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Abstract

In the aftermath of the 2007-2009 �nancial crisis, a variety of spreads have developed

between quantities that had been essentially the same until then, notably LIBOR-OIS

spreads, LIBOR-OIS swap spreads, and basis swap spreads. By the end of 2011, with the

sovereign credit crisis, these spreads were again signi�cant. In this paper we study the

valuation of LIBOR interest rate derivatives in a multiple-curve setup, which accounts

for the spreads between a risk-free discount curve and LIBOR curves. Towards this end

we resort to a defaultable HJM methodology, in which these spreads are explained by an

implied default intensity of the LIBOR contributing banks, possibly in conjunction with

an additional liquidity factor. Markovian short rate speci�cations are given in the form

of an extended CIR and a Lévy Hull�White model for a risk-free short rate and a LIBOR

short spread. The use of Lévy drivers leads to the more parsimonious speci�cation.

Numerical values of the FRA spreads and the basis swap spreads computed with the

latter largely cover the ranges of values observed even at the peak of the 2007-2009

crisis.
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Processes.
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1 Introduction

The recent �nancial crisis caused a number of anomalies that were not previously observed
in the �xed income markets. The interest rates whose dynamics were very closely following
each other have started to diverge substantially. In particular, the spreads between the
LIBOR rates and the OIS rates (the swap rates of interest rate swaps whose �oating-rate
payments are indexed to a compounded overnight rate) of the same maturity have been far
from negligible, as well as the spreads between the swap rates of the LIBOR-indexed interest
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rate swaps and the OIS rates. The former type of spreads is known as the LIBOR-OIS
spread and the latter as the LIBOR-OIS swap spread. We refer to Section 2.1 for precise
de�nitions of various interest rates and to Sections 4.2 and 4.3 for de�nitions of interest
rate swaps and spreads. In Figure 1 (left) the historical EURIBOR-EONIAswap spreads
in the period 2005-2010 are plotted for maturities ranging from 1 month to 12 months.
Before the crisis these spreads were practically negligible, whereas at the peak of the crisis
they were greater than 200 basis points for some maturities. The EURIBOR rate and the
EONIAswap rate are analogs of the LIBOR rate and the OIS rate in the EUR �xed income
market (cf. Section 2.1 for details). Furthermore, since the �nancial crisis the LIBOR rates
of di�erent maturities have exhibited notably diverse behavior, which is re�ected in the
so-called basis swap spreads appearing when basis swaps are priced. In a basis swap two
streams of �oating-rate payments linked to LIBOR rates on di�erent tenors are exchanged
(cf. Section 4.4 for details). This is why practitioners nowadays tend to produce di�erent
discount curves for di�erent tenors; see Figure 1 (right), which displays discount functions
related to the EONIAswap rates, the 3-month and the 6-month EURIBOR rates. All these
phenomena are described in Filipovi¢ and Trolle (2011) as the advent of a so-called interbank
risk.
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Figure 1: Left : Historical EURIBOR-EONIAswap spreads 2005-10. Right : Discount curves
bootstrapped on September 2, 2010.

In addition, when valuing and hedging interest rate derivatives, the interbank risk issue
comes in combination with the counterparty risk issue, which is the risk of a party defaulting
in an OTC derivative contract. In this context, the questions such as which curve should
be used as discounting curve, to which extent the choice of a given curve should be put in
relation with counterparty risk, or possibly hidden relations between bilateral counterparty
risk (accounting for the default risk of both parties) and funding costs (of funding a position
in a contract in a multiple-curve environment), have become the subject of endless debates
between market practitioners.

In this paper we propose a model of interbank risk for the pricing of LIBOR interest
rate derivatives in a multiple-curve setup. Note that this is a model of �clean� valuation
in the sense of Crépey (2012), meaning clean of counterparty risk and excess funding costs
above the risk-free rate (in practice: the OIS rate). However, a counterparty risk and excess
funding costs correction (CVA for Credit Valuation Adjustment in the counterparty risk
terminology) can then be obtained as the value of an option on this clean price process; see
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for instance Crépey (2012). Actually, the main motivation for the present work is to devise
a model of clean valuation of interest rate derivatives with interbank risk, tractable in itself,
but also from the perspective of serving as an underlying model for CVA computations.
This integration of the present clean model into a counterparty risky environment will be
considered in a follow-up paper.

Resorting to the usual distinction between short rate, HJM and BGM or LIBOR market
models, one can classify the interbank risk (multiple-curve in this regard, yet �clean� in the
above sense) valuation literature as follows. Kijima, Tanaka, and Wong (2009) or Kenyon
(2010) propose short rate approaches. Henrard (2007, 2010) derives corrected Gaussian HJM
formulas under the assumption of deterministic spreads between the curves. Bianchetti
(2010) resolves a two-curve issue in a cross-currency mathematical framework, deriving
�quanto convexity corrections� to the usual BGM market model valuation formulas. Here
the main tool is that of a change of measure/numéraire. The LIBOR market model approach
is also extended in Mercurio (2010b, 2010a) and Fujii, Shimada and Takahashi (2011, 2010)
in such a way that basis spreads for di�erent tenors are modeled as di�erent processes. A
hybrid HJM-LIBOR market model is proposed in Moreni and Pallavicini (2010), where the
HJM framework is employed to obtain a parsimonious model for multiple curves, using a
single family of Markov driving processes. Finally, a credit risk approach is tentative in
Morini (2009). However, Morini concludes on page 43 that in his model �the credit risk
alone does not explain the market patterns�.

We recall that LIBOR stands for London Interbank O�ered Rate and is produced for
10 currencies with 15 maturities, ranging from overnight to 12 months, thus producing 150
rates each business day. The contributing banks are selected for each currency panel with the
aim of re�ecting the balance of the market for a given currency based upon three guiding
principles: scale of market activity, credit rating and perceived expertise in the currency
concerned. Each panel, ranging from 7 to 18 contributors, is chosen by the independent
Foreign Exchange and Money Markets Committee (FX&MM Committee) to give the best
representation of activity within the London money market for a particular currency. Twice
a year the FX&MM Committee undertakes an assessment of each LIBOR panel, evaluating
the contributing banks and updating the selection if necessary. This rolling construction
of the LIBOR contributing group is intended to ensure that, in principle, actual defaults
cannot occur within the group. However, the deterioration of the credit quality of the LIBOR
contributors during the length of a LIBOR loan is greater with longer tenors, resulting in a
default spread between the LIBOR markets of di�erent tenors (OIS market in the limiting
case of an overnight tenor). Moreover, the economic fundamentals of interbank risk are
not only credit risk, but also liquidity risk, among other factors such as �strategic� game
considerations (see Michaud and Upper (2008, page 48)), which might from time to time
incite a bank to declare as LIBOR contribution a number slightly di�erent from its internal
conviction regarding �The rate at which an individual Contributor Panel bank could borrow
funds, were it to do so by asking for and then accepting interbank o�ers in reasonable
market size, just prior to 11.00 London time� (the theoretical de�nition of the LIBOR rate).
For these interpretations and the related econometric aspects we refer the reader to the
quantitative analysis of the term structure of interbank risk which was recently conducted by
Filipovi¢ and Trolle (2011). Based on a data set covering the period from August 2007 until
January 2011, their results show that the default component is overall the main dominant
driver of interbank risk, except for short-term contracts in the �rst half of the sample (see
Figures 3 and 4 in their paper). The second main driver is interpreted as liquidity risk,
which is consistent with the claims in Morini (2009).
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Here we make both the credit and the liquidity interbank risk components explicit,
in the mathematical framework of a defaultable Heath�Jarrow�Morton methodology; see
the seminal paper by Heath, Jarrow, and Morton (1992) and the defaultable extensions by
Bielecki and Rutkowski (2000) and Eberlein and Özkan (2003). Our motivation for modeling
the continuously compounded forward rates using an HJM approach, instead of dealing
directly with discretely compounded LIBOR rates in a BGM framework, is twofold. On the
one side, it allows one to consider simultaneously the LIBOR rates for all possible tenors
(recall that one of the post-crisis spreads studied in this work is related to the LIBOR rates
of various tenors). The HJM framework is capable of producing a multi-curve model with
as many stochastic factors as LIBOR rates of di�erent tenors by increasing the dimension
of the driving process, while still retaining the tractability of the pricing formulas for any
arbitrary correlation of stochastic factors. On the other side, this is a uni�ed approach for
a very general class of time-inhomogeneous Lévy driving processes. It is also important
to mention that various short rate models can be accommodated in this setup as special
cases (see Section 3 for the extended CIR and the extended Hull-White model). As will
be illustrated in a follow-up work, this direct link to the short rate process r is useful in
the context of counterparty risk applications, where the model of this paper can be used
as an underlying model for CVA computations. Numerical issues related to our model will
be mainly considered in a follow-up paper. However, the last section of this paper already
makes clear that, in contrast to the conclusion of Morini (2009) in his �rst tentative credit
risk approach, even a pure appropriate credit risk model (with liquidity component set to
zero) is in fact able to explain spreads very much in line with the orders of magnitude that
were observed in the market even at the peak of the crisis.

The rest of the paper is organized as follows. In Section 2, we apply an adaptation
of the defaultable HJM approach to model the term structure of multiple interest rate
curves. Section 3 presents a tractable pricing model within this framework which we obtain
by choosing the class of nonnegative multidimensional Lévy processes as driving processes
combined with deterministic volatility structures. In Section 4 the basic interest rate
derivatives tied to the LIBOR rate are described and explicit valuation formulas are derived.
Section 5 presents numerical results illustrating the �exibility of the model in producing a
wide range of FRA spreads and basis swap spreads.

In our view the main contributions of this work are: a consistent and tractable multiple-
curve HJM term structure model of interbank risk; low-dimensional extended CIR or Lévy
Hull�White short rate speci�cations of the multiple-curve HJM setup, opening the door to
the use of this model as an underlying model for interest rate derivative CVA computations;
numerical evidence that an appropriately chosen credit risk setup is enough to account for
even the most extreme interbank spreads observed in the market.

2 Multiple-curve HJM setup

2.1 Notation

In this subsection we introduce the main notions and notation we are going to work with.
The main reference rate for a variety of interest rate derivatives is the LIBOR in the USD
�xed income market and the EURIBOR in the EUR �xed income market. LIBOR (resp.
EURIBOR) is computed daily as an average of the rates at which designated banks belonging
to the LIBOR (resp. EURIBOR) panel believe unsecured funding for periods of length up
to one year can be obtained by them (resp. by a prime bank). From now on we shall use
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the term LIBOR meaning any of these two rates. Another important reference rate in �xed
income markets is a so-called OIS (Overnight Indexed Swap) rate, which is the swap rate
of a swap whose �oating rate is obtained by compounding an overnight rate, i.e. a rate
at which overnight unsecured loans can be obtained in the interbank market. In the USD
�xed income market this rate is the FF (Federal Funds) rate and in the EUR market it
is the EONIA rate (where EONIA stands for Euro Overnight Index Average). From now
on we shall use the generic term OIS rate for both �xed income markets. The OIS rate
is considered by practitioners to be the best available market proxy for the risk-free rate
since the risk in an overnight loan can be deemed almost negligible. On the other hand,
the LIBOR rate depends on the term structure of interbank risk, which is re�ected in the
observed LIBOR-OIS and LIBOR-OIS swap spreads (see the left panel in Figure 1).

In this paper we introduce a default time τ∗ associated with the LIBOR reference curve
via a given default intensity γ∗(t). We emphasize that τ∗ is not meant to represent an actual
default time of any speci�c entity (recall that the LIBOR panel is constantly being updated).
It is merely used as an implied model of default risk for the reference curve, to quantify the
credit spread component of interbank risk on a mathematically tractable �default intensity
scale�.

