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Abstract

We study the numerical approximation of doubly reflected backward stochastic dif-
ferential equations with intermittent upper barrier (RIBSDEs) introduced in [11]. These
denote reflected BSDEs in which the upper barrier which is only active on certain ran-
dom time intervals. From the point of view of financial interpretation, RIBSDEs arise
as pricing equations of game options with call protection, in which the call times of the
option’s issuer are subject to constraints preventing the issuer from calling the bond on
certain random time intervals.

We prove a convergence rate for a time-discretisation scheme by simulation to an
RIBSDE. We also characterize in the Markovian set-up the solution of an RIBSDE in
terms of the largest viscosity subsolution of a related system of variational inequalities,
and we establish the convergence of a deterministic numerical scheme for that problem.
Due to the potentially very high dimension of the system of variational inequalities, this
approach is not always practical. We thus subsequently prove a convergence rate for a
time-discretisation scheme by simulation to an RIBSDE.

Key words: Reflected BSDEs, Variational inequalities, Discrete-time approximation, Game
option, Call protection.

MSC Classification (2010): 93E20, 65C99, 60H30.

1 Introduction

In this work, we consider the issue of numerical solution of a doubly reflected backward
stochastic differential equation, with an upper barrier which is only active on random time
intervals (doubly reflected BSDE with an intermittent upper barrier, or RIBSDE for short
henceforth, where the ‘I’ in RIBSDE stands for ‘intermittent’).

From the mathematical point of view, such RIBSDEs and, in the Markovian case, the
related variational inequality approach, were first introduced in [11]. They are a natural ex-
tension of reflected BSDEs on one or two barriers [16, 14]. From the point of view of financial
interpretation, RIBSDEs arise as pricing equations of game options (like convertible bonds)
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with call protection, in which the call times of the option’s issuer are subject to constraints
preventing the issuer from calling the bond on certain random time intervals. Moreover, in
the standing example of convertible bonds, this protection is typically monitored at discrete
times in a possibly very path-dependent way. Calls may thus be allowed or not at a given
time depending on past values of the underlying stock S, which leads, after extension of the
state space to markovianize the problem, to highly-dimensional pricing problems.

Pursuing the study initiated in [11], we first prove an analytical characterization of
the pricing function, as the largest viscosity subsolution to a related system of obstacles
problems. This proof uses in particular a stability property for the random time intervals
related to the call protection, which was taken as an assumption in the slightly more general
set-up of [11], and is established in the context of the present paper in Lemma 5.1. This
analytical characterization allows us then to propose a deterministic scheme, which is shown
to be convergent, to solve numerically the RIBSDE (or, more precisely, the corresponding
system of variational inequalities).

But, due to the path-dependence of the call protection, deterministic pricing schemes
are ruled out by the curse of dimensionality, and simulation methods appear to be the only
viable alternative.

We thus present a discrete-time approximation scheme for an RIBSDE, inspired by
[6, 9], but taking into account the fact that the upper boundary is only active on some
random time intervals. One important step in the proof of convergence for the scheme
is to prove the convergence of the approximated random time intervals, which is done in
Proposition 4.1.

It should be pointed out that the ‘irregularity’, in some sense, of the upper boundary,
implies, in general, a discontinuous value process Y . Nevertheless, we are able to retrieve
a bound for the convergence rate of the scheme for the Y -component, in the case where
the driver of the RIBSDE does not depend on Z, see Theorem 4.3. The study of the case
where the driver of the RIBSDE depends on Z, or the study of the approximation of the Z-
component, leads to the study of the regularity of the Z-component, which is made difficult
here by the discontinuity of the Y -component. This problem could probably be dealt with
by combining the ideas of the present work with techniques à la Gobet and Makhlouf [18],
however we leave this for further research.

The practical value of the numerical schemes is thoroughly assessed in the follow-up
paper [13]. For motivation, see Table 1, which gives computation times of the simulation
scheme (MC) and of the alternative deterministic numerical scheme for solving the related
variational inequalities (VI), for problems of increasing dimension d (dimension d in the
context and in the sense of Example 2.4(ii), corresponding to systems of 2d variational
inequalities).

The relative errors in the last row are computed in reference to a price obtained by a
low-dimensional deterministic numerical scheme which is available in the special case under
consideration (see [13]). But in the general case only two algorithms are available, (MC) and
(VI), and as visible in Table 1, (VI) becomes unpractical for d greater than say 10, whereas
computational times and accuracy of (VI) do not seem to be affected by the increasing di-
mension d (at least, not exponentially).

The rest of the paper is organized as follows. Section 2 pursues the study of RIBSDEs
that was initiated in [11]. In Section 3, we prove the analytical characterization of the pric-



d 1 5 10 20 30
CPU MC 0.5s 0.6s 0.9s 1.4s 1.9s
CPU VI 1.0s 16.1s 465.0s NA NA
Rel Err 0.02 0.02 0.01 0.02 0.02

Table 1: MC versus VI Computation Times and % Relative Error (NA ↔ Non Available).

ing function and study a deterministic pricing scheme. Discrete-time approximation of the
RIBSDE is dealt within Section 4. All the proofs are relegated to Section 5 (see also the
Appendix).

We shall denote:
∙ ℝq and ℝ1⊗q, the set of q-dimensional vectors and row-vectors with real components,
∙ ∣ ⋅ ∣p for p ∈ [1,+∞), or simply ∣ ⋅ ∣ in case p = 2, the p-norm of an element of ℝq or ℝ1⊗q,
∙ Λ, a positive constant, which may change from line to line.

1.1 Set-Up

Let us be given a continuous time stochastic basis (Ω,ℱ ,F,ℙ), where ℙ will stand for a
risk-neutral pricing measure in the financial interpretation. We assume that the filtration
F satisfies the usual completeness and right-continuity conditions, and that all semimartin-
gales are càdlàg1. Also, since our practical concern is the pricing of a financial derivative
with maturity T, we set F = (ℱt)t∈[0,T ] with ℱ0 trivial and ℱT = ℱ . A process on [0, T ]
(respectively a random variable) has to be F-adapted (respectively ℱ-measurable), by defi-
nition. By default in the sequel, all ‘stochastic’ identities are to be understood dℙ – almost
surely or dℙ⊗ dt – almost everywhere, respectively.

Given a q-dimensional Brownian motion W (q ≥ 1), let X be the solution on [0, T ] of
the following SDE:

Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
�(s,Xs) dWs , (1)

where the coefficients b : [0, T ]× ℝq → ℝq and � : [0, T ]× ℝq → ℝq⊗q are such that:
(Hx) b, � are uniformly bounded by Λ and Λ-Lipschitz continuous in x, i.e.

∣b(t, x)− b(t′, x′)∣+ ∣�(t, x)− �(t′, x′)∣ ≤ CΛ(∣t− t′∣+ ∣x− x′∣) , (t, x) , (t′, x′) ∈ [0, T ]× ℝd

For later use, let us denote by G the generator of X, so for any function u = u(t, x),
with a(t, x) = �(t, x)�(t, x)T,

Gu(t, x) = ∂tu(t, x) + ∂u(t, x)b(t, x) +
1

2
Tr[a(t, x)ℋu(t, x)] , (2)

where ∂u and ℋu denote the row-gradient and the Hessian of a function u = u(t, x) with
respect to x.

1French acronym meaning “right continuous, with left limit”.



Let us be given a set T = {T0, T1, . . . , TN} of fixed times with 0 = T0 < T1 < ⋅ ⋅ ⋅ <
TN−1 < TN = T , and a finite set K. A K-valued argument k of a function u will be
equivalently be denoted as the last argument u(. . . , k) or as a superscript uk(. . .), so that k
can be thought of as referring to the index of a vector or system of functions of the variables
other than k, depending on what is more convenient in the context at hand. We suppose
that for every I = 0, . . . , N, a jump function �I : ℝq ×K → K is given as

�kI (x) = �kI,−1{x∈O} + �kI,+1{x/∈O} ,

where the �kI,± ∈ K, and where d is the algebraic distance function to an open domain
O = {x ∈ ℝq ∣ d(x) < 0}.

Observe that the function �kI is continuous outside ∂O. In [11], one works with ‘ab-
stract’ functions �kI , and it is frequently assumed that a certain condition holds ‘at a point
x of continuity of �kI ’. In view of the above observation and for the sake of simplicity, we
shall rather postulate instead, in the context of the present paper, the stronger condition
that x /∈ ∂O. Moreover, we impose some regularity on O and a non-characteristic boundary
condition, in the form of the following assumption.
(Ho) The distance function d is of class C4

b . Moreover, for every (t, x),

(∂d a (∂d)T)(t, x) ≥ Λ−1 . (3)

We are now in a position to introduce the factor process X = (X,H), in which X is
defined by (1), and the K-valued pure jump marker process H is supposed to be constant
except for deterministic jumps at the positive TIs, from HTI− to

HTI = �I(XTI , HTI−) , (4)

starting from an initial condition H0 = k ∈ K. Note that H does not jump at time T0 = 0.
Let us finally be given the non-decreasing sequence of stopping times # = (#l)0≤l≤N+1

defined by #0 = 0 and, for every l > 0:

#2l−1 = inf{t > #2l−2 ; Ht /∈ K} ∧ T , #2l = inf{t > #2l−1 ; Ht ∈ K} ∧ T , (5)

relatively to a given subset K of K. The #ls are thus T-valued stopping times, with in par-
ticular #N+1 = T .

Remark 1.1 The financial interpretation will be developed in Sect. 2.1. In few words,
T represents a set of call protection monitoring times. The marker process H is used for
keeping track of the path-dependence of the call protection clauses, in order to make the
set-up Markovian. The times #ls are interpreted as times of switching of call protection.

2 Markovian RIBSDE

We denote by (P ) the class of functions u on ℝq, [0, T ]×ℝq or ℰ = [0, T ]×ℝq×K, such that u
is Borel-measurable, with polynomial growth in its spatial argument x ∈ ℝq. Let us further
be given real-valued and continuous cost functions g(t, x), ℓ(t, x), ℎ(t, x) and f(t, x, y, z) of
class (P ), for every y ∈ ℝ and z ∈ ℝ1⊗q in the case of f , such that:
∙ the running payoff function f(t, x, y, z) is Lipschitz in (y, z);



∙ the payoff function at maturity g(x) and the put and call payoff functions ℓ(t, x) and ℎ(t, x)
satisfy ℓ ≤ ℎ, ℓ(T, ⋅) ≤ g ≤ ℎ(T, ⋅).

In the sequel, we shall sometimes use the following assumptions.
(Hℓ) ℓ(t, x) = �(t, x) ∨ c, for a constant c ∈ ℝ ∪ {−∞} and a function � of class C1,2 on
[0, T ]× ℝq such that

�, G�, (∂�)� are of class (P ) , (6)

(Hh) ℎ(t, x) is jointly Lipschitz in (t, x).

