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Stéphane Crépey∗
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∗The research of S. Crépey and M. Jeanblanc benefited from the support of the “Chaire Risque de crédit”,

Fédération Bancaire Française, and of the Europlace Institute of Finance.



2

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Thinning 6

3.1 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Unordered versus Ordered Default Times . . . . . . . . . . . . . . . . . . . . 7

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.2 Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.3 Multi-Name versus Single-Name Credit . . . . . . . . . . . . . . . . . . . . . 8

3.3 Ordered Thinning of Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 F-Thinning of Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5 Fi-Thinning of Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5.1 Calibration Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 The case when τi’s are not F-stopping times . . . . . . . . . . . . . . . . . . . . . . . 11

4 Explicit Examples 11

4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Bottom-Up Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Pure Bottom-Up Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.2 Adding a Reference Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Top Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.1 Pure Top Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.2 Adding a Reference Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Numerical Examples 21

5.1 Homogeneous Groups Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.2 Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2.1 Model Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.2 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.3 Hedging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.4 Fully Homogeneous Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusions 28

6.1 Bottom-Up Approaches, Curse of dimensionality and Markovian copulae . . . . . . . 31

A A glimpse of General Theory 31

A.1 Optional Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.2 Dual Predictable Projections and Compensators . . . . . . . . . . . . . . . . . . . . 32
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1 Introduction

Presently, most if not all credit portfolio derivatives have cash flows that are determined solely by
the evolution of the cumulative loss process generated by the underlying portfolio. Thus, as of today,
credit portfolio derivatives can be considered as derivatives of the cumulative loss process L. The
consequence of this is that, as of today, most of the models of portfolio credit risk, and related
derivatives, focus on eventual modeling of the dynamics of the process L, or, directly on modeling
of the dynamics of the related conditional probabilities, such as

Prob(L takes some values at future time(s) given present information).

In this paper we shall study various methodologies that have been developed for this purpose (see
for instance, among so many others, the references in the bibliography; specific comments will be
given in the course of the paper). In addition, we shall discuss the issue of hedging of loss process
derivatives, and we shall argue that loss process may not provide a sufficient basis for this, in the
sense described later in the paper. In fact, we shall engage in some in depth study of the role of
information with regard to valuation and hedging of derivatives written on the loss process.

1.1 Outline of the Paper

In Section 2 we provide an overview of the main modeling approaches that have been developed so
far for handling portfolio credit derivatives. In Section 3 we provide some mathematical insights to
the fact that information (namely, the choice of a relevant model filtration) is the major issue in this
regard. In Section 4 we illustrate this on simple mathematical examples. In Section 5 we illustrate
further by means of numerical simulations (semi-static hedging experiments) that the loss process L
is not a sufficient statistics for the purpose of valuation and hedging of portfolio credit risk, as soon
as L is not a Markov process. Conclusions are drawn in Section 6.

1.2 Standing Notation

Considering a pool (portfolio) of n credit names, we denote by τi the default time corresponding to
the ith name, by Hi

t = 1τi≤t and J i
t = 1−Hi

t = 1t<τi
the related default and non-default indicator

processes (raw processes in the sense of random functions, without reference to any filtration yet),
and by Ri a related (possibly random) recovery at default. We define the cumulative default process
N and the cumulative loss process L by Nt =

∑n
i=1 H

i
t and Lt =

∑n
i=1 (1 − Ri)Hi

t , respectively.
Note that except in Section 5 we shall assume that Ri = 0 for each i, so that Lt =

∑n
i=1 H

i
t (the

cumulative loss process L reduces to the cumulative default process N).

From now on, t will denote the present time, and T > t will denote some future time. Suppose
that ξt represents a cumulative ex-dividend cash flow on the time interval (t, T ],1 which will be
derived from the evolution of the loss process L, and representing a specific credit portfolio derivative
claim. We may have at least two tasks at hand:
• to compute the time-t price of the claim, given the information that we may have available and
we are willing to use at time t;
• to hedge the claim at time t. By this, we mean computing hedging sensitivities of the claim with
respect to hedging instruments that are available and that we may want to use.

For simplicity we shall assume that we use spot martingale measure, say P, for pricing, and
that the interest rate is zero. Thus, denoting by F = (Ft)t∈[0,T ] a filtration that represents flow of

1So ξt = ξ if there are no dividends but only a terminal payment; note however that most credit products are
swapped and involve therefore coupon streams.
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information we use for pricing, and by E expectation relative to P (ξt being assumed FT -measurable
and P-integrable), the pricing task amounts to computation of the conditional expectation E(ξt|Ft).
Finally, if X is a given process, we denote by FX its natural filtration satisfying usual conditions
(perhaps after completion and augmentation).