We shall work with instantaneous continuously compounded forward rates, specifying
the dynamics of the term structure of the risk-free (OIS) forward interest rates ft(T ) and of
the forward spreads gt(T ) corresponding to the risky (LIBOR) rates of the reference curve.
We denote by f∗t (T ) the instantaneous continuously compounded risky forward rates, so for
every 0 ≤ t ≤ T,

gt(T ) = f∗t (T )− ft(T ), (1)

where T ∈ [0, T̄ ] and T̄ is a �nite time horizon. The corresponding short rates r and r∗ are
given, for every t ∈ [0, T̄ ], by

rt = ft(t) and r∗t = f∗t (t). (2)

We also de�ne the short term spread λ by

λt = gt(t) = r∗t − rt.

The discount factors associated with our two yield curves are denoted by Bt(T ) and
B̄∗t (T ), respectively. These are time-t (cumulative) prices and pre-default prices of risk-free
and risky zero coupon bonds with maturity T , with BT (T ) = 1 and B̄∗T (T ) = 1. The bond
prices are related to the forward rates via the following formulas, for t ≤ T,

Bt(T ) = exp
(
−
∫ T

t
ft(u)du

)
and B̄∗t (T ) = exp

(
−
∫ T

t
f∗t (u)du

)
. (3)

The T -spot LIBOR rate LT (T, T + δ) is a simply compounded interest rate �xed at
time T for the time interval [T, T + δ], which will be de�ned in our setup as

LT (T, T + δ) =
1
δ

( 1
B̄∗T (T + δ)

− 1
)
. (4)

We thus use in this de�nition the risky bond prices B̄∗, where the reference entity of the
risky bond is to be interpreted as consisting of (a stylized representative of) the LIBOR
contributing banks.
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2.2 Driving process

We consider a complete probability space (Ω,FT̄ , IP), where T̄ is the �nite time horizon.
Let E = (Et)t∈[0,T̄ ] denote a �ltration on this space satisfying the usual conditions. The
driving process Y = (Yt)0≤t≤T̄ is assumed to be a process with independent increments and
absolutely continuous characteristics (PIIAC) in the sense of Eberlein, Jacod, and Raible
(2005), also called a time-inhomogeneous Lévy process in Eberlein and Kluge (2006a), or
an additive process in the sense of De�nition 1.6 in Sato (1999). The process Y is taken as
an E-adapted, càdlàg, Rn-valued process, starting from zero. The law of Yt, t ∈ [0, T̄ ], is
described by the characteristic function, in which u denotes a row-vector in Rn:

IE[eiuYt ] = exp
∫ t

0

(
iubs −

1
2
ucsu

> (5)

+
∫

Rn

(
eiux − 1− iuh(x)

)
Fs(dx)

)
ds,

where bs ∈ Rn, cs is a symmetric, nonnegative de�nite real-valued n-dimensional matrix and
Fs is a Lévy measure on Rn, i.e. Fs({0}) = 0 and

∫
Rn(|x|2∧1)Fs(dx) <∞, for all s ∈ [0, T̄ ].

The function h : Rn → Rn is a truncation function (for example h(x) = x1{|x|≤1}).
Let ‖ · ‖ denote the norm on the space of real n-dimensional matrices, induced by the

Euclidean norm | · | on Rn. The following standing assumption is satis�ed:

Assumption 2.1 (i) The triplet (bt, ct, Ft)0≤t≤T̄ satis�es∫ T̄

0

(
|bt|+ ‖ct‖+

∫
Rn

(1 ∧ |x|2)Ft(dx)
)
dt <∞;

(ii) There exist constants K, ε > 0 such that∫ T̄

0

∫
|x|>1

exp(ux)Ft(dx)dt <∞, (6)

for every u ∈ [−(1 + ε)K, (1 + ε)K]n.

Condition (6) ensures the existence of exponential moments of the process Y . More precisely,
(6) holds if and only if IE[exp(uYt)] <∞, for all 0 ≤ t ≤ T̄ and u ∈ [−(1 + ε)K, (1 + ε)K]n

(cf. Lemma 2.6 and Corollary 2.7 in Papapantoleon (2007)). Moreover, Y is then a special
semimartingale, with the following canonical decomposition (cf. Jacod and Shiryaev (2003,
II.2.38), and Eberlein, Jacod, and Raible (2005))

Yt =
∫ t

0
bsds+

∫ t

0

√
csdWs +

∫ t

0

∫
Rn
x(µ− ν)(ds, dx), t ∈ [0, T̄ ], (7)

where µ is the random measure of jumps of Y , ν is the IP-compensator of µ,
√
cs is a

measurable version of a square-root of the symmetric, nonnegative de�nite matrix cs, andW
is a IP-standard Brownian motion. The triplet of predictable semimartingale characteristics
of Y with respect to the measure IP, denoted by (Bt, Ct, νt)0≤t≤T̄ , is

Bt =
∫ t

0
bsds, Ct =

∫ t

0
csds, ν([0, t]×A) =

∫
[0,t]

∫
A
Fs(dx)ds, (8)
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for every Borel set A ∈ B(Rn \ {0}). The triplet (bt, ct, Ft)0≤t≤T̄ represents the local charac-
teristics of Y . Any of these triplets determines the distribution of Y, as the Lévy�Khintchine
formula (5) obviously dictates (with h(x) = x, which is a valid choice for the truncation
function due to (6)).

We denote by κs the cumulant generating function associated with the in�nitely di-
visible distribution characterized by the Lévy triplet (bs, cs, Fs). One can extend κs to
row-vectors of complex numbers z ∈ Cn such that <z ∈ [−(1 + ε)K, (1 + ε)K]n. We have,
for s ∈ [0, T̄ ],

κs(z) = zbs +
1
2
zcsz

> +
∫

Rn
(ezx − 1− zx)Fs(dx). (9)

Note that (5) can be written in terms of κ:

IE[eiuYt ] = exp
∫ t

0
κs(iu)ds. (10)

If Y is a Lévy process, in other words if Y is time-homogeneous, then (bs, cs, Fs), and thus
also κs, do not depend on s. In that case, κ boils down to the log-moment generating
function of Y1. For details we refer to Papapantoleon (2007, Lemma 2.8, Remark 2.9 and
Remark 2.16).

Remark 2.2 The motivation for the choice of time-inhomogeneous Lévy processes as driv-
ing processes in our model is twofold. On the one side, these processes are analytically
tractable, and on the other side, they posses a high degree of �exibility, which allows for
an adequate �t of the term structure of volatility smiles, i.e. of the change in the smile
across maturities; see Eberlein and Kluge (2006a, 2006b) and Eberlein and Koval (2006) for
applications of time-inhomogeneous Lévy processes in interest rate modeling.

2.3 Term structure of interest rates

In this subsection, we model the term structures of the risk-free and the risky interest rates.
We shall be concerned with two �ltrations on the standing risk-neutral probability space

(Ω,FT̄ , IP) of this paper: the background �ltration E = (Et)0≤t≤T̄ , and the full �ltration
F = (Ft)0≤t≤T̄ containing E and the information about the default time τ∗. The bond
price processes (Bt(T ))0≤t≤T and (B̄∗t (T ))0≤t≤T , and also the corresponding forward rate
processes (ft(T ))0≤t≤T and (f∗t (T ))0≤t≤T , for any T ∈ [0, T̄ ], are all E-adapted. It is assumed
that τ∗ is not an E-stopping time, but it is an F-stopping time. Moreover, we assume that
immersion holds between E and F , i.e. every E-local martingale is an F-local martingale.
We assume that τ∗ possesses an E-hazard intensity γ∗. Thus, its Azéma supermartingale is
given by

IP(τ∗ > t|Et) = e−
∫ t
0 γ

∗
sds, (11)

where γ∗ is an E-adapted, nonnegative and integrable process.
Let us now specify the instantaneous continuously compounded forward rates ft(T )

and the instantaneous forward spreads gt(T ), which in turn provide the bond prices Bt(T )
and B̄∗t (T ) via (3). We are going to make use of the results from Eberlein and Raible (1999)
and Eberlein and Kluge (2006b), where HJM models driven by time-inhomogeneous Lévy
processes were developed, and the results from Bielecki and Rutkowski (2000) and Eberlein
and Özkan (2003), where defaultable extensions of the HJM framework were introduced.
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Contrary to the latter two papers, we choose here to model directly the forward spreads
gt(T ) instead of the risky forward rates f∗t (T ), which is clearly equivalent due to (1). How-
ever, one should have B̄∗t (T ) ≤ Bt(T ), i.e. the risky bonds are cheaper than the risk-free
bonds with the same maturity. This implies by (3) that f∗t (T ) ≥ ft(T ), or equivalently,
gt(T ) ≥ 0. Hence, we decide to model the forward spreads directly and study their nonneg-
ativity in some special cases. In the next subsection two tractable nonnegative examples are
provided. Let us also mention here a paper by Chiarella, Maina, and Nikitopoulos (2010),
where a class of stochastic volatility HJM models admitting �nite dimensional Markovian
structures is proposed. They model the default-free forward rates and the forward spreads,
whose dynamics are driven by correlated Brownian motions. One of the examples in the
sequel, the stochastic volatility CIR model of Section 3.1, can be �t into this modeling
framework.

2.3.1 Risk-free rates

The dynamics of the risk-free forward rates ft(T ), for T ∈ [0, T̄ ], is given by

ft(T ) = f0(T ) +
∫ t

0
as(T )ds+

∫ t

0
σs(T )dYs, (12)

where the initial values f0(T ) are deterministic, bounded and Borel measurable in T . More-
over, σ and a are stochastic processes de�ned on Ω× [0, T̄ ]× [0, T̄ ] taking values in Rn and
R, respectively. Let P and O respectively denote the predictable and the optional σ-�eld
on Ω × [0, T̄ ]. We recall that the predictable σ-�eld is the σ-�eld on Ω × [0, T̄ ] generated
by all càg adapted processes and the optional σ-�eld is generated by all càdlàg adapted
processes (considered as mappings on Ω × [0, T̄ ]). The mappings (ω; s, T ) 7→ as(ω;T ) and
(ω; s, T ) 7→ σs(ω;T ) are measurable with respect to P ⊗ B([0, T̄ ]). For s > T we have
as(ω;T ) = 0 and σs(ω;T ) = 0, as well as supt,T≤T̄ (|at(ω;T )|+|σt(ω;T )|) <∞. These condi-
tions ensure that we can �nd a �joint-version� of all ft(T ) such that (ω; t, T ) 7→ ft(ω;T )1{t≤T}
is O ⊗ B([0, T̄ ])-measurable (see Eberlein, Jacod, and Raible (2005)). Then it follows (cf.
equation (2.4) in Eberlein and Kluge (2006b)), for t ∈ [0, T ], that

Bt(T ) = B0(T ) exp
(∫ t

0
(rs −As(T ))ds−

∫ t

0
Σs(T )dYs

)
, (13)

where we set

As(T ) :=
∫ T

s
as(u)du , Σs(T ) :=

∫ T

s
σs(u)du. (14)

Inserting T = t into (13), the risk-free discount factor process β = (βt)0≤t≤T̄ , de�ned by

βt = exp
(
−
∫ t

0 rsds
)
, can be written as

βt = B0(t) exp
(
−
∫ t

0
As(t)ds−

∫ t

0
Σs(t)dYs

)
. (15)

Combining this with (13) we obtain the following useful representation for the bond price
process

Bt(T ) =
B0(T )
B0(t)

exp
(∫ t

0
(As(t)−As(T ))ds+

∫ t

0
(Σs(t)− Σs(T ))dYs

)
. (16)
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We make a standing assumption that the volatility structure is bounded in the sense
that one has 0 ≤ Σi

s(T ) ≤ K2 for every 0 ≤ s ≤ T ≤ T̄ and i ∈ {1, 2, . . . , n}, where K is the
constant from Assumption 2.1(ii). Note that if Y is a Brownian motion, this assumption
holds with K = ∞. In other words, the volatility structure in the Brownian case does not
have to be bounded.

