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Part I

Présentation générale

Introduction

La recherche présentée dans ce mémoire, correspondant à mes travaux depuis la thèse
(soutenue en janvier 2001), se situe dans le domaine des mathématiques financières et de la
finance numérique: problèmes d’évaluation et de couverture de produits dérivés en finance,
et techniques probabilistes et d’équations aux dérivées partielles afférentes. Cette recherche
se décompose suivant quatre thèmes:
∙ (2001–04) Modélisation de la volatilité (modèles à volatilité locale), dans le domaine des
dérivés actions et indices actions (equity and equity index derivatives);
∙ (2005–07) Risque de défaut ‘single name’ et equity to credit (problématiques risque de
crédit mettant en cause une unique contrepartie, et lien entre les sphères du credit et de
l’equity; obligations convertibles en particulier);
∙ (2008) Risque de crédit ‘multi name’ (problème de la modélisation de la dépendance entre
les défauts d’un portefeuille de crédit).
Dans chaque cas les approches privilégiées ont été celles les plus susceptibles de donner lieu
à une utilisation effective en salle de marchés (avec les contraintes de calculabilité que cela
comporte, calibrabilité de modèle notamment):
– étude des modèles à volatilité locale et de leur calibration dans le cas des dérivés actions,
– modèles à intensité (par opposition à structurels) pour le risque de crédit (single-name
aussi bien que multi-name).
∙ Enfin les second et troisième points ci-dessus ont suscité des développements mathéma-
tiques dans le domaine des équations différentielles stochastiques rétrogrades (‘équations
backward’) réfléchies avec sauts, ainsi que, dans le cas Markovien, des problèmes intégro-
différentiels avec obstacles associés.

Ces différents aspects de ma recherche sont mis en perspective dans la suite de cette par-
tie. Les principales contributions sont passées en revue en section 4. Divers aspects
transverses: collaborations, expériences dans l’animation d’une recherche (encadrements
d’étudiants en thèse en particulier), relations avec l’industrie, sont également évoqués au fil
du texte. Travaux en cours et projets de recherche font l’objet de la section 5.

Les résultats obtenus font ensuite l’objet de présentations techniques plus poussées aux
parties II à V. Pour les preuves d’une part et illustrations numériques d’autre part, on
renvoie par défaut aux articles concernés. Occasionnellement cependant des éléments de
démonstration ou d’illustration numérique sont donnés dans le texte du mémoire, quand
jugés suffisamment simples et illustratifs.

1 Volatilité locale

Cette recherche a été menée en parallèle d’une activité de consulting à la société Artabel
(dissoute depuis) entre 2001 et 2003, puis d’une activité de demi-ATER au département de
mathématiques de l’université d’Évry en 2003-04. La société Artabel développait à l’époque
des logiciels de pricing et calibration de modèle en finance, au sein d’une équipe de recherche-
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développement en ingénierie financière dirigée par Rama Cont et Claude Martini. La notion
de volatilité locale avait été introduite dans les années 90 à propos des marchés de dérivés
actions et indice actions par Dupire [58] et Derman–Kani [56]. J’y avais déjà consacré une
partie de ma thèse. C’est dans le cadre de mon activité chez Artabel que j’ai continué mon
travail sur ce thème, sous plusieurs angles:
∙ Au plan mathématique, étendre les résultats théoriques de la thèse relativement au car-
actère bien posé d’une méthodologie de calibration par régularisation de type Tikhonov–
Phillips [115, 109, 64] à des espaces fonctionnels suffisamment riches de nappes de volatilité
(en s’affranchissant notamment de l’hypothèse technique de monotonie en temps de la fonc-
tion de volatilité dans la thèse [13]),
∙ Au plan pratique, élaborer un algorithme précis et rapide de calibration (par discrétisation
du cadre précédent) adossé à de bonnes propriétés théoriques de stabilité, convergence et
vitesse de convergence, plus performant en pratique que la méthode de Lagnado et Osher
[94] implémentée dans la thèse,
∙ Analyser enfin, tant mathématiquement que numériquement sur données simulées et don-
nées réelles, les propriétés des modèles à volatilité locale en termes de qualité de couverture
en delta, à concurrence de la méthode de couverture la plus communément utilisée par
les traders (couverture en delta de Black–Scholes correspondant à la volatilité implicite de
l’option couverte).

Les objectifs correspondant aux trois points ci-dessus ont été poursuivi pendant les années
2001–04, débouchant sur les publications [11, 12, 10], respectivement (voir aussi [9] pour un
survey sur la méthode de régularisation de Tikhonov appliquée aux problèmes de calibration
de modèle en finance).
L’algorithme de calibration proposé dans [10] a fait l’objet d’une implémentation indus-
trielle chez Artabel dans les années 2001–03.

2 Equity to credit et dérivés de crédit single-name

2.1 Crédit Single-Name versus Multi-Name

Dans le domaine de la modélisation du risque de crédit (voir Bielecki–Rutkowski [29] pour
une référence générale), les évènements qui doivent être pris en compte sont principalement
le risque de défaut des émetteurs et les pertes associées à ces défauts, ainsi que l’évolution
de la qualité de crédit des émetteurs. Il est donc important de travailler avec un modèle
pertinent d’évènements de défaut, et de dynamique de la qualité des firmes concernées. On
peut schématiquement distinguer deux types de problématiques risque de crédit, single-name
versus multi-name:
∙ Le crédit single-name concerne l’évaluation et la couverture de payoffs defaultable du type
1T<��(ST ) en T (ou 1�<��(S� ) en cas d’exercice anticipé en �, pour les produits à clauses
américaines ou de types jeux comme les obligations convertibles), où:
– � représente l’instant de défaut d’une entité de référence (firme),
– T est la date de maturité du produit, et
– � est une fonction de payoff d’un sous-jacent (par exemple l’action de la firme) S.
Une question centrale est alors celle du lien entre Equity et Credit (Equity to Credit, ou
Credit to Equity);
∙ Le crédit multi-name concerne pour sa part l’évaluation et la couverture de payoffs du
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type �(LT ) en T, où
– le processus de perte L est déterminé par les instants de défauts �i d’entités de référence
(firmes), pour i = 1, . . . , n (typiquement Lt = (1−R)

∑n
i=1 1�i≤t pour un taux de recouvre-

ment R), et
– � est une fonction de payoff de la perte L en T .
La question centrale est alors celle de la dépendance entre les défauts des divers émetteurs.
On renvoie le lecteur par exemple à Bielecki et al. [6, 30] pour une revue de synthèse des
produits dérivés de crédit, typiquement le CDS, ou Credit Default Swap, pour le single-name,
et le CDO, ou Collaterized Debt Obligation, pour le multi-name.

Suite à mon recrutement en septembre 2003 comme Maître de Conférences au département
de mathématiques de l’Université d’Évry, au sein de l’équipe finance dirigée par Monique
Jeanblanc, spécialiste du risque de crédit, mes centres d’intérêts se sont progressivement
élargis du champ de la modélisation dérivés actions (voir section 1) à la modélisation des
produits dérivés sujets au risque de défaut, ou vulnérables (notamment produits dérivés
hybrides actions/crédit, dont l’exemple typique est fourni par les obligations convertibles),
objet de la présente section 2, et plus récemment (ce sera l’objet de la section 3) aux produits
dérivés de crédit multi-name.

2.2 Des obligations convertibles aux options de jeu vulnérables

Suscitée notamment par des échanges avec la société Ito33, société de développement de
composants logiciels pour le front office spécialisée dans les obligations convertibles, en
partenariat de mécénat industriel avec l’équipe finance d’Évry, cette recherche, menée
en collaboration avec Monique Jeanblanc, Tomasz Bielecki et Marek Rutkowski [2, 3, 4, 5],
concerne de manière plus générale les actifs contingents vulnérables, avec possiblement des
clauses d’exercice anticipé (put) et/ou de rappel (call) de la part du détenteur et/ou de
l’émetteur du produit. On a alors affaire à des produits vulnérables américains ou de type
‘jeux’ (game options [91]), dont les obligations convertibles constituent l’exemple de référence
et la principale application.

Dans le domaine des méthodes dynamiques de pricing et de couverture en risque de crédit
single-name, le courant dominant est celui des approches dites à forme réduite (par opposi-
tion aux modèles structurels, voir [29]).
L’idée, dans la lignée de Lando [95] ou Jarrow et Turnbull [86], est de ramener (réduire)
l’étude d’un payoff defaultable à celle d’un payoff default-free (sans risque de défaut). Sous
l’hypothèse, dite (ℋ), d’invariance des martingales par grossissement de filtration (voir
par exemple [29]), il suffit en effet, pour tenir compte du défaut, d’utiliser un facteur
d’actualisation convenablement ajusté par rapport au risque de défaut, au lieu du facteur
d’actualisation au taux sans risque habituel, et d’introduire un terme de dividende fictif
continument versé au taux 
, équivalent au recovery en cas de défaut. Le principal outil
mathématique utilisé ici est celui de la réduction de filtration qui permet de se ramener à
une économie virtuelle sans défaut.

Les travaux [3, 4] appliquent cette approche à forme réduite à des produits à clause(s)
d’exercice et/ou rappel anticipé (options américaines et de type jeu), tant dans un cadre
semimartingale abstrait [3] que dans un cadre markovien générique (pouvant comporter
sauts, volatilité stochastique, changements de régimes..) [4].
Sur le plan pratique cette recherche apporte des réponses précises à des questions concrètes
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comme la décomposition rigoureuse d’une obligation convertible en une composante obli-
gataire pure et une composante optionnelle et la définition associée de spread et volatilité
implicites d’une obligation convertible [2], ou encore la dérivation rigoureuse des équations
du pricing et de la couverture d’une obligation convertible dans un modèle de diffusion avec
saut au moment du défaut [5].

2.3 Équations backward et équations intégro-différentielles

Un des points importants mis en évidence par la recherche précédente est le rôle crucial
joué dans ces problèmes par une certaine classe d’équations différentielles stochastiques
rétrogrades (équations backward, voir El Karoui et al. [62] pour les liens généraux avec la
finance) avec sauts, réfléchies ou doublement réfléchies dans les cas d’options américaines
ou de type jeux. L’étude mathématique de ces équations backward, ainsi que des problèmes
intégro-différentiels associés dans le cas Markovien, est traitée dans [15, 8].
Il est à noter que ces travaux, qui font l’objet de la partie IV de ce rapport, ont également
des applications en crédit multi-name (voir partie V).

Dans le cadre d’une collaboration avec Anis Matoussi (Université du Maine), nous avons
ainsi établi dans [15] des estimations a priori ainsi qu’un principe de comparaison qui fai-
saient défaut dans la littérature pour les équations différentielles stochastiques rétrogrades
doublement réfléchies et à sauts, et qui sont la pierre angulaire de l’exploitation des résultats
généraux de [2, 3] dans un cadre Markovien (voir [4, 5]).

Sur la base de ces estimations générales, on peut en effet montrer, dans le cas Markovien,
la continuité de la solution de l’équation backward par rapport à la condition initiale du
processus de facteurs sous-jacent (voir [8, Partie I]).

Il en découle ensuite (en utilisant également le principe de comparaison) la caractérisation
analytique de la fonction de pricing (fonction valeur, dans un langage ‘contrôle’) comme
unique solution du système d’équations intégro-différentielles avec obstacles associé (équation
de pricing dans la suite, voir [8, Partie II]).
Ici il convient de préciser l’espace dans lequel on recherche une solution de l’équation de
pricing. En effet, ne serait-ce qu’à cause des obstacles, on ne peut espérer l’existence d’une
solution au sens classique (l’existence d’une solution classique faisant déjà défaut pour une
simple option de put américain vanille dans le modèle de Black–Scholes). S’inscrivant dans
la littérature (considérable) concernant les liens entre équations backward et équations aux
dérivées partielles (voir par exemple Barles et al. [22] pour un cas de modèle avec sauts), on
montre dans [8] que le processus d’état (première composante) de la solution de l’équation
backward doublement réfléchie et à sauts est identifiable à l’unique solution de viscosité [46]
(à croissance polynomiale dans les variables d’espace) de l’équation de pricing. L’équation
est donc bien posée au sens des solutions de viscosité.
En marge de ce résultat, on établit également dans [8] la convergence vers la solution de tout
schéma numérique satisfaisant certaines conditions de stabilité, consistence et monotonie
(obtenues par adaptation à notre cadre des conditions de Barles et Souganidis [25]).
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3 Modélisation de la dépendance et dérivés de crédit multi-
name

Depuis une époque plus récente (2008), en lien en particulier avec la mise en place de la
Chaire Risque de crédit, mes recherches se situent principalement dans le domaine du
risque de crédit multi-name.

Par rapport à la situation du crédit single-name (voir section 2.1), les payoffs multi-name
(multi- au sens parfois de quelques unités en ce qui concerne les first-to-default swaps par
exemple, mais souvent de l’odre d’une centaine ou davantage, comme dans le cas des CDOs)
posent un problème d’explosion combinatoire, à la fois au plan théorique et au plan pratique.
De plus l’outil théorique utilisé dans le cas single-name pour se ramener au cas default-free,
à savoir la réduction de filtration, devient très difficile à utiliser dans ce contexte. En effet
l’hypothèse (ℋ) d’invariance des martingales par grossissement de filtration (voir section
2.1), peu coûteuse à un seul défaut, n’est typiquement pas vérifiée dans le cas multi-name.
L’étude de ces problèmes de filtrations fait l’objet de la thèse de Behnaz Zargari (depuis
septembre 2007; thèse en co-direction M. Jeanblanc–S. Crépey, en co-tutelle avec l’université
de Sharif, Iran).

Face à ces difficultés on peut envisager trois types d’approches possibles.
Une première approche consiste à ne s’intéresser qu’à un aspect du modèle, suffisant pour
traiter l’aspect pricing (pur, hors couverture). Ainsi, la connaissance de la loi jointe des
instants de défaut vue de la date 0 détermine le prix en 0 de la plupart des basket credit
derivatives (CDOs, ktℎ-to-defaults, etc.). Les modèles à facteurs (voir par exemple [29, 98])
consistent à postuler pour ces instants de défauts une loi jointe, généralement à base de
copules, calibrable sur données de spreads de CDS et de tranches de CDO ‘vanilles’ observés
sur les marchés. Mais ces modèles ne disent rien sur la dynamique de la loi des pertes, ni par
conséquent sur le lien qui pourrait exister entre les prix correspondants et une quelconque
notion de couverture.

Une seconde approche, dite bottom-up, consiste en des modèles dynamiques relatifs à une
filtration incluant celles des indicatrices de défaut (approche directe sans réduction de filtra-
tion, puisque celle-ci n’est pas applicable en crédit multi-name). Dans le cas Markovien on
peut alors dériver la loi des pertes du portefeuille par résolution du système d’équations de
Kolmogorov associé — résolution par des méthodes déterministes si la dimension du prob-
lème le permet (problème à quelques noms), ou par des méthodes de simulation sinon (voir
sections 3.2 et 5.2.2 plus bas).
C’est ainsi l’approche retenue dans [6] (voir aussi Frey et Backhaus [70], ou Herbertsson [82]),
travail en collaboration avec Monique Jeanblanc, Tomasz Bielecki et Marek Rutkowski où
on introduit un modèle dynamique de migrations de ratings d’un portefeuille de crédit (mi-
grations possiblement influencées par des facteurs auxiliaires: variables de cycle..).

La troisième approche, plus récente (approches top et top-down, voir par Giesecke et Gold-
berg [74]) consiste à modéliser directement les sous-jacent des basket derivatives (typique-
ment: indices de CDS), plutôt que les constituants des indices dans les approches précé-
dentes, quitte à redescendre aux CDS individuels par décomposition (dite thinning) de
l’indice pour la couverture.
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3.1 Up and Down Credit Risk

Les approches top et top-down sont à première vue séduisantes, dans la mesure où elles
semblent ouvrir la voie à des modèles à la fois raisonnables en termes de coût de calcul
(contrairement a priori aux approches bottom-up), et dynamiques, avec une notion de prix
reliée à une notion de couverture.

L’objet du travail [1], en collaboration avec Monique Jeanblanc et Tomasz Bielecki, est
d’approfondir les ‘intuitions’ précédentes concernant les approches top down. Ce travail fait
apparaître de nombreux nombreuses difficultés, tant théoriques que pratiques: problèmes
de filtrations (procédure de thinning difficilement soutenable en particulier dès lors que la
filtration dans le modèle ne contient pas la filtration des indicatrices de défaut) ; problème
de la détermination de dynamiques pertinentes pour les processus ‘top’, et risque de s’en
tenir à des modèles simplistes, avec des conséquences dangereuses en termes de couverture.

3.2 Méthodes numériques

Au point de vue numérique le crédit multi-name pose un double enjeu de dimensionalité (au
moins pour les modèles bottom-up) et d’évènements rares (rareté des évènements de défaut,
même si ceci est à pondérer au vu des effets de contagion entre défauts, très sensibles sous
la mesure de probabilité risque-neutre du pricing).

Si des formules analytiques sont parfois disponibles pour les produits vanilles (elles sont
alors utilisées avec profit lors de la calibration du modèle), en revanche pour des produits
plus exotiques les méthodes numériques sont incontournables. Les méthodes numériques
déterministes étant exclues lorsque la dimension du modèle excède quelques unités (modèles
bottom-up en particulier), on est alors conduit à utiliser des méthodes par simulation, avec
les deux difficultés inhérentes dans le contexte du credit multi-name:
∙ problème des évènements rares: Dans [7] (travail en collaboration avec René Carmona)
on étudie, notamment empiriquement sur la base d’études de cas, diverses techniques de type
importance sampling, explicite quand le problème le permet (lorsqu’il peut donner lieu à des
intuitions sur la mesure de probabilités à utiliser susceptible de privilégier les évènements
rares considérés), ou implicite dans le cas contraire (méthodes de type Interacting Particle
Systems à la Del Moral et al. [53, 54]);
∙ problème de la dimension: travail en cours avec Abdallah Rahal [16], voir section 5.2.2.

4 Principales contributions

Pour conclure cette revue des travaux effectués, on présente à présent une synthèse de leurs
principales contributions à nos yeux. On peut ainsi retenir:

Au plan mathématique:
∙ Le Lemme 9.1 et le Théorème 9.2, relatifs aux propriétés de régularité (continuité et
différentiabilité à l’ordre deux) de l’opérateur de pricing dans un modèle à volatilité
locale ‘irrégulière’ (‘mesurable’) ;
∙ La Proposition 15.3, réduisant le problème du pricing d’une option de jeu vulnérable
(defaultable game option) à celui d’une option de jeu standard (sans risque de crédit),
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pour des valeurs ajustées (tenant compte du défaut) des taux d’intérêt et de dividen-
des ;
∙ La Proposition 16.4, qui donne une interprétation en termes de couverture du prix
d’arbitrage d’une option de jeu vulnérable dans un modèle de marché ‘général’ (non
Markovien, possiblement incomplet) ;
∙ Le Lemme 17.1, donnant la décomposition de la dynamique (de la partie martingale)
du prix d’une option de jeu vulnérable, ainsi que le Lemme 17.2 analogue relatif aux
prix des actifs primaires, et les implications de ces lemmes en termes de stratégies
concrètes de couverture dans un cadre général (Propositions 17.3, 17.4 et 17.5) ou
Markovien (Propositions 18.1 et 19.1) ;
∙ Les Théorèmes 22.2 et Propositions 23.1 établissant respectivement les estimations
a priori et principe de comparaison pour une équation rétrograde doublement réfléchie
dans un modèle ‘assez général’ (non Markovien, avec sauts) ;
∙ Le Théorème 26.3, qui établit (en utilisant les estimations et principe de compara-
ison abstraits précédents) le caractère bien posé de l’équation rétrograde doublement
réfléchie correspondant au cas des applications typiques en finances (payoffs types op-
tions vanilles ou obligations convertibles dans des modèles Markoviens de diffusions à
sauts et/ou changements de régimes) ;
∙ Le Théorème 27.1, qui établit le caractère bien posé du système d’équations intégro-
différentielles avec double obstacle associé à l’équation rétrograde Markovienne précé-
dente, ainsi que la convergence vers la solution de viscosité de ce système de tout
schéma numérique stable, monotone et consistent ;

Au plan algorithmique:
∙ L’algorithme de calibration de volatilité locale de la section 11 (ou 12 pour le cas
américain), basé sur la Proposition 10.2 de représentation du gradient de l’opérateur de
pricing discrétisé par rapport à la fonction de volatilité (analogue discret du Théorème
9.3) ;
∙ Les algorithmes d’importance sampling et particulaires de la section 32 en crédit
multi-name ;

Au plan du message ‘ingénierie financière’:
∙ La Proposition 13.1 établissant la supériorité d’un delta de volatilité locale quotidien-
nement recalibrée par rapport au delta de Black–Scholes implicite, pour la couverture
d’une option par son sous-jacent dans un marché à skew persistent, positif ou négatif;
∙ Les analyses et conclusions de la partie ‘crédit’ (partie V):
– l’analyse de la section 33 relative à la comparaison entre un modèle de crédit dy-
namique calibré et un modèle statique en termes de couverture,
– l’importance d’utiliser un modèle pertinent pour cette dynamique, quitte au besoin à
procéder par simulation (faute le cas échéant de formules fermées) pour pricer/calibrer,
– l’apport possible de techniques de réduction de variance de type importance sampling
ou particulaires pour ces simulations.

5 Travaux en cours et projets de recherche

Dans la suite je souhaiterais donner aux travaux présentés ci-dessus les prolongements suiv-
ants.
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5.1 Pricing versus Greeking

Les résultats de la section 2.3 relatifs aux équations du pricing (équations backward et
intégro-différentielles) présentent la limite de ne concerner que la fonction valeur (fonction
de pricing, dans la contexte de l’application financière) du problème de contrôle considéré,
alors que la stratégie (correspondant formellement au gradient de la fonction valeur) est un
enjeu au moins aussi important en pratique.

En effet, concernant l’application financière en salle de marchés, les prix de bons nombre de
produits (dits ‘vanilles’) sont donnés de manière exogènes: ils s’imposent aux traders par
l’effet de l’offre et de la demande, et sont cotés ouvertement sur les systèmes d’informations.
Ces prix de marché sont utilisés comme input de la calibration des modèles (problème inverse
du pricing consistant à déterminer un jeu de valeurs numériques des paramètres du modèle
cohérent avec les observations de marché, cf. section 1.

L’objectif principal de la modélisation est alors la dérivation des paramètres de sensibil-
ités, ou Grecs, les fonctions de pricing n’étant utilisées qu’au stade de la calibration. Ces
Grecs, ou mesures des risques des produits financiers, sont ensuite utilisés pour déterminer
la composition (dynamiquement dans le temps) du portefeuille de couverture.

Il apparaît donc important d’avoir des résultats, de convergence de schémas numériques no-
tamment, concernant aussi bien la fonction valeur que son gradient. Concernant les schémas
numériques par simulation, convergence de la fonction valeur et de son gradient (ou des pro-
cessus de prix et de couverture, plus précisément) s’obtiennent typiquement conjointement
(voir, par exemple, [36]). En ce qui concerne les schémas numériques déterministes, ce n’est
pas nécessairement le cas, et notamment pas quand on entend les solutions des équations de
pricing au sens des solutions de viscosité, pour lesquelles le gradient n’est a priori pas défini.
Pour remédier à cette limitation des approches par solutions de viscosité, on se propose
dans le cadre d’un travail en cours avec Anis Matoussi [14] de reformuler le problème de
la relation backward/edp réfléchies et à sauts dans un contexte de solutions d’edp autre que
celui des solutions de viscosité considéré dans [8], à savoir une certaine notion de solutions
faibles (ou solutions Sobolev), introduite par Bally–Matoussi [21] et Barles–Lesigne [24].

État d’avancement Une première approche a été élaborée pour étendre à des modèles
avec sauts, dans le cas de problèmes sans barrières, l’approche faible de Bally–Matoussi [21]
et Barles–Lesigne [24]. Les aspects ‘barrières’ seront traités dans un second temps.

5.2 Méthodes numériques par simulation et Curse of dimensionality

Ce projet s’inscrit dans le cadre de la thèse de Abdallah Rahal, en co-direction M. Jeanblanc
et S. Crépey, Université d’Évry, et Mustapha Jazar, Université libanaise. Une première
approche est en cours [16]. Il s’agit d’étudier l’apport possible de méthodes de simula-
tion/régression à la Longstaff–Schwartz [101] ou Gobet et al. [76] pour affronter les prob-
lèmes d’explosion combinatoire rencontrés aux sections précédentes, dans deux différents
contextes.
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5.2.1 Path-dependence

On a évoqué aux sections 2.3 et 5.1 les résultats théoriques de convergence de schémas
numériques déterministes obtenus dans [8] concernant la fonction de pricing, et visés dans
[14] pour son gradient. La mise en œuvre de ces schémas ne pose a priori pas de problème
spécifique (en faisant tout de même attention aux difficultés liées aux sauts).
Cependant lorsqu’on considère les problèmes concrets de pricing liés aux obligations con-
vertibles, il s’agit souvent de problèmes en grande dimension, du fait de clauses d’exercice
anticipé hautement path-dependent (pouvant par exemple déboucher sur un modèle en di-
mension de l’ordre de trente, si l’on veut rendre compte finement des clauses du produit).

Au point de vue numérique les méthodes déterministes sont alors rendues inopérantes (curse
of dimensionality). Il faut en ce cas avoir recours à des méthodes aléatoires basées sur des
simulations de Monte Carlo — méthodes de type ‘Monte Carlo américain’ à la Longstaff–
Schwartz [101] ou Gobet et al. [76] (voir aussi le Chapitre 8 de Glasserman [75] pour une
référence générale), eu égard aux aspects ‘arrêt optimal’ du problème.

Autrement dit d’un point de vue plus mathématique, on privilégie alors l’approche proba-
biliste (approche équations backward plutôt qu’edp), et on s’intéresse à des schémas numériques
de résolution des équations backward par simulation (voir, parmi d’autres, Touzi, Bouchard
et al. [36, 35, 34], Gobet et al. [76], ou encore Chassagneux [41]). Mais la nature des
clauses de path-dependence considérées sort de la littérature existante sur la discrétisation
et la simulation d’équations rétrogrades réfléchies (avec dans les cas qui nous intéressent des
barrières actives seulement sur des intervalles aléatoires en temps et non pour tout t), ce qui
nécessite un travail spécifique d’adaptation et d’extension des résultats existants.
En relation avec la discussion de la section 2.3 concernant le calcul de la fonction de prix
versus son gradient, il est intéressant de noter ici que les méthodes de résolution d’équations
backward par simulation sont adossées à des propriétés de convergence concernant aussi bien
le prix que la stratégie de couverture, ce qui les rend attractives également de ce point de
vue (indépendamment des aspects dimensionalité).