We denote Nk = {0, · · · , k}, for any positive integer k.

2 Top and Bottom Approaches: an Overview

Various approaches to valuation of derivatives written on credit portfolios differ between themselves
depending on what is the content of filtration F. Thus, loosely speaking, these approaches differ
between themselves depending on what they take (presume) to be sufficient information so to price
(and consequently to hedge) credit portfolio derivatives.

2.1 Top and Top-Down Approaches

The approach, that we dub the pure top approach takes as F the filtration generated by the loss
process alone. Thus, in the pure top approach we have that F = FL. Examples are Laurent, Cousin
and Fermanian [40], Cont and Minca [15], most of Herbertsson [35] or van der Voort [48].

The approach that we dub the top approach takes as F the filtration generated by the loss process
and by some additional relevant (preferably low dimensional) auxiliary factor process, say Y . Thus,
in this case, F = FL ∨ FY . Examples are Bennani [3], Schönbucher [46], Sidenius, Piterbarg and
Andersen [47], Arnsdorf and Halperin [2], Lopatin and Misirpashaev [43] or Ehlers and Schönbucher
[22].

It appears that works devoted to pure–top/top approaches focus on valuation issues alone, and
that they fail to address the key issue of hedging, in particular the issue of hedging of credit portfolio
derivatives by vanilla individual contracts (such as default swaps).

To address this issue, the so-called top-down approach starts from top, that is, it starts with
modeling of evolution of the portfolio loss process subject to information structure F. Then, it
attempts to ‘decompose’ the dynamics of the portfolio loss process down on the individual constituent
names of the portfolio, so to deduce the dynamics of processes Hi. This is done by a method of
random thinning formalized in Giesecke and Goldberg [29]. Further illustration is given in Ding,
Giesecke and Tomecek [20] and Errais, Giesecke and Goldberg [24]. This approach is also advocated
by Halperin in [32].

2.2 Bottom-Up Approaches

The approach that we dub the pure bottom-up approach takes as F the filtration generated by the
state of the pool process H = (H1, . . . ,Hn), i.e., F = FH (see, for instance, Herbertsson [34]).

The approach that we dub the bottom-up approach takes as F the filtration generated by process
H and by an auxiliary factor process Z. Thus, in this case, F = FH ∨ FZ . Examples are Bielecki,
Crépey, Jeanblanc and Rutkowski [4], Bielecki, Vidozzi and Vidozzi [10], Frey and Backhaus [25, 26],
Duffie and Garleanu [21] or Gaspar and Schmidt [28].

Remark 2.1 A bottom-up model may be such that

FH ⊆ FZ . (1)

For example, take n = 2, and take three positive random variables: σj , j = 1, 2, 3. Next, define
Zj

t = 1σj≤t, j = 1, 2, 3. Finally, let τ1 = σ1 ∧ σ3 and τ2 = σ2 ∧ σ3. We can interpret σ1 and
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σ2 as ‘idiosyncratic default times,’ and we can interpret σ3 as a ‘systemic default time.’ Letting
Z = (Zj)1≤j≤3, we see that (1) holds.

2.2.1 Interacting Particles Approaches

As an aside to bottom-up approaches, let us mention the interacting particles approaches (see Liggett
[41] and [42] for a general reference, and Giesecke and Weber [30] or Frey and Backhaus [27] for
applications to portfolio credit derivatives). Experience seems to show however that interacting
particle models are not appropriate for risk management of portfolio credit derivatives. We can see
two reasons for this:
• Firstly, interacting particle models ultimately rely on homogeneity assumptions which are obviously
not satisfied in the case of credit portfolios, in general. Attempts to turn round this shortcoming by
considering sub-group of homogeneous obligors face the difficulty that there is no way to determine
such groups in a manner which would be consistent across time; for instance, economic sectors do not
define groups of obligors which would be homogeneous in terms of credit risk, whereas homogeneous
groups which would be defined by tranching the range of CDS spreads would vary over time (note
however that a homogeneous groups set-up will be fruitfully used for numerical illustration purposes
in Section 5);
• Secondly, the kind of contagion typically embedded in interacting particle systems (nearest neighbor
interaction as of Liggett [41]) is not appropriate, neither quantitatively (not enough contagion and
frailty) nor qualitatively, for portfolio credit derivatives management.
It is possible that interacting particle approaches might be of interest for large portfolio credit value
at risk assessment (rather than credit derivatives management), however (see Dai Pra, Runggaldier,
Sartori and Tolotti [17]).

