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Abstract

In the aftermath of the 2007–09 financial crisis, a variety of spreads have developed
between quantities that had been essentially the same until then, notably LIBOR-OIS
spreads, LIBOR-OIS swap spreads, and basis swap spreads. In this paper we study the
valuation of LIBOR interest rate derivatives in a multiple-curve setup, which accounts
for a discrepancy between a risk-free discount curve and a LIBOR fixing curve. Toward
this end we resort to a defaultable HJM methodology, in which this discrepancy is
modeled by an implied default intensity of the LIBOR contributing banks.
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1 Introduction

In the aftermath of the 2007–09 financial crisis, a variety of spreads have developed be-
tween quantities that had been essentially the same until then, notably LIBOR-OIS spreads,
LIBOR-OIS swap spreads, and basis swap spreads (see Figure 1). This is reckoned in Fil-
ipović and Trolle (2011) as the advent of a so-called interbank risk.
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Bancaire Française, and of the DGE. The authors thank Jeroen Kerkhof, from the bank Jefferies, London,
for the graphs of Figure 1, and Alexander Herbertsson, from University of Gothenburg, Sweden, for his help
in detailing the computations about swaptions.
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Figure 1: Left : Historical Euribor-Eonia swap spreads 2005-10. Right : Discount curves
bootstrapped on September 2 2010.

In addition, when valuing and hedging interest rate derivatives, the interbank risk
issue comes in combination with the counterparty risk issue, which is the risk of a party
defaulting in an OTC derivative contract. In this context, which curve should be used as
discounting curve, to which extent the choice of a given curve should be put in relation
with counterparty risk, or possibly hidden relations between bilateral counterparty risk
(accounting for the default risk of both parties) and funding costs (of funding a position
into a contract in a multiple-curve environment), have become subject of endless debates
between market practitioners.

In this paper we propose a model of interbank risk for the pricing of LIBOR interest
rate derivatives in a multiple-curve setup. Note that this is a model of “clean” valuation
in the sense of Crépey (2011), meaning clean of counterparty risk and excess funding costs
over the risk-free rate. However, a counterparty risk and excess funding costs correction
(CVA for Credit Valuation Adjustment in the counterparty risk terminology) can then be
obtained as the value of an option on this clean price process; see for instance Crépey (2011).
Actually, the initial motivation for the present work was to devise a model of clean valuation
of interest rate derivatives with interbank risk, tractable in itself and also in the perspective
of serving as underlying model for CVA computations. This integration of the present clean
model into a counterparty risky environment will be considered in a follow-up paper.

Resorting to the usual distinction between short rate, HJM and BGM or LIBOR market
models, one can classify the interbank risk (multiple-curve in this regard, yet “clean” in the
above sense) valuation literature as follows. Kijima, Tanaka, and Wong (2009) or Kenyon
(2010) propose short rate approaches. Henrard (2007, 2009) derives corrected Gaussian HJM
formulas under the assumption of deterministic spreads between the curves. Bianchetti
(2010) resolves a two-curve issue in a cross-currency mathematical framework, deriving
“quanto convexity corrections” to the usual BGM market model valuation formulas. Here
the main tool is that of a change of measure/numéraire. The LIBOR market model approach
is also extended in Mercurio (2009, 2010) and Fujii, Shimada and Takahashi (2009, 2010) in
such a way that each basis spread is modeled as a different process. A hybrid HJM-LIBOR
market model is proposed in Moreni and Pallavicini (2010), where the HJM framework
is employed to obtain a parsimonious model for multiple curves, using a single family of
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Markov driving processes. Finally, a first credit risk approach is tentative in Morini (2009).
However, Morini concludes on page 43 that in his model “the credit risk alone does not
explain the market patterns”.

In this paper we also resort to a credit risk mathematical setup. Let us add that by
credit risk here we do not mean counterparty risk of the parties of a contract (we actually
deliberately disregard counterparty risk in a clean valuation perspective). What we mean
here is simply an interpretation (or “measurement”) of LIBOR quotes (which are the main
input to most interest rate derivative cash flows) in excess over the risk-free rate, in the
mathematically tractable scale of an implied default intensity of the LIBOR contributing
banks. Note that a rolling construction of the LIBOR group is precisely intended to the
effect that, in principle, actual defaults cannot occur within the LIBOR group. We are also
fully aware that the economic fundamentals of interbank risk are not only credit risk, but
also liquidity risk, among other factors such as “strategic” game considerations (see Michaud
and Upper (2008, page 48)), which might from time to time incite a bank to declare as
LIBOR contribution a number slightly different from its intimate conviction regarding “The
rate at which an individual Contributor Panel bank could borrow funds, were it to do so by
asking for and then accepting interbank offers in reasonable market size, just prior to 11.00
London time” (the theoretical definition of the LIBOR).

More precisely, we shall follow a defaultable Heath–Jarrow–Morton methodology for
modeling the term structure of multiple interest rates; see the seminal paper by Heath,
Jarrow, and Morton (1992) and the defaultable extensions by Bielecki and Rutkowski (2000)
and Eberlein and Özkan (2003). Numerical issues related to our model will be mainly
considered in a follow-up paper. However, the last section of this paper already makes
clear that, in counterpoint to Morini (2009) conclusions in his first tentative credit risk
approach, an appropriate credit risk model is in fact able to explain spreads very much in
line with the orders of magnitude that were observed in the market even at the peak of
the crisis. These findings are also in line with a quantitative analysis of the term structure
of interbank risk which was recently conducted by Filipović and Trolle (2011). Based on
a data set covering the period from August 2007 until January 2011, their results show
that the default component is overall the main dominant driver of interbank risk, except for
short-term contracts in the first half of the sample (see Figures 3 and 4 in their paper). The
second main driver is interpreted as liquidity risk, consistently with the claims in Morini
(2009). We point out in this regard that, even though we did not see the necessity of it yet
(and therefore did not do it for the sake of parsimony of the model), a simple amendment
to our model allows to make explicit also a non-default component of interbank risk. For
this it is enough to add one more component to the driver of our risky interest rate and the
HJM-type valuation formulas can be derived in exactly the same manner as below.

Besides, our motivation for modeling the continuously compounded forward rates in
a HJM fashion, instead of dealing directly with discretely compounded LIBORs in a BGM
perspective, is twofold. On the one side, it allows one to consider simultaneously the LI-
BORs for all possible tenors (recall that one of the post-crisis spread studied in this work is
between LIBORs of various tenors). The HJM framework is capable of producing a multi-
curve model with as many stochastic factors as LIBORs of different tenors by increasing the
dimension of the driving process, while still retaining the tractability of the pricing formu-
las for any arbitrary correlation of stochastic factors. On the other side, this is a unified
approach for a very general class of time-inhomogeneous Lévy driving processes. It is also
important to mention that various short rate models can be accommodated in this setup as
special cases (see Section 3 for the extended CIR and the extended Hull-White model). As
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will be illustrated in a follow-up work, this direct link to the short rate process r is useful
in the context of counterparty risk applications, where the model of this paper can be used
as an underlying model for CVA computations.

In our view the main contributions of this work are: a consistent and tractable de-
faultable HJM term structure model of interbank risk; low-dimensional extended CIR or
Lévy Hull–White short rate specifications of the defaultable HJM setup, opening the door
to the use of this model as underlying model to interest rate derivatives CVA computations;
empirical evidence that an appropriately chosen credit risk setup is enough to account for
even the most extreme interbank spreads ever observed in the market.

The rest of the paper is organized as follows. In Section 2, we apply a defaultable HJM
approach to model the term structure of multiple interest rate curves. Section 3 presents a
tractable pricing model within this framework which we obtain by choosing the class of non-
negative multidimensional Lévy processes as driving processes combined with deterministic
volatility structures. In Section 4 the basic interest rate derivatives tied to LIBOR are
described and explicit valuation formulas are derived. Section 5 presents numerical results
illustrating the flexibility of the model in producing a wide range of FRA and basis swap
spreads.

2 Defaultable HJM setup

2.1 Notation

In this subsection we introduce the main notions and notation we are going to work with.
The basic reference rate for a variety of interest rate derivatives is the LIBOR in the USD
fixed income market and the EURIBOR in the EUR fixed income market. LIBOR (resp.
EURIBOR) is computed daily as an average of the rates at which designated banks belonging
to the LIBOR (resp. EURIBOR) panel believe unsecured funding for periods of length up
to one year can be obtained by them (resp. by a prime bank). From now on we shall
use the term LIBOR meaning any of these two rates. Another important reference rate in
fixed income markets is a so-called OIS (Overnight Indexed Swap) rate, which is the rate at
which overnight unsecured loans can be obtained in the interbank market. In the USD fixed
income market it is the FF (Federal Funds) rate and in the EUR market it is the EONIA
(Euro Overnight Index Average) rate. From now on we shall use the generic term OIS for
any of these rates. The OIS rate is considered by practitioners to be the best available
market proxy for the risk-free rate since the risk in an overnight loan can be deemed almost
negligible. On the other hand, the LIBOR depends on the term structure of interbank risk,
which is reflected in the observed LIBOR-OIS and LIBOR-OIS swap spreads (see the left
panel in Figure 1).

In this paper we introduce a default time �∗ associated to the LIBOR reference curve
via a given default intensity ∗(t). Again, �∗ is not meant to represent an actual default
time of some specific entity (recall that the LIBOR panel is constantly being updated). It is
merely used as an implied model of default risk for the reference curve, to quantify interbank
risk in a mathematically tractable “default intensity scale”. This being said, our credit risk
formalism is consistent however with the empirical evidence in Filipović and Trolle (2011)
that default risk is a major component of the interbank risk.

We shall work with instantaneous continuously compounded forward rates, specifying
the dynamics of the term structure of the risk-free forward interest rates ft(T ) and of the
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forward credit spreads gt(T ) corresponding to the risky rates of the reference curve. We
denote by f∗t (T ) the instantaneous continuously compounded risky forward rates, so for
every 0 ≤ t ≤ T,

gt(T ) = f∗t (T )− ft(T ). (1)

The corresponding short rates r and r∗ are given by

rt = ft(t) and r∗t = f∗t (t). (2)

We also define the short term credit spread process � by, for t ∈ [0, T̄ ],

�t = gt(t) = r∗t − rt.

