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Abstract

This paper deals with the valuation and hedging of counterparty risk on OTC deriva-
tives. Our study is done in a multiple-curve setup reflecting the various funding con-
straints (or costs) involved, allowing one to investigate the question of interaction be-
tween counterparty risk and funding.

The correction in value of a contract due to counterparty risk under funding con-
straints is represented as the value of an option on the value of the contract clean
of counterparty risk and excess funding costs. We develop a reduced-form backward
stochastic differential equations (BSDE) approach to the problem of pricing and hedg-
ing this correction, the so-called Credit Valuation Adjustment (CVA for short). In the
Markov setup, explicit CVA pricing and hedging schemes are formulated in terms of
semilinear CVA PDEs.

The take-away message of the paper is twofold. Firstly, for properly valuing and
hedging a counterparty risky contract under funding constraints, it is necessary to focus
on a party of interest (rather than on the contract in itself) and to consider explicitly
the three pillars of its position consisting of the contract, its hedging portfolio and its
funding portfolio. Secondly, the counterparty risk two stages valuation and hedging
methodology (counterparty risky price obtained as clean price minus CVA) which is
currently emerging for practical reasons in banks, is also useful in the mathematical
analysis of the problem.

Keywords: Counterparty Risk, Funding Constraints, Pricing and Hedging, Backward Stochas-
tic Differential Equation (BSDE), Credit Valuation Adjustment (CVA).
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1 Introduction

Counterparty risk is the risk of either party defaulting in an OTC derivative contract (or
portfolio of contracts). This is the native form of credit risk, which affects any OTC transac-
tion between two parties, as opposed to reference credit risk which is present in the cash-flows
of credit derivatives. An early treatment of counterparty risk can be found for instance in
Chapter 14 of Bielecki and Rutkowski (2002). The interest in counterparty risk, along with
counterparty risk itself, has exploded since the crisis, when it was realized that the resilience
of a bank to a major financial turmoil, is largely determined by its ability to properly value
and hedge this risk. The reader is referred to Cesari et al. (2010) or Gregory (2009) for
practically oriented presentations.

In this paper we deal with valuation and hedging of a generic contract, to be understood
in practice as a portfolio of OTC derivatives, between two defaultable counterparties. These
two parties, which will be referred to as “the bank” and “the investor”, are tied by a legal
agreement, the Credit Support Annex (CSA), prescribing the collateralization scheme and
the close-out cash-flow in case of default of either party. The aim of such an agreement is
to mitigate counterparty risk. Collateral means cash or various possible eligible securities
posted through margin calls as default guarantee by the two parties. The CSA close-out
cash-flow is the terminal cash-flow, including the accumulated collateral at that time, to
occur in case of default of either party.

A counterparty risk related issue, especially when dealing with bilateral counterparty
risk, is a proper accounting for the costs and benefits of funding one’s position into the con-
tract. From the perspective of say the bank (and symmetrically so for the investor), this lets
a third party enter the scene, namely the funder of the position of the bank. This also gives
rise to another close-out cash-flow in case the bank is indebted toward its funder at its time of
default. Interaction between the pricing, the hedging and the funding problems, has recently
become a major topic of concern for practitioners, reflected for instance in Piterbarg (2010),
Morini and Prampolini (2010), Burgard and Kjaer (2010) or Burgard and Kjaer (2011).

A particular trading desk has only a precise view on its own activity. It therefore lacks
the global view, and specifically the aggregated data, needed to properly value the CSA
cash-flows. Therefore in major investment banks today the trend is to have a central CVA
desk in charge of collecting the global information and of valuing and hedging counterparty
risk. Here CVA stands for Credit Value Adjustment. The value-and-hedge of the contract is
then obtained as the difference between the “clean” value-and-hedge provided by the trading
desk (clean of counterparty risk and excess funding costs), and a value-and-hedge adjustment
computed by the CVA desk.

This allocation of tasks between the various industry trading desks of an investment
bank, and the central CVA desk, motivates the present mathematical CVA approach to the
problem of valuing and hedging counterparty risk. Moreover this is done in a multiple-curve
setup accounting for the various funding constraints (or costs) involved, allowing one to
investigate the question of interaction between counterparty risk and funding.

We develop in this paper a reduced-form CVA backward stochastic differential equa-
tions (BSDE) approach to these problems, where the reduction of filtration is with respect
to the default times of the bank and the investor.
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1.1 Outline of the Paper

In Section 2, we revise the cash-flows at hand and characterize the hedging error arising from
a given pricing and hedging scheme, accounting in particular for the funding cash-flows.

Given potential non-linearities in the funding cash-flows, it is not possible to get rid
of funding costs through discounting as in a classical one-curve setup. In Section 3, the
cash-flows are thus priced instead under an “additive, flat” extension of the classical “mul-
tiplicative, discounted” risk-neutral assumption. We also derive the dynamic hedging inter-
pretation of our “additive risk-neutral” price.

Since the pioneering works of Damiano Brigo and his coauthors (see for instance
Brigo and Capponi (2010) in a context of bilateral counterparty risk), it is well understood
that the CVA can be viewed as an option, the so-called Contingent Credit Default Swap
(CCDS), on the clean value of the contract. Section 4 extends to a non linear multiple-curve
setup the representation of the CVA as the price of a CCDS. Our CVA accounts not only for
counterparty risk, but also for funding costs. The CCDS is then a dividend-paying option,
where the dividends correspond to these costs. Note that due to different funding conditions,
the (even bilateral) CVAs are not the same to the two parties.

We then develop in Section 5 a practical reduced-form CVA backward stochastic differ-
ential equations (BSDE) approach, to the problem of pricing and hedging counterparty risk
under funding constraints. Counterparty risk and funding corrections to the clean price-
and-hedge of the contract are represented as the solution to a pre-default CVA BSDE stated
with respect to a reference filtration, in which defaultability of the two parties only shows
up through their default intensities.

In the Markovian setup of Section 6, explicit CVA pricing and hedging schemes are
formulated in terms of semilinear pre-default CVA PDEs.

The main contributions of this paper consist of:

∙ An additive risk-neutral pricing approach to the funding issue, shown to be consistent
with pricing by replication in the case of complete markets,

∙ A reduced-form CVA BSDE modeling, valuing and hedging methodology.

The problem of valuing and hedging counterparty risk under funding constraints, is thus
reduced to solving Markovian pre-default CVA BSDEs, or (if the space-dimension allows)
equivalent semilinear PDEs. Our main results in this direction are Proposition 6.6 and
Corollary 6.7, which yield concrete recipes for risk-managing the contract as a whole or its
CVA component, according to the following objective of the bank: minimizing the (risk-
neutral) variance of the cost process (which is essentially the hedging error) of the contract
or of its CVA component, whilst achieving a perfect hedge of the jump-to-default exposure.
As an aside, this paper also contributes to shed some light on the debate about unilateral
versus bilateral counterparty risk.

Note that the mathematical BSDE modeling approach of this paper is consistent with
the American Monte Carlo technology which is advocated for practical computations in
Cesari et al. (2010).

The take-away message of the paper is twofold. Firstly, for properly valuing and
hedging counterparty risk in a multiple-curve setup reflecting the presence of various funding
costs, it is necessary to focus on a party of interest, say the bank, and to consider the “system”
consisting of the bank, the investor and the funder of the bank. One must also have a clear
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view of the three equally important pillars of this party’s position consisting of the contract
itself, its hedging portfolio and its funding portfolio (as opposed to getting rid of the funding
component of the position by discounting at the risk-free rate in a classical one-curve setup).

Secondly, the counterparty risk two stages valuation and hedging methodology (coun-
terparty risky price obtained as clean price minus CVA) which is currently emerging for
practical reasons in banks, is also useful in the mathematical analysis of the problem. This
makes the CVA not only a very important and legitimate financial object, but also a valuable
mathematical tool.

1.2 Modeling Issues

1.2.1 Unilateral or Bilateral Counterparty Risk?

In principle the possibility of one’s own default should be accounted for by a suitable correc-
tion, actually standing as a benefit (the so-called DVA for Debt Valuation Adjustment), to
the value of the contract. There is a debate among practitioners however regarding the rele-
vance of accounting for one’s own credit risk as a benefit through bilateral counterparty risk
valuation. The point is that since selling protection on oneself is typically illegal or hardly
doable in practice, it is not really possible to hedge one’s own credit risk. The principle of
risk-neutral valuation of bilateral counterparty risk is thus questionable.

But the practical justification for using a model of bilateral counterparty risk is that
unilateral valuation of counterparty risk induces a significant, unreconcilable gap between
the CVAs computed by the two parties. This implies that a CSA cannot be agreed on the
basis of unilateral counterparty risk valuations.

We will come back on this issue in the last Subsection of the paper.
If in the end one does not want to account for bilateral counterparty risk, one simply

considers a model of unilateral counterparty risk, which corresponds in our formalism to
letting � = +∞ everywhere below (for unilateral counterparty risk from the perspective of
the bank).

1.2.2 Immersion Hypothesis and the Case of Credit Derivatives

We believe that the reduced-form approach of this paper is appropriate to deal with coun-
terparty risk on all kinds of derivatives, except for credit derivatives. Indeed a reduced-form
approach draws its computational power from, essentially, an immersion hypothesis between
the reference filtration “ignoring” the default times of the two parties, and the filtration pro-
gressively enlarged by the latter. This immersion hypothesis implies a kind of weak or
indirect dependence between the reference contract and the default times of the two par-
ties (see Jeanblanc and Le Cam (2008) for a detailed discussion). This is fine for non-credit
derivatives, but it is not consistent with the strong credit dependence effects that may hold
between the two parties and the underlying names of a credit portfolio.

Moreover, in the case of credit derivatives, the reduced-form approach of this paper,
besides losing in relevance from the point of view of financial modeling, also loses from
its computational appeal. With credit derivatives the discontinuous and high-dimensional
nature of the problem is such that the gain in tractability resulting from the above reduction
of filtration, is not so tangible.

Remark 1.1 We refer the reader to Assefa, Bielecki, Crépey, and Jeanblanc (2011) and
Bielecki and Crépey (2011) regarding possible approaches to appropriately deal with CVA
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on credit derivatives. Note that ideally counterparty risk should not be considered at the
level of a specific class of assets, but at the level of all the contracts between two counter-
parties under a given CSA, and in fact ultimately, after summation, at the aggregated level
of all the CSAs of a bank. The construction of a global model and methodology for valuing
and hedging a CSA hybrid book of derivatives, including credit derivatives, will be dealt
with in future research.

1.2.3 Funding Constraints

By funding assets we mean riskless, finite variation assets which are used for funding a
position. In the classical one-curve setup with risk-free rate rt, there is only one funding
asset, the so-called savings account, growing at rate rt. The savings account is thus the

inverse of the risk-free discount factor �t = e−
∫ t

0
rsds. In this paper, we do not postulate the

existence of the savings account. The risk-free rate rt simply corresponds to the time-value
of money, and one can only think of �−1

t as a “fictitious” savings account. What we shall
have instead is the coexistence of various funding assets with different growth rates in the
economy.

This immediately raises the question of arbitrage that might result from trading be-
tween these rates. Of course these can simply reflect different levels of credit-riskiness, so
that a related arbitrage opportunity is only a pre-default view, disregarding losses-upon-
defaults. However, even without credit risk, different funding rates may consistently coexist
in an economy, reflecting trading constraints, or, in other words, liquidity funding costs.
The rationale here is that a given funding rate is only accessible for a definite notional and
for a specific purpose, so that funding arbitrage strategies are either not possible, or not
sought for by the parties. A good example in the context of counterparty risk is that of the
collateral, in which the two parties must have a contractually defined amount (Γ±

t below)
at any point in time.

2 Cash-Flows and Strategies

In this Section, we revise the cash-flows and characterize the hedging error arising from a
given pricing and hedging scheme, detailing in particular funding cash-flows.

2.1 Contract

We consider a contract, to be understood as a generic CSA portfolio of OTC derivatives,
between a bank and an investor. We denote by � and � the default times of the bank and of
the investor, in the sense of the times at which promised dividends and margin calls, cease
to be paid by a distressed party.

Let T ∈ ℝ+ denote the time horizon of the contract, and let (Ω,GT ,G), where G =
(Gt)t∈[0,T ], stand for a filtered space which is used throughout the paper for describing the
evolution of a financial market model. The filtration G as well as any other filtration in the
paper, are assumed to satisfy the usual conditions. All random times are [0, T ] ∪ {+∞}-
valued. The default times � and � are G-stopping times. All random variables are GT -
measurable. All processes are defined over [0, T ] and G-adapted. We endow the measurable
space (Ω,GT ) with a probability measure ℙ, which is fixed throughout the paper, and will
later be interpreted as a specific martingale pricing measure. We assume in particular that
ℙ is equivalent to the historical probability measure ℙ̂ over (Ω,GT ). We denote by Et the
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conditional expectation given Gt. All cash-flows that appear in the paper are assumed to
be ℙ-integrable. By default, all price and value processes (including the collateral margin
amount Γt) are assumed to be semimartingales, and all semimartingales (including finite
variation processes) are taken in a càdlàg version; all inequalities between random quantities
are to be understood dℙ-almost surely or dt⊗ dℙ-almost everywhere, as suitable.