5.2.2 Bottom-Up Credit

Une problématique de simulation/régression analogue à ci-dessus apparaît indépendamment
dans un contexte, ‘Poissonien’ plutôt que ‘Brownien’, de chaînes de Markov en crédit multi-
name. L’idée est alors de régresser dans la variable temporelle à état de la chaîne de Markov
sous-jacente fixée, plutôt que dans les variables d’espace à date fixée dans Longstaff-Schwarz
[101] ou Gobet at al. [76] (cf. section 5.2.1). On obtient ainsi une méthode de résolution
par simulation du système d’équations différentielles de Kolmogorov associé à la chaîne, ‘sur
une région d’intérêt’ de l’espace d’état (région définie par simulation de la chaîne de Markov
à partir d’un point d’intérêt), en dimension potentiellement élevée (dans le cas de modèles
bottom-up). Cette technique peut par exemple être mise à profit pour le calcul des Grecs
sans resimulation.

5.3 Volatilité locale versus Intensité locale de défaut

Concernant le crédit multi-name (voir section 3 et partie V), un projet de recherche est
envisagé avec Areski Cousin post-doctorant à Évry dans le cadre du consortium industriel
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CRIS (projet d’élaboration d’une plate-forme indépendante de valorisation et gestion des
produits dérivés de crédit, validé par le pôle de compétitivitémondial Finance Innovation,
en collaboration avec Zeliade Systems, OTC-Conseils, JPLC, Dexia CL, Microsoft France
et l’Université d’Évry).

L’idée est d’étendre aux marchés de corrélation de crédit l’analyse sur marchés de volatilité
de [10]. Il s’agit de comparer en termes de couverture, sur une base empirique comme dans
Cont et Kan [43], mais aussi sur la base d’une analyse mathématique esquissée à la section
33 du présent rapport, un modèle dynamique de crédit dynamique (en l’occurence le modèle
à intensité locale de défaut, qui est au crédit multi-name ce que le modèle à volatilité locale
de la section 1 est aux marchés de volatilité; voir par exemple Laurent et al. [97] ou Cont
et Minca [44]), avec un modèle statique (modèle de copule Gaussien de Li [100], voir aussi
Laurent [98]).
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Part II

Local Volatility

Introduction

This part is a synthetic presentation of the papers [11, 12, 10, 9].

An important issue in quantitative finance is model calibration. The calibration problem
is the inverse of the pricing problem. Instead of computing prices in a model with given
values for its parameters, one wishes to compute the values of the model parameters that
are consistent with observed prices. Now, it is well-known by physicists that such inverse
problems are typically ill-posed. So, if one perturbs the data (e.g., if the observed prices move
from some small amount between today and tomorrow), it is quite typical that a numerically
determined best fit solution of the calibration problem switches from one ‘basin of attraction’
to the other, thus the numerically determined solution isunstable. To achieve robustness of
model (re)calibration, we need to introduce some regularization. The most widely known and
applicable regularization method is Tikhonov(–Phillips) [115, 109] regularization method.
The paper [9] (see section 8 below) provides a survey on Tikhonov regularization applied to
model calibration in finance.

Following an approach introduced by Lagnado and Osher [94], we study in [11, 12] the
inverse problem, in finance, of calibrating a local volatility function from observed option
prices, using Tikhonov regularization (see section 7 for a general presentation of this cali-
bration problem). We consider this problem in two different settings: first, the generalized
Black–Scholes model [11], and second, a trinomial tree discretization [12].
In [11] (see sections 6 and 9 below) we establishW 1,2

p -estimates for one-dimensional parabolic
equations with measurable ingredients (Black–Scholes or Dupire equations with local volatil-
ity function used as a model diffusion coefficient). We deduce from these estimates that the
method of Tikhonov regularization is applicable to the local volatility calibration problem.
We thus prove the stability of the method, its convergence towards a minimum norm solu-
tion of the calibration problem, and discuss convergence rates issues.
In [12] we first establish analogous results in a trinomial tree discretization of the previous
setting (section 10 below). Next (section 11) we present a parallel implementation of the
method in the discrete setting, using a probabilistic interpretation to compute, at signifi-
cantly reduced cost, the gradient of the cost criterion. Finally (section 12) we extend this
methodology to the problem of calibration with American option prices.

In [10] (section 13 below) we compare the Profit and Loss arising from the delta-neutral
dynamic hedging of options, using two possible values for the delta of the option. The first
one is the Black–Scholes implied delta, while the second one is the local delta, namely the
delta of the option in a generalized Black–Scholes model with a local volatility, recalibrated
to the market smile every day (using a suitably regularized procedure for this calibration,
like for instance the algorithm of [12]).
We explain why in negatively skewed markets the local delta should provide a better hedge
than the implied delta during slow rallies or fast sell-offs, and a worse hedge, though to
a lesser extent, during fast rallies or slow sell-offs. Since slow rallies and fast sell-offs are
more likely to occur than fast rallies or slow sell-offs in negatively skewed markets (provided
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we have physical as well as implied negative skewness), we conclude that on average the
local delta provides a better hedge than the implied delta in negatively skewed markets. We
obtain the same conclusion in the case of positively skewed markets.

6 Black–Scholes and Dupire Equations

Recall that a European call (respectively put) option with maturity date T and strike K,
on an underlying asset S, means a right to buy (respectively sell), at price K, a unit of S
at time T . We consider a theoretical financial market, with two traded assets: the savings
account (riskless asset), with constant interest-rate r, and a risky stock, with price process S
driven by a standard Brownian motion B under the historical probability ℙ. More precisely,
the stock is assumed to obey the following dynamics:

dSt = St(�tdt+ �(t, St)dBt) , t > t0 ; St0 = S0

for a (historical) drift process �t and a volatility process �(t, St). Moreover we postulate a
continuously compounded dividend at constant rate q on S. Suppose finally the market to
be liquid, non arbitrable and perfect. By standard arbitrage arguments and the Markov
property of S, European vanilla calls/puts on S then have a theoretical fair price within the
model that we will denote by ΠT,K(t0, S0; a), where a = �2/2 and

ΠT,K(t0, S0; a) = e−r(T−t0)E(ST −K)+/− . (1)

Here E denotes the expectation with respect to the so-called risk-neutral probability ℚ,
under which

dSt = St((r − q)dt+ �(t, St)dWt) , t > t0 ; St0 = S0 (2)

for a standard ℚ – Brownian motion W. Alternatively to their probabilistic representation
(1)–(2), the prices Π can be expressed in terms of the solution to a differential equation.
One can use either the Black–Scholes(–Merton) backward parabolic equation [33, 103] in
the variables (t0, S0), which is{

−∂tΠ− (r − q)S∂SΠ− a(t, S)S2∂2
S2Π + rΠ = 0, t < T

Π∣T = (S −K)+/− ,
(3)

or the Dupire forward parabolic equation [58] in the variables (T,K), given by{
∂TΠ− (q − r)K∂KΠ− a(T,K)K2∂2

K2Π + qΠ = 0, T > t0
Π∣t0 = (S0 −K)+/− .

(4)

Note that (1)–(2) can be viewed as the Feynman–Kac representation for the solution of (3).
As for (4), it is but the Fokker–Planck equation for the transition probability density of S
from (t0, S0) to (T,K), twice integrated with respect to K using the identity

∂2
K2(S0 −K)+/− = �S0(K) ,

where �S0 denotes the Dirac mass at S0.
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7 Calibration Problem

In (2) and (3)–(4), the yields r and q are assumed to be known constants (they could in fact
be any deterministic known functions of time). The local volatility function �, or a = �2/2,
is an unknown function of time and stock. The local volatility calibration problem is the
inverse problem that amounts to inferring the local volatility function a from market-quoted
prices of liquid options, typically European vanilla calls and puts with various strikes and
maturities. The local volatility function thus inferred is then used to price exotic (non vanilla)
options, and value hedge ratios or derivative exposure, consistently with the market. This
problem, known as fitting the smile by market practitioners, is hence the reconstruction of a
local volatility function, supposed to be prevailing as the underlier’s risk-neutral dynamics.
It is indeed important for applications that the reconstruction of such a prevailing dynamics
be as fair as possible. But this calibration problem is under-determined (since the set of
observed prices is finite) and ill-posed, so that ad hoc stabilizing procedures must be used.
A variant of the problem, also considered in our work (American calibration problem, as
opposed to the previous European calibration problem), consists of the calibration of a local
volatility function with American option prices.

These calibration problems have received intensive study in the late 90’s to early 2000’s.
In order to recover a well-posed problem, one needs to introduce some regularization. Let
us thus mention, among so many other references, Avellaneda et al. [19], which use en-
tropic regularization, or Achdou et al. [17], which use as state variable the prices Π in the
variables (T,K) (cf. the Dupire equation (4)), with H2-regularization and a finite element
discretization.

In our work, we focus on the approach introduced by Lagnado and Osher [94], based on
H1-Tikhonov(–Phillips) regularization [115, 109, 64]. This approach tackles the calibration
problem as a minimization problem, of a cost criterion J� defined by

2J� (a) = d (Π∣obs (a) , �)2 + �� (a, a0)2 . (5)

Here d (Π∣obs (a) , �) denotes the Euclidean distance between the model prices Π (a) and the
observed prices �, � is the so-called regularization parameter, and � is a penalty designed to
keep a close to the prior a0 (a priori guess for a), namely � (a, a0)2 = ∥a− a0∥2H1(Q), where

∥u∥2H1(Q) =

∫ ∫
Q

(
u(t, y)2 + ∥∇u(t, y)∥2

)
dtdy , (6)

the H1(Q)-squared norm of u, with Q = (t0, T ) × ℝ (in which T stands for the largest
maturity of an option in the calibration data set).

8 Tikhonov regularization of nonlinear inverse problems

The purpose of this section is to give a crash course on Tikhonov regularization (cf. Crépey
[9]). We thus consider:
∙ a closed convex non-void subset A of a Hilbert space ℋ,
∙ a direct operator (‘pricing functional’)

ℋ ⊇ A ∋ a Π−→ Π (a) ∈ ℝd
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(in which a represents the set of model parameters),
∙ noisy data (‘observed prices’) ��, and
∙ a prior a0 ∈ ℋ (a priori guess for a).

The Tikhonov regularization method for inverting Π at ��, or estimating the model param-
eter a given the observation ��, consists in:
∙ Reformulating the inverse problem as the following nonlinear least squares problem:

mina∈A
∥∥Π (a)− ��

∥∥2 (7)

to ensure existence of solutions,
∙ Selecting the solutions of the previous nonlinear least squares problem that minimize
∥a− a0∥2 over the set of all solutions, and
∙ Introducing a trade-off between accuracy and regularity, parameterized by a level of reg-
ularization � > 0, to ensure stability.

More precisely, we introduce the following cost criterion:

2J�� (a) =
∥∥∥Π (a)− ��

∥∥∥2
+ � ∥a− a0∥2ℋ . (8)

Definition 8.1 Given �, � and a further parameter �, where � represents an error tolerance
on the minimization, a regularized solution to the inverse problem for Π at ��, is any model
parameter a�,�� ∈ A such that

J��

(
a�,��

)
≤ J�� (a) + � , a ∈ A .

Under suitable assumptions, one can show that the regularized inverse problem is well-posed,
as follows. We first postulate that the direct operator Π satisfies the following continuity
assumption.

Assumption 8.2 (Compactness) Π (an) converges to Π (a) in ℝd if an weakly-converges
to a in ℋ.

We then have the following stability result.

Theorem 8.1 (Stability) Let ��n → ��, �n → 0 when n → ∞. Then any sequence of
regularized solutions a�n,�n� admits a subsequence which converges in ℋ towards a regularized
solution a�,�=0

� .

Assuming further that the data lie in the range of the model leads to convergence properties
of regularized solutions to (unregularized) solutions of the inverse problem as �→ 0. Let us
then make the following additional assumption on Π.

Assumption 8.3 (Range property) � ∈ Π(A).

By an a0 – solution to the inverse problem for Π at �, we mean any a ∈ Argmin
{Π(a)=�}

∥a − a0∥.

Note that the set of a0-solutions is non-empty, under Assumption 8.3.
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Theorem 8.2 (Convergence; see, for instance, Theorem 2.3 of Engl et al. [65]) Let
the perturbed parameters �n, �n, �n and the perturbed data �n ∈ ℝd satisfy

(n ∈ ℕ) ∥� − �n∥ ≤ �n,

(n→∞) �n , �2
n/�n , �n/�n −→ 0.

Then any sequence of regularized solutions a�n,�n�n admits a subsequence which converges in
ℋ towards an a0-solution a of the inverse problem for Π at �. In particular, in case when
this problem admits a unique a0-solution a, then a

�n,�n
�n converges to a.

Remark 8.4 In the special case where the direct operator Π is linear, Tikhonov regular-
ization thus appears as an approximating scheme for the pseudo-inverse of Π.

Finally, assuming further regularity of Π, one can get convergence rates estimates, uniform
over all data � ∈ Π(A) sufficiently close and smooth with respect to the prior a0 (so that the
additional source condition (9) is satisfied below). Let us thus make the following additional
assumption on Π.

Assumption 8.5 (Twice Gateaux differentiability) There exists linear and bilinear forms
dΠ (a) on ℋ and d2Π (a) on ℋ2 such that

Π (a+ "ℎ) = Π (a) + "dΠ (a) ⋅ ℎ+ "2

2 d
2Π (a) ⋅ (ℎ, ℎ) + o

(
"2
)

; a, a+ ℎ ∈ A
∥dΠ (a) ⋅ ℎ∥ ≤ C ∥ℎ∥ ,

∥∥d2Π (a) ⋅ (ℎ, ℎ′)
∥∥ ≤ C ∥ℎ∥ ∥ℎ′∥ ; a ∈ A , ℎ, ℎ′ ∈ ℋ

where C is a constant independent of a ∈ A.

In the following theorem the operator

dΠ (a)∗ : ℝd ∋ � 7→ dΠ (a)∗ � ∈ ℋ

denotes the adjoint of
dΠ (a) : ℋ ∋ ℎ 7→ dΠ (a)ℎ ∈ ℝd ,

in the sense that we have, for every (ℎ, �) ∈ ℋ × ℝd (see [64]):

⟨ℎ, dΠ(a)★�⟩ℋ = �TdΠ(a).ℎ .

Theorem 8.3 (Convergence Rates; see, for instance, Theorem 10.4 of Engl et al [64])
Assume

(n ∈ ℕ) ∥� − �n∥ ≤ �n,

(n→∞) �n −→ 0 , �n ∼ �n , �n = O
(
�2
n

)
.

Then ∥a�n,�n�n − a∥ = O(
√
�n), for any a0-solution a of the inverse problem for Π at � such

that

a− a0 = dΠ (a)∗ � (9)

for some � sufficiently small in ℝd (in particular, there exists at most one such a0-solution
a).
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Remark 8.6 An interesting feature of Tikhonov regularization is that the data � does not
need to belong to the range of the direct operator for applicability of the method — even
if Assumption 8.3 is the simplest assumption for the previous results regarding convergence
and convergence rates (in fact a minimal assumption for such results is the existence of a
least squares solution to the inverse problem, see Proposition 3.2 of Binder et al [32]).

For implementation purposes, the problem of minimizing (8) is discretized, thus becoming
effectively a nonlinear minimization problem on (some subset of) ℝM (see, e.g., Nocedal and
Wright [105]), where M is the number of model parameters to be estimated.

Of course an important issue in practice is the choice of the regularization parameter �, that
determines the trade-off between accuracy and regularity in the method.

Sections 9 and 10 give two concrete settings in which assumptions 8.2 and 8.5 will be shown
to be satisfied, so that all the results in this section are applicable (provided Assumption
8.3 holds, regarding Theorems 8.2 and 8.3).
Section 11 examines extension of the results of section 10 to the American calibration prob-
lem.

To alleviate the notation, we assume in sections 9 to 11 that there are only calls in the
calibration data.

9 Continuous setting

The first setting, considered in Crépey [11], is that of the generalized Black–Scholes model
introduced at section 6.

9.1 The setting

Given a plane strip Q = (t0, T ) × ℝ, constant bounds 0 < a ≤ a, and a real measurable
function (the prior) a0 on Q such that a ≤ a0 ≤ a, let us denote by

A =
{
a ∈ a0 +H1 (Q) ; a ≤ a ≤ a

}
,

where H1 (Q) is the usual Sobolev space of measurable functions on Q such that ∥u∥2H1(Q) <

+∞ (cf. (6)).

Let us also be given a finite subset ℱ ⊂ Q = [t0, T ]× ℝ with ∣ℱ∣ = d ∈ ℕ★. We define Π as
the pricing functional

A ∋ a Π7−→ Πℱ (t0, y0 = 0; a) ∈ ℝd ,

where
ΠT,k (t0, y0; a) = e−r(T−t0)E(ST −K)+

denotes, for (T, k) ∈ ℱ , the price of the European call with maturity T and strike K = ek,
at the current date t0 and underlying asset value S0 = ey0 , in the generalized (risk-neutral)
Black–Scholes model (2) expressed with the logarithmic variable

y = ln(
S

S0
)− (r − q − a)(t− t0) . (10)
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Note that Crépey [11] uses the logarithmic variable y = ln(S), instead of y as in (10). The
present choice of variables gives rise to better stability conditions after discretization of the
problem (cf. (16) below). With this choice, all the results in Crépey [11] are easily seen to
be applicable. In particular, introducing the process Yt = ln( StS0

) − (r − q − a)(t − t0) , we
have,

Lemma 9.1 (Crépey [11]) There exists p = p(a, a) ∈]2, 3[, such that if p ∈]2, p[, then, as
(t, y) varies in [0, T ]× ℝ,

Θ(t, y) = E
(∫ T

s=t
e−r(s−t)Γ(s, Ys) ds ∣Yt = y

)
, (11)

where Γ is given in Lp(Q), defines the unique W 1,2
p (Q)-solution (solution almost everywhere

with related partial derivatives in Lp(Q)) of the following Black–Scholes equation with source
term Γ : {

−∂tΘ− (a− a) ∂yΘ− a∂2
y2Θ + rΘ = Γ on Q

Θ∣T = 0 .

Moreover,
∥Θ∥

W 1,2
p (Q)

≤ C ∥Γ∥Lp(Q) , (12)

where C = Cp(a, a).

Here the difficulty lies in the absence of regularity of the function a (these results are in
fact established under the mere hypothesis that the diffusion coefficient a is a measurable
function of t and y such that a ≤ a ≤ a). An important challenge in particular is to show
the estimate in (12) for a bound C uniform with respect to a such that a ≤ a ≤ a (and also,
locally uniform with respect to r, q and T ).
In few words, the proof of Lemma 9.1 (see [11]) uses W 1,2

p -estimates for one-dimensional
parabolic equations from Krylov [92], Fabes [67] and Stroock and Varadhan [114], in com-
bination with (classical [46] and Lp - [47, 40]) viscosity solutions arguments.

One can then show by application of Lemma 9.1 (by making use of suitable Sobolev embed-
dings),

Theorem 9.2 The pricing functional Π of this section satisfies the regularity assumptions
8.2 and 8.5.

Again the main challenge here is to show the estimates in Assumption 8.5 for a bound C
independent of a ∈ A.

9.2 The gradient

Furthermore, we have the following gradient’s representation,

Theorem 9.3 (Crépey [11]) For (T, k) ∈ ℱ , the derivative of ΠT,k(t0, y0; a) in the direc-
tion ℎ ∈ H1(Q), admits the following Feynman–Kac representation:

dΠT,k(t0, y0; a) ⋅ ℎ (13)

=

∫ T

t=t0

∫ ∞
y=−∞

ℎ(t, y)ΓT,k(t, y; a)
t0,y0(t, y; a) dy dt ,
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where ΓT,k(t, y; a) = (∂2
y2−∂y)ΠT,k(t, y; a), and 
t0,y0(t, y; a) denotes, for almost every t > t0,

the transition probability density between t0 and t discounted at rate r, that is, e−r(t−t0)×
the density, of the process Yt = ln( StS0

)− (r − q − a)(t− t0) .

Let Δ denote the Laplacian operator on H2(Q). In the set-up of this section, it is possible
to give a more explicit formulation to the abstract source condition (9). So,

Theorem 9.4 (Crépey [11]) Assuming moreover that a is uniformly continuous with re-
spect to its space variable y, then, in the context of this section, condition (9) means that
Λ = a− a0 is the unique strong solution in H2(Q) of the following (nonlocal) problem:{

Λ − ΔΛ =
∑

(T,k)∈ℱ ; t≤T �T,kΓT,k(t, y; a)
t0,y0(t, y; a), Q-a.e.
∂nΛ = 0, ∂Q-a.e.

(14)

where the normal derivative ∂nΛ ∈ L2(∂Q) is well defined, for Λ ∈ H2(Q).

Finally, let ∇ denote the Gateaux derivative in H1(Q). The following result does not appear
explicitly in Crépey [11], but it can be derived in the same manner as Theorem 9.4 above.

Theorem 9.5 If a is uniformly continuous with respect to its space variable y, then u =
∇J�(a)− �(a− a0) belongs to H2(Q), and u is the unique strong solution in H2(Q) of the
following problem:{

u−Δu =
∑

(T,k)∈ℱ ; t≤T (ΠT,k(t0, y0; a)− �T,k)ΓT,k(t, y; a)
t0,y0(t, y; a), Q-a.e.
∂nu = 0, ∂Q-a.e.

(15)

where the normal derivative ∂nu ∈ L2(∂Q) is well defined, for u ∈ H2(Q).

For simplicity we assume in the next two sections that all maturities with observed prices
fall at steps of a constant time subdivision (t0, t1, . . . , tp = T ) with time step � of [t0, T ],
where T = max(T,k)∈ℱ T.

10 Discrete Setting

It turns out that there is a natural discretization of the setting of section 9, which keeps all
the required properties. The idea is to use a Markov chain algorithm to specify the same
problem in a fully discrete setting. In order to handle the key point that the local volatility
may vary within a range, we adopt a trinomial tree method where the mesh is fixed once
for all, and the local volatility varies from node to node.

10.1 The setting

Define � and � such that a, a = �2/2, �2/2. We choose a Markov chain (Yn)0≤n≤N with
time step � = (T − t0)/N and space step " = ��

√
� , where � is some fixed parameter, the

so-called stretch factor. Starting from Y0 = 0, we look for a scheme with, at each node
(tn, ym) of the tree, a local transition probability

p+
n,m = P (Yn+1 = ym + " ∣ Yn = ym) , p−n,m = P (Yn+1 = ym − " ∣ Yn = ym) ,
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so that P (Yn+1 = ym ∣ Yn = ym) = 1− p+
n,m − p−n,m.

Then, given a local node volatility an,m = a(tn+1, ym) ∈ [a, a], it is easy to show that the
choice:

p+
n,m = (

an,m
"2
− (an,m − a)

2"
)� , p−n,m = (

an,m
"2

+
(an,m − a)

2"
)�

will yield nonnegative weights as long as the following stability conditions hold true:

" ≤ 2a

(a− a)
, 1 ≤ � ; (16)

and also, that the first and second moments of the Markov chain, after the change of variables

y 7→ S = S0 exp(y + (r − q − a)(t− t0)) ,

will match those of the continuous diffusion (2) with an o(�) accuracy as � → 0.

We denote by � the trinomial time-space tree supporting the evolution of the Markov chain
(Yn), and by ℐ the sub-tree of � starting at (t1, y0). Now we consider the same setting as
in section 9.1, except that:
∙ A now refers to the set of all possible functions a = �2/2 on ℐ with a ≤ a ≤ a, and
∙ Π means the price, or discounted expectation of the payoff function, of a call in the tree
with local volatility � .
Obviously, A can be identified in a natural way with the product set [a, a]N

2 . Moreover,
denoting by �t and �y auxiliary regularization parameters to be defined later, and by ℬ the
set of bottom nodes of ℐ at the different time steps, we endow A with the inner product

⟨u, v⟩ℎ1 = �tDt(u, v) + �yDy(u, v) , (17)

where

Dt(u, v) = �−1"
∑

(tn,ym)∈ℐ

(u (tn−1, ym)− u (tn, ym)) (v (tn−1, ym)− v (tn, ym)) (18)

Dy(u, v) = �"−1

⎛⎝ ∑
(tn,ym)∈ℐ

(u (tn, ym+1)− u (tn, ym)) (v (tn, ym+1)− v (tn, ym))

+
∑

(tn,ym)∈ℬ

(u (tn, ym)− u (tn, ym−1)) (v (tn, ym)− v (tn, ym−1))

⎞⎠ , (19)

in which homogeneous boundary conditions are assumed, Neumann at the root node of �
and Dirichlet at the other boundary nodes of � .
In this setting, the pricing functional a 7→ Π (a) is multilinear, hence continuous. It is then
easy to check the following result, which is the discrete analog of Theorem 10.1.

Proposition 10.1 The pricing functional Π of this section satisfies the regularity assump-
tions 8.2 and 8.5.

The abstract results of section 8 are thus applicable to the discretized problem as well.
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10.2 The gradient

Furthermore, elementary computations yield the following,

Proposition 10.2 (Crépey [12]) For (T, k) ∈ ℱ , the partial derivative of ΠT,k(t0, y0; a)
with respect to the value of the local volatility function a at node (tn, ym) ∈ ℐ with tn ≤ T ,
admits the following Feynman–Kac representation:

dΠT,k(t0, y0; a) ⋅ �(tn, ym)

= ΓT,k(tn, ym; a)
t0,y0(tn−1, ym; a) exp(−r�) � , (20)

where

ΓT,k(tn, ym; a) =
( 1
"2

+ 1
2")ΠT,k(tn, ym−1; a)− 2

"2
ΠT,k(tn, ym; a) + ( 1

"2
− 1

2")ΠT,k(tn, ym+1; a) ,

and 
t0,y0 denotes the map of Arrow–Debreu prices in � at the current state (t0, y0).

We now define the following discretized Laplacian operator on ℝN2 :

Δ"
�u (tn, ym) = �t (u (tn−1, ym)− 2u (tn, ym) + u (tn+1, ym)) /�2

+�y (u (tn, ym−1)− 2u (tn, ym) + u (tn, ym+1)) /"2 , (tn, ym) ∈ ℐ

with homogeneous boundary conditions, Neumann (respectively Dirichlet) at the origin and
at an artificial tN+1 = T + � time step of the tree (respectively at the other boundary nodes
of � ).

Proposition 10.3 (Crépey [12]) In the context of this section, condition (9) means that
Λ = a− a0 is the unique solution in ℝN2 of the following (nonlocal) problem:

−"Δ"
�Λ(tn, ym) =∑

(T,k)∈ℱ ; tn≤T

�T,kΓT,k (tn, ym; a) 
t0,y0 (tn−1, ym; a) exp(−r�) , (tn, ym) ∈ ℐ . (21)

Finally, let j� denote the trinomial tree analog of the cost criterion J� in (5), and let ∇
denote the gradient with respect to the ℎ1-inner product (17) in ℝN2 .