The discount factors associated with our two yield curves are denoted by Bt(T ) and
B̄∗t (T ), respectively. These are time-t (cumulative) prices and pre-default prices of risk-free
and risky zero coupon bonds with maturity T , with BT (T ) = 1 and B̄∗T (T ) = 1. The bond
prices are related to the forward rates via the following formulas, for t ≤ T,

Bt(T ) = exp

(
−
∫ T

t
ft(u)du

)
and B̄∗t (T ) = exp

(
−
∫ T

t
f∗t (u)du

)
. (3)

The T -spot LIBOR LT (T, T + �) is a simply compounded interest rate fixed at time T
for the time interval [T, T + �], which will be defined in our setup as

LT (T, T + �) =
1

�

( 1

B̄∗T (T + �)
− 1
)
. (4)

We thus use in this definition the pre-default risky bond prices B̄∗, where the reference
entity of the risky bond is to be interpreted as consisting of (a stylized representative of)
the LIBOR contributing banks.

2.2 Driving process

We consider a filtered probability space (Ω,ℱT̄ , IP) and a finite time horizon T̄ . Let ℰ =
(ℰt)t∈[0,T̄ ] denote a filtration on this space satisfying the usual conditions. The driving pro-
cess Y = (Yt)0≤t≤T̄ is assumed to be a process with independent increments and absolutely
continuous characteristics (PIIAC) in the sense of Eberlein, Jacod, and Raible (2005), also
called a time-inhomogeneous Lévy process in Eberlein and Kluge (2006a), or an additive
process in the sense of Definition 1.6 in Sato (1999). Process Y is taken as an ℰ-adapted,
càdlàg, ℝn-valued process, starting from zero. The law of Yt, t ∈ [0, T̄ ], is described by the
characteristic function, in which u denotes a row-vector in ℝn:

IE[eiuYt ] = exp

∫ t

0

(
iubs −

1

2
ucsu

⊤ (5)

+

∫
ℝn

(
eiux − 1− iuℎ(x)

)
Fs(dx)

)
ds,

where bs ∈ ℝn, cs is a symmetric, non-negative definite real-valued n-dimensional matrix
and Fs is a Lévy measure on ℝn, i.e. Fs({0}) = 0 and

∫
ℝn(∣x∣2 ∧ 1)Fs(dx) < ∞, for all

s ∈ [0, T̄ ]. The function ℎ : ℝn → ℝn is a truncation function (e.g. ℎ(x) = x1{∣x∣≤1}).
Let ∥ ⋅ ∥ denote the norm on the space of real n-dimensional matrices, induced by the

Euclidean norm ∣ ⋅ ∣ on ℝn. The following standing assumption is satisfied:
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Assumption 2.1 (i) The triplet (bt, ct, Ft) satisfy∫ T̄

0

(
∣bt∣+ ∥ct∥+

∫
ℝn

(1 ∧ ∣x∣2)Ft(dx)

)
dt <∞;

(ii) There exist constants K, " > 0 such that∫ T̄

0

∫
∣x∣>1

exp(ux)Ft(dx)dt <∞, (6)

for every u ∈ [−(1 + ")K, (1 + ")K]n.

Condition (6) ensures the existence of exponential moments of the process Y . More precisely,
(6) holds if and only if IE[expuYt] < ∞, for all 0 ≤ t ≤ T̄ and u ∈ [−(1 + ")K, (1 + ")K]n

(cf. Lemma 2.6 and Corollary 2.7 in Papapantoleon (2007)). Moreover, Y is then a special
semimartingale, with the following canonical decomposition (cf. Jacod and Shiryaev (2003,
II.2.38), and Eberlein, Jacod, and Raible (2005))

Y =

∫ ⋅
0
bsds+

∫ ⋅
0

√
csdWs +

∫ ⋅
0

∫
ℝn
x(�− �)(ds, dx), (7)

where � is the random measure of the jumps of Y , � is the IP-compensator of �,
√
cs is a

measurable version of a square-root of the symmetric, non-negative definite matrix cs, andW
is a IP-standard Brownian motion. The triplet of predictable semimartingale characteristics
of Y with respect to the measure IP, denoted by (B,C, �), is

B =

∫ ⋅
0
bsds, C =

∫ ⋅
0
csds, �([0, ⋅]×A) =

∫
[0,⋅]

∫
A
Fs(dx)ds, (8)

for every Borel set A ∈ ℬ(ℝn ∖ {0}). The triplet (b, c, F ) represents the local characteristics
of Y . Any of these triplets determines the distribution of Y, as the Lévy–Khintchine formula
(5) obviously dictates (with ℎ(x) = x, which is a valid choice for the truncation function
due to (6)).

We denote by �s the cumulant generating function associated with the infinitely divis-
ible distribution characterized by the Lévy triplet (bs, cs, Fs). For a row-vector z ∈ ℂn such
that ℜz ∈ [−(1 + ")K, (1 + ")K]n, we have, for s ∈ [0, T̄ ],

�s(z) = zbs +
1

2
zcsz

⊤ +

∫
ℝn

(ezx − 1− zx)Fs(dx). (9)

Note that (5) can be written in terms of �:

IE[eiuYt ] = exp

∫ t

0
�s(iu)ds. (10)

If Y is a Lévy process, in other words if Y is time-homogeneous, then (bs, cs, Fs), and thus
also �s, do not depend on s. In that case, � boils down to the log-moment generating
function of Y1. For details we refer to Papapantoleon (2007, Lemma 2.8, Remark 2.9 and
Remark 2.16).
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2.3 Term structure of interest rates

In this subsection, we model the risk-free and the risky term structure of interest rates.
We shall be concerned with two filtrations on the standing risk-neutral probability

space (Ω,ℱT̄ , IP) of this paper: the default-free filtration ℰ = (ℰt)0≤t≤T̄ , and the full filtration
ℱ = (ℱt)0≤t≤T̄ containing ℰ and the information about the default time �∗. The default-free
bond price process B⋅(T ), the pre-default bond price process B̄∗⋅ (T ), and the corresponding
forward rate processes f⋅(T ) and f∗⋅ (T ), for any T ∈ [0, T̄ ], are all ℰ-adapted. It is assumed
that �∗ is not an ℰ-stopping time, but it is an ℱ-stopping time. Moreover, we assume that
immersion holds between ℰ and ℱ . We assume that �∗ possesses an ℰ-hazard intensity ∗.
Thus, its Azéma supermartingale is given by

ℚ(�∗ > t∣ℰt) = e−
∫ t
0 

∗
sds, (11)

where ∗ is an ℰ-adapted, non-negative and integrable process.
The risky bonds are assumed to pay a certain recovery upon default. We adopt the

fractional recovery of market value scheme, which specifies that in case of default of the
bond issuer, the fraction of the pre-default value of the bond is paid at the default time.
The value at maturity of such a bond is given by

B∗T (T ) = 1{�∗>T} + 1{�∗≤T}R
∗B̄∗�∗−(T )B−1

�∗ (T ),

where R∗ ∈ [0, 1] is the recovery and B̄∗⋅ (T ) was defined in (3). Note that receiving the
amount 1{�∗≤T}R∗B̄∗�∗−(T ) at �∗ is equivalent to receiving 1{�∗≤T}R

∗B̄∗�∗−(T )B−1
�∗ (T ) at T .

The time-t price of such a bond can be written as

B∗t (T ) = 1{�∗>t}B̄
∗
t (T ) + 1{�∗≤t}R

∗B̄∗�∗−(T )B−1
�∗ (T )Bt(T ). (12)

The immersion property implies that B̄∗�∗−(T ) = B̄∗�∗(T ). Moreover, note that 1{�∗>t}B̄∗t (T ) =
1{�∗>t}B

∗
t (T ), for every t ∈ [0, T ].

Let us now specify the instantaneous continuously compounded forward rates ft(T )
and the instantaneous forward credit spreads gt(T ), which in turn provide the default-free
bond prices Bt(T ) and the pre-default bond prices B̄∗t (T ) via (3). We are going to make use
of the results from Eberlein and Raible (1999) and Eberlein and Kluge (2006b), where HJM
models driven by time-inhomogeneous Lévy processes were developed, and the results from
Bielecki and Rutkowski (2000) and Eberlein and Özkan (2003), where defaultable extensions
of the HJM framework were introduced.

Contrary to the latter two papers, we choose here to model directly the forward credit
spreads instead of the risky forward rates. Clearly, in order to model the pre-default term
structure, it is equivalent to specify either the forward rates f∗t (T ), or the forward credit
spreads gt(T ). However, by no-arbitrage one has B̄∗t (T ) ≤ Bt(T ), i.e. the risky bonds are
cheaper than the default-free bonds with the same maturity. This implies by (3) that one
should have f∗t (T ) ≥ ft(T ), or equivalently, gt(T ) ≥ 0. Hence, we decide to model the
forward credit spreads directly and study their non-negativity in some special cases. In the
next subsection we provide two tractable non-negative examples. Let us also mention here
a paper by Chiarella, Maina, and Nikitopoulos (2010), where a class of stochastic volatility
HJM models admitting finite dimensional Markovian structures is proposed. They model
the default-free forward rates and the forward credit spreads, whose dynamics are driven by
correlated Brownian motions. One of our examples in the sequel, the stochastic volatility
CIR model of Section 3.1, could be fit into this modeling framework.
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2.3.1 Risk-free rates

The dynamics of the risk-free forward rates ft(T ), for T ∈ [0, T̄ ], is given by

ft(T ) = f0(T ) +

∫ t

0
as(T )ds+

∫ t

0
�s(T )dYs, (13)

where the initial values f0(T ) are deterministic, bounded and Borel measurable in T . More-
over, � and a are stochastic processes defined on Ω× [0, T̄ ]× [0, T̄ ] taking values in ℝn and
ℝ, respectively. Let P and O respectively denote the predictable and the optional �-field
on Ω × [0, T̄ ]. The mappings (!; s, T ) 7→ as(!;T ) and (!; s, T ) 7→ �s(!;T ) are measurable
with respect to P ⊗ ℬ([0, T̄ ]). For s > T we have as(!;T ) = 0 and �s(!;T ) = 0, as well
as supt,T≤T̄ (∣at(!;T )∣+ ∣�t(!;T )∣) <∞. These conditions ensure that we can find a “joint-
version” of all ft(T ) such that (!; t, T ) 7→ ft(!;T )1{t≤T} is O ⊗ ℬ([0, T̄ ])-measurable (see
Eberlein, Jacod, and Raible (2005)). Then it follows (cf. equation (2.4) in Eberlein and
Kluge (2006b)), for t ∈ [0, T ],

Bt(T ) = B0(T ) exp

(∫ t

0
(rs −As(T ))ds−

∫ t

0
Σs(T )dYs

)
, (14)

where we set

As(T ) :=

∫ T

s
as(u)du , Σs(T ) :=

∫ T

s
�s(u)du. (15)

Inserting T = t into (14), the risk-free discount factor process � = (�t)0≤t≤T̄ , defined by

�t = exp
(
−
∫ t

0 rsds
)
, can be written as

�t = B0(t) exp

(
−
∫ t

0
As(t)ds−

∫ t

0
Σs(t)dYs

)
. (16)

Combining this with (14) we obtain the following useful representation for the bond price
process

Bt(T ) =
B0(T )

B0(t)
exp

(∫ t

0
(As(t)−As(T ))ds+

∫ t

0
(Σs(t)− Σs(T ))dYs

)
. (17)

We make a standing assumption that the volatility structure is bounded in the sense
that one has 0 ≤ Σi

s(T ) ≤ K2 for every 0 ≤ s ≤ T ≤ T̄ and i ∈ {1, 2, . . . , n}, where K is the
constant from Assumption 2.1(ii). Note that if Y is a Brownian motion, this assumption
holds with K = ∞. In other words, the volatility structure in the Brownian case does not
have to be bounded.