We assume that default times cannot occur at fixed times, which is for instance satisfied
in all intensity models of credit risk. We denote

� = � ∧ � , �̄ = � ∧ T,

where �̄ represents the effective time horizon of our problem, since there will be no cash-
flows after it. We let D represent the clean or promised cumulative dividend process of the
contract, assumed to be of finite variation. A promised dividend dDt is only effectively paid
if none of the parties defaulted by time t, resulting in the effective dividend process C such
that dCt = 1t<�dDt.

In order to mitigate counterparty risk, the contract is collateralized. Collateral consists
of cash or various possible eligible securities posted through CSA regulated margin calls as
default guarantee by the two parties. We model collateral in this paper by means of an
algebraic margin amount Γ� passing from the bank to the investor at time � < T . So, before
� , a positive Γt represents an amount “lent” by the bank to the investor (and remunerated as
such by the investor), but devoted to become the property of the investor in case of default
of either party at time � (if < T ). Symmetrically, before � , a positive (−Γt) represents
an amount “lent” by the investor to the bank (and remunerated as such by the bank), but
devoted to become the property of the bank in case of default of either party at time � < T.

There is also a CSA close-out cash-flow 1�<TR
i from the bank to the investor at time

of default � < T , in which Ri is a G� -measurable random variable which will be specified in
Subsection 4.3.

We shall focus henceforth on the bank shortening the contract to the investor under the
rules of a given CSA, and setting up a related hedge. By the bank shortening the contract
to the investor we mean that all the cash-flows of the contract are paid by the bank. This
is conventional however since promised cash-flows are algebraic. For instance ΔDt = ±1
means a bullet cash-flow of ±1 “paid” by the bank to the investor at time t.

We also call external funder (or funder for short) a generic third-party1 insuring funding
of the position of the bank. External here stands in opposition to the internal source of
funding provided to the bank by the investor via the remuneration of the margin amount.
For simplicity we assume the external funder to be default-free.

In the context of this paper where the focus is on counterparty risk, recoveries upon
default are more conveniently excluded from dividends and accounted for separately as
boundary conditions. We shall thus distinguish two categories of related cash-flows:

∙ Dividends, in the sense of all pre-default cash-flows involving the bank, decomposing
into:

– Counterparty clean or promised contract dividends;

– Gains on the hedging instruments before time � ;

– The dt-cost/benefit of funding the position/investing into it;

1Possibly composed in practice of several entities and/or devices.
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∗ This includes in particular the remuneration of the collateral;

∙ Close-out cash-flows, meaning cash-flows at the default time � (if < T ), consisting of:

– The CSA close-out cash-flow, or recovery on the contract paid by the bank to the
investor upon default of either party;

∗ This includes in particular the delivery of the collateral;

– A close-out funding cash flow from the funder to the bank in case of a default of
the bank.

Apart from the promised dividends of the contract and the remuneration of the col-
lateral, which are exchanged between the two parties, all other cash-flows differ between
them. This induces an asymmetry between the parties, to the consequence that the value
of the contract is not the same from their perspectives. This is why we say above that we
focus on the bank. Of course symmetrical considerations apply to the investor, but with
non-symmetrical hedging positions and funding conditions.

2.2 Hedging Assets

Let P denote the ℝd-valued semimartingale price process of a family of hedging (risky,
infinite variation) assets, and let C stand for the corresponding ℝd-valued cumulative effective
dividend process. The finite variation dividend process C represents all the primary promised
cash-flows that are granted to a holder of the primary risky assets before time � .

An hedging asset can be traded either in swapped form, at no upfront payment, or
(at least for a physical asset as opposed to a natively swapped primary asset, see below)
directly on a primary market. Hedging assets traded in swapped form include (counterparty
risk clean) CDS-s on the two parties which are typically used for hedging the counterparty
jump-to-default exposure of the contract. Note that a fixed CDS (of a given contractual
spread in particular) cannot be traded dynamically in the market. Indeed, only freshly
emitted CDS-s can be entered into, at no cost and at the related fair market spread, at a
given time. What is used in practice for hedging corresponds to the concept of a rolling
CDS, formally introduced in Bielecki, Jeanblanc, and Rutkowski (2008), which is essentially
a self-financing trading strategy in market CDS-s. So, much like as in futures contracts, the
value of a rolling CDS is null at any point in time, yet due to the trading gains of the
strategy, the related cumulative value process is not zero. The case of hedging assets traded
in swapped form also covers the situation of a physical (as opposed to natively swapped)
hedging asset traded via a repo market.

We assume in this paper that every hedging asset can be traded in swapped form,
either as a natively swapped instrument rolled over time, or, for a physical asset, via a
corresponding repo market. In mathematical terms, trading the hedging asset with price Pi

t

in swapped form effectively means than one uses, instead of the original (physical or fixed
swap) asset, a synthetic asset with price process Si

t = 0 and gain process given by

dPi
t −

(
ritP

i
t + cit

)
dt+ dCi

t , (1)

where:

∙ In case of a physical primary asset traded via a repo market, the basis ci corresponds
to the so-called repo basis; the meaning of all other terms in (1) is clear;
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∙ In case of a natively swapped asset rolled over time, the different terms in (1) are to
be understood as2

dPi
t = dP̄i,t0

t ∣t0=t , Pi
t = P̄i,t

t = Si
t = 0 , ci = 0 , dCi

t = dC̄i,t0
t ∣t0=t (2)

where (P̄i,t0
t )t≥t0 is the price process at time t of the corresponding fixed (as opposed

to rolled) swap emitted at time t0 ≤ t, with dividend process (C̄i,t0
t )t≥t0 .

Note that all the dt-funding costs in this paper are expressed in terms of a basis, like
ci in (1), to the risk-free cost at rate rt.

2.3 Funding Assets

This Subsection provides a comprehensive specification of funding cash-flows. The corre-
sponding notion of a self-financing trading strategy will be derived in Subsection 2.4. A
general formulation of the pricing and hedging problem under abstract funding constraints
will then be given in Subsection 2.5.

Regarding funding of the hedging instruments, we suppose that the hedging position in
a primary risky asset is either entirely swapped, or funded in totality by the external lender,
and that this choice is given and fixed once for all at time 0 for every hedging instrument.
We let a superscript s refer to the subset of the hedging instruments traded in swapped
form, and s̄ refer to the subset, complement of s, of (physical) hedging instruments which
are traded directly on a primary market (and are therefore funded together with the contract
by the external funder).

Regarding the remuneration of the margin amount, we restrict ourselves for simplicity
here to collateral posted as cash. We follow the most common CSA covenant under which
the party getting the collateral can use it in its trading, as opposed to a covenant where
collateral is segregated by a third party in order to avoid the so-called re-hypothecation risk
(see Bielecki and Crépey (2011)). Specific CSA rates rt+ bt and rt+ b̄t, where b and b̄ stand
for related bases, are then typically used to remunerate the collateral owned by either party.
This results in a dt-remuneration of the margin amount which is worth

(rt + bt)Γ
+
t dt− (rt + b̄t)Γ

−
t dt = rtΓtdt+

(
btΓ

+
t − b̄tΓ

−
t

)
dt

to the bank, and the opposite to the investor. We assume further that the bank can lend
money to (respectively borrow money from) its external funder at an excess cost over the
risk-free rate rt determined by a funding credit and/or liquidity basis � (respectively �̄).

Note that even though the two parties are defaultable, the mechanism of collateral-
ization makes them practically default-free3 as far as aspects related to the collateral are
concerned. Since the external funder is assumed to be default-free, thus regarding funding
cash-flows of the bank, default risk is purely on the bank’s side, and confined to external
funding cash-flows. Namely, in case the bank is indebted to its (default-free) funder at time
� = � < T, then the bank could not be in a position to reimburse its external debt, which
results as we shall see below in a close-out funding cash-flow from the external funder to the
bank. This cash-flow corresponds to the the funding side of “the bank benefiting from its
own default”.

2See Bielecki, Jeanblanc, and Rutkowski (2008) and Bielecki, Crépey, Jeanblanc, and Rutkowski (2010)
for more details.

3Neglecting re-hypothecation issues, see Bielecki and Crépey (2011).
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In order to account for the above funding specifications in a classical formalism of self-
financing trading strategies, let us introduce the following funding assets on [0, �̄ ] (with all
initial conditions set to one):

∙ Two collateral funding assets, B0 and B̄0, evolving as

dB0
t = (rt + bt)B

0
t dt , dB̄0

t = (rt + b̄t)B̄
0
t dt, (3)

dedicated to the funding of the positive and the negative part of the margin account,

∙ Two external funding assets, Bf and B̄f , evolving as

dB
f
t = (rt + �t)B

f
t dt , dB̄

f
t = (rt + �̄t)B̄

f
t dt− (1− r)B̄f

t−��(dt) (4)

where the symbol � denotes a Dirac measure; these are the investing and funding assets
of the bank by its external lender.

The G�-measurable random variable r in (4) represents the recovery rate of the bank towards
its external funder. The case r = 1 can be seen as a model of partial default in which at time
� the bank only defaults on its contractual commitments with regard to the investor, but
not on its funding debt with respect to its funder. This case can also be used for modeling
the situation of a bank in a global net lender position, so that it actually does not need any
external lender. In case cash is needed for funding its position, the bank simply uses its
own cash. The case r < 1 can be seen as a model of total default time � of the bank, which
defaults at time � not only on its commitments in the contract with regard to the investor,
but also on its related funding debt.

2.4 Trading Strategies

The valuation and hedging task for the bank shortening the contract to the investor, consists
in devising a price and a dynamic hedging portfolio for the contract sold to the investor,
whilst getting funded by its external lender.

A hedge process is defined as a predictable and locally bounded, ℝd-valued row-vector
process � over [0, �̄ ], representing the number of units of the primary risky assets which are
held in the hedging portfolio. By price-and-hedge of the contract for the bank shortening
it to the investor, we mean any pair-process (Π̄, �) over [0, �̄ ], where Π̄ is an ℝ-valued
semimartingale such that Π̄�̄ = 1�<TR

i (the CSA close-out cash-flow), and � is a hedge
process. By hedging error process of the price-and-hedge (Π̄, �), we mean % = Π̄−W̄, where
W̄ is the value process of the collateralization, hedging and funding portfolio, the strategy
being funded as described in Subsection 2.3. So, for t ∈ [0, �̄ ],

W̄t =
(
Γ+
t − Γ−

t

)
+
(
�st S

s
t + � s̄tP

s̄
t

)
+
(
(W̄t − Γt − � s̄tP

s̄
t )

+ − (W̄t − Γt − � s̄tP
s̄
t )

−
)

(5)

where the three terms in the right-hand side correspond to the amounts respectively invested
as collateral, into the hedging risky assets (swapped and non swapped components �s and � s̄,
see the explanations surrounding Equation (1)) and into the external funding assets. Note
St = 0, so a hedging instrument traded in swapped form does not contribute to the value
W̄t directly, however it will contribute below to its dynamics, via the related gain process
in (1). Equivalently to (5), let us put in a more formal notation

W̄t = �0tB
0
t + �̄0t B̄

0
t + �st S

s
t + � s̄tP

s̄
t + �

f
t B

f
t + �̄

f
t B̄

f
t (6)
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Hedge Pt

Investor (�)

Bank (�)

Funder

Hedge St = 0

W̄t − Γt − � s̄tP
s̄
t = −Xt(W̄t, �t)

Γt

�st S
s
t + � s̄tP

s̄
t

Ri�� (dt)

dCt = 1t<�dDt

(rt + bt)Γ
+
t − (rt + b̄t)Γ

−

t dt

� = � ∧ �

�st
(
dPs

t − (rtPs
t + cst )dt+ dCs

t

)
� s̄t (dP

s̄
t + dCs̄

t )

(rt + �t)X
−

t (Wt, �t)dt− (rt + �̄t)X
+
t (Wt, �t)dt

(1− r)X+
�−(W�−, ��−)��(dt) = R̄f ��(dt)

�̄ = � ∧ T

Xt(�, &) = − (� − Γt − & s̄P s̄
t )

R̄f = (1 − r)X+

�−
(W�−, ��−)

W0 = W̄0

Wt = W̄t − 1t=�R̄
f

Figure 1: Cash-flows of the bank over [0, �̄ ].

with

�0t =
Γ+
t

B0
t

, �̄0t = −
Γ−
t

B̄0
t

, �
f
t =

(W̄t − Γt − � s̄tP
s̄
t )

+

B
f
t

, �̄
f
t = −

(W̄t − Γt − � s̄tP
s̄
t )

−

B̄
f
t

and �it = −
�itP

i
t

Bi
t

, for i = 1, . . . , d. Following a standard terminology, we then say in view

of (6) that the strategy (Π̄, �) of the bank is self-financing if and only if W̄0 = Π̄0 and for
t ∈ [0, �̄ ]

dW̄t = −dCt + �0t dB
0
t + �̄0t dB̄

0
t+ (7)

�st
(
dPs

t − (rtP
s
t + cst )dt+ dCs

t

)
+ � s̄t (dP

s̄
t + dC s̄

t ) + �
f
t dB

f
t + �̄

f
t−dB̄

f
t

where the “minus” in �̄
f
t− is needed4 because B̄

f
t jumps at time � (and process �̄f is not

predictable). Figure 1 (see also the proof of Proposition 2.1 below) displays a graphical
representation of all the related cash-flows over [0, �̄ ]. We shall now derive the dynamics of
the hedging error process % = Π̄ − W̄ of a self-financing strategy. We denote for every real
number � and ℝd-valued row-vector &

ft(�, &) = btΓ
+
t − b̄tΓ

−
t + �t

(
� − Γt − & s̄P s̄

t

)+
− �̄t

(
� − Γt − & s̄P s̄

t

)−
− &scst

Xt(�, &) = −
(
� − Γt − & s̄P s̄

t

) (8)

where ft(W̄t, �t) will be interpreted as the dt-excess-funding-benefit of the bank, and Xt−(W̄t−, �t−)
as the (algebraic) debt of the bank towards its funder at time t. Let finally for t ∈ [0, �̄ ]

Π∗
t = Π̄t − 1t=�R̄

f , Wt = W̄t − 1t=�R̄
f , (9)

4We thank Marek Rutkowski for pointing this out as well as for a significant contribution in a reorgani-
zation and clarification of this part of the paper.
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where R̄f := (1 − r)X+
�−(W�−, ��−) will appear below as the close-out cash-flow from the

external funder to the bank at time � = � < T .

