Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model

Tomasz R. Bielecki, Areski Cousin, Stéphane Crépey & Alexander Herbertsson

Journal of Optimization Theory and Applications

ISSN 0022-3239

J Optim Theory Appl DOI 10.1007/s10957-013-0318-4

Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

Dynamic Hedging of Portfolio Credit Risk in a Markov Copula Model

Tomasz R. Bielecki · Areski Cousin · Stéphane Crépey · Alexander Herbertsson

Received: 19 March 2013 / Accepted: 24 April 2013 © Springer Science+Business Media New York 2013

Abstract We devise a bottom-up dynamic model of portfolio credit risk where instantaneous contagion is represented by the possibility of simultaneous defaults. Due to a Markovian copula nature of the model, calibration of marginals and dependence parameters can be performed separately using a two-step procedure, much like in a standard static copula setup. In this sense this solves the bottom-up top-down puzzle which the CDO industry had been trying to do for a long time. This model can be used for any dynamic portfolio credit risk issue, such as dynamic hedging of CDOs by CDSs, or CVA computations on credit portfolios.

Keywords Portfolio credit risk · Credit derivatives · Markov copula model · Common shocks · Dynamic hedging

1 Introduction

In this paper (see [1–3] for long versions with detailed proofs and numerics, respectively), we present a common shock model of portfolio credit risk where one can

T.R. Bielecki

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA

A. Cousin

Université de Lyon, Université Lyon 1, LSAF, Lyon, France

S. Crépey (⊠)

Laboratoire Analyse et Probabilités, Université d'Évry Val d'Essonne, 91037 Évry Cedex, France e-mail: stephane.crepey@univ-evry.fr

A. Herbertsson

Center for finance/Department of Economics, University of Gothenburg, SE 405 30 Gothenburg, Sweden

build a consistent picture of bottom-up defaults that are also manageable in a topdown aggregate loss space. In this sense this model solves the bottom-up top-down puzzle [4], which the CDO industry had been trying to do for a long time and basically failed. Then the CDO market died and the problem remained standing. The result of this paper, however, can be applied well beyond the space of, say, consistent valuation and hedging of CDSs and CDOs. In particular it is used in [5–7] for valuation and hedging of counterparty risk on credit derivatives.

The common shock aspect of our model is related to the work by Elouerkhaoui [8] and Brigo et al. [9, 10] (see also [11, 12]). The innovative breakthrough is a suitable decoupling property between the dependence structure and the individual names [13], so that the model can be jointly calibrated to single-name and portfolio data in two steps (as opposed to a global joint optimization procedures involving all the model parameters at the same time in the above references, which are untractable numerically).

2 Model of Default Times

In our model, defaults are the consequence of some "shocks" associated with groups of obligors. We define the following pre-specified set of groups:

$$\mathcal{Y} = \{\{1\}, \ldots, \{n\}, I_1, \ldots, I_m\},\$$

where I_1, \ldots, I_m are subsets of $N = \{1, \ldots, n\}$, and each group I_j contains at least two obligors or more. The shocks are divided in two categories: the "idiosyncratic" shocks associated with singletons $\{1\}, \ldots, \{n\}$ can only trigger the default of name $1, \ldots, n$ individually, while the "systemic" shocks associated with multi-name groups I_1, \ldots, I_m may simultaneously trigger the default of all names in these groups. Note that several groups I_j may contain a given name i, so that only the shock occurring first effectively triggers the default of that name. As a result, when a shock associated with a specific group occurs at time t, it only triggers the default of names that are still alive in that group at time t. In the following, the elements Y of \mathcal{Y} will be used to designate shocks and we let $\mathcal{I} = (I_t)_{1 \le l \le m}$ denote the pre-specified set of multi-name groups of obligors. Shock intensities $\lambda_Y(t, \mathbf{X}_t)$ will be specified later in terms of a Markovian factor process \mathbf{X}_t . Letting $\Lambda_t^Y = \int_0^t \lambda_Y(s, \mathbf{X}_s) \, ds$, we define

$$\tau_Y = \inf\{t > 0; \Lambda_t^Y > E_Y\},\tag{1}$$

where the random variables E_Y are i.i.d. and exponentially distributed with parameter 1. For every obligor i we let

$$\tau_i = \min_{\{Y \in \mathcal{V}: i \in Y\}} \tau_Y,\tag{2}$$

which defines the default time of obligor i in the common shocks model. The model filtration is given as $\mathbb{F} = \mathbb{X} \vee \mathbb{H}$, the filtration generated by the factor process \mathbf{X} and the point process $\mathbf{H} = (H^i)_{1 \le i \le n}$ with $H^i_t = \mathbb{1}_{\tau_i \le t}$.