As is well-known, the model is free of arbitrage if the bond prices discounted at the
risk-free rate, �B⋅(T ), are ℱ-martingales with respect to a risk-neutral measure IP. Due to
the immersion property it suffices that they are ℰ-martingales. This is guaranteed by the
following drift condition:

As(T ) = �s(−Σs(T )), s ∈ [0, T ], (18)

where �s is the cumulant of Y defined in (9). This condition can be found in Eberlein
and Kluge (2006b), see equation (2.3) therein and comments thereafter. For more detailed
computations, see Proposition 2.2 of Kluge (2005) in case of deterministic volatility, and
Theorem 7.9 and Corollary 7.10 of Raible (2000) for a stochastic volatility combined with a
(time-homogeneous) Lévy driving process. If Y is a standard Brownian motion, condition
(18) simplifies to As(T ) = 1

2 ∣Σs(T )∣2, which is the classical HJM no-arbitrage condition.
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2.3.2 Risky rates

The dynamics of the forward credit spreads gt(T ), t ∈ [0, T ], is given by

gt(T ) = g0(T ) +

∫ t

0
a∗s(T )ds+

∫ t

0
�∗s(T )dYs, (19)

where the initial values g0(T ) are deterministic, bounded and Borel measurable in T . More-
over, a∗ and �∗ satisfy the same measurability and boundedness conditions as a and �. The
risky forward rates are then given by

f∗t (T ) = f∗0 (T ) +

∫ t

0
ā∗s(T )ds+

∫ t

0
�̄∗s(T )dYs, (20)

where we set

f∗0 (T ) = f0(T ) + g0(T ) , ā∗s(T ) = as(T ) + a∗s(T ) , �̄∗s(T ) = �s(T ) + �∗s(T ).

The dynamics of the bond prices B̄∗⋅ (T ) can be obtained exactly in the same way as
the dynamics of B⋅(T ) in equation (14). Therefore, for t ∈ [0, T ],

B̄∗t (T ) = B̄∗0(T ) exp

(∫ t

0
(r∗s − Ā∗s(T ))ds−

∫ t

0
Σ̄∗s(T )dYs

)
, (21)

where

Ā∗s(T ) :=

∫ T

s
ā∗s(u)du and Σ̄∗s(T ) :=

∫ T

s
�̄∗s(u)du. (22)

Recall from (2) that the short rate r∗s is given by rs + �s.
Similarly to (17), we can rewrite the bond prices process B̄∗⋅ (T ) as follows

B̄∗t (T ) =
B̄∗0(T )

B̄∗0(t)
exp

(∫ t

0
(Ā∗s(t)− Ā∗s(T ))ds+

∫ t

0
(Σ̄∗s(t)− Σ̄∗s(T ))dYs

)
. (23)

For the sake of model parsimony we require in addition that the defaultable bond
prices discounted at the risk-free rate, �B∗⋅ (T ), are (ℱ , IP)-martingales, for all T ∈ [0, T̄ ].
Note that this constraint would correspond to precluding arbitrage opportunities related to
dealing with the risky bonds B∗(T ), were such risky bonds traded in the market (which they
are actually not, even not synthetically as averages of risky bonds of LIBOR contributors,
since the LIBORs reflected in B∗(T ) are only reference numbers and not transaction quotes;
see the definition of the LIBOR in the introduction).

For each T this additional martingale condition is satisfied if

(B̄∗t (T )−R∗tBt(T ))∗t = B̄∗t (T )�t(T ), t ∈ [0, T ], (24)

where
�t(T ) := �t − Ā∗t (T ) + �t(−Σ̄∗t (T ))

and (R∗t )t≥0 is the terminal recovery process in the sense of Condition (HJM.8) in Section
13.1.9 of Bielecki and Rutkowski (2002). The proof of the above statement is similar to
the derivation of Condition (13.24) in Bielecki and Rutkowski (2002, Section 13.1.9) in the
Gaussian case. For similar conditions in (time-inhomogeneous) Lévy driven models, we refer
to Eberlein and Özkan (2003) or Grbac (2010, Section 3.7).
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Under the fractional recovery of market value scheme which is assumed in this paper,
one gets a particularly convenient form of the drift condition (24). The recovery process R
takes the following form (cf. (12))

R∗t := R∗B̄∗t (T )B−1
t (T ),

which inserted into (24) yields

(1−R∗)∗t = �t(T ), t ∈ [0, T ]. (25)

Since condition (25) has to hold for all T ∈ [0, T̄ ], it is actually equivalent to the following
two conditions:

(1−R∗)∗t = �t (26)

and
Ā∗t (T ) = �t(−Σ̄∗t (T )). (27)

Indeed, conditions (26) and (27) obviously imply (25). To see the converse, one has to insert
t = T into (25) and note that Ā∗t (t) = 0 and Σ̄∗t (t) = 0 by (15). Moreover, �t(0) = 0 by (9).
This yields (26). Condition (27) now follows from (25) by inserting t ∕= T .

We work henceforth under the following

Assumption 2.2 The no-arbitrage conditions (18), (26) and (27) are satisfied.

Proposition 2.3 (i) The forward rate f⋅(T ) is given by

ft(T ) = f0(T ) +

∫ t

0

∂

∂T
�s(−Σs(T ))ds+

∫ t

0
�s(T )dYs, (28)

and the short rate r by

rt = f0(t) +

∫ t

0

∂

∂t
�s(−Σs(t))ds+

∫ t

0
�s(t)dYs. (29)

(ii) The forward spread g⋅(T ) is given by

gt(T ) = g0(T ) +

∫ t

0

(
∂

∂T
�s(−Σ∗s(T )− Σs(T ))− ∂

∂T
�s(−Σs(T ))

)
ds

+

∫ t

0
�∗s(T )dYs, (30)

and the short term spread � by

�t = g0(t) +

∫ t

0

(
∂

∂t
�s(−Σ∗s(t)− Σs(t))−

∂

∂t
�s(−Σs(t))

)
ds

+

∫ t

0
�∗s(t)dYs. (31)

(iii) The ℰ-intensity ∗ of the default time �∗ is given by

∗t =
1

1−R∗
(
g0(t) +

∫ t

0

(
∂

∂t
�s(−Σ∗s(t)− Σs(t))−

∂

∂t
�s(−Σs(t))

)
ds+

∫ t

0
�∗s(t)dYs

)
.
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Proof. To prove (i), note that from condition (18) it follows that

as(T ) =
∂

∂T
�s(−Σs(T )).

This immediately yields (28) and (29). Similarly, to prove (ii), we make use of (27) and
obtain

a∗s(T ) = ā∗s(T )− as(T )

=
∂

∂T
�s(−Σ̄∗s(T ))− ∂

∂T
�s(−Σs(T ))

=
∂

∂T
�s(−Σ∗s(T )− Σs(T ))− ∂

∂T
�s(−Σs(T )),

Hence, (30) and (31) follow. Finally, to prove (iii) we combine (26) and (31). □

3 The model

In this section we focus our attention on time-homogeneous Lévy processes Y . The cumulant
generating function associated with Y is then given by

�(z) := zb+
1

2
zcz⊤ +

∫
ℝn

(ezx − 1− zx)F (dx),

where (b, c, F ) is the Lévy triplet of Y1 (compare (9)). We study conditions that ensure the
non-negativity of the risk-free interest rates and the credit spreads, considering in particular
two cases: a pure-jump Lévy process with non-negative components (subordinators) com-
bined with deterministic bond price volatility structures, and a two-dimensional Brownian
motion combined with stochastic volatility structures. We shall focus in particular on the
first case, which turns out to be very tractable for valuation purposes. Note that the general
HJM model, as well as many short rate models, does not necessarily produce non-negative
interest rates. The standard argument is that the probability of negative interest rates is
sufficiently small, and therefore this undesirable feature is still tolerable. However, when
interest rates are small as in the recent years, the non-negativity of interest rates produced
by a model becomes a practically relevant issue.

3.1 Stochastic volatility CIR

Assume that the driving process Y = (Y 1, Y 2) is a two-dimensional Brownian motion with
correlation %. The canonical decomposition (7) of Y is given by

Yt =
√
c(W 1

t ,W
2
t )⊤,

where (W 1,W 2) is a two-dimensional standard Brownian motion and the covariance matrix
c = [ci,j ]i,j=1,2 is such that c1,1 = c2,2 = 1 and c1,2 = c2,1 = %. The cumulant generating
function of Y is given by �(z) = 1

2zcz
⊤, z ∈ ℝ2. In order to produce non-negative short

rates and short term spreads with this driving process, the volatilities in the HJM model
cannot be chosen deterministic. We make use of the volatility specifications that produce
the CIR short rate and the CIR short term spread within the HJM framework, as shown in
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Chiarella and Kwon (2001). Thus, we impose the following assumptions on the volatilities
�s(t) and �∗s(t):

�s(t) =
(
�(s)
√
rse
−

∫ t
s k(u)du, 0

)
, �∗s(t) =

(
0, �∗(s)

√
�se
−

∫ t
s k

∗(u)du
)
,

where �, �∗, k and k∗ are deterministic functions (cf. equation (6.2) in Chiarella and Kwon
(2001)). Note that the two-dimensional volatility structure above is chosen in such a way
that the risk-free rates are driven only by the first Brownian motion Y 1 =: W r and the
credit spreads are driven solely by Y 2 =: W �. Hence, we can apply directly the results from
Chiarella and Kwon (2001, equation (6.3)) and obtain the following SDE for the short rate
r

drt = (�t − k(t)rt)dt+ �(t)
√
rtdW

r
t , (32)

where

�t =
∂

∂t
f0(t) + k(t)f0(t) +

∫ t

0
�2
s(t)ds.