Proposition 2.1 Under the funding specifications of Subsection 2.3, a price-and-hedge (Π̄, �)
is self-financing if and only if W0 = Π∗

0(= Π̄0) and for t ∈ [0, �̄ ]

dWt = −dCt +
(
rtWt + ft(Wt, �t)

)
dt+ �t(dPt − rtPtdt+ dCt). (10)

Proof. Plugging (3)-(4) into (7) and using also the current specification of the funding policy
regarding hedging assets, yields that the strategy is self-financing if and only if for t ∈ [0, �̄ ]

dW̄t =− dCt + (rt + bt)Γ
+
t dt− (rt + b̄t)Γ

−
t dt+ �t(dPt + dCt)− �s (rtP

s
t + cst ) dt

+ (rt + �t)
(
W̄t − Γt − � s̄tP

s̄
t

)+
dt− (rt + �̄t)

(
W̄t − Γt − � s̄tP

s̄
t

)−
dt

− �̄
f
�−(1− r)B̄f

�−��(dt)

=− dCt + rt(W̄t − �tPt)dt+ �t(dPt + dCt) + btΓ
+
t dt− b̄tΓ

−
t dt− �scstdt

+ �t

(
W̄t − Γt − � s̄tP

s̄
t

)+
dt− �̄t

(
W̄t − Γt − � s̄tP

s̄
t

)−
dt

+ (1− r)
(
W̄�− − Γ�− − � s̄�−P

s̄
�−

)−
��(dt)

=− dCt + rtW̄tdt+ �t(dPt − rtPtdt+ dCt) + ft(W̄t, �t)dt

+ (1− r)X+
�−(W̄�−, ��−)��(dt).

□

2.5 General Price-and-Hedge

As illustrated in Subsection 2.3, the exact nature of the funding cash-flows depends on the
specification of a funding policy defined in terms of related funding riskless assets. For the
sake of clarity one shall work henceforth with the following abstract, formal definition of
a general (self-financing) price-and-hedge, in which the funding component of the hedging
portfolio only shows up through the dt-excess-benefit-funding coefficient f, and through the
funding close-out cash-flow Rf , without explicit reference to specific funding assets. We
shall thus consider as given an abstract dt-excess-benefit-funding coefficient ft(�, &), as well
as an abstract external debt function Xt(�, &), where � ∈ ℝ and & ∈ ℝd. A G�-measurable
random variable r represents as before the recovery rate of the bank towards its external
funder.

The following definition is put in the form of a Forward-Backward Stochastic Differen-
tial Equation (FBSDE, see Ma and Yong (2007)) in (W,Π∗, �). What solving the FBSDE
would mean is solving the related control problem, that is finding a general price-and-hedge
(Π̄, �) such that the corresponding hedging error process % in the second line of (11) has
“nice” properties in terms of arbitrage (typically: % being a martingale under some proba-
bility measure, like ℙ, equivalent to the historical measure ℙ̂) and replication (typically: %

being small in some appropriate norm). This would be a fairly non-standard FBSDE how-
ever, and we shall not try to solve it in this form, rather introducing soon a more tractable
BSDE.

Definition 2.2 (General Price-and-Hedge) Given a hedge process �, let (W,Π∗, �, %)
satisfy the initial conditions W0 = Π∗

0, %0 = 0 and for t ∈ [0, �̄ ]

dWt = −dCt +
(
rtWt + ft(Wt, �t)

)
dt+ �t(dPt − rtPtdt+ dCt)

dΠ∗
t = −dCt +

(
rtWt + ft(Wt, �t)

)
dt+ �t(dPt − rtPtdt+ dCt) + d%t

(11)
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along with a terminal condition Π∗
�̄ = 1�<T R̄ where

R̄ = Ri − 1�=�R̄
f (12)

in which R̄f := (1− r)X+
�−(W�−, ��−).

One then calls general price-and-hedge with hedging error %, the pair-process (Π̄, �)
where for t ∈ [0, �̄ ]

Π̄t := Π∗
t + 1t=�R̄

f .

We say that (Π̄, �) is a replicating strategy if %�̄ = 0 almost surely.

Observe that R̄ represents the total close-out cash-flow delivered by the bank at time
� < T (CSA close-out cash flow Ri paid to the investor minus close-out funding cash-flow
1�=�R̄

f got from the external funder). Also note that under the funding specifications of
Subsection 2.3 this definition is consistent with the developments of Subsection 2.4. In the
abstract Definition 2.2 we focus on processes Π∗ and W rather on Π̄ and W̄ that concurrently
showed-up in the specific setup of Subsections 2.3-2.4, because Π∗ (actually, ultimately Π to
be introduced in Definition 3.4 below) and W will be more convenient mathematically. By
a slight abuse of terminology we call W the value of the hedging portfolio. To be precise, it
is actually process W̄ which corresponds to what should be called exactly the value of the
collateralization, hedging and funding portfolio.

Also observe that in case f = 0 and r = 1 (classical one-curve setup without excess
funding costs), one recovers the usual notion of a self-financing hedging strategy with related
wealth process W, so that the funding base f and the funding close-out cash-flow R̄f can
be interpreted as our corrections to a classical one-curve setup.

3 Martingale Pricing

In this Section we deal with the pricing of the contract shortened by the bank to the in-
vestor, under the funding conditions of the bank defined by the coefficients f and c. Note
that given possible non-linearities in the excess funding benefit coefficient f , it will not be
possible to get rid of the funding costs in the pricing through discount factors as in a lin-
ear one-curve setup (unless one resorts to an endogenous discount factor depending on the
value of the contract). Cash-flows will be priced instead in this Section under an “additive,
flat” extension of the classical “multiplicative, discounted” risk-neutral assumption. We also
derive the dynamic hedging interpretation of such an additive risk-neutral price.

Recall the expression dPi
t −
(
rtP

i
t + cit

)
dt+dCi

t in (1) for the gain process of a buy-and-
hold position into an hedging asset traded in swapped form. Let ℳ denote the gain process
of all hedging instruments traded in swapped form, so ℳ0 = 0 and for t ∈ [0, �̄ ]

dℳt = dPt −
(
rtPt + ct

)
dt+ dCt. (13)

Our standing probability measure ℙ is henceforth interpreted as a risk-neutral pricing mea-
sure on the primary market of hedging instruments traded in swapped form, in the sense
that

Assumption 3.1 The primary risky gain process ℳ is an ℝd-valued (G,ℙ)-martingale.
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By arbitrage, let us mean a self-financing strategy with a related gain at time �̄ which
is almost surely non-negative, and which is positive with a positive probability (under the
historical or any equivalent probability measure). Since the historical probability measure ℙ̂

is equivalent to ℙ, Assumption 3.1 precludes arbitrage opportunities that might result from
pure primary trading strategies only involving primary hedging assets traded in swapped
form. It can be considered as an “additive” version of the “multiplicative” risk-neutral as-
sumption which is more commonly used through the language of discounting at the risk-free
rate rt in the one-curve literature. Under this assumption it is convenient to rewrite (10) in
martingale form as

dWt =
(
rtWt + gt(Wt, �t)

)
dt− dCt + �tdℳt (14)

where for � ∈ ℝ and & ∈ ℝd

gt(�, &) = ft(�, &) + &ct. (15)

Example 3.2 Under the specification of Subsection 2.3, one gets

gt(�, &) = btΓ
+
t − b̄tΓ

−
t + �t

(
� − Γt − & s̄P s̄

t

)+
− �̄t

(
� − Γt − & s̄P s̄

t

)−
− &scst + &ct

= btΓ
+
t − b̄tΓ

−
t + �t

(
� − Γt − & s̄P s̄

t−

)+
− �̄t

(
� − Γt − & s̄P s̄

t−

)−
+ & s̄cs̄t

(16)

which only depends on & through & s̄, the position in the hedging assets funded together with
the contract by the external lender.

Remark 3.3 In the case of a physical (as opposed to a natively swapped) primary asset, the
coefficient ci corresponds to the related repo basis, and one might wonder why in Example
3.2 the repo rates eventually present in g are actually those of the hedging instruments
which are not traded in swapped form. An interpretation is that in case of a hedging
instrument traded in swapped form, the opportunity of getting it funded at the excess
cost ci is exploited, whereas for a hedging instrument not traded in swapped form this
opportunity is not, creating an (algebraic) “loss of income” which should be reflected in
the final “pricing formula”, and therefore in the coefficient g of the corresponding pricing
equation to be introduced in Definition 3.4 below.

3.1 ℙ-Price-and-Hedge BSDE

The class of general price-and-hedges introduced in Definition 2.2 is too large for practical
purposes. This leads us to introduce the following more restrictive definition. Given a hedge
� and a semimartingale Π, we denote R = Ri − 1�=�R

f , in which

Rf := (1− r)X+
�−(Π�−, ��−). (17)

Let us stress that R implicitly depends on (Π�−, ��−) in this notation.

Definition 3.4 (ℙ-price-and-hedge) Let a pair (Π, �) made of a G-semimartingale Π and
a hedge � satisfy the following BSDE on [0, �̄ ]:

Π�̄ = 1�<TR and for t ∈ [0, �̄ ] :

dΠt + dCt −
(
rtΠt + gt(Πt, �t)

)
dt = d�t

(18)



14

for some G-martingale � null at time 0. Letting for t ∈ [0, �̄ ]

Π̄t := Πt + 1t=�R
f ,

process (Π̄, �) is then said to be a ℙ-price-and-hedge. The related cost process is the G-
martingale " defined by "0 = 0 and for t ∈ [0, �̄ ]

d"t = d�t − �tdℳt (19)

where � is the G-martingale component of Π in (18), and ℳ is the G-martingale component
(13) of the primary risky price process P.

Equivalently to the BSDE (18) in differential form, one can write in integral form, for

t ∈ [0, �̄ ] (recall �t = e−
∫ t

0
rsds)

�tΠt = Et

( ∫ �̄

t

�sdCs −

∫ �̄

t

�sgs(Πs, �s)ds + ��̄1�<TR
)
. (20)

The reader is referred to El Karoui, Peng, and Quenez (1997) for a general reference about
BSDEs in finance, and to Example 1.1 therein as a basic example of use of BSDEs in
connection with valuation and hedging under funding constraints (different borrowing and
lending rates). The ℙ-price-and-hedge BSDE (18) is made non-standard by the random
terminal time �̄ , the dependence of the terminal condition R in (Π�−, ��−), the contract
effective dividend term dCt, and finally the fact that it is not driven by an explicit set of
fundamental martingales like Brownian motions and/or compensated jump measures. In
this last regard, the representation (19) rather suggests that this BSDE will be solved with
respect to the “market martingale” ℳ, up to a (typically orthogonal) martingale ". The
issue of well-posedness of the ℙ-price-and-hedge BSDE is postponed to the next sections,
where it will be more conveniently discussed in terms of a corresponding CVA BSDE.

By construction, a ℙ-price-and-hedge (Π̄, �) is a general price-and-hedge in the sense
of Definition 2.2. In Subsection 3.2 we shall comment upon a ℙ-price-and-hedge from the
points of view of arbitrage, hedging and computational tractability. But let us first derive the
equations for the wealth of the corresponding hedging portfolio W and for the corresponding
hedging error %. One thus has the following

Lemma 3.5 Given a ℙ-price-and-hedge (Π̄, �) and the related process Π, let a process W
be defined by the first line in (11), starting from the initial condition W0 = Π0; let then a
process Π∗ be defined by, for t ∈ [0, �̄ ]

Π∗
t = Π̄t − 1�=�R̄

f

where R̄f := (1 − r)X+
�−(W�−, ��−). Let finally % = Π∗ − W on [0, �̄ ]. Then (Π̄, �) is a

general price-and-hedge with wealth W of the hedging portfolio such that for t ∈ [0, �̄ ]

(
�tΠt −

∫ t

0
�sgs(Πs, �s)ds

)
−
(
�tWt −

∫ t

0
�sgs(Ws, �s)ds

)
=

∫ t

0
�sd"s (21)

and hedging error % such that for t ∈ [0, �̄ ]

d%t = d"t +
(
rt%t + g(Πt, �t)− g(Wt, �t)

)
dt − 1�=�(1− r)(R̄f −Rf )�� (dt)

= d"t +
(
rt%t + g(Πt, �t)− g(Wt, �t)

)
dt

− 1�=�(1− r)
(
X
+
�−(W�−, ��−)− X

+
�−(Π�−, ��−)

)
�� (dt)

(22)

(and %0 = "0 = 0).
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Proof. Identity (21) immediately follows from (14), (18) and (19) (plus the fact that W0 =
Π0). Rewritten in term of the hedging error % = Π∗ −W, Equation (14) for the value W of
the hedging portfolio of (Π̄, �) yields that for t ∈ [0, �̄ ]

dΠ∗
t =

(
rtWt + gt(Wt, �t)

)
dt− dCt + �tdℳt + d%t. (23)

Besides, the equation part (second line) in the ℙ-price-and-hedge BSDE (18) can be written
in terms of the cost d"t = d�t − �tdℳt in (19) as

dΠt =
(
rtΠt + gt(Πt, �t)

)
dt− dCt + �tdℳt + d"t. (24)

Since Πt −Π∗
t = 1t=�(R̄

f −Rf ), substracting (24) from (23) yields (22). □

3.2 Arbitrage, Replication and Computational Issues

Assume first that it is possible to find a ℙ-price-and-hedge process (Π̄, �) with a vanishing
cost process " = 0, and second that for this (Π̄, �) and the related process Π, uniqueness
holds for the following forward SDE in Y : Y0 = Π0 and for t ∈ [0, �̄ ] :

d(�tYt)− �tgt(Yt, �t)dt = d(�tΠt)− �tgt(Πt, �t)dt.