As is well-known, the model is free of arbitrage if the bond prices discounted at the
risk-free rate, (βtBt(T ))0≤t≤T , are F-martingales with respect to a risk-neutral measure IP.
Due to the immersion property it su�ces that they are E-martingales. This is guaranteed
by the following drift condition, which is assumed henceforth:

As(T ) = κs(−Σs(T )), s ∈ [0, T ], (17)

where κs is the cumulant of Y de�ned in (9). This condition can be found in Eberlein
and Kluge (2006b), see equation (2.3) therein and comments thereafter. For more detailed
computations, see Proposition 2.2 of Kluge (2005) in the case of deterministic volatility, and
Theorem 7.9 and Corollary 7.10 of Raible (2000) for a stochastic volatility combined with a
(time-homogeneous) Lévy driving process. If Y is a standard Brownian motion, condition
(17) simpli�es to As(T ) = 1

2 |Σs(T )|2, which is the classical HJM no-arbitrage condition.

2.3.2 Risky rates

The dynamics of the forward spreads gt(T ), t ∈ [0, T ], is given by

gt(T ) = g0(T ) +
∫ t

0
a∗s(T )ds+

∫ t

0
σ∗s(T )dYs, (18)

where the initial values g0(T ) are deterministic, bounded and Borel measurable in T . More-
over, a∗(T ) and σ∗(T ) satisfy the same measurability and boundedness conditions as a(T )
and σ(T ). The risky forward rates are then given by

f∗t (T ) = f∗0 (T ) +
∫ t

0
ā∗s(T )ds+

∫ t

0
σ̄∗s(T )dYs, (19)

where we set

f∗0 (T ) = f0(T ) + g0(T ) , ā∗s(T ) = as(T ) + a∗s(T ) , σ̄∗s(T ) = σs(T ) + σ∗s(T ).

The dynamics of the bond prices (B̄∗t (T ))0≤t≤T can be obtained exactly in the same
way as the dynamics of (Bt(T ))0≤t≤T in equation (13). Therefore, for t ∈ [0, T ],

B̄∗t (T ) = B̄∗0(T ) exp
(∫ t

0
(r∗s − Ā∗s(T ))ds−

∫ t

0
Σ̄∗s(T )dYs

)
, (20)

where

Ā∗s(T ) :=
∫ T

s
ā∗s(u)du and Σ̄∗s(T ) :=

∫ T

s
σ̄∗s(u)du. (21)

Setting

A∗s(T ) :=
∫ T

s
a∗s(u)du and Σ∗s(T ) :=

∫ T

s
σ∗s(u)du,

we have
Ā∗s(T ) = As(T ) +A∗s(T ) and Σ̄∗s(T ) = Σs(T ) + Σ∗s(T ). (22)
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Recall from (2) that the short rate r∗s is given by rs + λs. Similarly to (16), we can rewrite
the bond price B̄∗t (T ) as

B̄∗t (T ) =
B̄∗0(T )
B̄∗0(t)

exp
(∫ t

0
(Ā∗s(t)− Ā∗s(T ))ds+

∫ t

0
(Σ̄∗s(t)− Σ̄∗s(T ))dYs

)
. (23)

In defaultable HJMmodels no-arbitrage requirements yield a drift condition relating the
drift term Ā∗t (T ) and the volatility term Σ̄∗s(T ). To see it let us temporarily assume that our
risky bond prices B̄∗(T ) could be interpreted as the pre-default prices of defaultable LIBOR
zero-coupon bonds; let us then study the constraints that would correspond to precluding
arbitrage opportunities related to dealing with these bonds, were such bonds traded in the
market. Note that such LIBOR bonds are actually not traded; not even synthetically as
averages of the defaultable bonds of LIBOR contributors, since the LIBOR rates re�ected
in B̄∗(T ) are only reference numbers and not transaction quotes; see the de�nition of the
LIBOR rate in the introduction.

The defaultable bonds are assumed to pay a certain recovery upon default. We adopt
the fractional recovery of a market value scheme, which speci�es that in case of default of
the bond issuer, the fraction of the pre-default value of the bond is paid at default time.
The value at maturity of such a bond is given by

B∗T (T ) = 1{τ∗>T} + 1{τ∗≤T}R
∗B̄∗τ∗−(T )B−1

τ∗ (T ),

where R∗ ∈ [0, 1] is the recovery and B̄∗t (T ) is the pre-default bond price de�ned in (3), for
every t ∈ [0, T ]. Note that receiving the amount 1{τ∗≤T}R∗B̄∗τ∗−(T ) at τ∗ is equivalent to
receiving 1{τ∗≤T}R∗B̄∗τ∗−(T )B−1

τ∗ (T ) at T . The time-t bond price can be written as

B∗t (T ) = 1{τ∗>t}B̄
∗
t (T ) + 1{τ∗≤t}R

∗B̄∗τ∗−(T )B−1
τ∗ (T )Bt(T ). (24)

The immersion property implies that B̄∗τ∗−(T ) = B̄∗τ∗(T ). Moreover, note that 1{τ∗>t}B̄∗t (T ) =
1{τ∗>t}B∗t (T ), for every t ∈ [0, T ].

Let us now study the conditions which ensure the absence of arbitrage, i.e. let us
�nd the conditions such that B∗(T ) discounted at the risk-free rate, (βtB∗t (T ))0≤t≤T , are
(F , IP)-martingales, for all T ∈ [0, T̄ ]. For each T the martingale condition is satis�ed if

(B̄∗t (T )−R∗tBt(T ))γ∗t = B̄∗t (T )ξt(T ), t ∈ [0, T ], (25)

where
ξt(T ) := λt − Ā∗t (T ) + κt(−Σ̄∗t (T ))

and (R∗t )t≥0 is the terminal recovery process in the sense of Condition (HJM.8) in Section
13.1.9 of Bielecki and Rutkowski (2002). The proof of the above statement is similar to
the derivation of Condition (13.24) in Bielecki and Rutkowski (2002, Section 13.1.9) in the
Gaussian case. For similar conditions in (time-inhomogeneous) Lévy driven models, we refer
to Eberlein and Özkan (2003) or Grbac (2010, Section 3.7).

Under the recovery scheme assumed above (i.e. the fractional recovery of a market
value), one gets a particularly convenient form of the martingale condition (25). The recovery
process R∗ takes the following form (cf. (24))

R∗t := R∗B̄∗t (T )B−1
t (T ),
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which inserted into (25) yields

(1−R∗)γ∗t = ξt(T ), t ∈ [0, T ]. (26)

Since condition (26) must be true for all T ∈ [0, T̄ ], it is actually equivalent to the following
two conditions:

(1−R∗)γ∗t = λt (27)

and
Ā∗t (T ) = κt(−Σ̄∗t (T )). (28)

Indeed, conditions (27) and (28) obviously imply (26). To see the converse, one has to insert
T = t into (26) and note that Ā∗t (t) = 0 and Σ̄∗t (t) = 0 by (14). Moreover, κt(0) = 0 by (9),
which yields (27). Condition (28) now follows from (26) by inserting T 6= t.

Now, in our model, the risky bonds B̄∗(T ) are mathematical concepts which represent
the interbank risk of the LIBOR group and they are neither defaultable in the classical
sense, nor they are traded assets. Moreover, interbank risk does not need to consist only of
credit risk, it can also have a liquidity component. We thus relax the defaultable HJM drift
condition (28) into a less stringent condition

Ā∗t (T ) = κt(−Σ̄∗t (T )) + αt(T ), (29)

where α(T ) satis�es the same measurability and boundedness conditions as A(T ) and A∗(T ).
Recall that the LIBOR rates are de�ned by (4), where α(T ) then appears via (29) through
(23). Since κt(−Σ̄∗t (T )) is related to the pure credit risk interpretation of the risky bonds,
as shown above, we shall refer to it as the credit risk component of interbank risk. The
remaining contribution α(T ) will be referred to as the liquidity component of interbank
risk, in reference to the econometrically demonstrated explanation of interbank risk as a
mixture of credit and liquidity risk of the LIBOR contributing banks (cf. Filipovi¢ and
Trolle (2011)).

However, in the remainder of this section, as well as in Sections 3 and 5, for simplicity
we shall work without the liquidity component αt(T ) being explicitly present. In other
words, we shall work under the more speci�c �credit� assumption (28). We emphasize that
Section 4 does not rely on this assumption and all the results therein are still valid under
condition (29), provided that the liquidity component αt(T ) is deterministic in which case
we write αt(T ) = α(t, T ).

Proposition 2.3 (i) The forward rate ft(T ) is given by

ft(T ) = f0(T ) +
∫ t

0

∂

∂T
κs(−Σs(T ))ds+

∫ t

0
σs(T )dYs, (30)

and the short rate rt by

rt = f0(t) +
∫ t

0

∂

∂t
κs(−Σs(t))ds+

∫ t

0
σs(t)dYs. (31)

(ii) The forward spread gt(T ) is given by

gt(T ) = g0(T ) +
∫ t

0

(
∂

∂T
κs(−Σ∗s(T )− Σs(T ))− ∂

∂T
κs(−Σs(T ))

)
ds

+
∫ t

0
σ∗s(T )dYs, (32)
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and the short term spread λt by

λt = g0(t) +
∫ t

0

(
∂

∂t
κs(−Σ∗s(t)− Σs(t))−

∂

∂t
κs(−Σs(t))

)
ds

+
∫ t

0
σ∗s(t)dYs. (33)

(iii) The E-intensity γ∗ of the default time τ∗ is given by

γ∗t =
1

1−R∗
(
g0(t) +

∫ t

0

(
∂

∂t
κs(−Σ∗s(t)− Σs(t))−

∂

∂t
κs(−Σs(t))

)
ds+

∫ t

0
σ∗s(t)dYs

)
.

Proof. To prove (i), note that from condition (17) it follows that

as(T ) =
∂

∂T
κs(−Σs(T )).

This immediately yields (30) and (31). Similarly, to prove (ii), we make use of (28) and
obtain

a∗s(T ) = ā∗s(T )− as(T )

=
∂

∂T
κs(−Σ̄∗s(T ))− ∂

∂T
κs(−Σs(T ))

=
∂

∂T
κs(−Σ∗s(T )− Σs(T ))− ∂

∂T
κs(−Σs(T )).

Hence, (32) and (33) follow. Finally, to prove (iii) we combine (27) and (33). 2

3 The model

In this section we focus our attention on time-homogeneous Lévy processes Y . The cumulant
generating function associated with Y is then given by

κ(z) := zb+
1
2
zcz> +

∫
Rn

(ezx − 1− zx)F (dx),

where (b, c, F ) is the Lévy triplet of Y1 (compare (9)). We study conditions that ensure the
nonnegativity of the risk-free interest rates and the spreads, considering in particular two
cases: a pure-jump Lévy process with nonnegative components (subordinators) combined
with deterministic bond price volatility structures, and a two-dimensional Brownian motion
in combination with stochastic volatility structures. We shall focus in particular on the �rst
case, which turns out to be very tractable for valuation purposes. Note that the general
HJM model, as well as many short rate models, does not necessarily produce nonnegative
interest rates. The standard argument is that the probability of negative interest rates is
su�ciently small, and therefore this undesirable feature is still tolerable. However, when
interest rates are small as in the recent years, the nonnegativity of interest rates produced
by a model becomes a practically relevant issue.
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3.1 Stochastic volatility CIR

Assume that the driving process Y = (Y 1, Y 2) is a two-dimensional Brownian motion with
correlation %. The canonical decomposition (7) of Y is given by

Yt =
√
c(W 1

t ,W
2
t )>,

where (W 1,W 2) is a two-dimensional standard Brownian motion and the covariance matrix
c = [ci,j ]i,j=1,2 is such that c1,1 = c2,2 = 1 and c1,2 = c2,1 = %. The cumulant generating
function of Y is given by κ(z) = 1

2zcz
>, z ∈ R2. In order to produce nonnegative short rates

and short term spreads with this driving process, the volatilities in the HJM model cannot
be deterministic. We make use of the volatility speci�cations that produce the CIR short
rate and the CIR short term spread within the HJM framework, as shown in Chiarella and
Kwon (2001). Thus, we impose the following assumptions on the volatilities σs(t) and σ∗s(t):

σs(t) =
(
ζ(s)
√
rse
−
∫ t
s k(u)du, 0

)
, σ∗s(t) =

(
0, ζ∗(s)

√
λse
−
∫ t
s k

∗(u)du
)
,

where ζ, ζ∗, k and k∗ are deterministic functions (cf. equation (6.2) in Chiarella and Kwon
(2001)). Note that the two-dimensional volatility structure above is chosen in such a way
that the risk-free rates are driven only by the �rst Brownian motion Y 1 =: W r and the
forward spreads are driven solely by Y 2 =: W λ. Hence, we can apply directly the results
from Chiarella and Kwon (2001, equation (6.3)) and obtain the following SDE for the short
rate r

drt = (ρt − k(t)rt)dt+ ζ(t)
√
rtdW

r
t , (34)

where

ρt =
∂

∂t
f0(t) + k(t)f0(t) +

∫ t

0
σ2
s(t)ds.