This is a one-dimensional extended CIR short rate model. We emphasize, however, that �t is
non-deterministic since it depends on the non-deterministic �s(t). An additional, auxiliary
factor

{t =

∫ t

0
�2
s(t)ds , d{t =

(
(�(t))2rt − 2k(t){t

)
dt

is needed to make the model (rt, {t) Markov. The forward rate volatility specification that
yields the extended CIR short rate model in which k and � do not depend on time, was
studied in Heath, Jarrow, and Morton (1992, Section 8), but in this case � in (32) is not
available in explicit form.

Reasoning along the same lines as above yields the following SDE for the short term
spread �

d�t = (�∗t − �∗(t)�t)dt+ �∗(t)
√
�tdW

�
t ,

where �∗t is defined accordingly. Similarly, we also define

|t =

∫ t

0
(�∗s(t))

2ds , d|t =
(
(�∗(t))2�t − 2k∗(t)|t

)
dt.

In Theorem 2.1 of Chiarella and Kwon (2001) it was shown that the risk-free extended
CIR model possesses an affine term structure with two stochastic factors. More precisely,
the bond prices can be written as exponential-affine functions of the current level of the
short rate r and the process {:

Bt(T ) =
B0(T )

B0(t)
exp

(
(t, T )f0(t)− (t, T )rt −

1

2
2(t, T ){t

)
, (33)

where

(t, T ) =

∫ T

t
e−

∫ u
t k(v)dvdu

is a deterministic function (combine Theorem 2.1 with (2.4) and (1.2) in Chiarella and Kwon
(2001)). For defaultable bonds B̄∗t (T ) a similar expression involving in addition �t and |t
can be obtained by exactly the same reasoning and making use of the representation

B̄∗t (T ) = Bt(T ) exp

(
−
∫ T

t
gt(u)du

)
, (34)

which follows from (1) and (3).
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3.2 Jumps and deterministic volatility

In CVA applications (see Crépey (2011)), Markovian specifications are used. The previ-
ous Brownian specification of the general HJM defaultable setup, yields a four-dimensional
Markov factor process X = (r, �, {, |). In the quest of a more parsimonious Markovian
specification, we now assume that the driving process Y is an n-dimensional Lévy process,
whose components are subordinators, and that the volatilities are deterministic. We derive
conditions that ensure the non-negativity of the interest rates and the credit spreads in this
setting. It is worthwhile mentioning that when Y is two-dimensional as in the previous
example, this yields a two-dimensional Markov factor process X = (r, �), which makes this
specification preferable for applications.

Let Y be an n-dimensional non-negative Lévy process, such that its Lévy measure
satisfies Assumption 2.1. Its cumulant generating function is given by

�(z) = zb+

∫
ℝn+

(ezx − 1)F (dx) (35)

for z ∈ ℝn such that z ∈ [−(1 + ")K, (1 + ")K]n, where b ≥ 0 denotes the drift term and
the Lévy measure F has its support in ℝn+. We refer to Theorem 21.5 and Remark 21.6
in Sato (1999) for one-dimensional subordinators; for multi-dimensional non-negative Lévy
processes see (3.19) in Barndorff-Nielsen and Shephard (2000). Note that subordinators do
not have a diffusion component and their jumps can be only positive. Examples of these
processes include a compound Poisson process with positive jumps, Gamma process, inverse
Gaussian (IG) process, and generalized inverse Gaussian (GIG) processes.

In the remainder of the paper we impose the following standing assumptions on the
bond price volatilities Σ and Σ∗:

Assumption 3.1 Volatilities Σ and Σ∗ are non-negative, deterministic and stationary func-
tions. More precisely, they are given as follows

Σs(t) =
(
Si(t− s)

)
1≤i≤n

and Σ∗s(t) =
(
S∗,i(t− s)

)
1≤i≤n

,

for every s, t such that 0 ≤ s ≤ t ≤ T̄ , where Si : [0, T̄ ] → ℝ+ and S∗,i : [0, T̄ ] → ℝ+,
i = 1, . . . , n, are deterministic functions bounded by K2 , where K is the constant from (6).

Proposition 3.2 (i) The dynamics of the forward rates f⋅(T ) and r are given by

ft(T ) = f0(T )− �(−Σt(T )) + �(−Σ0(T )) +

∫ t

0
�s(T )dYs (36)

and

rt = f0(t) + �(−Σ0(t)) +

∫ t

0
�s(t)dYs. (37)

(ii) The dynamics of the credit spreads g⋅(T ) and � are given by

gt(T ) = g0(T )− �(−Σ∗t (T )− Σt(T )) + �(−Σ∗0(T )− Σ0(T ))

+�(−Σt(T ))− �(−Σ0(T )) +

∫ t

0
�∗s(T )dYs (38)

and

�t = g0(t) + �(−Σ∗0(t)− Σ0(t))− �(−Σ0(t)) +

∫ t

0
�∗s(t)dYs. (39)
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Proof. We begin by noting that

∂

∂T
Si(T − s) = − ∂

∂s
Si(T − s) and

∂

∂T
S∗,i(T − s) = − ∂

∂s
S∗,i(T − s), (40)

for i = 1, . . . , n. Hence, Assumption 3.1 implies

∂

∂T
�(−Σs(T )) = − ∂

∂s
�(−Σs(T ))

and

∂

∂T
�(−Σ∗s(T )− Σs(T )) = − ∂

∂s
�(−Σ∗s(T )− Σs(T )),

which follows from (40) by differentiation. Therefore, we obtain∫ t

0

∂

∂T
�(−Σs(T ))ds = −

∫ t

0

∂

∂s
�(−Σs(T ))ds

= − (�(−Σt(T ))− �(−Σ0(T ))) ,

and similarly,∫ t

0

∂

∂T
�(−Σ∗s(T )− Σs(T ))ds = − (�(−Σ∗t (T )− Σt(T ))− �(−Σ∗0(T )− Σ0(T ))) .

Inserting these expressions into (28) and (30) yields (36) and (38), respectively. To show
(37) and (39) we note that ∫ t

0

∂

∂t
�(−Σs(t))ds = �(−Σ0(t))

and ∫ t

0

∂

∂t
�(−Σ∗s(t)− Σs(t))ds = �(−Σ∗0(t)− Σ0(t)),

due to �(−Σt(t)) = �(0) = 0 and �(−Σ∗t (t) − Σt(t)) = 0, which follows by (15) and (22)
combined with (35). □

In the next two propositions we give necessary and sufficient deterministic conditions
for the non-negativity of the interest rates and credit spreads. Note that by (36)-(37), one
has that

ft(T )−
∫ t

0
�s(T )dYs = f0(T )− �(−Σt(T )) + �(−Σ0(T )) =: �(t, T )

rt −
∫ t

0
�s(t)dYs = f0(t) + �(−Σ0(t)) =: �(t),

where �(t, T ) and �(t) are thus deterministic.

Proposition 3.3 (i) The short rate rt is non-negative if �(t) ≥ 0, for t ∈ [0, T ].
(ii) Assume that the distribution of the random vector Y1 has [0,∞)n as its support. Then
the converse of (i) is also true, i.e. if rt ≥ 0, then �(t) ≥ 0, for every t ∈ [0, T ]. Moreover, if
rt ≥ 0, for every t ∈ [0, T ], then ft(T ) ≥ 0, for every T ∈ [0, T̄ ]. In words, the non-negativity
of the short rate implies the non-negativity of the forward rate.
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Proof. Since Y has non-negative components and the volatility � is non-negative by as-
sumption, it is obvious that �(t) ≥ 0 implies rt ≥ 0, for every t. This proves (i).

In case when the support of Y1 is [0,∞)n, we show the converse statement by noting
that

0 ≤
(∫ t

0
�s(t)dYs

)
(!) ≤ K

(
n∑
i=1

∫ t

0
dY i

s (!)

)
= K

n∑
i=1

Y i
t (!), (41)

for every ! ∈ Ω. Note that since Y i, i = 1, . . . , n, are increasing process, here the stochastic
integrals coincide with the Stieltjes integrals, and hence we are able to do the integra-
tion pathwise. Moreover, since Y1 has the support [0,∞)n, so does Yt. This implies that
IP
(
! ∈ Ω :

∑n
i=1 Y

i
t (!) < "

)
> 0, for every " > 0. This combined with (41) yields that

IP

(
! ∈ Ω :

(∫ t

0
�s(t)dYs

)
(!) < "

)
> 0,

for every " > 0. Since �(t) is deterministic, it follows that

rt = �(t) +

∫ t

0
�s(t)dYs ≥ 0

only if �(t) ≥ 0. Thus, we proved the first claim in (ii). To show the second one, namely
that the non-negativity of the short rate rt for all t ∈ [0, T ], implies the non-negativity of
the forward rate f⋅(T ), note that

�(t, T ) = �(T )− �(−Σt(T )).

Since we have just proved that rT ≥ 0 implies �(T ) ≥ 0, it suffices to show that−�(−Σt(T )) ≥
0 to deduce that �(t, T ) ≥ 0. But this follows easily from Σt(T ) ≥ 0 combined with (35).
Thus, we have �(t, T ) ≥ 0, which implies ft(T ) ≥ 0 by definition of �(t, T ). □

Completely analogously, we can derive conditions for the non-negativity of the forward
spread g⋅(T ) and the short term spread �. Let us denote

�∗(t, T ) := gt(T )−
∫ t

0
�∗s(T )dYs

= g0(T )− �(−Σt(T )− Σ∗t (T )) + �(−Σ0(T )− Σ∗0(T ))

+ �(−Σt(T ))− �(−Σ0(T ))

�∗(t) := �∗(t, t) = �t −
∫ t

0
�∗s(t)dYs = g0(t) + �(−Σ0(t)− Σ∗0(t))− �(−Σ0(t)),

which follows by (38) -(39).