Via the BSDE machinery (see, e.g., El Karoui, Peng, and Quenez (1997)), the first assump-
tion is typically met by application of a predictable representation property of G-martingales
(whenever available), whereas the second assumption is a technical requirement guarantee-
ing that Π and W coincide if they solve the same forward SDE. Under these assumptions,
one gets by (21) with " = 0 therein that W = Π. It follows that Rf = R̄f , and therefore by
(22) that % = " = 0. In this case the ℙ-price-and-hedge process (Π̄, �) is thus a replicating
strategy.

We refer the reader to Burgard and Kjaer (2010), Burgard and Kjaer (2011) and to the
corresponding development in Bielecki, Crépey, and Rutkowski (2011), for practical exam-
ples of replication. Since replication being possible or not ultimately relies on a predictable
representation property of G-martingales, replicability typically holds not only for a partic-
ular contract, but for any financial derivative with G-adapted and integrable cash-flows. We
shall thus refer to this case henceforth as the “complete market” case.

In a more general, “incomplete” market, the cost " of a ℙ-price-and-hedge (Π̄, �), and
in turn its hedging error %, can only be reduced up to a level “proportional” to the “degree
of incompleteness” of the primary market. The bank shortening the contract to the investor
can thus only partially hedge its position, ending-up with a non-vanishing hedging error %�̄ .

Remark 3.6 (Arbitrage) In the complete market case or if r = 1, then the Dirac-driven
term vanishes in (22). Under suitable conditions, one can then change the measure ℙ into an
equivalent measure ℚ such that the hedging error % is a ℚ-martingale. This excludes that %�̄
could be non-negative almost surely and positive with positive probability. In conclusion a ℙ-
price-and-hedge (Π̄, �) cannot be an arbitrage in this case. On the opposite, in an incomplete
market with moreover r < 1, a ℙ-price-and-hedge (Π̄, �) is, in principle, arbitrable.

A non-arbitrable strategy would be a general price-and-hedge (Π̄, �) such that the
triplet (W, Π̄, �) in Definition 2.2 solves the related FBSDE, in the sense in particular that
the hedging error % would be a martingale under some probability measure ℚ equivalent
to the historical measure ℙ̂. However in an incomplete market and with moreover r < 1
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this FBSDE seems intractable. Our ℙ-price-and-hedge BSDE can be viewed as a simplified
version of this theoretical FBSDE. The price to pay for this simplification is that it opens
the door to an arbitrage (unless the market is complete or r = 1, in which case the ℙ-price-
and-hedge BSDE and the above FBSDE are essentially equivalent). However we believe
that this arbitrage is quite theoretical (the corresponding “free lunch” seems quite difficult
to lock in).

In view of the above arbitrage, hedging and computational considerations, we restrict
ourselves to ℙ-price-and-hedges in the sequel. For brevity we write henceforth “a price-and-
hedge (Π, �)” when the related pair-process (Π̄, �) is a ℙ-price-and-hedge. By price related
to a hedge process �, we mean any process Π such that (Π, �) is a price-and-hedge (solves
the BSDE (18)). Also in the sequel we simply call (18) the price BSDE, as opposed to CVA
BSDEs to appear later in the paper.

These appellations are slightly abusive since given a ℙ-price-and-hedge (Π̄, �), the actual
price of the contract at time � = � < T is Π̄� = Ri and not Π� = R. However this is
immaterial since nobody cares about the price of the contract at time � (which is given
by the CSA close-out cash-flow Ri). What matters is the price for t < �, in which case
Πt = Π̄t = Π∗

t . Also, no confusion may arise between the “new” (ℙ-)price-and-hedge (Π, �)
terminology and the “old” price-and-hedge (Π̄, �) terminology of Subsection 2.4, because we
now switched to the abstract setup of Subsection 2.5 and will not come back in the sequel
to anything specifically related to Subsections 2.3-2.4.

From the BSDE point of view, a particularly simple situation will be the one where

gt(�, &) = gt(�) , X
+
t (�, &) = X

+
t (�). (25)

We call it the fully swapped hedge case in reference to its financial interpretation under the
funding specifications of Subsection 2.3.

Remark 3.7 (Symmetries) Similarly to the funding benefit coefficient g and the external
funding recovery rate r of the bank, one can introduce a funding cost coefficient g and an
external funding recovery rate r for the investor. Note that in case where r = r = 1 and g = g

with g = g(�) and g = g(�), all cash-flows are symmetric from the point of view of the two
parties. It is only in this case that the seller price of the bank will agree with the buyer price
of the investor. Otherwise (and as soon in particular as the g-coefficients do depend on &),
funding induces an asymmetry between the two parties, resulting in a short bank price of the
contract, different from its long investor price (and in turn different CVAs later in the paper).
An example of symmetric funding costs is the setup of Fujii and Takahashi (2011), where
excess funding costs reduce to collateral bases b and b̄ as in our Subsection 2.3, and there
are no funding close-out cash-flows involved (so r = r = 1). Since collateral remuneration
cash-flows are between the two parties of the contract (they do not involve external entities),
collateral bases does not break the symmetry in our sense.5

Another notable specification, corresponding to the setup of Piterbarg (2010), is the
linear case where g = g(�) is affine and r is equal to one. The bank has then a common
buyer and seller price. Under the funding specifications of Subsection 2.3, the linear case
corresponds to b = b̄ and � = �̄.

5Fujii and Takahashi (2011) consider in their paper a different notion of symmetry, which may be broken
even in their setup.
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Finally the one-curve setup corresponds to the case where r = 1 and all the bases are
equal to 0, so g = c = 0. The only funding rate6 in the economy is then the risk-free interest
rate r.

These various specifications are discussed in detail in Bielecki, Crépey, and Rutkowski (2011).

4 CVA

Having identified the price BSDE (18) as key in the modeling of counterparty risk under
funding constraints, we devote the sequel of this paper to the study of this BSDE. Again,
this BSDE is made non-standard by the random terminal time �̄ , the dependence of the
terminal condition R in (Π�−, ��−), the dividend term dCt, and the fact that it is not driven
by an explicit set of fundamental martingales like Brownian motions and/or compensated
jump measures.

Interestingly enough, the notion of CVA, which recently emerged for practical rea-
sons in banks, will appear as a useful mathematical device to cope with these technical-
ities. Since the pioneering works of Damiano Brigo and his coauthors (see for instance
Brigo and Capponi (2010) in a context of bilateral counterparty credit risk), it is well un-
derstood that the CVA can be viewed as an option, the so-called Contingent Credit Default
Swap (CCDS), on the clean value of the contract. This Section extends to a non linear
multiple-curve setup the notion of CVA and its representation as the price of a CCDS. In
our setup the CVA actually accounts not only for counterparty risk, but also for excess
funding costs. The CCDS is then a dividend-paying option, where the dividends correspond
to these costs.

4.1 Bilateral Reduced Form Setup

We assume henceforth that the model filtration G can be decomposed into G = ℱ ∨ℋ�∨ℋ�,

where ℱ is some reference filtration and ℋ� and ℋ� stand for the natural filtrations of �
and �. Let also Ḡ = ℱ ∨ ℋ, where ℋ is the natural filtration of �̄ (or, equivalently, of �).
We refer the reader to Bielecki and Rutkowski (2002) for the standard material regarding
the reduced-form approach in credit risk modeling. The Azéma supermartingale associated
with � is the process G defined by, for t ∈ [0, T ],

Gt = ℙ(� > t ∣ ℱt). (26)

We assume that G is a positive, continuous and non-increasing process. This is a classical,
slight relaxation of the so-called immersion or (ℋ)-hypothesis of ℱ into Ḡ, see Jeanblanc and Le Cam (2008)
for a detailed discussion.

Lemma 4.1 (i) An ℱ-local martingale stopped at � is a Ḡ-local martingale, and a Ḡ-local
martingale stopped at � is a G-local martingale.
(ii) An ℱ-adapted càdlàg process cannot jump at �. One thus has that ΔX� = 0 almost
surely, for every ℱ-adapted càdlàg process X.

Proof. (i) Since � has a positive, continuous and non-increasing Azéma supermartingale,
it is known from Elliot, Jeanblanc, and Yor (2000) that an ℱ-local martingale stopped at
� , is a Ḡ-local martingale. Besides, two successive applications of the Dellacherie-Meyer

6Assuming the existence of a riskless asset with growth rate r.
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Key Lemma (see for instance Bielecki and Rutkowski (2002)) yield that for every Ḡ-adapted
integrable process M , one has for every 0 ≤ s ≤ t ≤ T

E (Mt∧� ∣ Gs) = 1s≥�M� + 1s<�
E (Mt∧�1s<� ∣ ℱs)

ℙ (s < � ∣ ℱs)

= 1s≥�Ms∧� + 1s<�E
(
Mt∧� ∣ Ḡs

)
,

which, in case M is a Ḡ-martingale, boils down to Ms∧� . A Ḡ-martingale stopped at � is
thus a G-martingale. A standard localization argument then yields that a Ḡ-local martingale
stopped at � is a G-local martingale.
(ii) As G is continuous, � avoids ℱ-stopping times in the sense that ℙ(� = �) = 0 for any ℱ-
stopping time � (see, e.g., Coculescu and Nikeghbali (2011)). Besides, by Theorem 4.1 page
120 in He, Wang, and Yan (1992), there exists a sequence of ℱ-stopping times exhausting
the jump times of an ℱ-adapted càdlàg process. This proves part (ii). □

4.2 Clean Price

In the sequel, the risk-free discount factor process �, or equivalently the risk-free short rate
process r, and the clean dividend process D, are assumed to be ℱ-adapted. In order to define
the related CVA process Θ, we now introduce the clean price process P of the contract. The
clean price process is a fictitious, instrumental value process, which corresponds to the price
of the contract without counterparty risk nor excess funding costs. In the present bilateral
reduced-form setup, the clean price process P of the contract is naturally defined by, for
t ∈ [0, T ],

�tPt = E

(∫ T

t

�sdDs

∣∣∣ℱt

)
. (27)

The discounted cumulative clean price,

�P̂ := �P +

∫

[0,⋅]
�tdDt,

is thus an ℱ-martingale. The corresponding clean ℱ-martingale M on [0, T ], to be compared
with the G-martingale component � of Π in the price BSDE (18), is defined by, for t ∈ [0, T ],

dMt = dPt + dDt − rtPtdt, (28)

along with the terminal condition PT = 0.

Lemma 4.2 (i) The clean price process P satisfies for t ∈ [0, �̄ ],

�tPt = Et

[ ∫ �̄

t

�sdDs + ��̄P�̄

]
. (29)

(ii) There can be no promised dividend of the contract nor jump of the clean price process
at the default time �, so ΔD� = ΔP� = 0 almost surely.

Proof. (i) Since the discounted cumulative clean price �P̂ is an ℱ-martingale, so by Lemma
4.1(i), process �P̂ stopped at � is a G-martingale, integrable by standing assumption in this
paper, thus (29) follows.
(ii) Since all our semimartingales are taken in a càdlàg version, then by Lemma 4.1(ii) the
ℱ-semimartingales D and P cannot jump at �. □
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4.3 CSA Close-Out Cash-Flow

Before moving to CVA we now need to specify Ri in the CSA close-out cash-flow 1�<TR
i.

Toward this end we define a G� -measurable random variable � as

� = Q� − Γ� (30)

where Q denotes the so-called CSA fair value process of the contract, expectation of future
cash-flows or so, in a sense defined by the CSA. From the point of view of financial inter-
pretation, � represents the (algebraic) debt of the bank to the investor at time � , given
as the CSA fair value Q� less the margin amount Γ� (since the latter is ‘instantaneously
transferred’ to the investor at time �). We then set

Ri = Γ� + 1�=�

(
��+ − �−

)
− 1�=�

(
�̄�− − �+

)
− 1�=�� (31)

in which the [0, 1]-valued G�- and G�-measurable random variables � and �̄ denote the re-
covery rates of the bank and the investor to each other. So:

∙ If the investor defaults at time � < � ∧ T , then Ri = Γ� −
(
�̄�− − �+

)
,

∙ If the bank defaults at time � < � ∧ T , then Ri = Γ� + ��+ − �−,

∙ If the bank and the investor default simultaneously at time � = � < T , then Ri =
Γ� + ��+ − �̄�−.