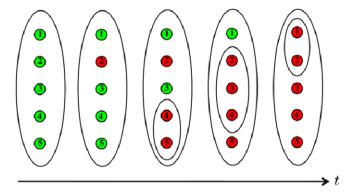


Fig. 1 One possible defaults path in a model with n = 5 and $\mathcal{Y} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{4, 5\}, \{2, 3, 4\}, \{1, 2\}\}$

This model can be viewed as a doubly stochastic (via the stochastic intensities Λ^Y) and dynamized (via the introduction of the filtration \mathbb{F}) generalization of the Marshall–Olkin model [12]. The purpose of the factor process **X** is to more realistically model diffusive randomness of credit spreads. Note that in [1], we construct the model the reverse way round, i.e. we first construct a suitable Markov process $(\mathbf{X}_t, \mathbf{H}_t)$ and then define the τ_i as the jump times of the H^i .

Figure 1 shows one possible defaults path in our model with n = 5 and

$$\mathcal{Y} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{4, 5\}, \{2, 3, 4\}, \{1, 2\}\}.$$

The inner oval shows which common-shock happened and caused the observed default scenarios at successive default times. At the first instant, default of name 2 is observed as the consequence of the idiosyncratic shock {2}. At the second instant, names 4 and 5 have defaulted simultaneously as a consequence of the systemic shock {4, 5}. At the fourth instant, the systemic shock {2, 3, 4} triggers the default of name 3 alone as names 2 and 4 have already defaulted. At the fifth instant, default of name 1 alone is observed as the consequence of the systemic shock {1, 2}.

The set of obligors alive (resp. in default) at time t is denoted by $J_t = \operatorname{supp}^c(\mathbf{H}_t)$ (resp. $I_t = \operatorname{supp}(\mathbf{H}_t)$). For every $Y \in \mathcal{Y}$ and every set of non-negative constants t, t_1, \ldots, t_n , we define

$$\theta_t^Y = t \vee \max_{i \in Y \cap J_t} t_i$$

(with the convention that $\max \emptyset = 0$). Note that $Y \cap J_t$ in θ_t^Y represents the set of survivors in Y at time t. We also write

$$\Lambda_{s,t}^Y = \int_s^t \lambda_Y(u, X_u^Y) du, \qquad \lambda_t^i = \sum_{\{Y \in \mathcal{Y}; i \in Y\}} \lambda_Y(t, \mathbf{X}_t).$$

The following result is proved in the Appendix.

Proposition 2.1 For any fixed non-negative constants t, t_1, \ldots, t_n , we have:

$$\mathbb{P}(\tau_1 > t_1, \dots, \tau_n > t_n \mid \mathcal{F}_t)$$

$$= \mathbb{1}_{\{t_i < \tau_i, i \in I_t\}} \mathbb{E} \left\{ \exp \left(-\sum_{Y \in \mathcal{V}} \Lambda_{t, \theta_t^Y}^Y \right) \mid \mathbf{X}_t \right\}.$$
(3)

In particular, for every obligor i and $t_i \geq t$,

$$\mathbb{P}(\tau_i > t_i \mid \mathcal{F}_t) = \mathbb{1}_{\{\tau_i > t\}} \mathbb{E} \left\{ \exp\left(-\int_t^{t_i} \eta_s^i \, ds\right) \mid \mathbf{X}_t \right\}. \tag{4}$$

Because of formula (3), efficient convolution recursion procedures are available for pricing multi-name credit derivatives like CDO tranches (see [2] for more details). Because of formula (4) and under an additional affine structure postulated below on each individual pre-default intensity process λ^i , affine methodologies can be used to price single-name credit derivatives like CDSs, as CDS spreads can be derived from each individual survival distribution function. Additionally, the hedging issue can be dealt with numerically in this framework (see Sect. 3) since the pricing can be done conditionally on any given state of the dynamic model (\mathbf{X}_t , \mathbf{H}_t). Another key interest of this framework is the fact that model parameters can be calibrated in two steps: individual λ^i -parameters are first calibrated to individual CDSs and the model dependence λ_I -parameters are then calibrated to CDO tranches (as opposed to a global joint optimization procedures involving all the model parameters at the same time, which would be untractable numerically). See [2] for the details. One can then consistently consider in this dynamic model issues like hedging CDO tranches by CDSs, or counterparty risk on credit derivatives.