Remark 2.2 On a different note, interacting particles approaches also lead to generic importance
sampling techniques that can fruitfully be applied to simulation in the context of dynamic Markovian
models of portfolio credit risk (see Crépey and Carmona [16]).

2.3 Discussion

To discuss the previous approaches a prerequisite is to provide analysis criteria as for what a good
credit basket model (or credit portfolio model) should be:
• Firstly, a good model should of course contain the right inputs, namely the inputs with respect
to which the trader wishes to compute sensitivities or Greeks (typically sensitivities with respect to
index and/or CDS spreads in the case of CDO tranches, etc.);
• Secondly, a good model should be calibrable to the market consistently over time, since consistency
or robustness of calibrated parameters over time effectively means that a model produces the right
Greeks (this can be considered as a heuristic principle largely valid in practice: in any class of models
achieving consistent calibration to the market, one gets essentially the same Greeks);
• Thirdly, pricing and calibration (the latter is of course the most demanding) should be doable in
real time.

Now, from the pricing perspective, the pure top approach is undoubtedly the best suited for fast
calibration and fast valuation, as it only refers to a single driver – the loss process itself. However,
it probably produces incorrect pricing results, as it is rather unlikely that financial market evaluates
derivatives of the loss process based only on the history of evolution of the loss process alone. Note
in particular that loss process is not a traded instrument. Thus, it seems to be necessary to work
with a larger amount of information than the one carried by filtration FL alone. This is quite likely
the reason why several versions of the top approach have been developed. Enlarging filtration from
FL to FL∨FY may lead to increased computational complexity, but at the same time it is rather sure
to increase accuracy in calculation of important quantities, such as CDO tranche spreads and/or
CDO prices.
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From the hedging perspective both the pure top approach and the top approach appear to be
far inadequate. Since the loss process is not a traded security, a user of the top approaches is forced
to hedge one derivative of the loss process, say ξ, with another loss process derivative, say χ, which
is available for (liquid) trading. This may not be such a good idea since, for one, it is only possible
to compute sensitivities of ξ with respect to χ indirectly, via sensitivities of ξ and χ with respect to
L, so that hedging may not be quite precise. Moreover, this kind of hedging may be quite expensive
(e.g., hedging a CDO tranche using iTraxx).

Remark 2.3 It is possible however that effective pricing and hedging of derivatives written on
derivatives of loss process, such as CDO options, can be achieved using the top approaches (this is
actually the most common market practice in this regard) . Yet this statement should be considered
with caution and this issue should be thoroughly investigated.

Operating on the top level definitely prohibits computing sensitivities of a loss process derivative
with respect to constituents of the portfolio of credits generating the loss process in question. So,
for example, when operating just on top level one can’t compute sensitivities of CDO tranche prices
with respect to prices of the CDS contracts underlying the portfolio. This is of course the problem
that led to the idea of the top-down approach, that is the idea of thinning. However one of the
purpose of this paper (see Section 3.6 in particular) is to show that the top-down approach is quite
misguided. In fact the opinion developed in this paper is that only the bottom-up approaches allow
adequate hedging of portfolio credit derivatives with respect to the constituents of the portfolio.

3 Thinning

Note that processes Hi are sub-martingales with respect to any filtration for which they are adapted,
as non-decreasing processes, and therefore they can be compensated with respect to any filtration
for which they are adapted Thinning refers to the recovery of individual compensators, starting from
the loss compensator as input data. Since the compensator is an information- (filtration-) dependent
quantity, thinning of course depends on the filtration under consideration.

3.1 Set-up

We fix a filtered probability space (Ω,F ,F,P) satisfying the usual conditions. On this space we
consider an F-adapted point process L̃ (a non-decreasing process that takes values in N and whose
jumps are of size one, see, e.g., Brémaud [13] or Last and Brandt [39]), and we denote by Λ̃ the
F-compensator (See section A.2 in the Appendix) of L̃. We impose mild technical conditions on Λ̃
to the effect that process L̃ is cadlag, so that in particular, it only admits a finite number of jumps
in any bounded time interval and does not admit jumps of the second kind (since it has left limits
and is right continuous). In particular, we assume that Λ̃ continuous.

In credit portfolio applications we only deal with a finite number, say n of credit names. Because
of this, we are only interested in studying process L̃ through its n-th jump. Towards this end, let
us denote by ϑi, i = 1, 2, . . . , n, . . . , the consecutive jump times of process L̃, and let us denote by
L process L̃ stopped at ϑn, that is

L = L̃·∧ϑn =
n∑

i=1

1ϑi≤t .