Note that the margin amount Γ typically depends on Q, often in a rather path de-
pendent way. We refer the reader to Bielecki and Crépey (2011) regarding this and other,
theoretically minor, yet practically important issues, like haircut, re-hypothecation risk and
segregation, or the cure period. All these can also be accommodated in our setup.

4.4 CVA Representation

With Ri thus specified in R = Ri−1�=�R
f , we are now ready to introduce the CVA process

Θ of the bank. Recall from Definition 3.4 that unless r = 1, the terminal condition R =
Ri − 1�=�R

f in a solution (Π, �) to the price BSDE (18), implicitly depends on (Π�−, ��−),
via Rf = (1− r)X̂+

�−, where X̂t is used as a shorthand for Xt(Πt, �t). Also note that

P� −R

= P� −Q� + �− 1�=�

(
��+ − �−

)
+ 1�=�

(
�̄�− − �+

)
+ 1�=��+ 1�=�(1− r)X̂+

�−

= P� −Q� + 1�=�

(
(1− �)�+ + (1 − r)X̂+

�−

)
− 1�=�(1− �̄)�−.

(32)

One can then state the following

Definition 4.3 Given a solution (Π, �) to the price BSDE (18), the corresponding CVA
process Θ is defined by Θ = P −Π on [0, �̄ ]. In particular, Θ�̄ = 1�<T �, where

� := P� −R

= P� −Q� + 1�=�

(
(1− �)�+ + (1− r)X̂+

�−

)
− 1�=�(1− �̄)�−.

(33)
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Remark 4.4 The clean contract is assumed to be funded at the risk-free rate rt. The clean
price P is thus not only clean of counterparty risk, but also of excess funding costs. Our
Credit Valuation Adjustment (CVA) should thus rather be called Credit and Funding Value
Adjustment. We stick to the name Credit Valuation Adjustment (CVA) for simplicity.

The following result extends to the multiple-curve setup, the one-curve CVA represen-
tation results of Brigo and Capponi (2010) or Assefa et al. (2011). Note that in a multiple-
curve setup this representation, in the form of Equation (34) below, is implicit. Namely, the
right-hand side of (34) involves Θ and �, via R in � and via g in the integral term. This is
at least the case unless r = 1 and a funding coefficient g(�, &) = g(�) is linear in �, so that
one can get rid of these dependencies by a suitable adjustment of the discount factor (see
Example 5.4).

Proposition 4.5 Let us be given a hedge � and G-semimartingales Π and Θ such that
Θ = P − Π on [0, �̄ ]. The pair-process (Π, �) is a solution to the price BSDE (18) if and
only if Θ satisfies for t ∈ [0, �̄ ]

�tΘt = Et

[
��̄1�<T � +

∫ �̄

t

�sgs(Ps −Θs, �s)ds
]
. (34)

Proof. Recall PT = 0 and ΔD� = 0, so P�̄ = 1�<TP� and 1�<TΔD�̄ = 0. Taking the
difference between (29) and (20), one thus gets for t ∈ [0, �̄ ]

�t (Pt −Πt) = Et

[
��̄1t<�̄

(
ΔD�̄ − 1�̄<�ΔD�̄

)
+

∫ �̄

t

�sgs(Πs, �s)ds + ��̄1�<T (P� −R)
]

= Et

[ ∫ �̄

t

�sgs(Πs, �s)ds + ��̄1�<T �
]

which is Equation (34) in Θ. □

One thus recovers in the multiple-curve setup, the general interpretation of the CVA as
the price of the so-called contingent credit default swap (CCDS), which is an option on the
debt � (sitting via R in �) of the bank to the investor at time � . However, in a multiple-curve
setup, this is a dividend-paying option, paying not only the amount � at time � < T , but
also dt-dividends at rate gt(Pt −Θt, �t)− rtΘt between times 0 and �̄ .

Example 4.6 Under the funding specifications of Subsection 2.3 with the coefficient g given
by (16), and in the fully swapped hedge case with s̄ = ∅, the CVA representation of Equation
(34) writes

�tΘt = Et

[
1�<T��̄ (P� −Q� )

]

+Et

[
1�=�<T��̄ (1− �)(Q� − Γ� )

+
]

−Et

[
1�=�<T��̄ (1− �̄)(Q� − Γ� )

−
]

+Et

[
1�=�<T��̄ (1− r)(P�− −Θ�− − Γ�−)

− +

∫ �̄

t

�s

(
btΓ

+
t + �s (Ps − Γs −Θs)

+
)
ds
]

−Et

[ ∫ �̄

t

�s

(
b̄tΓ

−
t + �̄s (Ps − Γs −Θs)

−
)
ds
]
.

From the perspective of the bank, the five lines in this decomposition of the (net) CVA Θ,
can respectively be interpreted as a replacement cost, a positive debt value adjustment, a
negative (non-algebraic, strict) credit value adjustment, a positive excess funding benefit
and a negative excess funding cost.
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4.4.1 CCDS Static Hedging Interpretation

If the clean contract with price process P and the CCDS were traded assets, a static replica-
tion scheme of the bank shortening the contract to the investor and funding it by its external
funder would consist in, given a price process Π solving the price BSDE (18) for � = 0 :

∙ At time 0, using the proceeds Π0 from the shortening of the contract and Θ0 = P0−Π0

from the shortening of a CCDS to buy the clean contract at price P0,

∙ On the time interval (0, �̄ ), holding P and (−Θ), transferring to the investor all the
dividends dDt which are perceived by the bank through its owning of P , and incurring
dt-costs at rate rtPt + g(Πt, 0) − rtΘt = gt(Πt, 0) + rtΠt. These costs exactly match
the dt-funding benefits from the short naked (non dynamically hedged) position in the
contract.

Thus, at time �̄ :

- If �̄ = � < T, the bank is left with an amount P� −Θ� = P� − � = R, which is exactly
the close-out cash-flow it must deliver to the investor and to its funder,

- If �̄ = T, there are no cash-flows at �̄ .

In both cases the bank is left break-even at �̄ . But of course this static buy-and-hold repli-
cation strategy is not practical, since neither the clean contract nor the CCDS are traded
assets. One is thus led to dynamic hedging. Here a question arises whether one should try
to hedge the contract globally, or7 to hedge the clean contract P separately from the CVA
component Θ of Π. In order to address these issues one needs to dig further into the analysis
of the cost process d" = d� − �dℳ of a price-and-hedge (Π, �).

5 Pre-Default BSDE Modeling

We develop in this Section a practical reduced-form CVA BSDE approach to the problem
of pricing and hedging counterparty risk under funding constraints. Counterparty risk and
funding corrections to the clean price-and-hedge of the portfolio are obtained as the solution
to a pre-default BSDE stated with respect to the reference filtration, in which defaultability
of the two parties only shows up through their default intensities.

5.1 Reduction of Filtration

Let us call the CVA BSDE of the bank, the G-BSDE on the random time interval [0, �̄ ],
with terminal condition 1�<T � at �̄ , and driver coefficient gt(Pt − #, &)− rt#, # ∈ ℝ, & ∈ ℝd.

The following Lemma rephrases Proposition 4.5 in BSDE terms.

Lemma 5.1 Given G-semimartingales Π and Θ summing-up to P and a hedge �, (Π, �)
solving the price BSDE is equivalent to (Θ, �) solving the corresponding CVA BSDE.

Passing from the price BSDE in (Π, �) to the CVA BSDE in (Θ, �), allows one to get rid of
the dCt-term (promised dividend of the contract) in (18). This makes the CVA BSDE more
convenient than the price BSDE (18). We assume in the sequel that:

7If any freedom in this is left by the internal organization of the bank.
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∙ The G-semimartingale (margin amount) Γt is ℱ-adapted. This makes financial sense
since securities eligible as collateral are only cash or very basic securities which should
not be affected by the default of either party. By Lemma 4.1(ii), one then almost
surely has that ΔΓ� = 0;

∙ The CSA fair value process Q is given as a left-limit process, and is thus G-predictable.
This makes financial sense since what Q� is really meant to be is a notion of fair value
of the contract right before the default time � of either party;

∙ The recovery rates �, �̄ and r can be represented as ��, �̄� and r�, for some G-predictable
processes �t, �̄t and rt.

By Theorem 67.b in Dellacherie and Meyer (1975), the G�−-measurable random vari-
ables ℙ(� = � ∣ G�−) and ℙ(� = � ∣ G�−) can be represented as p� and p� , for some G-
predictable process p and p. Since ΔΓ� = 0, there exists in virtue of the same theorem an
ℱ-predictable process with the same value as Γ at � ; in other words one can thus henceforth
assume that process Γ is in fact ℱ-predictable.

The debt � of the bank to the investor, and, given a price-and-hedge (Π, �), the terminal
payoff � of a CCDS, are then the values at time � of the G-predictable process �t and of the
G-progressively measurable process �t such that for t ∈ [0, T ]

�t = Qt − Γt

�t = (Pt −Qt) + 1t≥�

(
(1− �t)�

+
t + (1− rt)X̂

+
t−

)
− 1t≥�(1− �̄t)�

−
t

(35)

where X̂t is used as a shorthand for Xt(Πt, �t). Let further for t ∈ [0, T ], � ∈ ℝ and & ∈ ℝd

�̄t(�, &) = (Pt −Qt) + pt

(
(1− �t)�

+
t + (1− rt)X

+
t−(�, &)

)
− pt(1− �̄t)�

−
t . (36)

Let also J denote the non-default indicator process such that Jt = 1t<� for t ∈ [0, �̄ ]. Observe
that given a hedge �, Θ solving Equation (34) over [0, �̄ ] is equivalent to Θ = JΘ̄ + (1 −
J)1�<T �, for a process Θ̄ such that for t ∈ [0, �̄ ]

�tΘ̄t = Et

[
��̄1�<T �̄� (P�− − Θ̄�−, ��−) +

∫ �̄

t

�sgs(Ps − Θ̄s, �s)ds
]
. (37)

To simplify the problem further, we now introduce an equivalent pre-default CVA BSDE
over [0, T ], relative to the pre-default filtration ℱ . The following result is classical, see
for instance Bielecki, Crépey, Jeanblanc, and Rutkowski (2009) for precise references. We
denote by Y− the left-limiting process (whenever well-defined) of a process Y .

Lemma 5.2 For any G-adapted, respectively G-predictable process X over [0, T ], there exists
a unique ℱ-adapted, respectively ℱ-predictable, process X̃ over [0, T ], called the pre-default
value process of X, such that JX = JX̃, respectively J−X = J−X̃ over [0, T ].

Given the structure of the data, we may therefore assume without loss of generality
that process gt(Pt−#, &) is ℱ-progressively measurable for every # ∈ ℝ, & ∈ ℝd, and that all
the processes (including for instance p and p) which appear as building blocks in �̄, are ℱ-
predictable. We assume further that the Azéma supermartingale G of � is time-differentiable.

This allows one to define the hazard intensity t = −d lnGt

dt
of �, so Gt = e−

∫ t

0
sds. We then
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define the credit-risk-adjusted-interest-rate r̃ and the credit-risk-adjusted-discount-factor �̃

as, for t ∈ [0, T ],

r̃t = rt + t , �̃t = �tGt = �t exp(−

∫ t

0
sds) = exp(−

∫ t

0
r̃sds).

One can then state the following

Definition 5.3 The pre-default CVA BSDE of the bank is the ℱ-BSDE in (Θ̃, �) on [0, T ]
with a null terminal condition at T , and with driver coefficient

g̃t(Pt − #, &) = gt(Pt − #, &) + t�̃t(Pt − #, &)− r̃t# (38)

where �̃t(�, &) denotes for every � ∈ ℝ and & ∈ ℝd the ℱ-progressively measurable process
defined by, for t ∈ [0, T ]

�̃t(�, &) = (Pt −Qt) + pt

(
(1− �t)�

+
t + (1− rt)X

+
t (�, &)

)
− pt(1− �̄t)�

−
t . (39)

An ℱ-special semimartingale Θ̃ and a hedge � to the contract, thus solve the pre-default
CVA BSDE if and only if

{
Θ̃T = 0, and for t ∈ [0, T ] :

− dΘ̃t = g̃t(Pt − Θ̃t, �t)dt− d�̃t

(40)

where �̃ is the ℱ-local martingale component of Θ̃. Or equivalently to the second line in
(40): For t ∈ [0, T ],

− d(�̃tΘ̃t) = �̃t

(
gt(Pt − Θ̃t, �t) + t�̃t(Pt − Θ̃t, �t)

)
dt− �̃td�̃t. (41)

Remark 5.4 (Linear Case) In the linear case with r = 1 and gt(P −#, &) = g∗t (P )−�∗
t#,

the CVA equations (34) and (41) respectively boil down to the explicit representations

�∗
tΘt = Et

[
�∗
�̄1�<T � +

∫ �̄

t
�∗
sg

∗
s(Ps)ds

]
(42)

�̃∗
t Θ̃t = E

[ ∫ T

t
�̃∗
s

(
g∗s(P

∗
s ) + s�̃s(Ps − Θ̃s, �s)

)
ds
∣∣∣ℱt

]
(43)

for the funding-cost-adjusted-discount-factors

�∗
t = exp(−

∫ t

0
(rs + �∗

s)ds) , �̃∗
t = exp(−

∫ t

0
(r̃s + �∗

s)ds).