Moreover, as announced above, in order to ensure the Markov consistency and Markov copula feature of the setup (see [13]), we assume further that every individual process λ^i is an affine process (in particular, a Markov process), as in either specification below. Consequently, the conditioning with respect to \mathbf{X}_t can be replaced by a conditioning with respect to η^i_t in (4), hence exponential-affine methodologies for computing (4) follow.

Example 2.1

- (i) (*Deterministic group intensities*). The idiosyncratic intensities $\lambda_{\{i\}}(t, \mathbf{X}_t)$ are affine, and the systemic intensities $\lambda_Y(t, \mathbf{X}_t)$ are deterministic functions of time, i.e. the functions $\lambda_Y(t, \mathbf{x})$ do not depend on \mathbf{x} , for $Y \in \mathcal{Y}$ that are not singletons.
- (ii) (Extended CIR intensities). $\mathbf{X}_t = (X_t^Y)_{Y \in \mathcal{Y}}$ and for every $Y \in \mathcal{Y}$, $\lambda_Y(t, \mathbf{X}_t) = X_t^Y$, where X_t^Y is an extended CIR process

$$dX_t^Y = a(b_Y(t) - X_t^Y)dt + c\sqrt{X_t^Y}dW_t^Y,$$
(5)

for non-negative constants a, c (independent of Y) and a non-negative function $b_Y(t)$, and where the W^Y are independent standard Brownian motions.

In the second specification, affinity of λ^i (which is trivial in the first specification) arises from the fact that the SDEs for the factors X^Y have the same coefficients except for the $b_Y(t)$. Thus, $X^i := \sum_{\{Y \in \mathcal{Y}; i \in Y\}} X^Y$ satisfies the following extended CIR SDE:

$$dX_t^i = a(b_i(t) - X_t^i) dt + c\sqrt{X_t^i} dW_t^i,$$
 (6)

for the function $b_i(t) = \sum_{\{Y \in \mathcal{Y}: i \in Y\}} b_Y(t)$ and the Brownian motion

$$dW_t^i = \sum_{i \in Y} \frac{\sqrt{X_t^Y}}{\sqrt{\sum_{i \in Y} X_t^Y}} dW_t^Y.$$

3 Numerical Results

In this section we briefly discuss the calibration of the model and some few numerical results related to the loss-distributions and the min-variance hedging of a CDO tranche by a portfolio of CDSs. See [2] for the details and [5–7] for further applications to counterparty risk modeling. Note that we only use piecewise-constant intensities $\lambda_Y(t)$ here (see [3] for numerical studies with stochastic intensities and random recoveries).

The model parameters are calibrated in two steps. First, the individual λ^i -parameters are calibrated to corresponding CDS spreads and we use piecewise-constant intensities on the time intervals [0, 3] and [3, 5] which yield perfect fits due to the bootstrapping algorithm.

In the second step we calibrate the common shock intensities $\lambda_{I_j}(t)$ for the m groups, which also are piecewise-constant functions of time, so that $\lambda_{I_j}(t) = \lambda_{I_j}^{(1)}$ for $t \in [0,3]$ and $\lambda_{I_j}(t) = \lambda_{I_j}^{(2)}$ for $t \in [3,5]$ and for every group j. More specifically, $\lambda_{I_j}(t) = \lambda_{I_j}^{(1)}$ are calibrated so that the five-year model spread $\kappa_{a_l,b_l}(\lambda) =: \kappa_l(\lambda)$ will coincide with the corresponding market spread κ_l^* for each tranche l. Thus, the parameters $\lambda = (\lambda_{I_j}^{(k)})_{j,k}$ are obtained according to

$$\lambda = \underset{\hat{\lambda}}{\operatorname{argmin}} \sum_{l} \left(\frac{\kappa_{l}(\hat{\lambda}) - \kappa_{l}^{*}}{\kappa_{l}^{*}} \right)^{2} \tag{7}$$

under the constraints that all elements in λ are non-negative and that λ satisfies the inequalities specified by the individual CDS calibrations (see [2] for the details) for every group I_l and in each time interval [0, 3] and [3, 5]. We use Matlab in our numerical calculations and the objective function (7) is minimized by using the built-in optimization routine fmincon together with the above-mentioned constraints (see [2]).