This is a one-dimensional extended CIR short rate model. We emphasize, however, that ρt is
non-deterministic since it depends on the non-deterministic σs(t). An additional, auxiliary
factor

ıt =
∫ t

0
σ2
s(t)ds , dıt =

(
(ζ(t))2rt − 2k(t)ıt

)
dt

is needed to make the model Markovian in (rt, ıt). The forward rate volatility speci�cation
that yields the extended CIR short rate model in which k and ζ do not depend on time, was
studied in Heath, Jarrow, and Morton (1992, Section 8), but in this case ρ in (34) is not
available in explicit form.

Reasoning along the same lines as above yields the following SDE for the short term
spread λ

dλt = (ρ∗t − κ∗(t)λt)dt+ ζ∗(t)
√
λtdW

λ
t ,

where ρ∗t is de�ned accordingly. Similarly, we also de�ne

t =
∫ t

0
(σ∗s(t))

2ds , dt =
(
(ζ∗(t))2λt − 2k∗(t)t

)
dt.

In Theorem 2.1 of Chiarella and Kwon (2001) it was shown that the risk-free extended
CIR model possesses an a�ne term structure with two stochastic factors. More precisely,
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the bond prices can be written as exponential-a�ne functions of the current level of the
short rate r and the process ı:

Bt(T ) =
B0(T )
B0(t)

exp
(
γ(t, T )f0(t)− γ(t, T )rt −

1
2
γ2(t, T )ıt

)
, (35)

where

γ(t, T ) =
∫ T

t
e−

∫ u
t k(v)dvdu

is a deterministic function (combine Theorem 2.1 with (2.4) and (1.2) in Chiarella and Kwon
(2001)). For risky bonds B̄∗t (T ) a similar expression involving in addition λt and t can be
obtained by exactly the same reasoning and making use of the representation

B̄∗t (T ) = Bt(T ) exp
(
−
∫ T

t
gt(u)du

)
, (36)

which follows from (1) and (3).

3.2 Jumps and deterministic volatility

In CVA applications (see Crépey (2012)), Markovian speci�cations are required. The previ-
ous Brownian speci�cation of the general multiple-curve HJM setup, yields a four-dimensional
Markov factor model in terms of the process (Xt = (rt, λt, ıt, t))0≤t≤T̄ . In the quest of a
more parsimonious Markovian speci�cation, we now assume that the driving process Y is an
n-dimensional Lévy process, whose components are subordinators, and that the volatilities
are deterministic. We derive conditions that ensure the nonnegativity of the interest rates
and the spreads in this setting. It is worthwhile mentioning that when Y is two-dimensional
as in the previous example, this yields a two-dimensional Markov factor model in terms of
X = (r, λ), which makes this speci�cation preferable for applications.

Let Y be an n-dimensional nonnegative Lévy process, such that its Lévy measure
satis�es Assumption 2.1. Its cumulant generating function is given by

κ(z) = zb+
∫

Rn+
(ezx − 1)F (dx) (37)

for z ∈ Rn such that z ∈ [−(1 + ε)K, (1 + ε)K]n, where b ≥ 0 denotes the drift term and the
Lévy measure F has its support in Rn

+. We refer to Theorem 21.5 and Remark 21.6 in Sato
(1999) for one-dimensional subordinators; for multi-dimensional nonnegative Lévy processes
see (3.15) in Barndor�-Nielsen and Shephard (2001). Note that subordinators do not have
a di�usion component and their jumps can be only positive. Examples of these processes
include a compound Poisson process with positive jumps, Gamma process, inverse Gaussian
(IG) process, and generalized inverse Gaussian (GIG) processes.

In the remainder of the paper we impose the following standing assumptions on the
volatilities Σ and Σ∗:

Assumption 3.1 The volatilities Σ and Σ∗ are nonnegative, deterministic and stationary
functions. More precisely, they are given as

Σs(t) =
(
Si(t− s)

)
1≤i≤n

and Σ∗s(t) =
(
S∗,i(t− s)

)
1≤i≤n

,

for every s, t such that 0 ≤ s ≤ t ≤ T̄ , where Si : [0, T̄ ] → R+ and S∗,i : [0, T̄ ] → R+,
i = 1, . . . , n, are deterministic functions bounded by K2 , where K is the constant from (6).
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Proposition 3.2 (i) The dynamics of the forward rate ft(T ) and the short rate rt are given
by

ft(T ) = f0(T )− κ(−Σt(T )) + κ(−Σ0(T )) +
∫ t

0
σs(T )dYs (38)

and

rt = f0(t) + κ(−Σ0(t)) +
∫ t

0
σs(t)dYs. (39)

(ii) The dynamics of the forward spread gt(T ) and the short spread λt are given by

gt(T ) = g0(T )− κ(−Σ∗t (T )− Σt(T )) + κ(−Σ∗0(T )− Σ0(T ))

+κ(−Σt(T ))− κ(−Σ0(T )) +
∫ t

0
σ∗s(T )dYs (40)

and

λt = g0(t) + κ(−Σ∗0(t)− Σ0(t))− κ(−Σ0(t)) +
∫ t

0
σ∗s(t)dYs. (41)

Proof. We begin by noting that

∂

∂T
Si(T − s) = − ∂

∂s
Si(T − s) and ∂

∂T
S∗,i(T − s) = − ∂

∂s
S∗,i(T − s), (42)

for i = 1, . . . , n. Hence, Assumption 3.1 implies

∂

∂T
κ(−Σs(T )) = − ∂

∂s
κ(−Σs(T ))

and

∂

∂T
κ(−Σ∗s(T )− Σs(T )) = − ∂

∂s
κ(−Σ∗s(T )− Σs(T )),

which follows from (42) by di�erentiation. Therefore, we obtain∫ t

0

∂

∂T
κ(−Σs(T ))ds = −

∫ t

0

∂

∂s
κ(−Σs(T ))ds

= − (κ(−Σt(T ))− κ(−Σ0(T ))) ,

and similarly,∫ t

0

∂

∂T
κ(−Σ∗s(T )− Σs(T ))ds = − (κ(−Σ∗t (T )− Σt(T ))− κ(−Σ∗0(T )− Σ0(T ))) .

Inserting these expressions into (30) and (32) yields (38) and (40), respectively. To show
(39) and (41) we note that ∫ t

0

∂

∂t
κ(−Σs(t))ds = κ(−Σ0(t))

and ∫ t

0

∂

∂t
κ(−Σ∗s(t)− Σs(t))ds = κ(−Σ∗0(t)− Σ0(t)),
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due to κ(−Σt(t)) = κ(0) = 0 and κ(−Σ∗t (t) − Σt(t)) = 0, which follows by (14) and (21)
combined with (37). 2

In the next two propositions we give necessary and su�cient deterministic conditions
for the nonnegativity of the interest rates and the spreads. Let us denote

µ(t, T ) := ft(T )−
∫ t

0
σs(T )dYs = f0(T )− κ(−Σt(T )) + κ(−Σ0(T ))

µ(t) := rt −
∫ t

0
σs(t)dYs = f0(t) + κ(−Σ0(t)),

where the second equality in each line follows by (38) and (39), respectively. Note that
µ(t, T ) and µ(t) are thus deterministic.

Proposition 3.3 (i) The short rate rt is nonnegative if µ(t) ≥ 0, for t ∈ [0, T ].
(ii) Assume that the distribution of the random vector Y1 has [0,∞)n as its support. Then

the converse of (i) is also true, i.e. if rt ≥ 0, then µ(t) ≥ 0, for every t ∈ [0, T ]. Moreover, if

rt ≥ 0, for every t ∈ [0, T ], then ft(T ) ≥ 0, for every T ∈ [0, T̄ ]. In words, the nonnegativity

of the short rate implies the nonnegativity of the forward rate.

Proof. Since Y has nonnegative components and the volatility σ is nonnegative by assump-
tion, it is obvious that µ(t) ≥ 0 implies rt ≥ 0, for every t. This proves (i).

In case when the support of Y1 is [0,∞)n, we show the converse statement by noting
that

0 ≤
(∫ t

0
σs(t)dYs

)
(ω) ≤ K

2

(
n∑
i=1

∫ t

0
dY i

s (ω)

)
=
K
2

n∑
i=1

Y i
t (ω), (43)

for every ω ∈ Ω. Note that since Y i, i = 1, . . . , n, are increasing process, here the stochastic
integrals coincide with the Stieltjes integrals, and hence we are able to do the integra-
tion pathwise. Moreover, since Y1 has the support [0,∞)n, so does Yt. This implies that
IP
(
ω ∈ Ω :

∑n
i=1 Y

i
t (ω) < ε

)
> 0, for every ε > 0. This combined with (43) yields that

IP
(
ω ∈ Ω :

(∫ t

0
σs(t)dYs

)
(ω) < ε

)
> 0,

for every ε > 0. Since µ(t) is deterministic, it follows that

rt = µ(t) +
∫ t

0
σs(t)dYs ≥ 0

only if µ(t) ≥ 0. Thus, we have proved the �rst claim in (ii). To show the second one, namely
that the nonnegativity of the short rate rt for all t ∈ [0, T ], implies the nonnegativity of the
forward rate ft(T ), note that

µ(t, T ) = µ(T )− κ(−Σt(T )).

Since we have just proved that rT ≥ 0 implies µ(T ) ≥ 0, it su�ces to show that−κ(−Σt(T )) ≥
0 to deduce that µ(t, T ) ≥ 0. But this follows easily from Σt(T ) ≥ 0 combined with (37).
Thus, we have µ(t, T ) ≥ 0, which implies ft(T ) ≥ 0 by de�nition of µ(t, T ). 2
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Completely analogously, we can derive conditions for the nonnegativity of the forward
spread gt(T ) and the short term spread λt. Let us denote

µ∗(t, T ) := gt(T )−
∫ t

0
σ∗s(T )dYs

= g0(T )− κ(−Σt(T )− Σ∗t (T )) + κ(−Σ0(T )− Σ∗0(T ))
+ κ(−Σt(T ))− κ(−Σ0(T ))

µ∗(t) := λt −
∫ t

0
σ∗s(t)dYs = g0(t) + κ(−Σ0(t)− Σ∗0(t))− κ(−Σ0(t)),

which follows by (40) -(41).

