the reformulation of the counterparty risk
BSDEs (2.1) or (4.4) with implicit terminal condition at the random time ϑ as BSDEs with
null terminal conditions at the fixed time T also represents a significant improvement from
the point of view of numerical solutions (see e.g. Crépey and Song (2015)).

Moreover, this paper generalizes various recovery pricing formulas in the credit risk
literature (see Sect. 1), in various respects: terminal time only assumed invariant (no need
of the density hypothesis), implicit terminal condition depending on the solution right be-
fore that time, optional (non predictable) recovery process, general semimartingale setting,
tractability of these results to model defautable securities (with economically appealing
decompositions such as the formula (3.19) for the martingale parts of the solutions to the
BSDEs).

This work could be pursued in several directions. In particular, it would be interesting
to study the equivalence between the full and the reduced BSDEs, not only at the most
general level of this paper, where a solution is only required to give a meaning to the
involved Lebesgue and stochastic integrals, but also at the more restricted level of, say,
square integrable solutions, for which well posedness of the reduced BSDEs holds under
classical assumptions (see the comments following Theorems 3.3 and 4.3). Also, a general
study of the reduction of the true BSDEs could be conducted beyond the application driven
setup of Sect. 4.

A Parameterized Conditioning

This section deals with conditioning issues in relation with single step martingales of the
form (A.1) that appear via the terminal condition of the full BSDE (2.1).

We need to compute conditional expectations of the form E[G(ξ)|Gθ−], for a measurable
function G(ω, x), a G stopping time θ and a Gθ− measurable random variable ξ. The intuition
suggests that, under the conditioning, the random variable ξ can be treated as a constant,
so that the computation can be performed in two steps: first for a constant x instead of ξ,
then by substituting ξ for x, i.e.

“1{θ<∞}E[G(ξ)|Gθ−] = 1{θ<∞}E[G(x)|Gθ−]x=ξ”.

However, this is not well defined because the conditional expectation E[G(x)|Gθ−] is an
equivalence class depending on the parameter x. A “bad” choice of the class (one for each
x) in the first step may result in a nonmeasurable expression in the second step.

Example A.1 Let B denote the Borel σ-field over [0, 1], considered as a sub-σ-field, through
the inverse of the first coordinate projection π, of the Borel σ-field over Ω = [0, 1]2 equipped
with the Lebesgue measure. Let G(ω, x) be a nonnegative Borel function on Ω × R.
By Fubini’s theorem, there exists a Borel function G′ on Ω × R+ such that, for any x,
ω → G′(ω, x) is a version of E[G(x)|B](ω) (“expectation with respect to v for u frozen” in
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ω = (u, v) ∈ Ω = [0, 1]2). Let

G′′(ω, x) = G′(ω, x) + 1V(x)1{x}(π(ω)),

where V is the Vitali set in [0, 1] (assuming the axiom of choice). Since x is fixed here,
G′(·, x) and G′′(·, x) are almost surely equal, i.e. G′′(·, x) is a version of E[G(x)|B] (for fixed
x). However, since the Vitali set is not Lebesgue measurable, the function

G′′(ω, π(ω)) = G′(ω, ω) + 1V (π(ω))

is not Borel.

A “good” choice of E[G(x)|Gθ−] is made in Stricker and Yor (1978), where, by the monotone
class argument, it is proved that there exists a Gθ−⊗B(R) measurable function Ĝ(ω, x) such
that

1{θ<∞}E[G(ξ)|Gθ−] = 1{θ<∞}Ĝ(ξ).

But the construction of the function Ĝ in Stricker and Yor (1978) depends on the given
random variable ξ, whereas we need Ĝ in an equation (BSDE) for an unknown random
variable ξ (i.e. we need a common function Ĝ that works for all ξ). This motivates the
following.

Definition A.1 Let (E, E) be a measurable space. For a nonnegative A ⊗ E measurable
function G(ω, x), we say that Ĝ exists in the wide sense if there exists a nonnegative P(G)⊗E
measurable function Ĝt(ω, x) such that, for any E valued Gθ− measurable random variable
ξ,

1{θ<∞}E[G(ξ)|Gθ−] = 1{θ<∞}Ĝθ(ξ).