Proposition 3.4 (i) The short term spread �t is non-negative if �∗(t) ≥ 0, for every t ∈
[0, T ].
(ii) Assume that the distribution of Y1 has [0,∞)n as its support. Then the converse of (i) is
also true, i.e. if �t ≥ 0, then �∗(t) ≥ 0, for every t. Moreover, if �t ≥ 0, for every t ∈ [0, T ],
then gt(T ) ≥ 0, for every T ∈ [0, T̄ ], i.e. the non-negativity of the short term spread implies
the non-negativity of the forward spread.

Let us now assume that Y is a two-dimensional non-negative Lévy process. We shall
study in more detail the dependence between its components. But before doing so, let us
give an example of the volatility structures that satisfy the conditions of this section and
produce non-negative rates and spreads.
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Example 3.5 (Vasicek volatility structure) Assume that the volatility of the forward
rates f⋅(T ) and the volatilities of the forward spreads g⋅(T ) are of the Vasicek type, so for
every 0 ≤ s ≤ T ≤ T̄ ,

�s(T ) =
(
�e−a(T−s), 0

)
, �∗s(T ) =

(
0, �∗e−a

∗(T−s)
)
, (42)

where �, �∗ > 0 and a, a∗ ∕= 0 are real constants such that � and �∗ from Propositions 3.3(i)
and 3.4(i) are non-negative. Then

Σt(T ) =

∫ T

t
�t(u)du =

(�
a

(
1− e−a(T−t)

)
, 0
)
, Σ∗t (T ) =

(
0,
�∗

a∗

(
1− e−a∗(T−t)

))
.

These volatilities Σ and Σ∗ satisfy the standing Assumption 3.1. Moreover, inserting them
into Proposition 3.2, we note that the forward rates f⋅(T ) and the short rate r are driven
solely by the first subordinator Y 1, whereas the forward spreads g⋅(T ) and the short spread
� are driven by the second subordinator Y 2.

With this volatility specification, one obtains the Lévy Hull–White extended Vasicek
model for the short rate r (cf. Corollary 4.5 and equation(4.11) in the default-free setup of
Eberlein and Raible (1999))

drt = a(�(t)− rt)dt+ �dY 1
t .

By similar reasoning, one can obtain the Lévy Hull–White extended Vasicek model for the
short term spread �

d�t = a∗(�∗(t)− �t)dt+ �∗dY 2
t .

The functions � and �∗ are deterministic functions of time which are chosen is such a way that
the models fit the initial term structures f0(T ) and g0(T ) observed in the market. Inserting
the Vasicek volatilities into equation (37) for r and equation (39) for �, and differentiating
with respect to time, one obtains � and �∗. For � we have

�(t) = f0(t) +
1

a

∂

∂t
f0(t) + �1

(�
a

(
e−at − 1

))
− (�1)′

(�
a

(
e−at − 1

)) �
a
e−at,

where �1 is the cumulant function of Y 1 (compare equations (4.10) and(4.11) in Eberlein
and Raible (1999))), and �∗ is derived in a similar fashion.

Moreover, this model possesses an affine term structure. It means that the default-free
bond prices can be written as exponential-affine functions of the current level of the short
rate r, and the pre-default defaultable bond prices as exponential-affine functions of the
short rate r and the short term spread �:

Bt(T ) = exp(m(t, T ) + n(t, T )rt), (43)

where

m(t, T ) = log

(
B0(T )

B0(t)

)
− n(t, T )

(
f0(t) +

∫ t

0

∂

∂t
�1
(�
a

(
e−a(t−s) − 1

))
ds

)
−
∫ t

0

[
�1
(�
a

(
e−a(T−s) − 1

))
− �1

(�
a

(
e−a(t−s) − 1

))]
ds

and

n(t, T ) = −eat
∫ T

t
e−audu =

1

a

(
e−a(T−t) − 1

)
.
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This result for default-free zero coupon bonds Bt(T ) is proved in Raible (2000, Theorem
4.8). For defaultable bonds B̄∗t (T ) it follows, by exactly the same reasoning and using
representation (34), that

B̄∗t (T ) = exp(m(t, T ) + n(t, T )rt +m∗(t, T ) + n∗(t, T )�t), (44)

where the deterministic functions m∗(⋅, T ) and n∗(⋅, T ) can be defined similarly as m(⋅, T )
and n(⋅, T ) above.

3.2.1 Dependent drivers

In order to specify the dependence between components Y 1 and Y 2 of the driving process
Y , the simplest way is a common factor model, that we present here (an alternative would
be to use a Lévy copula, see Cont and Tankov (2003)).

Let us assume that Y 1 and Y 2 are given as follows

Y 1 = Z1 + Z3 and Y 2 = Z2 + Z3,

where Zi, i = 1, 2, 3, are mutually independent subordinators with drifts bZi and Lévy
measures FZi . Then Y 1 and Y 2 are again subordinators (this follows by Proposition 11.10
and Theorem 21.5 in Sato (1999)) and they are obviously dependent. The Lévy measures
and the cumulant functions for subordinators Y 1 and Y 2, as well as for the two-dimensional
process Y = (Y 1, Y 2), can be calculated explicitly, as shown below.

Consider a three-dimensional Lévy process Z = (Z1, Z2, Z3), consisting of mutually
independent subordinators Zi, as above. Applying Sato (1999, Exercise 12.10, page 67),
independence of Z1, Z2 and Z3, implies that the Lévy measure FZ of Z is given by

FZ(A) =
3∑
i=1

FZ
i
(Ai), A ∈ ℬ(ℝ3 ∖ {0}), (45)

where for every i, Ai = {x ∈ ℝ : xei ∈ A} with ei a unit vector in ℝ3 with 1 in the i-th
position and other entries zero.

Now we simply have to write Y , Y 1 and Y 2 as linear transformations of Z and apply
Proposition 11.10 in Sato (1999). For example, we have Y = UZ, where

U =

[
1 0 1
0 1 1

]
.

Hence, bY = UbZ and the Lévy measure F Y is given, for B ∈ ℬ(ℝ2 ∖ {0}), by

F Y (B) = FZ(x ∈ ℝ3 : Ux ∈ B) = FZ(x ∈ ℝ3 : (x1 + x3, x2 + x3)⊤ ∈ B),

which combined with (45) yields

F Y (B) = FZ
1
(x ∈ ℝ : (x, 0) ∈ B) + FZ

2
(x ∈ ℝ : (0, x) ∈ B) + FZ

3
(x ∈ ℝ : (x, x) ∈ B).

The cumulant function �Y of Y is given, for z ∈ ℝ2 such that �Zi , i = 1, 2, 3, below are
well-defined, by

�Y (z) = �Z
1
(z1) + �Z

2
(z2) + �Z

3
(z1 + z2).

This can be derived directly recalling that �Y (z) = log IE[ezY ] and using independence
between Z1, Z2 and Z3.
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Similarly, writing each Y i as a linear transformation of Z, we obtain its Lévy measure
F Y

i , for C ∈ ℬ(ℝ ∖ {0}),

F Y
i
(C) = FZ(x ∈ ℝ3 : xi + x3 ∈ C) = FZ

i
(x ∈ ℝ : x ∈ C) + FZ

3
(x ∈ ℝ : x ∈ C)

and the drift bY i = bZ
i
+ bZ

3 , which shows that Y i is indeed a subordinator (recall Theorem
21.5 in Sato (1999)). The cumulant function �Y i of Y i is given, for z ∈ ℝ such that �Zi and
�Z

3 below are well-defined, by

�Y
i
(z) = �Z

i
(z) + �Z

3
(z).

To conclude this section, we describe two well-known subordinators: an inverse Gaus-
sian (IG) process and a Gamma process. In addition, we recall an example of a subordinator
belonging to the CGMY Lévy family. Note that these processes have infinite activity, which
makes them suitable drivers for the term structure of interest rates in our model.

Example 3.6 (IG process) According to Kyprianou (2006, Section 1.2.5), a process Z =
(Zt)t≥0 obtained from a standard Brownian motion W by setting

Zt = inf{s > 0 : Ws + bs > t},

where b > 0, is an inverse Gaussian (IG) process and has the Lévy measure given by

F (dx) =
1√

2�x3
e−

b2x
2 1{x>0} dx.

The distribution of Zt is IG( tb , t
2). The Lévy measure F satisfies condition (6) for any two

constants K, " > 0 such that (1 + ")K < b2

2 . Hence, the cumulant function � exists for all
z ∈ (− b2

2 ,
b2

2 ) (actually for all z ∈ (−∞, b22 ) since F is concentrated on (0,∞)) and is given
by

�(z) = b

(
1−

√
1− 2

z

b2

)
.

Example 3.7 (Gamma process) The Gamma process Z with parameters �, � > 0 is a
subordinator with Lévy measure given by

F (dx) = �x−1e−�x1{x>0} dx,

see Kyprianou (2006, Section1.2.4). The Lévy measure F satisfies condition (6) for any two
constants K, " > 0 such that (1 + ")K < �. Hence, the cumulant function � is well-defined
for all z ∈ (−∞, �) and is given by

�(z) = −� log
(

1− z

�

)
.

Example 3.8 (CGMY subordinator) The CGMY Lévy process Z with parameters G =
∞ and Y ≤ 0 is a subordinator by Theorem 21.5 in Sato (1999). Its Lévy measure is given
by

F (dx) = C
exp(−M ∣x∣)
∣x∣1+Y

1{x>0} dx,

where C,M > 0 and Y ≤ 0; see Raible (2000, A.3.2). For an overview of the main properties
of the class of CGMY Lévy processes we refer to Carr, Geman, Madan, and Yor (2002) or
Raible (2000, A.3.2).
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4 Valuation of interest rate derivatives

Here we give an overview of the basic interest rate derivatives where the underlying rate
is the LIBOR and calculate their value in our setup. We work under the assumptions of
Section 2 and Section 3.2 (jumps and deterministic volatilities). We emphasize that our
setup provides a versatile multi-curve model of LIBORs of different tenors, which is relevant
for pricing of multi-tenor derivatives such as basis swaps. For instance, if one wishes to
have one stochastic driving factor for each tenor and for the risk-free rate, then it suffices to
consider a three-dimensional process Y , where the first component drives the risk-free rates
and the remaining two components are reserved for the credit spread.