The Markovian RIBSDE (ℰ), with data

f(t,Xt, y, z) , g(XT ) , ℓ(t,Xt) , ℎ(t,Xt) , # , (7)

is then defined as a doubly reflected BSDE (see, e.g., [14, 11]), with lower and upper barriers
respectively given by, for t ∈ [0, T ],

Lt = ℓ(t,Xt) , Ut =

[N/2]∑
l=0

1[#2l,#2l+1)∞+

[(N+1)/2]∑
l=1

1[#2l−1,#2l)ℎ(t,Xt) . (8)

With respect to standard, ‘continuously reflected’ doubly reflected BSDEs, the peculiarity
of RIBSDEs is thus that the ‘nominal’ upper obstacle ℎ(t,Xt) is only active on the ‘odd’
random time intervals [#2l−1, #2l), l > 0.

Let us introduce the following Banach (or Hilbert, in case of ℒ2 orℋ2
q) spaces of random

variables or processes, where p denotes here and henceforth a real number in [1,∞):
∙ ℒp, the space of real valued random variables � such that

∥�∥ℒp =
(
E[∣�∣p]

) 1
p
< +∞ ;

∙ Spq , for any real p ≥ 2 (or Sp, in case q = 1), the space of ℝq-valued càdlàg processes Y
such that

∥Y ∥Spd :=
(
E
[

sup
t∈[0,T ]

∣Yt∣p
]) 1

p
< +∞ ;

∙ ℋpq (or ℋp, in case q = 1), the space of ℝ1⊗q-valued predictable processes Z such that

∥Z∥ℋpq =
(
E
[( ∫ T

0
∣Zt∣2 dt

) p
2

]) 1
p
< +∞ ;

∙ A2, the space of finite variation processes A with non-decreasing Jordan components2

A± ∈ S2 null at time 0.
Note that under (Hx), one has ∥X∥S2 ≤ CΛ, where, from now on, CΛ stands for a

generic constant which depends only on Λ, T , X0, N and q, and whose value may change
from line to line. In case this constant depends on some extra parameter, say �, we shall
write C�Λ.

2By the Jordan components of A, we mean the terms of the unique decomposition A = A+ − A− of A
as difference of two non-decreasing processes A± null at 0, defining mutually singular random measures on
[0, T ].



Definition 2.1 An (Ω,F,ℙ)-solution Y to (ℰ) is a triple Y = (Y, Z,A), such that:

(i) Y ∈ S2, Z ∈ ℋ2
q , A ∈ A2, A+ is continuous, and

{(!, t) ; ΔY ∕= 0} = {(!, t) ; ΔA− ∕= 0} ⊆
∪[N/2]
l=0 [[#2l]] ,ΔY = ΔA−on

∪[N/2]
l=0 [[#2l]] ,

(ii) Yt = g(Xt) +

∫ T

t
f(s,Xs, Ys, Zs)ds+AT −At −

∫ T

t
ZsdWs , t ∈ [0, T ] ,

(iii) Lt ≤ Yt , Yt ≤ Ut , t ∈ [0, T ] and
∫ T

0
(Yt − Lt)dA+

t =

∫ T

0
(Ut− − Yt−)dA−t = 0 ,

where L and U are defined by (8), and with the convention that 0×±∞ = 0 in (iii).

This definition admits an obvious extension to a random terminal time �, instead of
constant T . This extension will be used freely in the next results, in the special case of
simply reflected and (continuously) doubly reflected BSDEs.

Note that (ℰ) is implicitly parameterized by the initial condition (t = 0, X0, k) of X .
In the sequel, we use whenever necessary a superscript �, in reference to an initial condition
� = (t, x, k) of X . So X �t = (x, k), #�0 = t. For every initial time t, all our processes are
extended ‘in the natural way’ to [0, T ] so that they live in spaces of functions defined over
[0, T ] (see Crépey [11]).

Under (Hℓ), existence and uniqueness of solutions with a continuous reflecting process
Al,� to the auxiliary reflected BSDEs and doubly reflected BSDEs with random terminal
time that appear in point (i) below, is granted by the results of [12, 11]. Note in particular
that under (Hℓ), the so called Mokobodski condition is satisfied by the doubly reflected
BSDE problem with the continuously active barriers ℓ(t,Xt) and ℎ(t,Xt).

Proposition 2.1 (Prop. 373 in [11]) We assume (Hℓ).
(i) The following iterative construction is well-defined, for l decreasing from N to 0: Y l,� =
(Y l,�, Z l,�, Al,�) is the unique solution, with Al,� continuous, to the reflected BSDE with
random terminal time #�l+1 (for l even) or the doubly reflected BSDE with random terminal
time #�l+1 (for l odd) on [t, #�l+1], with data⎧⎨⎩ f(s,X�

s , y, z) , Y
l+1,�

#�l+1

, ℓ(s,X�
s ) , #�l+1 (l even)

f(s,X�
s , y, z) , min(Y l+1,�

#�l+1

, ℎ(#�l+1, X
�

#�l+1

)) , ℓ(s,X�
st) , ℎ(s,X�

s ) , #�l+1 (l odd)
(9)

in which, in case l = N , Y l+1,�

#�l+1

is to be understood as g(X�
T ).

(ii) Let us define Y� = (Y �, Z�, A�) on [t, T ] by, for every l = 0, . . . , N :

∙ (Y �, Z�) = (Y l,�, Z l,�) on [#�l , #
�
l+1), and also at #�l+1 = T in case l = N ,

∙ dA� = dAl,� on (#�l , #
�
l+1), and

ΔA�
#�l

= Y l,�

#�l
−min

(
Y l,�

#�l
, ℎ(#�l , X

�

#�l
)

)
= ΔY �

#�l
(= 0 for l odd)

and ΔA�T = ΔY �
T = 0. So in particular

Y �
t =

{
Y 0,�
t k ∈ K
Y 1,�
t , k /∈ K .

(10)

Then Y� = (Y �, Z�, A�) is the unique solution to the RIBSDE (ℰ�).
3Or Prop. 16.9 in the preprint version.



One will need further stability results on the Y l,�s. Toward this end, a suitable stability
assumption on #� is needed. Our next result is essentially a càdlàg property of #, viewed as
a random function of the initial condition � = (t, x, k) of X �. We denote, for I = 1, . . . , N,

ℰI = ℰ ∩ ([TI−1, TI ]× ℝq ×K) , ℰ∗I = ℰ ∩ ([TI−1, TI)× ℝq ×K) .

Proposition 2.2 Let �n = (tn, xn, k)→ � = (t, x, k) in ℰ as n→∞.
(i) In case t /∈ T, or in case t = TI and the �ns are in ℰI+1, then there exists an extraction
(�n′)n for which, almost surely, #�n′ → #� as n→∞;
(ii) In case t = TI , x /∈ ∂O and the �ns are in ℰ∗I , then there exists an extraction (�n′)n for
which, almost surely, #�n′ converges to some non-decreasing sequence #̃� = (#̃�l )0≤l≤N+1 of
T-valued stopping times as n→∞.

Observe that since the #ls are T-valued stopping times:
∙ #�n′ → #� in part (i) of the Proposition effectively means that #�n′l = #�l for n large enough,
almost surely, for every l = 1, . . . , N + 1;
∙ the convergence of #�n′ to #̃� in part (ii) of the Proposition effectively means that #�n′l = #̃�l
for n large enough, almost surely, for every l = 1, . . . , N + 1.

Definition 2.2 Substituting #̃� to #� in the construction of Y� in Proposition 2.1(i), one
gets a new sequence of reflected and doubly reflected BSDEs with random terminal times.
One denotes by Ỹ� = (Ỹ l,�)0≤l≤N the corresponding sequence of solutions, with Ỹ l,� =

(Ỹ l,�, Z̃ l,�, Ãl,�) and Ãl,� continuous, for every l = 0, . . . , N .

Proposition 2.3 (Th. 104 in [11]) We assume (Hℓ) and (Hℎ). Then, for every l =
N, . . . , 0:
(i) One has the following bound estimate on Y l,�,

∥Y l,�∥2S2 + ∥Z l,�∥2ℋ2
q

+ ∥Al,�∥2S2 ≤ C(1 + ∣x∣2q) . (11)

Moreover, an analogous bound estimate is satisfied by Ỹ l,�;
(ii) Let �n = (tn, xn, k)→ � = (t, x, k) in ℰ as n→∞.
∙ In case t /∈ T, or in case t = TI and the �ns are in ℰI+1, then there exists an extraction
(�n′)n such that Y l,�n′ converges in S2 ×ℋ2

q × S2 to Y l,� as n→∞;
∙ In case t = TI , x /∈ ∂O and the �ns are in ℰ∗I , then there exists an extraction (�n′)n for
which Y l,�n′ converges in S2 ×ℋ2

q × S2 to Ỹ l,� as n→∞.

Remark 2.3 In [11], an almost surely càdlàg property of # slightly stronger than that
established in Proposition 2.2, is postulated (cf. Assumption 105 in [11]). However, as easily
seen by inspection of the proof in [11], the ‘sequential càdlàg property up to extraction of a
subsequence’ of Proposition 2.2 is enough for Proposition 2.3 to hold.

2.1 Connection with Finance

In the case of risk-neutral pricing problems in finance, the driver coefficient function f of
(ℰ) is typically given as

f = f(t, x, y) = c(t, x)− �(t, x)y , (12)
4Or Th. 16.10 in the preprint version.
5Or Assumption 16.7 in the preprint version.



for dividend and interest-rate related functions c and �. So f is affine in y and does not
depend on z. Moreover, in the financial interpretation:
∙ g(XT ) corresponds to a terminal payoff that is paid by the issuer to the holder at time T
if the contract was not exercised before T,
∙ ℓ(Xt), respectively ℎ(Xt), corresponds to a lower, respectively upper payoff that is paid by
the issuer to the holder of the claim in the event of early termination of the contract at the
initiative of the holder, respectively issuer,
∙ The sequence of stopping time # is interpreted as a sequence of times of switching of a
call protection. More precisely, the issuer of the claim is allowed to call it back, enforcing
early exercise, on the ‘odd’ (random) time intervals [#2l−1, #2l). At other times call is not
possible.

The contingent claims under consideration are thus general game contingent claims
[19], covering convertible bonds, American options (and also European options) as special
cases.

