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2 Defaultable Game Options in a Hazard Process Model

1 Introduction

The goal of this work is to analyze valuation and hedging of defaultable contracts with game option
features within a hazard process model of credit risk. Our motivation for considering American or
game clauses together with defaultable features of an option is not that much a quest for generality,
but rather the fact that the combination of early exercise features and defaultability is an intrinsic
feature of some actively traded assets. It suffices to mention here the important class of convertible
bonds, which were studied by, among others, Andersen and Buffum [2], Ayache et al. [3], Bielecki
et al. [4], Davis and Lischka [14], Kallsen and Kühn [31], or Kwok and Lau [35].

In Bielecki et al. [4], we formally defined a defaultable game option, that is, a financial contract
that can be seen as an intermediate case between a general mathematical concept of a game option
and much more specific convertible bond with credit risk. We concentrated there on developing a
fairly general framework for valuing such contracts. In particular, building on results of Kifer [33]
and Kallsen and Kühn [31], we showed that the study of an arbitrage price of a defaultable game
option can be reduced to the study of the value process of the related Dynkin game under some
risk-neutral measure Q for the primary market model. In this stochastic game, the issuer of a game
option plays the role of the minimizer and the holder of the maximizer. In [4], we dealt with a general
market model, which was assumed to be arbitrage-free, but not necessarily complete, so that the
uniqueness of a risk-neutral (or martingale) measure was not postulated. In addition, although the
default time was introduced, it was left largely unspecified. An explicit specification of the default
time will be an important component of the model considered in this work.

As is well known, there are two main approaches to modeling of default risk: the structural
approach and the reduced-form approach. In the latter approach, also known as the hazard process
approach, the default time is modeled as an exogenous random variable with no reference to any
particular economic background. One may object to reduced-form models for their lack of clear
reference to economic fundamentals, such as the firm’s asset-to-debt ratio. However, the possibility
of choosing various parameterizations for the coefficients and calibrating these parameters to any set
of CDS spreads and/or implied volatilities makes them very versatile modeling tools, well-suited to
price and hedge derivatives consistently with plain-vanilla instruments. It should be acknowledged
that structural models, with their sound economic background, are better suited for inference of
reliable debt information, such as: risk-neutral default probabilities or the present value of the
firm’s debt, from the equities, which are the most liquid among all financial instruments. But the
structure of these models, as rich as it may be (and which can include a list of factors such as stock,
spreads, default status, credit events, etc.) is never rich enough to yield consistent prices for a full
set of CDS spreads and/or implied volatilities of related options. As we ultimately aim to specify
models for pricing and hedging contracts with optional features (in particular, convertible bonds),
we favor the reduced-form approach in the sequel.

1.1 Outline of the Paper

From the mathematical perspective, the goal of the present paper is twofold. First, we wish to
specialize our previous valuation results to the hazard process set-up, that is, to a version of the
reduced-form approach, which is slightly more general than the intensity-based set-up. Hence we
postulate that filtration G modeling the information flow for the primary market admits the repre-
sentation G = H∨F, where the filtration H is generated by a default indicator process Ht = 1{τd≤t}
and F is some reference filtration. The main tool employed in this section is the effective reduction of
the information flow from the full filtration G to the reference filtration F. The main results in this
part are Theorems 3.3 and 3.4, which give convenient pricing formulas with respect to the reference
filtration F.

The second goal is to study the issue of hedging of a defaultable game option in the hazard
process set-up. Some previous attempts to analyze hedging strategies for defaultable convertible
bonds were done by Andersen and Buffum [2] and Ayache et al. [3], who worked directly with
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suitable variational inequalities within the Markovian intensity-based set-up.

Preliminary results for hedging strategies in a hazard process set-up, Propositions 4.1 and 4.2,
can be informally stated as follows: under the assumption that a related doubly reflected BSDE
admits a solution (Θ,M,K) under some risk-neutral measure Q, for which various sets of sufficient
conditions are given in the literature, the state-process Θ of the solution (multiplied by the default
indicator process) is the minimal super-hedging price up to a (G, Q)-sigma (or local) martingale cost
process, the latter being equal to 0 in the case of a complete market. This notion of a hedge with
sigma (or local) martingale cost (or hedging error, see Corollary 4.4) thus establishes a connection
between arbitrage prices and hedging in a general, incomplete market.

More explicit hedging strategies are subsequently analyzed in Propositions 5.2, 5.3 and 5.4,
in which we resort in the general set-up of this paper to suitable (Galtchouk-Kunita-Watanabe)
decompositions of a solution to the related doubly reflected BSDE. It is noteworthy that these
decompositions, though seemingly rather abstract in the context of a general model considered here,
are by no means artificial. On the contrary, they arises naturally in the context of a Markovian
set-up, which is studied in some detail in the follow-up paper by Bielecki et al. [5]. The interested
reader is referred to [5] for more explicit results regarding hedging of defaultable game options. We
conclude the paper by an analysis of alternative approaches to hedging and their relationships to
the above-mentioned decompositions of a solution to the doubly reflected BSDE.

1.2 Conventions and Standing Notation

We use throughout this paper the more general notion of vector (as opposed to componentwise)
stochastic integration, as developed in Cherny and Shiryaev [9] (see also Chatelain and Stricker
[8] and Jacod [28]). Given a stochastic basis satisfying the usual conditions, an Rd-valued semi-
martingale integrator X and an R1⊗d-valued (row vector) predictable integrand H, the notion of
vector stochastic integral

∫
H dX allows one to take into account possible “interferences” of local

martingale and finite variation components of a (scalar) integrator process, or of different compo-
nents of a multidimensional integrator process. Well-defined vector stochastic integrals include, in
particular, all integrals with a predictable and locally bounded integrand (e.g., any integrand of the
form H = Y− where Y is an adapted càdlàg process, see [27, Theorem 7.7]). The usual properties
of stochastic integral, such as: linearity, associativity, invariance with respect to equivalent changes
of measures and with respect to inclusive changes of filtrations, are known to hold for the vector
stochastic integral. Moreover, unlike other kinds of stochastic integrals, vector stochastic integrals
form a closed space in a suitable topology. This feature makes them well adapted to many problems
arising in the mathematical finance, such as Fundamental Theorems of Asset Pricing (see [9, 4] and
Section 2).

By default, we denote by
∫ t

0
the integrals over (0, t]. Otherwise, we explicitly specify the domain

of integration as a subscript of
∫

. Note also that, depending on the context, τ will stand either for
a generic stopping time or it will be given as τ = τp ∧ τc for some specific stopping times τc and
τp. Finally, we consider the right-continuous and completed versions of all filtrations, so that they
satisfy the so-called ‘usual conditions.’

2 Semimartingale Set-Up

After recalling some fundamental valuation results from Bielecki et al. [4], we will examine basic
features of hedging strategies for defaultable game options that are valid in a general semimartingale
set-up. The important special case of a hazard process framework is studied in the next section.

We assume throughout that the evolution of the underlying primary market is modeled in terms
of stochastic processes defined on a filtered probability space (Ω, G, P), where P denotes the statistical
probability measure.
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Specifically, we consider a primary market composed of the savings account and of d risky assets,
such that, given a finite horizon date T > 0:
• the discount factor process β, that is, the inverse of the savings account, is a G-adapted, finite
variation, continuous and positively bounded process,
• the risky assets are G-semimartingales with càdlàg sample paths.

The primary risky assets, with Rd-valued price process X, pay dividends, whose cumulative
value process, denoted by D, is assumed to be a G-adapted, càdlàg and Rd-valued process of finite
variation. Given the price process X, we define the cumulative price X̂ of primary risky assets as

X̂t = Xt + β−1
t

∫
[0,t]

βu dDu. (1)

In the financial interpretation, the last term in (1) represents the current value at time t of all
dividend payments from the assets over the period [0, t], under the assumption that we immediately
reinvest all dividends in the savings account. We assume that the primary market model is free of
arbitrage opportunities, though presumably incomplete. In view of the First Fundamental Theorem
of Asset Pricing (see [15, 9]), and accounting in particular for the dividends on the primary market,
this means that there exists a risk-neutral measure Q ∈M, where M denotes the set of probability
measures Q ∼ P for which βX̂ is a sigma martingale with respect to G under Q.

Given a standard stochastic basis, an Rd-valued process Y is called a sigma martingale if there
exists an Rd-valued local martingale M and an Rd-valued process H such that Hi is a (predictable
[9, section 3]) M i-integrable process and Y i = Y i

0 +
∫

Hi dM i for i = 1, . . . , d (see Lemma 5.1(ii) in
[9]). In this paper, we shall use the following well-known properties of sigma martingales.

Proposition 2.1 ([9, 40, 29]) (i) The class of sigma martingales is a vector space containing all
local martingales. It is stable with respect to stochastic integration, that is, if Y is a sigma martingale
and H is a (predictable) Y -integrable process then the integral

∫
H dY is a sigma martingale.

(ii) Any bounded from below sigma martingale is a supermartingale and any locally bounded sigma
martingale is a local martingale.

Remark 2.1 In the same vein, we recall that stochastic integration of predictable locally bounded
integrands preserves local martingales (see, e.g., [40]).

We now introduce the concept of a dividend paying game option (see also Kifer [33]). In broad
terms, a dividend paying game option initiated at time t = 0 and maturing at time T , is a contract
with the following cash flows that are paid by the issuer of the contract and received by the holder
of the contract:
• a dividend stream with the cumulative dividend at time t denoted by Dt,
• a put payment Lt made at time t = τp if τp ≤ τc and τp < T ; time τp is called the put time and is
chosen by the holder,
• a call payment Ut made at time t = τc provided that τc < τp ∧ T ; time τc, known as the call time,
is chosen by the issuer and may be subject to the constraint that τc ≥ τ̄ , where τ̄ is the lifting time
of the call protection,
• a payment at maturity ξ made at time T provided that T ≤ τp ∧ τc and subject to rules specified
in the contract.

Of course, there is also the initial cash flow, namely, the purchasing price of the contract, which
is paid at the initiation time by the holder and received by the issuer.

Let us now be given an [0,+∞]-valued G-stopping time τd representing the default time of a
reference entity, with default indicator process Ht = 1{τd≤t}. A defaultable dividend paying game
option is a dividend paying game option such that the contract is terminated at τd, if it has not
been put or called and has not matured before. In particular, there are no more cash flows related
to this contract after the default time. In this setting, the dividend stream D additionally includes
a possible recovery payment made at the default time.
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We are interested in studying the problem of the time evolution of an arbitrage price of the game
option. Therefore, we formulate the problem in a dynamic way by pricing the game option at any
time t ∈ [0, T ]. Let 0 (respectively T ) stand for the inception date (respectively the maturity date)
of a game option. We write Gt

T to denote the set of all G-stopping times with values in [t, T ] and
we let Ḡt

T stand for {τ ∈ Gt
T ; τ ∧ τd ≥ τ̄ ∧ τd}, where the lifting time of a call protection τ̄ belongs

to G0
T . The stopping time τ̄ ∈ G0

T is used to model the restriction that the issuer of a game option
may be prevented from making a call on some random time interval [0, τ̄).

We are now in the position to state the formal definition of a defaultable game option.