Remark 5.5 (CSA Fair Valuation and Collateralization Schemes) It is implicitly un-
derstood above that the CSA fair value process Q, present in � via � = Q − Γ in (35), is
an exogenous process, as in the standard clean CSA fair value scheme Q = P−. An a priori
unusual situation from this point of view, yet one which is sometimes considered in the coun-
terparty risk literature, at least in the classical one-curve setup, is the so-called pre-default
CSA fair value scheme Q = Π−. In a multiple-curve setup with counterparty risky prices
which differ from the perspectives of the two parties, this scheme seems hardly workable in
practice. Yet from a BSDE point of view this dependence in Π of Q can be accounted for at
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no harm, by letting Q = P− − Θ̃− everywhere in the coefficient g̃t of the pre-default CVA
BSDE (40).

Note however that in order to meet ISDA requirements, a real-life collateralization
scheme Γ is typically path dependent in Q (see Section 3.2 of Bielecki and Crépey (2011)).
Under the pre-default CSA fair valuation scheme, and in case of a path dependent col-
lateralization, one ends-up with a time-delayed BSDE with a coefficient depending on
the past of Θ̃. This raises a mathematical difficulty of the pre-default CSA fair valua-
tion scheme since even for a Lipschitz coeffficient, a time-delayed BSDE may only have
a solution for T small enough, depending on the Lipschitz constant of the coefficient (see
Delong and Imkeller (2010)).

5.2 Modeling Assumption

From now on, our approach to deal with the price BSDE (18) will consist in modeling the
counterparty risky price process Π via the corresponding pre-default CVA process Θ̃. In this
Section we work under the following

Assumption 5.6 The pre-default CVA BSDE (40) admits a solution (Θ̃, �).

We shall now examine the consequences of this assumption regarding existence of a solution
(Π, �) to the price BSDE (18) in this Subsection, and analysis of the cost process " of (Π, �)
in Subsection 5.3.

By standard arguments, the compensated jump-to-default process Ht = (1 − Jt) −∫ t

0 Jssds, is a Ḡ-martingale over [0, T ]. Since it is stopped at � , Lemma 4.1(i) implies that

it is also a G-martingale. Let �̂t be a shorthand for �̃t(Pt−Θ̃t, �t). The following results (first
line of (46) in particular) are key in the sequel.

Proposition 5.7 Under Assumption 5.6:
(i) The pair (Θ, �) with Θ defined over [0, �̄ ] as

Θ := JΘ̃ + (1− J)1�<T � (44)

solves the CVA BSDE (34) over [0, �̄ ]. Therefore, the pair (Π, �) with

Π := P −Θ = J(P − Θ̃) + (1− J)1�<TR (45)

solves the price BSDE (18) over [0, �̄ ];
(ii) The G-martingale component � of the counterparty risky price Π = P − Θ and the
G-martingale component � = M − � of Θ,8 satisfy for t ∈ [0, �̄ ]:

d�t = d�̃t −
(
(�t − Θ̃t)dJt + t(�̂t − Θ̃t)dt

)

d�t = d�̃t −
(
(Rt − Π̃t)dJt + t(R̃t − Π̃t)dt

)
.

(46)

Here Π̃ := P − Θ̃ is the pre-default value process of Π, �̃ := M − �̃ is an ℱ-local martin-
gale component of Π̃, and the G-progressively measurable process Rt and the ℱ-progressively
measurable process R̃t are defined by, for t ∈ [0, T ],

Rt = Γt + 1t≥�

((
�t�

+
t − �−

t

)
− (1− rt)X̂

+
t−

)
− 1t≥�

(
�̄t�

−
t − �+

t

)
− 1t≥�=��t

R̃t = Γt + pt

((
�t�

+
t − �−

t

)
− (1− rt)X̂

+
t

)
− pt

(
�̄t�

−
t − �+

t

)
− qt�t

(47)

8Recall (18) and (28) for the definition of � and M.
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in which X̂t stands as a shorthand for Xt(Π̃t, �t), and q in R̃ is an ℱ-predictable process such
that q� = ℙ(� = � ∣ G�−).

Proof. (i) Standard reduction-of-filtration computations9 exploiting the pre-default CVA
BSDE (40) which is solved by (Θ̃, �) over [0, T ], show via (37) that (Θ, �) solves the CVA
BSDE (34) over [0, �̄ ]. By Lemma 5.1, the pair (Π, �), where Π := P − Θ, thus solves the
price BSDE (18). Also recall PT = 0, which justifies the right-hand side identity in (45).
(ii) Let us introduce the Doléans-Dade G-martingale ℰ such that for t ∈ [0, �̄ ]

ℰt = JtG
−1
t = 1−

∫ t

0
ℰu− dHu.

In the present intensity setup with Gt = e−
∫ t

0
sds, one has for t ∈ [0, �̄ ]

�̃tℰt = �tJt , �̃tℰt− = �tJt−

and therefore

d(�tΘt) = d(ℰt�̃tΘ̃t) + �t��� (dt). (48)

It may happen that the ℱ-semimartingale (�̃Θ̃) fails to be also a G-semimartingale, so a
direct application of the G-integration by parts formula to (ℰ �̃Θ̃) is not possible. However,
by Lemma 4.1, the process �̃Θ̃ stopped at � is a G-semimartingale. It is also clear that
ℰ �̃Θ̃ = ℰ �̃⋅∧� Θ̃⋅∧� . Hence by applying the integration by parts formula to (ℰ �̃⋅∧� Θ̃⋅∧� ), we
obtain since the ℱ-semimartingale �̃Θ̃ cannot jump at �

d(ℰt�̃t∧� Θ̃t∧� ) = ℰt−
(
d
(
�̃t∧� Θ̃t∧�

)
− �̃tΘ̃t dHt

)
.

Plugging this into (48) and using the pre-default CVA BSDE in discounted form (41), yields
for t ∈ [0, �̄ ]

d(�tΘt) = ℰt−
(
d
(
�̃t∧� Θ̃t∧�

)
− �̃tΘ̃t dHt

)
+ �t��� (dt)

= �t
(
− gt(Pt − Θ̃t, �t)dt− t�̂tdt+ d�̃t − Θ̃t dHt

)
+ �t��� (dt)

so

d�t = d�̃t − (�t − Θ̃t)dJt − t(�̂t − Θ̃t)dt.

This proves the first line in (46). One then has for t ∈ [0, �̄ ]

d�t = dMt − d�t = (dMt − d�̃t) +
(
(�t − Θ̃t)dJt + t(�̂t − Θ̃t)dt

)

= d�̃t −
(
(Rt − Π̃t)dJt + t(R̃t − Π̃t)dt

)

where the last equality follows by algebraic manipulations similar to (32). This proves the
second line in (46). □

Remark 5.8 The jump-to-default exposure corresponding to the dJ-term in either line of
(46) can be seen as a marked process, where the mark corresponds to the default being a
default of the investor alone, of the bank alone, or a joint default. Consistently with this
interpretation, the compensator of either dJ-term in (46) corresponds to the “average jump
size” given by the dt-term in the same line, where the average is taken with respect to the
probabilities of the marks, conditionally on the fact that a jump occurs at time �.

9See, e.g., Bielecki, Crépey, Jeanblanc, and Rutkowski (2009).
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5.3 Cost Processes Analysis

Let us now assume for the G-martingale component ℳ of the primary risky assets price
process P, a structure analogous to the one derived in the second line of (46) for the G-
martingale component � of Π. One thus assumes that ℳ is given by ℳ0 = 0 and for
t ∈ [0, �̄ ]

dℳt = dℳ̃t −
((

ℛt − P̃t

)
dJt + t(ℛ̃t − P̃t)dt

)
(49)

for an ℱ-local martingale ℳ̃, a G-progressively measurable primary recovery process ℛt, and
an ℱ-progressively measurable process ℛ̃t such that t(ℛ̃t−P̃t)dt compensates

(
ℛt−P̃t

)
dJt

over [0, �̄ ].
For every hedges � and �, to be understood as hedges of the contract clean price P

and price Π, let � = �− � denote the corresponding hedge of the CVA component Θ of Π.
Let then the cost processes "P,�, "Θ,� and "Π,� be defined by "

P,�
0 = "

Θ,�
0 = "

Π,�
0 = 0, and for

t ∈ [0, �̄ ]

d"
P,�
t = dMt − �tdℳt , d"

Θ,�
t = d�t − �tdℳt , d"

Π,�
t = d"

P,�
t − d"

Θ,�
t = d�t − �tdℳt. (50)

One retrieves in particular "Π,� = ", the cost process of (Π, �) formerly introduced in (19),
related to the corresponding hedging error % by Equation (22). An immediate application
of (46) and (49) yields,

Proposition 5.9 For t ∈ [0, �̄ ],

d"
P,�
t =

(
dMt − �tdℳ̃t

)
+ �t

(
ℛt − P̃t

)
dJt + t�t

(
ℛ̃t − P̃t

)
dt (51)

d"
Θ,�
t =

(
d�̃t − �tdℳ̃t

)
−
((

�t − Θ̃t

)
− �t

(
ℛt − P̃t

))
dJt (52)

−t

((
�̂t − Θ̃t

)
− �t

(
ℛ̃t − P̃t

))
dt

d"
Π,�
t =

(
d�̃t − �tdℳ̃t

)
−
((

Rt − Π̃t

)
− �t

(
ℛt − P̃t

))
dJt (53)

−t

((
R̃t − Π̃t

)
− �t

(
ℛ̃t − P̃t

))
dt.

We thus get decompositions of the related cost processes as ℱ-local martingales stopped
at � , hence G-local martingales, plus G-compensated jump-to-default exposures. These
decompositions can then be used for devising specific pricing and hedging schemes, such
as pricing at the cost of hedging by replication (if possible), or of hedging only pre-default
risk, or of hedging only the jump-to-default risk (dJ-terms), or of min-variance hedging, etc.
This will now be made practical in a Markovian setup.

6 Markovian Case

In a Markovian setup to be specified in Subsection 6.1, explicit CVA pricing and hedging
schemes will now be formulated in terms of semilinear pre-default CVA PDEs. More pre-
cisely, we shall relate suitable notions of orthogonal solutions to the pre-default CVA BSDE
to:
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∙ From a financial point of view, corresponding min-variance hedging strategies of the
bank, based on the cost processes analysis of Subsection 5.3;

∙ From a mathematical point of view, classical Markovian BSDEs driven by an explicit
set of fundamental martingales given in the form of a multi-variate Brownian motion
and a compensated jump measure.

These Markovian BSDEs will be well posed under mild conditions, yielding related or-
thogonal solutions to the pre-default CVA BSDE, and providing in turn the corresponding
min-variance hedges to the bank. This approach will be developed for three different min-
variance hedging objectives, respectively considered in Subsections 6.2, 6.3 and 6.4. In the
end the preferred criterion (we mainly see the analysis of Subsection 6.2 as preparatory to
those of Subsections 6.3 and 6.4) can be optimized by solving (numerically if need be) the
related Markovian BSDE, or (if found more efficient) by solving an equivalent semilinear
parabolic PDE. Also we shall see that this methodology can be applied to either the risk-
management of the overall contract, or of its CVA component in isolation. But in all cases
the pre-default CVA BSDE will be the key in the mathematical analysis of the problem.

Our main results in this Section are Proposition 6.6 and Corollary 6.7, which yield
concrete recipes for risk-managing the contract as a whole or its CVA component, according
to the following objective of the bank: minimizing the variance10 of the cost process of the
contract or of its CVA component, whilst achieving a perfect hedge of the jump-to-default
exposure.

As explained in the introduction, a clean price-and-hedge (P, �) is typically determined
by the industry trading desks of the bank. The central CVA desk is then left with the task
of devising a CVA price-and-hedge (Θ, �). Consistently with this logic, given a clean price-
and-hedge (P, �), a solution (Θ̃, �) to the pre-default CVA BSDE will be sought henceforth
in the form (Θ̃, �− �), where an ℱ-adapted triplet (Θ̃, �, �) solves

{
Θ̃T = 0, and for t ∈ [0, T ] :

− dΘ̃t = g̃t(Pt − Θ̃t, �t − �t)dt−
(
�tdℳ̃t + d�t

) (54)

for an ℱ-predictable integrand � and an (ℱ ,ℙ)-local martingale �. The pre-default CVA
BSDE in form (54) is indeed equivalent to the original pre-default CVA BSDE (40), provided
one lets � = �− �, and � in (54) is defined in turn through

d�̃t = dΘ̃t − g̃t(Pt − Θ̃t, �t − �t)dt = �tdℳ̃t + d�t

(and �0 = 0). We call henceforth CVA price-and hedge, any pair-process (Θ, �) such that
(Θ̃, �, �), with Θ̃ = JΘ and � defined through (Θ̃, �) by the second line of (54) (and �0 = 0),
solves (54), meaning that � thus defined is an (ℱ ,ℙ)-local martingale.