For a general (not necessarily nonnegative) A ⊗ E measurable function G(x), we say that
Ĝ exists (in the strict sense, as considered by default) if, for any Gθ− measurable random
variable ξ, G(ξ) is Gθ− locally integrable12 and there exists a P(G)⊗E measurable function
Ĝt(ω, x) such that, for any E valued Gθ− measurable random variable ξ,

1{θ<∞}E[G(ξ)|Gθ−] = 1{θ<∞}Ĝθ(ξ).

In both general or strict cases, we say then that Ĝt(ω, x) is a version of Ĝ.

Lemma A.1 Let (E, E) be a measurable space.

1) For any bounded A ⊗ E measurable function G(ω, x), Ĝ exists. For any non negative

A⊗ E measurable function G(ω, x), Ĝ exists in the wide sense.

2) The space of A⊗ E measurable functions G such that Ĝ exists is a vector space; for any

a, b ∈ R and G1,G2 in this space, aĜ1 + bĜ2 is a version of ̂aG1 + bG2.

3) If Ĝ exists, then Ĝ+, Ĝ− and |̂G| exist and any versions of (Ĝ+ + Ĝ−) and (Ĝ+− Ĝ−) are

respective versions of |̂G| and Ĝ .

12So that the notion of (generalized) conditional expectation can be applied to it; cf. Sect. 1.2 and He
et al. (1992, Definition 1.15).

26



Proof. Let Φ denote the class of all bounded A ⊗ E measurable function G for which Ĝ
exists. We check directly from the definition that the class Φ contains the constants and is
stable by multiplication by constants and by finite sums. Let (Gn)n∈N be a nondecreasing
uniformly bounded sequence of nonnegative functions in Φ. For any n ∈ N, for any E valued
Gθ− measurable random variable ξ,

E[Gn(ξ)|Gθ−]1{θ<∞} = (Ĝn)θ(ξ)1{θ<∞}.

We can assume that the Ĝn are uniformly bounded. By the monotone convergence theorem,

E[sup
n∈N

Gn(ξ)|Gθ−]1{θ<∞} = sup
n∈N

E[Gn(ξ)|Gθ−]1{θ<∞} = (sup
n∈N

Ĝn)θ(ξ)1{θ<∞}.

This formula shows that supn∈N Gn ∈ Φ and

ŝup
n∈N

Gn = sup
n∈N

Ĝn.

Finally, let’s consider A ∈ A, B ∈ E . Since the random variable Q[A|Gθ−] is Gθ− measurable,
there exists a G predictable process L such that13

Lθ1{θ<∞} = Q[A|Gθ−]1{θ<∞}.

We check directly that Lt(ω)1B(x) is a version of 1̂A1B, which shows that 1A(ω)1B(x) ∈ Φ.
We can now apply the monotone class theorem14 to say that Φ contains all the bounded
A ⊗ E measurable functions. By taking suprema over sequences, the result is extended in
the wide sense to any (non necessarily bounded) nonnegative A⊗ E measurable functions.
This proves 1). 2) is a direct consequence of the definition. Regarding 3), note that the

existence of Ĝ implies the Gϑ− local integrability of |G|. Therefore, Ĝ+, Ĝ− and |̂G| exist

and for any of their versions (Ĝ+)t(x), (Ĝ−)t(x) and (|̂G|)t(x), respective versions of |̂G| and

Ĝ are given by (Ĝ+)t(x) + (Ĝ−)t(x) and (Ĝ+)t(x)− (Ĝ−)t(x).

Lemma A.2 Let G be a A⊗ B(Rk) measurable function such that Ĝ, hence |̂G|, exist. Let

Υ be an Rk valued G predictable process. Suppose θ finite and
∫ θ
0 |̂G|s(Υs)dvs < ∞. Then,

the process

G(Υθ)H − Ĝ·(Υ) � v (A.1)

is a G local martingale on R+.