Definition 2.2 A defaultable game option with lifting time of the call protection τ̄ ∈ G0
T is a game

option with the ex-dividend cumulative discounted cash flows βtπ(t; τp, τc) given by the formula, for
any t ∈ [0, T ] and (τp, τc) ∈ Gt

T × Ḡt
T ,

βtπ(t; τp, τc) =
∫ τ

t

βu dDu + 1{τ<τd}βτ

(
1{τ=τp<T}Lτp

+ 1{τ<τp}Uτc
+ 1{τ=T}ξ

)
, (2)

where τ = τp ∧ τc and
• the dividend process D = (Dt)t∈[0,T ] equals

Dt =
∫

[0,t]

(1−Hu) dCu +
∫

[0,t]

Ru dHu (3)

for some coupon process C = (Ct)t∈[0,T ], which is a G-predictable, càdlàg process with bounded
variation, and some real-valued, G-predictable recovery process R = (Rt)t∈[0,T ],
• the put payment L = (Lt)t∈[0,T ] and the call payment U = (Ut)t∈[0,T ] are G-adapted, real-valued,
càdlàg processes,
• the inequality Lt ≤ Ut holds for every t ∈ [τd ∧ τ̄ , τd ∧ T ),
• the payment at maturity ξ is a GT -measurable real random variable.

It is clear that, for any fixed t, π(t; τp, τc) is a Gτ∧τd
-measurable random variable.

We further assume that R,L and ξ are bounded from below, so that there exists a constant c
such that, for t ∈ [0, T ] :

βtL̂t :=
∫

[0,t]

βu dDu + 1{t<τd}βt

(
1{t<T}Lt + 1{t=T}ξ

)
≥ −c (4)

Symmetrically, we shall sometimes additionally assume that R,U and ξ are bounded (from below
and from above), or that (4) is supplemented by, for t ∈ [0, T ] :

βtÛt :=
∫

[0,t]

βu dDu + 1{t<τd}βt

(
1{t<T}Ut + 1{t=T}ξ

)
≤ c (5)

2.1 Valuation of a Defaultable Game Option

We will state the following fundamental pricing result without proof, referring the interested reader
to [4] for more details. The goal is to characterize the set of arbitrage ex-dividend prices of a game
option in terms of values of related Dynkin games [20, 34, 36]. The notion of an arbitrage price of a
game option referred to in Theorem 2.2 is the dynamic notion of arbitrage price for game options,
defined in Kallsen and Kühn [31], extended to the case of dividend-paying primary assets and/or
game options by resorting to the transformation of prices into cumulative prices. Note that in the
sequel, the statement ‘(Πt)t∈[0,T ] is an arbitrage price for the game option’ is in fact to be understood
as ‘(Xt,Πt)t∈[0,T ] is an arbitrage price for the extended market consisting of the primary market and
the game option’.
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Theorem 2.2 Assume that a process Π is a G-semimartingale and there exists Q ∈ M such that
Π is the value of the Dynkin game related to a game option, specifically,

esssupτp∈Gt
T
essinfτc∈Ḡt

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
= Πt (6)

= essinfτc∈Ḡt
T
esssupτp∈Gt

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
, t ∈ [0, T ].

Then Π is an arbitrage ex-dividend price of the game option, called the Q-price of the game option.
The converse holds true (thus any arbitrage price is a Q-price for some Q ∈M) under the following
integrability assumption

esssupQ∈MEQ

(
sup

t∈[0,T ]

∫
[0,t]

βu dDu + 1{t<τd}βt

(
1{t<T}Lt + 1{t=T}ξ

) ∣∣∣G0

)
< ∞, a.s. (7)

It is worth noting that the class of defaultable game options includes as special cases defaultable
American options and defaultable European options.

Definition 2.3 A defaultable American option is a defaultable game option with τ̄ = T . A default-
able European option is a defaultable American option such that such that βL̂ (cf. (4)) is maximum
at T.

In view of Theorem 2.2, the cash flows φ(t) of a defaultable European option can be redefined
by

βtφ(t) =
∫ T

t

βu dDu + 1{τd>T}βT ξ, t ∈ [0, T ]. (8)

In the sequel we work under a fixed risk-neutral measure Q ∈ M. All the measure-
dependent notions like (local) martingale, compensator, etc., implicitly refer to the probability mea-
sure Q.

2.2 Hedging of a Defaultable Game Option

We adopt the definition of hedging game options stemming from successive developments, starting
from the hedging of American options examined by Karatzas [32], and subsequently followed by El
Karoui and Quenez [23], Kifer [33], Ma and Cvitanić [37] and Hamadène [24] (see also Schweizer
[41]). This definition will be later shown to be consistent with the concept of arbitrage pricing of a
defaultable game option.

Recall that X (resp. X̂) is the price process (resp. cumulative price process) of primary traded
assets, as given by (1). The following definition is standard, accounting for the dividends on the
primary market.

Definition 2.4 By a (self-financing) primary trading strategy we mean a pair (V0, ζ) such that:
• V0 is a G0-measurable real-valued random variable representing the initial wealth,
• ζ is an R1⊗d-valued, βX̂-integrable process representing holdings in primary risky assets.
The wealth process V of (V0, ζ) satisfies, for t ∈ [0, T ],

d(βtVt) = ζt d(βtX̂t) (9)

with an initial condition V0.

Remark 2.5 The reason why we do not assume G0 trivial (which would of course simplify a number
of statements) is that we apply our results in subsequent work [6] in situations where is it not trivial
(in the context of the study of convertible bonds with positive call notice period).
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Given the wealth process V of a primary strategy (V0, ζ), we uniquely specify a (G-optional)
process ζ0 by setting

Vt = ζ0
t β−1

t + ζtXt, t ∈ [0, T ].

The process ζ0 represents the number of units held in the savings account at time t, when we start
from the initial wealth V0 and we use the strategy ζ in the primary risky assets.

Definition 2.6 (i) An issuer ε-hedge with cost process ρ for the game option with ex-dividend
cumulative discounted cash flows βπ (cf. (2)) is represented by a quadruplet (V0, ζ, ρ, τc) such that:
• (V0, ζ) is a primary strategy with the wealth process V given by (9),
• a cost process ρ is a real-valued G-semimartingale with ρ0 = 0,
• a (fixed) call time τc belongs to Ḡ0

T ,
• the following inequality is valid, for every put time τp ∈ G0

T ,

βτVτ +
∫ τ

0

βu dρu ≥ β0π(0; τp, τc)− βτε, a.s. (10)

(ii) A holder ε-hedge with cost process ρ for the game option is a quadruplet (V0, ζ, ρ, τp) such that:
• (V0, ζ) is a primary strategy with the wealth process V given by (9),
• a cost process ρ is a real-valued G-semimartingale with ρ0 = 0,
• a (fixed) put time τp belongs to G0

T ,
• the following inequality is valid, for every call time τc ∈ Ḡ0

T ,

βτVτ +
∫ τ

0

βu dρu ≥ −β0π(0; τp, τc)− βτε, a.s. (11)

A more explicit form of condition (10) reads: for a fixed τc ∈ Ḡ0
T and every τp ∈ G0

T

Vτ + β−1
τ

∫ τ

0

βu dρu (12)

≥ β−1
τ

∫ τ

0

βu dDu + 1{τ<τd}

(
1{τ=τp<T}Lτp

+ 1{τ<τp}Uτc
+ 1{τp=τc=T}ξ

)
− ε, a.s.

The left-hand side in the last formula is the value process of a strategy with cost ρ, when the players
adopt the respective exercise policies τp and τc, whereas the right-hand side represents the payoff to
be done by the issuer, including past dividends and recovery at default.

By the right-continuity of the involved processes, condition (12) is in turn equivalent to the
following statement: for a fixed call time τc ∈ Ḡ0

T chosen by the issuer, the inequality

Vt∧τc
+ β−1

t∧τc

∫ t∧τc

0

βu dρu ≥ lim
t+

π(0; ·, τc) (13)

= β−1
t∧τc

∫ t∧τc

0

βu dDu + 1{t∧τc<τd}

(
1{t<τc}Lt + 1{τc≤t<T}Uτc

+ 1{t=τc=T}ξ
)
− ε,

is satisfied almost surely, for any t ∈ [0, T ] (or, interchangeably, for any t ∈ [0, T ], a.s.).

Likewise, condition (11) is equivalent to: for a fixed put time τp ∈ G0
T chosen by the holder, the

inequality

Vτp∧t + β−1
τp∧t

∫ τp∧t

0

βu dρu ≥ − lim
t+

π(0; τp, ·) = −π(0; τp, t) (14)

= −β−1
τp∧t

∫ τp∧t

0

βu dDu − 1{τp∧t<τd}

(
1{τp≤t<T}Lτp

+ 1{t<τp}Ut + 1{t=τc=T}ξ
)
− ε,

holds almost surely, for any t ∈ [τ̄ , T ] (or, interchangeably, for any t ∈ [0, T ], a.s.).

For ε = 0, we say that we deal with an issuer hedge and a holder hedge with cost ρ for the game
option. Issuer or holder (ε-)hedges with no cost (that is, with ρ = 0) are also called issuer or holder
(ε-)superhedges.
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Remark 2.7 (i) The process ρ is to be interpreted as the (running) financing cost, that is, the
amount of cash added to (if dρt ≥ 0) or withdrawn from (if dρt ≤ 0) the hedging portfolio in order
to get a perfect, but no longer self-financing, hedge. In the special case where ρ is a G-martingale
we thus recover the notion of mean self-financing hedge in the sense of Schweizer [41].
(ii) Regarding the admissibility issues (see, e.g., Delbaen and Schachermayer [15]), note that the
l.h.s. of (10) (discounted wealth process with financing costs included) is bounded from below for
any issuer ε-hedge with a cost (V0, ζ, ρ, τc). Likewise, in the case of a bounded payoff π (that is,
assuming (5)), the l.h.s. of (11) (discounted wealth process with financing costs included) is bounded
from below for any holder ε-hedge with a cost (V0, ζ, ρ, τp).

We now restrict our attention to (ε-)hedges with a G-sigma martingale cost ρ. We define Vc
0

(resp. Vp
0 ) as the set of initial values V0 such that for any ε > 0 there exists an issuer (resp. holder)

ε-hedge of the game option with the initial value V0 (resp. −V0) and with a G-sigma martingale
cost.

Remark 2.8 It is easy to see that Vc
0 (resp. Vp

0 ) can equivalently be defined as the set of values
V0 such that for any ε > 0 there exists an issuer (resp. holder) hedge of the game option at time 0
with the initial value V0 + ε (resp. −V0 + ε) and with a G-sigma martingale cost.

The following lemma gives some preliminary conclusions regarding the initial cost of a hedging
strategy for the game option under very weak assumptions. In Proposition 4.2, we shall see that
under stronger assumptions the infima are attained and we obtain equalities rather than merely
inequalities in Lemma 2.3.

Lemma 2.3 (i) We have (by convention, inf ∅ = ∞)

essinfτc∈Ḡ0
T
esssupτp∈G0

T
EQ

(
π(0; τp, τc)

∣∣G0

)
≤ essinfV0∈Vc

0
V0, a.s. (15)

(ii) If inequality (5) is valid then

esssupτp∈G0
T
essinfτc∈Ḡ0

T
EQ

(
π(0; τp, τc)

∣∣G0

)
≥ −essinfV0∈Vp

0
V0, a.s. (16)

Proof. (i) Assume that for some stopping time τ̄c ∈ Ḡ0
T the quadruplet (V0, ζ, ρ, τ̄c) is an issuer

ε-hedge with a G-sigma martingale cost ρ for the game option. Then (9)–(10) imply that, for any
t ∈ [0, T ],

β0V0 = βt∧τ̄c
Vt∧τ̄c

−
∫ t∧τ̄c

0

ζu d(βuX̂u)

≥ β0π(0; t, τ̄c)− βt∧τ̄c
ε−

∫ t∧τ̄c

0

(
ζu d(βuX̂u) + βu dρu

)
. (17)

The stochastic integral
∫ t

0
ζu d(βuX̂u) with respect to a G-sigma martingale βX̂ is a G-sigma mar-

tingale. Hence the stopped process
∫ t∧τ̄c

0
ζu d(βuX̂u) and the process∫ t∧τ̄c

0

(
ζu d(βuX̂u) + βu dρu

)
are G-sigma martingales as well. The latter process is bounded from below (this follows from
(2)–(4) and (17)), so that it is a bounded from below local martingale ([29, p.216]) and thus a
supermartingale.