Before proceeding with the interest rate derivative valuation, let us recall that a forward
martingale measure IPT associated with the date 0 < T ≤ T̄ is a probability measure defined
on (Ω,ℱT ) and equivalent to IP. It is characterized by the following density process

dIPT

dIP

∣∣∣
ℱt

=
�tBt(T )

B0(T )
.

In our setup this density process is given by (cf. (14))

dIPT

dIP

∣∣∣
ℱt

= exp

(
−
∫ t

0
As(T )ds−

∫ t

0
Σs(T )dYs

)
. (46)

Note that the density process is ℰ-adapted. The payoffs of the derivatives that we are going
to study in the sequel are typically some combinations of deterministic functions of the
LIBORs LT (T, T + �), which is an ℰT -measurable random variable, for any T ∈ [0, T̄ − �].
Then we have

IE[f(LT (T, T + �))∣ℱt] = IE[f(LT (T, T + �))∣ℰt],

for any deterministic, Borel measurable function f : ℝ → ℝ. This property is equivalent
to the immersion property between ℰ and ℱ (see Bielecki and Rutkowski (2002, Section
6.1.1)), which by assumption holds in our model. Moreover, the property holds true under
any forward measure IPT as well, since the density process in (46) is ℰ-adapted. Henceforth
in all computations we shall replace automatically ℱt by ℰt.

Finally, note that in a multiple-curve setup the forward price process
(

B̄∗
t (T )

B̄∗
t (T+�)

)
0≤t≤T

is NOT a martingale under the forward measure IPT+�. Consequently, the forward LIBOR,
which would be defined as Lt(T, T + �) = 1

�

(
B̄∗
t (T )

B̄∗
t (T+�)

− 1
)
, is different from a forward rate

implied by a forward rate agreement for the future time interval [T, T + �], as we shall see
below. In the one-curve setup, the forward LIBOR defined as Lt(T, T+�) = 1

�

(
Bt(T )
Bt(T+�) − 1

)
is precisely the FRA rate for [T, T + �].

4.1 Forward rate agreements

The simplest interest rate derivative is a forward rate agreement (FRA) with inception date
T and maturity T + �. Let us denote the fixed rate by K and the notional amount by N .
The payoff of such an agreement at maturity T + � is equal to

PFRA(T + �;T, T + �,K,N) = N�(LT (T, T + �)−K),

where LT (T, T +�) is the T -spot LIBOR. Thus, the value of the FRA at time t is calculated
as the conditional expectation with respect to the forward measure IPT+� associated to the
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date T + � and is given by

PFRA(t;T, T + �,K,N) = N�Bt(T + �)IEIPT+�

[LT (T, T + �)−K∣ℰt].

We emphasize again that the forward rate implied by this FRA, that is the rate K0 such
that PFRA(t;T, T + �,K0, N) = 0, is different in the multiple-curve setup from the forward
LIBOR.

Let us derive the value of the FRA and calculate the forward rate K0 in our setup.
Using definition (4) of the LIBOR LT (T, T + �) we have

PFRA(t;T, T + �,K,N) = NBt(T + �)IEIPT+�

[
1

B̄∗T (T + �)
− K̄∣ℰt], (47)

where K̄ = 1 + �K. The key issue is thus to compute the conditional expectation

vT,T+�
t := IEIPT+�

[
1

B̄∗T (T + �)

∣∣∣ ℰt] . (48)

Inserting (23) into (48) we obtain

vT,T+�
t =

B̄∗0(T )

B̄∗0(T + �)
exp

(∫ T

0
(Ā∗s(T + �)− Ā∗s(T ))ds

)
×IEIPT+�

[
exp

(∫ T

0
(Σ̄∗s(T + �)− Σ̄∗s(T ))dYs

) ∣∣∣ ℰt]
= cT,T+� exp

(∫ t

0
(Σ̄∗s(T + �)− Σ̄∗s(T ))dYs

)
(49)

×IEIPT+�

[
exp

(∫ T

t
(Σ̄∗s(T + �)− Σ̄∗s(T ))dYs

)]
,

with

cT,T+� =
B̄∗0(T )

B̄∗0(T + �)
exp

(∫ T

0
(Ā∗s(T + �)− Ā∗s(T ))ds

)
=

B̄∗0(T )

B̄∗0(T + �)
exp

(∫ T

0

(
�(−Σ̄∗s(T + �))− �(−Σ̄∗s(T ))

)
ds

)
,

where we used the drift condition (27). For the second equality in (49) we use the fact that∫ t
0 (Σ̄∗s(T + �) − Σ̄∗s(T ))dYs is ℰt-measurable. Moreover, since Y is a time-inhomogeneous
Lévy process under the measure IPT+�, its increments are independent (cf. Proposition 2.3
and Lemma 2.5 in Kluge (2005)). This combined with the deterministic volatility structure
which is integrated with respect to Y yields the equality.

The remaining expectation can be calculated making use of Proposition 3.1 in Eberlein
and Kluge (2006b), which yields

IEIPT+�

[
exp

(∫ T

t
(Σ̄∗s(T + �)− Σ̄∗s(T ))dYs

)]
= exp

(∫ T

t
�IPT+�

s (Σ̄∗s(T + �)− Σ̄∗s(T ))ds

)
, (50)
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where �IPT+�

s denotes the cumulant function of Y under the measure IPT+�. However, to
obtain the expression for this expectation using directly the cumulant function � of Y under
the measure IP, we have the following sequence of equalities

IEIPT+�

[
exp

(∫ T

t
(Σ̄∗s(T + �)− Σ̄∗s(T ))dYs

)]
(51)

= exp

(
−
∫ T

0
As(T + �)ds

)
×IE

[
exp

(∫ T

t
(Σ̄∗s(T + �)− Σ̄∗s(T ))dYs −

∫ T

0
Σs(T + �)dYs

)]
= exp

(
−
∫ T

0
�(−Σs(T + �))ds

)
IE

[
exp

(∫ t

0
(−Σs(T + �))dYs

)]
×IE

[
exp

(∫ T

t
(Σ̄∗s(T + �)− Σ̄∗s(T )− Σs(T + �))dYs

)]
= exp

(∫ T

t

(
�(Σ̄∗s(T + �)− Σ̄∗s(T )− Σs(T + �))− �(−Σs(T + �))

)
ds

)
,

where we have used equation (46) for the first equality, and the drift condition (18) plus
the independence of the increments of Y for the second one. The third equality follows by
Eberlein and Kluge (2006b, Proposition 3.1)). Finally, we obtain

vT,T+�
t = cT,T+� exp

(∫ t

0
(Σ̄∗s(T + �)− Σ̄∗s(T ))dYs

)
(52)

× exp

(∫ T

t

(
�(Σ̄∗s(T + �)− Σ̄∗s(T )− Σs(T + �))− �(−Σs(T + �))

)
ds

)
.

Note that as a by-product we obtain a formula for the cumulant function �IPT+�

s

�IPT+�

s (z) = �(z − Σs(T + �))− �(−Σs(T + �)), (53)

for z ∈ ℝn such that �(z − Σs(T + �)) is well-defined. This follows by combining (50) and
(51), for every t ∈ [0, T ] and for Σ̄∗s(T + �)− Σ̄∗s(T ) replaced with z.

Let us sum-up our findings in the form of the following

Proposition 4.1 The value of the FRA at time t = 0 is given by

PFRA(0;T, T + �,K,N) = NB0(T + �)
[
vT,T+�

0 − K̄
]
,

with

vT,T+�
0 =

B̄∗0(T )

B̄∗0(T + �)
exp

(∫ T

0

(
�(−Σ̄∗s(T + �))− �(−Σ̄∗s(T ))− �(−Σs(T + �))

)
ds

)
× exp

(∫ T

0
�(Σ̄∗s(T + �)− Σ̄∗s(T )− Σs(T + �))ds

)
.

The forward rate K0 implied by this FRA is given by

K0 =
1

�

[
vT,T+�

0 − 1
]
. (54)
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The spread with respect to the one-curve forward rate given by 1
�

(
B0(T )
B0(T+�) − 1

)
, is equal to

SpreadFRA0 =
1

�

[
vT,T+�

0 − B0(T )

B0(T + �)

]
. (55)

As soon as the driving process Y and the parameters of the model are specified, all these
values can be easily computed. We provide an example in Section 5.

4.2 Interest rate swaps

An interest rate swap is a financial contract between two parties to exchange one stream
of future interest payments for another, based on a specified notional amount N . Here
we consider a fixed-for-floating swap, where a fixed payment is exchanged for a floating
payment linked to the LIBOR. We assume that, as typical, the LIBOR is set in advance
and the payments are done in arrears. The swap is initiated at time T0 ≥ 0. Denote by
T1 < ⋅ ⋅ ⋅ < Tn, where T1 > T0, a collection of the payment dates and by S the fixed rate.
Then the time-t value of the swap for the receiver of the floating rate is given by

PSw(t;T1, Tn) = N
n∑
k=1

�k−1Bt(Tk)IE
IPTk [LTk−1

(Tk−1, Tk)− S∣ℰt]

= N
n∑
k=1

PFRA(t;Tk−1, Tk, S, 1)

= N

n∑
k=1

Bt(Tk)
(
v
Tk−1,Tk
t − S̄k−1

)
,

where �k−1 = Tk − Tk−1, S̄k−1 = 1 + �k−1S, and v
Tk−1,Tk
t is given by (52), for every k =

1, . . . , n. This formula follows directly from (47) and (48).
The swap rate S(t;T1, Tn) is the rate that makes the time-t value PSw(t;T1, Tn) of the

swap equal to zero. Therefore,

Proposition 4.2 The swap rate S(t;T1, Tn) is given by

S(t;T1, Tn) =

∑n
k=1Bt(Tk)(v

Tk−1,Tk
t − 1)∑n

k=1 �k−1Bt(Tk)
. (56)

4.3 Basis swaps

A basis swap is an interest rate swap, where two floating payments linked to the LIBORs of
different tenors are exchanged. For example, a buyer of such a swap receives semiannually a
6m-LIBOR and pays quarterly a 3m-LIBOR, both set in advance and paid in arrears. Note
that there exist also other conventions regarding the payments on the two legs of a basis swap.
A more detailed account on basis swaps can be found in Mercurio (2010, Section 5.2) and
Filipović and Trolle (2011, Section 2.4 and Appendix F). Let us consider a basis swap with
the two tenor structures denoted by T 1 = {T 1

0 < . . . < T 1
n1
} and T 2 = {T 2

0 < . . . < T 2
n2
},

where T 1
0 = T 2

0 ≥ 0, T 1
n1

= T 2
n2

= T̂ , and T 1 ⊂ T 2. The notional amount is denoted by N
and the swap is initiated at time T 1

0 , where the first payments are due at T 1
1 and T 2

1 . The
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time-t value of such an agreement is given by

PBSw(t; T̂ , N) = N

(
n1∑
i=1

�1
i−1Bt(T

1
i )IEIPT

1
i [LT 1

i−1
(T 1
i−1, T

1
i )∣ℰt]

−
n2∑
j=1

�2
j−1Bt(T

2
j )IEIP

T2
j

[LT 2
j−1

(T 2
j−1, T

2
j )∣ℰt]

⎞⎠ .