Proposition 10.4 (Crépey [12]) u = ∇j�(a) − �(a − a0) is the unique solution in ℝN2

of the following problem:

−"Δ"
�u.(tn, ym) =

∑
(T,k)∈ℱ ; tn≤T

(ΠT,k(t0, y0)− �T,k) (22)

ΓT,k (tn, ym; a) 
t0,y0 (tn−1, ym; a) exp(−r�) , (tn, ym) ∈ ℐ . □

Remark 10.1 Observe the analogy between the identities (20), (21), (22) and (13), (14),
(15), respectively.
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11 A Trinomial Tree variant of the Lagnado and Osher Algo-
rithm

Hence, a natural way to tackle numerically the Tikhonov regularized calibration problem
in the tree, would consist in �-minimizing j� with respect to a ∈ [a, a]N

2

, where a = �2/2
and N is the number of time steps in the tree, using the gradient with respect to the ℎ1-
inner product (17) in ℝN2 . This gradient could be computed by solving (22) by standard
methods.
In practice we use instead the Euclidean gradient, corresponding, as is seen immediately
from above, to (cf. (22))

∇̃j�(a) = �
∑

(T,k)∈ℱ ; tn≤T

(ΠT,k(t0, y0)− �T,k)

ΓT,k (tn, ym; a) 
t0,y0 (tn−1, ym; a) exp(−r�)− �"Δ"
� (a− a0) .

We thus spare the computational cost of solving (22). But our main point here is that
sophisticated black-box bound-constrained gradient descent minimization routines, such as,
for instance, lbfgs (see, e.g., Nocedal and Wright [105]), require the Euclidean gradient as
their argument.

Moreover, in order to take care of normalization, we minimize a functional slightly different
from j�, namely j̃� defined by (cf. (17) for the definition of ∥ ⋅ ∥ℎ1):

2j̃� (a) =
1

d

∑
(T,k)∈ℱ

(
ΠT,k (t0, y0; a)− �T,k

!T,k

)2

+ ∥a− a0∥2ℎ1 , (23)

with, for every (T, k) ∈ ℱ :

!T,k = max(ΠT,k(t0, y0; a)− �T,k , �T,k −ΠT,k(t0, y0; a)) .

The regularization parameters �t and �y in ∥ ⋅ ∥ℎ1 (cf. (17)) are chosen in a heuristic
way (see [12] for the detail) devised to balance the contributions of the quadratic residual
and penalty terms in the cost criterion at the minimum, so as to realize a fair compromise
between accuracy and stability in the method.

With respect to Lagnado and Osher’s algorithm [94], the main interest of this tree implemen-
tation follows from the probabilistic representation (20). Indeed this representation allows
one to compute the gradient of the cost criterion by pricing the options and solving one
Fokker–Planck equation in the tree, instead of pricing the options and solving one Black–
Scholes equation with source term by option and mesh node in the Lagnado–Osher original
presentation (see the detailed discussion in Crépey [12]). The accuracy of the Lagnado–
Osher algorithm is preserved, but the computational time is drastically reduced. Typically
the time can be reduced from about one hour to about one minute or less on a standard
serial Pentium PC.
Moreover a parallel implementation allows one to gain a further factor. To do so, one shares
between the available processors, for each maturity with observed prices, the computations
relative to the options with various strikes. This can be done by using for instance the MPI
library.

Another interest of this tree implementation is that explicit finite differences computations
in the tree are less costly than implicit methods for computing option prices. Of course,
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explicit schemes are subject to the stability condition (16). But, to handle this condition,
one only needs to take a space step " ≤ 2a

(a−a) , and then a time step � such that �
√
� ≤ ".

12 The American calibration problem

In the continuous setting of the generalized Black–Scholes model, it is an open question
whether or not the theoretical results of Crépey [11] (cf. section 9) can be extended to the
American calibration problem. Therefore we directly move to the discrete setting of section
10. Let us denote by � the call payoffs, namely

�T,k (tn, ym) = (S0e
(ym+(r−q−a)(tn−t0)) − ek)+ , (T, k) ∈ ℱ .

We thus consider the pair

(Π, Π̃) = (ΠT,k (tn, ym; a) , Π̃T,k (tn, ym; a)) , (T, k) ∈ ℱ ,

jointly defined by the terminal condition Π(T, ⋅; a) = �(T, ⋅), and for n = N, . . . , 1:

i. Π̃(tn−1, ⋅; a) defined from Π(tn, ⋅; a) in the same way as Π(tn−1, ⋅; a) from Π(tn, ⋅; a) in
the European case;

ii. Π(tn−1, ⋅; a) = max(Π̃(tn−1, ⋅; a), �(tn−1, ⋅)).

We denote by Cn−1
T,k (a), and call Continuation Region at time tn−1, the set of all ym such

that Π̃T,k (tn−1, ym; a) ≥ � (tn−1, ym). We qualify the local volatility function a as regular,
if this inequality is strict for every ym ∈ Cn−1

T,k (a), for every n = 1, . . . , N .

Remark 12.1 Since the non regular local volatility functions are to be sought among the
solutions of one out of a finite number of equations, namely one for each node of ℐ, it is
reasonable to expect that most local volatility functions are regular, or, more precisely, that
the regular volatility functions form a full Lebesgue measure subset of A.

An important difference between European and American call/put option prices is that in
the exercise (non continuation) region of the American options, their prices are locally con-
stant with respect to the local volatility function. Moreover, the following result regarding
American option prices shows that these are less regular than the European prices with
respect to the volatility function a.

Proposition 12.1 (Crépey [12]) For every (T, k) ∈ ℱ , the American option price Π =
ΠT,k(t0, y0; a) is Lipschitz continuous and directionally differentiable with respect to the local
volatility function a ∈ A. Moreover, if a is regular, then Π is Gateaux differentiable at a,
and the partial derivative of Π with respect to the value of the local volatility function a at
node (tn, ym) ∈ ℐ with tn ≤ T , admits the following Feynman–Kac representation:

dΠT,k(t0, y0; a) ⋅ �(tn, ym)

= ΓT,k(tn, ym; a)
T,kt0,y0
(tn−1, ym; a) exp(−r�) � , (24)
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where

ΓT,k(tn, ym; a) =
( 1
"2

+ 1
2")ΠT,k(tn, ym−1; a)− 2

"2
ΠT,k(tn, ym; a) + ( 1

"2
− 1

2")ΠT,k(tn, ym+1; a) ,

and 
T,kt0,y0
(tn−1, ym; a) means the probability, discounted at rate r, that the Markov chain yn

goes from (t0, y0) to (tn−1, ym) through the continuation region CT,k(a).

So in particular 
T,kt0,y0
(tn−1, ym; a) is equal to 0 if y0 ∕∈ C0

T,k(a) or ym ∕∈ Cn−1
T,k (a).

As in the European case, the explicit finite differences, or trinomial tree setting, is interesting
because of the probabilistic representation (24) for the derivatives, in which the 
T,k can
be computed forward in the tree, using Fokker–Planck discrete equations that express the
composition of discounted probabilities in CT,k(a). This results in a reduced cost computation
procedure for these derivatives. Since 
 now depends on T and k, one must solve one
Fokker–Planck equation by option, instead of one Fokker–Planck equation as a whole in the
European case. But this is still one or two orders of magnitude faster than solving one
equation with source term by option and mesh node if one uses the Dynamic Programming
characterization for the partial derivatives directly, without passing by the Fokker-Planck
equation. Moreover, our computation for the 
T,k can be parallelized, in the same way as
the one for the option prices (cf. section 11).

Since Π is continuous, the stability and convergence theorems 8.1 and (under assumption
8.3) 8.2 are applicable. But as Π is not everywhere differentiable, we cannot apply theorem
8.3 anymore.

12.1 American Calibration Algorithm

Now the calibration algorithm is the same as in the European case, except that we provide
the minimization descent routines with the right-hand side of (24) instead of the Euclidean
gradient of Π, knowing that both of them coincide, at the (presumably) full set of regular
local volatility functions in A. The overall computation cost of the calibration does not
exceed twice the one required in the European case, both in the serial and in the MPI-
parallel implementation.

For extensive reports on numerical experiments we refer the reader to [12]. Numerical
experiments on real data sets involving several hundreds of input prices, support strong
evidence that there is no trade-off between stability and accuracy when using this regular-
ized calibration procedure, both in the European and in the American case. Except those
corresponding to the shortest maturities, for which calibration is irrelevant, most prices are
calibrated up to a few centimes of implied volatility, while the local and implied volatility
functions thus calibrated exhibit satisfactory regularity and stability properties (see, e.g.,
Figure 1). The stability of the results contrasts with the instability that occurs if elementary
reconstruction procedures are used for the local volatility function.
Finally the parallelization of the algorithm mentioned at the end of section 11 improves the
speed of the algorithm by a further factor.
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Figure 1: Local Volatility calibrated on the DAX Index vanilla options, June 1 2001.

13 Delta Hedging Vega Risk?

In this section we consider an agent who is short of one option with market price process Π
on an underlyer S. Assume the riskless interest rate r in the economy and the dividend yield
q on S to be zero, for notational simplicity. Let T1 ≤ T (the option’s maturity). Practically,
delta-hedging the option with the underlyer (and the riskless asset) on the time interval
[0, T1] consists in rebalancing in a self-financed way, at every point in time of a subdivision
(possibly random, though this is not the point here) 0 = t0 ≤ t1 ≤ . . . ≤ tp = T1 of [0, T1], a
complementary position Δ in S, in order to minimize the overall exposure to ‘small’ moves
of the underlying asset S.

The tracking error, or profit-and-loss (P&L for short) trajectory e = (etk)0≤k≤p, is obtained
by adding up the following increments, starting with e0 = 0, from k = 0 to p− 1:

�ke = −�kΠ + Δtk �kS , (25)

where �kΠ = Πtk+1
− Πtk , �kS = Stk+1

− Stk and Δtk is the number of units of S in the
hedging portfolio on the time interval (tk, tk+1].

In [10], our aim is to compare two delta-hedging strategies, with Δt respectively given by:
∙ The Black–Scholes implied delta of the option, that is

Δt = Δbs
t = ∂SΠbs(t, St,Σt)

where the function Πbs and the number Σt stand for the Black–Scholes pricing function of
the option and the market Black–Scholes implied volatility of the option at date t;
∙ Or, alternatively, the local delta of the option, that is

Δt = Δlo
t = ∂SΠlo(t, St, �t)

where Πlo is the pricing function of the option in the local volatility model with volatility
function �t calibrated to the full market vanilla Black–Scholes implied volatility surface
observed at date t.

Remark 13.1 In the first bullet point we tacitly assume that the option’s Black–Scholes
implied volatility is well defined. This is for instance the case for European vanillas (Euro-
pean call and put options), provided their market prices lie within the arbitrage range.
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We aim at determining which Δ = Δbs or Δlo maintains the P&L trajectory e closest to 0
throughout the hedging period. The analysis of this section (see [10]) can be summarized
as follows,

Proposition 13.1 (Crépey [10]) When hedging an option with its underlyer (and the sav-
ings account), the local delta Δlo provides a better hedge than the Black–Scholes implied delta
Δbs.
At least this holds true in persistently skewed markets (positively or negatively), in terms
of the risk-neutral variance of the delta-hedged P&L (and of the objective variance of the
delta-hedged P&L as well, provided that the physical as well as the risk-neutral market are
persistently positively or negatively skewed).

So, to make it short, in a persistently positively or negatively skewed market, the local delta
works better than the implied delta for hedging an option, on average.

To develop our analysis we shall distinguish four stylized market regimes (see Crépey [10],
Derman [55]): fast rallies (underlyer S quickly increasing), slow sell-offs (S slowly decreas-
ing), slow rallies (S slowly increasing) and fast sell-offs (S quickly decreasing).
Though we were not able to formulate and establish this in a formalized and mathematical
way, it is quite intuitive that, in a negatively skewed market, slow rallies and fast sell-offs are
more likely to occur than fast rallies or slow sell-offs (provided we have physical as well as im-
plied negative skewness). We take this for granted in the derivation of Proposition
13.1, so there is still need for improvement here.

13.1 Analysis in a Local Volatility Model

In this section we operate in a theoretical market which would be given as a fixed local
volatility market model, so

Πt = Πlo(t, St) , Σt = Σlo(t, St) ,

for suitable pricing functions Πlo(t, S), Σlo(t, S).

Note that since we are presently in the set-up of a local volatility model, the strategy Δlo, if
applied in continuous time, would provide a perfect replication of the option by the underlyer
(P&L trajectory e identically equal to zero). But we only consider hedging in discrete time
here.

We first consider the problem of hedging a vanilla option in a negatively skewed local volatility
market model. Since a vanilla option is Gamma positive, thus one can show that

�elo is negative at fast market regimes and positive at slow market regimes . (26)

Moreover, one has Πlo(t, St) = Πbs(t, St,Σ
lo(t, St)) by definition of the Black–Scholes implied

volatility, so by chain differentiation:

∂SΠlo(t, St) = ∂SΠbs(t, St,Σt)+

∂ΣΠbs(t, St,Σ
lo(t, St))∂SΣlo(t, St) .



32

Now, for a vanilla option, one has ∂ΣΠbs ≥ 0, and in the case of a negatively skewed local
volatility market one can show that ∂SΣlo ≤ 0 (see [10]). Therefore,

Δlo
t = ∂SΠlo(t, St) ≤ ∂SΠbs(t, St,Σt) = Δbs

t ,

and therefore, given (25),

�ebs ≤ �elo iff �S ≤ 0 . (27)

Combining (26) and (27), we get the complete picture depicted in Table 1. As a consequence,
Δlo provides a better hedge (�e closer to zero) than Δbs during fast sell-offs or slow rallies,
and a worse hedge, though to a lesser extent, during slow sell-offs or fast rallies.

Market regime Rally Sell-Off
Slow 0 ≤ �elo ≤ �ebs (�ebs)+ ≤ �elo
Fast �elo ≤ −(�ebs)− �ebs ≤ �elo ≤ 0

Table 1: Vanilla option in a negatively skewed local volatility model.

Since slow rallies and fast sell-offs are more likely to occur than fast rallies or slow sell-offs in
negatively skewed markets (provided we have physical as well as implied negative skewness),
the following conclusion follows,

Proposition 13.2 (Crépey [10]) For a vanilla option in a negatively skewed local volatil-
ity market model, and provided we have physical as well as implied negative skewness, the
local delta provides a better hedge than the implied delta on average, as well as on average
conditionally on the fact that the market is in a fast regime, or on average conditionally on
the fact that the market is in a slow regime.

In the case of an exotic option with negative Gamma/Vega exposure (such as a reverse barrier
option in the neighbourhood of the barrier), we simply apply a central symmetry in Table
1 (see Table 2), and the same conclusion follows.

Market regime Rally Sell-Off
Slow �ebs ≤ �elo ≤ 0 �elo ≤ −(�ebs)−

Fast (�ebs)+ ≤ �elo 0 ≤ �elo ≤ �ebs

Table 2: Negative Gamma/Vega exposure in a negatively skewed local volatility model.

Finally in a positively skewed local volatility model, we simply reverse the order of the
columns in Table 1 (or 2), and the dominant market regimes are exchanged as well, hence
the conclusions as in the case of positively skewed markets.

13.2 Analysis in a real market

In a real market, we can decompose the P&L increments in the following way:

�elo = (−�Πlo + Δlo�S) + (�Πlo − �Π)
�ebs = (−�Πlo + Δbs�S) + (�Πlo − �Π)

(28)
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where �Π denotes the increment of the market price of the option between the dates tk
and tk+1 while �Πlo represents the price increment predicted by the local volatility model
calibrated at date tk, given the new observations at date tk+1. In the right-hand side of
(28), the first terms behave as in the analysis of section 13.1, while the second terms are due
to the misspecification at date tk+1 of the local volatility model calibrated at date tk. This
misspecification arises from the fact that the market-makers have revised their anticipations
between date tk and date tk+1, according to the new market data observed at date tk+1

(and also, from time to time, according to more punctual economico-political macro news
or events).
It seems reasonable to expect that:
(i) At fast market regimes with unexpectedly high levels of realized volatility, the market-
makers will have a tendency to push the options’ implied volatilities upwards compared to
those predicted by the local volatility model calibrated at date tk, whereas
(ii) At slow market regimes, the market-makers will have a tendency to push the options’
implied volatilities downwards compared to those predicted by the local volatility model
calibrated at date tk.

In the case of a vanilla option, which is vega positive, this implies that:
(i) �Πlo ≤ �Π at fast market regimes, and
(ii) �Π ≤ �Πlo at slow market regimes.
By comparison with the situation in a negatively skewed local volatility model, �ebs and �elo

are pushed away from 0 by the same amount in Table 1, as an effect of the model misspec-
ification terms in (28) (second terms in the right-hand side). So the situation depicted in
Table 1 still holds true in the real market. The local delta thus remains better on average
than the implied delta (but the performance of both deltas deteriorates, so the differential
of performance between the two deltas is typically less in the real market than in a local
volatility model).

Symmetrical analyses lead to the same conclusion in the case of an exotic option with
negative Gamma/Vega exposure, and/or in the case of a persistently positively skewed
market. Proposition 13.1 is thus established.

We refer the reader to [12] for reports on numerical experiments providing empirical and
quantitative support to the previous conclusions, using both simulated and real time-series
of equity-index data (note that real equity-index data have had a large negative implied
skew since the stock market crash of October 1987).
Moreover we check numerically that the conclusions we draw are still true when transaction
costs are taken into account.

Remark 13.2 By comparison (see in particular Proposition 13.2 and its analog which is
still valid in a real, non local volatility market), the analysis of Derman [55] implied that, in
negatively skewed markets, the implied delta should not be worse or could even be better on
average conditionally on the fact that the market is in a slow regime, while the local delta
should be better on average conditionally on the fact that the market is in a fast regime. In
Derman’s analysis one needs to know what is or will be the actual market regime, fast or
slow, for making one’s choice of a delta. The question of knowing which delta is better on
average is left unanswered.
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Part III

Defaultable Game Options

Introduction

In this part we provide a synthetic presentation of the main results of the papers [2, 3, 4, 5].
This series of papers, in collaboration with Monique Jeanblanc, Tomasz Bielecki and Marek
Rutkowski, is motivated by applications to convertible bonds. Convertible bonds have two
important and distinguishing features:
∙ early put (as for American options) and call clauses at the holder’s and issuer’s convenience,
respectively;
∙ defaultability, since they are corporate bonds, and one of the main vehicles of the so called
equity to credit and credit to equity strategies.
This led us to cast convertible bonds into a more general framework of defaultable game
options (covering American and European options, defaultable or not, as special cases),
adapting to credit risk the general definition of game options in Kifer [91].

Paper [2] (section 14 below) deals with the issue of pricing. Though we do not dwell upon
this in this report, this simple study of arbitrage prices already has interesting practical
applications. In particular (see Remark 14.4 and [2]) one can use it to establish a rigorous
decomposition of a defaultable game option into a reference straight bond and an embedded
game exchange option. This allows one to give a precise definition to commonly used terms of
the implied spread and the implied volatility of a convertible bond. This decomposition also
provides a static replication strategy of a defaultable game option in terms of the embedded
straight bond and game exchange option.

The issue of dynamic hedging is dealt with in [3], in a rather general reduced-form model of
credit risk (sections 15 to 17 below). Hence we postulate that the primary market filtration
G admits the representation G = ℍ ∨ F, where the filtration ℍ is generated by the default
indicator process Ht = 1{�≤t} and where F is some reference filtration.
The main result can be informally stated as follows: Under the assumption (thoroughly
investigated in [15, 8], see part IV of this report) that a related doubly reflected Backward
Stochastic Differential Equation (BSDE), relative to the filtration F under some risk-neutral
measure ℚ, admits a solution (Y, F,K), then Π̃ = Y is the minimal (pre-default) superhedg-
ing price up to a (G,ℚ) – local martingale cost process, the latter being equal to 0 in the
case of complete markets. This notion of hedge with local martingale cost thus establishes a
connection between arbitrage prices and hedging, in a rather general, possibly incomplete,
market.

In [4] (section 18 below), we consider the specification of these results to the Markovian
set-up. A complementary variational inequality approach may then be developed, and more
explicit and constructive hedging strategies may be given.

Paper [5] (section 19 below) is an application and illustration of all the previous results in
the case of convertible bonds in a primary market consisting of a savings account, a stock
underlying the convertible bond, and an associated CDS contract.
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14 Abstract Set-Up

14.1 Primary Market

Given a finite horizon date T > 0, we assume that the primary market is composed of
the saving account and d risky assets with price processes defined on a filtered probability
space (Ω,G,ℙ) (with G0 trivial, for simplicity), where ℙ denotes the statistical probability
measure. By default all random variables are real-valued and GT -measurable, all processes
are real-valued and G-adapted and all semimartingales are càdlàg, without loss of generality.

We postulate that:
∙ the discount factor process �, that is, the inverse of the savings account, is given as
�t = exp(−

∫ t
0 rudu), for a bounded below short-term (presumably stochastic) interest rate

process r;
∙ the primary risky assets, with ℝd-valued price process X, pay dividends, whose cumulative
value process, denoted by D, is modeled as an ℝd-valued process of finite variation. We
define the cumulative price X̂ of the asset by

�tX̂t = �tXt +

∫
[0,t]

�u dDu , (29)

assumed to be a locally bounded (for simplicity of presentation in this report) semimartin-
gale.

We assume that the primary market model is free of arbitrage opportunities (though pre-
sumably incomplete), in the sense that there exists a risk-neutral measure ℚ, namely a
probability measure ℚ equivalent to ℙ for which �X̂ is a local martingale.

14.2 Defaultable Derivatives

Given a [0,+∞]-valued stopping time � representing the default time of a reference entity,
we set

It = 1{�≤t} , Jt = 1− It .

Let Θt (or Θ, in case t = 0) denote the set of [t, T ]-valued G-stopping times, and let � stand
for � ∧ � ∧ �, for any �, � ∈ Θt.

The next definition specifies to dividend paying defaultable derivatives the general notion
of game option introduced by Kifer [91].

Definition 14.1 (Bielecki et al. [2]) A defaultable game option is a game option (see
Kifer [91]) with the ex-dividend cumulative discounted cash flows �t�(t;�, �), where the G�-
measurable random variable �(t;�, �) is given by the formula, for any pricing time t ∈ [0, T ],
(holder) call time � ∈ Θt and (issuer) put time � ∈ Θt,

�t�(t;�, �) = (30)∫ �

t
�u dDu + ��J�

(
1{�=�<T}L� + 1{�<�}U� + 1{�=T}�

)
,

where:



36

∙ the dividend process D = (Dt)t∈[0,T ] equals

Dt =

∫
[0,t]

JuCudu+Ru dIu ,

for some coupon rate process C = (Ct)t∈[0,T ], and some predictable locally bounded recovery
process R = (Rt)t∈[0,T ];
∙ the put payment L = (Lt)t∈[0,T ] and the call payment U = (Ut)t∈[0,T ] are càdlàg processes,
and the payment at maturity � is a random variable such that

L ≤ U on [0, T ] , LT ≤ � ≤ UT .

Remark 14.2 (i) In [2, 3, 4, 5] one also copes with the case of discrete coupons.
(ii) Introducing constrained sets of stopping policies like ‘� ≥ �̄ for some �̄ ∈ Θ,’ it is possible
to consider defaultable American and European derivatives as special cases of defaultable
Game Claims. More generally, the so called call protection �̄ is at the origin of a number of
problems, theoretical as well as practical, not discussed in this report, which are dealt with
at length in [2, 3, 4, 5, 16].

We further assume that R,L and � are bounded from below, so that the cumulative dis-
counted payoff is bounded from below. Specifically, there exists a constant c such that∫

[0,t]
�u dDu + �tJt

(
1{t<T}Lt + 1{t=T}�

)
≥ −c, t ∈ [0, T ] . (31)

14.2.1 Convertible Bonds

The standing example of a defaultable game option is a (defaultable) convertible bond. To
describe the covenants of a (stylized) convertible bond, we need to introduce some additional
notation:

N̄ : the par (nominal) value,

S: the price process of the asset underlying the bond,

R̄: the recovery process on the bond upon default of the issuer,

� : the bond’s conversion factor,

P̄ ≤ C̄: the put and call nominal payments, respectively; by assumption P̄ ≤ N̄ ≤ C̄.

Definition 14.3 A convertible bond is a (defaultable) game option with coupon process C,
recovery process Rcb and payoffs Lcb, U cb, �cb such that

Rcbt = (1− �)�St− ∨ R̄t , �cb = N̄ ∨ �ST (32)
Lcbt = P̄ ∨ �St , U cbt = C̄ ∨ �St . (33)

See [2] for a more detailed description of covenants of convertible bonds, with further im-
portant real-life features like discrete coupons or call protection (cf. Remark 14.2).
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14.3 Pricing and Hedging in the General Set-Up

14.3.1 Pricing

The notion of arbitrage price process of a game option referred to in the next result, is
obtained by a suitable extension to game options of the No Free Lunch with Vanishing Risk
condition of Delbaen and Schachermayer [51] (see Kallsen and Kühn [89], Bielecki et al. [2]).
Now, it is so that this NFLVR condition on a ‘candidate arbitrage price process’ Π for a
game option is essentially equivalent to Π being the value process of a related Dynkin Game
[59] under a risk-neutral probability measure on the primary market. More precisely,

Proposition 14.1 (Bielecki et al. [2]) Assume that a semimartingale Π is the value of
the Dynkin game related to a game option under some risk-neutral measure ℚ on the primary
market, that is, for t ∈ [0, T ] :

esssup�∈Θtessinf�∈ΘtEℚ
(
�(t;�, �)

∣∣Gt) = Πt (34)
= essinf�∈Θtesssup�∈ΘtEℚ

(
�(t;�, �)

∣∣Gt) .
Then Π is an arbitrage price process for the game option. Moreover, a converse to this result
holds under a suitable integrability assumption.

Remark 14.4 Using this, one can establish a rigorous decomposition of an arbitrage price
of a defaultable game option as the sum of the price of an embedded straight bond and of
the price of an embedded game exchange option. This allows one to give a precise definition
to commonly used terms of the implied spread and the implied volatility of a convertible
bond (see [2, 5]).

14.3.2 Hedging

We adopt the definition of hedging game options stemming from successive developments,
starting from the hedging of American options examined by Karatzas [90], and subsequently
followed by El Karoui and Quenez [63], Kifer [91], Ma and Cvitanić [102] and Hamadène
[79] (see also Schweizer [112]). This definition will be later shown to be consistent with the
concept of arbitrage pricing of section 14.3.2 for a defaultable game option.