Moreover, for any stopping time τp ∈ G0
T , the inequality in formula (17) still holds with t replaced

by τp. By taking expectations, we obtain (recall that τ̄c is fixed)

β0V0 ≥ EQ
(
β0π(0; τp, τ̄c)− βτp∧τ̄cε

∣∣G0

)
, ∀ τp ∈ G0

T ,
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and thus, since β is a positively bounded process,

V0 ≥ essinfτc∈Ḡ0
T
esssupτp∈G0

T
EQ

(
π(0; τp, τc)

∣∣G0

)
− kε, a.s.,

for some constant k. Therefore, if V0 is such that for any ε > 0 there exists an issuer ε-hedging
strategy with the initial wealth V0 and a G-sigma martingale cost ρ then

V0 ≥ essinfτc∈Ḡ0
T
esssupτp∈G0

T
EQ

(
π(0; τp, τc)

∣∣G0

)
, a.s.

(ii) Let (V0, ζ, ρ, τ̄p) be a holder ε-hedge with a G-sigma martingale cost ρ for the game option for
some stopping time τ̄p ∈ G0

T . Then (9)–(11) imply that, for any t ∈ [τ̄ , T ],

β0V0 = βt∧τ̄pVt∧τ̄p −
∫ t∧τ̄p

0

ζu d(βuX̂u)

≥ −β0π(0; τ̄p, t)− βt∧τ̄p
ε−

∫ t∧τ̄p

0

(
ζu d(βuX̂u) + βu dρu

)
.

Under condition (5), the stochastic integral in the last formula is bounded from below and thus, by
the same arguments as in part (i), we conclude that it is a supermartingale. Consequently, for a
fixed stopping time τ̄p ∈ G0

T ,

β0V0 ≥ EQ
(
− β0π(0; τ̄p, τc)− βτ̄p∧τcε

∣∣G0

)
, a.s., ∀ τc ∈ Ḡ0

T ,

so that
V0 ≥ −esssupτp∈G0

T
essinfτc∈Ḡ0

T
EQ

(
π(0; τp, τc)

∣∣G0

)
− kε, a.s.,

for some constant k. Therefore, if V0 is such that for any ε > 0 there exists a holder ε-hedging
strategy with the initial wealth V0 and a G-sigma martingale cost ρ then

V0 ≥ −esssupτp∈G0
T
essinfτc∈Ḡ0

T
EQ

(
π(0; τp, τc)

∣∣G0

)
, a.s.

This completes the proof. 2

3 Valuation in a Hazard Process Set-Up

In order to get more explicit pricing hedging results, we will now study the so-called hazard process
set-up.

3.1 Standing Assumptions

Given an [0,+∞]-valued G-stopping time τd, we assume that G = H ∨ F, where the filtration H is
generated by the process Ht = 1{τd≤t} and F is some reference filtration. As expected, our approach
will consist in effectively reducing the information flow from the full filtration G to the reference
filtration F.

Let G stand for the process Gt = Q(τd > t | Ft) for t ∈ R+. The process G is an F-supermartingale,
as the optional projection on F of the non-increasing process 1−H (see [30]).

In the sequel, we shall work under the following standing assumption.

Assumption 3.1 We assume that the process G is (strictly) positive and continuous with finite
variation, so that the F-hazard process Γt = − ln(Gt), t ∈ R+, is well defined and continuous with
finite variation.
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Remark 3.2 (i) If G is continuous, τd is a totally inaccessible G-stopping time (see, e.g., [18]).
Moreover, τd avoids F-stopping times, in the sense that Q(τd = τ) = 0, for any F-stopping time τ
(see Coculescu et al. [10]).
(ii) Assuming G continuous, the further assumption that G has a finite variation in fact implies
that G is non-increasing (see Lemma A.1(i)). This lies somewhere between assuming further the
(stronger) (H) Hypothesis and assuming further that τd is an F-pseudo-stopping time (see Nikeghbali
and Yor [39]). Recall that the (H) Hypothesis means that all square-integrable F-martingales are
G-martingales (see, e.g., [7]), or, by a standard localization argument, that all F-local martingales
are G-local martingales, whereas τd is an F-pseudo-stopping time iff all F-local martingales stopped
at τd are G-local martingales (see Nikeghbali and Yor [39] and Appendix A).

More detailed consequences of Assumption 3.1 useful for this work are summarized in Lemma
A.1.

The next definition refers to some auxiliary results proved in Appendix A.

Definition 3.3 The F-stopping time, resp. r.v., resp. F-adapted or F-predictable process τ̃ , χ̃ and
Ỹ introduced in Lemmas A.2 and A.3 are called the F-representatives of τ, Y and χ, respectively.
In the context of credit risk, where τd represents the default time of a reference entity, they are also
known as the pre-default values of τ, χ and Y .

To simplify the presentation, we find it convenient to make an additional assumption. Strictly
speaking, Assumption 3.4 is superfluous, in the sense that all the results below are true in general;
it suffices to make use of Lemmas A.2 and A.3 to reduce the problem to the case described in
Assumption 3.4. Since this would make the notation heavier, without adding much value, we prefer
to work under this standing assumption.

Assumption 3.4 (i) The discount factor process β is F-adapted.
(ii) The coupon process C is F-predictable.
(iii) The recovery process R is F-predictable.
(iv) The payoff processes L,U are F-adapted and the random variable ξ is FT -measurable.
(v) The call protection τ̄ is an F-stopping time.

3.2 Reduction of a Filtration

The next lemma shows that the computation of the lower and upper value of the Dynkin games (6)
with respect to G-stopping times can be reduced to the computation of the lower and upper value
with respect to F-stopping times.

Lemma 3.1 We have

esssupτp∈Gt
T
essinfτc∈Ḡt

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
= esssupτp∈Ft

T
essinfτc∈F̄t

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
and

essinfτc∈Ḡt
T
esssupτp∈Gt

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
= essinfτc∈F̄t

T
esssupτp∈Ft

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
.

Proof. For (τp, τc) ∈ Gt
T × Ḡt

T , we have

π(t; τp, τc) = π(t; τp ∧ τd, τc ∧ τd) = π(t; τ̃p ∧ τd, τ̃c ∧ τd) = π(t; τ̃p, τ̃c)

for some stopping times (τ̃p, τ̃c) ∈ F t
T × F̄ t

T , where the middle equality follows from Lemma A.3,
and the other two from the definition of π. Since, clearly, F t

T ⊆ Gt
T and F̄ t

T ⊆ Ḡt
T , we conclude that

the lemma is valid. 2
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Under our assumptions, the computation of conditional expectations of cash flows π(t; τp, τc)
with respect to Gt can be reduced to the computation of conditional expectations of F-equivalent
cash flows π̃(t; τp, τc) with respect to Ft. Let αt := βt exp(−Γt) stand for the credit-risk adjusted
discount factor. Note that α is bounded, like β.

Lemma 3.2 For any stopping times τp ∈ F t
T and τc ∈ F̄ t

T we have that

EQ
(
π(t; τp, τc)

∣∣Gt

)
= 1{t<τd}EQ

(
π̃(t; τp, τc)

∣∣Ft

)
, (18)

where π̃(t; τp, τc) is given by, with τ = τp ∧ τc,

αtπ̃(t; τp, τc) =
∫ τ

t

αu(dCu + Ru dΓu) + ατ

(
1{τ=τp<T}Lτp

+ 1{τ<τp}Uτc
+ 1{τ=T}ξ

)
. (19)

Proof. Formula (18) is an immediate consequence of formula (2) and Lemma A.4. 2

Note that π̃(t; τp, τc) is an Fτ -measurable random variable. A comparison of formulas (2) and
(19) shows that we have effectively moved our considerations from the original market subject to the
default risk, in which cash flows are discounted according to the discount factor β, to the fictitious
default-free market, in which cash flows are discounted according to the credit risk adjusted discount
factor α. Recall that the original cash flows π(t; τp, τc) are given as Gτ∧τd

-measurable random
variables, whereas the F-equivalent cash flows π̃(t; τp, τc) are manifestly Fτ -measurable and they
depend of the default time τd only via the hazard process Γ. For the purpose of computation of
ex-dividend pre-default prices of a defaultable game option these two market models are equivalent,
as the following result shows.

Theorem 3.3 Assuming condition (7), let Π be the arbitrage ex-dividend Q-price for a game option.
Then we have, for any t ∈ [0, T ],

Πt = 1{t<τd}Π̃t, (20)

where Π̃t satisfies

esssupτp∈Ft
T
essinfτc∈F̄t

T
EQ

(
π̃(t; τp, τc)

∣∣Ft

)
= Π̃t (21)

= essinfτc∈F̄t
T
esssupτp∈Ft

T
EQ

(
π̃(t; τp, τc)

∣∣Ft

)
.

Hence the Dynkin game with cost criterion EQ
(
π̃(t; τp, τc)

∣∣Ft

)
on F t

T × F̄ t
T admits the value Π̃t,

which coincides with the pre-default ex-dividend price at time t of the game option under the risk-
neutral measure Q.

Proof. It suffices to combine Theorem 2.2 with Lemmas 3.1 and 3.2. 2

The following result is the converse of Theorem 3.3. It follows immediately by Lemmas 3.1,
3.2 and by the ‘if’ part of Theorem 2.2 (noting also that Π defined by (20) is obviously a G-
semimartingale if Π̃ is a G-semimartingale).

Theorem 3.4 Let Π̃t be the value of the Dynkin game with the cost criterion EQ
(
π̃(t; τp, τc)

∣∣Ft

)
on

F t
T × F̄ t

T , for any t ∈ [0, T ]. Then Πt defined by (20) is the value of the Dynkin game with the cost
criterion EQ

(
π(t; τp, τc)

∣∣Gt

)
on Gt

T ×Ḡt
T , for any t ∈ [0, T ]. If, in addition, Π̃ is a G-semimartingale

then Π is the arbitrage ex-dividend Q-price for the game option.

Theorems 3.3 and 3.4 thus allow us to reduce the study of a game option to the study of Dynkin
games (21) with respect to the reference filtration F.
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3.3 Valuation via Doubly Reflected BSDEs

In this section, we shall characterize the arbitrage ex-dividend Q-price of a game option as a solution
to a judiciously chosen doubly reflected BSDE. To this end, we first recall some auxiliary results
concerning the relationship between Dynkin games and doubly reflected BSDEs.

Given an additional F-adapted process F of finite variation, we consider the following doubly
reflected BSDE with the data α, F, ξ, L, U, τ̄ (see Cvitanić and Karatzas [13], Hamadène and Hassani
[25], Crépey et al. [12, 11], Bielecki et al. [5, 6]):

αtΘt = αT ξ + αT FT − αtFt +
∫ T

t
αudKu −

∫ T

t
αudMu, t ∈ [0, T ],

Lt ≤ Θt ≤ Ūt, t ∈ [0, T ], (22)∫ T

0
(Θu− − Lu−) dK+

u =
∫ T

0
(Ūu− −Θu−) dK−

u = 0,

where the process Ū = (Ūt)t∈[0,T ] equals, for t ∈ [0, T ],

Ūt = 1{t<τ̄}∞+ 1{t≥τ̄}Ut.