When calibrating the joint default intensities $\lambda = (\lambda_{I_j}^{(k)})_{j,k}$ for the CDX.NA.IG Series 9, December 17, 2007, we used 5 groups I_1, I_2, \dots, I_5 where $I_j = \{1, \dots, i_j\}$ for $i_j = 6, 19, 25, 61, 125$. We label the obligors by decreasing level of riskiness and

Table 1 CDX.NA.IG Series 9, December 17, 2007, and iTraxx Europe Series 9, March 31, 2008. The market and model spreads and the corresponding absolute errors, both in bp and in percent of the market spread. The [0, 3] spread is quoted in %. All maturities are for five years

4		17	1	α	7	- 1	1	-17	7
٠		, A		l II	, ,	- 1	1.	- 1 .	/

CDO tranche	[0, 3]	[3, 7]	[7, 10]	[10, 15]	[15, 30]	
Market spread	48.07	254.0	124.0	61.00	41.00	
Model spread	48.07	254.0	124.0	61.00	38.94	
Absolute error in bp	0.010	0.000	0.000 0.000		2.061	
Relative error in %	0.0001	0.000	0.000	0.000	5.027	
iTraxx Europe 2008-03-3						
CDO tranche	[0, 3]	[3, 6]	[6, 9]	[9, 12]	[12, 22]	
Market spread	40.15	479.5	309.5	215.1	109.4	
Model spread	41.68	429.7	309.4	215.1	103.7	
Absolute error in bp	153.1	49.81	0.0441	0.0331	5.711	
Relative error in %	3.812	10.39	0.0142	0.0154	5.218	

use the average over 3-year and 5-year CDS spreads as a measure of riskiness. Consequently, obligor 1 has the highest average CDS spread while company 125 has the lowest average CDS spread. Moreover, the obligors in the set $I_5 \setminus I_4$ consisting of the 64 safest companies are assumed to never default individually, and the corresponding CDSs are excluded from the calibration, which in turn relaxes the constraints for λ (see [2]). Hence, the obligors in $I_5 \setminus I_4$ can only bankrupt due to a simultaneous default of the companies in the group $I_5 = \{1, \ldots, 125\}$, i.e., in an Armageddon event. With this structure the calibration against the December 17, 2007, data set is very good as can be seen in Table 1. Note that by resorting to stochastic recoveries, we can get a perfect fit of the same data-set (see [2]).

The calibration of the joint default intensities $\lambda = (\lambda_{I_j}^{(k)})_{j,k}$ for the data sampled on March 31, 2008, is more demanding. This time we use 18 groups I_1, I_2, \ldots, I_{18} where $I_j = \{1, \ldots, i_j\}$ for $i_j = 1, 2, \ldots, 11, 13, 14, 15, 19, 25, 79, 125$. In order to improve the fit, as in the 2007 case, we relax the constraints for λ by excluding from the calibration the CDSs corresponding to the obligors in $I_{18} \setminus I_{17}$. Hence, we assume that the obligors in $I_{18} \setminus I_{17}$ never default individually, but can only bankrupt due to an simultaneous default of all companies in the group $I_{18} = \{1, \ldots, 125\}$. In this setting, the calibration of the 2008 data set with constant recoveries yields an acceptable fit except for the [3, 6] tranche, as can be seen in Table 1. However, by including stochastic recoveries, as illustrated in [2], the fit is substantially improved.

After the fit of the model against market spreads we can use the calibrated portfolio parameters $\lambda = (\lambda_{I_j}^{(k)})_{j,k}$ together with the calibrated individual default intensities, to study the credit-loss distribution in the portfolio. In this paper we only focus on some few examples derived from the loss distribution with constant recoveries evaluated at T=5 years.

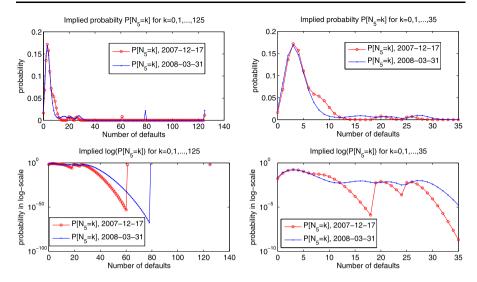


Fig. 2 The implied distribution $\mathbb{P}[N_5 = k]$ on $\{0, 1, \dots, \ell\}$ where $\ell = 125$ (top left) and $\ell = 35$ (top right) when the model is calibrated against CDX.NA.IG Series 9, December 17, 2007, and iTraxx Europe Series 9, March 31, 2008. The corresponding log distributions $\ln(\mathbb{P}[N_5 = k])$ on $\{0, 1, \dots, \ell\}$ are displayed bottom left ($\ell = 125$) and bottom right ($\ell = 35$)

The allowance of joint defaults of the obligors in the groups I_j together with the restriction of the most safest obligors not being able to default individually, will lead to some interesting effects of the loss distribution, as can be seen in Fig. 2.