Proposition 3.4 (i) The short term spread λt is nonnegative if µ∗(t) ≥ 0, for every t ∈
[0, T ].
(ii) Assume that the distribution of Y1 has [0,∞)n as its support. Then the converse of (i) is

also true, i.e. if λt ≥ 0, then µ∗(t) ≥ 0, for every t. Moreover, if λt ≥ 0, for every t ∈ [0, T ],
then gt(T ) ≥ 0, for every T ∈ [0, T̄ ], i.e. the nonnegativity of the short term spread implies

the nonnegativity of the forward spread.

Let us now assume that Y = (Y1, Y2) is a two-dimensional nonnegative Lévy process.
We shall study in more detail the dependence between its components. But before doing so,
let us give an example of the volatility structures that satisfy the conditions of this section
and produce nonnegative rates and spreads.

Example 3.5 (Vasicek volatility structure) Assume that the volatility of the forward
rates f·(T ) and the volatilities of the forward spreads g·(T ), for T ∈ [0, T̄ ], are of Vasicek
type, so for every 0 ≤ s ≤ T ≤ T̄ ,

σs(T ) =
(
σe−a(T−s), 0

)
, σ∗s(T ) =

(
0, σ∗e−a

∗(T−s)
)
, (44)

where σ, σ∗ > 0 and a, a∗ 6= 0 are real constants such that µ and µ∗ from Propositions 3.3(i)
and 3.4(i) are nonnegative. Then

Σt(T ) =
∫ T

t
σt(u)du =

(σ
a

(
1− e−a(T−t)

)
, 0
)
, Σ∗t (T ) =

(
0,
σ∗

a∗

(
1− e−a∗(T−t)

))
and by (22)

Σ̄∗t (T ) = Σt(T ) + Σ∗t (T ) =
(
σ

a

(
1− e−a(T−t)

)
,
σ∗

a∗

(
1− e−a∗(T−t)

))
.

The volatilities Σ and Σ∗ satisfy the standing Assumption 3.1. Moreover, inserting them
into Proposition 3.2, we note that the forward rates f·(T ) and the short rate r are driven
solely by the �rst subordinator Y 1, whereas the forward spreads g·(T ) and the short spread
λ are driven by the second subordinator Y 2.

With this volatility speci�cation, one obtains the Lévy Hull�White extended Vasicek
model for the short rate r (cf. Corollary 4.5 and equation (4.11) in the risk-free setup of
Eberlein and Raible (1999))

drt = a(ρ(t)− rt)dt+ σdY 1
t .
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By similar reasoning, one can obtain the Lévy Hull�White extended Vasicek model for the
short term spread λ

dλt = a∗(ρ∗(t)− λt)dt+ σ∗dY 2
t .

The functions ρ and ρ∗ are deterministic functions of time which are chosen is such a way that
the models �t the initial term structures f0(T ) and g0(T ) observed in the market. Inserting
the Vasicek volatilities into equation (39) for r and equation (41) for λ, and di�erentiating
with respect to time, one obtains ρ and ρ∗. We have

ρ(t) = f0(t) +
1
a

∂

∂t
f0(t) + κ1

(σ
a

(
e−at − 1

))
− (κ1)′

(σ
a

(
e−at − 1

)) σ
a
e−at,

and

ρ∗(t) = g0(t) +
1
a∗

∂

∂t
g0(t)− κ1

(σ
a

(
e−at − 1

))
+ (κ1)′

(σ
a

(
e−at − 1

)) σ
a
e−at

+κ
((

σ

a

(
e−at − 1

)
,
σ∗

a∗

(
e−a

∗t − 1
)))

+
1
a∗

∂

∂t
κ

((
σ

a

(
e−at − 1

)
,
σ∗

a∗

(
e−a

∗t − 1
)))

,

where κ1 is the cumulant function of Y 1.
Moreover, this model possesses an a�ne term structure. It means that the risk-free

bond prices can be written as exponential-a�ne functions of the current level of the short
rate r, and the risky bond prices as exponential-a�ne functions of the short rate r and the
short term spread λ. We have

Bt(T ) = exp(m(t, T ) + n(t, T )rt), (45)

where

m(t, T ) = log
(
B0(T )
B0(t)

)
− n(t, T )

[
f0(t) + κ1

(σ
a

(
e−at − 1

))]
−
∫ t

0

[
κ1
(σ
a

(
e−a(T−s) − 1

))
− κ1

(σ
a

(
e−a(t−s) − 1

))]
ds

and

n(t, T ) = −eat
∫ T

t
e−audu =

1
a

(
e−a(T−t) − 1

)
.

This result is proved in Raible (2000, Theorem 4.8). For B̄∗t (T ) it follows, by exactly the
same reasoning and using representation (36), that

B̄∗t (T ) = exp(m(t, T ) + n(t, T )rt +m∗(t, T ) + n∗(t, T )λt), (46)

m∗(t, T ) = log
(
−
∫ T

t
g0(u)du

)
− n∗(t, T )

[
g0(t)− κ1

(σ
a

(
e−at − 1

))
+κ
(
σ

a

(
e−at − 1

)
,
σ∗

a∗

(
e−a

∗t − 1
))]

−
∫ t

0

[
κ2

(
σ∗

a∗

(
e−a

∗(T−s) − 1
))
− κ2

(
σ∗

a∗

(
e−a

∗(t−s) − 1
))]

ds
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and

n∗(t, T ) = −ea∗t
∫ T

t
e−a

∗udu =
1
a∗

(
e−a

∗(T−t) − 1
)
,

where κ2 is the cumulant function of Y 2.

Example 3.6 (Dependent drivers) In order to specify the dependence between compo-
nents Y 1 and Y 2 of the driving process Y , we present here a common factor model. Possible
tractable alternatives to create dependence would be to subordinate two independent Lévy
processes with an independent common subordinator, or to use a Lévy copula, see Cont and
Tankov (2003).

Let us assume that Y 1 and Y 2 are given as

Y 1 = Z1 + Z3 and Y 2 = Z2 + Z3,

where Zi, i = 1, 2, 3, are mutually independent subordinators with drifts bZ
i
and Lévy

measures FZ
i
. Then Y 1 and Y 2 are again subordinators (this follows by Proposition 11.10

and Theorem 21.5 in Sato (1999)) and they are obviously dependent. The Lévy measures
and the cumulant functions for subordinators Y 1 and Y 2, as well as for the two-dimensional
process Y = (Y 1, Y 2), can be calculated explicitly, as shown below.

Consider a three-dimensional Lévy process Z = (Z1, Z2, Z3), consisting of mutually
independent subordinators Zi, as above. Applying Sato (1999, Exercise 12.10, page 67), the
independence of Z1, Z2 and Z3 implies that the Lévy measure FZ of Z is given by

FZ(A) =
3∑
i=1

FZ
i
(Ai), A ∈ B(R3 \ {0}), (47)

where for every i, Ai = {x ∈ R : xei ∈ A} with ei a unit vector in R3 with 1 in the i-th
position and other entries zero.

Now we simply have to write Y , Y 1 and Y 2 as linear transformations of Z and apply
Proposition 11.10 in Sato (1999). For example, we have Y = UZ, where

U =
[
1 0 1
0 1 1

]
.

Hence, bY = UbZ and the Lévy measure F Y is given, for B ∈ B(R2 \ {0}), by

F Y (B) = FZ(x ∈ R3 : Ux ∈ B) = FZ(x ∈ R3 : (x1 + x3, x2 + x3)> ∈ B),

which combined with (47) yields

F Y (B) = FZ
1
(x ∈ R : (x, 0) ∈ B) + FZ

2
(x ∈ R : (0, x) ∈ B) + FZ

3
(x ∈ R : (x, x) ∈ B).

The cumulant function κY of Y is given, for z ∈ R2 such that κZ
i
, i = 1, 2, 3, below are

well-de�ned, by
κY (z) = κZ

1
(z1) + κZ

2
(z2) + κZ

3
(z1 + z2).

This can be derived directly recalling that κY (z) = log IE[ezY ] and using independence
between Z1, Z2 and Z3.

Similarly, writing each Y i, i = 1, 2, as a linear transformation of Z, we obtain its Lévy
measure F Y

i
, for C ∈ B(R \ {0}),

F Y
i
(C) = FZ(x ∈ R3 : xi + x3 ∈ C) = FZ

i
(x ∈ R : x ∈ C) + FZ

3
(x ∈ R : x ∈ C)
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and the drift bY
i

= bZ
i
+ bZ

3
, which shows that Y i is indeed a subordinator (recall Theorem

21.5 in Sato (1999)). The cumulant function κY
i
of Y i is given, for z ∈ R such that κZ

i
and

κZ
3
below are well-de�ned, by

κY
i
(z) = κZ

i
(z) + κZ

3
(z).

To conclude this section, we describe two well-known subordinators: an inverse Gaus-
sian (IG) process and a Gamma process. In addition, we recall an example of a subordinator
belonging to the CGMY Lévy family, which was introduced by Carr, Geman, Madan, and
Yor (2002). Note that these processes have in�nite activity, which makes them suitable
drivers for the term structure of interest rates in our model.

Example 3.7 (IG process) According to Kyprianou (2006, Section 1.2.5), a process Z =
(Zt)t≥0 obtained from a standard Brownian motion W by setting

Zt = inf{s > 0 : Ws + bs > t},

where b > 0, is an inverse Gaussian (IG) process and has the Lévy measure given by

F (dx) =
1√

2πx3
e−

b2x
2 1{x>0} dx.

The distribution of Zt is IG( tb , t
2). The Lévy measure F satis�es condition (6) for any two

constants K, ε > 0 such that (1 + ε)K < b2

2 . Hence, the cumulant function κ exists for all

z ∈ (− b2

2 ,
b2

2 ) (actually for all z ∈ (−∞, b22 ) since F is concentrated on (0,∞)) and is given
by

κ(z) = b

(
1−

√
1− 2

z

b2

)
. (48)

Example 3.8 (Gamma process) The Gamma process Z = (Zt)t≥0 with parameters
α, β > 0 is a subordinator with Lévy measure given by

F (dx) = βx−1e−αx1{x>0} dx,

see Kyprianou (2006, Section1.2.4). The distribution of Zt is Γ(tβ, α). The Lévy measure
F satis�es condition (6) for any two constants K, ε > 0 such that (1 + ε)K < α. Hence, the
cumulant function κ is well-de�ned for all z ∈ (−∞, α) and is given by

κ(z) = −β log
(

1− z

α

)
.

Example 3.9 (CGMY subordinator) The CGMY Lévy process Z = (Zt)t≥0 with pa-
rameters G = ∞ and Y < 1 is a subordinator by Theorem 21.5 in Sato (1999). Its Lévy
measure is given by

F (dx) = C
exp(−M |x|)
|x|1+Y

1{x>0} dx,

where C,M > 0 and Y < 1; see Raible (2000, A.3.2). For an overview of the main properties
of the class of CGMY Lévy processes we refer to Carr, Geman, Madan, and Yor (2002) or
Raible (2000, A.3.2). Note that the cumulant function κ is known in closed form for Y < 0
and given by

κ(z) = CΓ(−Y )
(
(M − z)Y −MY

)
,

for all z ∈ (−∞,M); see Carr, Geman, Madan, and Yor (2002, Theorem 1) and Raible
(2000, A.3.2).
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4 Valuation of interest rate derivatives

Here we give an overview of the basic interest rate derivatives where the underlying rate is the
LIBOR and calculate their value in our setup. We work with general time-inhomogeneous
Lévy processes and under the assumptions of deterministic volatilities and drift terms in
equations (16) and (23), as well as under the assumption (17).