Definition 3.5 By a (Q-)solution to the doubly reflected BSDE (22), we mean a triplet (Θ,M,K)
such that:
• the state process Θ is a real-valued, F-adapted, càdlàg process,
•

∫ ·
0
αdM is a real-valued F-martingale vanishing at time 0,

• K is an F-adapted finite variation process vanishing at time 0,
• all conditions in (22) are satisfied, where in the third line K+ and K− denote the Jordan compo-
nents of K, and where the convention that 0×±∞ = 0 is made in the third line.
Here by Jordan decomposition we mean the decomposition K = K+−K− where the non-decreasing
processes K± vanish at time 0 and define mutually singular measures.

The state process Θ in a solution to (22) is clearly an F-semimartingale. So there are obvious
(though rather artificial) cases in which (22) does not admit a solution: it suffices to take τ̄ = 0 and
L = U , assumed not to be an F-semimartingale. It is also clear that a solution would not necessarily
be unique if we did not impose the condition of a mutual singularity of the non-negative measures
defined by K+ and K− (see, e.g., [25, Remark 4.1]).

In applications (see [5, 12, 11, 6]), the input process F is typically given as a Lebesgue integral
αF =

∫
αf du and the component M of a solution to (22) is usually searched for in the form

M =
∫

Z dN + n (cf. (42)) for some real-valued and Rq-valued square integrable F-martingales N
and n. For various concrete (including Markovian) specifications of the present set-up and definite
sets of technical assumptions ensuring the existence and uniqueness of a solution to (22), we refer
the reader to [12, 25, 11, 6, 13], among others.

Basically, in any model endowed with the martingale representation property, the existence (and
uniqueness) of a solution to (22) (supplemented by suitable integrability conditions on the data
and the solution) is equivalent to the so-called Mokobodski condition, namely, the existence of a
quasimartingale Z such that L ≤ Z ≤ U on [0, T ] (see, in particular, Crépey and Matoussi [12],
Hamadène and Hassani [25, Theorem 4.1], and previous works in this direction, starting with [13]).
It is thus satisfied when one of the barriers is a quasimartingale, and, in particular, when one
of the barriers is given as S ∨ ` where S is an Itô-Lévy process S with square-integrable special
semimartingale decomposition components (see [12]) and ` is a constant in R ∪ {−∞}. This covers,
for instance, the call payoff of a convertible bond, see Bielecki et al. [4, 6].

Remark 3.6 (i) Since F is a given process, the BSDE (22) can be rewritten as

αtΘ̂t = αT ξ̂ +
∫ T

t
αudKu −

∫ T

t
αudMu, t ∈ [0, T ],

L̂t ≤ Θ̂t ≤ Ût, t ∈ [0, T ], (23)∫ T

0
(Θ̂u− − L̂u−) dK+

u =
∫ T

0
(Ûu− − Θ̂u−) dK−

u = 0,
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where Θ̂t = Θt + Ft and

ξ̂ = ξ + FT , L̂t = Lt + Ft, Ût = Ūt + Ft.

This shows that the problem of solving (22) can be formally reduced to the case of F = 0 with
suitably modified reflecting barriers L̂, Û and terminal condition ξ̂. Note that, in spite of this
formal reduction, the freedom to choose the driver of a related BSDE associated with a game option
is important from the point of view of applications (this is apparent in the follow-up papers [5, 6]).
Since the related material is not directly advantageous for a reader of the present paper, it is deferred
to Appendix B.
(ii) In the special case where all F-martingales are continuous and where the F-semimartingale F
and the barriers L and U are continuous (see [13, 26, 6]), it is natural to look for a continuous
solution of (22), that is, a solution of (22) given by a triplet of continuous processes (Θ,M,K) (the
continuity of K implying in turn that of K±).
(iii) More generally, in the existing literature on reflected BSDEs (including the case of models with
jumps), the component K of a solution is typically sought for in the form of a continuous finite
variation process.
(iv) In the context of Markovian set-ups, the probabilistic BSDE approach may be complemented
by a related analytic variational inequality approach. This issue is dealt with in Bielecki et al. [5]
(see also [6]). Note, however, that the variational inequality approach strongly relies on the BSDE
approach. Moreover, the BSDE-based simulation method is the only efficient way of numerically
solving the pricing problem if the dimension of the problem (number of model factors) is greater
than three or four. Indeed in such case the computational cost of deterministic numerical schemes
based on the variational inequality approach becomes prohibitive.

In order to establish a link between a solution to the related doubly reflected BSDE and the
arbitrage ex-dividend Q-price of the defaultable game option, we first recall the general relationship
between doubly reflected BSDEs and Dynkin games with purely terminal cost, before applying this
result to dividend-paying game options in the fictitious default-free market in Proposition 3.5.

Observe that if (Θ,M,K) solves (22) then we have, for any stopping time τ ∈ F t
T ,

αtΘt = ατΘτ + ατFτ − αtFt +
∫ τ

t

αudKu −
∫ τ

t

αudMu. (24)

Proposition 3.5 (Verification Principle for a Dynkin Game) Let (Θ,M,K) be a solution to
(22) with F = 0. Then Θt is the value of the Dynkin game with cost criterion EQ

(
θ(t; τp, τc)

∣∣Ft

)
on F t

T × F̄ t
T , where θ(t; τp, τc) is the Fτ -measurable random variable defined by

αtθ(t; τp, τc) = ατ

(
1{τ=τp<T}Lτp + 1{τ=τc<τp}Uτc + 1{τ=T}ξ

)
,

where τ = τp ∧ τc. Moreover, for any t ∈ [0, T ] and for any ε > 0, the pair of stopping times
(τε

p , τ ε
c ) ∈ F t

T × F̄ t
T given by

τε
p = inf

{
u ∈ [t, T ] ; Θu ≤ Lu + ε

}
∧ T, τ ε

c = inf
{

u ∈ [τ̄ ∨ t, T ] ; Θu ≥ Uu − ε
}
∧ T,

is ε-optimal for this Dynkin game, in the sense that we have, for any (τp, τc) ∈ F t
T × F̄ t

T ,

EQ
(
θ(t; τp, τ

ε
c )

∣∣Ft

)
− ε ≤ Θt ≤ EQ

(
θ(t; τε

p , τc)
∣∣Ft

)
+ ε. (25)

If K is continuous then the pair of stopping times (τ0
p , τ0

c ) ∈ F t
T × F̄ t

T , obtained by setting ε = 0, is
a saddle-point of the game. This means that we have, for any (τp, τc) ∈ F t

T × F̄ t
T ,

EQ
(
θ(t; τp, τ

0
c )

∣∣Ft

)
≤ Θt ≤ EQ

(
θ(t; τ0

p , τc)
∣∣Ft

)
.
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Proof. Except for the presence of τ̄ , the result is standard (see, e.g., Lepeltier and Maingueneau
[36]). The proof hinges on showing that the pair (τε

p , τ ε
c ) is ε-optimal, for any ε > 0. Thus, taking

the supremum and infimum over stopping times in (25), we obtain

essinfτc∈F̄t
T
esssupτp∈Ft

T
EQ

(
θ(t; τp, τc)

∣∣Ft

)
− ε ≤ esssupτp∈Ft

T
EQ

(
θ(t; τp, τ

ε
c )

∣∣Ft

)
− ε ≤ Θt

≤ essinfτc∈F̄t
T

EQ
(
θ(t; τε

p , τc)
∣∣Ft

)
+ ε ≤ esssupτp∈Ft

T
essinfτc∈F̄t

T
EQ

(
θ(t; τp, τc)

∣∣Ft

)
+ ε.

Letting ε tend to 0, we conclude that Θt is the value of the Dynkin game at time t.

It remains to establish (25). Let us first check that the right-hand side inequality in (25) is valid
for any τc ∈ F̄ t

T . Let τε denote τε
p ∧ τc. By the definition of τε

p , we see that K+ equals 0 on [t, τε].
Since K− is non-decreasing, (24) applied to τε yields

αtΘt ≤ ατεΘτε −
∫ τε

t

αu dMu.

Taking conditional expectations (recall that
∫ ·

t
αudMu is an F-martingale), and using also the facts

that Θτε
p
≤ Lτε

p
+ ε if τε

p < T , Θτε
p

= ξ if τε
p = T and Θτc

≤ Uτc
(recall that τc ∈ F̄ t

T , so that τc ≥ τ̄

and Ūτc = Uτc), we obtain

αtΘt ≤ EQ(ατεΘτε | Ft)

≤ EQ

(
ατε

(
1{τε=τε

p<T}(Lτε
p

+ ε) + 1{τε=τc<τε
p}Uτc

+ 1{τε=T}ξ
) ∣∣∣Ft

)
.

We conclude that Θt ≤ EQ
(
θ(t; τε

p , τc)
∣∣Ft

)
+ ε for any τc ∈ F̄ t

T . This completes the proof of the
right-hand side inequality in (25). The left-hand side inequality can be shown similarly. It is in fact
standard, since it does not involve τ̄ , and thus we leave the details to the reader.

Finally, in the special case where K is continuous, ε may be taken equal to 0, since in that case
the process K+ is continuous and thus it equals 0 on [t, τ0

p ∧ τc] for any τc ∈ F̄ t
T (similarly, the

process K− equals 0 on [t, τ0
c ∧ τp] for any τp ∈ F t

T ). 2

Let us now apply Proposition 3.5 to a defaultable game option. To this end, we first note that
formula (19) can be rewritten as follows

αtπ̃(t; τp, τc) = ατ F̄τ − αtF̄t + ατ

(
1{τ=τp<T}Lτp

+ 1{τ<τp}Uτc
+ 1{τ=T}ξ

)
,

where

F̄t := α−1
t

∫
[0,t]

αu dD̄u with D̄t :=
∫

[0,t]

dCu + Ru dΓu. (26)

Let us denote by (Ē) equation (23) with Ft = F̄t, that is,

αtΘ̄t = αT ξ̂ +
∫ T

t
αudKu −

∫ T

t
αudMu, t ∈ [0, T ],

L̂t ≤ Θ̄t ≤ Ût, t ∈ [0, T ],∫ T

0
(Θ̄u− − L̂u−) dK+

u =
∫ T

0
(Ûu− − Θ̄u−) dK−

u = 0,

 (Ē)

with
ξ̂ = ξ + F̄T , L̂t = Lt + F̄t, Ût = Ūt + F̄t.

Assumption 3.7 The doubly reflected BSDE (Ē) admits a solution (Θ̄,M,K).

Remark 3.8 Let us stress that Assumption 3.7, heroic as it may seem in the general hazard process
set-up of the present paper, is in fact a very mild and harmless assumption in any reasonable
application one may think of (cf. comments following Definition 3.5).
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We denote, for t ∈ [0, T ],

Π̃t = Θ̄t − F̄t, Πt = 1{t<τd}Π̃t, Π̂t = Πt + β−1
t

∫
[0,t]

βu dDu. (27)

The following lemma is crucial in what follows (Lemma 3.6(i) is actually the key of the proof of
Proposition 4.1 below).