The F-compensator of process L, say Λ, is then given as

Λ = Λ̃·∧ϑn ,
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and the process
M := L− Λ (2)

is a uniformly integrable F-martingale (see, e.g., Theorem 11 page 112 of Protter [45]).

3.1.1 Unordered versus Ordered Default Times

Next, we denote by τi, i = 1, 2, . . . , n, an arbitrary collection of (mutually avoiding) random times
on (Ω,F ,P), and by τ(i), i = 1, 2, . . . , n, we denote the corresponding ordered sequence, that is
τ(1) < τ(2) < · · · < τ(n). We denote as usual Hi

t = 1τi≤t. Accordingly, we set H(i)
t = 1τ(i)≤t. So,

obviously,
∑n

i=1 H
i =

∑n
i=1 H

(i). Note that, since L̃ (hence L) is assumed to be F-adapted in this
section, thus the τ(i)’s are F-stopping times.

In what follows process L models the loss process. In this regard observe that at this point we
do not define process L as

Lt =
n∑

i=1

Hi
t . (3)

In the top approaches such representation is secondary, and not always needed. Note however that
the question of existence of representation of the form (3), for an F-adapted point process L stopped
at level n (supplemented by suitable Markov property requirements), is by no means obvious.

The following Remark is, of course, elementary,

Remark 3.1 We have

L =
n∑

i=1

Hi (4)

if and only if
ϑi = τ(i), i = 1, 2, . . . , n. (5)

It is clear that for a given process L there may be multiple families of random times τi, i =
1, 2, . . . , n, for which equation (4) is satisfied. For example, in the case where n = 2 and ϑ1 and ϑ2

are constants with ϑ1 < ϑ2, the particular choice

τ1 = ϑ11ω∈Ω1 + ϑ21ω∈Ω2 , τ2 = ϑ21ω∈Ω1 + ϑ11ω∈Ω2 ,

where {Ω1,Ω2} is any measurable partition of Ω, gives a family of times τi, i = 1, 2, such that

τ(1) = τ1 ∧ τ2 = ϑ1, τ(2) = τ1 ∨ τ2 = ϑ2.

It is important to note that any of the random times τi, i = 1, 2, . . . , n, may or may not be
an F-stopping time. For example, if F coincides with the filtration generated by process L, then,
unless all times τi, i = 1, 2, . . . , n, are ordered, at least one of them is not an F-stopping time. Of
course, all of the times τ(i), i = 1, 2, . . . , n, are F-stopping times in this case. As a matter of fact,
since knowledge of the loss process L is equivalent to knowledge of its jump times, it follows from
Remark 3.1 that the knowledge of loss process is equivalent to the knowledge of the ordered sequence
τ(i), i = 1, . . . , n, as long as (5) holds for this sequence.

From now on we shall only consider sequences τi, i = 1, 2, . . . , n, for which (4) holds.

3.2 Motivation

A preliminary question regarding thinning is why would one wish to know the individual compen-
sators. The answer depends on one’s objectives.
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3.2.1 Pricing

Suppose that all one wants to do is to compute the expectation E(ξ|Ft) for 0 ≤ t < T, where the
integrable random variable ξ = π(LT ) represents the stylized payoff of a portfolio loss derivative.
In general, this is not an easy task. Sometimes, exact formulas may be available for E(ξ|Ft). But
in general, computation of such expectations will need to be done by simulation. Since the value
of ξ does not depend on identities of defaulting names, computing of the expectation E(ξ|Ft) by
simulation will only require simulation of the process L, which is the same as simulation of the
sequence τ(i), i = 1, 2, . . . , n. If one additionally makes Markovian assumptions, or conditionally
Markovian assumptions (assuming further factors Y ), about process L with respect to the filtration
F, then, in principle, the expectation E(ξ|Ft) can be computed (at least numerically). The point is
that for computation of E(ξ|Ft), one does not really need to know the individual compensators. So,
with regard to the problem of pricing of derivatives of the loss process, a top model may be fairly
adequate. In particular, the filtration F may not necessarily contain the pool filtration H. Also, the
representation L =

∑n
i=1 H

i need not be considered at all in this context.