Before proceeding with the valuation of interest rate derivatives, let us recall that the
forward martingale measure IPT associated with the date 0 < T ≤ T̄ is a probability measure
de�ned on (Ω,FT ) and equivalent to IP. It is characterized by the following density process

dIPT

dIP

∣∣∣
Ft

=
βtBt(T )
B0(T )

,

where 0 ≤ t ≤ T . In our setup this density process is given by (cf. (13))

dIPT

dIP

∣∣∣
Ft

= exp
(
−
∫ t

0
As(T )ds−

∫ t

0
Σs(T )dYs

)
. (49)

Note that the density process is E-adapted. The payo�s of the derivatives that we are going to
study in the sequel are typically some combinations of deterministic functions of the LIBOR
rates LT (T, T + δ), which are ET -measurable random variables, for any T ∈ [0, T̄ − δ]. Then
we have

IE[f(LT (T, T + δ))|Ft] = IE[f(LT (T, T + δ))|Et],

for any deterministic, Borel measurable function f : R → R. This property is due to the
immersion property between E and F (see Bielecki and Rutkowski (2002, Section 6.1.1)),
which by assumption holds in our model. Moreover, the property holds true under any
forward measure IPT as well, since the density process in (49) is E-adapted. Henceforth in
all computations we shall automatically replace Ft by Et.

Finally, note that in a multiple-curve setup the process
(

B̄∗t (T )

B̄∗t (T+δ)

)
0≤t≤T

is not a mar-

tingale under the forward measure IPT+δ. Consequently, the forward LIBOR rate, if de�ned

as Lt(T, T + δ) = 1
δ

(
B̄∗t (T )

B̄∗t (T+δ)
− 1
)
, would be di�erent from a forward rate implied by a

forward rate agreement for the future time interval [T, T + δ], as we shall see below. In

the one-curve setup, the forward LIBOR rate de�ned as Lt(T, T + δ) = 1
δ

(
Bt(T )
Bt(T+δ) − 1

)
is

precisely the FRA rate for [T, T + δ].

4.1 Forward rate agreements

The simplest interest rate derivative is a forward rate agreement (FRA) with inception date
T and maturity T + δ, where 0 ≤ T ≤ T̄ − δ. Let us denote the �xed rate by K and the
notional amount by N . The payo� of such an agreement at maturity T + δ is equal to

PFRA(T + δ;T, T + δ,K,N) = Nδ(LT (T, T + δ)−K),

where LT (T, T + δ) is the T -spot LIBOR rate. Thus, the value of the FRA at time t ≤ T
is calculated as the conditional expectation with respect to the forward measure IPT+δ

associated with the date T + δ and is given by

PFRA(t;T, T + δ,K,N) = NδBt(T + δ)IEIPT+δ

[LT (T, T + δ)−K|Et].
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We emphasize again that the forward rate implied by this FRA, that is the rate Kt such that
PFRA(t;T, T + δ,Kt, N) = 0, di�ers in the multiple-curve setup from the classical forward
LIBOR rate.

Let us derive the value of the FRA and calculate the forward rate Kt in the model.
Using de�nition (4) of the LIBOR rate LT (T, T + δ) we have

PFRA(t;T, T + δ,K,N) = NBt(T + δ)IEIPT+δ

[
1

B̄∗T (T + δ)
− K̄|Et

]
, (50)

where K̄ = 1 + δK. The key issue is thus to compute conditional expectations of the form

vT,St := IEIPS
[

1
B̄∗T (S)

∣∣∣ Et] , 0 ≤ t ≤ T ≤ S. (51)

Inserting S = T + δ and (23) into (51) we obtain

vT,T+δ
t =

B̄∗0(T )
B̄∗0(T + δ)

exp
(∫ T

0
(Ā∗s(T + δ)− Ā∗s(T ))ds

)
×IEIPT+δ

[
exp

(∫ T

0
(Σ̄∗s(T + δ)− Σ̄∗s(T ))dYs

) ∣∣∣ Et]
= cT,T+δ exp

(∫ t

0
(Σ̄∗s(T + δ)− Σ̄∗s(T ))dYs

)
(52)

×IEIPT+δ

[
exp

(∫ T

t
(Σ̄∗s(T + δ)− Σ̄∗s(T ))dYs

)]
,

where

cT,T+δ =
B̄∗0(T )

B̄∗0(T + δ)
exp

(∫ T

0
(Ā∗s(T + δ)− Ā∗s(T ))ds

)
.

For the second equality in (52) we use the fact that
∫ t

0 (Σ̄∗s(T + δ) − Σ̄∗s(T ))dYs is Et-
measurable. Moreover, since Y is a time-inhomogeneous Lévy process under the measure
IPT+δ, its increments are independent (cf. Proposition 2.3 and Lemma 2.5 in Kluge (2005)).
This combined with the deterministic volatility structure which is integrated with respect
to Y yields the equality.

The remaining expectation can be calculated making use of Proposition 3.1 in Eberlein
and Kluge (2006b), which yields

IEIPT+δ

[
exp

(∫ T

t
(Σ̄∗s(T + δ)− Σ̄∗s(T ))dYs

)]
= exp

(∫ T

t
κIPT+δ

s (Σ̄∗s(T + δ)− Σ̄∗s(T ))ds
)
, (53)

where κIPT+δ

s denotes the cumulant function of Y under the measure IPT+δ. However, to
obtain the expression for this expectation using the cumulant function κs of Y under the



23

measure IP, we have the following sequence of equalities

IEIPT+δ

[
exp

(∫ T

t
(Σ̄∗s(T + δ)− Σ̄∗s(T ))dYs

)]
(54)

= exp
(
−
∫ T

0
As(T + δ)ds

)
×IE

[
exp

(∫ T

t
(Σ̄∗s(T + δ)− Σ̄∗s(T ))dYs −

∫ T

0
Σs(T + δ)dYs

)]
= exp

(
−
∫ T

0
κs(−Σs(T + δ))ds

)
IE
[
exp

(∫ t

0
(−Σs(T + δ))dYs

)]
×IE

[
exp

(∫ T

t
(Σ̄∗s(T + δ)− Σ̄∗s(T )− Σs(T + δ))dYs

)]
= exp

(∫ T

t

(
κs(Σ̄∗s(T + δ)− Σ̄∗s(T )− Σs(T + δ))− κs(−Σs(T + δ))

)
ds

)
,

where we have used equation (49) for the �rst equality, and the drift condition (17) plus the
independence of increments of Y for the second one. The third equality follows by Eberlein
and Kluge (2006b, Proposition 3.1)). Finally, we obtain

vT,T+δ
t = cT,T+δ exp

(∫ t

0
(Σ̄∗s(T + δ)− Σ̄∗s(T ))dYs

)
(55)

× exp
(∫ T

t

(
κs(Σ̄∗s(T + δ)− Σ̄∗s(T )− Σs(T + δ))− κs(−Σs(T + δ))

)
ds

)
.

Note that along the same lines one obtains a formula for the cumulant function κIPT+δ

s

κIPT+δ

s (z) = κs(z − Σs(T + δ))− κs(−Σs(T + δ)), (56)

for z ∈ Rn such that κs(z − Σs(T + δ)) is well-de�ned. This follows by combining (53) and
(54), for every t ∈ [0, T ] and for Σ̄∗s(T + δ)− Σ̄∗s(T ) replaced with z.

In particular we proved the following

Proposition 4.1 The value of the FRA at time t = 0 is given by

PFRA(0;T, T + δ,K,N) = NB0(T + δ)
[
vT,T+δ

0 − K̄
]
,

where

vT,T+δ
0 =

B̄∗0(T )
B̄∗0(T + δ)

exp
(∫ T

0

(
Ā∗s(T + δ)− Ā∗s(T )− κs(−Σs(T + δ))

)
ds

)
× exp

(∫ T

0
κs(Σ̄∗s(T + δ)− Σ̄∗s(T )− Σs(T + δ))ds

)
.

The forward rate K0 implied by this FRA is given by

K0 =
1
δ

[
vT,T+δ

0 − 1
]
. (57)

The spread above the one-curve forward rate given by 1
δ

(
B0(T )
B0(T+δ) − 1

)
, is equal to

SpreadFRA0 =
1
δ

[
vT,T+δ

0 − B0(T )
B0(T + δ)

]
. (58)

As soon as the driving process Y and the parameters of the model are speci�ed, all these
values can be easily computed. We provide an example in Section 5.
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4.2 Interest rate swaps

An interest rate swap is a �nancial contract between two parties to exchange one stream
of future interest payments for another, based on a speci�ed notional amount N . Here we
consider a �xed-for-�oating swap, where a �xed payment is exchanged for a �oating payment
linked to the LIBOR rate. We assume, as is typical, that the LIBOR rate is set in advance
and the payments are made in arrears. The swap is initiated at time T0 ≥ 0. Denote by
T1 < · · · < Tn, where T1 > T0, a collection of the payment dates and by S the �xed rate.
Then the time-t value of the swap for the receiver of the �oating rate is given by, for t ≤ T0,

PSw(t;T1, Tn) = N
n∑
k=1

δk−1Bt(Tk)IEIPTk [LTk−1
(Tk−1, Tk)− S|Et]

= N

n∑
k=1

PFRA(t;Tk−1, Tk, S, 1)

= N

n∑
k=1

Bt(Tk)
(
v
Tk−1,Tk
t − S̄k−1

)
, (59)

where δk−1 = Tk − Tk−1, S̄k−1 = 1 + δk−1S, and v
Tk−1,Tk
t is given by (55), for every k =

1, . . . , n. This formula follows directly from (50) and (51).
The swap rate S(t;T1, Tn) is the rate that makes the time-t value PSw(t;T1, Tn) of the

swap equal to zero. Therefore,

Proposition 4.2 The swap rate S(t;T1, Tn), for t ≤ T0, is given by

S(t;T1, Tn) =
∑n

k=1Bt(Tk)(v
Tk−1,Tk
t − 1)∑n

k=1 δk−1Bt(Tk)
. (60)

4.3 Overnight indexed swaps (OIS)

In an overnight indexed swap (OIS) the counterparties exchange a stream of �xed-rate
payments for a stream of �oating-rate payments linked to a compounded overnight rate.
Let us assume the same tenor structure as in the previous subsection is given and denote
again the �xed rate by S. Similarly to Filipovi¢ and Trolle (2011, Section 2.5, equation
(11)), the time-t value of the swap for the receiver of the �oating rate is given by, for t ≤ T0,

POIS(t;T1, Tn) = N

(
Bt(T0)−Bt(Tn)− S

n∑
k=1

δk−1Bt(Tk)

)
.

The OIS rate OIS(t;T1, Tn), for t ≤ T0, is given by

OIS(t;T1, Tn) =
Bt(T0)−Bt(Tn)∑n
k=1 δk−1Bt(Tk)

. (61)

The LIBOR-OIS spread at time T , for the interval [T, T + δ], where 0 ≤ T ≤ T̄ − δ, is
thus obtained as a di�erence of (4) and (61) (for a single payment date) as

LT (T, T + δ)−OIS(T ;T + δ, T + δ) =
1
δ

(
1

B̄∗T (T + δ)
− 1
BT (T + δ)

)
. (62)
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Note that this spread is nonnegative as soon as the forward spreads are nonnegative (cf. (1)
and (3)).