First, by a (self-financing) primary trading strategy (starting at time 0), we mean as usual a
pair (w, �) such that:
∙ the constant w represents the initial wealth,
∙ � is a predictable locally bounded ℝ1⊗d-valued process (� is an admissible strategy, for
short) representing holdings in primary risky assets.
The wealth process Ww,� =W of a primary trading strategy (w, �) is given by the formula,
for t ∈ [0, T ],

�tWt = w +

∫ t

0
�u d(�uX̂u). (35)

We now introduce a (very large, to be specified later) class of hedges with semimartingale
cost process �.
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Definition 14.5 An hedge with (semimartingale) cost process � (issuer hedge starting at
time 0) for the game option with ex-dividend cumulative cash flows � (cf. (30)) is represented
by a triplet (w, �, �) such that:
∙ (w, �) is a primary strategy with the wealth process W given by (35),
∙ the call time � belongs to Θ, and the following inequality is valid, for every put time
� ∈ Θ,

��W� +

∫ �

0
�u d�u ≥ �(0;�, �), a.s. (36)

Remark 14.6 (i) The process � is to be interpreted as the (running) financing cost, that
is, the amount of cash added to (if d�t ≥ 0) or withdrawn from (if d�t ≤ 0) the hedging
portfolio in order to get a perfect, but no longer self-financing, hedge.
(ii) Hedges at no cost (that is, with � = 0) are thus in effect superhedges.
(iii) Analogous definitions and results hold for holder hedges.

This class of hedges with cost � is obviously too large for any practical purpose, so we will
restrict our attention to hedges with a local martingale cost � under a particular risk-neutral
measure ℚ (cf. the related notions of risk-minimizing strategy in Föllmer and Sondermann
[69] and mean self-financing hedge in Schweizer [112]). In the sequel, we work under a
fixed, but arbitrary, risk-neutral measure ℚ. In particular, we define W as the set of
initial values w for which there exists an issuer hedge of the game option with the initial
value w and with local martingale cost under ℚ.

The following result gives some preliminary conclusions regarding the initial cost of a hedging
strategy for the game option under the present, rather weak, assumptions. In Proposition
16.4, we shall see that, under stronger assumptions, the infimum is attained and thus we
obtain equalities, rather than merely inequalities, in (37).

Lemma 14.2 We have (with, by convention, inf ∅ =∞)

inf
�∈Θ

sup
�∈Θ

Eℚ�(0;�, �) ≤ inf W . (37)

Proof. Assume that (w, �, �∗) is an issuer hedge with local martingale cost � for the game
option. Then (35) and (36) imply that, for any t ∈ [0, T ],

w = �t∧�∗∧�Wt∧�∗∧� −
∫ t∧�∗∧�

0
�u d(�uX̂u) ≥ (38)

�(0; t, �∗)−
∫ t∧�∗∧�

0

(
�u d(�uX̂u) + �u d�u

)
.

The stochastic integral
∫ t

0

(
�u d(�uX̂u)+�u d�u

)
is a local martingale, as is then the stopped

process
∫ t∧�∗∧�

0

(
�u d(�uX̂u) + �u d�u

)
. Moreover the latter process is bounded from below,

by (38) and (31), so that it is a bounded from below local martingale and thus a super-
martingale. Now, for any stopping time � ∈ Θ, the inequality in formula (38) still holds
with t replaced by � . By taking expectations, we obtain (recall that �∗ is fixed)

w ≥ Eℚ�0�(0;�∗, �) ,
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for any � in Θ, and thus,
w ≥ inf

�∈Θ
sup
�∈Θ

Eℚ�(0;�, �) .

The last inequality yields (37). □

15 Hazard Intensity Set-Up

We assume further that G = ℍ ∨ F, where the filtration ℍ is generated by the default
indicator process It = 1{�≤t} and F is some reference filtration. Moreover, we assume that
the optional projection of J, defined by, for t ∈ [0, T ],

oJt = ℚ(� > t ∣ ℱt) =: Qt

(Azema’s supermartingale), is (strictly) positive, continuous and non-increasing.

Remark 15.1 (i) If Q is continuous, � is a totally inaccessible G-stopping time (see, e.g.,
[52]). Moreover, � avoids F-stopping times, in the sense that ℚ(� = �) = 0, for any F-
stopping time � (see Coculescu et al. [42]).
(ii) Assuming Q continuous, the further assumption that Q has a finite variation in fact
implies that Q is non-increasing. This further assumption lies somewhere between assuming
further the (stronger) (ℋ) (or immersion) Hypothesis and assuming further that � is an F-
pseudo-stopping time. Recall that the (ℋ) Hypothesis means that all F-local martingales are
G-local martingales; � being an F-pseudo-stopping time means that all F-local martingales
stopped at � are G-local martingales (see Nikeghbali and Yor [104]).

We assume for simplicity of presentation in this report that Q is time-differentiable, and
we define the default (hazard) intensity 
, the credit-risk adjusted interest rate � and the
credit-risk adjusted discount factor � by, respectively


t = −d lnQt
dt

, �t = rt + 
t , �t = �t exp(−
∫ t

0

udu) = exp(−

∫ t

0
�udu)

(note that the process � is time-differentiable and bounded, like �). Under our assumptions,
the compensated jump-to-default process Ht = It −

∫ t
0 Ju
udu, t ∈ [0, T ], is known to be a

G-martingale.
The quantities �̃ and Θ̃ introduced in the next lemma are called the pre-default values of �
and Θ, respectively.

Lemma 15.1 (see Bielecki et al. [3]) (i) For any G-adapted, resp. G-predictable pro-
cess Π over [0, T ] there exists an (unique) F-adapted, resp. F-predictable process Π̃ over
[0, T ] such that JΠ = JΠ̃, resp. J⋅−Π = J⋅−Π̃ over [0, T ].
(ii) For any � ∈ Θ, there exists a [0, T ]-valued F-stopping time such that � ∧ � = �̃ ∧ �.

In view of the structure of the payoffs � in (30), we thus may assume without loss of
generality that the data C,R,L, U, � and the stopping policies �, � are defined relative to
the filtration F, rather than G above. More precisely, we assume in the sequel that
C,L,U are F−adapted, � ∈ ℱT , R is F-predictable and �, � are F-stopping times.
For any t ∈ [0, T ], Θt (or Θ, in case t = 0) henceforth denotes the set of [t, T ]-
valued F- (rather than G- before) stopping times; � denotes � ∧ � (rather than
� ∧ � ∧ � before), for any t ∈ [0, T ] and �, � ∈ Θt.
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15.1 Reduction of Filtration

Under our assumptions, the next lemma (which is rather standard, if not for the presence of
the stopping policies �, � therein) shows that the computation of conditional expectations
of cash flows �(t;�, �) with respect to Gt can be reduced to the computation of conditional
expectations of F-equivalent cash flows �̃(t;�, �) with respect to ℱt.

Lemma 15.2 For any stopping times �, � ∈ Θt we have that

Eℚ
(
�(t;�, �)

∣∣Gt) = Jt Eℚ
(
�̃(t;�, �)

∣∣ℱt),
where �̃(t;�, �) is given by, with � = � ∧ �,

�t�̃(t;�, �) =

∫ �

t
�ufudu+ ��

(
1{�=�<T}L� + 1{�<�}U� + 1{�=T}�

)
(39)

where f = C + 
R.

As a corollary to the previous results, we have,

Proposition 15.3 (Bielecki et al. [3]) If an F-semimartingale Π̃ solves the F-Dynkin
Game with payoff �̃, in the sense that, for any t ∈ [0, T ],

esssup�∈Θtessinf�∈ΘtEℚ
(
�̃(t;�, �)

∣∣ℱt) = Π̃t

= essinf�∈Θtesssup�∈ΘtEℚ
(
�̃(t;�, �)

∣∣ℱt) ,
then Π := JΠ̃ is a G-semimartingale solving the G-Dynkin Game with payoff �.

Hence by Proposition 14.1 Π is an arbitrage price for the option, with related pre-default
price process Π̃. A converse to this result may be established under a suitable integrability
assumption.
We thus effectively moved our considerations from the original market subject to the default
risk, in which cash flows are discounted according to the discount factor �, to the fictitious
default-free market, in which cash flows are discounted according to the credit risk adjusted
discount factor �.

16 Pre-default Model

16.1 Doubly Reflected BSDE

The next step consists in modeling Π̃ as the state-process Y of a solution (Y, F,K), assumed
to exist, to the following doubly reflected BSDE with data �,C,R,L, U, � (see Cvitanić and
Karatzas [48], Hamadène and Hassani [80], Crépey et al. [15, 8]):

�tYt = �T � +
∫ T
t �u

(
fudu+ dKu − dFu

)
, t ∈ [0, T ],

Lt ≤ Yt ≤ Ut, t ∈ [0, T ], (40)∫ T
0 (Yu − Lu) dK+

u =
∫ T

0 (Uu − Yu) dK−u = 0 .
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Definition 16.1 By a solution to (40), we mean a triplet (Y, F,K) such that:
∙ the state process Y is an F-adapted, càdlàg process,
∙
∫ ⋅

0 �dF is an F-martingale vanishing at time 0,
∙ K is an F-adapted continuous finite variation process vanishing at time 0,
∙ all conditions in (40) are satisfied, where in the third line K+ and K− denote the Jordan
components of K.
Here by Jordan decomposition we mean the decomposition K = K+ −K−, where the non-
decreasing continuous processes K+ and K− vanish at time 0 and define mutually singular
measures.

Note that the first line of (40) may be rewritten as, for t ∈ [0, T ] (recall � = r + 
):

Yt = � +

∫ T

t
(fu − �uYu)du+ dKu − dFu . (41)

As investigated in Hamadène and Hassani [80] or Crépey and Matoussi [15] and Crépey [8],
existence and uniqueness of a solution to (40) (under suitable L2-integrability conditions on
the data and the solution) is essentially equivalent to the so-called Mokobodski condition,
namely, the existence of a quasimartingale Θ (see section 22) such that L ≤ Θ ≤ U on [0, T ].
It is thus satisfied when one of the barriers is a quasimartingale and, in particular, when
one of the barriers is given as S ∨ c where S is a square-integrable Itô process and c is a
constant in ℝ∪{−∞} (see Theorem 26.3 below). This covers, for instance, the lower payoff
L of a convertible bond (see Definition 14.3 and Bielecki et al. [2, 5]).

To support our modeling standing assumption that Π̃ = Y, we have the following (standard)
verification principle.

Proposition 16.1 The F-semimartingale Y solves the F-Dynkin Game with payoff �̃. More
precisely, for any t ∈ [0, T ], the pair of stopping times �∗, �∗ ∈ Θt given by

�∗ = inf
{
u ∈ [t, T ] ; Yu ≥ Uu

}
∧ T, �∗ = inf

{
u ∈ [t, T ] ; Yu ≤ Lu

}
∧ T, (42)

is a saddle-point of this game, in the sense that we have, for any �, � ∈ Θt :

Eℚ
(
�̃(t;�∗, �)

∣∣ℱt) ≤ Yt ≤ Eℚ
(
�̃(t; , �, �∗)

∣∣ℱt).
Hence, by Proposition 15.3, Π := JΠ̃ (where we set Π̃ = Y ) is an arbitrage price for the
option, with related pre-default price process Π̃.

16.2 Connection with Hedging

Let us set further, for t ∈ [0, T ],

Πt = 1{t<�}Π̃t , �tΠ̂t = �tΠt +

∫
[0,t]

�u dDu (43)

where we recall that Dt =
∫

[0,t] JuCudu+Ru dIu. We define G by G0 = 0 and, for t ∈ [0, T ],∫
[0,t]

�udGu = �tΠ̂t +

∫ t

0
�uJu dKu. (44)
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The following lemma is key in what follows. It allows one in particular to interpret (44) as
the canonical decomposition of the G-semimartingale �Π̂. In particular G is the canonical
G-local martingale component of

∫
[0,⋅] �

−1
t d(�tΠ̂t).

Lemma 16.2 The process G defined by (44) is a G-local martingale (stopped at �).

Proof. We have by (40), for every t ∈ [0, T ],∫ t

0
�u dFu = �tΠ̃t − Π̃0 +

∫ t

0
�u dKu +

∫ t

0
�u (Cu + 
uRu)du

So by standard computations (cf. Lemma 15.2), for any 0 ≤ t ≤ u ≤ T ,

Eℚ

(
�−1
t

∫ u

t
�v dGv

∣∣∣Gt) = Jt Eℚ

(
�−1
t

∫ u

t
�v dFv

∣∣∣ℱt) = 0 .

□

Some of the arguments underlying the following result are classical, and already present
for instance in Lepeltier and Maingueneau [99]. Proposition 16.3 can thus be seen as an
extension of their results to the defaultable case, in which two filtrations are involved. Note
that our assumptions are made relative to the filtration F (the one with respect to which
the BSDE (40) is defined), whereas conclusions are drawn relative to the filtration G.

Proposition 16.3 (Bielecki et al. [3]) For any admissible strategy �, the triplet (Π0, �, �
∗)

(where Π0 is defined by (43) and �∗ by (42) with t = 0 therein) is an hedge with G-local
martingale cost process �(�) = � given by �0 = 0 and

d�t = dGt − �t �−1
t d(�tX̂t). (45)

Proof. By Lemma 16.2, the process � is a G-local martingale. Let W denote the wealth
process of the primary strategy (Π0, �). So W0 = Π0 and for t ∈ [0, T ] :

d(�tWt) = �t d(�tX̂t) = �t(dGt − d�t) .

Thus

�tWt +

∫ t

0
�u d�u =

∫ t

0
�u dGu + Π0 = �tΠ̂t + (Π0 − Π̂0) +

∫ t

0
�uJu dKu , (46)

by (44). For any � ∈ Θ, set � = � ∧�∗. From the definition of �∗, the minimality conditions
in (40) and the continuity of K−, it follows that K− = 0 and thus K ≥ 0 on [0, �∗]. Since
� ≤ �∗, (46) thus yields

��W� +

∫ �

0
�u d�u ≥

∫ �

0
�u dDu + ��J�Y� ≥ �(0;�∗, �)

where the last inequality holds because Y� = Y�∗ ≥ U�∗ on the event �∗ < �. □
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Remark 16.2 (i) The situation where � can be made equal to zero by the choice of a
suitable strategy � in Proposition 16.3 corresponds to a particular form of hedgeability of
a game option in which an issuer (or an holder) is able to hedge all risks embedded in a
defaultable game option. The case where � ∕= 0 corresponds either to non-hedgeability of a
game option or to the situation in which an issuer (or a holder) is able to hedge, but she
prefers not to hedge all the risks embedded in the option, for instance, she may be willing to
take some bets regarding specific risk directions. That is why we do not postulate a priori
that � should be minimized in some sense as, for instance, in Schweizer [112].
(ii) It is possible to introduce the issuer trivial hedge (Π0, 0, �

∗) with the G-local martingale
cost

�0
t = Gt, t ∈ [0, T ].

Obviously, this hedge is of a minor practical interest, since it implicitly assumes one is not
interested in hedging. The trivial hedge or, more precisely, the existence of any hedge is
used in the proof of Proposition 16.4, however.

Let us now draw some conclusions from Lemma 14.2 and Proposition 16.3. In the context
of specific (Cox–Ross–Rubinstein or Black–Scholes) models, analogous results can be found
in Kifer [91]. Our contribution here is an extension of these results to the present set-up
involving a reduction of filtration, as well as to more general models.

Proposition 16.4 (Bielecki et al. [3]) Under the assumptions of Proposition 16.3, we
have that Π0 = minW, so Π0 is the minimum of initial wealths of an issuer hedge with a
G-local martingale cost.

Given our definition of hedging with a cost and the definition of Π0, the fact that there
exists a hedge with initial wealth Π0 and G-local martingale cost is by no means surprising.
The minimality statement establishes a connection between arbitrage prices and hedging in
a general, incomplete market.

It is also easy to see that one could state analogous definitions and results regarding hedging
a defaultable game option, starting at any date t ∈ [0, T ]. Note that in the special case of
European options, the results can be further specified in terms of payoff’s replication at T
(up to a G-local martingale cost), rather than (super-)hedging (up to a G-local martingale
cost) in the above sense.

17 Analysis of Hedging Strategies

17.1 Discounted Cumulative Value Dynamics

Let Ht = It −
∫ t

0 Ju
udu stand for the compensated jump-to-default G-martingale. Our
analysis of hedging strategies will rely on the following lemma, which yields the dynamics
of the price process Π̂ of a game option or, more precisely, of the martingale component G
of
∫

[0,⋅] �
−1
t d(�tΠ̂t).

Lemma 17.1 The G-local martingale G defined by (44) satisfies, for t ∈ [0, T ∧ �] :

dGt = dFt + ΔΠt dHt (47)
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with ΔΠt = Rt − Π̃t−.

Sketch of Proof. This follows by computations similar to those of the proof of Kusuoka’s
Theorem 2.3 in [93] (where the (ℋ) hypothesis and a more specific Brownian filtration
F = FW are assumed therein), using the avoidance property that ℚ(� = �) = 0 for any
F-stopping time � . □

In analogy with the previous developments regarding the option to be hedged, we assume
henceforth that the dividend (vector) process D of the primary market price process X is
given as

Dt =

∫
[0,t]

Ju Cudu+ℛu dHu

for suitable coupon rate and recovery processes C and ℛ.We assume that X = JX̃, without
loss of generality with respect to the hedging application at hand (in particular any value of
the primary market at � is embedded in the recovery part of the dividend process D for X).
We further define, along with the cumulative price X̂ as usual, the pre-default cumulative
price, given by, for t ∈ [0, T ] :

X̄t = X̃t + �−1
t

∫ t

0
�u gudu .

where we set g = C + 
ℛ.
The following result is the analog, relative to the primary market, of identity (47) for a game
option.

Lemma 17.2 One has, for t ∈ [0, T ∧ �] :

�−1
t d(�tX̂t) = �−1

t d(�tX̄t) + ΔXt dHt (48)

with ΔXt = ℛt − X̃t−. Moreover, �X̄ is an F-local martingale.

Plugging (48) and (47) into (45), we get the following fundamental decomposition of the
hedging cost � of the strategy (Π0, �, �

∗). This decomposition will be exploited in various
ways in the remaining sections of this part.

Proposition 17.3 Under the previous assumptions, for any admissible strategy �, the re-
lated cost � = �(�) in Proposition 16.3 satisfies, for every t ∈ [0, T ∧ �],

d�t = dGt − �t �−1
t d(�tX̂t) =

[
dFt − �t�−1

t d(�tX̄t)
]

+
[
ΔΠt − �tΔXt

]
dHt . (49)

17.2 Hedging via Orthogonal Decompositions

Let us further be given a reference vector-valued F-square integrable martingale M . In any
particular application, the choice of this process will depend on the problem at hand (see [4]).
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We assume that F and
∫ ⋅

0 �
−1d(�X̄) are F-square integrable martingales. They thus admit

the following Galtchouk-Kunita-Watanabe decompositions (relative to F), for t ∈ [0, T ] :

dFt = Vt dMt + dmt

�−1
t d(�tX̄t) = V̄t dMt + dm̄t

for F-square integrable martingales m and m̄ orthogonal (in F) to M. In this situation, (49)
yields,

Proposition 17.4 For t ∈ [0, T ∧ �],

d�t =
[
(Vt,ΔΠt)− �t(V̄t,ΔXt)

]
d

(
Mt

Ht

)
+
[
dmt − �tdm̄t

]
. (50)

The following result justifies the informal statement that the strategy �̂ (resp. �̃) therein
hedges the risk sources M and H (resp. M). In this result, the symbol [⋅, ⋅] denotes the
square bracket with respect to G. Recall that an F-martingale stopped at � is a G-local
martingale.

Proposition 17.5 (Bielecki et al. [3]) (i) Assume, in addition, that the system

(Vt,ΔΠt) = �t(V̄t,ΔXt)

has an (admissible) solution �̂ on [0, T ∧�]. Then the cost �̂ = �(�̂) satisfies, for t ∈ [0, T ∧�],

d�̂t = dmt − �̂t dm̂t.

Moreover the processes �̂ and M⋅∧� and �̂ and H⋅∧� are orthogonal in G, in the sense that
[�̂,M⋅∧�] and [�̂, H⋅∧�] are G-local martingales.
(ii) Alternatively to (i), assume that the system

Vt = �tV̄t

has an (admissible) solution �̃ on [0, T ∧�]. Then the cost �̃ = �(�̃) satisfies, for t ∈ [0, T ∧�],

d�̃t = (ΔΠt − �̃tΔXt) dHt + (dmt − �̃t dm̂t).

Moreover the processes �̃ and M⋅∧� are orthogonal in G, in the sense that [�̃,M⋅∧�] is a
G-local martingale.

In relation with Remark 16.2(i), note that the situation of Proposition 17.5(i) corresponds to
the hedgeable case, where the cost �̂ vanishes for a strategy �̂. The situation of Proposition
17.5(ii) corresponds to the case of unhedged default risk.

18 Hedging in the Markovian Set-Up

In the Markovian case, an alternative to the previous Galtchouk-Kunita-Watanabe decom-
positions consists in applying the Itô formula to the pre-default price process Yt = u(t, Zt),
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where Z denotes a relevant Markovian factor process, and u = u(t, z) a related pricing
function.

Let us thus assume that the BSDE (40) is Markovian, in the sense that the input data
� = r + 
, f = C + 
R, L, U and � of (40) (with the first line of (40) represented by (41))
are given by Borel-measurable functions of an (Ω,F,ℚ)-Markov process Z, so

�t = �(t, Zt) , ft = f(t, Zt) , � = �(ZT ) , Lt = ℓ(t, Zt) , Ut = ℎ(t, Zt) .

We assume more specifically that the factor process Z is the solution to the following Marko-
vian (forward) SDE in ℝk (with time-homogeneous coefficients for notational simplicity):

dZt = b(Zt) dt+ �(Zt) dWt + �(Zt−)dNt , (51)

where:
∙W is a k-dimensional Brownian motion, and
∙ N is the compensated counting measure of a market point process with related intensity
�(Zt) and conditional jump probability measure p(Zt, de) (so �(Zt−)dNt in (51) is a short-
hand for

∫
E �(Zt−, e)N(dt, de), where E is the mark space).

Note that Z in (51) is a well-defined Markov process under suitable (Lipschitz and growth)
assumptions on the model coefficients (see section 25 for a concrete example), with related
generator

Zu(z) = ∂u(z)b(z) + 1
2Tr[a(z)ℋu(z)] + �(z)

(
�u(z)− ∂u(z)�̂(z)

)
where a(z) = �(z)�(z)T, ∂u and ℋu denote the row-gradient and the Hessian of u with
respect to z, and where we denote

�u(z) =

∫
E

(u(z + �(z, e))− u(z))p(z, de) , �̂(z) = �Idℝk(z) =

∫
E
�(z, e)p(z, de) .

In the present Markovian set-up the valuation PIDE formally related to a game option
writes, with f = C + 
R (cf. equation (84) in section 27 below; see also [4]):

min
(

max
(

(∂t + Z)u(t, z) + f(t, z)− �(t, z)u(t, z),

ℓ(t, z)− u(t, z)
)
, ℎ(t, z)− u(t, z)

)
= 0, t < T, z ∈ ℝk,

(52)

with terminal condition u(T, z) = �(z). Under mild conditions, the PIDE (52) is well-posed
(in a viscosity [8] or weak [27, 28, 21, 14] sense), and its solution u(t, z) is related to the
solution (Y, F,K) of (40) as follows, for t ∈ [0, T ] :

Yt = u(t, Zt)
dFt = ∂u�(t, Zt)dWt + �u(t, Zt)dNt

(53)

(and it is also possible to give a PDE interpretation to the obstacle term K in the solution
of (40) [20, 14]). Accordingly, (41) takes the following form:

− du(t, Zt) = (ft − �tu(t, Zt))dt+ dKt − ∂u�(t, Zt)dWt − �u(t, Zt)dNt . (54)

Let us assume the same structure (without barriers) on the primary market price process
X, so X̃t = v(t, Zt), where, setting g(t, z) = C(t, z) + 
(t, z)ℛ(t, z),

− dv(t, Zt) = (gt − �tv(t, Zt))dt− ∂v�(t, Zt)dWt − �v(t, Zt)dNt . (55)

Exploiting (54) and (55) in (49), we get,



47

Proposition 18.1 For t ∈ [0, T ∧ �],

d�t =
[
(∂u�(t, Zt), �u(t, Zt),Δu(t, Zt))− (56)

�t(∂v�(t, Zt), �v(t, Zt),Δv(t, Zt))
]
d

⎛⎝ Wt

Nt

Ht

⎞⎠ .

This decomposition of the hedging cost � can then be used for devising practical hedging
schemes of a defaultable game option, like superhedging (� = 0), hedging only the market
(spread) risk W, hedging only the default risk H, or min-variance hedging: see section 19
and Bielecki et al. [3, 4, 5].

19 A Simple Example

In this section we specify the factor process Z of (51) as the following scalar diffusion on ℝ+

relative to a filtered probability space (Ω,ℱ ,F,ℚ) with F = FW , for a scalar (F,ℚ)-Wiener
process W :

dZt = Zt

((
r(t)− q(t) + �
(Zt)

)
dt+ � dWt

)
, Z0 = z ∈ ℝ (57)

where:
∙ r(t) and q(t) represent deterministic riskless interest-rates and dividend yields on the stock
of a reference entity (firm),
∙ the function 
 ≥ 0 will be interpreted later as a local default intensity,
∙ � ≤ 1 is a real constant, to be interpreted later as the fractional loss upon default on the
stock price of the firm, and
∙ the volatility � is taken as constant in this report, for notational simplicity.
In particular Z is a Markov process with generator

Z = (r − q + �
)z∂z +
�2z2

2
∂2
z2 . (58)

We refer the reader to Remark 19.1 below regarding the specification of the drift of Z in
(57)–(58).

We assume that � is defined in terms of Z via the so-called canonical construction, so (with,
by convention, inf ∅ =∞),

� = inf
{
t ∈ [0,∞];

∫ t

0

(Zu) du ≥ "

}
,

where " is a unit exponential random variable on (Ω,G,ℚ) independent of W, with ℱ ⊆ G.
Thus

Qt = ℚ(� > t ∣ ℱt) = exp
(
−
∫ t

0

(Zu) du

)
= ℚ(� > t ∣ ℱ) ,

which is (strictly) positive, continuous and non-increasing on ℝ+. In particular immersion
holds between F and G = F∨ℍ, where ℍ is the natural filtration of the indicator process I
of �. So the general assumptions of section 15 are satisfied.
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Now we define the pre-default stock price process of the firm by S̃ = Z, and the related
discounted cumulative stock price process as (with as usual J = 1− I):

�tŜt = �tJtS̃t +

∫
[0,t]

�u
(
q(u)JuS̃udu+ (1− �)S̃udIu

)
.

Let us further examine the valuation in the present model of a (protection payer, say) CDS
written on the reference entity. Note that the following analysis can be extended to a rolling
CDS more realistically used as an hedging instrument [5].