Now, in view of a rather standard verification principle and of the arbitrage theory for
game options (see, e.g., [11]), if Y = (Y,Z,A) is a solution to (ℰ), then Π = Y is an arbitrage
price process for the game option, the arbitrage price relative to the pricing measure ℙ. Given
a suitable set of hedging instruments, Π is also a bilateral super-hedging price, in the sense
that there exists a self-financing super-hedging strategy for the issuer of the claim starting
from any issuer initial wealth greater than Π, and a self-financing super-hedging strategy for
the holder of the claim starting from any holder initial wealth greater than (−Π). Finally
Π is also the infimum of the initial wealths of all the issuer’s self-financing super-hedging
strategies.

Note that modeling the pricing problem under the historical, as opposed to the risk-
neutral, probability, would lead to a ‘z-dependent’ driver coefficient function f . Also, the
standard risk-neutral pricing approach tacitly assumes a perfect, frictionless financial mar-
ket. Accounting for market imperfections would lead to a nonlinear coefficient f (see, e.g.,
El Karoui et al. [17]).

A rather typical specification of the terminal cost functions is given by, for constants
P̄ ≤ N̄ ≤ C̄,

ℓ(t, x) = P̄ ∨ S , ℎ(t, x) = C̄ ∨ S , g(x) = N̄ ∨ S , (13)

where S = x1 denotes the first component of x. Note that this specification satisfies as-
sumptions (Hℓ)-(Hℎ), as well as all the standing assumptions of this paper. In particular,
one then has (cf. (1), (2) and (Hℓ)),

�(t, x) = x1 = S , G� = b1 , (∂�)� = �1 ,

so that condition (6) in (Hℎ) reduces to b1 and �1 being of class (P ), which holds by the
Lipschitz property of b and �.

As for #, the following specifications are commonly found in the case of convertible
bonds on an underlying stock S.

Example 2.4 Let the domain O be defined as {x ∈ ℝq ∣x1 < S̄}, for some constant trigger
level S̄. Then, given a constant l ≤ N , one may consider the following two specifications,



where the first one can in fact be seen as the special case where d = l in the second one:
(i) K = {0, . . . , l}, K = {0, . . . , l − 1}, and

�kI (x) =

{
(k + 1) ∧ l, x /∈ O
0, x ∈ O

(independently of I). Starting from H0 = 0, Ht then represents the number of consecutive
monitoring dates TIs with STI ≥ S̄ from time t backwards, capped at l. Call is possible
whenever Ht ≥ l, which means that S has been ≥ S̄ at the last l monitoring times; otherwise
call protection is in force.
(ii) K = {0, 1}d for some given integer d ∈ {l, . . . , N}, K = {k ∈ K ; ∣k∣1 < l} with
∣k∣1 =

∑
1≤p≤d kp, and

�kI (x) = (k1, . . . , kd−1,1S≥S̄) . (14)

Starting from H0 = (0, . . . , 0) ∈ ℝd, Ht then represents the vector of the indicator functions
of the events STI ≥ S̄ at the last d monitoring dates preceding time t. Call is possible
whenever ∣Ht∣1 ≥ l, which means that S has been ≥ S̄ on at least l of the last d monitoring
times; otherwise call protection is in force.

3 Variational Inequalities Approach

In view of introducing the value function u related to our Markovian BSDE (ℰ), it is con-
venient to state the following definition.

Definition 3.1 (i) A Cauchy cascade U on ℰ is a sequence U = (uI)1≤I≤N of functions uIs
of class (P ) on the ℰIs, satisfying the following jump condition, at every x /∈ ∂O:

ukI (TI , x) =

{
min(uI+1(TI , x, �

k
I (x)), ℎ(TI , x)) if k /∈ K and �kI (x) ∈ K,

uI+1(TI , x, �
k
I (x)) else , (15)

where, in case I = N , uI+1 is to be understood as g.
A continuous Cauchy cascade is a Cauchy cascade with continuous ingredients uIs on the
ℰIs, except maybe for discontinuities of the ukI s at the points (TI , x) with x ∈ ∂O.
(ii) The function defined by a Cauchy cascade is the function on ℰ given as the concatenation
on the ℰ∗I s of the uIs, and by the terminal condition g at T .

One then has,

Proposition 3.1 (Th. 116 in [11]) Assuming (Hℓ) and (Hℎ), the state-process Y of Y
satisfies, ℙ-a.s.,

Yt = u(t,Xt) , t ∈ [0, T ] , (16)

for the deterministic function pricing function u(t, x, k) = Y t,x,k
t . Moreover, u is defined by

a continuous Cauchy cascade U = (uI)1≤I≤N on ℰ.

Remark 3.2 The analog of Remark 2.3 also applies here.
6Or Th. 16.12 in the preprint version.



The next step consists in deriving an analytic characterization of the value function u,
or, more precisely, of U = (uI)1≤I≤N , as the solution of a related analytic problem.

A technical difficulty comes from the potential discontinuity in x of the functions ukI s
on T×∂O (unless of course one is in the special case where �kI,+ = �kI,−). Our next goal is to
characterize the Cauchy cascade U defining u in terms of a suitable notion of discontinuous
viscosity solutions (see [10]) to the following Cauchy cascade of variational inequalities:

For I decreasing from N to 1,
∙ At t = TI , for every k ∈ K and x /∈ ∂O,

ukI (TI , x) =

{
min(uI+1(TI , x, �

k
I (x)), ℎ(TI , x)), k /∈ K and �kI (x) ∈ K

uI+1(TI , x, �
k
I (x)), else ,

(17)

with uI+1 in the sense of g in case I = N ,
∙ On the time interval [TI−1, TI), for every k ∈ K,⎧⎨⎩ min

(
− GukI − fu

k
I , ukI − ℓ

)
= 0 , k ∈ K

max
(

min
(
− GukI − fu

k
I , ukI − ℓ

)
, ukI − ℎ

)
= 0 , k /∈ K

(18)

where we denote, for any function v = v(t, x),

fv = fv(t, x) = f(t, x, v(t, x)) .

By standard arguments (see, e.g., [11]), Proposition 3.1 implies that every uI is a
viscosity solution in the usual sense [10] of (18) on ℰ∗I . Now, in view of characterizing uI
as the unique viscosity solution in some sense to (17)-(18) on ℰI , one needs to investigate
the behavior of uI at the parabolic boundary TI × ℝq × K of ℰI , and to make precise the
corresponding notion of boundary condition for uI in (17). Toward this end, let us introduce
the notation u±N+1 ≡ g, and for every I < N, k ∈ K, and x ∈ ℝq,

uk,+I+1(TI , x) =

{
min(uI+1(TI , x, �

k
I,+), ℎ(TI , x)), k /∈ K and �kI,+ ∈ K

uI+1(TI , x, �
k
I,+), else ,

uk,−I+1(TI , x) =

{
min(uI+1(TI , x, �

k
I,−), ℎ(TI , x)), k /∈ K and �kI,− ∈ K

uI+1(TI , x, �
k
I,−), else .

(19)

Note that the functions uk,±I+1s are continuous in x on the ℰ∗I s, and that (17) can equivalently
be written as,

ukI (TI , x) =

{
uk,+I+1(TI , x), x /∈ O
uk,−I+1(TI , x), x ∈ O .

(20)

Let also for I ≤ N,

ǔkI+1(TI , x) =

⎧⎨⎩
uk,+I+1(TI , x), x /∈ O
uk,+I+1(TI , x) ∨ uk,−I+1(TI , x), x ∈ ∂O
uk,−I+1(TI , x), x ∈ O ,

(21)

ûkI+1(TI , x) =

⎧⎨⎩
uk,+I+1(TI , x), x /∈ O
uk,+I+1(TI , x) ∧ uk,−I+1(TI , x), x ∈ ∂O
uk,−I+1(TI , x), x ∈ O .

(22)



In the following definitions of solutions uI to (17)-(18), one assumes that the function
uI+1, which sits implicitly via uk,±I+1 in (20), is known and given, and continuous in the x
variable at t = TI . We refer the reader to [10] for the classical notions of viscosity solutions
which are embedded in the following definitions.

Definition 3.3 A locally bounded upper semi-continuous function, respectively locally bounded
lower semi-continuous function, ! = !k(t, x), of class (P ) on ℰI , is called a subsolution, re-
spectively supersolution, of (17)-(18) on ℰI , if and only if:
(i) ! is a viscosity subsolution, respectively supersolution, of (18) on ℰ∗I ,
(ii) ! ≤ ǔI+1, respectively ! ≥ ûI+1, at TI . In case ! ≤ ûI+1, respectively ! ≥ ǔI+1, at TI ,
! is said to be a strong subsolution, respectively strong supersolution, of (17)-(18) on ℰI .

Note that in virtue of a rather standard comparison principle that can be found for
instance as Th. 67 in [11], it holds that:

(CP) One has � ≤ � on ℰI , for every subsolution � and supersolution � of (17)-(18) on ℰI ,
at least one of them being strong,

provided the driver coefficient f satisfies the following additional assumption:

(H�) The functions b and � are locally Lipschitz in (t, x) and there exists, for every R > 0,
a nonnegative function �R continuous and null at 0 such that

∣f(t, x, y, z)− f(t, x′, y, z)∣ ≤ �R(∣x− x′∣(1 + ∣z∣))

for any t ∈ [0, T ], z ∈ ℝ1⊗q and x, x′ ∈ ℝq, y ∈ ℝ with ∣x∣, ∣x′∣ ≤ R .

3.1 Non-Decreasing Call Protection

For " ≥ 0, let O" = {x ∈ ℝq ∣ d(x) < "}, let u" stand for the pricing function of the
pricing problem corresponding to the dilated domain O" and other data unchanged, and let
U" = (u",I)1≤I≤N denote the associated Cauchy cascade of functions. We attach the index
" to all the formerly introduced quantities, defined in reference to the dilated domain O".
We will need to postulate below that the call protection is non-decreasing with respect to
the domain O, in the following sense.
(H") For every " ≥ 0, one has on ℰ :
(i) u ≤ u",
(ii) u"(TI , x, �kI,+) ≤ u"(TI , x, k) ≤ u"(TI , x, �kI,−) .

Example 3.4 Assumption (H") holds for instance in the situations of Example 2.4. Let us
thus consider the situation of Example 2.4(ii), which includes that of Example 2.4(i) as a
special case. In view of the interpretation of Ht as vector of the indicator functions of the
events STI ≥ S̄ at the last dmonitoring dates preceding time t, it follows that ∣H"∣ ≤ ∣H∣. So,
for every l > 0, [#"2l−1, #

"
2l) ⊆ [#2l−1, #2l). Part (i) of (H") then follows from a comparison

theorem for the doubly reflected BSDEs (ℰ) and (ℰ"), since, in view of (8), the related
effective upper barriers are such that U ≤ U ". As for Part (ii) in (H"), denoting here by a
further superscript (t, x, k) the initial condition of the marker process H" corresponding to

7Or Th. 12.1 in the preprint version.



the dilated domain O", one has in view of the definition (14) of the jump function in this
example that for every " ≥ 0,

∣H";t,x,�kI,− ∣ ≤ ∣H";t,x,k∣ ≤ ∣H";t,x,�kI,+ ∣ .