Lemma 3.6 (i) The process m given by the formula, for t ∈ [0, T ],

mt = βtΠ̂t +
∫

[0,t∧τd]

βu dKu, (28)

is a G-martingale (stopped at τd).
(ii) The process Π is a G-semimartingale.
(iii) If K is a continuous process then the process βΠ̂ is a special G-semimartingale.

Proof. (i) The triplet (Π̃,M,K) satisfies (22) with F given by F̄ in (26), so that, for t ∈ [0, T ],

αtΠ̃t = αT ξ +
∫ T

t

αu dD̄u +
∫ T

t

αu dKu −
∫ T

t

αu dMu

and ∫ t

0

αu dMu = αtΠ̃t +
∫ t

0

αu dKu − α0Π̃0 +
∫ t

0

αu dD̄u. (29)

Using Lemma A.4, it is thus easy to check that we have, for any 0 ≤ t ≤ u ≤ T ,

1{t<τd}e
Γt EQ

( ∫ u

t

αv dMv

∣∣∣Ft

)
= EQ(mu −mt | Gt).

Since the integral
∫ ·

t
αv dMv is an F-martingale, the process m is a G-martingale and it is manifestly

stopped at τd.
(ii) Given (27) the process Π is a G-semimartingale by part (i).
(iii) By (28), we have that

βtΠ̂t = mt −
∫

[0,t∧τd]

βu dKu, (30)

where m is a G-martingale, by (i), and where the second term in the right-hand side is a G-adapted
and continuous (hence G-predictable) processes of finite variation. 2

In view of (30), in the case where K is a continuous process, the process m introduced in the
first part of this lemma can equivalently be redefined as the G-local martingale component of the
discounted cumulative Q-value process βΠ̂. In that case, the processes m and βΠ̂ are easily seen to
coincide on the random interval [0, τ0

c ∧ τ0
p ∧ τd ∧ T ] and thus both m and βΠ̂ can be interpreted

on this interval as the discounted cumulative Q-value of a defaultable game option. It is thus worth
stressing again that in most applications the K-component of a solution to (Ē) is sought for as a
continuous process of finite variation (see Remark 3.6(iii)).

The following result establishes a link between (Θ̄,M,K) and the arbitrage ex-dividend Q-price
of the defaultable game option.

Proposition 3.7 (Verification Principle for a Defaultable Game Option) The process Π is
the arbitrage ex-dividend Q-price for the game option. Moreover, for any t ∈ [0, T ] and ε > 0, the
pair of ε-optimal stopping times (τε

p , τ ε
c ) ∈ F t

T × F̄ t
T for the related Dynkin game (6) on Gt

T × Ḡt
T is

given by

τε
p = inf

{
u ∈ [t, T ] ; Π̃u ≤ Lu + ε

}
∧ T, τ ε

c = inf
{

u ∈ [τ̄ ∨ t, T ] ; Π̃u ≥ Uu − ε
}
∧ T.
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If K is a continuous process then the pair of stopping times (τ0
p , τ0

c ) ∈ F t
T × F̄ t

T , obtained by setting
ε = 0, is a saddle-point of the defaultable game option.

Proof. In view of (19), the present assumptions imply that Π̃t is the value of the Dynkin game
(21), by Proposition 3.5, with (τε

p , τ ε
c ) as a pair of ε-optimal stopping times. Therefore, by Lemmas

3.1 and 3.2, Πt is the value of the Dynkin game associated with the game option on Gt
T × Ḡt

T , with
(τε

p , τ ε
c ) as a pair of ε-optimal stopping times. Moreover, Π is a G-semimartingale, by Lemma 3.6(ii).

We conclude by making use of the last part in Theorem 3.4. 2

4 Hedging in a Hazard Process Set-up

The goal of this and the next section, which constitute the central part of this work, it to examine
in some detail the existence and properties of various concepts of hedging strategies for defaultable
game options in a hazard process set-up.

4.1 Existence of Hedging Strategies

From now on, we shall work under Assumption 3.7. Let thus (Θ̄,M,K) denote a solution to (Ē) and
let Π̃ and Π be defined as in (27). In particular, Π is the arbitrage Q-price for the game option (by
Proposition 3.7) and the left-hand sides in (15) and (16) are equal to Π0.

For an issuer, we define the corresponding process ρ(ζ) by ρ0(ζ) = 0 and, for t ∈ [0, T ],

βt dρt(ζ) = dmt − ζt d(βtX̂t), (31)

where m is the G-martingale of Lemma 3.6(i). The process ρ(ζ) is thus a G-sigma martingale, by
Lemma 3.6(i), and a G-local martingale if βX̂ and ζ are locally bounded processes. For a holder,
the corresponding process ρ̄(ζ) is defined by

βt dρ̄t(ζ) = −dmt − ζt d(βtX̂t). (32)

Since trivially
−βt dρt(ζ) = −dmt + ζt d(βtX̂t) = −dmt − (−ζt) d(βtX̂t),

we see that ρ̄(−ζ) = −ρ(ζ), so that it suffices to use the notation ρ(ζ) in what follows. For any
ε ≥ 0, let τε

c and τε
p be defined as in Proposition 3.7 (for t = 0, so that τε

c ∈ F̄0
T ).

Some of the key arguments underlying the following proposition are classical, and already con-
tained in Lepeltier and Maingueneau [36] (see in particular their theorem 11). Our proposition
can thus be seen as en extension of their results to a situation involving two filtrations (where the
assummptions we make are relative to the F-filtration, whereas we draw conclusions relative to the
G-filtration).

Recall that integrability implies predictability, in our convention (see section 1.2).

Proposition 4.1 Let ζ stand for an arbitrary R1⊗d-valued, βX̂-integrable process. Then:
(i) for any ε > 0, (Π0, ζ, ρ(ζ), τ ε

c ) is an issuer ε-hedge and (−Π0,−ζ,−ρ(ζ), τ ε
p ) is a holder ε-hedge,

(ii) if the process K is continuous, we may set ε equal to 0 in part (i), and thus (Π0, ζ, ρ(ζ), τ0
c ) and

(−Π0,−ζ,−ρ(ζ), τ0
p ) are an issuer hedge and a holder hedge, respectively.

Proof. (i) For the ease of notation, we write ρ = ρ(ζ). Let us define V by, for t ∈ [0, T ] :

βtVt := mt−
∫

[0,t]

βu dρu +β0(Π0−Π̂0) = βtΠ̂t +
∫

[0,t∧τd]

βu dKu−
∫

[0,t]

βu dρu +β0(Π0−Π̂0), (33)
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where the second equality follows from (28) and (27). Thus, in particular, V0 = Π0. By definition
(31) of ρ, we obtain, for t ∈ [0, T ],

d(βtVt) = dmt − βt dρt = ζt d(βtX̂t). (34)

Hence V is the wealth process of the primary strategy (Π0, ζ). Let us fix ε > 0. In order to prove
that the quadruplet (Π0, ζ, ρ, τε

c ) is an issuer ε-hedge with the cost ρ for the game option, where the
stopping time τε

c ∈ F̄0
T is given by (see Proposition 3.7)

τε
c = inf

{
t ∈ [τ̄ , T ] ; Π̃t ≥ Ut − ε

}
∧ T,

it is enough to show that we have for any τp ∈ G0
T , with τ = τp ∧ τε

c (cf. (12)):

Vτ + β−1
τ

∫ τ

0

βu(dρu − dDu)

≥ 1{τ<τd}

(
1{τ=τp<T}Lτp + 1{τ<τp}Uτε

c
+ 1{τp=τε

c =T}ξ
)
− ε. (35)

From the definition of τε
c , the minimality conditions in (Ē) and the continuity of K− it follows that

K− = 0 and thus K ≥ 0 on [0, τ ε
c ]. Since τ ≤ τε

c , (33) thus yields

Vτ + β−1
τ

∫ τ

0

βu(dρu − dDu) = Πτ + β−1
τ

∫
[0,τ∧τd]

βu dKu ≥ Πτ = 1{τ<τd}Π̃τ ,

where, by (Ē), we have
Π̃τ ≥ 1{τ<T}Lτ + 1{τ=T}ξ.

In addition, by the definition of τε
c , we have that Π̃τε

c
≥ Uτε

c
− ε on the event {τε

c ≤ T}. It is now
easy to see that (35) is satisfied and thus (V0, ζ, ρ, τε

c ) is indeed an issuer ε-hedge. The arguments
for a holder are essentially symmetrical to those for an issuer; the details are left to the reader.

(ii) If K is a continuous process, one can take ε equal to 0 above and thus the second assertion holds
as well. Indeed, the continuity of K implies that K−

t = 0 on [0, τ0
c ] and K+

t = 0 on [0, τ0
p ]. 2

Remark 4.1 (i) The situation where ρ can be made equal to zero by the choice of a suitable strategy
ζ in Proposition 4.1 corresponds to a particular form of hedgeability of a game option (cf. Propo-
sition 4.3 below; see also [6]) in which an issuer and a holder are able to hedge all risks embedded
in a defaultable game option. The case where ρ 6= 0 corresponds either to non-hedgeability of a
game option or to the situation in which an issuer (or a holder) is able to hedge, but she prefers
not to hedge all the risks embedded in the option, for instance, she may be willing to take some
bets regarding specific risk directions. That is why we do not postulate a priori that ρ should be
minimized in some sense as, for instance, in Schweizer [41] (see, however, Section 5.3 for a tentative
unified approach).
(ii) For any ε > 0, it is possible to introduce the trivial hedge (Π0, ζ

0, ρ0, τ ε
c ) (resp. (−Π0,−ζ0,−ρ0, τ ε

c ))
with ζ0 = 0 and the G-local martingale cost

ρ0
t =

∫ t

0

β−1
u dmu, t ∈ [0, T ].

Obviously, the trivial hedge is of a minor practical interest, since it implicitly assumes that either
hedging is impossible or one is not interested in hedging. This hedge (or, more precisely, the existence
of any hedge) is used in the proof of Proposition 4.2, however.
(iii) The situation of Proposition 4.1(ii) (a continuous K-component of a solution to (Ē)) is a rule
rather than an exception in applications (including the case of F-models with jumps; see Remark
3.6(iii)).
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Let us now draw some conclusions from Lemma 2.3 and Proposition 4.1. In the context of specific
(Cox-Ross-Rubinstein or Black–Scholes) models, analog results can be found in Kifer [33]. Our main
contribution here is to extend theses results to a context involving reduction of filtration (and also,
to much more general models).

Proposition 4.2 Under the assumptions of Proposition 4.1, we have that:
(i) Π0 = essminVc

0, so Π0 is the infimum of initial wealths of an issuer hedge with a G-sigma
martingale cost.
(ii) We have that −Π0 ∈ Vp

0 . If, in addition, (5) holds then Π0 = −essminVp
0 and −Π0 is the

infimum of initial wealths of a holder hedge with a G-sigma martingale cost.
(iii) The infima above are attained and thus they are in fact minima if K is continuous.
(iv) The above statements are also valid with local martingale instead of sigma martingale therein.