For example, we clearly see that the support of the loss-distributions will in practice be limited to a rather compact set. To be more specific, the upper graphs in Fig. 2 indicate that $\mathbb{P}[N_5 = k]$ roughly has support on the set $\{1, \ldots, 35\} \cup \{61\} \cup \{125\}$ for the 2007 case and on $\{1, \dots, 40\} \cup \{79\} \cup \{125\}$ for the 2008 data set. This becomes even more clear in a log-loss distribution, as is seen in the lower graphs in Fig. 2. From the bottom graphs in Fig. 2 we see that the default-distribution is nonzero on $\{36,\ldots,61\}$ in the 2007-case and nonzero on $\{41,\ldots,79\}$ for the 2008 sample, but the actual size of the loss-probabilities is in the range 10^{-10} to 10^{-70} . Such low values will obviously be treated as zero in any practically relevant computation. Furthermore, the reason for the empty gap in the bottom left graph in Fig. 2 on the interval $\{62, \ldots, 124\}$ for the 2007 case is due to the fact that we forced the obligors in the set $I_5 \setminus I_4$ to never default individually, but only due to a simultaneous common shock default of the companies in the group $I_5 = \{1, ..., 125\}$. This Armageddon event is displayed as an isolated nonzero 'dot' at default no. 125 in the lower left graph of Fig. 2. The gap on $\{80, \dots, 124\}$ in the 2008 case is explained similarly due to our assumption on the companies in the set $I_{19} \setminus I_{18}$. Also note that the two 'dots' at default no. 125 in the lower left plot are manifested as spikes in the upper left graph displayed in Fig. 2. The shape of the multimodal loss distributions presented in Fig. 2 are typical for models allowing simultaneous defaults, see for example Fig. 2, p. 59 in [9] and Fig. 2, p. 710 in [8].

We then use the CDX.NA.IG fitted model of December 17, 2007, to compute implied min-variance hedging strategies for CDO tranches when a portfolio of CDSs

 $\textbf{Table 2} \ \ \text{The names and CDS spreads (in bp) of the six riskiest obligors used in the hedging strategy displayed in Figs. 3 and 4$

Company (Ticker)	CCR-HomeLoans	RDN	LEN	SFI	PHM	CTX
3-year CDS spread	1190	723	624	414	404	393

is used as hedging instrument. By min-variance we mean a hedge that minimizes the variance of the hedging error (risk-neutral variance relatively to the pricing measure, for tractability reasons). The aim is to analyze the behavior of hedging strategies when the riskiest names of the index are used for hedging standard CDO tranches.

Figures 3 and 4 display the nominal exposure for the 3 (resp. 4, 5 and 6) most riskiest CDSs when hedging one unit of nominal exposure in a CDO tranche. The hedging exposure is derived from the min-variance hedging strategy computed in [1] (see [2] for additional numerical experiments). Furthermore, Table 2 displays the names and sizes of the 3-year CDS spreads used in the hedging strategy.

Each plot in Figs. 3 and 4 should be interpreted as follows: in every pair (x, y)the x-component represents the size of the 3-year CDS spread at the hedging time t = 0 while the y-component is the corresponding nominal CDS-exposure required for hedging. The graphs are ordered from top left to bottom right, where the top panel corresponds to hedging with the d = 3 riskiest CDS and the bottom panel corresponds to hedging with the d = 6 riskiest names. Note that the x-axes are displayed from the riskiest obligor to the safest. Thus, hedge-sizes y for riskier CDSs are aligned to the left in each plot while y-values for safer CDSs are consequently displayed more to the right. In doing this, going from the top-left to the bottom-right panel consists in observing the effect of including new safer CDSs from the right part of the graphs. We have connected the pairs (x, y) with lines forming graphs that visualize possible trends of the min-variance hedging strategies for the d most riskiest CDSs. When the three riskiest names are used for hedging (top panel), we observe that the amount of nominal exposure in hedging instruments decreases with the degree of subordination, i.e., the [0-3 %] equity tranche requires more nominal exposure in CDSs to be hedged than the upper tranches. Note moreover that the min-variance hedging portfolio contains more CDSs on names with lower spreads. When lowerspread CDSs are added in the portfolio, the picture remains almost the same for the 3 riskiest names. For the remaining safer names, however, the picture depends on the characteristics of the tranche. For the [0-3 %] equity tranche, the amount of the remaining CDSs required for hedging sharply decreases as additional safer names are added. One possible explanation is that adding too many names in the hedging strategy will be useless when hedging the equity tranche. This is intuitively clear since one expects that the most riskiest obligors will default first and consequently reduce the equity tranche substantially, explaining the higher hedge-ratios for riskier names, while it is less likely that the more safer names will default first and thus incur losses on the first tranche which explains the lower hedge ratios for the safer names. We observe the opposite trend for the senior (safer) tranches: adding new (safer) names in the hedging portfolio seems to be useful for "non-equity" tranches since the nominal exposure required for these names increases when they are successively added.