Note that under (H")(ii), the extensions to " ≥ 0 of definitions (21) are equivalent to

ǔk",I+1(TI , x) =

{
uk,+",I+1(TI , x), x /∈ O"
uk,−",I+1(TI , x), x ∈ O"

, ûk",I+1(TI , x) =

{
uk,+",I+1(TI , x), x /∈ O"
uk,−",I+1(TI , x), x ∈ O"

.(23)

The following result establishes the convergence of the value function u" for the dilated
domain O" to the value function u, at the ‘regular’ points � = (t, x, k) with (t, x) /∈ T ×∂O.

Proposition 3.2 Assuming (Hℓ), (Hℎ) and (H"), one has for every (t, x, k) ∈ ℰI with
t < TI ,

lim↘"↘0+ uk",I(t, x) = ukI (t, x) . (24)

Moreover the pointwise convergence (24) is uniform on every compact set of ℰ∗I .

Let u",I , respectively u",I , denote the function on ℰI defined as u",I on ℰ∗I and prolon-
gated at TI by ǔ",I+1, respectively û",I+1. Let also uI = u0,I , uI = u0,I .

The next result shows that every uI on ℰ∗I , extended as uI on ℰI , is the unique solution
in some sense (maximal subsolution) to (17)-(18), in which uI+1 determines the terminal
condition at time TI (with uN+1 ≡ g). This result thus provides an analytical charac-
terization of the value function u, in terms of the related Cauchy cascade of variational
inequalities,

Theorem 3.3 Assuming (Hℓ), (Hℎ), (H") and (H�), one has for I decreasing from N to
1,

uI = lim↘"↘0+ u",I , (25)

which is the largest subsolution of (17)-(18) on ℰI .

3.2 Deterministic Approximation Scheme

We now discuss the numerical solution of the Cauchy cascade of variational inequalities
(17)–(18), which, given the representation (16), can be seen as a first way of solving (ℰ)
numerically (at least, as far as determination of the value component Y is concerned).

We work under assumption (H"). As we did above, we shall proceed iteratively in I
decreasing from N to 1. More specifically, we assume that the function uI+1 which sits
implicitly in uk,±I+1 in (20), and more generally, every function u",I+1 sitting implicitly in
uk,±",I+1 in (27) below for any " ≥ 0, is known and given. We then consider the problem of
computing uI , or, equivalently, its ‘upper semicontinuous envelope’ uI , which was charac-
terized analytically in Theorem 3.3 as the largest subsolution of (17)-(18) on ℰI .

Let (Uh
",I)

h>0, where " stands for the parameter of dilation of the domain O and h is a
discretization parameter, denote a stable, monotone and consistent approximation scheme
for u",I , for every " > 0. On the notions of stable, monotone and consistent approximation



scheme, we refer the reader to the seminal paper [2] and, as the closest reference to the
present set-up, Sect. 13 in [11]. To fix ideas, one may thus think of (Uh

",I)
h>0 as the

solution, suitably interpolated over ℰI , of a standard difference finite differences schemes for
‘the solution’ 8 u",I to the following problem on ℰI (cf. (17), (18) and (20), (23)):

∙ At t = TI , for every k ∈ K and x /∈ ∂O,

uk",I(TI , x) =

{
uk,+",I+1(TI , x), x /∈ O"
uk,−",I+1(TI , x), x ∈ O" ;

(26)

∙ On the time interval [TI−1, TI), for every k ∈ K,⎧⎨⎩ min
(
− Guk",I − f

uk",I , uk",I − ℓ
)

= 0 , k ∈ K

max
(

min
(
− Guk",I − f

uk",I , uk",I − ℓ
)
, uk",I − ℎ

)
= 0 , k /∈ K .

(27)

One also refers the reader to [2] or Sect. 13 in [11], for the classical notions of lower and
upper envelopes of the numerical scheme (Uh

",I)
h>0 as h → 0+ (for a fixed " > 0, here).

Building on these notions, one then has the following ‘double convergence’ result.

Proposition 3.4 We assume (Hℓ), (Hℎ), (H") and (H�).
(i) For every " > 0, one has on ℰI ,

uI ≤ U ",I ≤ U ",I ≤ u2",I , (28)

where U ",I and U ",I denote the lower and upper envelopes of the numerical scheme (Uh
",I)

h>0.

(ii) As "→ 0+, the double scheme (Uh
",I)

h>0
">0 converges to uI locally uniformly on ℰ∗I , in the

sense that one has for every compact set C of ℰ∗I , for every  > 0 :

max
C
∣Uh
",I − uI ∣ ≤  , (29)

for " < "() and h < h(").

Note that this proposition only yields a partial convergence result, since one does
not know the functions "() and h(") in Proposition 3.4(ii). Moreover, one only gets the
convergence on ℰ∗I under the working assumption that the true value for u",I+1 is plugged
at TI in the approximation schemes (26)-(27) for u",I . In this regard this result remains a
bit theoretical.

It is also theoretical in the sense that (26)-(27) involves Card(K) equations in the
uk",Is. From a deterministic computational point of view, the Cauchy cascade (26)-(27)
(or (17)-(18)) can thus be considered as a ‘q + d – dimensional’ pricing problem, with
d = log(Card(K)). For ‘very large’ sets K, like for instance in Example 2.4(ii), the use of
deterministic schemes is precluded by the curse of dimensionality, and simulation schemes
such as the one of the next section are the only viable alternative. We refer the reader to
[13] for a thorough comparison of the practical performances of the two schemes.

8In any reasonable meaning, e.g., u",I largest viscosity subsolution.



4 RIBSDE Time-Discretization Results

In sections 4.1 to 4.3, we propose an approximation scheme in time for a solution Y =
(Y,Z,A), assumed to exist, to (ℰ) (for instance because assumption (Hℓ) holds, see Propo-
sition 2.1), and we provide an upper bound for the convergence rate of this scheme. This
convergence rate is the main contribution of this article.

Given a time-grid t = (ti)i≤n, we denote

∣t∣ = max
i≤n−1

(ti+1 − ti) , ∣t∣♯ = min
i≤n−1

(ti+1 − ti) .

4.1 Approximation of the Forward Process

When the diffusion X in (1) cannot be perfectly simulated, we use the Euler scheme ap-
proximation X̂ defined for a grid t = {0 = t0 < t1 < . . . < tn = T} of [0, T ], by X̂0 = X0,
and for i ≤ n− 1,

X̂ti+1 = X̂ti + b(ti, X̂ti)(ti+1 − ti) + �(ti, X̂ti)(Wti+1 −Wti) .

We assume n∣t∣ ≤ Λ. As usual, we define a continuous-time extension of X̂ by setting, for
every i ≤ n− 1 and t ∈ [ti, ti+1),

X̂t = X̂ti + b(ti, X̂ti)(t− ti) + �(ti, X̂ti)(Wt −Wti) , (30)

or in an equivalent differential notation, for t ∈ [0, T ],

dX̂t = b(t̄, X̂t̄)dt+ �(t̄, X̂t̄)dWt , (31)

with t̄ := sup{s ∈ t∣s ≤ t}. Under our Lipschitz continuity assumption (Hx), one has, for
every p ≥ 1 (see e.g. [20]),

∥ sup
t≤T
∣Xt − X̂t∣ ∥ℒp + max

i<n
∥ sup
t∈[ti,ti+1]

∣Xt − X̂ti ∣ ∥ℒp ≤ C
p
Λ ∣t∣

1
2 . (32)

4.2 Approximation of the Barriers

The lower barrier is simply approximated by L̂t = ℓ(t, X̂t). As for the upper barrier, we first
define the approximation Ĥ of the marker process H, by

Ĥ0 = H0 and ĤTI = �I(X̂TI , ĤTI−) , for 1 ≤ I ≤ N.

We then define the approximation #̂ of # as the sequence of T-valued stopping times
obtained by using X̂ = (X̂, Ĥ) instead of X in (5). This leads to the following approximation
of the upper boundary:

Ût =

[N/2]∑
l=0

1
[#̂2l,#̂2l+1)

∞+

[(N+1)/2]∑
l=1

1
[#̂2l−1,#̂2l)

ℎ(t, X̂t) . (33)

The following control is key in the sequel.

Proposition 4.1 For every � > 0, there exists a constant C�Λ such that for every l ≤ N+1,

E
[
∣#l − #̂l∣

]
≤ C�Λ∣t∣

1
2
−� .



4.3 Approximation of the RIBSDE

In the sequel, we shall use one of the following regularity assumptions:
(Hb) ℎ and ℓ are Λ-Lipschitz continuous with respect to (t, x),
(Hb)’ There exists a constant Λ and some functions Λ1,Λ2 : ℝq → ℝ1⊗q and Λ3 : ℝq → ℝ+

such that ∣Λ1(x)∣+ ∣Λ2(x)∣+ ∣Λ3(x)∣ ≤ Λ(1 + ∣x∣Λ), and for every x, y ∈ ℝq,

ℓ(t, x)− ℓ(t, y) ≤ Λ1(x)(y − x) + Λ3(x)∣x− y∣2

ℎ(t, y)− ℎ(t, x) ≤ Λ2(x)(y − x) + Λ3(x)∣x− y∣2 .

Note that assumption (Hb)’, which implies (Hb), is slightly weaker than the classical
semi-convexity assumption of Definition 1 in [1].

Given % = # or #̂, let the projection operator P% be defined by

P%(t, x, y) = y + [ℓ(t, x)− y]+ − [y − ℎ(t, x)]+
[(N+1)/2]∑

l=1

1{%2l−1≤t≤%2l} . (34)

To tackle the reflection issue, we introduce a discrete set of reflection times defined by

r = {0 = r0 < r1 < ⋅ ⋅ ⋅ < r� = T} , (35)

such that T ⊆ r ⊆ t and ∣r∣ ≤ CΛ∣r∣♯, where ∣r∣♯ = minj≤�−1(rj+1−rj). Here the point is that,
in the approximation scheme for Y, the reflection will operate only on r. The components
Y and Z of a solution Y = (Y,Z,A) to the RIBSDE (ℰ) are thus approximated by a triplet
of processes (Ŷ , Ỹ , Z̄) on t, which are defined by the terminal condition

ŶT = ỸT = g(X̂T ) ,

and then satisfy the following relations, for i decreasing from n− 1 to 0:⎧⎨⎩
Z̄ti = 1

ti+1−tiE
[
Ŷti+1(Wti+1 −Wti)

′ ∣ ℱti
]

Ỹti = E
[
Ŷti+1 ∣ ℱti

]
+ (ti+1 − ti)f(ti, X̂ti , Ỹti , Z̄ti)

Ŷti = Ỹti1{ti /∈r} + P
#̂
(ti, X̂ti , Ỹti)1{ti∈r} .