Consistently with arbitrage requirements (cf. [4, 5]), we assume that the pre-default CDS
price B̃t, t ∈ [0, T ] (for some constant CDS maturity T > T ) is given as B̃t = B̃(t, S̃t),
where the pre-default CDS pricing function B̃(t, Z) is the unique (classical) solution to the
following PDE:

(∂t + Z)B̃(t, z) + �(t, z)− �(t, z)B̃(t, z) = 0 , t < T , B̃(T , z) = 0,

where:
∙ the operator Z is given by (58),
∙ �(t, z) = �̄ − �(t)
(z) is the pre-default dividend function of the CDS (see [5]),
∙ �(t, z) = r(t) + 
(z) is the credit-risk adjusted interest rate.

The discounted cumulative CDS price �B̂ equals, for every t ∈ [0, T ],

�tB̂t = �tJtB̃t +

∫
[0,t]

�u
(
�̄ Judu− �(u) dIu

)
.

Remark 19.1 Given the specification of the drift of Z in (57), an easy computation shows
that �Ŝ and �B̂ are G-local martingales (see [5]). The arbitrage assumption of section 14.1
is thus satisfied, as can also be seen by application of the general arbitrage pre-default drift
condition of [4].

Denoting X̃t =

(
S̃t
B̃t

)
= v(t, Zt), we have in this set-up (∂ standing for the partial

derivative with respect to Z):

(
�Zt∂v(t, Zt),Δv(t, Zt)

)
=

(
�Zt −�Zt

�Zt∂B̃(t, Zt) �(t)− B̃t

)
. (59)

Let us additionally be given a (game) option on this market with related pre-default price
process Yt = u(t, Zt) over [0, T ], and pricing equation (52) with Z given as (58) therein.

By application of (56), we have the following decomposition of the cost � of the strategy �
for hedging the option, where H = I −

∫ ⋅
0 Jt
(Zt)dt stands as usual for the G-compensated

jump-to-default process.

Proposition 19.1 For every t ∈ [0, T ∧ �],

d�t =
[(
�Zt∂u(t, Zt),Δu(t, Zt)

)
− �t

(
�Zt∂v(t, Zt),Δv(t, Zt)

)]
d

(
Wt

Ht

)
.
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Consequently, if the matrix
(
�Zt∂v(t, Zt),Δv(t, Zt)

)
(cf. (59)) is invertible on [0, �∧T ], one

can superhedge the option (market and default risk, so � = 0) by setting, for t ∈ [0, T ∧ �],

�t = �̂t :=
(
�Zt∂u(t, Zt),Δu(t, Zt)

)(
�Zt∂v(t, Zt),Δv(t, Zt)

)−1

(and �∗ defined as usual by (42)).

Otherwise it is still possible to hedge the market risk (represented by W ) by setting � = �̃
with, for t ∈ [0, T ∧ �],

�̃1
t = ∂u

∂v (t, Zt) , �̃
2
t = 0

(and �∗ as before), whence in this case

d�t =
[
Δu(t, Zt) + �Zt�̃

1
t

]
dHt =

[
Rt − u(t, Zt) + �Zt

∂u
∂v (t, Zt)

]
dHt .
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Part IV

BSDE and PDE Results

Introduction

In part III we essentially reduced the problem of pricing and hedging defaultable game op-
tions to that of solving related doubly reflected BSDEs (or the associated integro-differential
variational inequalities, in the Markovian case).

In this part, which is a synthesis of the main results of Crépey and Matoussi [15] and Crépey
[8], we tackle the resulting BSDE and PIDE problems. Note that the results of this part are
also used in Part V, where analogous equations arise in the context of portfolio credit risk.

In [15] (sections 20 to 24 below), a priori estimates and comparison principles are derived
for reflected or doubly reflected BSDEs in the rather general set-up of a model driven by a
continuous local martingale and an integer-valued random measure.

In [8] (sections 25 to 27 below), we use these results to establish the well-posedness of a
Markovian doubly reflected BSDE, and of the associated system of partial integro-differential
double obstacle problem, in a rather flexible Markovian set-up made of a Jump–Diffusion
model with Regimes. As an aside we prove the convergence of any stable, monotone and
consistent approximation scheme to the above pide system.

Section 28 presents the mapping between the mathematical set-up of this part and the
financial problems of parts III and V.

Note that the papers [15, 8] also deal with BSDEs with random terminal time, and the
related Cauchy–Dirichlet problems in the Markovian case. This is actually an important
issue for applications, in which the random terminal time may for instance represent a call
protection (cf. Remark 14.2(ii)). To keep it simple here, we do not deal with these
issues in the present report, referring the interested reader to [15, 8] for the
related developments.

20 Abstract Set-Up

Let us be given a finite time horizon T > 0, a probability space (Ω,ℱ ,ℚ) and a filtration F =
(ℱt)t∈[0,T ] with ℱT = ℱ , satisfying the usual conditions of right-continuity and completeness.
By default we declare that a random variable is ℱ-measurable, and that a process is defined
on the time interval [0, T ] and F-adapted. All semimartingales are assumed to be càdlàg,
without restriction.

Let B = (Bt)t∈[0,T ] be a d-dimensional standard Brownian motion. Given an auxiliary
measured space (E,ℬE , �), where � is a non-negative �-finite measure on (E,ℬE), let � =
(�(dt, de))t∈[0,T ],e∈E be an integer valued random measure on

(
[0, T ] × E,ℬ([0, T ]) ⊗ ℬE

)
(see, e.g., Jacod–Shiryaev [84, Definition II.1.13 page 68]).

We assume that the compensator of � is defined by �t(!, e)�(de)dt, for some P ⊗ ℬE-
measurable non-negative bounded (random) function �, where P is the predictable �-field
on Ω× [0, T ]. The introduction of the (not really standard) random density � is motivated
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by applications (for a concrete example see section 25.2 below, equation (76)). We denote
by �̃(dt, de) = �(dt, de)− �t(e)�(de)dt the compensatrix of �.

By default in the sequel, all (in)equalities between random quantities are to be understood
dℚ-almost surely, dℚ⊗ dt-almost everywhere or dℚ⊗ dt⊗ �t(e)�(de)-almost everywhere, as
suitable in the situation at hand. Moreover we omit all dependences in ! of any process or
random function in the notation, for simplicity.

21 Reflected and Doubly Reflected BSDEs

Definition 21.1 A solution to the doubly reflected backward stochastic differential equa-
tion (R2BSDE for short) with data (g, �, L, U), is a quadruple (Y,Z, V,K), such that:

(i) Yt = � +

∫ T

t
gs(Ys, Zs, Vs)ds+KT −Kt

−
∫ T

t
ZsdBs −

∫ T

t

∫
E
Vs(e)�̃(ds, de) , t ∈ [0, T ]

(ii) Lt ≤ Yt ≤ Ut, t ∈ [0, T ]

and
∫ T

0
(Yt − Lt)dK+

t =

∫ T

0
(Ut − Yt)dK−t = 0 ,

⎫⎬⎭
(ℰ)

with:
∙ Y ∈ S2, the space of real valued càdlàg processes such that

∥Y ∥2S2 := E
[

sup
t∈[0,T ]

∣Yt∣2
]
< +∞ ;

∙ Z ∈ ℋ2
d (or ℋ2, in case d = 1), the space of ℝ1⊗d-valued predictable processes Z such that

∥Z∥ℋ2
d

:=
(
E
[ ∫ T

0
∣Zt∣2 dt

]) 1
2
< +∞ ;

∙ V ∈ ℋ2
�, the space of P̃-measurable functions V : Ω× [0, T ]× E → ℝ such that

∥V ∥ℋ2
�

:=
(
E
[ ∫ T

0
∣Vt∣2tdt

] ) 1
2
< +∞

where ∣v∣2t =

∫
E
v(e)2�t(e)�(de);

∙ K ∈ V2, the space of finite variation processes with continuous Jordan components
K± ∈ S2 null at time 0;

In particular:

∙
∫ ⋅

0
ZtdBt and

∫ ⋅
0

∫
E
Vt(e)�̃(dt, de) are martingales, for any Z ∈ ℋ2

d and V ∈ ℋ2
�;

∙ K = K+ −K− where K± define mutually singular measures on ℝ+, for any K ∈ V2.

In the case of a progressive process X we shall abusively use the notation ∥X∥ℋ2
d
for(

E
[ ∫ T

0
∣Xt∣2 dt

]) 1
2 whenever this is a well defined quantity in ℝ∪{∞}, whether the process

X belongs to ℋ2
d or not (whether X is predictable or not).
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Let us now consider the case when there is only one barrier, say, for instance, a lower barrier
L. A solution to the reflected BSDE (RBSDE, for short) with data (g, �, L), is a quadruple
(Y,Z, V,K) ∈ (S2,ℋ2

d,ℋ2
�,V2) with K− = 0 (so K = K+ is a continuous non-decreasing

process vanishing at time 0) such that:

(i) Yt = � +

∫ T

t
gs(Ys, Zs, Vs)ds+KT −Kt

−
∫ T

t
ZsdBs −

∫ T

t

∫
E
Vs(e)�̃(ds, de) , t ∈ [0, T ]

(ii) Lt ≤ Yt, t ∈ [0, T ] and
∫ T

0
(Yt − Lt)dKt = 0 .

⎫⎬⎭
(ℰ ′)

When there is no barrier, we define likewise solutions to BSDEs with data (g, �).

We assume, denotingℳ� =ℳ(E,ℬE , �;ℝ) in (H.1.iii):
(H.0) � ∈ ℒ2 , the space of square integrable real valued (ℱT -measurable) random variables
such that

∥�∥2ℒ2 := E
[
∣�∣2
]
< +∞ ;

(H.1.i) g⋅(y, z, v) is a progressively measurable process, for any y ∈ ℝ, z ∈ ℝ1⊗d, v ∈ℳ�;
(H.1.ii) ∥g⋅(0, 0, 0)∥ℋ2 <∞ ;
(H.1.iii) g is uniformly Lipschitz with respect to (y, z, v), in the sense that there exists a
constant Λ ≥ 0 such that for every (!, t) ∈ Ω× [0, T ], y, y′ ∈ ℝ, z, z′ ∈ ℝ1⊗d, v, v′ ∈ℳ� :

∣gt(y, z, v)− gt(y′, z′, v′)∣ ≤ Λ(∣y − y′∣+ ∣z − z′∣+ ∣v − v′∣t) ;

(H.2.i) L and U are càdlàg processes in S2;
(H.2.ii) Lt ≤ Ut, t ∈ [0, T ) and LT ≤ � ≤ UT .

22 A Priori Bound and Error Estimates

This section extends to R2BSDEs with jumps the results of El Karoui et al. [61] regarding
RBSDEs in a continuous set-up (see also [60] for a survey).

Recall that a quasimartingale X can be defined as a difference of two non-negative super-
martingales, the minimal such decomposition being called the Rao decomposition of X (see
sections VI.38 to VI.42 and Appendix 2 of Dellacherie and Meyer [52]; see also Protter [110,
Chapter III, section 4]). In particular:
∙ Any process given as S ∨ c where S stands for an Itô process in S2 and c is a constant in
ℝ ∪ {−∞}, is a quasimartingale in S2 (cf. Proposition 24.3 below);
∙ Any quasimartingale in S2 is a special semimartingale with canonical decomposition

Lt = L0 +Mt +At , t ∈ [0, T ] (60)

for a uniformly integrable martingale component M and a predictable process of integrable
variation A.

Assuming that L (resp. U) is a quasimartingale in S2, Lemma 22.1 below provides an
explicit representation for the process K+ (resp. K−) of a solution, assumed to exist, to
(ℰ). Since the roles of L and U are entirely symmetrical in this regard (considering the
problem with data (−g,−�,−L,−U)), we only state and prove the results regarding L.
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Lemma 22.1 Let (Y,Z, V,K) be a solution to (ℰ), in case L is a quasimartingale in S2

with canonical decomposition (60). Then

dK+
t ≤ 1{Yt=Lt}

(
g−t (Yt, Zt, Vt)dt + dA−t

)
, (61)

where A = A+ −A− is the Jordan decomposition of A.
In particular, if dA−t ≤ �tdt for some progressively measurable time-integrable process �,
then K+ is a time-differentiable process with derivative k+ such that

k+
t ≤ 1{Yt=Lt}

(
g−t (Yt, Zt, Vt) + �t

)
, t ∈ [0, T ] . (62)

Sketch of Proof. This follows by identification of the expressions for d(Y −L) and d(Y −L)+

respectively obtained by using (ℰ) and the Itô-Tanaka formula (see [15]). □

Using the direct control over K+ (or K−) provided by Lemma 22.1, and controlling the
remaining terms of the solution to (ℰ) by the equation, one can then derive the following a
priori bound and error estimates.

Theorem 22.2 (Crépey and Matoussi [15]) Let us consider a sequence of R2BSDE prob-
lems as in the first part of Lemma 22.1, with data and solutions indexed by n, the data being
bounded in the sense that the driver coefficients gn are Λ-equilipschitz, and for some constant
c1 :

∥�n∥2ℒ2 + ∥gn⋅ (0, 0, 0)∥2ℋ2 + ∥Ln∥2S2 + ∥Un∥2S2 + ∥An,−∥2S2 ≤ c1 .

Then we have for some constant c(Λ) :

∥Y n∥2S2 + ∥Zn∥2ℋ2
d

+ ∥V n∥2ℋ2
�

+ ∥Kn,+∥2S2 + ∥Kn,−∥2S2 ≤ c(Λ)c1 . (63)

Indexing by n,p the differences Xn −Xp for any sequence (Xn), we also have:

∥Y n,p∥2S2 + ∥Zn,p∥2ℋ2
d

+ ∥V n,p∥2ℋ2
�

+ ∥Kn,p∥2S2 ≤ (64)

c(Λ)c1

(
∥�n,p∥2ℒ2 + ∥gn,p⋅ (Y n

⋅ , Z
n
⋅ , V

n
⋅ )∥2ℋ2 + ∥Ln,p∥S2 + ∥Un,p∥S2

)
.

Remark 22.1 By symmetry the same results are valid in case the Un are quasimartingales
(with dAn,+ ≤ �nt dt for some progressively measurable processes �n such that ∥�n∥ℋ2 , for
the last part of the theorem).

In the case of RBSDE problems like (ℰ ′), we have likewise the following result (without
specific structure assumptions on the barrier, here).

Theorem 22.3 Let us consider a sequence of RBSDE problems, the data being bounded in
the sense that the driver coefficients gn are Λ-equilipschitz, and for some constant c1 :

∥�n∥2ℒ2 + ∥gn⋅ (0, 0, 0)∥2ℋ2 + ∥Ln∥2S2 ≤ c1 .

Then we have for some constant c(Λ) :

∥Y n∥2S2 + ∥Zn∥2ℋ2
d

+ ∥V n∥2ℋ2
�

+ ∥Kn∥2S2 ≤ c(Λ)c1 . (65)

Indexing by n,p the differences Xn −Xp, for any sequence (Xn), we also have:

∥Y n,p∥2S2 + ∥Zn,p∥2ℋ2
d

+ ∥V n,p∥2ℋ2
�

+ ∥Kn,p∥2S2 ≤ (66)

c(Λ)c1

(
∥�n,p∥2ℒ2 + ∥gn,p⋅ (Y n

⋅ , Z
n
⋅ , V

n
⋅ )∥2ℋ2 + ∥Ln,p∥S2

)
.
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23 Comparison Principle

In this section we specialize (H.1) to the case where

gt(y, z, v) = ℎt

(
y, z,

∫
E
v(e)�t(e)�t(e) �(de)

)
, (67)

for a P ⊗ℬE-measurable non-negative function �t(e) with ∣�t∣t bounded, and a P ⊗ℬ(ℝ)⊗
ℬ(ℝ1⊗d)⊗ ℬ(ℝ)-measurable function ℎ : Ω× [0, T ]× ℝ× ℝ1⊗d × ℝ→ ℝ such that:
(H.1.i)’ ℎ⋅(y, z, r) is a progressively measurable process, for any y ∈ ℝ, z ∈ ℝ1⊗d, r ∈ ℝ;
(H.1.ii)’ ℎ⋅(0, 0, 0) is a square integrable process;
(H.1.iii)’ ∣ℎt(y, z, r)−ℎt(y′, z′, r′)∣ ≤ Λ

(
∣y−y′∣+ ∣z−z′∣+ ∣r−r′∣

)
, for any (!, t) ∈ Ω× [0, T ],

y, y′ ∈ ℝ, z, z′ ∈ ℝ1⊗d and r, r′ ∈ ℝ ;
(H.1.iv)’ r 7→ ℎt(y, z, r) is non-decreasing, for any (!, t, y, z) ∈ Ω× [0, T ]× ℝ× ℝ1⊗d .

Using in particular the fact that

∣
∫
E

(v(e)− v′(e))�t(e)�t(e) �(de) ∣≤ ∣v − v′∣t∣�t∣t ,

with ∣�t∣t bounded, then it is immediate that g defined by (67) satisfies (H.1).

Our next result is a comparison result for (ℰ) in this case, extending to doubly reflected
BSDEs the comparison principle of Proposition 2.6 in Barles et al. [22] for BSDEs without
barriers (see [22, Remark 2.7 page 64] for a counter-example in the general case, not assuming
(H.1.iv)’).

Proposition 23.1 (Crépey and Matoussi [15]) Let (Y,Z, V,K) and (Y ′, Z ′, V ′,K ′) be
solutions to the R2BSDEs with data (g, �, L, U) and (g′, �′, L′, U ′) satisfying assumptions
(H.0)–(H.1)–(H.2). We assume further that g satisfies (H.1)’. Then Yt ≤ Y ′t , t ∈ [0, T ] ,
whenever:
(i) � ≤ �′ ,
(ii) gt(Y ′t , Z ′t, V ′t ) ≤ g′t(Y

′
t , Z

′
t, V

′
t ) , t ∈ [0, T ]

(iii) Lt ≤ L′t and Ut ≤ U ′t , t ∈ [0, T ].

Sketch of Proof.The proof consists in extending to reflected BSDEs the classical proof by
linearization for establishing comparison in the case without barriers (see, e.g., El Karoui,
Peng and Quenez [62]). □

Note that this comparison principle admits obvious specifications to RBSDEs and BSDEs.
In the latter case, we recover the comparison principle of Barles et al. [22].

24 Existence and Uniqueness Issues

We now deal with the issues of existence and uniqueness of solutions to (ℰ) and (ℰ ′).
As for uniqueness, an application of the error estimates of Theorems 22.2 and 22.3 yields,

Proposition 24.1 Uniqueness holds for (ℰ) and (ℰ ′).
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In order to get existence results, we need to make the following square integrable martingale
predictable representation assumption:
(R) Every square integrable martingale M admits a representation

Mt = M0 +

∫ t

0
Zs dBs +

∫ t

0

∫
E
Vs(e)�̃(ds, de) , t ∈ [0, T ] (68)

for some Z ∈ ℋ2
d and V ∈ ℋ2

�.

We also strengthen Assumption (H.2.i) into:
(H.2.i)′ L and U are càdlàg quasi-left continuous processes in S2,
where we recall for the reader’s convenience that for a càdlàg process X, quasi-left conti-
nuity is equivalent to the existence of sequence of totally inaccessible stopping times which
exhausts the jumps of X, implying that pX = X⋅− (Jacod–Shiryaev [84, Propositions I.2.26
page 22 and I.2.35 page 25]).

We thus work under assumptions (R)–(H.0)–(H.1)–(H.2)’, where (H.2)’ denotes (H.2) with
(H.2.i) strengthened into (H.2.i)’.

The following existence result is essentially contained in earlier results by Hamadène and
Ouknine [81] and Hamadène [80]. By the Mokobodski condition in this proposition, we mean
the existence of a quasimartingale X with Rao components in S2 such that L ≤ X ≤ U over
[0, T ]. In view of the properties of quasimartingales recalled at the first paragraph of section
22, this is tantamount to the existence of non-negative supermartingales X1, X2 belonging
to S2 and such that L ≤ X1 −X2 ≤ U over [0, T ].

Proposition 24.2 Assuming (R)–(H.0)–(H.1)–(H.2)’:
(i) Existence holds for (ℰ ′);
(ii) Existence of a solution to (ℰ) is equivalent to the Mokobodski condition. In particular,
existence holds for (ℰ) when L or U is a quasimartingale with Rao components in S2.

Remark 24.1 In the situation of Proposition 24.2(ii), L or U is obviously a quasimartingale
in S2 as postulated in Lemma 22.1, and the estimates of Theorem 22.2 are thus applicable.

We conclude this section by a proposition motivated by convertible bonds related R2BSDEs
in finance, in which the lower barrier L is typically given by a call payoff functional of the
underlying stock price process S (cf. Definition 14.3), the latter being typically modeled
as a jump-diffusion with (possibly) random coefficients. We thus have the following result,
whose proof is similar to that of Lemma 22.1.

Proposition 24.3 (Crépey and Matoussi [15, 8]) Let S be given as an Itô process with
square integrable special semimartingale components, so

St = S0 +

∫ t

0
asds+

∫ t

0
zsdBs +

∫ t

0

∫
E
vs(e)�̃(ds, de) , t ∈ [0, T ] (69)

for some z ∈ ℋ2
d, v ∈ ℋ2

�, and a progressively measurable time-integrable process a such that
∥a∥ℋ2 < +∞. Let in turn L be given as L = S ∨ c, for some constant c ∈ ℝ ∪ {−∞}.
Then L is a càdlàg quasi-left continuous quasimartingale with Rao components in S2. More-
over L satisfies all the conditions in Lemma 22.1 (including the hypotheses on L in (H.2)),
with in particular � in (62) given by a−, the negative part of a in (69).
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25 Jump–Diffusion Setting with Regimes

We now present a rather generic specification for a Markovian factor process F underlying
a BSDE, and we show how it fits into the abstract set-up of the previous sections.

Given integers d and k, we define the following linear operator G acting on regular functions
u = ui(t, x), (t, x, i) ∈ E = [0, T ]× ℝd × I, with I = {1, . . . , k} :

Gui(t, x) = ∂tu
i(t, x) + 1

2

d∑
l,q=1

ail,q(t, x)∂2
xlxq

ui(t, x) (70)

+

d∑
l=1

(
bil(t, x)−

∫
ℝd
�il(t, x, y)f i(t, x, y)m(dy)

)
∂xlu

i(t, x)

+

∫
ℝd

(
ui(t, x+ �i(t, x, y))− ui(t, x)

)
f i(t, x, y)m(dy)

+
∑
j∈I

ni,j(t, x)(uj(t, x)− ui(t, x)) .

In (70) m(dy) is a finite jump measure on ℝd (not charging {0d} where 0d stands for the
null in ℝd), and all the coefficients are Borelian functions such that:
∙ the ai(t, x) are d-dimensional covariance matrices, with ai(t, x) = �i(t, x)�i(t, x)T for some
d-dimensional dispersion matrices �i(t, x) :
∙ the bi(t, x) are d-dimensional drift vector coefficients;
∙ the jump intensity functions f i(t, x, y) are bounded, and the jump size functions �i(t, x, y)
are absolutely integrable with respect to m(dy);
∙ the regime switching intensity functions ni,j(t, x) are such that the ni,j(t, x) are non-
negative and bounded whenever i ∕= j, and ni,i(t, x) = 0 for every i.
We shall often find convenient to denote v(t, x, i, . . .) rather than vi(t, x, . . .) for a function
v of (t, x, i, . . .), and n(t, x, i, j), for ni,j(t, x).

Proposition 25.1 (Crépey [8]) Under suitable conditions (see [8]), there exists a stochas-
tic basis (Ω,F,ℚ) on [0, T ] endowed with a d-dimensional Brownian motion B, an integer-
valued random measure � and a càdlàg process F = (X,N) on [0, T ] with initial condition
(x, i) at time 0, such that:
∙ The ℝd-valued process X satisfies, for t ∈ [0, T ] :

dXt = b(t, Ft) dt+ �(t, Ft) dBt +

∫
ℝd
�(t, Ft−, y) �̃(dt, dy) , (71)

where the ℚ-compensatrix �̃ of � is given by

�̃(dt, dy) = �(dt, dy)− f(t, Ft, y)m(dy)dt ;

∙ The ℚ-compensatrix �̃ of the integer-valued random measure � on I counting the number
of transitions �t(j) of N to state j between time 0 and time t, is given by

d�̃t(j) = d�t(j)− n(t, Ft, j) dt . (72)

Note that the construction of such a model, with mutual dependence between X and N, is
a non-trivial issue. It is treated in detail in Crépey [8] by a Markovian change of probability
approach (see also [6]), under suitable conditions on the coefficients.
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Remark 25.1 (i) If we suppose that the coefficients b, �, � and f do not depend on i, then
X is a jump-diffusion process. Alternatively, if n does not depend on x, then N is an
(inhomogeneous) continuous-time Markov chain. In general N defines the so-called regime
of the coefficients b, �, � and f, whence the name of Jump–Diffusion Setting with Regimes
for this model.
For simplicity we do not consider the “infinite activity” case, that is, the case when the jump
measurem is unbounded. Note however that our results could be extended to Lévy measures
m without major changes if wished (see e.g. Barles et al. [22], recently complemented by
Barles and Imbert [23]).
(ii) More specific sub-cases or related models were frequently considered in the literature.
So:
∙ Barles et al. [22] consider jumps in X but no regimes N, and Lévy jump measures m(dy)
(cf. (i));
∙ Pardoux et al. [107] consider a diffusion model with regimes, which corresponds to the
special case of our model in which f is equal to 0, and the regimes are driven by a standard
Poisson process with constant intensity;
∙ Becherer and Schweizer consider in [26] a diffusion model with regimes, including the
model of Pardoux et al. [107] as a special case, and which corresponds to the special case
of our model in which f is equal to 0.

25.1 Itô formula and Martingale Representation

In this model we have the following Itô formula:

du(t, Ft) = Gu(t, Ft)dt+ ∂u(t, Ft)�(t, Ft)dBt

+

∫
ℝd

(
u(t,Xt− + �(t, Ft−, y), Nt−)− u(t, Ft−)

)
�̃(dt, dy)

+
∑
j∈I

(u(t,Xt−, j)− u(t, Ft−))d�̃t(j) , t ≥ 0 (73)

for any system of C1,2-functions u = (uj)j∈I .
In particular (Ω,F,ℚ, F ) is a solution to the time-dependent local martingale problem with
generator G and initial condition (t, x, i) (see Ethier–Kurtz [66, sections 7.A and 7.B]).