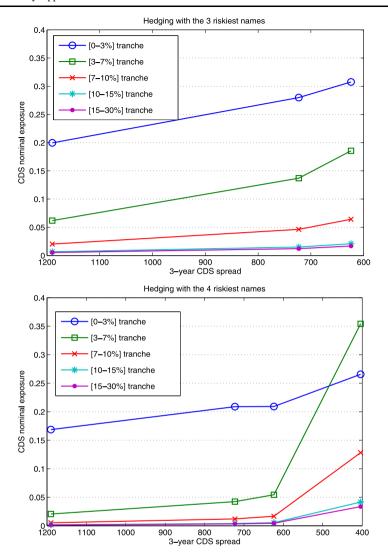


Fig. 3 Min-variance hedging strategies associated with the d riskiest CDS, d = 3, 4, for one unit of nominal exposure of different CDO tranches in a model calibrated to market spreads of CDX.NA.IG Series 9 on December 17, 2007

4 Conclusions

We construct a bottom-up dynamic model of portfolio credit risk in which pricing, hedging and counterparty risk valuation can be made in a theoretical sound and practical convenient way. This boils down to two possible equivalent perspectives of the model. The Markov copula perspective (see [1]) allows us to derive min-variance hedging strategies for portfolio credit derivatives and to propose a two-step efficient calibration procedure of individual default marginals and dependence structure.

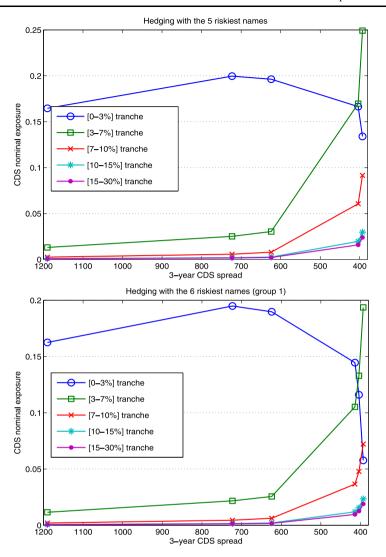


Fig. 4 Min-variance hedging strategies associated with the d riskiest CDS, d = 5, 6, for one unit of nominal exposure of different CDO tranches in a model calibrated to market spreads of CDX.NA.IG Series 9 on December 17, 2007

The common-shock perspective (see [2]) underlies semi-explicit convolution-based pricing schemes to assess the credit portfolio loss distribution at several time horizons. Then, calibration of model parameters on both single-name and portfolio credit derivative products, hedging or CVA computations are numerically tractable in this setting.

Acknowledgements The research of T.R. Bielecki was supported by NSF Grant DMS-0604789 and NSF Grant DMS-0908099. The research of A. Cousin benefitted from the support of the DGE, the ANR project Ast&Risk and the "Chaire Management de la Modélisation". The research of S. Crépey benefitted

from the support of the "Chaire Risque de Crédit" and of the "Chaire Marchés en Mutation", Fédération Bancaire Française. The research of A. Herbertsson was supported by the Jan Wallander and Tom Hedelius Foundation and by Vinnova.

Appendix

Here is the proof of Proposition 2.1. For $I \subseteq N$, we define the filtration $\mathbb{X}^I = (\mathcal{X}_t^I)_{t \geq 0}$ as the initial enlargement of \mathbb{X} by the τ_i for $i \in I$, i.e. for every t:

$$\mathcal{X}_t^I = \mathcal{X}_t \vee \bigvee_{i \in I} \sigma(\tau_i).$$

By an application of Lemma 2.5 in [14], writing $J = N \setminus I$ for every $I \subseteq N$, we obtain:

$$\mathbb{P}(\tau_{1} > t_{1}, \dots, \tau_{n} > t_{n} \mid \mathcal{F}_{t})$$

$$= \sum_{I \subseteq N} \mathbb{1}_{\{I_{t} = I\}} \mathbb{1}_{\{\tau_{i} > t_{i}, i \in I\}} \frac{\mathbb{P}(\tau_{j} > t \vee t_{j}, j \in J \mid \mathcal{X}_{t}^{I})}{\mathbb{P}(\tau_{j} > t, j \in J \mid \mathcal{X}_{t}^{I})}.$$
(8)