Proof. First of all, one can check immediately from the definition that the integral
∫ t
0 |̂G|s(Υs)dvs

is independent of the choice of a version of Ĝ. Moreover, any versions of Ĝ+ + Ĝ− and

Ĝ+ − Ĝ− are respective versions of |̂G| and Ĝ, by Lemma A.1 3). Since the process∫ t
0 |̂G|s(Υs)dvs < ∞, t ∈ R+, is càdlàg and G predictable, there exists a nondecreas-

ing sequence of G stopping times (τn)n∈N tending to infinity such that
∫ τn
0 |̂G|s(Υs)dvs is

bounded15. We have

E[|Ĝϑ(Υθ)|1{0<ϑ≤τn}] ≤ E[|G|(Υθ)1{0<ϑ≤τn}]

= E[|̂G|ϑ(Υθ)1{0<ϑ≤τn}] = E[

∫ τn

0
|̂G|s(Υs)dvs] <∞.

13Cf. He et al. (1992, Corollary 3.22).
14Cf. He et al. (1992, Theorem 1.4).
15Cf. He et al. (1992, Theorem 7.7).
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As a consequence, we can write

E[G(Υθ)1{0<ϑ≤τn ] = E[E[G(Υθ)|Gϑ−]1{0<ϑ≤τn ]

= E[E[G+(Υθ)|Gϑ−]1{0<ϑ≤τn ]− E[E[G−(Υθ)|Gϑ−]1{0<ϑ≤τn ]

= E[((Ĝ+)ϑ(Υθ)− (Ĝ−)ϑ(Υθ))1{0<ϑ≤τn ] = E[

∫ τn

0
Ĝs(Υs)dvs].

Therefore, by He et al. (1992, Theorem 4.40)),(
G(Υθ)1{0<ϑ}1[ϑ,∞) − Ĝ·(Υ) � v

)τn
is a G uniformly integrable martingale, for each n. Hence, the process G(Υθ)1{0<ϑ}1[ϑ,∞)−
Ĝ·(Υ) � v, hence G(Υθ)1[ϑ,∞) − Ĝ·(Υ) � v, is a G local martingale on R+.

A.1 Marked Stopping Times

The following result gives an explicit formula for Ĝ in the case, considered in Sect. 4 and in
Crépey and Song (2015), of a marked stopping time.

We consider a stopping time θ(ω) taking, for every ω, the value of one of the θe(ω),
where, for every e in a finite or at most countable space of marks E endowed with some
σ-algebra E , θe represents a totally inaccessible stopping time with intensity γet , such that
Q[θe 6= θe

′
] = 1 for e′ 6= e. Writing ε(ω) =

∑
e∈E 1{θe(ω)=θ(ω)}e, which is Gθ measurable, let

G(ω, v) = Γθ(ω)(ω, ε(ω), v), (A.2)

for some nonnegative P(G)⊗ E ⊗ B(Rk) measurable Γt(ω, e, v) (for some k ∈ N).

Lemma A.3 For any G of the form (A.2), a version of Ĝ is given by
∑

e∈E q
e
tΓt(e, v),

where, for every e ∈ E, qe is a [0, 1] valued G predictable process such that qeθ = Q[{θe = θ}|Gθ−]
on {θ <∞}.

Proof. The existence of the qe follows from Corollary 3.23 2) in He et al. (1992). As a
consequence, we have on {θ <∞}, for any Rk valued Gθ− measurable random variable υ:

E[G(υ)|Gθ−] = E[Γθ(ε, υ)|Gθ−] =
∑
e∈E

Q[{θe = θ}|Gθ−]Γθ(e, υ) =
∑
e∈E

qeθΓθ(e, υ).

Note that by class monotone, one can show that a representation of the form (A.2) for a
Gθ ⊗ B(Rk) measurable function G(ω, v) always exists in the case where

Gθ = Gθ− ∨ σ(ε). (A.3)
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