Moreover, still under the above mentioned conditions (see [8]), � and � cannot jump together,
and every (Ω,F,ℚ)-square integrable martingale M admits a representation

Mt = M0 +

∫ t

0
Zs dBs +

∫ t

0

∫
ℝd
Ṽs(y)�̃(ds, dy) +

∑
j∈I

∫ t

0
V̂s(j)d�̃s(j) , t ∈ [0, T ] (74)

for some Z ∈ ℋ2
d, Ṽ ∈ ℋ2

� and V̂ ∈ ℋ2
� . Finally the following estimates are available, for

any p ∈ [2,+∞) :

∥X∥pSpd ≤ Cp
(
1 + ∣x∣p

)
. (75)

25.2 Mapping with the Abstract Set-Up

Let 0d stand for the null in ℝd. It is easy to check that the model F = (X,N) is a (rather
generic) Markovian specification of the abstract set-up of section 20, with (cf. section 20
and [15]):
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∙ E, the subset
(
ℝd × {0}

)
∪
(
{0d} × I

)
of ℝd+1;

∙ ℬE , the sigma field generated by ℬ(ℝd) × {0} and {0d} × ℐ on E, where ℬ(ℝd) and ℐ
stand for the Borel sigma field on ℝd and the sigma field of all parts of I, respectively;

∙ �(de) and �t(e) respectively given by, for any e = (y, j) ∈ E :

�(de) =

{
m(dy) if j = 0

1 if y = 0d
, �t(e) =

{
f(t, Ft, y) if j = 0
n(t, Ft, j) if y = 0d ;

(76)

∙ �, the integer-valued random measure on
(
[0, T ]×E,ℬ([0, T ])⊗ℬE

)
counting the jumps of

X of size y ∈ A and the jumps ofN to state j between 0 and t, for any t ≥ 0, A ∈ ℬ(ℝd), j ∈ I.
We denote for short:

(E,ℬE , �) = (ℝd ⊕ I,ℬ(ℝd)⊕ ℐ,m(dy)⊕ 1) .

So, in the present context, the abstract set ℳ� of section 20 can be identified with the
product space

ℳ(ℝd,ℬ(ℝd),m(dy);ℝ)× ℝk , (77)

and the compensator of � is given by, for any t ≥ 0, A ∈ ℬ(ℝd), j ∈ I :∫ t

0

∫
A⊕{j}

�s(e)�(de)ds =

∫ t

0

∫
A
f(s, Fs, y)m(dy)ds+

∫ t

0
n(s, Fs, j) ds ,

where A⊕ {j} is a notation for
(
A× {0}

)
∪
(
{0d} × {j}

)
.

Note finally that (74) is a martingale representation of the form (68), with for e = (y, j):

Vs(de) =

{
Ṽs(y) if j = 0

V̂s(j) if y = 0d .

Hence the model F has the martingale representation property (R) of section 24.

26 Markovian BSDEs

We consider, in the Jump–Diffusion Setting with Regimes of section 25, the BSDE naturally
connected with the Itô formula (73), namely for t ≥ 0 :

− dYt = g(t, Ft, Yt, Zt, Vt)dt− ZtdBt −
∫
ℝd
Ṽt(y)�̃(dt, dy)−

∑
j∈I

V̂t(j)d�̃t(j)

with V = (Ṽ , V̂ ), possibly supplemented by suitable barrier and minimality conditions, and
for a suitable driver coefficient g(t, Ft, y, z, v), where v = (ṽ, v̂) denotes a generic element of
the product spaceℳ� specified under the form of (77).

Let P denote the class of functions u on [0, T ]×ℝd×I such that ui is Borel-measurable with
polynomial growth in x for any i ∈ I. Let us further be given real-valued continuous running
cost functions g̃i(t, x, u, z, r) (where (u, z, r) ∈ ℝk×ℝ1⊗d×ℝ), terminal cost functions Ψi(x),
and lower and upper obstacle functions ℓi(t, x) and ℎi(t, x), such that:
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(M.0) Ψ lies in P ;
(M.1.i) (t, x, i) 7→ g̃i(t, x, 0, 0, 0) lies in P ;
(M.1.ii) g̃ is uniformly Λ – Lipschitz continuous with respect to (u, z, r), in the sense that Λ is
a constant such that for every (t, x, i) ∈ [0, T ]×ℝd×I and (u, z, r), (u′, z′, r′) ∈ ℝk×ℝ1⊗d×ℝ :∣∣g̃i(t, x, u, z, r)− g̃i(t, x, u′, z′, r′)∣∣ ≤ Λ

( ∣∣u− u′∣∣+
∣∣z − z′∣∣+

∣∣r − r′∣∣ ) ;

(M.1.iii) g̃ is non-decreasing with respect to r ;
(M.2.i) ℓ and ℎ lie in P;
(M.2.ii) ℓ ≤ ℎ, ℓ(T, ⋅) ≤ Ψ ≤ ℎ(T, ⋅);

We define further for any (t, y, z, v) ∈ [t, T ]× ℝ× ℝ1⊗d ×ℳ�, with v = (ṽ, v̂) ∈ℳ� :

g(t, Ft, y, z, v) = g̃(t, Ft, ũt, z, r̃t)−
∑
j∈I

v̂jn(t, Ft, j) , (78)

where ũt = ũt(y, v̂) and r̃t = r̃t(ṽ) are defined as

(ũt)
j =

{
y, j = Nt

y + v̂j , j ∕= Nt
, r̃t =

∫
ℝd
ṽ(y)f(t, Ft, y)m(dy) . (79)

We then consider the R2BSDE data set given in terms of the factor process F as

gt(!, y, z, v) = g(t, Ft, y, z, v) , � = Ψ(FT ) , Lt = ℓ(t, Ft) , Ut = ℎ(t, Ft) . (80)

We refer the reader to section 28.2 for simple examples in finance.

Proposition 26.1 The data (80) satisfy assumptions (H.0)–(H.1)–(H.2)’.

Proof. Given (M.0)–(M.1)–(M.2) and the estimate (75) on X, the verification of (H.0)–
(H.1)–(H.2)’ is straightforward (see [8] for the detail). □

The next step consists in specifying, in the model F, a concrete class of processes S which
satisfy the abstract conditions of Proposition 24.3.

Proposition 26.2 (Crépey and Matoussi [15]) Let � = (�i)i∈I be a system of real-
valued functions �i = �i(t, x) of class C1,2 on [0, T ]× ℝd such that

�, G�, ∂��, (t, x, i) 7→
∫
ℝd
∣�i(t, x+ �i(t, x, y))∣m(dy) ∈ P . (81)

Then the process S defined by, for t ∈ [0, T ] :

St = �(t, Ft) ,

is an Itô-Lévy process with square integrable special semimartingale decomposition compo-
nents as postulated in Proposition 24.3, with related process a in (69) given as at = G�(t, Ft),
for t ∈ [0, T ].
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Proof. Under our polynomial growth assumptions and given the estimates (75) on X, the
result easily follows by application of the Itô formula (73) to �(t, Ft). □

Example 26.1 The standing example we have in mind for S in Proposition 24.3 is S =
X1, the first component of X of our model F = (X,N) (assuming d ≥ 1 therein). This
corresponds to the case where �i(t, x) = x1 in Proposition 26.2. Note that in this case:

G� = b1, ∂�� = �1,

∫
ℝd
∣�i(t, x+ �i(t, x, y))∣m(dy) =

∫
ℝd
∣x1 + �i1(t, x, y)∣m(dy) ,

so that (81) reduces to

b1, �1, (t, x, i) 7→
∫
ℝd
∣�i1(t, x, y)∣m(dy) ∈ P . (82)

Putting everything together, we get,

Theorem 26.3 (Crépey and Matoussi [15]) Given the data (80) with ℓ specified as �∨c
where � satisfies (81) (e.g., � = x1, assuming (82)) and for some constant c ∈ ℝ ∪ {−∞},
then the related R2BSDE (ℰ) admits a unique solution (Y,Z, V,K). Moreover K+ is a time-
differentiable process with time-derivative k+ satisfying (62). The RBSDE (ℰ ′) also admits
a unique solution. All the estimates and comparison principle derived earlier in this part are
applicable.

The results of this part are thus applicable to convertible bonds (cf. section 14.2.1), in rather
general jump-diffusion models (see [4, 5]).

27 Variational Inequality Approach

We now work in the set-up and under the assumptions of sections 25–26, with ℓ given as
in Theorem 26.3. We denote by (Y, Z, V,K), with V = (Ṽ , V̂ ), the unique solution to (ℰ)
(cf. Theorem 26.3). Our next goal is to establish the connection between the Markovian
R2BSDE (ℰ) with data (80), and a related system of obstacles problems. We shall consider
this issue from the point of view of viscosity solutions to this system. We refer the reader to
the books by Bensoussan and Lions [27, 28] for results in suitable spaces of weak Sobolev
solutions. An alternative weak Sobolev solutions approach will be dealt with in Crépey and
Matoussi [14].

For any (real-valued, vector-valued or matrix-valued) functions u on E, let �ui(t, x, ⋅) and
Δui,⋅(t, x) (or �ui(t, x) and Δui(t, x), for short) denote the functions

ℝd ∋ y �ui(t,x)−→ ui(t, x+ �i(t, x, y))− ui(t, x)

I ∋ j Δui(t,x)−→ uj(t, x)− ui(t, x)

and let

�ui(t, x) =
∫
ℝd �u

i(t, x, y)f i(t, x, y)m(dy)

Δui(t, x) =
∑

j∈I Δui,j(t, x)ni,j(t, x) .
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Denoting (cf. 70)

G̃ui(t, x) = Gui(t, x)−Δui(t, x) , (83)

we introduce the following PIDE obstacle problem (system of k coupled semi-linear PIDEs
with obstacles in space dimension d):

min
(

max
(
G̃ui(t, x) + g̃i(t, x, u(t, x), (∂u�)i(t, x), �ui(t, x)),

ℓi(t, x)− ui(t, x)
)
, ℎi(t, x)− ui(t, x)

)
= 0

(84)

on [0, T )× ℝd × I, supplemented by the terminal condition Ψ (our terminal cost function)
at T.

Note that as opposed to the set-up of Becherer and Schweizer [26] where linear reaction-
diffusion systems of parabolic equations are considered in a diffusion model with regimes
(without jumps in X), here, due to the nonlinearities (presence of the obstacles and of the
nonlinear term g̃) in (84) and of the jumps in X, equation (84) typically does not admit a
classical solution. Also note in this regard that we make no non-degeneracy assumption on
the diffusion coefficient � of X.

By a solution to (84), we thus mean a viscosity solution with polynomial growth in x to
(84), adapting the general definitions of viscosity solutions for nonlinear PDEs (see [46, 68])
to (finite activity) jumps and systems of PIDEs as in Alvarez and Tourin [18], Pardoux et
al. [107, 22], Pham [108], or Briani et al. [39].
Again (see Remark 25.1(i)), we exclude “small jumps” in the model (restricting our attention
to finite jump measures m) for simplicity, yet our approach can be extended to more general
Lévy jump measures without major changes if wished. But the viscosity solution techniques
involved become much more complicated, as demonstrated in Barles and Imbert [23].
We also adapt to systems of PIDEs the notions of stable, monotone and consistent approx-
imation schemes originally introduced for non linear PDEs by Barles and Souganidis [25];
see also Briani, La Chioma and Natalini [39], Cont and Voltchkova [45] or Jakobsen et al.
[85] for various extensions of these results to PIDEs.

The following results thus extend to models with regimes (and therefore systems of PIDEs)
the results of [25, 39], among others.

Theorem 27.1 (Crépey [8]) Under suitable technical conditions (see [8]):
(i) Equation (84) admits a unique solution u. Moreover, we have for every t ∈ [0, T ] :

Yt = u(t, Ft) (85)
V̂t(j) = uj(t,Xt−)− u(t, Ft−) , j ∈ I (86)∫ t

0
g(s, Fs, Ys, Zs, Vs)ds =

∫ t

0

[
g̃(s, Fs, u(s,Xs), Zs, r̃s)−Δu(s, Fs)

]
ds (87)

with in (87) (cf. (79));

u(s,Xs) := (uj(s,Xs))j∈I , r̃s =

∫
ℝd
Ṽs(y)f(s, Fs, y)m(dy) ;

(ii) Any stable, monotone and consistent approximation scheme (uℎ) for u, converges locally
uniformly to u as ℎ→ 0.
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Sketch of Proof. In part (i), existence and representation results are obtained by BSDE tech-
niques, using the results of section 26; uniqueness follows from typical viscosity arguments
(cf. in particular Barles et al. [22]).
Part (ii) extends to models with regimes (whence systems of PIDEs) the classical convergence
arguments of Barles and Souganidis [25]. □

28 Mapping with Financial Applications

28.1 Model Dynamics

The Jump–Diffusion Setting with Regimes of section 25 admits versatile applications in
financial modeling.

In Bielecki et al. [3] (see part III), this model is presented as a flexible risk-neutral pricing
model in finance, for equity and equity-to-credit (single-name credit) derivatives. In this
case the main component of the model (the one in which the payoffs of the product under
consideration are expressed) is X, while N represents implied pricing regimes which may be
viewed as a simple, whence robust, way, to implement stochastic volatility (whereas more
standard, diffusive, forms of stochastic volatility, may be accounted for in the diffusive
component of X).
In the context of single-name credit derivatives, N may also represent the credit rating of
the reference obligor. So, in the area of structural arbitrage, credit–to–equity models and/or
equity–to–credit models are studied. Our market model nests both types of interactions. For
example, if one of the factors is the price process of the equity issued by a credit name,
and if credit migration intensities depend on this factor, then we have an equity–to–credit
type interaction. On the other hand, if the credit rating of the obligor impacts the equity
dynamics, then we deal with a credit–to–equity type interaction.

In Bielecki et al. [6] (see section 30 below), this model is used in the context of multi-name
credit risk for the valuation and hedging of basket credit derivatives. The main component in
the model is then the ‘Markov chain like’ component N, representing the vector of (implied)
credit ratings of the reference obligors, which is modulated by the ‘jump-diffusion like’
component X, representing the evolution of economic variables which impact the likelihood
of credit rating migrations. Frailty and default contagion are accounted for in the model by
the coupled interaction between N and X.

28.2 Cost Functionals

In the context of typical (risk-neutral) pricing problems in finance:
∙ the function g̃ is of the form

g̃i(t, x, u, z, r) = ci(t, x)− �i(t, x)ui +
∑
j∈I

ni,j(t, x)(uj − ui) , (88)

thus (cf. (85)–(87))

g(t, Ft, Yt, Zt, Vt) = c(t, Ft)− �(t, Ft)Yt (89)

in (87), for dividend-yield and riskless interest-rate functions c and �;
∙ Ψ(FT ) corresponds to a terminal payoff that is paid by the issuer to the holder at time T
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if the contract was not exercised before T ;
∙ ℓ(Ft), resp. ℎ(Ft), corresponds to a lower, resp. upper payoff that is paid by the issuer to
the holder of the claim in the event of early termination of the contract at the initiative of
the holder, resp. issuer.

The contingent claims under consideration are thus general Game Contingent Claims (see
[2, 3, 4, 5]), covering American Claims (and European Claims) as special cases. From the
point of view of the financial interpretation, the components of F are observable factors (see
section 28.1).

Note that g̃ in (88) does not depend on z nor r, so g̃i(t, x, u, z, r) = g̃i(t, x, u) therein.
However, modeling the pricing problem under the historical probability (as opposed to the
risk-neutral probability in (88)), would lead to a ‘z-dependent’ driver coefficient function g̃.
Moreover we tacitly assumed above a perfect, frictionless financial market. Accounting for
market imperfections would lead to nonlinear coefficients g̃.

Also note that in a context of vulnerable claims (single-name credit risk, cf. Part III), it is
enough, to account for credit-risk, to work with suitably credit-spread adjusted interest-rates
� and recovery-adjusted dividend-yields c in (88) (see Part III and [3, 4]).
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Part V

Portfolio Credit Risk

Introduction

The goal of this part is to present some works related to the valuation and hedging of portfolio
credit risk (valuation and hedging of basket credit derivatives in particular) [6, 1, 7]. Thus,
we are concerned with modeling dependent defaults, and more generally, in the context of
several (possibly implied) credit ratings of underlying credit instruments, dependent credit
migrations. On the mathematical level, we are concerned with modeling dependence between
random times (or processes) and with evaluation of functionals of (dependent) random times
(or processes).

In [6] (section 30 below), we propose a fairly general Markovian model of portfolio credit
risk, nesting several models that were previously studied in the literature.

In [1] (section 31), we use (a specific sub-case of) the previous model for illustrating the fact
that the choice of a credit model with simplistic dynamics may have dangerous consequences
in terms of hedging.

Of course complex models are computationally intensive. In case of basket credit deriva-
tives, they typically do not give access to closed-form pricing formulae, so that pricing and
calibration in the model needs to be done by simulation. An important issue in this regard is
variance reduction. Importance sampling is often regarded as the method of choice when it
comes to variance reduction. Importance sampling and related particle methods for portfolio
credit risk are dealt with in [7] (section 32).

Finally section 33, which is the concluding section of this report, presents a research project
inspired by the equity derivatives analysis of [10] (see section 13 above). The objective is to
compare a dynamic model with the static Gaussian copula model which has long been the
industry standard, in terms of hedging of a credit portfolio derivative with the credit index.

This part of the report is less mathematically-oriented than the previous ones. Here our
motivation is rather to discuss important financial engineering issues regarding portfo-
lio credit derivatives modeling:
(i) Is dynamic better than static? (section 33),
(ii) Which dynamics really matters (section 31),
(iii) Admittedly, computations (by simulation, typically) are intensive in models with per-
tinent, possibly high-dimensional and complex dynamics, however suitable forms of impor-
tance sampling may help in this regard (section 32).

29 Definitions and Preliminaries

Considering a pool (portfolio) of n credit names, we denote by �i the default time corre-
sponding to the i-th name, by H i

t = 1�i≤t the related default indicator processes, and by R
an homogeneous and constant recovery at default. We define the cumulative default process
N and the cumulative loss process L by Nt =

∑n
i=1 H

i
t and Lt = (1−R)Nt, respectively.
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Suppose that � = �(LT ) represents a (bounded, say) payoff at the maturity time T, rep-
resenting a specific credit portfolio derivative claim. We assume zero interest-rates, for
simplicity. We denote by F = (ℱt)t∈[0,T ] a filtration that represents flow of information
we use for pricing, and by E expectation relative to a risk-neutral pricing measure ℚ on a
primary market of hedging instruments. The pricing task for the derivative with payoff � at
time T thus amounts to computation of the conditional expectation E(�∣ℱt).

29.1 CDS Index and CDO Tranches

We refer the reader to, for instance, Bielecki et al. [6, 30], for a review of real-life credit
derivatives products, typically the Credit Default Swap (CDS) for single-name credit, and
the Collaterized Debt Obligation (cash CDO or synthetic CDO tranches) for multi-name
credit.
In few words, these are all swapped products with two legs, a default protection leg and a fee
leg, and a notion of fair spread Σt at time t defined much as in the case of interest-rate swaps,
so that the two legs of the contract would have equal values at time t, if the contractual
spread was equal to Σt. Of course the contractual spread of the contract is fixed once for
all at time 0 (starting time of the swap), at Σ0, and at time t the contract has therefore a
value which can be positive or negative depending on Σt.

29.1.1 Stylized Tranches

From the modeling point of view, the default protection leg is the more challenging, since it
crucially depends on the model of dependence used for default times. In order to simplify
the analysis, we shall consider stylized (protection legs of) CDS index contracts and CDO
tranches, with payoff of the form

� = (
LT
n
−K)+ ∧ (K −K)

at T , where the attachment and detachment points K and K are such that 0 ≤ K ≤
K ≤ 100%. In particular, we shall consider equity tranches (i.e. attachment K = 0), resp.
(super)senior tranches (i.e. detachment K = 100%), with payoffs (recall LT = (1−R)NT ):

�+(NT ) =
LT
n
∧ k , resp. �−(NT ) = (

LT
n
− k)+

at T , where the ‘strike’ (detachment, resp. attachment point) k belongs to [0, 1]. In this
formalism the stylized credit index corresponds to the stylized equity tranche with k = 100%
(or senior tranche with k = 0), namely to the payoff

p(NT ) =
LT
n

= (�+ + �−)(NT ) .

With a slight abuse of terminology, we shall refer to our stylized loss derivatives as index
and (equity and senior) tranches, assuming henceforth in the case of the equity and senior
tranches that 0 < k < 1−R.
Given a pricing filtered probability space (Ω,ℱ ,ℚ), we also introduce the (cum-dividend)
equity/senior tranche and index price processes Π±t and Pt, and the (stylized) bp spreads Σ±t
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and St, respectively defined by, for t ∈ [0, T ] :

Π+
t = E

(
�+(NT )∣ℱt

)
, Π−t = E

(
�−(NT )∣ℱt

)
, Pt = E

(
p(NT )∣ℱt

)
Σ+
t =

104E
(
�+(NT )−�+(Nt)∣ℱt

)
(�+(n)−�+(Nt))(T−t) , Σ−t =

104E
(
�−(NT )−�−(Nt)∣ℱt

)
(�−(n)−�−(Nt))(T−t) , St =

104E
(
p(NT )−p(Nt)∣ℱt

)
(p(n)−p(Nt))(T−t) .(90)

29.2 Li Model and implied Correlations

The one factor Gaussian copula model, or Li model (see Li [100] or Laurent [98]), is the
financial industry quotation standard for multi-name credit derivatives. Without entering
into details, let us only mention that at the current time t, the Li model parameters are t,
a correlation parameter � ∈ [0, 1], and a family F = (F i)1≤i≤n of marginal time-to-default
cumulative distribution functions over [t,+∞).

As the Black(–Scholes) formula on volatility markets, the Li model is usually used in the
reverse-engineering mode for quoting CDO tranches in terms of their Li implied correlations,
given an instrumental instance Ft of F (typically inferred in some way from the related
marginal CDS spread curves at time t).
More precisely, at time t, denoting by Σli(T,K,K; t, Ft, �) the fair spread of the (T,K,K)-
tranche in the Li model with parameters Ft and �, and by Σma

t (T,K,K) the market spread
of the tranche:
∙ The Li compound implied correlation of the tranche is the value of the correlation �̃t in a
Li model such that

Σli(T,K,K; t, Ft, �̃t) = Σma
t (T,K,K) ; (91)

∙ The Li base implied correlation of the tranche is the value of the correlation �t in a Li
model such that

Σli(T, 0,K; t, Ft, �t) = Σma
t (T, 0,K) , (92)

where Σma
t (T, 0,K) denotes a synthetic market spread computed from the observed market

spreads for the tranches with detachment point ≤ K (see, e.g., [106]).
Base implied correlation is more stable numerically than compound implied correlation,
because Σli

t (T,K,K; t, Ft, �) is monotone (decreasing) with respect to � for K = 0, but not
for K > 0 [106].

Much like the Black–Scholes implied volatility surface on volatility derivatives markets, the
market Li implied compound correlation surface is then defined as the surface of market Li
compound implied correlations obtained as (K,K) varies over a standardized set of successive
intervals (like (0%, 3%), (3%, 6%), (6%, 9%), (9%, 12%) and (12%, 22%) on the DJ iTraxx
market, a family of CDS indices for Europe and Asia) and T varies over the set of maturities
with quoted CDO tranches (e.g., 1yr, 2yr, 3yr, 5yr, 7yr, 10yr).
Likewise, the market Li implied base correlation surface is defined as the surface of market Li
base implied correlations obtained as K varies over a set of standardized tranches detachment
points, and T varies over the set of maturities with quoted CDO tranches.

At fixed T, the market Li implied correlation is typically convex with respect to the ‘strike’
variable in the case of the compound correlation (yielding the so-called compound correlation
smile), and increasing with respect to the ‘strike’ variable in the case of the base correlation
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(yielding the so called base correlation skew).
Credit models are then assessed on their ability to reproduce the market (base or compound)
implied correlation surface, for suitably calibrated values of their parameters: See, e.g.,
Figure 2 in section 30.1 below, in which a market implied compound correlation smile is
compared to a calibrated implied compound correlation smile in the credit migrations model
of [6] (cf. section 30).

29.2.1 Stylized Li Model

In the context of stylized tranches and index as defined in section 29.1.1, we shall consider in
section 33 a suitably specified version of the Li model in which the Ft – Li model parameter
at time t is determined by assuming that all the marginal CDS spread curves at time t are
constant and equal to the index spread St. So

Πli(T,K,K; t, Ft, �) = Π̃li(T,K,K; t, St, �) , (93)

for a reduced Li pricing function Π̃li.

For stylized tranches and with this specification of the Li model, the equation defining the
market Li implied (base, say) correlation tranche at time t writes, equivalently to (92):

Π̃li(T, 0,K; t, St, �t) = Πma
t (T, 0,K) . (94)

Note that in the case of the index, the Li price does not depend on the correlation parameter,
so

P li(T, 0, 100%; t, Ft, �) = P̃ li(T, 0, 100%; t, St) , (95)

and there is thus no well defined index Li implied correlation parameter.

30 Markovian Market Model

Modeling of dependent defaults and credit migrations was considered by many authors, who
proposed several alternative approaches to this important issue. The detailed analysis of
these methods is beyond the scope of this text. Let us simply mention a few of them:
∙ Modeling correlated defaults in a static framework using copulae (see, e.g., Laurent [98]),
∙ Factor approach (Duffie and Garleanu [57], Davis and Lo [49], Jarrow and Yu [87], Yu
[116], Frey and Backhaus [70, 72]),
∙ Modeling the portfolio loss distribution in a top-down approach (Giesecke and Goldberg
[74], Schönbucher [111]).

In [6], we propose a fairly general Markovian model that nests several of the above mod-
els. In particular, this model covers jump-diffusion dynamics and continuous time Markov
chains. It allows for incorporating several credit names, and thus it is suitable when dealing
with valuation and hedging of basket credit products (such as, basket credit default swaps
or collateralized debt obligations), possibly in a multiple credit ratings environment.
This model also comprises as a special case the Homogeneous Groups Model already con-
sidered by several authors, which is exposed in some detail in section 30.2 in view of later
use in this report.
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For simplicity we shall limit ourself here to the description of a slightly alleviated version of
the general model of [6]. Let as usual the pricing probability space be denoted by (Ω,F,ℚ).
We consider d obligors (or credit names) and we assume that the current credit quality of
each reference entity can be classified into � rating categories, numbered from 0 to � − 1.
By convention, the category 0 corresponds to default. Let N l, l = 1, 2, . . . , d be processes
on (Ω,F,ℚ) taking values in the finite state space I = {0, 1, 2, . . . , � − 1}. The process N l

represents the evolution of credit ratings of the lth reference entity. We define the default
time �l of the lth reference entity by setting

�l = inf{ t > 0 : N l
t = 0} .