Now, in the common shocks model of this paper, writing

$$\mathcal{Y}_{J} = \{ Y \in \mathcal{Y}; Y \cap J \neq \emptyset \}, \qquad \bar{\mathcal{Y}}_{J} = \mathcal{Y} \setminus \mathcal{Y}_{J},$$

$$\tau_{i}^{J} = \min_{\{Y \in \bar{\mathcal{Y}}_{J}: i \in Y\}} \tau_{Y}, \qquad \bar{\mathcal{X}}_{t}^{I} = \mathcal{X}_{t} \vee \bigvee_{i \in I} \sigma\left(\tau_{i}^{J}\right),$$

$$\bar{t}_{Y} = \max_{i \in Y \cap J} (t \vee t_{j}), \qquad \bar{t} = \max_{Y \in \mathcal{Y}} \bar{t}_{Y} = \max_{Y \in \mathcal{Y}_{J}} \bar{t}_{Y},$$

we have on $\{I_t = I\}$ (and therefore $\{\tau_i = \tau_i^J, i \in I\}$):

$$\begin{split} \mathbb{P} \Big(\tau_{j} > t \vee t_{j}, \, j \in J \mid \mathcal{X}_{t}^{I} \Big) &= \mathbb{P} \Big(\tau_{j} > t \vee t_{j}, \, j \in J \mid \bar{\mathcal{X}}_{t}^{I} \Big) \\ &= \mathbb{P} \Big(\tau_{Y} > \bar{t}_{Y}, \, Y \in \mathcal{Y}_{J} \mid \bar{\mathcal{X}}_{t}^{I} \Big) \\ &= \mathbb{P} \Big(E_{Y} > \Lambda_{\bar{t}_{Y}}, \, Y \in \mathcal{Y}_{J} \mid \bar{\mathcal{X}}_{t}^{I} \Big) \\ &= \mathbb{E} \Big(\mathbb{P} \Big(E_{Y} > \Lambda_{\bar{t}_{Y}}, \, Y \in \mathcal{Y}_{J} \mid \bar{\mathcal{X}}_{\bar{t}}^{I} \Big) \mid \bar{\mathcal{X}}_{t}^{I} \Big) \\ &= \mathbb{E} \Big\{ \exp \left(-\sum_{Y \in \mathcal{Y}_{J}} \Lambda_{\bar{t}_{Y}}^{Y} \right) \mid \bar{\mathcal{X}}_{t}^{I} \Big\}, \end{split}$$

where $\mathbb{P}(E_Y > \Lambda_{\bar{t}_Y}, Y \in \mathcal{Y}_J \mid \bar{\mathcal{X}}_{\bar{t}}^I) = \exp(-\sum_{Y \in \mathcal{Y}_J} \Lambda_{\bar{t}_Y}^Y)$ in the last identity holds by independence of $(E_Y)_{Y \in \mathcal{Y}_J}$ from $\bar{\mathcal{X}}_{\bar{t}}^I$ and by $\bar{\mathcal{X}}_{\bar{t}}^I$ - (in fact, $\mathcal{X}_{\bar{t}}$ -) measurability of $(\Lambda_{\bar{t}_Y}^Y)_{Y \in \mathcal{Y}_J}$.

Note moreover that we have on $\{I_t = I\}$:

$$\mathcal{X}_t \subseteq \bar{\mathcal{X}}_t^I \subseteq \mathcal{X}_t \vee \bigvee_{Y \in \bar{\mathcal{Y}}_J} \sigma(E_Y),$$

where the E_Y , $Y \in \bar{\mathcal{Y}}_J$ are independent of \mathbb{X} . We thus have on $\{I_t = I\}$:

$$\mathbb{E}\left\{\exp\left(-\sum_{Y\in\mathcal{Y}_{J}}\Lambda_{\bar{t}_{Y}}^{Y}\right) \mid \mathcal{X}_{t}\right\} = \mathbb{E}\left\{\exp\left(-\sum_{Y\in\mathcal{Y}_{J}}\Lambda_{\bar{t}_{Y}}^{Y}\right) \mid \mathcal{X}_{t} \vee \bigvee_{Y\in\bar{\mathcal{Y}}_{J}}\sigma(E_{Y})\right\}$$

$$= \mathbb{E}\left\{\exp\left(-\sum_{Y\in\mathcal{Y}_{J}}\Lambda_{\bar{t}_{Y}}^{Y}\right) \mid \bar{\mathcal{X}}_{t}^{I}\right\}$$