3.2.2 Hedging

But there is a fundamental reason why one may need to know the individual F-compensators Λi’s
of the τ i’s (assuming here τ i are F stopping times). Computing the price E(ξ|Ft) is just one task
of interest, which of course is important in the context of valuation of derivatives written on credit
portfolio. Yet the key task is hedging. From the mathematical point of view hedging relies on the
derivation of a martingale representation of E(ξ|Ft), which is useful in the context of computing
sensitivities of the price of ξ with respect to changes in prices of (liquid) instruments, such as CDS
contracts, corresponding to the credit names composing the credit pool underlying the loss process
L. Sensitivities computed in this way account for both spread risk and jump-to-default risk.

Typically, one will seek a martingale representation in the form

E (ξ|Ft) = Eξ +
n∑

i=1

∫ t

0

ζi
sdM

i
s +

m∑
j=1

∫ t

0

ηj
sdN

j
s , (6)

where the M i’s are some fundamental martingales associated with the non-decreasing processes
Hi’s, and the N j ’s are some fundamental martingales associated with all relevant auxiliary factors
included in the model. The coefficients ζi’s and ηj ’s can, in principle, be computed given a particular
model specification; now, for this, one will typically need to know the compensators Λi’s (see Section
4 for illustrative examples).

3.2.3 Multi-Name versus Single-Name Credit

We now assume that, for some i, F can be decomposed as Fi ∨ Hi, where Hi = (Hi
t)t≥0 is the

filtration generated by Hi
t = 1τi≤t (in particular, τi is an Hi, hence an F-stopping time) and Fi is a

reference filtration. Let further ξ stand for a F i
T measurable, integrable random variable. Thinking

of single-name credit (see, e.g., Bielecki et al. [6]), one might think, under this assumption, that
for the computation of quantities like E(J i

T ξ|Ft) (recall J i = 1 − Hi) for t < T, the knowledge of
the compensator Λi of τi with respect to F may be quite useful.2 To see why, let us first denote
Gi

t = P(τi > t|F i
t ). Assuming (w.l.o.g.) that Gi is strictly positive, we define the corresponding

hazard process
Γi

t = − lnGi
t . (7)

The importance of the hazard process comes, among other reasons, from the fact that using this
process we can provide the following convenient representation:

E(J i
T ξ|Ft) = J i

tE(eΓ
i
t−Γi

T ξ|F i
t ). (8)

2By the compensator of a random time τ we mean the compensator of the one point process 1τ≤t.
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Now, under some additional assumptions (see discussion below), the F-compensator of τi coincides
with the F-hazard process of τi, that is Γi = Λi. This would be one of the reasons why sometimes
one may want to compute processes Λi.

Sufficient conditions ensuring Γi = Λi are that Γi is a continuous and non-decreasing process,
where these requirements are typically met by postulating that τ i is an Fi-pseudo-stopping time
which avoids Fi-stopping times (conversely, the continuity of Γi implies that τ i avoids Fi-stopping
times; see Coculescu and Nikeghbali [14]).

Recall that the Fi-random time τ i being an Fi-pseudo-stopping means that Fi-martingales
stopped at τ i are F-martingales (see Nikeghbali and Yor [44]). This is of course satisfied when
Fi-martingales are F-martingales, namely, when immersion (also referred to as the (H) Hypothesis)
holds between Fi and F. Now, in the case of multi-name credit risk, the typical situation is that
Hj ⊂ Fi for j 6= i. In this case immersion typically does not hold between Fi and F (unless we are in
degenerate situations like the τi’s being either ordered or independent, cf. Ehlers and Schönbucher
[22]; see Proposition 4.2 and the comments following it for a concrete example). Moreover, τi is
typically not an Fi-pseudo-stopping time either. So the identity Γi = Λi may not hold and identity
(8) may not be exploited, fault of knowing Γi.

3.3 Ordered Thinning of Λ

Let Λ(i) denote the F-compensator of τ(i) (recall that the τ(i) are F-stopping times).

Proposition 3.1 Assuming Λ continuous,3 we have, for t ≥ 0,

Λ(i)
t = Λt∧τ(i) − Λt∧τ(i−1) . (9)

So in particular Λ(i) = 0 on the set t ≤ τ(i−1).

Proof. Note first that
Lt∧τ(i) − Λt∧τ(i) (10)

is an F-martingale for every i = 1, 2, . . . , n, as it is equal to the F-martingale M (cf. (2)) stopped
at the F-stopping time τ(i). Taking the difference between expression in (10) for i and i − 1 yields
that H(i)

t − Λ̂(i)
t , with Λ̂(i)

t defined as the RHS of (9), is an F-martingale (stopped at τ(i)). Hence
(9) follows, due to uniqueness of compensators. 2

Formula (9) represents the ‘ordered thinning’ of Λ. Note that Remark 3.1 and (for Λ continuous)
formula (9) are true regardless of whether τi’s are F-stopping times or not. This reflects the simple
truth that modeling the loss process L is the same as modeling the ordered sequence τ(i), i = 1, . . . , n,
no matter what is the informational context of the model otherwise.