Proof. (i) By applying Proposition 4.1 to the trivial hedge of Remark 4.1(ii), we get, in particular,
that Π0 ∈ Vc

0 , where Π0 is also equal to the Q-value of the related Dynkin game, by Proposition 3.7.
Thus, the infimum is attained and we have equality, rather than inequality, in Lemma 2.3(i) (see
also Remark 2.8).
(ii) The second claim can be proven as part (i), assuming (5).
(iii) The proof is the same as for parts (i) and (ii) above, using Proposition 4.1(ii).
(iv) This follows immediately of (i) and (ii), since the cost ρ0 of the trivial hedge is a G-local
martingale. 2

Remark 4.2 (i) Given our definition of hedging with a cost, the fact that there exists a hedge in
this sense with initial wealth Π0 (as actually with any initial wealth) was of course expected. Due
now to the definition Π0, existence of a hedge with G-sigma (or local in suitable cases) martingale
cost is also a rather natural conclusion. Finally the minimality statement establishes a connection
between arbitrage prices and hedging in a general, incomplete market.
(ii) In fact, it is easy to see that one could state analogous definitions and results regarding hedging
a defaultable game option, starting at any date t ∈ [0, T ]. Otherwise said, the fact that 0 is the
inception date of the option is immaterial in Lemma 2.3 and Propositions 4.1 and 4.2.
(iii) In case where K is continuous, an inspection of the above proofs shows that the assumption of
a positively bounded discount factor process β may be relaxed into that of a positive and bounded
discount factor process β.

4.2 Defaultable European Options

Let us now consider the special case of a defaultable European option.

Definition 4.3 (i) An issuer hedge with the cost ρ (a real-valued G-semimartingale with ρ0 = 0)
for a defaultable European option is a primary strategy (V0, ζ) with wealth process V such that (cf.
(8))

βT VT +
∫ T

0

βu dρu ≥ β0φ(0), a.s.

If the inequality may be replaced by equality then we deal with an issuer replicating strategy with
the cost ρ.
(ii) A holder hedge with the cost ρ (a real-valued G-semimartingale with ρ0 = 0) for a defaultable
European option is a primary strategy (V0, ζ) with wealth process V such that (cf. (8))

βT VT +
∫ T

0

βu dρu ≥ −β0φ(0), a.s.

If the inequality may be replaced by equality then we deal with a holder replicating strategy with
cost ρ.
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In the special case of a defaultable European option, we shall consider the BSDE (Ē) with L̂

replaced by L̄ such that αL̄ = −(c + 1), where −c is a lower bound on αT ξ̂. Note that under mild
technical assumptions this equation has a solution (Θ̄,M,K) (see [5, 12])). By Proposition 3.5, we
obtain

αtΘ̄t = esssupτp∈Ft
T

EQ
(
1{τp<T}ατp

L̄τp
+ 1{τp=T}αT ξ̂

∣∣Ft

)
= EQ

(
αT ξ̂

∣∣Ft

)
,

where we also used the definition of L̄. So, first, the Θ̄-component of (Ē) is the arbitrage Q-price of
the option and, second, we have that αΘ̄ ≥ −c. Hence Θ̄ > L̄ on [0, T ], so that necessarily K = 0
and (Ē) effectively reduces to an elementary BSDE with no process K involved in the solution.

The next result can be established along similar lines as Lemma 2.3, Propositions 4.1 and 4.2.
The proofs are, of course, simpler since there are in effect no barriers involved, and thus they are
omitted. Note also that the obvious analogues to Remark 4.2 can be formulated.

Proposition 4.3 In the case of a defaultable European option, assume that the BSDE (Ē) with
L̂ replaced by L̄ and with τ̄ = T admits a solution (Θ̄,M,K = 0). Let us set Φ̃t = Θ̄t − F̄t for
t ∈ [0, T ].
(i) The process Φt = 1{t<τd}Φ̃t is the arbitrage price process for the option, as well as the minimal
issuer hedging price process with G-sigma martingale (or local martingale) cost.
(ii) In the case where R and ξ are bounded, −Φ is also the minimal holder hedging price process with
G-sigma martingale (or local martingale) cost.
(iii) Given any R1⊗d-valued, βX̂-integrable process ζ, let the G-sigma martingale (or G-local mar-
tingale in case where βX̂ and ζ are locally bounded) ρ be defined as (31). Then (Π0, ζ, ρ) and
(−Π0,−ζ,−ρ) are the replicating strategies with G-sigma martingale (or local martingale) cost for
an issuer and a holder, respectively.

4.3 Hedging Error Process

In the situation of Propositions 4.1 or 4.3, the following result establishes the link between the notion
of the cost process ρ = ρ(ζ) of a strategy ζ, as defined by (31), and a more practical concept of
the hedging error process (also known as the tracking error (cf. [21]) or the profit and loss process)
e = e(ζ) relative to the ex-dividend Q-price process Π. From the perspective of an option’s issuer,
the discounted hedging error is defined by, for t ∈ [0, T ] (cf. (27)),

βtet = β0Π̂0 +
∫ t

0

ζu d(βuX̂u)− βtΠ̂t. (36)

Corollary 4.4 We have, for t ∈ [0, T ],

βtet =
∫ t∧τd

0

βu dKu −
∫ t

0

βu dρu. (37)

In particular:
(i) In the case when ρ is a G-local martingale and K is a continuous process, then the discounted
hedging error βe is a G-special semimartingale with the canonical Doob-Meyer decomposition given
by (37), where the G-local martingale component is given by

∫ ·
0
βt dρt.

(ii) In the case of a European derivative with K = 0, the discounted hedging error βe is given as a
G-sigma martingale (or a G-local martingale, in case ρ is a G-local martingale)

βtet = −
∫ t

0

βu dρu.

Proof. Using (28) and (36), we obtain, for t ∈ [0, T ],

βtet = m0 −mt +
∫ t∧τd

0

βu dKu +
∫ t

0

ζu d(βuX̂u) =
∫ t∧τd

0

βu dKu −
∫ t

0

βu dρu
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by definition (31) of ρ. All assertions now easily follow. 2

Note that typically in applications:
• βX̂ and ζ are locally bounded processes, so that ρ is a G-local martingale (cf. (31)),
• K is a continuous process (cf. Remark 3.6(iii)).
We are thus in the situation of Corollary 4.4(i) and thus the discounted hedging error process is a
special G-semimartingale with the local martingale component given by

∫ ·
0
βt dρt.

5 Analysis of Hedging Strategies

5.1 Discounted Cumulative Value Dynamics

Let Nd = H − Γ·∧τd
stand for the compensated jump-to-default process. Under our standing as-

sumption that the F-hazard process Γ of τd is a continuous and non-decreasing process (cf. Remark
3.2(ii)), the process Nd is known to be a G-martingale. Also recall that the avoidance property
holds, in the sense that Q(τd = τ) = 0 for any F-stopping time τ .

An analysis of hedging strategies in the next section will rely on the following lemma, which
yields the dynamics of the discounted cumulative value process of a game option or, more precisely,
of its martingale component m (see the comments following the proof of Lemma 3.6).

Lemma 5.1 The G-martingale m defined by (28) satisfies

dmt = 1{t≤τd}βt

(
dMt + Yt dNd

t

)
, (38)

where we set Y = R− Π̃·−.

Proof. Let us introduce the Doléans-Dade martingale (see, e.g., [7])

Et = 1{t<τd}e
Γt = 1−

∫ t

0

Eu− dNd
u ,

so that αtEt = βt1{t<τd} and αtEt− = βt1{t≤τd}. Then (cf. (27) and (28))

dmt = d(βtΠ̂t) + 1{t≤τd}βt dKt = d(EtαtΠ̃t) + 1{t≤τd}βt dKt + βt dDt. (39)

It may happen that (the F-semimartingale) αΠ̃ is not a G-semimartingale, so a direct application of
the (G-)integration by parts formula to EαΠ̃ is precluded. However, by Lemma A.1(iv), the process
αΠ̃ stopped at τd is a G-semimartingale. It is also clear that EαΠ̃ = Eα·∧τd

Π̃·∧τd
. Hence, by applying

the integration by parts formula to Eα·∧τd
Π̃·∧τd

, we obtain

d(Etαt∧τd
Π̃t∧τd

) = Et−

(
d
(
αt∧τd

Π̃t∧τd

)
− αtΠ̃t− dNd

t

)
+ d[E , α·∧τd

Π̃·∧τd
]t,

where, in addition, we have that [E , α·∧τd
Π̃·∧τd

]t = −eΓτd ατd
∆Π̃τd

Ht. Using the avoidance property,
formula (29) and the facts that the coupon process C is F-predictable and the hazard process Γ is
continuous, so that ∆Cτd

= ∆Γτd
= 0, we check that ∆Π̃τd

= 0. Using (29), we then deduce from
(39) that

dmt = Et−

(
d
(
αt∧τd

Π̃t∧τd

)
− αtΠ̃t− dNd

t

)
+ 1{t≤τd}βt dKt + βt dDt

= 1{t≤τd}βt

(
− dKt − dCt −Rt dΓt + dMt − Π̃t− dNd

t

)
+ 1{t≤τd}βt dKt + βt dDt

= 1{t≤τd}βt

(
− dCt −Rt dΓt + dMt − Π̃t− dNd

t

)
+ βt dDt.

Using (3) and the equality ∆Cτd
= 0, we finally arrive at the equality

dmt = 1{t≤τd}βt

(
dMt + (Rt − Π̃t−) dNd

t

)
,

which is the required result. 2



T.R. Bielecki, S. Crépey, M. Jeanblanc and M. Rutkowski 21

5.2 Hedging via Orthogonal Decompositions

In order to study non-trivial hedging strategies for a defaultable game option in the general set-up of
this paper, we make the following structure assumptions on the primary prices (we refer the reader
to [5] for more detail and background about these structural assumptions):

X = (1−H)X̃ ,

where X̃ is the pre-default value of X (in particular any value of the primary market at τd is
embedded in the recovery part, denoted by R, of the dividend process for X). Inspired by (38), we
assume further the following primary price processes dynamics, for t ∈ [0, T ]:

d(βtX̂t) = 1{t≤τd}βt

(
dM̂t + Ŷt dNd

t

)
, (40)

for some F-martingale M̂, where we set Ŷ = R− X̃·−. Plugging (38) and (40) in (45), we thus get,
every t ∈ [0, T ∧ τd]:

dρt =
(
dMt − ζtdM̂t

)
+

(
dnt − ζt dn̂t

)
. (41)

We shall then resort to suitable (Galtchouk-Kunita-Watanabe) decompositions of M and M̂.
Note that in a more specific Markovian set-up, a short-cut to get such decomposition will consist in
using suitable versions of the Itô formula (see Bielecki et al. [5] and [6]).

We assume here that a reference Rq-valued F-semimartingale, denoted by N , is given a priori. In
any particular application, the choice of this process will depend on the problem at hand (see [5]).

By a decomposition of M and M̂ , we mean the following identities, for t ∈ [0, T ] :

dMt = Zt dNt + dnt , dM̂t = Ẑt dNt + dn̂t (42)

where Z and Ẑ are F-adapted, R1⊗q-valued, N -integrable processes, and n and n̂ are a real-valued
F-semimartingales. As it will become apparent in the sequel, n and n̂ are expected to be orthogonal
to N in some sense, which explains, for instance, why we cannot simply take Z = Ẑ = 0 in (42).

Let us denote N =
[

N
Nd

]
. A decomposition of M and M̂ combined with (38) and (40), yields, for

every t ∈ [0, T ∧ τd],

dmt = βtZt dNt + βt(Rt −Πt−) dNd
t + βt dnt = βt[Zt, Yt] dNt + βt dnt (43)

d(βtX̂t) = βtẐt dNt + βtŶt dNd
t + βt dn̂t = βt[Ẑt, Ŷt] dNt + βt dn̂t (44)

where [Zt, Yt] stands for the concatenation of Zt and Yt.