Making use of (47) and (48) we obtain

Proposition 4.3 The value of the basis swap at time t is given by

PBSw(t; T̂ , N) = N

⎛⎝ n1∑
i=1

Bt(T
1
i )
(
v
T 1
i−1,T

1
i

t − 1
)
−

n2∑
j=1

Bt(T
2
j )
(
v
T 2
j−1,T

2
j

t − 1
)⎞⎠ , (57)

where v
T ik−1,T

i
k

t is given by (52), for each tenor structure T i, i = 1, 2.

Note that before the 2007-09 credit crisis the value of such a swap was zero at any
time t. Since the crisis, markets quote positive basis swap spreads that have to be added to
the smaller tenor leg, which is consistently accounted for in our setup; see Section 5 for a
numerical example.

Let us check that the value of the basis swap in the one-curve setup is indeed zero.
We recall that in this setup the forward LIBORs, which were defined using the default-free
zero coupon bonds as

(
Lt(T, T + �) = 1

�

(
Bt(T )
Bt(T+�) − 1

))
0≤t≤T

, are martingales under the

corresponding forward measures. We thus have

PBSw(t; T̂ , N) = N

(
n1∑
i=1

�1
i−1Bt(T

1
i )IEIPT

1
i [LT 1

i−1
(T 1
i−1, T

1
i )∣ℰt]

−
n2∑
j=1

�2
j−1Bt(T

2
j )IEIP

T2
j

[LT 2
j−1

(T 2
j−1, T

2
j )∣ℰt]

⎞⎠
= N

⎛⎝ n1∑
i=1

�1
i−1Bt(T

1
i )Lt(T

1
i−1, T

1
i )−

n2∑
j=1

�2
j−1Bt(T

2
j )Lt(T

2
j−1, T

2
j )

⎞⎠
= N

(
(Bt(T

1
0 )−Bt(T 1

n1
))− (Bt(T

2
0 )−Bt(T 1

n2
))
)

= 0,

by initial assumptions on the tenor structures.
In the multiple-curve setup we cannot use the same calculation, since now the LIBORs

are not martingales under the classical forward measures. Hence, one ends up with formula
(57), which in general yields a non-zero value of the basis swap and this value is exactly the
basis swap spread (cf. Tables 4–6 in Section 5).

4.4 Caps and floors

Recall that an interest rate cap (respectively floor) is a financial contract in which the buyer
receives payments at the end of each period in which the interest rate exceeds (respectively
falls below) a mutually agreed strike level. The payment that the seller has to make covers
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exactly the difference between the strike K and the interest rate at the end of each period.
Every cap (respectively floor) is a series of caplets (respectively floorlets). The time-t price
of a caplet with strike K and maturity T , which is settled in arrears, is given by

PCpl(t;T,K) = � Bt(T + �)IEIPT+�
[
(LT (T, T + �)−K)+

∣∣∣ ℰt]
= Bt(T + �)IEIPT+�

[(
1

B̄∗T (T + �)
− K̄

)+ ∣∣∣ ℰt]

where K̄ = 1 + �K.
It is worthwhile mentioning that the classical transformation of a caplet into a put

option on a bond does not work in the multiple-curve setup. More precisely, the (still valid)
fact that the payoff

(
(1 + �LT (T, T + �))− K̄

)+ settled at time T + � is equivalent to the
payoff BT (T + �)

(
(1 + �LT (T, T + �))− K̄

)+ settled at time T will not yield the desired
cancelation of discount factors. Since the LIBOR depends on the B̄∗⋅ (T ) bonds and the
default-free B⋅(T ) bonds are used for discounting, we have

BT (T + �)
(
(1 + �LT (T, T + �))− K̄

)+
= BT (T + �)

(
1

B̄∗T (T + �)
− K̄

)+

,

which cannot be simplified further as in the one-curve case.
Let us now calculate the value of the caplet at time t = 0 using the Fourier transform

method. We have

PCpl(0;T,K) = B0(T + �)IEIPT+�

[(
1

B̄∗T (T + �)
− K̄

)+
]

= B0(T + �)IEIPT+�
[(
eX − K̄

)+ ]
,

where X is a random variable given by (see (23))

X := log
B̄∗0(T )

B̄∗0(T + �)
+

∫ T

0
(Ā∗s(T + �)− Ā∗s(T ))ds+

∫ T

0
(Σ̄∗s(T + �)− Σ̄∗s(T ))dYs.

Let us denote byMT+�
X the moment generating function of X under the measure IPT+�., i.e.

MT+�
X (z) = IEIPT+� [

ezX
]
,

for z ∈ ℝ such that the above expectation is finite. We have

MT+�
X (z) = exp

(
−
∫ T

0
�(−Σs(T + �))ds

)
(58)

× exp

(
z

(
log

B̄∗0(T )

B̄∗0(T + �)
+

∫ T

0

(
�(−Σ̄∗s(T + �))− �(−Σ̄∗s(T ))

)
ds

))
× exp

(∫ T

0
�
(
z
(
Σ̄∗s(T + �)− Σ̄∗s(T )

)
− Σs(T + �)

)
ds

)
,

where � is the cumulant function of Y under the measure IP. The derivation of this formula
follows along similar lines as the computations in Section 4.1. In particular, we have used
equations (46), (18), (27), and Proposition 3.1 in Eberlein and Kluge (2006b).



25

Let us impose some conditions on the boundedness of the volatility structures Σ and
Σ∗ for the sake of the next result. We assume that there exists a positive constant K̃ < K

3

such that Σs(T ) ≤ K̃ and Σ∗s(T ) ≤ K̃ componentwise and for all s, T ∈ [0, T̄ ] (note that this
is a slightly stronger boundedness condition than the one in Assumption 3.1).

Now, applying Theorem 2.2 and Example 5.1 in Eberlein, Glau, and Papapantoleon
(2010) we obtain

Proposition 4.4 The time-0 price of a caplet with strike K and maturity T is given by

PCpl(0;T,K) =
B0(T + �)

2�

∫
ℝ

K̄1+iv−RMT+�
X (R− iv)

(iv −R)(1 + iv −R)
dv, (59)

for any R ∈ (1, K−K̃
2K̃

).

Proof. One has to apply Theorem 2.2 in Eberlein, Glau, and Papapantoleon (2010) with
the Fourier transform of the caplet payoff function derived in Example 5.1 of the same
paper, where other prerequisites for Theorem 2.2 related to the payoff function are also
checked. Note that the Fourier transform of the caplet payoff function is well-defined for
any R ∈ (1,+∞). To ensure thatMT+�

X (R−iv) is finite, it suffices to take any R ∈ (1, K−K̃
2K̃

).
More precisely, for every i = 1, . . . , n,

∣R
(
Σ̄i,∗
s (T + �)− Σ̄i,∗

s (T )
)
− Σi

s(T + �)∣ ≤ R∣Σ̄i,∗
s (T + �)− Σ̄i,∗

s (T )∣+ ∣Σi
s(T + �)∣

≤ R2K̃ + K̃

≤ K − K̃
2K̃

2K̃ + K̃ < K,

and thus MT+�
X (R) < ∞ (compare (58) and recall that � is well-defined for all z ∈ [−(1 +

")K, (1 + ")K]n). □

4.5 Swaptions

A swaption is an option to enter an interest rate swap with swap rate S and maturity Tn at
a pre-specified date T . Let us consider the swap from Section 4.2. Recall that a swaption
can be seen as a sequence of fixed payments �j−1 (S(T ;T1, Tn)− S)+, j = 1, . . . , n, that are
received at payment dates T1, . . . , Tn, where S(T ;T1, Tn) is the swap rate of the underlying
swap at time T ≤ T1. Hence, the value at time t of the swaption is given by

PSwn(t;T, Tn, S) = Bt(T )
n∑
j=1

�j−1IEIPT
[
BT (Tj) (S(T ;T1, Tn)− S)+ ∣ℰt

]
;

see Musiela and Rutkowski (2005, Section 13.1.2, p.482). At time t = 0 we have

PSwn(0;T, Tn, S) = B0(T )IEIPT

⎡⎣ n∑
j=1

�j−1BT (Tj) (S(T ;T1, Tn)− S)+

⎤⎦
= B0(T )IEIPT

⎡⎣⎛⎝ n∑
j=1

BT (Tj)v
Tj−1,Tj
T −

n∑
j=1

BT (Tj)S̄j−1

⎞⎠+⎤⎦ ,
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which follows by inserting (56). Recall that S̄j−1 = 1 + �j−1S and vTj−1,Tj
T is given by (49).