3.4 F-Thinning of Λ

In this section and in the next one we only consider the case that each random time τi is an F-
stopping time, and we are interested in (unordered) thinning, that is computing the compensators
of τi relative to various sub-filtrations of F, which respect to which τi is a stopping time, starting
from the process Λ.

Suppose that τi, i = 1, 2, . . . , n, are F-stopping times and let Hi denote the filtration generated
by Hi. Assume further, for every i = 1, · · · , n, a decomposition F = Hi ∨ Fi, where Fi is a strict

3This is equivalent to the τ(i)’s being totally inaccessible F-stopping times; see, for instance, Dellacherie and Meyer
[19].
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sub-filtration of F. Now, let us denote by Λi the F-compensator of τi. We of course have that

Λ =
n∑

i=1

Λi. (11)

Moreover, the following is true.

Proposition 3.2 (Giesecke and Goldberg [29]) An F-predictable, non-negative and non-decreasing
process Λ is the compensator of L if and only if there exist F-predictable non-negative processes Zi,
i = 1, 2, . . . , n, such that Z1 + Z2 + · · ·+ Zn = 1 and

Λi =
∫ ·

0

Zi
tdΛt, i = 1, 2, . . . , n. (12)

Proof (Sketched). Use (11) and set Zi = d Λi

d Λ for the “only if” part; F-predictability of Zi is apparent
in the Airault–Föllmer representation of Zi, see Theorem 4.7 in Airault and Föllmer [1] or Giesecke
and Goldberg [29]. The “if” part is obvious. 2

In the special case where random times τi, i = 1, 2, . . . , n, constitute an ordered sequence, then
the ordered thinnning formula (9) yields that Zi

t = 1τi−1<t≤τi
. In general, it is possible to interpret

Zi as the probability that i is the next name to default, conditional on the imminence of a default
(this is also apparent in the Airault–Föllmer representation of Zi).

Proposition 3.2 tells us that, if one starts building a model from top, that is, if one starts building
the model by first modeling the F-compensator Λ of the loss process L, then the only way to go
down relative to the information carried by F, i.e., to obtain F-compensators Λi, is to do thinning
in the sense of equation (12). We shall refer to this as to F-thinning of Λ.

Remark 3.2 : When Top-Down becomes to Bottom-Up? Given that all τi’s are F-stopping
times, this thinning is of course equivalent to building the model from the bottom up. That is,
modeling processes Λ, Zi, i = 1, 2, . . . , n, is equivalent to modeling processes Λi, i = 1, 2, . . . , n.

3.5 Fi-Thinning of Λ

Now, suppose that Fi is some sub-filtration of F and that τi is also an Fi-stopping time. We want
to compute the Fi-compensator Γi of τi, starting with Λ.

The first step is to do the F-thinning of Λ, that is, to obtain the F-compensator Λi of τi (cf.
Section 3.4, formula (12)). The second step is to obtain the Fi-compensator Γi of τi from Λi. Towards
this end we denote by oiΛi the optional projection of Λi on the sub-filtration Fi (see Section A.1).
Since Λi is non-decreasing, oiΛi is a Fi-submartingale, thus it admits a Doob-Meyer decomposition.
Denoting4 by

(
oiΛi

)pi the Fi-compensator (in the sense of the predictable non-decreasing component)
of the Fi-submartingale oiΛi, we thus have the following result, by application of Proposition A.1 in
the Appendix.

Proposition 3.3 Γi and Λi denoting the Fi- and the F- compensators of τi, one has,

Γi =
(
oiΛi

)pi
. (13)

Moreover, in case Γi and Λi are time-differentiable with related Fi- and F- intensity processes γi

and λi, then γi is the Fi-optional projection of λi (see Section A.1), so

γi =oi λi . (14)
4with a slight abuse of notation, see Section A.2.
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3.5.1 Calibration Issues

The above relations are important regarding the issue of calibration of a model to marginal data,
one of the key issues in financial modeling.