6.1 Factor Process

We assume further that the pre-default CVA BSDE thus redefined in terms of � rather than
� is Markovian, in the sense that any of its adapted (respectively predictable) input data of
the form Dt is given as a Borel-measurable11 function D(t,Xt) (respectively D(t,Xt−)) of an

10Risk-neutral variance, under ℙ, for computational tractability.
11Typically continuous.
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ℱ-Markov factor process X. So in particular (Pt, �t) = (P (t,Xt), �(t,Xt)). Consequently,
one has for an obviously defined deterministic function g̃(t, x, �, &):

g̃t(Pt − Θ̃t, �t − �t)dt = g̃
(
t,Xt, P (t,Xt)− Θ̃t, �(t,Xt)− �t

)
dt.

We shall use as drivers of the pre-default factor process X an ℝq-valued ℱ-Brownian
motion W and an ℱ-compensated integer-valued random measure N on [0, T ]×ℝq, for some
integer q. Given coefficients b(t, x), �(t, x), �(t, x, y) and F (t, x, dy) to be specified depending
on the application at hand (see for instance Crépey and Grbac (2011)), we assume that the
pre-default factor process X satisfies the following Markovian ℱ-forward SDE in ℝq : an
initial condition X0 = x of X given as an observable or calibratable constant, and for
t ∈ [0, T ]

dXt = b(t,Xt) dt+ �(t,Xt) dWt + �(t,Xt−) ⋅ dNt, (55)

with an intensity measure of N of the form F (t,Xt, dx)dt. In (55) and below we denote for
every matrix-valued function f = f(t, x, y) on [0, T ]× ℝq × ℝq (like f = � in (55))

f(t,Xt−) ⋅ dNt =

∫

ℝq

f(t,Xt−, x)N(dt, dx) ,
(
f ⋅ F

)
(t, x) =

∫

ℝq

f(t, x, y)F (t, x, dy).

The matrix-integrals are performed entry by entry of f , so that one ends up in both cases
with matrices of the same dimensions as f . Note that a factor process X with an intensity
of N depending on X can be classically constructed by change of probability measure, see,
e.g., Part II of Crépey (2011).

Given a vector-valued function u = u(t, x) on [0, T ] × ℝq, let ∇u(t, x) denote the
Jacobian matrix of u with respect to x at (t, x), and let �u be the function on [0, T ]×ℝq×ℝq

such that for every (t, x, y) ∈ [0, T ]× ℝq × ℝq

�u(t, x, y) = u(t, x+ �(t, x, y)) − u(t, x).

One assumes further that P̃t = P̃(t,Xt), for some pre-default primary risky assets pricing

function P̃ , so that the ℱ-local martingale component ℳ̃ of ℳ in (49) writes

dℳ̃t = (∇P̃�)(t,Xt)dWt + �P̃(t,Xt−) ⋅ dNt.

Further analysis of the cost processes "-s in (51)-(53) depends on a hedging criterion
of the bank. In the following Subsections we shall propose three tractable approaches, all
of them involving, to some extent, min-variance hedging. In case the primary market is
rich enough to allow for replication, min-variance hedging of course reduces to hedging by
replication. Moreover we shall consider the two issues of hedging the contract globally, or
to only hedge its CVA. In all cases the mathematical analysis will ultimately rely on the
pre-default CVA BSDE (54).

Remark 6.1 We refer the reader to Schweizer (2001) for a survey about various quadratic
error minimization approaches which can be used in incomplete markets, and the corre-
sponding issues regarding the choice of a pricing measure. A first class of so-called mean-self-
financing approaches resorts to non-self-financing trading strategies and introduces a related
notion of cost of a strategy, analyzed in terms of the so-called minimal martingale measure.
A second class of so-called mean-variance hedging approaches sticks to self-financing trad-
ing strategies and aims at minimizing a quadratic hedging error. In this second approach a
central role is played by the so-called variance-optimal martingale measure.
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Since one only works with self-financing strategies in this paper and one shall ultimately
aim at minimizing some quadratic cost criterion, our methodology is closer to a mean-
variance hedging approach. Note in this regard that our “cost process” "Π,� = " of a price-
and-hedge (Π, �) is not the cost of a strategy in a mean-self-financing sense, but corresponds
rather to a hedging error in a mean-variance hedging sense (the close relation between " and
the corresponding hedging error properly said, %, being provided by Equation (22)).

However for the sake of tractability we only consider in this work minimization under
the martingale pricing measure ℙ, whereas most of the theoretical difficulty with mean-
variance hedging (and also with mean-self-financing approaches) comes from the fact that
one aims at minimizing the hedging error under the historical probability measure. To
emphasize this difference we write in our case min-variance hedging instead of mean-variance
hedging. Also note that our min-variance hedging will only be done with respect to the
reference filtration ℱ on the top of a given choice of a hedging strategy regarding the jump-
to-default exposure of the bank (no hedge in Subsection 6.2, perfect hedge in Subsection 6.3
and hedge of an isolated default of the investor in Subsection 6.4), as opposed to directly
minimizing the variance relative to the “big” filtration G.

Given vector-valued functions u = u(t, x) and v = v(t, x) on [0, T ] × ℝq, we denote

(u, v)(t, x) = (∇u�)(∇v�)T(t, x) +
(
(�u�vT) ⋅ F

)
(t, x), (56)

in which T stands for “transposed”. So, if u and v are n- and m-dimensional vector-functions
of (t, x), one ends-up with an ℝn×m-valued matrix-function (u, v) of (t, x).

6.2 Min-Variance Hedging of Market Risk

Our first objective will be to min-variance hedge the market risk corresponding to the term
d�̃t − �tdℳ̃t in the CVA cost process "Θ,� in (52), or d�̃t − �tdℳ̃t in the overall contract
cost process "Π,� = " in (53).

Regarding (52), this is tantamount to seeking for a solution (Θ̃, �, �) to the pre-default

CVA BSDE (54) in which � is ℱ-orthogonal to ℳ̃ (cf. Proposition 5.2 in El Karoui, Peng, and Quenez (1997)).
Given such an orthogonal solution (Θ̃, �, �) to (54), and if moreover Θ̃t = Θ̃(t,Xt), one then
has by a standard min-variance oblique bracket formula,12 in the (⋅, ⋅) notation of (56):

�t =
d<�̃,ℳ̃>t

dt

(
d<ℳ̃>t

dt

)−1
=
((

Θ̃, P̃
)
Λ
) (

t,Xt−

)
=: �(t,Xt−) (57)

where we let Λ =
(
P̃, P̃

)−1
. Here invertibility of the ℱt-conditional covariance matrix

d<ℳ̃>t

dt
is assumed.

This leads to the following Markovian BSDE in (Θ̃(t,Xt), (∇Θ̃�)(t,Xt), �Θ̃(t,Xt−, ⋅))
over [0, T ]:

⎧
⎨
⎩

Θ̃(T,XT ) = 0, and for t ∈ [0, T ] :

− dΘ̃(t,Xt) = ĝ
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�P̃T) ⋅ F

)
(t,Xt)

)
dt

− (∇Θ̃�)(t,Xt)dWt − �Θ̃(t,Xt−) ⋅ dNt,

(58)

12See, e.g., Part I of Crépey (2011).
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with for every (t, x, #, z, w) ∈ [0, T ] × ℝq ×ℝ× ℝq × ℝd (for row-vectors z, w)

ĝ (t, x, #, z, w) = g̃ (t, x, P (t, x)− #, �(t, x) − �̂(t, x, #, z, w))

where we let
�̂(t, x, #, z, w) =

(
z(∇P̃�)T(t, x) + w

)
Λ(t, x).

Indeed one then has in view of (56) and (57):

�̂(t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),
(
(�Θ̃�P̃T) ⋅ F

)
(t,Xt)) = �(t,Xt)

ĝ
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�P̃T) ⋅ F

)
(t,Xt)

)
dt =

g̃
(
t,Xt, P (t, x)− Θ̃(t,Xt), �(t,Xt)− �(t,Xt)

)
dt.

We refer the reader to the literature (see, e.g., Parts II and III of Crépey (2011)) regarding
the fact that under mild Lipschitz-continuity and square-integrability conditions on the
coefficient ĝ, the Markovian BSDE (58) has a unique square-integrable solution; moreover,
the pre-default CVA function Θ̃ = Θ̃(t, x) in this solution can be characterized as the unique
solution in suitable spaces to the following semi-linear partial integro-differential equation
(PDE for short):
{
Θ̃(T, x) = 0 , x ∈ ℝq

(∂t + X ) Θ̃(t, x) + ĝ(t, x, Θ̃(t, x), (∇Θ̃�)(t, x),
(
(�Θ̃�P̃T) ⋅ F

)
(t, x)) = 0 on [0, T )× ℝq,

(59)
where X stands for the infinitesimal generator of X.

Remark 6.2 In the classical BSDE-with-jumps literature (see for instance Royer (2006)
or Crépey and Matoussi (2008)), it is typically postulated that the driver coefficient, ĝ in
the case of the Markovian BSDE (58), only depends on �Θ̃(t,Xt−, ⋅) through one aver-
age of �Θ̃(t,Xt−, ⋅) against some jump measure, rather than through d such averages in
(58) (note the last argument w of ĝ is a row-vector in ℝd). By inspection of the proof in
Crépey and Matoussi (2008), the comparison principle which is established there, and which
is key in the connection between a BSDE and a PDE approach to a semilinear parabolic
equation (see for instance Part III of Crépey (2011), can be elevated from the scalar case
to the case of any finite number of averages. However this comparison is, as already in the
scalar case, subject to a monotonicity condition of ĝ with respect to w, so

ĝ (t, x, #, z, w) ≤ ĝ
(
t, x, #, z, w′

)
if wi ≤ w′

i, i = 1, . . . , d.

Of course these technicalities vanish in case of a fully swapped hedge satisfying (25) so
that g̃

(
t, x, �, &

)
= g̃

(
t, x, �) (see Remark 6.8 for the corresponding Markovian BSDEs and

semi-linear PDEs).

Proposition 6.3 Assuming invertibility of the primary-risky-assets-covariance-matrix
(
P̃ , P̃

)
,

the solution Θ̃ = Θ̃(t, x) to (59) yields, via (57) for � and in turn (54) for �, an orthogonal
solution (Θ̃, �, �) to the pre-default CVA BSDE (54).

The CVA-market-risk-min-variance hedge is thus given by Formula (57) as

�t = �(t,Xt−) =

((
Θ̃, P̃

)(
P̃ , P̃

)−1
)
(t,Xt−).

Process � in the solution to (54) is the residual CVA market risk under the CVA hedge �.
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We now consider hedging of the market risk d�̃t − �tdℳ̃t of the overall contract cost
process "Π,� = " in (53). Let the clean hedge � be specifically given here as the coefficient of

regression in an ℱ-orthogonal decomposition dM = �dℳ̃+de. By the min-variance oblique
bracket formula, one thus has for t ∈ [0, �̄ ]

�t =
d<M,ℳ̃>t

dt

(
d<ℳ̃>t

dt

)−1
=
((

P̃ , P̃
)
Λ
) (

t,Xt−

)
=: �(t,Xt−). (60)

Besides, in view of (51)-(53), it holds that

d�̃t − �tdℳ̃t =
(
dMt − �tdℳ̃t

)
−
(
d�̃t − �tdℳ̃t

)
.

Therefore, dM−�dℳ̃ and d�̃−�dℳ̃ being ℱ-orthogonal to dℳ̃, implies the same property
for d�̃ − �dℳ̃. In other words, Proposition 6.3 admits the following

Corollary 6.4 For � given as the regression coefficient of M against ℳ̃, the strategy �t :=
(� − �)(t,Xt−) is a min-variance hedge of the market risk component d�̃ − �dℳ̃ of the
contract cost process "Π,� = ". The residual market risk of the contract hedged in this way
is given by e− �.

6.3 Min-Variance Hedging Constrained to Perfect Hedging of Jump-to-

Default Risk

The previous approach disregards the jump-to-default risk corresponding to the dJ-terms in
(52) or (53). We now wish to min-variance hedge the market risk corresponding to the term

d�̃t − �tdℳ̃t in the CVA cost process "Θ,� in (52) (respectively d�̃t − �tdℳ̃t in the overall
contract cost process "Π,� = " in (53)), under the constraint that one perfectly hedges the
jump-to-default risk corresponding to the dJ-term in (52) (respectively (53)). Note that in
view of the marked point process interpretation provided in Remark 5.8, cancelation of the
dJ-term in any of Equation (51) to (53), implies cancelation of the dt-driven process which
compensates it in the same equation. We are thus equivalently minimizing the variance of the
cost processes "Θ,� or "Π,� = " under the constraint of perfectly hedging the jump-to-default
exposure.

Let us re-order if need be the primary risky assets so that the first ones (if any) cannot
jump at time �, and the last ones (if any) can jump at time �. We then let a superscript 0

refer to the subset of the hedging instruments with price processes which cannot jump at
time �, so ℛ0 = ℛ̃0 = P̃0, and we let 1 refer to the subset, complement of 0, of the hedging
instruments which can jump at time �.13 The CVA cost equation (52) can thus be rewritten
as, for t ∈ [0, �̄ ]:

d"
Θ,�
t =

(
d�̃t − �0t dℳ̃

0
t − �1t dℳ̃

1
t

)
−
((

�t − Θ̃t

)
− �1t

(
ℛ1

t − P̃1
t

))
dJt

− t

((
�̂t − Θ̃t

)
− �1t

(
ℛ̃1

t − P̃1
t

))
dt.