The LIBOR-OIS swap spread at time 0 ≤ t ≤ T0 is by de�nition the di�erence between
the swap rate (60) of the LIBOR-indexed interest rate swap and the OIS rate (61) and is
given by

S(t;T1, Tn)−OIS(t;T1, Tn) =
∑n

k=1Bt(Tk)(v
Tk−1,Tk
t − 1)−Bt(T0) +Bt(Tn)∑n
k=1 δk−1Bt(Tk)

. (63)

4.4 Basis swaps

A basis swap is an interest rate swap, where two �oating payments linked to the LIBOR rates
of di�erent tenors are exchanged. For example, a buyer of such a swap receives semiannually
a 6m-LIBOR and pays quarterly a 3m-LIBOR, both set in advance and paid in arrears. Note
that there also exist other conventions regarding the payments on the two legs of a basis swap.
A more detailed account on basis swaps can be found in Mercurio (2010a, Section 5.2) and
Filipovi¢ and Trolle (2011, Section 2.4 and Appendix F). Let us consider a basis swap with
the two tenor structures denoted by T 1 = {T 1

0 < . . . < T 1
n1
} and T 2 = {T 2

0 < . . . < T 2
n2
},

where T 1
0 = T 2

0 ≥ 0, T 1
n1

= T 2
n2

= T̂ , and T 1 ⊂ T 2. The notional amount is denoted by N
and the swap is initiated at time T 1

0 , so that the �rst payments are due at T
1
1 and T 2

1 . The
time-t value of such an agreement is given by, for t ≤ T 1

0 ,

PBSw(t; T̂ , N) = N

(
n1∑
i=1

δ1
i−1Bt(T

1
i )IEIPT

1
i [LT 1

i−1
(T 1
i−1, T

1
i )|Et]

−
n2∑
j=1

δ2
j−1Bt(T

2
j )IEIP

T2
j [LT 2

j−1
(T 2
j−1, T

2
j )|Et]

 . (64)

Making use of (50) and (51) we obtain

Proposition 4.3 The value of the basis swap at time t ≤ T 1
0 = T 2

0 is given by

PBSw(t; T̂ , N) = N

 n1∑
i=1

Bt(T 1
i )
(
v
T 1
i−1,T

1
i

t − 1
)
−

n2∑
j=1

Bt(T 2
j )
(
v
T 2
j−1,T

2
j

t − 1
) , (65)

where v
Txk−1,T

x
k

t is given by (55), for each tenor structure T x, x = 1, 2, k = 1, . . . , nx.

Note that in the classical one-curve setup the time-t value of such a swap is zero. Since
the crisis, markets quote positive basis swap spreads that have to be added to the smaller
tenor leg, which is consistently accounted for in our setup; see Section 5 for a numerical
example. More precisely, on the smaller tenor leg the �oating interest rate LT 2

j−1
(T 2
j−1, T

2
j )

at T 2
j is replaced by LT 2

j−1
(T 2
j−1, T

2
j )+SBSw(t; T̂ ), for every j = 1, . . . , n2, where SBSw(t; T̂ )

is the basis swap spread calculated below.

Proposition 4.4 The basis swap spread SBSw(t; T̂ ) at time t is given by

SBSw(t; T̂ ) =

∑n1
i=1Bt(T

1
i )
(
v
T 1
i−1,T

1
i

t − 1
)
−
∑n2

j=1Bt(T
2
j )
(
v
T 2
j−1,T

2
j

t − 1
)

∑n2
j=1 δ

2
j−1Bt(T

2
j )

. (66)
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Proof. The result follows from (64), where LT 2
j−1

(T 2
j−1, T

2
j ) is replaced by LT 2

j−1
(T 2
j−1, T

2
j ) +

S, for every j, where S denotes the spread. The basis swap spread SBSw(t; T̂ ) is then
obtained by solving PBSw(t; T̂ , N) = 0, i.e. it is the spread S that makes the value of the
basis swap zero at time t. 2

Let us check that the value of the basis swap in a pre-crisis one-curve setup is indeed
zero. We recall that in this setup the forward LIBOR rates, which were de�ned using

the risk-free zero coupon bonds as
(
Lt(T, T + δ) = 1

δ

(
Bt(T )
Bt(T+δ) − 1

))
0≤t≤T

, are martingales

under the corresponding forward measures. We thus have

PBSw(t; T̂ , N) = N

(
n1∑
i=1

δ1
i−1Bt(T

1
i )IEIPT

1
i [LT 1

i−1
(T 1
i−1, T

1
i )|Et]

−
n2∑
j=1

δ2
j−1Bt(T

2
j )IEIP

T2
j [LT 2

j−1
(T 2
j−1, T

2
j )|Et]


= N

 n1∑
i=1

δ1
i−1Bt(T

1
i )Lt(T 1

i−1, T
1
i )−

n2∑
j=1

δ2
j−1Bt(T

2
j )Lt(T 2

j−1, T
2
j )


= N

(
(Bt(T 1

0 )−Bt(T 1
n1

))− (Bt(T 2
0 )−Bt(T 2

n2
))
)

= 0,

by the initial assumptions T 1
0 = T 2

0 and T 1
n1

= T 2
n2
.

In the multiple-curve setup we cannot use the same calculation, since now the LIBOR
rates are not martingales under the classical forward measures. Hence, one ends up with
formula (65), which in general yields a non-zero value of the basis swap and produces a
positive basis swap spread (66) (cf. Table 2 in Section 5).

Remark 4.5 Note that in practice the �oating-rate payments and the �xed-rate payments
of the swaps de�ned in Sections 4.2 and 4.3 typically do not occur with the same frequency,
as we have assumed to simplify the notation. In that case one has to work with two di�erent
tenor structures (as in the case of basis swaps) and modify the formulas accordingly. Then
the price of a basis swap PBSw(t; T 1, T 2) with tenor structures T 1 and T 2 can be expressed
as a di�erence of prices of two interest rate swaps which have the same tenor structure for
the �xed-rate payments (e.g. T 1) and the same �xed rate S, and the �oating-rate payments
are done on the two tenor structures T 1 and T 2 of the basis swap. More precisely, we have

PBSw(t; T 1, T 2) = PSw(t; T 1, T 1)− PSw(t; T 1, T 2), (67)

where

PSw(t; T 1, T x) = N

 nx∑
i=1

Bt(T xi )
(
v
Txi−1,T

x
i

t − 1
)
−

n1∑
j=1

δ1
j−1SBt(T

1
j )


is the time-t value of an interest rate swap, whose �xed-rate payments are done on the tenor
structure T 1 and the �oating-rate payments linked to the LIBOR on T x, x = 1, 2.

4.5 Caps and �oors

Recall that an interest rate cap (respectively �oor) is a �nancial contract in which the buyer
receives payments at the end of each period in which the interest rate exceeds (respectively
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falls below) a mutually agreed strike level. The payment that the seller has to make covers
exactly the di�erence (whenever positive) between the strike K and the interest rate at
the end of each period. Every cap (respectively �oor) is a series of caplets (respectively
�oorlets). The time-t price of a caplet with strike K and maturity T ≥ t, which is settled
in arrears, is given by

PCpl(t;T,K) = δ Bt(T + δ)IEIPT+δ
[
(LT (T, T + δ)−K)+

∣∣∣ Et]
= Bt(T + δ)IEIPT+δ

[(
1

B̄∗T (T + δ)
− K̄

)+ ∣∣∣ Et] ,
where K̄ = 1 + δK.

It is worthwhile mentioning that the classical transformation of a caplet into a put
option on a bond does not work in the multiple-curve setup. More precisely, the fact that the
payo�

(
(1 + δLT (T, T + δ))− K̄

)+
settled at time T + δ is equivalent to the payo� BT (T +

δ)
(
(1 + δLT (T, T + δ))− K̄

)+
settled at time T is still valid, since the OIS discounting

is used. However, this will not yield the desired cancelation of discount factors. Since
the LIBOR rate depends on the B̄∗(T ) bonds and the risk-free B(T ) bonds are used for
discounting, we have

BT (T + δ)
(
(1 + δLT (T, T + δ))− K̄

)+ = BT (T + δ)
(

1
B̄∗T (T + δ)

− K̄
)+

,

which cannot be simpli�ed further as in the one-curve case.
Let us now calculate the value of the caplet at time t = 0 using the Fourier transform

method. We have

PCpl(0;T,K) = B0(T + δ)IEIPT+δ

[(
1

B̄∗T (T + δ)
− K̄

)+
]

= B0(T + δ)IEIPT+δ
[(
eX − K̄

)+ ]
,

where X is a random variable given by (see (23))

X := log
B̄∗0(T )

B̄∗0(T + δ)
+
∫ T

0
(Ā∗s(T + δ)− Ā∗s(T ))ds+

∫ T

0
(Σ̄∗s(T + δ)− Σ̄∗s(T ))dYs.

Let us denote by MT+δ
X the moment generating function of X under the measure IPT+δ, i.e.

MT+δ
X (z) = IEIPT+δ [

ezX
]
,

for z ∈ R such that the above expectation is �nite. We have

MT+δ
X (z) = exp

(
−
∫ T

0
κs(−Σs(T + δ))ds

)
(68)

× exp
(
z

(
log

B̄∗0(T )
B̄∗0(T + δ)

+
∫ T

0

(
Ā∗s(T + δ)− Ā∗s(T )

)
ds

))
× exp

(∫ T

0
κs
(
z
(
Σ̄∗s(T + δ)− Σ̄∗s(T )

)
− Σs(T + δ)

)
ds

)
,
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where κs is the cumulant function of Y under the measure IP. The derivation of this formula
follows along similar lines as the computations in Section 4.1. In particular, we have used
equations (49) and (17) and Proposition 3.1 in Eberlein and Kluge (2006b).

Let us impose some conditions on the boundedness of the volatility structures Σ and
Σ∗ for the sake of the next result. We assume that there exists a positive constant K̃ < K

3

such that Σs(T ) ≤ K̃ and Σ∗s(T ) ≤ K̃ componentwise and for all s, T ∈ [0, T̄ ] (note that this
is a slightly stronger boundedness condition than the one in Assumption 3.1).

Now, applying Theorem 2.2 and Example 5.1 in Eberlein, Glau, and Papapantoleon
(2010) we obtain

Proposition 4.6 The price at time t = 0 of a caplet with strike K and maturity T is given

by

PCpl(0;T,K) =
B0(T + δ)

2π

∫
R

K̄1+iv−RMT+δ
X (R− iv)

(iv −R)(1 + iv −R)
dv, (69)

for any R ∈
(

1, K−K̃
2K̃

)
.

Proof. One has to apply Theorem 2.2 in Eberlein, Glau, and Papapantoleon (2010) with the
Fourier transform of the caplet payo� function derived in Example 5.1 of the same paper,
where other prerequisites for Theorem 2.2 related to the payo� function are also checked.
This Fourier transform is well-de�ned for any R ∈ (1,+∞). To ensure that MT+δ

X (R − iv)

is �nite, it su�ces to take any R ∈
(

1, K−K̃
2K̃

)
. More precisely, for every i = 1, . . . , n,

|R
(
Σ̄i,∗
s (T + δ)− Σ̄i,∗

s (T )
)
− Σi

s(T + δ)| ≤ R|Σ̄i,∗
s (T + δ)− Σ̄i,∗

s (T )|+ |Σi
s(T + δ)|

≤ R2K̃ + K̃

≤ K − K̃
2K̃

2K̃ + K̃ < K,

and thus MT+δ
X (R − iv) is �nite (compare (68) and recall that κs is well-de�ned for all

z ∈ Cn such that <z ∈ [−(1 + ε)K, (1 + ε)K]n). 2

4.6 Swaptions

A swaption is an option to enter an interest rate swap with swap rate S and maturity Tn
at a pre-speci�ed date T = T0. Let us consider the swap from Section 4.2. Recall that a
swaption can be seen as a sequence of �xed payments δj−1 (S(T ;T1, Tn)− S)+, j = 1, . . . , n,
that are received at payment dates T1, . . . , Tn, where S(T ;T1, Tn) is the swap rate of the
underlying swap at time T . Hence, the value at time t of the swaption is given by

PSwn(t;T, Tn, S) = Bt(T )
n∑
j=1

δj−1IEIPT
[
BT (Tj) (S(T ;T1, Tn)− S)+ |Et

]
;

see Musiela and Rutkowski (2005, Section 13.1.2, p.482). At time t = 0 we have

PSwn(0;T, Tn, S) = B0(T )IEIPT

 n∑
j=1

δj−1BT (Tj) (S(T ;T1, Tn)− S)+


= B0(T )IEIPT

 n∑
j=1

BT (Tj)v
Tj−1,Tj
T −

n∑
j=1

BT (Tj)S̄j−1

+ ,
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which follows by inserting (60). Recall that S̄j−1 = 1 + δj−1S and v
Tj−1,Tj
T is given by (52).