(36)

By convention, we also set Z̄T = 0. Using an induction argument and the Lipschitz-
continuity assumption on f , g, l, ℎ, one easily checks that the above processes are square
integrable. It follows that the conditional expectations are well defined at each step of the
algorithm.

We also consider a piecewise time-continuous extension of the scheme. Using the martingale
representation theorem, we define Ẑ on [ti, ti+1) by

Ŷti+1 = Eti
[
Ŷti+1

]
+

∫ ti+1

ti

ẐsdWs .

We then define Ỹ on [ti, ti+1) by

Ỹt = Ŷti+1 + (ti+1 − t)f(ti, X̂ti , Ỹti , Z̄ti)−
∫ ti+1

t
ẐsdWs ,



and we let finally, for t ∈ [0, T ],

Ŷt = Ỹt1{t/∈r} + P
#̂
(t, X̂t, Ỹt)1{t∈r} . (37)

Observe that one has, for i ≤ n− 1,

Z̄ti =
1

ti+1 − ti
Eti
[∫ ti+1

ti

Ẑsds

]
.

We also define Z̄t = Z̄t̄, for t ∈ [0, T ].

4.3.1 Convergence Results

When there is no call or no call protection, the convergence of the scheme is given by
Theorem 6.2 in [9] and Theorem 4.1 in [6]. So,

Theorem 4.2 (See [6, 9]) We assume no call or no call protection. With � = 1
3 and

∣r∣ ∼ ∣t∣
2
3 under (Hb), respectively � = 1

2 and ∣r∣ ∼ ∣t∣
1
2 under (Hb)′, one has,

max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt − Ỹti ∣2

]
+ max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt − Ŷti ∣2

]
≤ CΛ∣t∣� .

Note that under stronger assumption on the boundaries and on the regularity of the
coefficients b, �, it is possible to obtain a better control of the convergence rate of the
approximation, see Theorem 6.2 in [9] and Theorem 4.1 in [6].

Regarding call protection, our main result is the following, assuming
(Hz) f does not depend on z .

Theorem 4.3 With � = 1
4 and ∣r∣ ∼ ∣t∣

1
2 under (Hb), respectively � = 1

2 and r = t under
(Hb)′, one has under (Hz),

max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt − Ỹti ∣2

]
+ max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt− − Ŷti ∣2

]
≤ C�Λ∣t∣

�−� ,

for every � > 0.

In the ‘no call’ or ‘no call protection’ cases, convergence bounds are also available for Z,
see Theorem 6.1 in [9] and Theorem 4.1 in [6]. The ‘call protection’ case is currently under
research in this regard, as more generally in regard to establishing convergence bounds on
Y and Z in case f depends on z.

4.3.2 Discretely Reflected BSDEs

The proof of Theorem 4.3 will be done in Sect. 5 in several steps, using a suitable concept
of a discretely reflected BSDE. In finance, discretely reflected BSDEs represent game option
which can be exercised only on the discrete set of times r.

Given the reflection grid r as of (35) and for % = # or #̂, the solution of the discretely
reflected BSDE is a triplet (ℑ%, ℑ̃%,ℨ%) defined by the terminal condition

ℑ%T = ℑ̃%T = g(XT ) ,



and then for { decreasing from � − 1 to 0 in (35) and t ∈ [r{, r{+1),{
ℑ̃%t = ℑ%r{+1 +

∫ r{+1

t f(Xu, ℑ̃
%
u,ℨ

%
u)du−

∫ r{+1

t ℨ%udWu ,

ℑ%t = ℑ̃%t1{t/∈r} + P%(t,Xt, ℑ̃
%
t )1{t∈r} .

(38)

Under (Hb), the triplet (ℑ%, ℑ̃%,ℨ%) can be defined by backward induction. At each step,
existence and uniqueness of a solution in S2×ℋ2

q follow from [17]. Note that ℑ̃% is a càdlàg
process, whereas ℑ% is a càglàd process. Also observe that one has, for r ∈ r,

Yr− = P#(r,Xr, Yr) , ℑ
%
r = P%(r,Xr, ℑ̃

%
r) . (39)

We first present two properties of discretely reflected BSDEs which are useful to prove
Theorem 4.3. We show that under suitable conditions the discretely reflected BSDE with
% = # is a ‘good’ approximation of the RIBSDE (ℰ). In view of Definition 2.1(i), the
component Y of Y may be discontinuous at #2l on 0 < #2l < T . The fact that T ⊆ r will
then be essential to obtain the following result.

Proposition 4.4 Let � = 1
2 or � = 1 under (Hb) or (Hb)’, respectively. Then, under (Hz),

sup
t∈[0,T ]

E
[
∣Yt − ℑ̃#t ∣2

]
+ sup
t∈[0,T ]

E
[
∣Yt− − ℑ#t ∣2

]
+ E
[∫ T

0
∣Zs − ℨ#s ∣2ds

]
≤ ∣r∣� .

We also give a control of the difference between the solutions (ℑ#, ℑ̃#,ℨ#) and (ℑ#̂, ℑ̃#̂,ℨ#̂)
of the two discretely reflected BSDEs with % = # and #̂.

Proposition 4.5 Let � = 1
2 or � = 1 under (Hb) or (Hb)’, respectively. Then, under (Hz),

sup
t∈[0,T ]

E
[
∣ℑ#t − ℑ#̂t ∣2

]
+ sup
t∈[0,T ]

E
[
∣ℑ̃#t − ℑ̃#̂t ∣2

]
+ ∥ℨ# − ℨ#̂∥2ℋ2 ≤ C�Λ∣r∣

�−1
N∑
l=1

(
E
[
∣#l − #̂l∣

] )1−�
,

for every � > 0.

We conclude this section by giving a bound for the convergence rate of the scheme (36)
to the discretely reflected BSDE (38), with % = #.

Proposition 4.6 Let � = 1
2 or � = 1 under (Hb) or (Hb)’. Then, under (Hz),

sup
t∈[0,T ]

E
[
∣ℑ̃#t − Ỹt∣2

]
+ sup
t∈[0,T ]

E
[
∣ℑ#t − Ŷt∣2

]
≤ CΛ∣t∣+ C�Λ∣r∣

�−1
N∑
l=1

(
E
[
∣#l − #̂l∣

] )1−�
,

for � > 0.

5 Proofs

5.1 Stability of Call Protection Switching Times

Let us first define � = (t, x, k) and �′ = (t′, x′, k) for (t, t′) ∈ [0, T ]2, (x, x′) ∈ ℝ2q and
k ∈ K. In the following, we consider two Itô processes with different initial condition and
coefficients. The first one, X�, is the solution of the following SDE :

X�
s = x+

∫ s

t
b(s,X�

s )ds+

∫ s

t
�(s,X�

s )dWs , for s ∈ [t, T ] .



The second one, X̌�′ can be written:

X̌�′
s = x′ +

∫ s

t′
b̌sds+

∫ s

t′
�̌sdWs , for s ∈ [t′, T ] .

We consider the following ‘monitoring grid’ for X�, respectively X̌�′ :

Tt = {s ∈ T ∣ s > t} , respectively Tt
′

= {s ∈ T ∣ s > t′} ,

and we let T t = inf Tt, respectively T t′ = inf Tt
′
.

Let us also introduce X̌ �′ = (X̌�′ , Ȟ�′), where the marker process Ȟ�′ is defined by
Ȟ�′

t′ = k, and for every TI ∈ Tt
′
,

Ȟ�′

TI
= �I(X̌

�′

TI
, Ȟ�′

TI−) ,

and Ȟ�′ is constant between two dates of {t′} ∪ Tt
′ . Observe that Ȟ�′ does not jump at t′.

We also consider a non-decreasing sequence of stopping times #̌�′ = (#̌�
′

l )0≤l≤N+1,
representing call protection switching times, defined by #̌�

′

0 = t′ and for every l > 0,

#̌�
′

2l+1 = inf{t > #̌�
′

2l ; H
′
t /∈ K} ∧ T , #̌

�′

2l+2 = inf{t > #̌�
′

2l+1 ; H ′t ∈ K} ∧ T . (40)

The #̌�
′

l s this effectively reduce to {t′} ∪ Tt
′-valued stopping times, and one has #̌�

′

N+1 = T.

To the process X�, we associate three different extended factor processes X �, X �,", for
" > 0 and X̃ �.

The first one, X � = (X�, H�), is defined as above, replacing X̌�′ by X�. Observe that
H does not jump at t and that H�

t = Ȟ�′

t′ = k. We also consider the sequence of call
protection monitoring times #, defined as in (40) with t and H� instead of t′ and Ȟ�′ .

The second factor process X �,", " > 0, is defined as X but using the dilated domain
O" := {x ∈ ℝq∣d(x) < "} instead of O in the construction of H�,", recalling Section 3.1. We
also consider the sequence of call protection monitoring times #�,", defined as in (40) with t
and H�," instead of t′ and Ȟ�′ .

The third factor process, X̃ � = (X�, H̃�), defined using the domain O, is given by
H̃�
t− = k, and for every TI ∈ Tt

′
,

H̃�
TI

= �I(TI , H̃
�
TI−)

and H̃ constant between two dates of {t}∪Tt. Observe that, contrary to H�, H̃� may jump
at t. We also consider the corresponding call protection switching times #̃� defined as in
(40) with t and H̃� instead of t′ and Ȟ�′ .

We are interested in two different cases regarding the initial set of data (t, x) and (t′, x′).
Case 1: T t = T t′ .
Case 2: T t′ = t and x /∈ ∂O.
The proof of the following Lemma is deferred to Appendix A.

Lemma 5.1 (i) One has, for TI ∈ Tt,

ℙ({∣d(X�
TI

)∣ ≤ �}) ≤ C�Λ�
1−� , ∀� > 0. (41)



(ii) For p, � > 0, and l = 0, . . . , N + 1, one has,

E
[
∣%l − #̌�

′

l

]
≤ ∣t− t′∣+ C�Λ�

1−� + CpΛ

E
[
supu∈[T t,T ] ∣X̌

�′
u −X�

u∣p
]

�p
,

with % = #� in Case 1 and % = #̃� in Case 2.

(iii) For " > 0, � ≥ 0, and l = 0, . . . , N + 1, one has,

E
[
∣#�,"l − #

�
l ∣
]
≤ C�Λ"

1−�.