(61)

The condition that a CVA price-and-hedge (Θ, �) perfectly hedges the dJ-term in (61) writes:

�t − Θ̃t− = �1t
(
ℛ1

t − P̃1
t

)
, t ∈ [0, �̄ ] (62)

13This is to an harmless abuse of notation that Y 0 and Y 1 do not represent anymore the “coordinates 0

and 1” of an ℝd-valued vector Y, or these are now “group-coordinates”.



32

where it should be noted in view of (35) that �t is, via (1 − rt)X̂
+
t−, a random function of

Θ̃t− and �t− = �t− − �t−. Viewed as an equation to be solved in �1t , condition (62) is thus
very implicit unless one is in the special case where (in the present Markov setup)

(1− r(t,Xt))X
+(t,Xt, �, &) = (1− r(t,Xt))X

+(t,Xt, �) (63)

does not depend on &, so that �t does not depend on �t−. In this case, in view of the expression
of �t in (35), depending on whether one considers a model of unilateral counterparty risk
(� = ∞), of bilateral counterparty risk without joint default of the bank and of the investor
(�, � < ∞ with � ∕= � almost surely), or of bilateral counterparty risk with a possible joint
default of the bank and of the investor, then Equation (62) respectively boils down to a
system of one, two or three linear equations to be satisfied by �1t .

We work in this Subsection under the assumption that Equation (62) does have a
solution of the form

�1t = �1t (Θ̃t−) = �1(t,Xt−, Θ̃t−). (64)

Under condition (63), this is satisfied under a mild non-redundancy condition on the hedg-
ing instruments in group 1, with �1 typically uni-variate in case � = ∞, bi-variate in
case �, � < ∞ with � ∕= �, and tri-variate otherwise. For a case of existence of a so-
lution of the form (64) to Equation (62) without condition (63), we refer the reader to
Bielecki, Crépey, and Rutkowski (2011), extending Burgard and Kjaer (2010) and Burgard and Kjaer (2011).

Remark 6.5 (Discussion of Condition (63)) Condition (63) holds in the case of a fully
swapped hedge as well as in the partial default case where r = 1. Again in specific cases
a solution of the form �1t (Θ̃t−) to Equation (62) may be found without condition (63), see
Bielecki, Crépey, and Rutkowski (2011). In the case without (63), a possible idea to recover
(if need be) (63) however is to forget about the close-out funding cash-flow Rf = (1−r�)X̂

+
�−

in R, thus working everywhere as if r was equal to one, whilst using a dt-funding-excess-
benefit coefficient ft(�, &) adjusted to

f̃t(�, &) = ft(�, &) − tpt(1− rt)X
+
t (�, &). (65)

The problem thus modified then satisfies (63). The adjusted funding benefit coefficient
f̃t(�, &) represents a pure liquidity (as opposed to credit risk) funding benefit coefficient.
Using this approach thus also allows one to nicely decouple the credit risk ingredients in the
model, represented by � and �, from the liquidity funding ingredients, represented by the
adjusted excess funding benefit coefficient f̃ and the repo basis c.

Note that simply ignoring the close-out funding cash-flow Rf (as in Burgard and Kjaer (2010)
and Burgard and Kjaer (2011)) without adjusting f , would induce a valuation and hedging
bias. In contrast, accordingly adjusting f as in (65) makes it at least correct from the valu-
ation point of view, for every fixed �. But this correctness in value is only for a given hedge
process �. Since a central point in all this is precisely on how to choose �, we believe this
adjustment approach is fallacious.

Now, for any CVA hedge � with components �1 of � in group 1 given as a solution
�1t (Θ̃t−) to (62), the CVA cost process (61) reduces to

d"
Θ,�
t =d�̃t − �0t dℳ̃

0
t − �1t dℳ̃

1
t . (66)
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This leads us to seek for a solution (Θ, �) to the problem of min-variance hedging of the
CVA constrained to perfect hedging of CVA jump-to-default risk, with �t of the form

�t =
(
�0t , �

1
t (Θ̃t−)

)
, (67)

and with (Θ̃, �, �) solving the pre-default CVA BSDE (54), where � is defined through Θ̃
and � by the second line of (54). Note in view of the pre-default CVA BSDE (54) that d�t
then boils down to d"

Θ,�
t in (66), the variance of which one would like to minimize. Now, in

order to minimize the variance of d"Θ,�
t = d�t among all solutions (Θ̃, �, �) of (54) such that

�1t = �1t (Θ̃t−), one must choose �0 as the coefficient of regression of d�̄t := d�̃t−�1t (Θ̃t−)dℳ̃
1
t

against dℳ̃0
t . In other words we are now looking for a solution (Θ̃, �, �) to the pre-default

CVA BSDE (54), with �1t = �1t (Θ̃t−) and with d�̃t − �1t (Θ̃t−)dℳ̃
1
t − �0t dℳ̃

0
t orthogonal to

dℳ̃0
t . In such a solution, assuming further a deterministic Θ̃t = Θ̃(t,Xt), it comes by the

min-variance oblique bracket formula:

�0t =
d < �̄,ℳ̃0 >t

dt

(
d < ℳ̃0 >t

dt

)−1

=
((

Θ̃, P̃0
)
Λ0
)
(t,Xt−)− �1(t,Xt−, Θ̃(t,Xt−))

( (
P̃1, P̃0

)
Λ0
)
(t,Xt−)

=: �0(t,Xt−) (68)

where we let Λ0 =
(
P̃0, P̃0

)−1
, assumed to exist. This leads us to the following Markovian

BSDE in (Θ̃(t,Xt), (∇Θ̃�)(t,Xt), �Θ̃(t,Xt−, ⋅)) over [0, T ]:

⎧
⎨
⎩

Θ̃(T,XT ) = 0, and for t ∈ [0, T ] :

− dΘ̃(t,Xt) = ḡ
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�(P̃0)T) ⋅ F

)
(t,Xt)

)
dt

− (∇Θ̃�)(t,Xt)dWt − �Θ̃(t,Xt−) ⋅ dNt,

(69)

with for every (t, x, #, z, w) ∈ [0, T ]×ℝq ×ℝ×ℝq ×ℝd0 , in which d0 is the number of assets
in group 0:

ḡ (t, x, #, z, w) = g̃
(
t, x, P (t, x) − #, �(t, x)−

(
�̄0(t, x, #, z, w), �1(t, x, #)

))

where we let

�̄0(t, x, #, z, w) =
(
z
(
∇P̃0�)T(t, x) + w

)
Λ0(t, x)− �1(t, x, #)

((
P̃1, P̃0

)
Λ0
)
(t, x).

Indeed one then has in view of (56) and (68)

�̄0
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�(P̃0)T) ⋅ F

)
(t,Xt)

)
= �0(t,Xt)

ḡ
(
t,Xt, Θ̃(t,Xt), (∇Θ̃�)(t,Xt),

(
(�Θ̃�(P̃0)T) ⋅ F

)
(t,Xt)

)
dt

= g̃
(
t,Xt, P (t,Xt)Θ̃(t,Xt), �(t,Xt)−

(
�0(t,Xt), �

1(t,Xt, Θ̃(t,Xt))
))

dt.

Now, under mild technical conditions, the Markovian BSDE (69) has a unique solution,
and14 the pre-default CVA function Θ̃ = Θ̃(t, x) in this solution can be characterized as the

14Up to the monotonicity condition of Remark 6.2, applying here to ḡ.
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unique solution to the following semilinear PDE:

{
Θ̃(T, x) = 0 , x ∈ ℝq

(∂t + X ) Θ̃(t, x) + ḡ(t, x, Θ̃(t, x), (∇Θ̃�)(t, x),
(
(�Θ̃�(P̃0)T) ⋅ F

)
(t, x)) = 0 on [0, T )× ℝq.

(70)
One then has by virtue of the above analysis,

Proposition 6.6 Assume existence of a solution �1t = �1(Θ̃t−) to Equation (62) and in-

vertibility of the group 0-primary-risky-assets-covariance-matrix
(
P̃0, P̃0

)
. Then the solu-

tion Θ̃ = Θ̃(t, x) to (70) yields, via (67)-(68) for � and (54) for �, a solution (Θ̃, �, �) to the

pre-default CVA BSDE (54), such that �1t = �1t (Θ̃t−) and d�̃ − �1t (Θ̃t−)dℳ̃
1
t − �0t dℳ̃

0
t is

orthogonal to dℳ̃0
t .

The min-variance hedge of the CVA (market risk) constrained to perfect hedge of the
CVA jump-to-default risk, is thus given as

(
�0t , �

1
t (Θ̃t−)

)
, where �1t (Θ̃t−) is the assumed

solution to (62), and where �0t = �0(t,Xt−) is in turn given by Formula (68):

�0t =

((
Θ̃, P̃0

)(
P̃0, P̃0

)−1
)
(t,Xt−)− �1t (Θ̃t−)

((
P̃1, P̃0

)(
P̃0, P̃0

)−1
)
(t,Xt−).

Process � = "Θ,� represents the residual CVA (market) risk under this CVA hedge �.

We now consider the constrained min-variance hedging problem of the contract as a
whole, rather than simply of its CVA component. We assume further that the hedge � of
the contract clean price P , only involves the primary assets in group 0, and that �0 is given
as the coefficient of regression in an ℱ-orthogonal decomposition dM = �0dℳ̃0 + dē, so

�0
t =

d<M,ℳ̃0>t

dt

(
d<ℳ̃0>t

dt

)−1
=
((

P̃ , P̃0
)
Λ0
) (

t,Xt−

)
=: �0(t,Xt−).

For (Θ̃, �, �) as in Proposition 6.6 and for � := �− �, the cost equations (51)-(53) boil down
to

d"
P,�
t =dMt − �0

tdℳ̃
0
t = dēt

d"
Θ,�
t =d�̃t − �0t dℳ̃

0
t − �1t (Θ̃t−)dℳ̃

1
t = d�t

d"
Π,�
t =d"t = d"

P,�
t − d"

Θ,�
t

=d�̃t − �0t dℳ̃
0
t + �1t (Θ̃t−)dℳ̃

1
t .

Therefore dMt − �0
tdℳ̃

0
t and d�̃t − �0t dℳ̃

0
t − �1t (Θ̃t−)dℳ̃

1
t being ℱ-orthogonal to dℳ̃0

t ,

implies the same property for d�̃t− �0t dℳ̃
0
t + �1t (Θ̃t−)dℳ̃

1
t . Proposition 6.6 thus admits the

following

Corollary 6.7 For �0 given as the regression coefficient of M against ℳ̃0, the strategy
�t =

(
�0(t,Xt−) − �0(t,Xt−),−�1t (Θ̃t−)

)
, is a min-variance hedge of the contract (market

risk), under the contract jump-to-default perfect hedge constraint that �1t = −�1t (Θ̃t−). The
residual (market) risk of the contract hedged in this way is given by "Π,� = " = ē− �.
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Remark 6.8 Under the fully swapped hedge condition (25), which in the current Markov
setup implies (63) through a more specific g̃

(
t, x, �, &

)
= g̃

(
t, x, �), the Markovian BSDEs

(58) and (69) equally boil down to:
⎧
⎨
⎩

Θ̃(T,XT ) = 0, and for t ∈ [0, T ] :

− dΘ̃(t,Xt) = g̃
(
t,Xt, P (t,Xt)− Θ̃(t,Xt)

)
dt− (∇Θ̃�)(t,Xt)dWt − �Θ̃(t,Xt−) ⋅ dNt,

(71)
with a related semilinear PDE given as

{
Θ̃(T, x) = 0 , x ∈ ℝq

(∂t + X ) Θ̃(t, x) + g̃(t, x, Θ̃(t, x)) = 0 on [0, T )× ℝq.
(72)

The strategies of Proposition 6.3-Corollary 6.4 and Proposition 6.6-Corollary 6.7 differ how-
ever.

6.4 Unilateral or Bilateral in the End?

The practical importance of hedging counterparty risk in terms not only of market risk, but
also of jump-to-default exposure, was revealed in the last financial crisis. But, since selling
one’s own CDS is illegal, whether it is practically possible to hedge one’s own default is
rather dubious, due to lacking of suitable hedging instruments.

In very specific cases the bank can hedge its own default by repurchasing its own bond,
see Burgard and Kjaer (2010), Burgard and Kjaer (2011) and the related development in
Bielecki, Crépey, and Rutkowski (2011). Otherwise the bank can resort to a variant of the
approach of Subsection 6.3 consisting in min-variance hedging of market risk constrained to
perfect hedging of the investor’s jump-to-default risk, whilst not hedging its own default.
Only hedging the investor’s jump-to-default risk means hedging the dJ-term in (61) on the
random set {� < � ∧ T}. In view of the CVA cost equation (61) and given the specification
(35) of �t, this boils down to the following univariate explicit linear equation to be satisfied
by a scalar process �1t = �1t (Θ̃t−), for t ∈ [0, T ] :

Pt −Qt − (1− �̄t)�
−
t − Θ̃t− = �1t

(
ℛ1

t − P̃1
t

)
. (73)

Min-variance hedging the CVA market risk of the contract (or of the contract as a whole)
subject to perfect hedge of the investor’s isolated jump-to-default, thus boils down to min-
variance hedging the CVA market risk of the contract (or of the contract as a whole) subject
to �1t being defined by (73), which can be done along similar lines as in Subsection 6.3,
yielding easily derived analogs of Proposition 6.6 and Corollary 6.7. Note this involves no
technical condition like (63).
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