To proceed we assume in addition that the conditions of Example 3.5 are satisfied, i.e.
the driving process Y is two-dimensional and we assume the Vasicek volatility structures
(42). Note that since a swaption is defined on one fixed tenor structure, a two-dimensional
process is sufficient as a driving process. Recall that for each j, BT (Tj) is given by (equation
(17))

BT (Tj) =
B0(Tj)

B0(T )
exp

(∫ T

0
(As(T )−As(Tj))ds+

∫ T

0
(Σs(T )− Σs(Tj))dYs

)
and vTj−1,Tj

T is given by (equation (49) and (50))

v
Tj−1,Tj
T = cTj−1,Tj exp

(∫ T

0
(Σ̄∗s(Tj)− Σ̄∗s(Tj−1))dYs

)
× exp

(∫ Tj−1

T
�IPTj
s (Σ̄∗s(Tj)− Σ̄∗s(Tj−1))ds

)
,

where �IPTj
s is given by (53). Since the volatilities are Vasicek, we have the following sepa-

ration of variables:

Σs(T )− Σs(Tj) =
(�
a
eas
(
e−aTj − e−aT

)
, 0
)

Σ̄∗s(Tj)− Σ̄∗s(Tj−1) =

(
�

a
eas
(
e−aTj−1 − e−aTj

)
,
�∗

a∗
ea

∗s
(
e−a

∗Tj−1 − e−a∗Tj
))

,

which motivates us to introduce the following ℰT -measurable random vector

XT =

(∫ T

0
easdY 1

s ,

∫ T

0
ea

∗sdY 2
s

)
.

Consequently, for each j we can rewrite BT (Tj) and vTj−1,Tj
T as follows

BT (Tj) = cj,0ec
j,1X1

T and v
Tj−1,Tj
T = c̄j,0ec̄

jXT ,

where

cj,0 =
B0(Tj)

B0(T )
exp

(∫ T

0
(As(T )−As(Tj))ds

)
,

cj,1 =
�

a

(
e−aTj − e−aT

)
,

c̄j,0 = cTj−1,Tj exp

(∫ Tj−1

T
�IPTj
s (Σ̄∗s(Tj)− Σ̄∗s(Tj−1))ds

)
c̄j =

(
�

a

(
e−aTj−1 − e−aTj

)
,
�∗

a∗

(
e−a

∗Tj−1 − e−a∗Tj
))

are deterministic constants. Hence, the value at time t = 0 of the swaption depends only on
the distribution of the random vector XT under the measure IPT :

PSwn(0;T, Tn, S) = B0(T )IEIPT

⎡⎣⎛⎝ n∑
j=1

cj,0ec
j,1X1

T c̄j,0ec̄
jXT −

n∑
j=1

S̄j−1c
j,0ec

j,1X1
T

⎞⎠+⎤⎦
= B0(T )IEIPT

⎡⎣⎛⎝ n∑
j=1

aj,0ea
j,1X1

T+aj,2X2
T −

n∑
j=1

bj,0eb
j,1X1

T

⎞⎠+⎤⎦ , (60)
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where aj,0 = cj,0c̄j,0, aj,1 = cj,1 + c̄j,1, aj,2 = c̄j,2, bj,0 = S̄j−1c
j,0 and bj,1 = cj,1. To calculate

this expectation we shall use the moment generating functionMT
XT

of XT under the measure
IPT , which is given explicitly in terms of the characteristics of Y by

MT
XT

(z) = IEIPT
[
ez1X

1
T+z2X2

T

]
= IEIPT

[
e
∫ T
0 z1easdY 1

s +
∫ T
0 z2ea

∗sdY 2
s

]
= exp

(
−
∫ T

0
�
((�

a
(1− e−a(T−s)), 0

))
ds

)
(61)

× exp

(∫ T

0
�
(
z1e

as − �

a
(1− e−a(T−s)), z2e

a∗s
)
ds

)
,

for any z ∈ ℝ2 such that the expectation above is finite. This follows along the same lines
as in (51), for a deterministic function U(s) =

(
z1e

as, z2e
a∗s
)
, the forward measure IPT and

inserting the Vasicek volatility specifications.
Next, to compute the expectation in (60), one has to use a two-dimensional version

of the Jamshidian trick and apply the Fourier transform method, similarly to Section 4.4.
More precisely, let us introduce deterministic functions f̃ , f : ℝ2

+ → ℝ

f̃(x1, x2) =

n∑
j=1

aj,0ea
j,1x1+aj,2x2 −

n∑
j=1

bj,0eb
j,1x1

f(x1, x2) = f̃(x1, x2)+.

Then
PSwn(0;T, Tn, S) = B0(T )IEIPT

[
f(X1

T , X
2
T )
]
,

and making use of Theorem 3.2 in Eberlein, Glau, and Papapantoleon (2010), one obtains

Proposition 4.5 The time-0 price of a swaption with swap rate S and maturity Tn is given
by the following semi-closed formula:

PSwn(0;T, Tn, S) =
B0(T )

(2�)2

∫
ℝ2

MT
XT

(R+ iu)f̂(iR− u)du, (62)

where R ∈ ℝ2 is such that MT
XT

(R) given in (61) exists and the function g(x) := e−Rxf(x)
satisfies prerequisites of Theorem 3.2 in Eberlein, Glau, and Papapantoleon (2010) (R is the
so-called dampening coefficient).

A closed analytic expression for the Fourier transform f̂ is not available in this case.
However, it can be computed numerically in a quite efficient way. Observe thus that for
each fixed x1 ∈ ℝ+, the function x2 7→ f̃(x1, x2) is continuous, strictly increasing in x2 and
limx2→∞ f̃(x1, x2) = +∞, since aj,0, aj,2 > 0. Hence, let us define

q(x1) = inf{x2 ∈ ℝ+ : f̃(x1, x2) ≥ 0}.

Note that if f̃(x1, ⋅) has a zero, this zero is unique since the function is strictly increasing
(for every fixed x1). Consequently,

f(x1, x2) = f̃(x1, x2)+ = f̃(x1, x2)1{x2≥q(x1)}.
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The Fourier transform of f is therefore given, for z ∈ ℂ, by

f̂(z) =

∫
ℝ2

eizxf(x)dx

=

∫
ℝ2

eizxf̃(x1, x2)1{x2≥q(x1)}dx

=

∫ ∞
0

∫ ∞
q(x1)

eizx

⎛⎝ n∑
j=1

aj,0ea
j,1x1+aj,2x2 −

n∑
j=1

bj,0eb
j,1x1

⎞⎠ dx2dx1. (63)

Since q(x1) is obtained by numerically solving f̃(x1, x2) = 0, we shall not obtain a closed
formula for f̂ . However, based on (63), f̂ can be efficiently valued numerically. We refer
the reader to a follow-up numerical paper for every detail and numerical illustration, as well
as for discussion of conditions of the prerequisites of Theorem 3.2 in Eberlein, Glau, and
Papapantoleon (2010) regarding function g in Proposition 4.5.

5 Numerical example

Implementation and numerical issues will be dealt with in detail in a follow-up paper. How-
ever, to give a flavor of the practical behavior of the model, we consider in this section a
toy example, which illustrates the ability of the model to produce a wide range of FRA
and basis swap spreads. We work with a one-dimensional driving process Y , which is an
IG process with parameter b (see Example 3.6). Let us consider a one-dimensional Vasicek
volatility structure given by

Σt(T ) =
�

a

(
1− e−a(T−t)

)
and Σ∗t (T ) =

�∗

a∗

(
1− e−a∗(T−t)

)
.

The initial bond term structure is assumed to be given by

B0(T ) = e−r̄T and B∗0(T ) = e−(r̄+�̄)T ,

where r̄ > 0 and �̄ > 0 are some given constants.

5.1 FRAs

First let us consider an FRA and calculate the spread (55) (“FRA spread” henceforth)
between the forward rate in our model and a classical, one-curve forward rate. Figure 1 in
Morini (2009) shows 2007-09 market data for FRA spreads surging at more than 170bps at
the peak of the 2007-09 crisis. As for spot rates at that time, Filipović and Trolle (2011)
report that the spread between the 3m-LIBOR and the 3m-OIS rate attained “366 basis
points on Oct 10, 2008” (see also their Figure 1).

Tables 1 to 3 display the FRA spread in our model with T̂ = 2, � = 0.5, N = 1, for
three parameter-sets for (r̄, �̄) and for b going over a range of values from 7 to 1000 in each
case. The risk-free (one-curve classical setup) FRA rates for r̄ = 2% (Tables 1 and 2) and
r̄ = 4% (Table 3) respectively amount to 2.01% and 4.04%. The results in Table 1 finely
cover the ranges of FRA rates observed in the crisis. Tables 2 and 3 show that even wider
ranges of values are obtainable by playing with the model parameters, illustrating further
the ability of the model in fitting various market regimes.



29

b/�̄ 10 50 300

7 126.84 167.54 423.74
8 89.60 130.22 385.96
10 51.63 92.17 347.43
12 34.40 74.91 329.95
15 22.66 63.15 318.04
20 15.44 55.91 310.71
30 11.69 52.16 306.91
50 10.45 50.91 305.65
1000 10.10 50.57 305.30

Table 1: bp-FRA spreads for r̄ = 2%, a = 0.025, a∗ = 0.02, � = �∗ = 0.5 (�̄ in bps).

b/�̄ 10 50 300

7 427.41 468.71 728.70
8 297.70 338.74 597.09
10 162.64 203.41 460.07
12 100.18 140.82 396.69
15 57.02 97.58 352.90
20 30.17 70.67 325.66
30 16.11 56.58 311.39
50 11.41 51.87 306.62

1000 10.10 50.57 305.30

Table 2: bp-FRA spreads for r̄ = 2%, a = 0.05, a∗ = 0.04, � = �∗ = 1 (�̄ in bps).

b/�̄ 10 50 300

7 431.70 473.42 736.02
8 300.69 342.14 603.10
10 164.28 205.45 464.69
12 101.19 142.24 400.68
15 57.59 98.56 356.45
20 30.47 71.38 328.93
30 16.27 57.15 314.52
50 11.52 52.39 309.70

1000 10.20 51.07 308.37

Table 3: bp-FRA spreads for r̄ = 4%, a = 0.05, a∗ = 0.04, � = �∗ = 1 (�̄ in bps).
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5.2 Basis swap spreads

Now let us consider a 6m-LIBOR versus 12m-LIBOR basis swap with maturity T̂ = 10 years.
One can read on page 8 of Morini (2009) (see also Figure 3 therein): “From August 2008
to April 2009, the basis swap spread to exchange 6m-LIBOR with 12m-LIBOR over 1 year
was strongly positive and averaged 40bps.” We calculate the model spread PBSw(0; 10, 1)
(“basis swap spread” henceforth) using formula (57), for the same sets of model parameters
as in the previous subsection. The results are displayed in Tables 4 to 6. The results in
Table 4 largely cover the ranges of spreads observed in the 2007-09 crisis. Again one can see
in Tables 5 and 6 that even wider ranges of values can be obtained by playing further with
model parameters.
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