We assume that the default state 0 is absorbing, so that for each name the default event can
only occur once. We denote by N = (N1, N2, . . . , Nd) the joint credit rating process of the
portfolio. The state space of N is ℐ := Id. We also consider a jump-diffusion vector-process,
X, representing the evolution of relevant economic variables, like short rate or equity price
processes. Finally we assume that, given Xt = x, the intensity matrix of N is given by
(�{,|(x))({,|)∈ℐ2 , so that the process F = (X,N ) is jointly Markov under ℚ.

We recognize in the model F a special case of the jump-diffusion setting with regimes (with
N and � here in the role of N and n therein) of section 25 (see also the comments of section
28.1). Therefore all the results derived in sections 25 to 27 are applicable here.

Moreover we impose a further structure on the intensity �, namely, �{,|(x) = 0 if the vectors
of ratings { and | differ by more than one component. In other words, the ratings of different
credit names may not change simultaneously. The advantage of this restriction is that, for the
purpose of simulating the next jump time and state of N conditional on (Xt,Nt) = (x, {),
it is enough, rather than dealing with the �d-dimensional intensity measure (�{,|(x))|∈ℐ ,
to deal with d intensity measures (‘which obligor jumps’), each of dimension � (‘where it
jumps’).

Within the present set-up, the current credit rating of one credit name directly impacts the
intensity of transition of the rating of another credit name. This property, known as frailty,
may contribute to default contagion.

30.1 Computational issues

Since, in case of basket credit derivatives, we typically do not have access to closed-form
pricing formulae in such model, pricing and calibration in this model need to be done by
simulation.

Figure 2 shows that the model performs very well in regard to the calibration issue. Since
the calibration is done by simulation, it may take some time however, like up to a few
minutes for calibrating a whole (one maturity-)set of individual CDSs and CDO tranches,
using m = 105 simulated model trajectories and a well-chosen specification of the intensities
involving seven parameters.

For more details about the simulation, calibration and implementation issues and extensive
reports on numerical experiments, we refer the reader to Bielecki et al. [6, 30]. See also
section 32 and [7] for related variance reduction issues.
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Figure 2: Market and Model Li compound implied correlation smiles for CDO tranches of a
fixed maturity.

30.2 Homogeneous Groups Model

For later use, we now describe in some detail a more specific version of the previous model,
considered for different purposes by various authors in [1, 7, 71, 83], among others. In
this specification of the model, there is no factor process X involved. We thus deal with a
continuous-time Markov Chain N and F = FN .

More precisely, a pool of n credit names is organized in d homogeneous groups of (� − 1)
obligors (so n = (� − 1)d, assuming n

d integer), and N l now represents the number of
defaulted obligors in the ltℎ group (instead of representing the credit rating of obligor l
previously; so the interpretation of l and N l have changed, but the mathematical structure
of the model is preserved). Moreover we assume that the N l’s can only jump one at a time
and by one, so that we in fact deal with a d-variate Markov point process N = (N1, . . . , Nd).
For each l, the (F-)intensity of N l is assumed to be of the form

�l(Nt) = (� − 1−N l
t)�̃

l(Nt) , (96)

for an aggregated intensity function �l = �l({), and pre-default individual intensity function
�̃l({), where { = (i1, . . . , id) ∈ ℐ = Id (recall I = {0, 1, . . . , � − 1}).
Since we assume that there are no common jumps between processes N l, so the jump
intensities �l are in one-to-one correspondence with the generator Λ of N , which consists of
a �d⊗�d matrix Λ (a very sparse matrix, since the components of N may only jump by one
and only one at a time).

For d = 1, we recover the so called Local Intensity Model (pure birth process stopped at
level n) of Laurent, Cousin and Fermanian [97], Cont and Minca [14] or Herbertsson [83],
for the portfolio cumulative default process N . This model is, in a sense, the analog for
credit derivatives of the local volatility model for equity and equity index derivatives, that
we considered at length in part II: see sections 13 and 33 for the details and limits of this
analogy.

At the other end of the spectrum, for d = n (i.e. when each group has only a single element),
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we are in effect modeling the vector of default indicator processes H = (H i)1≤i≤n of the
pool.

As d varies between 1 and n, we thus get a variety of models of credit risk, ranging from
pure ‘top-down’ models for d = 1, to pure ‘bottom-up’ models for d = n (see section 31).

30.2.1 Pricing in the Homogeneous Groups Model

Since N is a Markov process and N is a function of N , the model price process of the
stylized tranche with payoff �(NT ) as of section 29.1.1 writes, for t ∈ [0, T ]:

Πt = E(�(NT )∣ℱt) = u(t,Nt) , (97)

where u(t, {) or u{(t) for t ∈ [0, T ] and { ∈ ℐ = Id, is the pricing function (system of time-
functionals u{), solution to the following pricing equation (system of ODEs) with generator
Λ:

(∂t + Λ)u = 0 on [0, T ) , (98)

with terminal condition u{(T ) = �({), for { ∈ ℐ.
Likewise, the groups losses distribution at time t, that is, q{(t) = ℚ(Nt = {) for t ∈ [0, T ]
and { ∈ ℐ, can be characterized in terms of the associated forward Kolmogorov equations
(see, e.g., [7]).
These pricing and transition probability backward and forward Kolmogorov equations can
then be solved by various means, like numerical matrix exponentiation (since the model is
time-homogeneous).

However, even if the matrix Λ is very sparse, its size is prohibitive in most cases as far as
deterministic numerical methods are concerned. For instance, in the case of d = 5 groups
of � − 1 = 25 names, one gets �2d = 2610. So for high values of d, Monte Carlo methods
appear to be the only viable computational alternative.
As will be seen in section 32 (cf. Carmona and Crépey [7]), these Monte Carlo methods can
be made quite efficient by application of suitable importance sampling techniques.

Remark 30.1 Observe that in the fully homogeneous case where �̃l({) = �̂(
∑

1≤ℓ≤d iℓ) for
some function �̂ = �̂(i) (independent of l), the model (whatever the nominal value of d /
structure of the matrix generator used for encoding the model) effectively reduces to a local
intensity model (with d = 1 and pre-default individual intensity �̂(i) therein).
The case of a constant �̂ corresponds to the situation of homogeneous and independent
obligors.
In general, introducing parsimonious parameterizations of the intensities allows one to ac-
count for inhomogeneity between groups, and/or for defaults contagion.

31 Up and Down Credit Risk

Various approaches to valuation and hedging of derivatives written on credit portfolios differ
between themselves depending on what is the content of the model filtration F. Thus, loosely
speaking, these approaches differ between themselves depending on what they take to be
sufficient information so to price (and consequently to hedge) credit portfolio derivatives.
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The approach that we dub the top approach takes as F the filtration generated by the loss
process and, possibly also, by an additional relevant (low dimensional) factor process, say
Y . Thus, in this case, F = FL∨FY . Examples are papers by Laurent, Cousin and Fermanian
[97], Cont and Minca [14] (these are ‘pure top’ papers, F = FL) or Schönbucher [111] and
Sidenius, Piterbarg and Andersen [113].

The so-called top-down approach starts from top, that is, it starts with modeling of evolu-
tion of the portfolio loss process subject to information structure F. Then, it attempts to
“decompose” the dynamics of the portfolio loss process down on the individual constituent
names of the portfolio. This is done by a method of random thinning formalized in Giesecke
and Goldberg [74].

The approach that we dub the bottom-up approach takes as F the filtration generated by
process H and, possibly also, by a further factor process Z. Thus, in this case, F = FH ∨FZ .
Examples are Bielecki, Crépey, Jeanblanc and Rutkowski [6] (section 30 above), Bielecki,
Vidozzi and Vidozzi [31], Frey and Backhaus [70, 71] or Duffie and Garleanu [57].

In [1] we provide some insights to the fact that information (namely, the choice of a relevant
model filtration) is the major issue for handling portfolio credit derivatives. This is done by
the means of mathematical demonstration and of numerical simulations.

Let thus � denote an F̂-stopping time where F̂ ⊆ F. Let Λ and Λ̂ denote the F-compensator
and the F̂-compensator of � , respectively. We have the following result, which establishes the
relation between Λ and Λ̂ (and the related F- and F̂- intensity processes � and �̂, whenever
they exist). We denote by o. and . p the optional and dual predictable projections on the
sub-filtration F̂ (see, e.g., Dellacherie and Meyer [52]).

Proposition 31.1 (See [1]) Λ̂ is the dual predictable projection of Λ on F̂, so

Λ̂ = Λp . (99)

Moreover, in case Λ̂ and Λ are time-differentiable with related F̂- and F- intensity processes
�̂ and �, then �̂ is the optional projection of � on F̂, so

�̂ = o� . (100)

We refer the reader to [1] for other mathematical aspects of the paper.

In the sequel of this section we shall rather focus on a rather striking numerical illustration,
developed in [1], of the fact that, even for basket credit derivatives which can be considered
as derivatives on the (non-traded) loss process L in the sense that their payoff processes are
given as functions of L, this loss process L is not a sufficient statistic for pricing and hedging
them. This negative result regarding the top approaches is therefore an argument in favor
of bottom-up approaches.

31.1 Hedging Issues in the Homogeneous Groups Model

We consider the benchmark problem of hedging CDO tranches with the related CDS index
in the Homogeneous Groups Model of section 30.2. For simplicity we work with stylized
CDS index and equity and senior CDO tranches as defined in section 29.1.1.
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Note that in this model, it is possible to replicate, dynamically in continuous time, any
terminal payoff at T, provided d non-redundant hedging instruments are available (see Bi-
elecki, Vidozzi and Vidozzi [31] or Frey and Backhaus [70]; see also Laurent, Cousin and
Fermanian [97] for results in the special case where d = 1). From the mathematical side this
corresponds to the fact that the model is of (Davis-Varaiya) multiplicity d [50], in general.
So, in general, it is not possible to replicate a payoff, such as tranche, by the index alone in
this model, unless the model dimension d is equal to one (or reducible to one, cf. Remark
30.1). Now our point is that this potential lack of replicability is not purely speculative, but
can be very significant in practice.

Since delta-hedging in continuous time is expensive in terms of transaction costs, and because
main changes occur at default times in this model (in fact, default times are the only events
in this model, if not for time flow and the induced time-decay effects), we shall focus on
semi-static hedging in what follows, only updating at default times the composition of the
hedging portfolio. More specifically, denoting by t1 the first default time of a reference
obligor, we shall examine the result at t1 of a static hedging strategy on the random time
interval [0, t1].
Let Π and P denote the tranche and index model price processes, respectively. Using a
constant hedge ratio �̂0 over the time interval [0, t1], the tracking error or profit-and-loss of
the delta-hedged tranche at t1 writes:

et1 = (Πt1 −Π0)− �̂0(Pt1 − P0) . (101)

The question we want to consider is whether it is possible to make this quantity ‘small’, in
terms, say, of (risk-neutral) variance, relative to the variance of Πt1−Π0 (which corresponds
to the risk without hedging), by a suitable choice of �̂0. It is expected that this should
depend:
∙ First, on the characteristics of the tranche, and in particular on the value of the strike
k: A high strike equity tranche or low strike senior tranche (in-the-money tranche) is quite
close to the index in terms of cashflows, and should therefore exhibit a higher degree of
correlation and be easier to hedge with the index, than a low strike equity tranche or high
strike senior tranche (out-of-the money tranche);
∙ Second, on the ‘degree of Markovianity’ of the loss process L, which in the case of the
homogeneous groups model depends both on the model nominal dimension d and on the
specification of the intensities (see, e.g., Remark 30.1).

Moreover, it is intuitively clear that for too large values of t1 time-decay effects matter
and the hedge should be rebalanced at some intermediate points of the time interval [0, t1]
(even though no default occurred yet). To keep it as simple as possible we shall merely
apply a cutoff and restrict our attention to the random set {! : t1(!) < T1} for some fixed
T1 ∈ [0, T ].

31.2 Numerical Results

We work with the above model for d = 2 and � = 5. We thus consider a two-dimensional
model of a stylized credit portfolio of n = 8 obligors. The model generator is a �d ⊗ �d –
(sparse) matrix with �2d = 54 = 625. Recall that the computation time for exact pricing
(using matrix exponentiation) in such model grows as �2d, which motivated the previous
modest choices for d and �.
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Moreover we take the �̃l’s given by, (cf. (96)):

�̃1(t, {) =
2(1 + il)

9n
, �̃2(t, {) =

16(1 + il)

9n
. (102)

So in this case (which is an admittedly extreme case of inhomogeneity between two indepen-
dent groups of obligors), the individual intensities of the obligors of group 1 and 2 are given
as 1+i1

36 and 8(1+i2)
36 , where i1 and i2 represent the number of currently defaulted obligors in

groups 1 and 2, respectively.
For instance, at time 0 with N0 = (0, 0), the individual intensities of obligors of group 1 and
2 are equal to 1/36 and 8/36, respectively; the average individual intensity at time 0 is thus
equal to 1/8 = 0.125 = 1/n.

Model Simulation In this toy model the simulation takes the following very simple form
(see [70] or [6] for more details in more general set-ups):
Compute Π0 and P0 by numerical matrix exponentiation (cf. section 30.2.1), and then for
every j = 1, . . . ,m:
∙ Draw a pair (t̃j1, t̂

j
1) of independent exponential random variables with parameter (cf.

(96)–(102))

(�1
0, �

2
0) = 4× (

1

36
,

8

36
) = (

1

9
,
8

9
) ; (103)

∙ Set tj1 = min(t̃j1, t̂
j
1) and N

tj1
= (1, 0) or (0, 1) depending on whether tj1 = t̃j1 or t̂j1;

∙ Compute Π
tj1

and P
tj1

by numerical matrix exponentiation.

Doing this for m = 104, we got 9930 draws with t1 < T = 5yr, among which 6299 ones with
t1 < T1 = 1yr, subdividing themselves into 699 defaults in the first group of obligors and
5600 defaults in the second one.

31.2.1 Pricing

We consider two T = 5yr-tranches in the above model: an equity tranche with k = 30%,
corresponding to a payoff (1−R)NT

n ∧ k = (60NT
8 ∧ 30)%, and a senior tranche defined as

the complement of the equity tranche to the index, thus with payoff ( (1−R)NT
n − k)+ =

(60NT
8 − 30)+%.

The portfolio loss distribution (computed by numerical matrix exponentiation) and the result
of the pricing of the tranches and of the index at times 0 and t1 (on the subset of the draws
for which t1 < T ) are displayed in Figures 3, 4 and 5.

The left pane of Figure 3 represents the histogram of the loss distribution at the time horizon
T ; we indicate by a vertical line the loss level x beyond which the equity tranche is wiped
out, and the senior tranche starts being hit (so (1−R)x

n = k, e.g. x = 4).
The right pane of Figure 3 displays the equity (labeled by +), senior (×) and index (∘)
tranche prices at t1 (in ordinate) versus t1 (in abscissa), for all the points in the simulated
data with t1 < 5 (9930 points). Blue and red points correspond to defaults in the first
(Nt1 = (1, 0)) and in the second (Nt1 = (0, 1)) group of obligors, respectively. We also
represented in black the points (0,Π0) (for the tranches) and (0, P0) (for the index).
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Note that there is virtually no error involved in the previous computations, in the sense that
our simulation is exact (without simulation bias), and the prices and loss probabilities are
computed by (quasi-exact) matrix exponentiation.

The left pane of Figure 3 represents the histogram of the loss distribution at the time horizon
T ; we indicate by a vertical line the loss level x beyond which the equity tranche is wiped
out, and the senior tranche starts being hit (so (1−R)x

n = k, e.g. x = 4).
The right pane of Figure 3 displays the equity (labeled by +), senior (×) and index (∘)
tranche prices at t1 (in ordinate) versus t1 (in abscissa), for all the points in the simulated
data with t1 < 5 (9930 points). Blue and red points correspond to defaults in the first
(Nt1 = (1, 0)) and in the second (Nt1 = (0, 1)) group of obligors, respectively. We also
represented in black the points (0,Π0) (for the tranches) and (0, P0) (for the index).

Note that in the case of the senior tranche and of the index, there is a clear difference
between prices at t1 depending on whether t1 corresponds to a default in the first or in the
second group of obligors, whereas in the case of the equity tranche there seems to be little
difference in this regard.
In view of the portfolio loss distribution in the left pane, this can be explained by the fact
that in the case of the equity tranche, the probability conditional on t1 that the tranche will
be wiped out at maturity is important unless t1 is rather large. Therefore the equity tranche
price at t1 is close to k = 30% for t1 close to 0. Moreover for t1 close to T the intrinsic value
of the tranche at t1 constitutes the major part of the equity tranche price at t1 (since the
tranche has low time-value close to maturity). In conclusion the state of N at t1 has a low
impact on Πt1 , unless t1 is in the middle of the time-domain.
On the other hand, in the case of the senior tranche or in case of the index, the state of
N at t1 has a high impact on the corresponding price, unless t1 is close to T (in which
case intrinsic value effects are dominant). This explains the ‘two-track’ pictures seen for the
senior tranche and for the index on the right pane of Figure 3, except close to T (whereas
the two-tracks are superimposed close to 0 and T in the case of the equity tranche).

Looking at these results in terms of price changes Π0 − Πt1 of a tranche versus the cor-
responding index price changes P0 − Pt1 , we obtain the graphs of Figure 4 for the equity
tranche and 5 for the senior tranche. We consider all points with t1 < T on the left panes
and focus on the points with t1 < T1 on the right ones. We use the same blue/red color
code as above, and we further highlight in green on the left panes the points with t1 < 1,
which are focused upon on the right panes.
Figure 4 gives a further graphical illustration of the low level of correlation between price
changes of the equity tranche and of the index. Indeed the cloud of points on the right pane
is obviously “far from a straight line”, due to the partitioning of points between blue points /
defaults in group one on one segment versus red points / defaults in group two on a different
segment.
On the opposite (Figure 5), at least for t1 not too far from 0 (right pane), there is an evidence
of linear correlation between price changes of the senior tranche and of the index, since in
this case the blue and the red segments are not far from being on a common line.

31.2.2 Hedging

We then computed the (empirical, risk-neutral) variance of Πt1 −Π0 and of the profit-and-
loss et1 in (101) (restricting attention to the subset t1 < T1 = 1), using for �̂0 the empirical
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Figure 3: (Left) Portfolio loss distribution at maturity T = 5yr; (Right) Tranche Prices at
t1 for t1 < T = 5 (equity tranche (+), senior tranche (×) and index (∘)). On this and the
following Figures, blue and red points correspond to defaults in the first and in the second
group of obligors, respectively.

Figure 4: Equity vs Index Price Changes between 0 and t1 (t1 < T = 5, left pane; zoom on
t1 < T1 = 1, right pane).
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Figure 5: Senior vs Index Price Changes between 0 and t1 (t1 < T = 5, last pane; zoom on
t1 < T1 = 1, right pane).

regression delta of the tranche with respect to the index at time 0, so

�̂0 =
ℂ̂ov(Πt1 −Π0, Pt1 − P0)

V̂ar(Pt1 − P0)
. (104)

The results are displayed in Tables 3 and 4. Note that the prices and deltas of the equity and
senior tranche of same strike k respectively sum up to P and to one, by construction. So the
results for the senior tranche could in a sense be deduced from those for the equity tranche
and conversely. However we present detailed results for the equity and senior tranche, for
the reader’s convenience.

In Table 3:
∙ Σ0 = 104

kT Π0 or 104

(1−R−k)T Π0 (for the equity or senior tranche) or S0 = 104

(1−R)T P0 (for the
index), the stylized bp spreads defined in terms of the related prices by (90) for t = 0,
∙ �1

0 , �
2
0 and �0, the functions �1u

�1v
, �

2u
�2v

and the continuous time min-variance delta function
(as is easily shown)

�1(�1u)(�1v) + �2(�2u)(�2v)

�1(�1v)2 + �2(�2v)2
=

�1(�1v)2

�1(�1v)2 + �2(�2v)2
(
�1u

�1v
) +

�2(�2v)2

�1(�1v)2 + �2(�2v)2
(
�2u

�2v
)

evaluated at t = 0 and { = N0− = (0, 0), so

�1
0 =

u1,0−u0,0
v1,0−v0,0 (0) , �2

0 =
u0,1−u0,0
v0,1−v0,0 (0) (105)

�0 =
�10(u1,0−u0,0)(v1,0−v0,0)+�20(u0,1−u0,0)(v0,1−v0,0)

�10(v1,0−v0,0)2+�20(v0,1−v0,0)2
(106)

where we recall from (103) that (�1
0, �

2
0) = (1

9 ,
8
9).

The three deltas �1
0 , �

2
0 and �0 were thus computed by matrix exponentiation for the various

terms u, v{(0) involved in formulas (105), (106).
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Remark 31.1 The instantaneous min-variance delta �0 (which is a suitably weighted aver-
age of �1

0 and �2
0) can be considered as a measure of the moneyness of a tranche: out-of-the-

money low strike equity tranche or high strike senior tranche with �0 less than 0.5, versus
in-the-money tranche high strike equity tranche or low strike senior tranche with �0 greater
than 0.5. The further out-of-the money a tranche and/or ‘the less Markovian’ a porfolio loss
process L, the poorer the hedge by the index (cf. end of section 31.2.2).

Π0 or P0 Σ0 or S0 �1
0 �2

0 �0

Eq 0.2821814 1881.209 0.1396623 0.7157741 0.2951399
Sen 0.03817907 254.5271 0.8603377 0.2842259 0.7048601

Table 3: Time t = 0 – Prices, Spreads and Instantaneous Deltas in the Semi-Homogeneous
Model.

In Table 4 (cf. also (104)):
∙ � in column two is the empirical correlation of the tranche price increments Πt1−Π0 versus
the index price increments Pt1 − P0,
∙ R2 = �2 in column three is the coefficient of determination of the regression,
∙ Dev in column 4 stands for Ŝtdev(Πt1 −Π0)/Π0,

∙ The hedging variance reduction factor RedVar =
V̂ar(Πt1−Π0)

V̂ar(et1 )
in the last column is equal

to 1
1−�2 .

Remark 31.2 It is expected that �̂0 should converge to �0 in the limit where the cutoff T1

would tend to zero, provided the number of simulations m jointly goes to infinity. For T1 =
1yr and m = 104 simulations however, we shall see below that there is a clear discrepancy
between �0 and �̂0, and all the more so that we are in a non-homogeneous model with low
correlation between the tranche and index price changes between times 0 and t1. The reason
is that the coefficient of determination (R2) of the linear regression with slope �̂0 is given by
R2 = �2. In case � is small, R2 is even smaller, and the significance of the estimator (for low
T1’s) �̂0 of �0 is low too. In other words, in case � is small, we recover mainly noise through
�̂0; this however does not weaken our statements below regarding the ability or not to hedge

the tranche by the index, since the variance reduction factor RedVar =
V̂ar(Πt1−Π0)

V̂ar(et1 )
is equal

to 1
1−�2 , which only depends on � and not on �̂0.

�̂0 � R2 Dev RedVar
Eq -0.00275974 -0.03099014 0.0009603885 0.006612626 1.000961
Sen 1.002760 0.9960836 0.9921825 0.07475331 127.9176

Table 4: Hedging Tranches by the Index in the Semi-Homogeneous Model.

Recall that qualitatively the senior tranche’s dynamics is rather close to that of the index
(at least for t1 close to 0, see Section 31.2.1, right pane of Figure 5). Accordingly, we find
that hedging the senior tranche with the index is possible (variance reduction factor of about
128 in bold blue in the last column). This case thus seems to be supportive of the claim
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according to which one could use the index for hedging a loss derivative, even in a non
Markovian model of portfolio loss process L.

But in the case of the equity tranche we get the opposite message: the index is useless for
hedging the equity tranche (variance reduction factor essentially equal to 1 in bold red in
the table, so no variance reduction in this case).

Incidentally this also means that hedging the senior tranche by the equity tranche, or vice
versa, is not possible either.

We conclude that in general, at least for certain ranges of the model parameters and tranche
characteristics (strong to strong non-Markovianity of L and out-of-the money to far out-of-
the money tranche), hedging tranches with the index may not be possible in a non Markovian
model of portfolio loss process L.

31.2.3 Fully Homogeneous Case

For confirmation of the previous analysis and interpretation of the results, we redid the
computations using the same values as before for all the model, products and simulation
parameters, except for the fact that the following pre-default individual intensities were
used, for l = 1, 2 :

�̃l({) =
1

n
+

∑
1≤ℓ≤d iℓ

nd
=: �̂(

∑
1≤ℓ≤d

iℓ) . (107)

For instance, at time 0 with N0 = 0, the individual intensities of the obligors are all equal
to 1/8 = 0.125 = 1/n.

We are thus in a case of homogeneous obligors, reducible to a local intensity model (with
d = 1 and pre-default individual intensity �̂(i) therein, see Remark 30.1). So in this case
we expect that hedging tranches by the index should work, including in the case of the
out-of-the-money equity tranche.

This is what happens numerically. This time the red and blue curves are superimposed on
the analogs of Figures 3, 4 and 5 (not reproduced here, see [1]). This is consistent with
the fact that the identity of a defaulted name has no bearing in this case, given the present
specification of the intensities.

Looking at Table 6, we find as before that hedging the senior tranche with the index works
very well (still better than before, variance reduction factor of 11645 in bold blue in the last
column; yet this may partly due to a moneyness effect: the senior tranche is further in-the-
money than before, with an senior tranche �0 of about 0.7 in Table 3 versus 0.8 in Table5).
But as opposed to the situation in the semi-homogeneous case, hedging the equity tranche
with the index also works very well (variance reduction factor of about 123 in bold purple in
the last column), and this holds even though the equity tranche is further out-of-the-money
now than it was before, with an equity tranche �0 of about 0.3 in Table 3 versus 0.2 in Table
5 (cf. Remark 31.1). This also means that hedging the equity tranche by the senior tranche,
or vice versa, is quite effective in this case.

These results support our previous analysis that the impossibility of hedging the equity
tranche by the index in the semi-hompogeneous model was due to the non-Markovianity of
the loss process L.
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Note incidentally that �̂0 and �0 are closer now (in Tables 5–6) than they were previously
(in Tables 3–4). This is consistent with the fact that R2 is now larger than before (�̂0 and
�0 would be even closer if the cutoff T1 was less than 1yr, provided of course the number of
simulations m is large enough; see Remark 31.2).

Π0 or P0 Σ0 or S0 �1
0 �2

0 �0

Eq 0.2850154 1900.103 0.2011043 0.2011043 0.2011043
Sen 0.1587075 1058.050 0.7988957 0.7988957 0.7988957

Table 5: Time t = 0 – Prices, Spreads and Instantaneous Deltas in the Fully-Homogeneous
Model.

�̂0 � R2 Dev RedVar
Eq 0.0929529 0.9959361 0.9918887 0.004754811 123.2852
Sen 0.9070471 0.999957 0.9999141 0.04621152 11645.15

Table 6: Hedging Tranches by the Index in the Fully-Homogeneous Model.