For example, one may want to calibrate the credit portfolio model to spreads on individual CDS
contracts. If the spread on the ith CDS contract is computed using conditioning with respect to
Fi, then the Fi-compensator Γi of τi will typically be used in calibration, solving (14) in λi with
γi observed on the market. We refer the reader to the comments following Proposition 4.2 for an
illustration in a pure bottom-up situation where the individual CDS spreads reflect only information
relevant to the given obligor, so in this case Fi = Hi.

3.6 The case when τi’s are not F-stopping times

Finally, let us consider the case that at least one τi is not an F-stopping time.

The point we want to make here is that if the model is built from top, and if the filtration F
does not provide information about τi, then no credit derivative, say ξ, built off the loss process L,
in the sense that ξ ∈ FL

T , can be hedged only by instruments which derive their value solely from
τi, such as CDS contracts on τi (assuming deterministic recovery).

Giesecke and Goldberg [29] introduce a notion of (we call it top-down) intensity of τi (even though
τi is not F-stopping time), defined as the time-derivative, assumed to exist, of the compensator (in
the sense of the F-predictable non-increasing component) of the optional projection oiHi of Hi on
F. However, except in the case where τi is an F-stopping time and top-down boils down to bottom-
up (see Remark 3.2), this notion of intensity cannot be identified with the intensity of name i as
extracted from the related marginal market data (market CDS curve on name i). Indeed the market
intensity of name i obviously corresponds to an intensity in a filtration adapted to τi. So the top-
down intensity of τi is not represented in the market, and therefore there is no way one may hope to
calibrate such a top-down intensity. The most striking illustration of this corresponds to the simple
fact that outside the special bottom-up case of τi being an F-stopping time, a top-down intensity
typically fails to vanish after τi.

4 Explicit Examples

There are two major (and rather natural) messages in the previous section:
• The concept of thinning of the compensator of the loss process so to obtain compensators of the
individual default times makes sense only if there is enough information to do so. However, the
‘enough information’ requirement renders the thinning really irrelevant;
• Insufficient information about the pool of credit names does not allow for hedging with respect to
individual names.

It is also crucial to emphasize the following observations:
— Representation (6) is key to computing hedging ratios for E(φ(LT )|Ft) with respect to instruments
derived from the sub-pools of the pool of given n credits (in particular, with respect to individual
instruments, such as CDS contracts);
— Such a representation can’t be obtained if the model is not a bottom-up type model, since in this
case the fundamental martingales M i are no more available, so they cannot be used in (6).

We shall illustrate these points in simple set-ups of the pure bottom-up, bottom-up, pure top
and top models, generally involving only two random times τ1 and τ2, for simplicity of presentation.
The extension of the results to n random times is straightforward.
In particular, we are going to provide various ways of shedding a dynamic perspective on two random
times τ1 and τ2, introducing in each case related F-adapted point processes assumed to admit (F-
predictable, without loss of generality [13, 45]) F-intensity processes. The dynamic perspective is
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important if one is interested in hedging credit portfolio derivatives (e.g. CDOs), as well as if one
is interested in pricing and hedging derivatives on credit portfolio derivatives (e.g. an option on a
CDO tranche).

In every set-up (pure bottom-up, bottom-up, pure top and top) there will be basically two
practical ways of ‘dynamizing’ τ1 and τ2: the Markovian approach, mainly, but also, under certain
circumstances, a distributional approach (also exploited for various purposes in Jiao [38], El Karoui
et al. [23] or Jeanblanc and Le Cam [37]).
The Markovian approach relies on the possibility to perform suitable Markovian change of measure,
starting from models in which all the ingredients (default related point processes, auxiliary factor
process if any) are independent. The model primitives are the generator of the related Markovian
factor process, or equivalently, in pure (top or bottom) approaches, the F-intensities of the point
processes at hand. In the distributional approach the model primitives are related marginal and/or
joint distributions (in pure top or bottom approaches) or conditional distributions (when there
are auxiliary factor processes involved) functions, and relies on suitable regularity assumptions on
these distributions. Incidentally, the connection between the two approaches is a delicate issue only
partially addressed in this paper (we can only conclude from our examples that the two approaches
are non-inclusive).