Proposition 5.2 Assume that we are given a decomposition (42). Then for any R1⊗d-valued, βX̂-
integrable process ζ, the related cost ρ = ρ(ζ) in Proposition 4.1 satisfies, for every t ∈ [0, T ∧ τd],

dρt =
(
[Zt, Yt]− ζt[Ẑt, Ŷt]

)
dNt +

(
dnt − ζt dn̂t

)
. (45)

(i) Assume, in addition, that the linear system [Z, Y ] = ζ[Ẑ, Ŷ ] has a βX̂-integrable solution ζ̂ on
[0, T ∧ τd]. Then the cost ρ̂ = ρ(ζ̂) satisfies, for t ∈ [0, T ∧ τd],

dρ̂t = dnt − ζ̂t dn̂t. (46)

(ii) Alternatively to (i), let us assume additionally that the linear system Z = ζẐ has a βX̂-integrable
solution ζ̃ on [0, T ∧ τd]. Then the cost ρ̃ = ρ(ζ̃) satisfies, for t ∈ [0, T ∧ τd],

dρ̃t = (dnt − ζ̃t dn̂t) + (Yt − ζ̃tŶt) dNd
t . (47)
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Proof. All formulas follow from definition (31) of the cost process, formula (43), and by definition
of ζ̂ and ζ̃. 2

In relation with Remark 4.1(ii), note that the situation of Proposition 5.2(i) corresponds to the
hedgeable case, where the cost ρ̂ vanishes for a strategy ζ̂. The situation of Proposition 5.2(ii)
corresponds to the case of unhedgeable default risk (case where Ŷ = 0), or of a default risk which
would be hedgeable but that the issuer or holder of the hedge does not wish to hedge.

Practically useful decompositions of M and M̂ will depend on a particular model for the primary
market, as well as on the game option under consideration. In an abstract set-up they follow from
martingale representation theorems with orthogonal components (for complementary results in the
Markovian set-up we refer the interested reader to Bielecki et al. [5]). Let thus H2 denote the class
of real-valued F-martingales with integrable quadratic variation over [0, T ], or, by a slight abuse of
notation, the class of vector-valued processes with mutually strongly orthogonal components in H2.
It is worth noting that an F-martingale stopped at τd is a G-local martingale, by Lemma A.1(iii).

The Galtchouk-Kunita-Watanabe (GKW) decomposition of M and M̂ with respect to N in F
(see, e.g., Protter [40, IV.3, Corollary 1]) thus yield a decomposition (42) of M and M̂ with n and
n̂ strongly orthogonal to N in H2.

The following proposition justifies the informal statement that the strategy ζ̂ (resp. ζ̃) hedges
the risk source N (resp. N). In this result and its proof, the symbol [·, ·] denote the square brackets
between G-semimartingales.

Proposition 5.3 Let (42) be given as the GKW decomposition of M and M̂ with respect to N .
(i) In the situation of Proposition 5.2(i), then the processes ρ̂ and N·∧τd

are orthogonal in G, in the
sense that [ρ̂,N·∧τd

] is a G-sigma martingale (and a G-local martingale if ζ̂ is locally bounded).
(ii) In the situation of Proposition 5.2(ii), then the processes ρ̃ and N·∧τd

are orthogonal in G, in
the sense that [ρ̃, N·∧τd

] is a G-sigma martingale (and a G-local martingale if ζ̃, R and R are locally
bounded processes).

Proof. Observe first that n·∧τd
and N·∧τd

are G-local martingales, by Lemma A.1(iii). Since n is
strongly orthogonal to N in H2, the process [n·∧τd

, N·∧τd
] is a G-local martingale, as an F-local

martingale stopped at τd (cf. Lemma A.1(iii)). Furthermore, by Lemma A.5, [n·∧τd
, Nd] is a G-

local martingale. We conclude that [n·∧τd
,N·∧τd

] is a G-local martingale. So are also [n̂, N·∧τd
] and

[n̂,N·∧τd
], since the integral

∫ ·
0
βt dn̂t is strongly orthogonal to N·∧τd

. Using (46), we conclude in
case (i) that [ρ̂,N·∧τd

] is a G-sigma martingale and thus it follows a G-local martingale if ζ̂ is a
locally bounded process. Furthermore, by Lemma A.5, [N·∧τd

, Nd] is a G-local martingale. In view
of (47), we conclude in case (ii) that [ρ̃, N·∧τd

] is a G-sigma martingale and thus it follows a G-local
martingale if ζ̃, R and R are locally bounded processes. 2

5.3 Min-Variance Hedging

It is rather obvious, that we provided here only a preliminary analysis of hedging strategies for
defaultable game options. In order to give a unified perspective on hedging strategies, let us now
consider hedging a defaultable game option as the problem of finding a strategy ζ in (31) that makes
ρ in (31) G-orthogonal to a given vector-valued G-local martingale Ñ , which is, without loss of
generality, stopped at τd. We thus consider in here a notion of hedging, which is alternative to that
of Definition 2.6.

In reference to Proposition 5.3, by the G-orthogonality, we mean here that [ρ, Ñ ] is a G-local
martingale. Also, in the context of this section, the process m in (31) may be defined either by (28),
in reference to a solution of a related doubly reflected BSDE with respect to a reference filtration
F, or, more generally, as the G-local martingale component of the discounted cumulative Q-value
process βΠ̂ of a game option if βΠ̂ is a G-special semimartingale.
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In the following proposition we denote (whenever well-defined)

Covt(dXt, dYt) = lim
h→0

h−1 Cov
(
Xt+h −Xt, Yt+h − Yt

∣∣Gt

)
, Vart(dXt) = Covt(dXt, dXt)

Proposition 5.4 Let us take for granted a decomposition of the form

d(βtX̂t) = βtZ̃t dÑt + βt dñt, t ∈ [0, T ∧ τd], (48)

with ñ and Ñ orthogonal in G and Z̃ left-invertible on [0, T ∧ τd]. Setting, for t ∈ [0, T ∧ τd],

ζt = Covt(dmt, βt dÑt)Vart(βt dÑt)−1Λt, (49)

where Λ is the left inverse of the transpose of Z̃ on [0, T ∧ τd], then the cost ρ is orthogonal to Ñ in
G.

Proof. In order to have the cost ρ orthogonal to Ñ in G, it suffices to choose ζ so that m −∫ ·
0
βtζtZ̃t dÑt be G-orthogonal to Ñ . Now, relying on the multi-linear regression formula, this can

be achieved by setting zeta as in (49). 2

So the problem of hedging the option with respect to the risk factor Ñ can be solved, at least the-
oretically, provided one can find a decomposition (48) with the required properties. Let us conclude
this short analysis by noting that there are at least two situations in which such a decomposition
(48) can be obtained explicitly.

First, it may be obtained as the Galtchouk decomposition of βX̂ in G with respect to Ñ , inasmuch
as the related matrix Z̃ is left-invertible on [0, T∧τd]. For Ñ = N·∧τd

or N·∧τd
, we leave as an exercise

the issue whether the strategies (49) for Ñ = N·∧τd
or N·∧τd

on the one hand, and ζ̂ or ζ̃ (as of
Proposition 5.3) on the other hand, can be shown to coincide, at least in the context of specific
Markovian set-ups where all the computations can be pushed further.

The second situation corresponds to the case of a process Ñ such that

βt dÑt = Λt d(βtX̂t), t ∈ [0, T ∧ τd],

for a G-predictable, locally bounded, Rd⊗d-valued, invertible process Λ (so in that case ñ = 0 in
(48)). Then formula (49) for the related strategy ζ reduces to

ζt = Covt(dmt,Λt d(βtX̂t))Vart(Λt d(βtX̂t))−1Λt

= Covt(dmt, d(βtX̂t))Vart(d(βtX̂t))−1 =: ζva
t .

We recognize here a strategy ζva, which is commonly known as the min-variance hedging strategy.
It effectively corresponds to the cost process orthogonal to prices of primary assets under the pre-
selected risk-neutral probability Q, in our set-up.

Remark 5.1 Arguably, in the context of game (or even American) options, a proper min-variance
hedging approach should also probably incorporate optimization over the stopping times involved,
leading to optimization problems like (from the issuer’s perspective, cf. (10)):

essinfτc∈Ḡ0
T ,ζesssupτp∈G0

T
EP(

(
βτVτ − β0π(0; τp, τc))2 | G0

)
(50)

for some given (possibly random in our set-up, see Remark 2.5, though this is not the point here)
initial wealth V0, and where, moreover, the expectation EP is computed under the historical (rather
than risk-neutral) probability measure. Such an approach is dealt with in discrete time in Dolinsky
and Kifer [19]. In the last paragraph of their paper they conclude that the problem in continuous
time seems to be much more difficult. Whether such an approach in continuous time is amenable to
mathematical and practical solution is indeed far from obvious. We leave this as an open problem
to the reader.
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A Auxiliary Lemmas

Recall that an F-pseudo-stopping time τ is a random time (not necessarily F∞-measurable) such
that EQMτ = EQM0 for every bounded F-martingale M (see Nikeghbali and Yor [39, Remark 1]).

We work under our standing Assumption 3.1.

Lemma A.1 (i) G is a non-increasing process.
(ii) The G-stopping time τd is an F-pseudo-stopping time.
(iii) Any F-local martingale stopped at τd is a G-local martingale.
(iv) Any F-semimartingale stopped at τd is a G-semimartingale.
(v) The integral process of a continuous integrand with respect to an F-martingale stopped at τd is a
G-local martingale.

Proof. Since G is a continuous supermartingale, it admits the Doob-Meyer decomposition G = M−A
with a continuous martingale component M [29, p.44, Lemma 4.24]. Hence M is in fact constant, as
a continuous martingale with finite variation, and thus (i) holds. By [39, Theorem 4.5], (i) implies
(ii) (note that the continuity of the filtration F is only used for the converse in [39, Theorem 4.5]).
By [39, Theorem 4.4], (ii) implies (iii), which immediately yields (iv). As for (v), we have that an
F-martingale stopped at τd is a G-local martingale, by (iii). The integral process of a continuous
(hence predictable and locally bounded) integrand, with respect to an F-martingale stopped at τd,
is thus a G-local martingale (cf. Remark 2.1). 2

We recall the following well-known results. We refer the interested reader to Bielecki and
Rutkowski [7, Lemma 5.1.2(ii) and Corollary 5.1.2] for (i) and Dellacherie et al. [17, p. 186,
§75] for (ii) (see also Proposition 9.12 of Nikeghbali [38]).

Lemma A.2 (i) Let χ be a G∞-measurable random variable. For any t ∈ R+ such that one of the
members of the following equality is well defined in R (e.g., χ bounded from one side), the other one
is well defined too, and we have

1{t<τd}EQ(χ | Gt) = 1{t<τd} eΓt EQ(1{t<τd}χ | Ft).

In particular, if χ is Gt-measurable then 1{t<τd}χ = 1{t<τd} χ̃ where χ̃ = eΓtEQ(1{t<τd}χ | Ft) is
an Ft-measurable random variable. So for any G-adapted process Y over [0, T ], there exists an
F-adapted process Ỹ over [0, T ] such that

1{t<τd}Yt = 1{t<τd}Ỹt, t ∈ [0, T ].

(ii) For any G-predictable process Y over [0, T ], there exists an F-predictable process Ỹ over [0, T ]
such that

1{t≤τd}Yt = 1{t≤τd}Ỹt, t ∈ [0, T ]. (51)

Remark A.1 In the G-predictable case, the process Ỹ satisfying (51) is uniquely defined under
Assumption 3.1, by [17, p.186].