5.1.1 Proof of Proposition 2.2

Let in this section X̌�n = X�n , for �n = (tn, xn, k) ∈ ℰ .
(i) When tn ↓ t, we want to control the difference between #� and #̌�n = #�n to prove

the caglad property. We shall use here the result of Case 1. First we know that

E

[
sup

u∈[0,T ]
∣X�n

u −X�
u∣p
]
≤ CpΛ(∣x− xn∣p + ∣t− tn∣

p
2 ).

We then obtain, applying Lemma 5.1(ii), that

E
[
∣#�l − #

�n
l ∣
]
≤ ∣t− tn∣+ C�Λ�

1−�
n + CpΛ

∣x− xn∣p + ∣t− tn∣
p
2

�pn
.

The proof is concluded by taking �2
n = ∣x− xn∣ ∨ ∣t− tn∣

1
2 , p = 2 and letting n go to ∞.

(ii) When tn ↑ t, we want to control the difference between #̃� and #�n to prove the
làglàd9 property, assuming x /∈ ∂O. Since xn → x, we have for some n ≥ 0 that xn /∈ ∂O.
We then argue as in (i), using this time the result of Case 2 in Lemma 5.1(i).

5.1.2 Proof of Proposition 4.1

Let in this section X̌�′ = X̂, where �′ := (0, x, k), for x ∈ ℝq, k ∈ K.We have here that
t = t′ = 0, so we are in Case 1 and basicly #̌�′ = #̂. Applying Lemma 5.1(ii), we thus get,
in view of (32),

E
[
∣#l − #̂l∣

]
≤ C�Λ�

1−� + CpΛ
∣t∣

p
2

�p
.

The proof is concluded by setting � = ∣t∣
1
2
− �

2 , � = �
2 , p = 1

� − 2, for � and ∣t∣ small enough.

5.2 Proof of the BSDE Results

We denote by � a positive random variable which may change from line to line but satisfies
E[�p] ≤ CpΛ, for p ≥ 1.

9French acronym meaning “with right and left limits”.



5.2.1 Proof of Proposition 4.4

Let for t ≤ T,

�Ỹt = Yt − ℑ̃#t , �Yt = Yt− − ℑ#t , �Zt = Zt − ℨ#t , �ft = f(t,Xt, Yt)− f(t,Xt, ℑ̃
#
t ) .

Observe that is �Ỹ is continuous outside r and that �Ỹt− = �Yt for t ∈ (0, T ], so that one
has by (39), for r ∈ r,

∣�Yr∣ = ∣Yr− − ℑ#r ∣ ≤ ∣�Ỹr∣ . (42)

Applying Itô’s formula to the càdlàg process ∣�Ỹ ∣2 and observing that the local martingale
term is in fact a martingale, we compute,

Er{
[
∣�Ỹt∣2 +

∫ r{+1

t
∣�Zu∣2du

]
= Er{

[
∣�Ỹr{+1−∣2 + 2

∫ r{+1

t
�Ỹs�fsds+ 2

∫
(t,r{+1)

�ỸsdAs

]
,

for t ∈ [r{, r{+1). Given (42), one thus gets by usual arguments, for t ∈ [r{, r{+1),

Er{
[
∣�Ỹt∣2 +

∫ r{+1

t
∣�Zs∣2ds

]
≤ (1 + CΛ∣r∣)Er{

[
∣�Ỹr{+1 ∣2 + 2

∫
(t,r{+1)

�ỸsdA
+
s − 2

∫
(t,r{+1)

�ỸsdA
−
s

]
.

We study the term related to the upper barrier. One has,

−Er{

[∫
(t,r{+1)

�ỸsdA
−
s

]
= Er{

[∫
(t,r{+1)

(ℑ̃#s − ℎ(s,Xs))dA
−
s

]

= Er{

[∫
(t,r{+1)

(ℑ#r{+1
− ℎ(s,Xs))dA

−
s +

∫
(t,r{+1)

∫ r{+1

s
f(u,Xu, ℑ̃

#
u)dudA−s

]

where in particular the upper barrier minimality condition in (ℰ) was used in the first
identity. The second term is bounded by

Er{
[
�∣r∣(A−r{+1− −A

−
r{)
]
≤ Er{

[
�∣r∣(A−r{+1

−A−r{)
]
,

since f does not depend on z and A− is increasing. For the first term, we use the fact that
dA−1]]#2l,#2l+1[[ = 0, 0 ≤ l ≤ [(N + 1)/2], to obtain that

Er{

[∫
(t,r{+1)

(ℑ#r{+1
− ℎ(s,Xs))dA

−
s

]
= Er{

⎡⎣[(N+1)/2]∑
l=1

∫
(t,r{+1)

(ℑ#r{+1
− ℎ(s,Xs))1{#2l−1≤s≤#2l}dA

−
s

⎤⎦
≤ Er{

⎡⎣[(N+1)/2]∑
l=1

∫
(t,r{+1)

(ℎ(r{+1, Xr{+1)− ℎ(s,Xs))1{#2l−1≤s≤#2l}dA
−
s

⎤⎦
≤ Er{

[∫
(t,r{+1)

(ℎ(r{+1, Xr{+1)− ℎ(s,Xs))dA
−
s

]
.

The proof is then concluded using the same argument as in the proof of Propositions 2.6.1
and 1.4.1 in [8].



5.2.2 Proof of Proposition 4.5

Let, for t ≤ T,

�ℑ̃t = ℑ̃#t − ℑ̃#̂t , �ℑt = ℑ#t − ℑ#̂t , �ℨt = ℨ#t − ℨ#̂t

�t = ∣�ℑt∣2 − ∣�ℑ̃t∣2 , �ft = f(t,Xt, ℑ̃
#
t )− f(t,Xt, ℑ̃

#̂
t ) .

Step 1 Applying Itô’s formula to the càdlàg process ∣�ℑ̃∣2, we compute for t ∈ [r{, r{+1)

Er{
[
∣�ℑ̃t∣2 +

∫ r{+1

t
∣�ℨu∣2du

]
= Er{

[
∣�ℑ̃r{+1 ∣2 + �r{+1 + 2

∫ r{+1

t
�ℑ̃s�fsds

]
.

Usual arguments then yield that

sup
s∈[t,T ]

E
[
∣�ℑ̃s∣2 + ∣�ℑs∣2 +

∫ T

s
∣�ℨs∣2ds

]
≤ CΛE

[∑
r∈r

�r

]
, (43)

recalling ∣�ℑs∣2 = �s + ∣�ℑ̃s∣2.

Step 2 In order to study the right-hand side term of (43), we introduce the processes defined
by, for r ∈ [0, T ],

Ir =

[(N+1)/2]∑
l=1

1{#2l−1≤r≤#2l} , Îr =

[(N+1)/2]∑
l=1

1{#̂2l−1≤r≤#̂2l}
, cIr = 1− Ir ,

ĉIr = 1− Îr . (44)

Observe that I = 1 (or Î = 1) means that the upper barrier is activated for reflection.

∣�ℑr∣ = ∣P(r,Xr, ℑ̃
#̂
r )− P(r,Xr, ℑ̃

#
r )∣ (45)

≤ ∣�ℑ̃r∣+ [ℎ(r,Xr)− ℑ̃#r ]+Ir
ĉIr + [ℎ(r,Xr)− ℑ̃#̂r ]+ Îr

cIr (46)

We thus compute, for r ∈ r,

�r ≤ Er[�] ([ℎ(r,Xr)− ℑ̃#r ]+ Ir
ĉIr + [ℎ(r,Xr)− ℑ̃#̂r ]+ Îr

cIr) . (47)

The two terms at the right-hand side of (47) are treated similarly, we thus concentrate on
the first one.

Step 3 We have to take into account the fact that a reflection date may be a deactivation
date for the upper boundary, i.e., for r ∈ r,

Er[�] [ℑ̃#r − ℎ(r,Xr)]
+ Ir

ĉIr = Er[�] ([ℑ̃#r − ℎ(r,Xr)]
+) ĉIr (

[(N+1)/2]∑
l=1

1{r=#2l} +

[(N+1)/2]∑
l=1

1{#2l−1≤r<#2l})

(48)

Step 3a We study the first term in the right hand side of (48). We obviously have that
Er[�] [ℎ(r,Xr)− ℑ̃#̂r−]+ ≤ Er[�]2, thus, since the #ls are T-valued stopping-times,

∑
r∈r

Er[�] [ℑ̃#̂r − ℎ(r,Xr)]
+ ĉIr

[(N+1)/2]∑
l=1

1{r=#2l} ≤
∑
r∈T

Er[�]2 ĉIr

[(N+1)/2]∑
l=1

1{r=#2l}.



Moreover, by definition of I and Î,

∑
r∈T

Er[�]2 ĉIr

[N+1/2]∑
l=1

1{r=#2l} =
∑
r∈T

Er[�]2 ĉIr

[N+1/2]∑
l=1

1{r=#2l,r ∕=#̂2l}

≤ sup
r∈T

Er[�]2
∑
r∈T

[N+1/2]∑
l=1

1{∣#2l−#̂2l∣≥∣T∣♯}
.

Using the Cauchy-Schwartz inequality with 1
p = 1 − ", Doob’s inequality and the Markov

inequality, we obtain

E

⎡⎣∑
r∈T

[N+1/2]∑
l=1

sup
r∈T

Er[�]2 1{∣#2l−#̂2l∣≥∣T∣♯∣}

⎤⎦ ≤ C"Λ [N+1/2]∑
l=1

E
[
∣#2l − #̂2l∣

]1−"
. (49)

Step 3b We now study the last term in the right hand side of (48). On the event {#2l−1 ≤
r < #2l}, which is ℱr-measurable, the upper barrier is active on [#2l−1, #2l], thus

ℑ̃#r − ℎ(r,Xr) ≤ Er

[
ℎ(r+, Xr+)− ℎ(r,Xr) +

∫ r+

r
∣f(s,Xs, ℑ

#
s )∣ds

]
where we set r+ = inf{s ∈ r∣s > r} ∧ T . One thus gets, using (Hb) or (Hb)’,

[ℑ̃#r − ℎ(r,Xr)]
+1{#2l−1≤r<#2l} ≤ Er[�] ∣r∣� . (50)

This leads to ∑
r∈r

(
Er[�] [ℑ̃#r − ℎ(r,Xr)]

+ ĉIr

[N+1/2]∑
l=1

1{#2l−1≤r<#2l}

)

≤ ∣r∣�Er[�]2
∑
r∈r

(
ĉIr

[N+1/2]∑
l=1

1{#2l−1≤r<#2l}

)
. (51)

Moreover,

∑
r∈r

[N+1/2]∑
l=1

ĉIr1{#2l−1≤r<#2l} ≤
∑
r∈r

[N+1/2]∑
l=1

1{#2l−1≤r<#2l}(1{#̂2l−1>r}
+ 1{r>#̂2l}

)

≤
∑
r∈r

[N+1/2]∑
l=1

(1{∣#2l−#̂2l∣≥∣T∣♯}
+ 1{∣#2l−1−#̂2l−1∣≥∣T∣♯}

)

We obtain combining the last inequality with (51) and using the Cauchy-Schwartz inequality
with 1

p = 1− ", Doob’s inequality and the Markov inequality

E

[∑
r∈r

(
Er[�] [ℑ̃#r − ℎ(r,Xr)]

+ ĉIr

[N+1/2]∑
l=1

1{#2l−1≤r<#2l}

)⎤⎦
≤ ∣r∣�−1C"Λ

[N+1/2]∑
l=1

E
[
∣#2l − #̂2l∣

]1−"
. (52)

Step 4 The proof is concluded by combining (43) with (48) , (49) and (52) .