$$= \mathbb{P}(\tau_{j} > t \vee t_{j}, j \in J \mid \mathcal{X}_{t}^{I}).$$

The Markov property of \mathbf{X}_t finally yields that

$$\mathbb{P}(\tau_{j} > t \vee t_{j}, j \in J \mid \mathcal{X}_{t}^{I}) = \exp\left(-\sum_{Y \in \mathcal{Y}_{J}} \Lambda_{t}^{Y}\right) \mathbb{E}\left\{\exp\left(-\sum_{Y \in \mathcal{Y}_{J}} \Lambda_{t, \bar{t}_{Y}}^{Y}\right) \mid \mathbf{X}_{t}\right\}$$
$$= \mathbb{P}\left(\tau_{j} > t, j \in J \mid \mathcal{X}_{t}^{I}\right) \mathbb{E}\left\{\exp\left(-\sum_{Y \in \mathcal{Y}_{J}} \Lambda_{t, \bar{t}_{Y}}^{Y}\right) \mid \mathbf{X}_{t}\right\}.$$

Plugging this into (8) yields that

$$\mathbb{P}(\tau_1 > t_1, \dots, \tau_n > t_n \mid \mathcal{F}_t) = \sum_{I \subseteq N} \mathbb{1}_{\{I_t = I\}} \mathbb{1}_{\{\tau_i > t_i, i \in I\}} \mathbb{E} \left\{ \exp \left(- \sum_{Y \in \mathcal{Y}} \Lambda_{t, \bar{t}_Y}^Y \right) \mid \mathbf{X}_t \right\},\,$$

which is (3). Setting all t_i but t_i equal to 0, we deduce (4) from (3), for $t_i \ge t$.

References

- Bielecki, T.R., Cousin, A., Crépey, S., Herbertsson, A.: A bottom-up dynamic model of portfolio credit risk—Part I: Markov copula perspective. Forthcoming in Recent Advances in Financial Engineering 2012, World Scientific (preprint version available at http://dx.doi.org/10.2139/ssrn.1844574)
- Bielecki, T.R., Cousin, A., Crépey, S., Herbertsson, A.: A bottom-up dynamic model of portfolio credit risk—Part II: Common-shock interpretation, calibration and hedging issues. Forthcoming in Recent Advances in Financial Engineering 2012, World Scientific (preprint version available at http:// dx.doi.org/10.2139/ssrn.2245130)
- Bielecki, T.R., Cousin, A., Crépey, S., Herbertsson, A.: A bottom-up dynamic model of portfolio credit risk with stochastic intensities and random recoveries. Submitted (preprint version available at http://dx.doi.org/10.2139/ssrn.2159279)
- Bielecki, T.R., Crépey, S., Jeanblanc, M.: Up and down credit risk. Quant. Finance 10(10), 1137–1151 (2010)
- Assefa, S., Bielecki, T.R., Crépey, S., Jeanblanc, M.: CVA computation for counterparty risk assessment in credit portfolios. In: Bielecki, T.R., Brigo, D., Patras, F. (eds.) Credit Risk Frontiers, pp. 397–436. Wiley, New York (2011)
- Bielecki, T.R., Crépey, S., Jeanblanc, M., Zargari, B.: Valuation and hedging of CDS counterparty exposure in a Markov copula model. Int. J. Theor. Appl. Finance 15(1), 1250004 (2012)
- Crépey, S., Rahal, A.: Simulation/regression pricing schemes for CVA computations on CDO tranches. Submitted (preprint version available at http://dx.doi.org/10.2139/ssrn.2242052)
- Elouerkhaoui, Y.: Pricing and hedging in a dynamic credit model. Int. J. Theor. Appl. Finance 10(4), 703–731 (2007)
- Brigo, D., Pallavicini, A., Torresetti, R.: Credit models and the crisis: default cluster dynamics and the generalized Poisson loss model. J. Credit Risk 6(4), 39–81 (2010)

J Optim Theory Appl

- Brigo, D., Pallavicini, A., Torresetti, R.: Cluster-based extension of the generalized Poisson loss dynamics and consistency with single names. Int. J. Theor. Appl. Finance 10(4), 607–632 (2007)
- Lindskog, F., McNeil, A.J.: Common Poisson shock models: applications to insurance and credit risk modelling. ASTIN Bull. 33(2), 209–238 (2003)
- 12. Marshall, A., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 2, 84–98 (1967)
- Bielecki, T.R., Jakubowski, J., Niewęglowski, M.: Dynamic modeling of dependence in finance via copulae between stochastic processes. In: Copula Theory and Its Applications. Lecture Notes in Statistics, vol. 198, pp. 33–76 (2010). Part 1
- Crépey, S., Jeanblanc, M., Wu, D.L.: Informationally dynamized Gaussian copula. Int. J. Theor. Appl. Financ. 16(2) (2013). doi:10.1142/S0219024913500088