For any t ∈ [0, T ], we denote by F t
T the set of all F-stopping times with values in [t, T ]. Also,

given a stopping time τ̄ ∈ F0
T let F̄ t

T stand for the class {τ ∈ F t
T ; τ ≥ τ̄}. The following result

examines the relevant properties of these classes of stopping times.

Lemma A.3 (i) If τ ∈ Gt
T for some t ∈ [0, T ] then there exists τ̃ ∈ F t

T such that τ ∧ τd = τ̃ ∧ τd.
Moreover, if τ̄ ∈ G0

T and if τ ∈ Ḡt
T for some t ∈ [0, T ] then we have τ̃ ∧ τd ≥ τ̄ ∧ τd.

(ii) If τ̄ ∈ F0
T and τ ∈ Ḡt

T for some t ∈ [0, T ] then there exists τ̃ ∈ F̄ t
T such that τ ∧ τd = τ̃ ∧ τd.
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Proof. Since τ is a G-stopping time, by [17, p. 186, §75] there exists an F-stopping time τ̂ such that
τ ∧ τd = τ̂ ∧ τd. Moreover, since τ ∈ Gt

T , we have

τ ∧ τd = (τ ∨ t) ∧ τd = (τ ∧ τd) ∨ (t ∧ τd) = (τ̂ ∧ τd) ∨ (t ∧ τd) = (τ̂ ∨ t) ∧ τd,

so that we may take τ̃ = τ̂ ∨ t ∈ F t
T . Moreover, if τ ∧ τd ≥ τ̄ ∧ τd for some stopping time τ̄ ∈ G0

T ,
then we also have that τ̃ ∧ τd = τ ∧ τd ≥ τ̄ ∧ τd, which proves (i).

For (ii), let τ̆ ∈ F t
T be such that τ ∧ τd = τ̆ ∧ τd, by (i). Assuming that τ̄ ∈ F0

T , we have that
τ̃ = τ̆ ∨ τ̄ ∈ F̄ t

T . So

τ̃ ∧ τd = (τ̆ ∨ τ̄) ∧ τd = (τ̆ ∧ τd) ∨ (τ̄ ∧ τd) = τ̆ ∧ τd = τ ∧ τd,

where the third equality holds, since τ ∈ Ḡt
T implies that τ̆ ∧ τd ≥ τ̄ ∧ τd, by (i). 2

The following lemma is of independent interest. Formula (52) can be found in Dellacherie [16,
T47] and part (i) can be established using (52).

Lemma A.4 For any F-stopping time τ , we have that

Q(τd > τ | Fτ ) = e−Γτ . (52)

Moreover, if τ ∈ F t
T for some t ∈ [0, T ], then:

(i) For any Fτ -measurable random variable χ such that at least one side of the following equality is
well defined in R (e.g., χ bounded from one side), the other one is also well defined and we have:

EQ(1{τ<τd}χ | Gt) = 1{t<τd}e
Γt EQ

(
e−Γτ χ

∣∣Ft

)
.

(ii) For any F-predictable process Z such that at least one side of the following equality is well defined
in R (e.g., Z is bounded from one side), the other one is also well defined and we have

EQ(1{t<τd≤τ}Zτd
| Gt) = 1{t<τd}e

Γt EQ

( ∫ τ

t

Zue−Γu dΓu

∣∣∣Ft

)
.

(iii) For any finite variation F-predictable process A such that at least one side of the following
equality is well defined in R (e.g., the variation of A over [0, T ] is bounded from one side), the other
one is also well defined and we have

EQ

( ∫ τ∧τd

t∧τd

dAu

∣∣∣Gt

)
= 1{t<τd}e

Γt EQ

( ∫ τ

t

e−Γu dAu

∣∣∣Ft

)
.

Proof. (i) Since τ ∈ FT
t , one has Ft ⊂ Fτ ⊂ FT , hence by Lemma A.2:

EQ(1{τ<τd}χ | Gt) = 1{t<τd} eΓt EQ
(
1{τ<τd}χ

∣∣Ft

)
= 1{t<τd} eΓt EQ

(
χ Q(τ < τd

∣∣Fτ )
∣∣Ft

)
= 1{t<τd} eΓt EQ

(
χ e−Γτ

∣∣Ft

)
,

where the second equality follows by (52).

(ii) If suffices to prove the formula for an elementary predictable process of the form Zs = 1]u,v](s)Bu

for an arbitrary event Bu ∈ Fu. For such a process, the formula follows easily from part (i).

(iii) We have that∫ τ∧τd

t∧τd

dAu = 1{t<τd}

∫ τ∧τd

t∧τd

dAu = 1{τ<τd}

∫ τ

t

dAu + 1{t<τd≤τ}

∫ τd

t

dAu,

where A is F-predictable. Using parts (i) and (ii), we obtain

EQ

(
1{τ<τd}

∫ τ

t

dAu

∣∣∣Gt

)
= 1{t<τd}EQ

(
eΓt−Γτ

∫ τ

t

dAu

∣∣∣Ft

)
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and
EQ

(
1{t<τd≤τ}

∫ τd

t

dAu

∣∣∣Gt

)
= 1{t<τd}EQ

( ∫ τ

t

( ∫ s

t

dAu

)
eΓt−Γs dΓs

∣∣∣Ft

)
,

where, by Fubini’s theorem,∫ τ

t

( ∫ s

t

dAu

)
eΓt−Γs dΓs =

∫ τ

t

∫ s

t

dAu eΓt−Γs dΓs =
∫ τ

t

eΓt−Γu dAu − eΓt−Γτ

∫ τ

t

dAu.

Hence

EQ

( ∫ τ∧τd

t∧τd

dAu

∣∣∣Gt

)
= 1{t<τd}EQ

( ∫ τ

t

eΓt−Γu dAu

∣∣∣Ft

)
= 1{t<τd}e

ΓtEQ

( ∫ τ

t

e−Γu dAu

∣∣∣Ft

)
,

as was expected. 2

In the next result, [M·∧τd
, Nd] refers to the square bracket of M·∧τd

and Nd with respect to the
filtration G, where Nd denotes, as usual, the compensated jump-to-default process. This bracket is
well defined, since Nd is a G-martingale and M·∧τd

is a G-local martingale, by Lemma A.1(iii).

Lemma A.5 For any F-martingale M , we have that [M·∧τd
, Nd] is a G-local martingale.

Proof. Let us write Hd = (1 − H)eΓ. Since Γ is continuous and non-decreasing, we have that
dHd = −Hd

− dNd (see [7]). By an application of Lemma A.4(i) with τ = T and χ = eΓT MT , we
obtain, for every t ∈ [0, T ],

Hd
t Mt∧τd

= 1{τd>t}e
ΓtMt = 1{τd>t}e

Γt EQ
(
MT

∣∣Ft

)
= EQ

(
1{τd>T}e

ΓT MT

∣∣Gt

)
,

so Mt·∧τd
Hd

t , t ∈ [0, T ], is a G-uniformly integrable martingale, hence [M·∧τd
,Hd] is a G-local

martingale (since M·∧τd
and Hd are G-local martingales). Now we have that

[M·∧τd
, Nd]t = ∆Mτd

Ht = −e−Γt [Mt∧τd
,Hd]t,

hence the conclusion follows. 2

B Variants of Main Results

To deal with some practical examples, it is important to enjoy some freedom in the choice of a doubly
reflected BSDE associated with a game option (cf. Remark 3.6(i)). To this end, we introduce the
following definition.

Definition B.1 Given a game option with data C,R, ξ, L, U, τ̄ , and an F-adapted finite variation
driver F with F̄ − F bounded from below, we define (E) as the doubly reflected BSDE (22) with
data

F, χ = ξ̂ − FT , L = L̂− F, U = Û − F, τ̄ ,

where, as in (Ē),
ξ̂ = ξ + F̄T , L̂t = Lt + F̄t, Ût = Ut + F̄t.

According to the definition above, the BSDE (E) has the following form

αtΘt = αT χ + αT FT − αtFt +
∫ T

t
αudKu −

∫ T

t
αudMu, t ∈ [0, T ],

Lt ≤ Θt ≤ Ūt, t ∈ [0, T ],∫ T

0
(Θu− − Lu−) dK+

u =
∫ T

0
(Ūu− −Θu−) dK−

u = 0

with Ū = 1{t<τ̄}∞+ 1{t≥τ̄}(Û − F ).
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In the special case of an European option, we consider the BSDE (E) with L replaced by L̄ such
that αL̄ = −(c + 1), where −c is a lower bound on αT χ.

Observe that for F = 0 equation (E) reduces to (Ē). As we already noted in Remark 3.6(i),
equations corresponding to various choices of a driver F are equivalent, in the sense that (Θ,M,K)
solves (E) for some driver F if and only if (Θ̄,M,K) solves (Ē), where Θ̄ = Θ + F . However, as
we shall see in further work (see [5, 6]), the freedom to use the most convenient driver is useful in
financial applications. This motivates us to state the following corollary to Proposition 3.7.

Corollary B.1 If (Θ,M,K) is a solution to (E) then the conclusions of Propositions 3.7, 4.1, 4.2
and 5.2 are still valid, provided that we set Π̃ = Θ + F − F̄ instead of Π̃ = Θ̄ − F̄ in (27). If
(Θ,M,K = 0) is a solution to (E) with L̄ instead of L̂ in L and with τ̄ = T then the conclusions of
Proposition 4.3 are still valid, provided that we set Φ̃ = Θ + F − F̄ instead of Φ̃ = Θ̄− F̄ therein.

C Protection and Post-protection Prices

In this section we briefly introduce the concepts of protection and post-protection prices, which really
become important in the Markovian set-up in relation with the connected variational inequality
approach (cf. [6, 5, 11]).

Definition C.1 Given the Q-price Π for a game option (see Theorem 2.2):
• by the pre-default Q-price, we mean the pre-default value process Π̃ of Π; in case τ̄ = 0, we also
call Π̃ the no protection Q-price,
• by the protection Q-price (resp. post-protection Q-price), we mean the process Π̃ stopped at τ̄

(resp. the restriction of Π̃ to the random time interval [τ̄ , T ]).

Thus the protection price refers to the pre-default price until the lifting of the call protection,
whereas the post-protection price refers to the pre-default price afterwards. It is intuitively clear
that post-protection prices should reduce to no-protection prices. This can indeed be shown by the
following simple argument. By formula (6) applied to the Q-price Π and recalling that Ḡt

T = {τ ∈
Gt

T ; τ ∧ τd ≥ τ̄ ∧ τd}, we have, for t ∈ [τ̄ , T ],

esssupτp∈Gt
T
essinfτc∈Gt

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
= Πt = essinfτc∈Gt

T
esssupτp∈Gt

T
EQ

(
π(t; τp, τc)

∣∣Gt

)
.

We thus see that Πt coincides on [τ̄ , T ] with the Q-price of the same game option, but with τ̄ replaced
by 0 (provided that the game option modified in this way also admits a well defined Q-price process
on [0, T ]). In this case, the pre-default Q-prices of the original game option and of the game option
with no call protection also coincide on [τ̄ , T ]∩ [0, τd), by Lemmas 3.1 and 3.2. So, if a game option
and its modification with τ̄ changed to 0 both admit Q-prices then the post-protection Q-price of
the former and the no protection Q-price of the latter coincide on [τ̄ , T ] ∩ [0, τd), as was claimed.
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[4] Bielecki, T.R., Crépey, S., Jeanblanc, M. and Rutkowski, M.: Arbitrage pricing of
defaultable game options with applications to convertible bonds. Forthcoming in Quantitative
Finance.
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