5.2.3 Proof of Proposition 4.6

Since

∣ℑ#t − Ŷt∣2≤CΛ(∣ℑ#t − ℑ#̂t ∣2+∣ℑ#̂t − Ŷt∣2) and ∣ℑ̃#t − Ỹt∣2≤CΛ(∣ℑ̃#t − ℑ̃#̂t ∣2+∣ℑ̃#̂t − Ỹt∣2) , (53)

it remains to study the error between (ℑ#̂, ℑ̃#̂,ℨ#̂) and the continuous-time Euler scheme
(Ŷ , Ỹ , Z̄). We are thus going to show that

sup
t∈[0,T ]

E
[
∣ℑ̃#̂t − Ỹt∣2

]
+ sup
t∈[0,T ]

E
[
∣ℑ#̂t − Ŷt∣2

]
≤ CΛ∣t∣ . (54)

Toward this end, arguing as in the proof of Lemma 2.1 in [9] (See also Remark 5.2 in [9]),
one shows that under (Hb), for t ∈ t, there exists St, Qt in ℱt such that St ∩Qt = ∅ and

∣ℑ#̂t − Ŷt∣2 ≤ ∣ℑ̃#̂t − Ỹt∣21St + CΛ∣Xt − X̂t∣21Qt . (55)

Observe in particular that for t /∈ r, one can take St = Ω and Qt = ∅ in (55) since, in this
case, ℑ#̂t = ℑ̃#̂t and Ŷt = Ỹt.

The proof of (54) is then similar to the proof of Proposition 5.1 (steps ia and ii) in [9].
Note that since f does not depend on z in the present case, the expression of Bi in equation
(5.5) of [9] reduces to

Bi =

∫ ti

ti−1

(∣Xu − X̂ti−1 ∣2 + ∣ℑ̃#̂u − ℑ̃#̂ti−1
∣2)du .

Observing that, for u ∈ [ti−1, ti),

E
[
∣ℑ̃#̂u − ℑ̃#̂ti−1

∣2
]
≤ CE

[∫ ti

ti−1

∣f(s,Xs, ℑ̃
#̂
s )∣2ds+

∫ ti

ti−1

∣ℨ#̂s ∣2du

]
,

we obtain E[
∑

iBi] ≤ C∣t∣. Inequalities (54) then follow from exactly the same arguments
as in the proof of Proposition 5.1.

The proof of the theorem is concluded combining (53) and (54) with Proposition 4.5.

5.2.4 Proof of Theorem 4.3

Since

∣Yt− − Ŷt∣2 ≤ CΛ(∣Yt− − ℑ#t ∣2 + ∣ℑ#t − Ŷt∣2) and ∣Yt − Ỹt∣2 ≤ CΛ(∣Yt − ℑ̃#t ∣2 + ∣ℑ̃#t − Ỹt∣2) ,

we obtain using Propositions 4.4 and 4.6 that

sup
t∈[0,T ]

E
[
∣Yt− − Ŷt∣2

]
+ sup
t∈[0,T ]

E
[
∣Yt − Ỹt∣2

]
≤ CΛ

(
∣t∣+ ∣r∣� + C"Λ∣r∣�−1

N∑
l=1

E
[
∣#̂l − #l∣

]1−"
)
.

Under (Hb)’, the proof is concluded by using the last inequality together with Proposition
4.1 and letting r = �.
Under (Hb), one chooses ∣r∣ ∼ ∣t∣

1
2 .



5.3 Proof of the PDE Results

5.3.1 Proof of Proposition 3.2

Let Y"n,l,� be the analog for the dilated domain O"n of Y l,� in Proposition 2.2, where the
sequence "n goes to 0 as n→∞.

In the same way as Lemma 5.1(ii) implies Proposition 2.2(i), one can imply from Lemma
5.1(iii) the existence of an extraction ("n′)n for which, almost surely, #"n′ ,� converges to #",�

as n→∞.
In the same way as Proposition 2.2(i) implies the result of the first bullet point in

Proposition 2.2(ii) (see the related proof in [11]), one can in turn imply, from the almost
sure convergence of #"n′ ,� to #",�, the convergence in S2 × ℋ2

q × S2 of Y"n′ ,l,� to Y l,� as
n → ∞, for every l = 0, . . . , N. In view of Proposition 3.1 and identity (10) (both applied
for O and O"), one thus has, for k ∈ K,{

uk"n′ ,I
(t, x) = Y

"n′ ,0,�
t → Y 0,�

t = ukI (t, x) , k ∈ K
uk"n′ ,I

(t, x) = Y
"n′ ,1,�
t → Y 1,�

t = ukI (t, x) , k /∈ K .

This proves (24).
Moreover the pointwise convergence (24) is uniform on every compact set of ℰ∗I , by

Dini’s theorem applied to the functions uI and u",I , which are continuous on ℰ∗I .

5.3.2 Proof of Theorem 3.3

First note that Theorem 3.3 can be reduced to the following three lemmas, which will be
established below.

Lemma 5.2 uI , respectively uI , is upper, respectively lower semi-continuous on ℰI .

Since we already know that uI is a continuous viscosity solution of (18) on ℰ∗I , and given
the definition of uI at TI , this implies in particular that uI is a subsolution of (17)-(18) on
ℰI .

Remark 5.1 More generally, one has that u",I , respectively u",I , is a subsolution, respec-
tively supersolution on ℰI , of equation (17)-(18) with O replaced by O", that is (26)-(27),
for every " ≥ 0.

Lemma 5.3 For every " > 0, u",I is a strong supersolution of (17)-(18) on ℰI .

Given also Lemma 5.2, the comparison principle mentioned after Definition 3.3 then implies
that � ≤ lim ↘"↘0+ u",I , for any subsolution � of (17)-(18) on ℰI . In particular, uI ≤
lim↘"↘0+ u",I .

Lemma 5.4 lim↘"↘0+ u",I ≤ uI .

Thus (25) is satisfied, � ≤ uI for every subsolution � of (17)-(18) on ℰI , and Theorem 3.3
holds as a whole.



Next observe that Lemmas 5.2, 5.3 and 5.4 can in turn be reduced to showing that, at
every t = TI :
∙ For Lemma 5.2: for every x ∈ ∂O and k ∈ K,

ǔkI+1(t, x) ≥ lim
tn↑t−, xn→x

ukI (tn, xn) , respectively ûkI+1(t, x) ≤ lim
tn↑t−, xn→x

ukI (tn, xn) , (56)

where (ukI (tn, xn))n≥0 reaches lim sup(t−,x) u
k
I := lim sup(s,y)→(t,x) with s<t u

k
I (s, y), respec-

tively lim inf(t−,x) u
k
I := lim inf(s,y)→(t,x) with s<t u

k
I (s, y);

∙ For Lemma 5.3 (admitting Lemma 5.2, so u",I supersolution of (17)-(18) on ℰI):

û",I+1 ≥ ǔI+1 ; (57)

∙ For Lemma 5.4: for every (t = TI , x, k) with x ∈ ∂O,

lim↘"↘0+ u",I(t, x, k) ≤ uI(t, x, k) , (58)

where this ‘reduction’ of Lemma 5.4 simply means that (58) only needs to be verified at
the ‘critical’ boundary points (t = TI , x, k) with x ∈ ∂O to which we reduce attention here,
since it already holds at all the other points (t, x, k) as⎧⎨⎩

lim↘"↘0+ uk",I(t, x) = lim↘"↘0+ uk",I(t, x) = ukI (TI , x) = ukI (TI , x), t < TI

lim↘"↘0+ uk",I(t, x) = lim↘"↘0+ uk,+",I+1(t, x) = uk,+I+1(TI , x) = ukI (TI , x), t < TI , x /∈ O
lim↘"↘0+ uk",I(t, x) = lim↘"↘0+ uk,−",I+1(t, x) = uk,−I+1(TI , x) = ukI (TI , x), t < TI , x ∈ O ,

(59)

in which the middle identities result from Proposition 3.2.

Now, in order to establish (56), (57) and (58), there are five cases to consider, namely:
∙ k ∈ K (easiest case),
∙ k /∈ K, �kI,+ ∈ K and �kI,− /∈ K, or the analogous but simpler case where k /∈ K and
�kI,± ∈ K,
∙ k /∈ K, �kI,+ /∈ K and �kI,− ∈ K, or the analogous but simpler case where k /∈ K and
�kI,± /∈ K.

Moreover, the treatments of the ‘more difficult’ cases k /∈ K, �kI,+ ∈ K and �kI,− /∈ K,
or k /∈ K, �kI,+ /∈ K and �kI,− ∈ K, are symmetrical to each other. Considering the latter
case, so in particular (cf. (19)):

uk,+",I+1(t, x) = u"(t, x, �
k
I,+) , uk,−",I+1(t, x) = u"(t, x, �

k
I,−) ∧ ℎ(t, x) , (60)

we now prove (56), (57) and (58) in this case, leaving the detail of the other cases to the
reader.