Conclusions

For credit derivatives with (stylized) payoff given as �(LT ) at maturity time T, it is tempting
to adopt a Black–Scholes like approach, modeling L as a Markov point process and perform-
ing factor hedging of one derivative by another, balancing the related sensitivities computed
by a suitable Itô-Markov formula (like, for instance, (73)). However, since the loss process L
is far from being Markovian in the market (unless maybe additional factors are considered
to form a Markovian vector state-process), this loss process is not a sufficient statistics for
the purpose of valuation and hedging of portfolio credit risk. In other words, ignoring the
potentially non-Markovian dynamics of L for pricing and/or hedging may cause huge model
risk, even though the payoffs of the products at hand are given as functions of L.

This effectively means that the prices of credit derivatives depend on factors others than
L, like the identity (and not only the number) of the defaulted names, ratings or implied
ratings (and not only identities) of survivors, etc. This makes of course perfect sense since
it is rather clear that the default of a major name in the index does not bear the same
informational content as that of an arbitrary firm, and, moreover, pricing is done by agents
with regard to the quality of the remaining names in the portfolio rather than with regard
to the defaulted names.

Our conclusion is that the bottom-up approach is the best-suited for an adequate risk man-
agement of portfolio credit derivatives.
At this point one may raise the issue of the so called curse of dimensionality that is com-
monly associated with the bottom-up approaches. However, recent developments in the
bottom up modeling enable one to efficiently cope with this curse of dimensionality. It is
thus possible to specify high-dimensional (‘bottom-up’) dynamic Markovian models of port-
folio credit risk with automatically calibrated model marginals (to the individual CDS curves,
say), see Bielecki, Vidozzi and Vidozzi [31].
Much like in the standard static copula framework, this effectively reduces the main compu-
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tational cost issue, that relative to model calibration, to calibration of the few dependence
parameters in the model at hand. This calibration can thus be achieved in a very reasonable
time, including by pure simulation procedures if need be (without using any closed pric-
ing formulae, if there aren’t any in the model under consideration). Appropriate reduction
variance methods (see the next section and [7]) may help in this regard.

32 Importance Sampling for Markovian Credit Portfolios

In Markovian models of credit risk, the portfolio loss distribution can be computed by
numerical resolution of the related forward Kolmogorov equations (see section 30.2.1). But
a practical implementation of deterministic numerical schemes is precluded by the curse of
dimensionality for models of dimension greater than a few units. Simulation approaches
are then the only reasonable alternative. Yet simulation methods are typically slow, which
makes it important to find efficient variance reduction techniques (see, e.g., Glasserman
[75]).

Importance sampling (IS for short) is regarded as the method of choice when it comes to
variance reduction. However, IS does not always make sense. Often times, it is not clear
which change of measure will significantly reduce the variance, and moreover, producing
Monte Carlo random samples after the change of measure can be impractical if at all possible.
In this section, based on the paper [7] (joint work with René Carmona), we compare the
results of IS to a more sophisticated method of Del Moral and Garnier [54] (see also Del Moral
[53]). This method is based on the properties of twisted Feynman-Kac expectations and the
approximation of their values by interacting particle systems (IPS for short, also called
henceforth implicit importance sampling, as opposed to the previous explicit importance
sampling).

32.1 Importance Sampling in a Nutshell

The problem at hand is the computation of small probabilities of events and related ex-
pectations of the form Ef(Xn), relative to a (possibly time inhomogeneous) Markov chain
(Xi)1≤i≤n with transition kernel K(Xi−1, ⋅) with respect to a filtered (in discrete time) prob-
ability space (Ω,F,ℚ), Xi being a random element taking values in a general measurable
space (E, ℰ).

32.1.1 Explicit Importance Sampling for Makov Chains

Given weight functions wi = wi(x1, . . . , xi) such that E (wi(X1, . . . , Xi) ∣ ℱi−1) = 1, let ℚ̃
stand for the twisted probability measure defined by the wi’s, in the sense that we have, for
every i ∈ ℕ:

dℚ̃
dℚ ∣ℱi =

∏
1≤l≤iwl(X1, . . . , Xl) . (108)

The basic importance sampling algorithm based on ℚ̃ runs as follows. Given the initial
condition �̃0 = 0, draw for i = 1, . . . , n, for j = 1, . . . ,m :

�̃ji ↝ K̃i(�̃
j
i−1, ⋅) (109)
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where K̃i stands for the transition kernel of X at time i − 1 under the twisted probability
measure ℚ̃. We then have the following unbiased (at fixed m), asymptotically convergent
(as m→∞) estimate (see, e.g., Glasserman [75]):

Ef(Xn) = Ẽ

(
f(Xn)∏

1≤i≤nwi(X1, . . . , Xi)

)
≈ 1

m

m∑
j=1

f(�̃jn)∏
1≤i≤nwi(�̃

j
1, . . . , �̃

j
i )

Moreover, in order to minimize the variance, one should use weight functions wn such that∏
1≤i≤nwi(X1, . . . , Xi) is proportional to ∣f(Xn)∣, and for obvious practical reasons the

choice of w should give rise to an algorithm that can be easily implemented. This is typically
done by resorting to a suitable version of the Girsanov theorem.

32.1.2 Interacting Particles System Approach

Roughly speaking, the method proposed by Del Moral and Garnier [54] is based on the
deformation of the Markov chain successive transitions by way of mutations and selections
in order to force the chain into the rare events of interest. This strategy is reminiscent of
classical importance sampling. However, the main difference is that while the Monte Carlo
sample of an importance sampling computation are generated from the twisted distribution,
the Monte Carlo samples used in an IPS Monte Carlo computation are generated under the
original distribution of the chain. In other words, the knowledge of the distribution of the
underlying Markov chain is not really necessary. All we need to have in order to implement
the IPS Monte Carlo computations is a black box capable of generating Monte Carlo samples
from the distribution of the chain.

The basic simulation algorithm runs as follows. We choose an integer m which we shall
interpret as the number of particles. A particle at time i is an element

�ji = (�j0,i, �
j
1,i, . . . , �

j
i,i) ∈ E

i+1

where the superscript j of the particle ranges from 1 to m. The particles system (indexed
by j) starts from an initial condition �j0 = x0, for every j. Given weight functions wi,
the system evolves between times i − 1 and i for i = 1, . . . , n according to the following
selection/mutation dynamics, for j = 1, . . . ,m (see Table 7):

(�j0,i, �
j
1,i, . . . , �

j
i−1,i) ↝

∑m
l=1wi−1(�li−1)��li−1

(110)

�ji,i ↝ K(�ji−1,i, ⋅) (111)

where ��li−1
denotes a Dirac mass at �li−1.

�1
0,0 �1

0,1, �
1
1,1 . . . �1

0,n, �
1
1,n, . . ., �

1
n,n

. . . . . . . . . . . .
�m0,0 �m0,1, �

m
1,1 . . . �m0,n, �

m
1,n, . . ., �

m
n,n

Table 7: Selection/Mutation Dynamics.
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We then have the following unbiased (at fixed m), asymptotically convergent (as m → ∞)
estimate (see Del Moral and Garnier [54], Del Moral [53]):

Ef(Xn) ≈ (112)⎛⎝ 1

m

m∑
j=1

f(�jn,n)∏
1≤i<nwi(�

j
1,n, . . . , �

j
i,n)

⎞⎠⎛⎝ ∏
1≤i<n

1

m

m∑
j=1

wi(�
j
i )

⎞⎠
Moreover, in order to minimize the variance, one should use weight functions wi favoring the
occurrence of the rare event of interest (without involving too large normalizing constants).
Finally, the choice of w should give rise to an algorithm that can be easily implemented.

32.2 Armageddon

In presence of strong contagion between obligors (as often priced by portfolio credit deriva-
tives markets), the loss distribution has a very different structure than in the independent
case.

To address this issue we consider an homogeneous Local Intensity Model of portfolio credit
risk (see section 30.2) with n = 125 credit names and individual pre-default instantaneous
intensity at time t equal to �̃t = a exp(bNt/n), for non-negative parameters a and b. For
a = 1/n and b = 0, we recover a model of independent obligors. Positive values of b allow
one to account for defaults contagion.

Figure 6 gives plots of the loss distribution for T = 5yr in two different sets of parameters.
For the left pane we used the values a = 0.01 and b = 0. This corresponds to the case of
independent obligors. For the right pane, we used the values a = 0.01 and b = 13 which
correspond to a case of extreme contagion. These distributions were computed by matrix
exponentiation of the one-dimensional model generator Λ (126 ⊗ 126 matrix, see section
30.2.1). Note the different vertical scales.

In the case of independent obligors (left pane), the structure of the loss distribution is
basically that of a Poisson distribution (truncated at the level n). The right-tail of the
distribution goes exponentially fast to zero, which makes high levels of the loss extremely
rare. The probability of the Armageddon (everyone defaulted in the portfolio) by the time
of maturity T = 5yr, is equal to 1.044507e−164. Importance sampling (IS or IPS) methods
are thus in this case a complete necessity for computing by simulation high-losses related
quantities like the price of a super-senior CDO tranche (see section 29.1).

In the case of extreme contagion (right pane), we observe the so-called Armageddon effect:
the default of all the obligors within a finite time horizon becomes an event with significant
probability, 7.106e − 03, so the order of one percent. Moreover there are no extremely
rare levels of the loss any more. The less likely loss level is the level i = 115, with a loss
probability of 1.108e− 06. For such a model, importance sampling methods are not strictly
needed, since a standard Monte Carlo method with 106 samples will basically do a good
job at estimating the 5yr loss distribution with a reasonable accuracy over the whole range
of the loss levels. Importance sampling methods may be used however for the purpose of
variance reduction: estimating by simulation the 5yr loss distribution (or part of it) using,
say, 104 samples instead of 106.
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Figure 6: T = 5yr loss distributions. Left pane: Independent obligors (a = 0.01, b = 0);
Right pane: Extreme contagion (a = 0.01, b = 13).

32.2.1 Results for Importance Sampling

In the case of independent obligors (a = 0.01, b = 0), an (appropriate, see [7] for the detail)
IS method succeeds very well in estimating the 5yr loss distribution on the whole range
of loss levels (left pane of Figure 7). But, oddly enough, this is not true any more in the
case of extreme contagion. We can see on the right pane of Figure 7 that the IS method
is completely inefficient for estimating the probabilities of loss levels with probabilities less
than, say, 10−3, though m = 104 simulations were used in this experiment. The explanation
of this negative result is that the weights involved in the change of measures become extreme,
creating huge fluctuations and a large variance in this case, making the method essentially
useless in practice.

32.2.2 Results for Interacting Particle Systems

As opposed to the IS method in section 32.2.1, an (appropriate [7]) IPS method does show
some ability in capturing the events of probability 10−5 to 10−6 in the case of extreme
contagion (right pane of Figure 8), though only m = 104 trajectories were used in this
experiment.

In the independent case (left pane of Figure 8) the performances of the IPS algorithm
are good for computing not too small probabilities (until the loss level i = 36 with exact
probability 2.126281e − 18, on this specific example). For higher levels of the loss, the
related probabilities are too small and the generic IPS methodology is not sufficient to
provide reasonable estimates, more specifically problem-dependent methodologies should be
considered instead (see, e.g., Johansen, Del Moral and Doucet [88]).
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Figure 7: Log-probabilities (exact versus simulated by IS withm = 104 draws) for independent
obligors (a = 0.01, b = 0; left) or in the case of extreme contagion (a = 0.01, b = 13; right).
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Figure 8: Log-probabilities (exact versus simulated by IPS with m = 104 draws) for indepen-
dent obligors (a = 0.01, b = 0; left) or in the case of extreme contagion (a = 0.01, b = 13;
right).
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Conclusions

In summary, explicit importance sampling methods can do wonders when models for the
loss distribution are simple enough for a Girsanov like transformation to be identified, a
random generator for the distorted probability structure be available at the cost of a low
overhead, and the corresponding densities be easily computed along the samples.

However, rare event probability estimation based on interacting particle systems can be a
very useful substitute when no obvious Girsanov change of measure is available, or when the
Monte Carlo simulations are based on a computer implementation in the form of a black
box which cannot be open and modified for the purpose of importance sampling.

33 Delta-hedging Correlation Risk?

In conclusion of this report, the preliminary analysis of this section, which at this stage
corresponds to no more but a research project, aims at comparing two deltas with respect
to the task of delta-hedging dynamically in discrete time a CDO tranche with the related
credit index and the savings account, in a positively skewed base correlation market:
(i) The local delta Δlo

t , namely the delta of the tranche in a local intensity model calibrated
to the market implied correlation smile at time t,
(ii) The Li implied delta Δli

t , namely the delta of the tranche in a Li model with the implied
base correlation of the tranche at time t.
In these definitions:
∙ The local intensity model is the pure birth process described in section 30.2 for modeling
a credit portfolio cumulative default process N ,
∙ The Li model is the one factor Gaussian copula model of section 29.2, which has long been
the industry standard for dealing with credit correlation products.

The question we want to address is which delta performs better, in the sense of maintaining,
on average, P&L trajectory of a delta-hedged CDO tranche closer to 0 throughout the
hedging period. Our motivation in this section is thus analogous to that of section 13 (see
[10]), but relatively to credit correlation derivatives here, instead of volatility derivatives
there.

For simplicity we take zero interest-rates, we consider stylized equity and senior
CDO tranches and CDS index contracts of maturity T as defined in section
29.1.1, and we accordingly consider the version of the Li model as of section
29.2.1.

Let T1 ≤ T denote the hedging horizon. Delta-hedging in discrete time the tranche (sold,
say) with the index and the riskless asset over the time interval [0, T1], consists in rebalancing
in a self-financed way, at every point in time of a subdivision (possibly random, though this
is not the point here) 0 = t0 ≤ t1 ≤ . . . ≤ tp = T1 of [0, T1], a complementary position Δ in
the index, in order to minimize the overall exposure to ‘small’ moves of the index.

The tracking error, or profit-and-loss (P&L for short) trajectory e = (etk)0≤k≤p, is obtained
by adding up the following P&L increments, starting with e0 = 0, from k = 0 to p− 1:

�ke = −�kΠ + Δtk �kP , (113)

where (cf. section 29.1.1):
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∙ �kΠ and �kP are the increments of the tranche and index values between times tk and
tk+1,
∙ Δtk is the index delta (number of units of index contract in the hedging portfolio over the
time interval (tk, tk+1]).

We want to compare the P&L trajectories e obtained using two strategies, with Δt and Δt

given by:
∙ The Li implied delta of the option, that is

Δt = Δli
t =

∂SΠli(t, St, �t)

∂SP li(t, St)

where the functions Πli(t, S, �) and P li(t, S) stand for the Li pricing function of the tranche
and of the index (the reduced Li pricing functions Π̃(t, S, �) and P̃ li(t, S), in the terminology
and notation of section 29.2.1), and where the number �t stands for the (stylized) Li implied
correlation of the tranche at time t as of (94);
∙ Or, alternatively, the local delta of the tranche, that is

Δt = Δlo
t = Δlo

i (t) =
Πlo
i+1(t)−Πlo

i (t)

P loi+1(t)− P loi (t)

evaluated at i = Nt−, where Πlo
i (t) and P loi (t) with t ∈ [0, T ] and i ∈ {0, . . . , n} refer to the

tranche and index pricing functions in the sense of section 30.2.1 (case where d = 1 therein),
in a local intensity model calibrated to the full market Li implied base correlation surface
at time t (see section 29.2).

We assume a steeply positively skewed base correlation market (‘steep market’ for short
henceforth, or ‘systemic market’; see section 29.2 for the definition of the base correlation),
as typically observed in the market in recent years, corresponding to a high level of contagion
and of positive correlation between the level of index spreads and that of (implied or realized)
correlations. As will be explained in Remark 33.3, an analogous analysis can be performed in
the case of ‘even markets’ with a flat or close to flat base correlation smile, or ‘idiosyncratic
markets’, as was for instance the case during the correlation breakdown crisis of Spring 2005.

To develop our analysis we shall distinguish two stylized market regimes: widening and tight-
ening, corresponding to values of the (stylized) index spread and index contract increasing
and decreasing, respectively.

Remark 33.1 In the volatility analysis of section 13 we first distinguished four market
regimes: fast sell-offs, slow rallies, slow sell-offs and fast rallies, and then noticed than
dominant regimes are fast sell-offs and slow rallies in the case of a negatively skewed volatility
market (respectively slow sell-offs and rallies in the case of a negatively skewed volatility
market). Here we directly focus on the dominant market regimes, namely (quickly) widening
(sometimes) and (gently) tightening (most of the time).

33.1 Analysis in a Local Intensity Model

In this section we operate in a theoretical market given as a fixed local intensity model, with
an assumingly steeply positively skewed implied base correlation smile (‘steep local intensity
model’).
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Note that in the set-up of a local intensity model, the strategy Δlo, if applied in continuous
time, would provide a perfect replication of the tranche by the index (P&L trajectory e
identically equal to zero). But we consider hedging in discrete time.

In the set-up of a local intensity model, one has (using also (93), regarding the last identity):

Πt = Πlo(t,Nt) , Pt = P lo(t,Nt) , St = Slo(t,Nt) , �t = �lo(t,Nt) ,

for suitable functions Πlo(t, i), P lo(t, i), Slo(t, i), �lo(t, i) (also denoted Πlo
i (t), P loi (t), Sloi (t),

�loi (t)).

33.1.1 Equity Tranche

Let us first consider the case of an equity tranche.

Convexity with respect to Realized Correlation One then has,

�elo is positive in tightening regimes and negative in widening regimes . (114)

To support (114), note that one has,

�ke
lo = −�kΠ + Δlo

tk
�kP =

∫ tk+1

tk

(Δlo
tk
−Δlo

t ) dPt , (115)

where it is well known that for an equity tranche Δlo
i (t) is non-decreasing with respect to

time t. Therefore:
∙ On a (small) time interval [tk, tk+1] with no default, one has �kP ≤ 0 (so this corresponds
to a tightening regime), and �kelo ≥ 0,
∙ On a (small) time interval [tk, tk+1] with one default, one has �kP ≥ 0 (so this corresponds
to a widening regime), and �kelo ≤ 0.

Remark 33.2 One might be surprised by the fact that in a local intensity model �kelo

is, at first sight, directional, in the sense that the sign of �kelo is driven by that of �kP .
One possible interpretation is that this is an effect of coincidence in this model of spreads
tightening (resp. widening) with a stylized form of realized correlation (resp. decorrelation),
namely nothing happening to anybody in the portfolio but for time-decay (resp. default of
one name whilst the others stay alive). Now it is well-known that, consistently with (114),
an equity tranche is Gamma negative with respect to the realized correlation (note in this
regard that an equity tranche is essentially equivalent to a short put position on the portfolio
loss; see, e.g., Gallo et al. [73]).

Ordering between the two deltas One has by definition of the Li base implied corre-
lation, for every t ∈ [0, T ] and i ∈ {0, . . . , n} :

Πlo
i+1(t)−Πlo

i (t) = Πli(t, Sloi+1(t), �loi+1(t))−Πli(t, Sloi (t), �loi (t))
=
(
Πli(t, Sloi+1(t), �loi+1(t))−Πli(t, Sloi+1(t), �loi (t))

)
+
(
Πli(t, Sloi+1(t), �loi (t))−Πli(t, Sloi (t), �loi (t))

)
.

(116)
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Moreover it is well known that for an equity tranche, one has,

∂�Π
li(t, S, �) ≤ 0 .

Finally, in the case of a steep local intensity model, one has,

�loi+1(t) ≥ �loi (t) .

So
Πli(t, Sloi+1(t), �loi+1(t)) ≤ Πli(t, Sloi+1(t), �loi (t)) .

Therefore, by (116) used at i = Nt−:

Δlo
t = Δlo

i (t) =
Πlo
i+1(t)−Πlo

i (t)

P loi+1(t)− P loi (t)

≤
Πli(t, Sloi+1(t), �loi (t))−Πli(t, Sloi (t), �loi (t))

P loi+1(t)− P loi (t)
≈ Δli

t .

In view of (113), it follows that

�eli ≤ �elo iff �P ≤ 0 . (117)

Tightening Widening
(�eli)+ ≤ �elo �elo ≤ −(�eli)−

Table 8: Equity tranche in a steep local intensity model.

Synthesis Combining (114) and (117), we get the picture depicted in Table 8. It might
thus be so that in some cases the Li delta provides a better hedge than the local delta.
But recall that we are in a local intensity model, in which the strategy Δlo, if applied in
continuous time, would provide a perfect replication of the tranche by the index. This means
that for hedge rebalancing frequencies large enough (like one week or less) �elo is very close
to 0, and Table 8 reduces to Table 9:

Tightening Widening
�eli ≤ 0 ≃ �elo �elo ≃ 0 ≤ �eli

Table 9: Case of a moderate to high rebalancing frequency in Table 8.

33.1.2 Senior Tranche

In the case of a senior tranche, which is positively sensitive to correlation and Gamma positive
with respect to the realized correlation, we simply exchange the contents of the cells in each
of the Tables 8 and 9, yielding Tables 10 and 11.
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Tightening Widening
�elo ≤ −(�eli)− (�eli)+ ≤ �elo

Table 10: Senior tranche in a steep local intensity model.

Tightening Widening
�elo ≃ 0 ≤ �eli �eli ≤ 0 ≃ �elo

Table 11: Case of a moderate to high rebalancing frequency in Table 10.

33.2 Analysis in a real market

In a steep market, not necessarily given by a local intensity model anymore (but still consid-
ering our stylized tranches, index and related definitions of spread and implied correlation),
we can decompose the P&L increments in the following way:

�elo =
(
− �Πlo + Δlo�P lo

)
+
(
�Πlo − �Π−Δlo(�P lo − �P )

)
�eli = (−�Πlo + Δli�P lo) +

(
�Πlo − �Π−Δli(�P lo − �P )

)
,

(118)

where �Π and �P denote the increments of the market price of the tranche and of the index
between the dates tk and tk+1, while �Πlo and �P lo stand for the price increment predicted
by the local intensity model calibrated at date tk, given the new observations at date tk+1.

In the right-hand side of (118):
∙ the first terms behave as in the analysis of section 33.1, whereas
∙ the second terms are due to the misspecification at date tk+1 of the local intensity model
calibrated at date tk.
This misspecification arises from the fact that the market-makers have revised their antici-
pations between date tk and date tk+1, according to the new market data observed at date
tk+1 (and also, from time to time, according to more punctual economico-political macro
news or events). Since there is more model risk on the tranches than on the index (unless
the tranche is very close to the index: case of an equity tranche with k close to 1, or of a
senior tranche with k close to 0), so typically:

∣�Π− �Πlo∣
∣�Πlo∣

≥ ∣�P − �P
lo∣

∣�P lo∣
,

and even in the case of at-the-money tranches, for which the differential between the two
deltas is the most significant (since Δlo ≃ Δli ≃ 0, resp. 1 in the case of far out-of-the
money, resp. in-the-money tranches):

∣�Π− �Πlo∣ ≫ ∣�Π
lo∣

∣�P lo∣
∣�P − �P lo∣ .

As for assessing the impact of the misspecification terms in (118), is it thus probably ac-
ceptable to consider, ‘at first order’, that:

�Πlo − �Π−Δlo(�P lo − �P ) ≃ �Πlo − �Π−Δli(�P lo − �P ) ≃ �Πlo − �Π ,
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and thus, by (118),

�elo ≃
(
− �Πlo + Δlo�P lo

)
+
(
�Πlo − �Π

)
�eli ≃ (−�Πlo + Δli�P lo) +

(
�Πlo − �Π

)
.

(119)

Moreover, it seems reasonable to expect that:
(i) At market regimes with defaults and widening credit spreads, and thus, since we are in
a steep market, with increasing levels of realized correlations, the market-makers will have
a tendency to push the tranches’ Li implied base correlations upwards compared to those
predicted by the local intensity model calibrated at date tk, whereas
(ii) At slow market regimes with tightening credit spreads, the market-makers will have a
tendency to push the tranches’ Li implied base correlations downwards compared to those
predicted by the model calibrated at date tk.

In the case of an equity tranche, which is negatively sensitive to correlation, this implies
that:
(i) �Π ≤ �Πlo in widening regimes, and
(ii) �Π ≥ �Πlo in tightening regimes.
By comparison with the situation of a steep local intensity model, �eli and �elo are pushed
away from 0 by the same amount in Table 9 (assuming a moderate to high rebalancing
frequency), as an effect of the misspecification terms �Πlo − �Π in (119).

Likewise, in the case of a senior tranche, one can check that by comparison with the sit-
uation in a local intensity model that �eli and �elo are pushed away from 0 by the same
amount in Table 11 (assuming a moderate to high rebalancing frequency), as an effect of
the misspecification terms �Πlo − �Π in (119).

The final results of the previous findings are summed-up in Table 12.

Market regime Tightening Widening
Equity tranche �eli ≤ �elo ≤ 0 0 ≤ �elo ≤ �eli
Senior tranche 0 ≤ �elo ≤ �eli �eli ≤ �elo ≤ 0

Table 12: Synthesis of the results in the case of steep market (for a moderate to high hedging
rebalancing frequency).

Consistently with the fact the a local intensity model fits the market over the full set of
CDO tranches at every point in time, whereas the Li model only provides a per tranche fit,
we thus find that the local delta provides a better hedge (in the sense of maintaining the
P&L increments closer to 0) than the Li delta (under the market risk-neutral measure, and,
provided we have physical as well as implied positive skewness, under the objective measure
as well).

Remark 33.3 In the situation of an even (as opposed to steep) local intensity model (, with
a flat or close to flat base correlation smile, the ordering between the two deltas changes.
The results analogous to those of Tables 8 and 10 are displayed in Table 13.
Moving further to the situation of a real even market, not necessarily given by a local inten-
sity model anymore, but with a negative correlation between index spreads and correlations
of credit spread, we expect that for an equity tranche, which is negatively sensitive to cor-
relation:
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(i) �Π ≥ �Πlo in widening regimes,
(ii) �Π ≤ �Πlo in tightening regimes,
and the opposite results for a senior tranche. So, finally, the situation of Table 13 is still
valid in a real even market.
Again, consistently with the fact the a local intensity model fits the market over the full set
of CDO tranches at every point in time, whereas the Li model only provides a per tranche
fit, we find that the local delta provides a better hedge than the Li delta in an even market.
Note that the conclusion is in fact clearer in an even market than in a steep market, since for
an even market the conclusion holds irrespectively of the frequency of the hedge rebalancing.

Market regime Tightening Widening
Equity tranche 0 ≤ �elo ≤ �eli �eli ≤ �elo ≤ 0
Senior tranche �eli ≤ �elo ≤ 0 0 ≤ �elo ≤ �eli

Table 13: Equity and senior tranches in an even local intensity model.

Needless to say, the rough argumentation of this section is only a first attempt to establish
an analogy between the mechanisms of equity and credit portfolio derivatives markets. In
particular it would be important to check whether it can be assessed numerically.
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