To proceed we assume in addition that the conditions of Example 3.5 are satis�ed,
i.e. the driving process Y is two-dimensional nonnegative Lévy process and we assume the
Vasicek volatility structures (44). Recall that for each j, BT (Tj) is given by (cf. equation
(16))

BT (Tj) =
B0(Tj)
B0(T )

exp
(∫ T

0
(As(T )−As(Tj))ds+

∫ T

0
(Σs(T )− Σs(Tj))dYs

)
and v

Tj−1,Tj
T is given by (cf. equations (52) and (53))

v
Tj−1,Tj
T = cTj−1,Tj exp

(∫ T

0
(Σ̄∗s(Tj)− Σ̄∗s(Tj−1))dYs

)
× exp

(∫ Tj−1

T
κIPTj
s (Σ̄∗s(Tj)− Σ̄∗s(Tj−1))ds

)
,

where κIPTj
s is given by (56) (with T + δ replaced by Tj). The volatilities appearing above

can be written as

Σs(T )− Σs(Tj) =
(σ
a
eas
(
e−aTj − e−aT

)
, 0
)

Σ̄∗s(Tj)− Σ̄∗s(Tj−1) =
(
σ

a
eas
(
e−aTj−1 − e−aTj

)
,
σ∗

a∗
ea

∗s
(
e−a

∗Tj−1 − e−a∗Tj
))

,

which motivates us to introduce the following ET -measurable random vector

XT =
(∫ T

0
easdY 1

s ,

∫ T

0
ea

∗sdY 2
s

)
.

Consequently, for each j we can rewrite BT (Tj) and v
Tj−1,Tj
T as

BT (Tj) = cj,0ec
j,1X1

T and v
Tj−1,Tj
T = c̄j,0ec̄

jXT ,

where

cj,0 =
B0(Tj)
B0(T )

exp
(∫ T

0
(As(T )−As(Tj))ds

)
,

cj,1 =
σ

a

(
e−aTj − e−aT

)
,

c̄j,0 = cTj−1,Tj exp
(∫ Tj−1

T
κIPTj
s (Σ̄∗s(Tj)− Σ̄∗s(Tj−1))ds

)
,

c̄j =
(
σ

a

(
e−aTj−1 − e−aTj

)
,
σ∗

a∗

(
e−a

∗Tj−1 − e−a∗Tj
))

are deterministic constants. Hence, the value at time t = 0 of the swaption depends only on
the distribution of the random vector XT under the measure IPT :

PSwn(0;T, Tn, S) = B0(T )IEIPT

 n∑
j=1

cj,0ec
j,1X1

T c̄j,0ec̄
jXT −

n∑
j=1

S̄j−1c
j,0ec

j,1X1
T

+
= B0(T )IEIPT

 n∑
j=1

aj,0ea
j,1X1

T+aj,2X2
T −

n∑
j=1

bj,0eb
j,1X1

T

+ , (70)
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where aj,0 = cj,0c̄j,0, aj,1 = cj,1 + c̄j,1, aj,2 = c̄j,2, bj,0 = S̄j−1c
j,0 and bj,1 = cj,1. To calculate

this expectation we shall use the moment generating functionMT
XT

of XT under the measure

IPT , which is given explicitly in terms of the characteristics of Y by

MT
XT

(z) = IEIPT
[
ez1X

1
T+z2X2

T

]
= IEIPT

[
e
∫ T
0 z1easdY 1

s +
∫ T
0 z2ea

∗sdY 2
s

]
= exp

(
−
∫ T

0
κ
((σ

a
(e−a(T−s) − 1), 0

))
ds

)
(71)

× exp
(∫ T

0
κ
(
z1e

as − σ

a
(1− e−a(T−s)), z2e

a∗s
)
ds

)
,

for any z ∈ R2 such that the expectation above is �nite. This follows along the same lines
as in (54), for a deterministic function U(s) =

(
z1e

as, z2e
a∗s
)
, the forward measure IPT and

inserting the Vasicek volatility speci�cations.
Next, to compute the expectation in (70), one has to use a two-dimensional version of

the Jamshidian decomposition and apply the Fourier transform method, similarly to Section
4.5. More precisely, let us introduce deterministic functions f̃ , f : R2

+ → R

f̃(x1, x2) =
n∑
j=1

aj,0ea
j,1x1+aj,2x2 −

n∑
j=1

bj,0eb
j,1x1

f(x1, x2) = f̃(x1, x2)+.

Then
PSwn(0;T, Tn, S) = B0(T )IEIPT

[
f(X1

T , X
2
T )
]
,

and making use of Theorem 3.2 in Eberlein, Glau, and Papapantoleon (2010), one obtains

Proposition 4.7 The time-0 price of a swaption with swap rate S, exercise date T and

maturity Tn is given by the following semi-closed formula:

PSwn(0;T, Tn, S) =
B0(T )
(2π)2

∫
R2

MT
XT

(R+ iu)f̂(iR− u)du, (72)

where R ∈ R2 is such that MT
XT

(R+ iu) is well-de�ned (since MT
XT

(R) given by (71) exists)
and the function g(x) := e−Rxf(x) satis�es the prerequisites of Theorem 3.2 in Eberlein,

Glau, and Papapantoleon (2010).

A closed analytic expression for the Fourier transform f̂ is not available in this case.
However, it could be computed numerically as follows. Note that for each �xed x1 ∈ R+,
the function x2 7→ f̃(x1, x2) is continuous, increasing in x2 and limx2→∞ f̃(x1, x2) = +∞,
since aj,0, aj,2 > 0. Hence, let us de�ne

q(x1) = inf{x2 ∈ R+ : f̃(x1, x2) ≥ 0}.

Note that f̃(x1, ·) has at most one zero since it is an increasing function for every �xed x1.
Consequently,

f(x1, x2) = f̃(x1, x2)+ = f̃(x1, x2)1{x2≥q(x1)}.
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The Fourier transform of f is therefore given, for suitable z ∈ C2, by

f̂(z) =
∫

R2

eizxf(x)dx

=
∫

R2

eizxf̃(x1, x2)1{x2≥q(x1)}dx

=
∫ ∞

0

∫ ∞
q(x1)

eizx

 n∑
j=1

aj,0ea
j,1x1+aj,2x2 −

n∑
j=1

bj,0eb
j,1x1

 dx2dx1. (73)

Since q(x1) is obtained by numerically solving f̃(x1, x2) = 0, we shall not obtain a closed
formula for f̂ . However, based on (73), f̂ can be valued numerically. We refer the reader
to a follow-up numerical paper for more details about this, as well as for discussion of the
prerequisites of Theorem 3.2 in Eberlein, Glau, and Papapantoleon (2010) regarding function
g in Proposition 4.7.

5 Numerical example

To give a �avor of the practical behavior of the model, we consider in this section a toy
example, which illustrates the ability of the model to produce a wide range of FRA spreads
(re�ecting a segmentation between OIS and LIBOR markets) and basis swap spreads (re-
�ecting a segmentation between LIBOR markets of di�erent tenors). Implementation and
numerical issues will be dealt with in detail in a follow-up paper.

We work with a one-dimensional driving process Y , which is an IG process with pa-
rameter b and cumulant function κ given by (48) (see Example 3.7). Let us consider a
one-dimensional Vasicek volatility structure given by

Σt(T ) =
σ

a

(
1− e−a(T−t)

)
and Σ∗t (T ) =

σ∗

a∗

(
1− e−a∗(T−t)

)
.

Then

Σ̄∗t (T ) = Σt(T ) + Σ∗t (T ) =
σ

a

(
1− e−a(T−t)

)
+
σ∗

a∗

(
1− e−a∗(T−t)

)
by (22). The initial bond term structure is assumed to be given by

B0(T ) = e−r̄T and B∗0(T ) = e−(r̄+λ̄)T ,

where r̄ > 0 and λ̄ > 0 are some given constants.

5.1 FRAs

First let us consider an FRA and calculate the spread (58) (�FRA spread� henceforth)
between the forward rate in our model and a classical, one-curve forward rate. Figure 1
in Morini (2009) shows 2007-2009 market data for FRA spreads that surged to more than
170bps at the peak of the crisis. As for the LIBOR-OIS spreads at that time, Filipovi¢ and
Trolle (2011) report that the spread between the 3m-LIBOR and the 3m-OIS rate attained
�366 basis points on Oct 10, 2008� (see also their Figure 1).

Table 1 displays the FRA spread in the model with T̂ = 2, δ = 0.5, N = 1, for three
values of λ̄ and for b going over a range of values from 3 to 100. The classical, one-curve
FRA rate for the value r̄ = 2% used in the table amounts to 2.01%. The results in Table 1
�nely cover the ranges of FRA rates observed in the crisis.
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b λ̄ = 10 λ̄ = 50 λ̄ = 300
3 413.42 454.69 714.51
4 200.33 241.18 498.31
5 113.20 153.87 409.91
6 71.75 112.33 367.84
7 49.72 90.26 345.49
8 37.00 77.52 332.59
10 24.10 64.59 319.50
12 18.28 58.75 313.59
15 14.32 54.79 309.58
20 11.89 52.36 307.11
30 10.64 51.10 305.84
50 10.22 50.68 305.42
100 10.12 50.58 305.31

Table 1: bp-FRA spreads for r̄ = 2%, a = 0.025, a∗ = 0.02, σ = σ∗ = 0.5 (λ̄ in bps).

5.2 Basis swap spreads

Now let us consider a 6m-LIBOR versus 12m-LIBOR basis swap with maturity T̂ = 10
years. One can read on page 8 of Morini (2009) (see also Figure 3 therein): �From August
2008 to April 2009, the basis swap spread to exchange 6m-LIBOR with 12m-LIBOR over 1
year was strongly positive and averaged 40bps.� We calculate the model spread SBSw(0; 10)
(�basis swap spread� henceforth) using formula (66), for the same sets of model parameters
as in the previous subsection. The results are displayed in Table 2 and they again cover the
ranges of spreads observed in the 2007-2009 crisis.

b λ̄ = 10 λ̄ = 50 λ̄ = 300
3 201.623 205.386 230.437
4 79.036 80.996 94.554
5 38.090 39.265 47.824
6 21.154 21.937 27.995
7 12.978 13.544 18.222
8 8.556 8.994 12.852
10 4.318 4.622 7.624
12 2.493 2.735 5.341
15 1.286 1.485 3.816
20 0.560 0.732 2.891
30 0.188 0.345 2.414
50 0.065 0.217 2.256
100 0.035 0.187 2.218

Table 2: bp-6m/12m-basis swap spreads for r̄ = 2%, a = 0.025, a∗ = 0.02, σ = σ∗ = 0.5 (λ̄
in bps).
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Conclusion

In this article we develop a multiple-curve HJM model of interbank risk. The interbank risk
means the spread risk between the LIBOR markets of di�erent tenors (and also the OIS
market in the limiting case of an overnight tenor), which is a signi�cant risk since the crisis.
To account for the multiple curves we resort to a general defaultable HJM mathematical
formalism with tractable Markovian short-term speci�cations. If a defaultable HJM drift
condition is satis�ed, the model spreads have a pure credit risk interpretation. Otherwise,
another contribution to the spreads shows up that we call the liquidity component of inter-
bank risk, in reference to the econometrically demonstrated explanation of interbank risk as
a mixture of credit and liquidity risk of the LIBOR contributing banks. Preliminary numer-
ical results reveal that even a pure credit risk speci�cation of the model is able to produce
FRA spreads and basis swap spreads of the orders of magnitudes that were observed at the
peaks of the last �nancial crises. A follow-up paper will deal further with the numerical
issues, as well as with the integration of the clean valuation model of this paper (which is a
valuation model of a contract fully collateralized at an OIS funding rate) into a CVA setup.
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