Proof of (56) We set �n = (tn, xn, k). In the considered case, since k /∈ K, one has that
#�n0 = tn = #�n1 < #�n2 , u

k
I (tn, xn) = Y 1,�n

tn , and:
∙Whenever X�n

t /∈ O:

H�n
t = �kI,+ /∈ K , #�n2 > t , u(t,X �nt ) = Y 1,�n

t

∙Whenever X�n
t ∈ O:

H�n
t = �kI,− ∈ K , #�n2 = t , u(t,X �nt ) = Y 2,�n

t , u(t,X �nt ) ∧ ℎ(t,X�n
t ) = Y 1,�n

t ,



where the last identity results from (9).
Let us prove the left-hand-side inequality in (56) (leaving the other one to the reader),

assuming that (ukI (tn, xn))n≥0 reaches lim sup(t−,x) u
k
I . One has, recalling (60),

ǔkI+1(t, x)− ukI (tn, xn) = E
{
1
X�n
t /∈O

[(
ǔkI+1(t, x)− u(t,X�n

t , �
k
I,+)

)
+
(
Y 1,�n
t − Y 1,�n

tn

)]}
+E

{
1
X�n
t ∈O

[(
ǔkI+1(t, x)− u(t,X�n

t , �
k
I,−) ∧ ℎ(t,X�n

t )
)

+
(
Y 1,�n
t − Y 1,�n

tn

)]}
≥ −E∣u(t, x, �kI,+)− u(t,X�n

t , �
k
I,+)∣

−E∣u(t, x, �kI,−) ∧ ℎ(t,X�n
t )− u(t,X�n

t , �
k
I,−) ∧ ℎ(t,X�n

t )∣

−E∣Y 1,�n
t − Y 1,�n

tn ∣ ,

where, as n→∞ (cf. the proof of Proposition 3.1, see [11]):
∙ the first two terms go to 0 by continuity of the value function u on ℰ∗I+1, and
∙ the last term goes to 0, by convergence of the Y�ns (up to an extracted subsequence).
The left-hand-side inequality in (56) follows.

Proof of (57) One needs to prove⎧⎨⎩

u"(t, x, �
k
I,+) ≥ u(t, x, �kI,+), x /∈ O";

u"(t, x, �
k
I,+) ∧ u"(t, x, �kI,−) ∧ ℎ(t, x) ≥ u(t, x, �kI,+), x ∈ ∂O";

u"(t, x, �
k
I,−) ∧ ℎ(t, x) ≥ u(t, x, �kI,+), x ∈ O" ∖ O;

u"(t, x, �
k
I,−) ∧ ℎ(t, x) ≥ u(t, x, �kI,+) ∨

(
u(t, x, �kI,−) ∧ ℎ(t, x)

)
, x ∈ ∂O;

u"(t, x, �
k
I,−) ∧ ℎ(t, x) ≥ u(t, x, �kI,−) ∧ ℎ(t, x), x ∈ O,

which readily follows from (H").

Proof of (58) One has in the considered case (cf. (60)),

uk",I(TI , x) = u"(TI , x, �
k
I,+) = u",I+1(TI , x, �

k
I,+)

ukI (TI , x) = u(TI , x, �
k
I,+) ∨

(
u(TI , x, �

k
I,−) ∧ ℎ(TI , x)

)
= uI+1(TI , x, �

k
I,+) ∨

(
uI+1(TI , x, �

k
I,−) ∧ ℎ(TI , x)

)
where lim ↘"↘0+ u",I+1(t, x, �kI,+) = uI+1(t, x, �kI,+), by application of Proposition 3.2.
Hence (58) follows.

5.3.3 Proof of Proposition 3.4

This is obtained by a mixture of classical viscosity arguments as in [2] (see also Sect. 13 in
[11]) and of arguments already used in the proof of Proposition 3.3, so we shall only sketch
the demonstration.

(i) The middle inequality in (28) is immediate by definition of the envelopes of a scheme.
Moreover, by classical viscosity solution arguments, U ",I and U ",I are respectively super-
solutions and subsolutions of (26)-(27) on ℰI (cf. Definition 3.3(ii) and (21)-(22) for the
related definitions for " = 0). In particular, one has at TI :

U ",I ≥ û",I+1 , U ",I ≤ ǔ",I+1 .



Moreover, by the dilation argument already used in the proof of Proposition 3.3, one also
has at TI , for every " > 0 (cf. (57)):

û",I+1 ≥ ǔI+1 , ǔ",I+1 ≤ û2",I+1 .

In view also of Remark 5.1, one thus has that U ",I and uI are respectively a strong super-
solution and a subsolution on ℰI of (17)-(18), whilst U ",I and u2",I are respectively a strong
subsolution and a supersolution on ℰI of (17)-(18) with O replaced by O2", for every " > 0.
The extreme inequalities of (28) thus follow by application of the comparison principle (CP)
to uI and U ",I for the left side and U ",I and u2",I for the right one.

(ii) is then an elementary consequence of (28) joint to the fact that on ℰ∗I , u2",I = u2",I

converges locally uniformly to uI = uI , by Proposition 3.2.

A Proof of Lemma 5.1

A.1 Proof of Part (i)

We only consider the case of t = 0, the arguments for general time initial condition being
exactly the same.

Using Itô Formula, we compute

d(Xs) = d(X0) +

∫ s

0
Gd(u,Xu)du+

∫ s

0
∂d �(u,Xu)dWu. (61)

We define a new probability ℚ ∼ ℙ whose density is given by

e−
∫ T
0 �udWu− 1

2

∫ T
0 ∣�u∣

2du where �u :=
(

(∂d �)T(∂d a ∂dT)−1Gd
)

(u,Xu)

and the process Wℚ by dWℚ
u := dWu+�udu . Observe that Novikov’s condition holds since

� is bounded. Thus, it follows from Girsanov’s Theorem that Wℚ is a brownian motion
under ℚ. Equation (61) reads then

d(Xs) = d(Xs) +

∫ s

0
∂d �(u,Xu)dWℚ

u .

For TI ∈ T ∖ {0}, using Holder’s inequality, one computes that

ℙ{∣d(XTI )∣ ≤ �} ≤ C
�
Λℚ{∣d(XTI )∣ ≤ �}

1−� . (62)

The proof is then concluded using Corollary 2.1.1 in [21] and working under ℚ. □

A.2 Proof of Part (ii)

We first define for � > 0, the sets

Ω̂� = { sup
u∈[0,T ]

∣X̌�′
u −X�

u∣ < �} , cΩ̂� = Ω ∖ Ω̂� .

We consider the two different cases.



Case 1 (a) By definition of #�, #̌�′ , we have that E
[
∣#�0 − #̌

�′

0 ∣
]

= ∣t− t′∣, and obviously, for
l ≥ 1,

E
[
∣#�l − #̌

�′

l ∣
]

= E
[
∣#�l − #̌

�′

l ∣1cΩ̂�
]

+ E
[
∣#�l − #̌

�′

l ∣1Ω̂�∩{#�l ∕=#̌
�′
l }

]
. (63)

Tchebytchev’s inequality applied on cΩ̂�, and the bound ∣#�l − #̌
�′

l ∣ ≤ T , yield that

E
[
∣#�l − #̌

�′

l ∣1cΩ̂�
]
≤ CpΛ

E
[
supu∈[T t,T ] ∣X̌

�′
u −X�

u∣p
]

�p
, (64)

for p> 0.
(b) We now work on the second term of the right-hand side of (63). By definition of #�, #̌�′ ,
if k /∈ K, we have E

[
∣#�1 − #̌

�′

1 ∣1{k/∈K}
]

= ∣t − t′∣. We are going to prove a control between

#� and #̌�′ , for l ≥ 2, and for l = 1, k ∈ K. To this end, we observe that

1{X�
TI
∈O} = 1{X̌�′

TI
∈O}, ∀TI ∈ Tt =⇒ H� = Ȟ�′ , (65)

thus for l ≥ 2, #�l = #̌�
′

l and if k ∈ K, #�1 = #̌�
′

1 .
We then introduce the set

Ω1 =
∪

TI∈Tt
({d(X�

TI
) ≥ 0} ∩ {d(X̌�′

TI
) < 0}) ∪ ({d(X�

TI
) < 0} ∩ {d(X̌�′

TI
) ≥ 0}) .

Since d is 1-Lipschitz continuous, by definition of Ω̂�, we have

Ω̂� ∩ Ω1 ⊂
∪

TI∈Tt
{∣d(X�

TI
)∣ ≤ �} =: Ω̄

Using (65), we have that, for l ≥ 2, {#�l ∕= #̌�
′

l } ⊂ Ω1 and if k ∈ K, {#�1 ∕= #̌�
′

1 } ⊂ Ω1. Thus,
for l ≥ 2, Ω̂� ∩ {#�l ∕= #̌�

′

l } ⊂ Ω̄ and if k ∈ K, Ω̂� ∩ {#�1 ∕= #̌�
′

1 } ⊂ Ω̄.
Using the result of Part (i), one then gets,

E
[
∣#�l − #̌

�′

l ∣1Ω̂�∩{#�l ∕=#̌
�′
l }

]
≤ CΛ�

1−� ,

for l ≥ 2 and l = 1, if k ∈ K. In this case, the proof is concluded combining the last
inequality with (64) and (63).

Case 2 In this case, Tt′ = Tt ∪ {t}. As in Case 1 (a) above, we compute

E
[
∣#̃l

�
− #̌�

′

l ∣
]
≤ CpΛ

E
[
supu∈[T t,T ] ∣X̌

�′
u −X�

u∣p
]

�p
+ E
[
∣#̃l

�
− #̌�

′

l ∣1Ω̂�∩{#̃l
� ∕=#̌�

′
l }

]
, (66)

for l ≥ 0 and p, � > 0. Recall that by definition of #̃�, #̌�′ , E
[
∣#̃�0 − #̌

�′

0 ∣
]

= ∣t − t′∣ and if

k /∈ K, E
[
∣#̃�1 − #̌

�′

1 ∣
]

= ∣t− t′∣. Regarding the last term of (66), we observe here that

1{X�
TI
∈O} = 1{X̌�′

TI
∈O}, ∀TI ∈ Tt ∪ {t} =⇒ H̃� = Ȟ�′ .



The set Ω1 is now replaced by

Ω2 =
∪

TI∈Tt∪{t}

({d(X�
TI

) ≥ 0} ∩ {d(X̌�′

TI
) < 0}) ∪ ({d(X�

TI
) < 0} ∩ {d(X̌�′

TI
) ≥ 0})

The difference with Case 1(b) is that the reunion is on Tt ∪ {t}. But, since for � small
enough {∣d(X�

t )∣ < �} = ∅, we have

Ω̂� ∩ Ω2 ⊂ Ω̄ .

The proof is then concluded arguing as in Case 1(b). □

A.3 Proof of Part (iii)

As in Part (ii), we observe that

1{X�
TI
∈O} = 1{X�

TI
∈O"}, ∀TI ∈ Tt =⇒ H� = H�,", (67)

thus for l ≥ 0, #�,"l = #�l .
We then introduce the set

Ω3 =
∪

TI∈Tt
({d(X�

TI
) ≥ 0} ∩ {d"(X�

TI
) < 0}) ∪ ({d(X�

TI
) < 0} ∩ {d"(X�

TI
) ≥ 0}) .

where d" is the distance function associated to O". By definition of O", we have

Ω3 ⊂
∪

TI∈Tt
{∣d(X�

TI
)∣ ≤ "}

The proof is then concluded using Part (i). □
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