4.1 Notation

In order to discuss hedging, we introduce (Borel-measurable and bounded, say) loss payoff functionals
π, φ and ψ. Here the idea is to hedge the claim with payoff π(LT ) at T by the one with payoff
φ(LT ) at T, and, possibly also, the one with payoff ψ(LT ) at T. We denote the pricing process
Πt = E(π(LT )|Ft), and we introduce likewise Φ and Ψ. The tracking error e = eζ of the (self-
financing) dynamic hedging strategy ζ = (ζ1, ζ2) based on Φ and Ψ (and the riskless, constant
asset) satisfies, for t ∈ [0, T ]

det = dΠt − ζtd

(
Φt

Ψt

)
(15)

(and e0 = 0). In particular, restricting oneself to single-instrument hedges, one can min-variance
hedge the π-claim by the φ-claim and the riskless asset (so ζ2 = 0, here) by using the strategy ζ1 in
Φ defined by, for t ∈ [0, T ] (cf. [7] page 85):

ζ1
t =

d〈Π,Φ〉t
d〈Φ〉t

. (16)

Of course, the analysis of the tracking error will depend, in particular, on the information (fil-
tration F) which is used.

4.2 Bottom-Up Approaches

In the bottom-up approaches, τ1 and τ2 are F-stopping times, andH1 andH2 are therefore F-adapted
processes. We denote by M1 and M2 the F – compensated martingales of H1 and H2, so

M1 = H1 −
∫ ·

0

J1
t λ̃

1
tdt , M

2 = H2 −
∫ ·

0

J2
t λ̃

2
tdt (17)

where λ̃1 and λ̃2 are the pre-default F-intensities of τ1 and τ2.

We denote by ı = (i1, i2) a generic pair in {0, 1}2. Moreover for every ı = (i1, i2) ∈ {0, 1}2 we
denote  = (j1, j2) = (1− i1, 1− i2).
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4.2.1 Pure Bottom-Up Approaches

Here we assume that available information is carried by the filtration H = H1 ∨H2. So in this case
F = FH = H.

Markovian Approach To cast the model in a Markovian framework, in the sense that the pair
H = (H1,H2) is an F – Markov process, one starts with the generator matrix

At =


−(λ1

0,0(t) + λ2
0,0(t)) λ1

0,0(t) λ2
0,0(t) 0

0 −λ2
1,0(t) 0 λ2

1,0(t)
0 0 −λ1

0,1(t) λ1
0,1(t)

0 0 0 0

 . (18)

In λl
ı(t) the superscript l refers to ‘which obligors defaults’ and the subscript ı = (i1, i2) to ‘from

which (bivariate) state’. The F-intensity functions λ1
ı (t) and λ2

ı (t), sometimes also denoted λ1(t, ı)
and λ2(t, ı), are of the form, with (j1, j2) = (1− i1, 1− i2) :

λ1
ı (t) = j1λ̃

1
i2(t) , λ

2
ı (t) = j2λ̃

2
i1(t) (19)

for (non-negative) pre-default intensity functions λ̃1
i (t) and λ̃2

i (t), or λ̃1(t, i) and λ̃2(t, i), such that
(cf. (17))

λ̃1
t = λ̃1(t,H2

t ) , λ̃2
t = λ̃2(t,H1

t ) .

Note that, given that there are no common jumps between processes Hi, so individual pre-default
intensity functions λ̃l’s are in one-to-one correspondence with the generator A. They can thus be
considered as the model primitives.

In this paragraph we shall consider hedging of claims that are of the form π̄(HT ) by means of
trading of the claims of the form ψ̄(HT ) and φ̄(HT ). Taking π̄(ι) = π(i1 + i2), and likewise for ψ̄
and φ̄, we can specialize these hedging results to claim depending solely on the loss process.

Since H is here a Markov process, we have that

Πt = u(t,Ht) , (20)

where u(t, ı) (or uı(t)), for t ∈ [0, T ] and ı ∈ {0, 1}2 is the pricing function (system of time-functionals
uı). Using the Itô formula in conjunction with the martingale property of Π, the pricing function
can then be characterized as the solution to the following pricing equation (system of ODEs):

(∂t +At)u = 0 on [0, T ) , uı(T ) = π̄(ι) . (21)

Moreover we also get the following martingale representation, for t ∈ [0, T ]:

Πt = E(π̄(HT )) +
∫ t

0

δ1u(s,Hs−) dM1
s +

∫ t

0

δ2u(s,Hs−) dM2
s , (22)

where the delta functions δ1u and δ2u are defined by

δ1uı(t) = u1,i2(t)− u0,i2(t) , δ
2uı(t) = ui1,1(t)− ui1,0(t) .

or in a short-hand notation immediately extendable to the case of n obligors, for every l = 1 or 2,

δluı(t) = uıl(t)− uıl(t)

where ıl and ıl denote the vector ı with the lth component replaced by 0 and 1, respectively.

Introducing likewise the pricing functions v and w of the φ and ψ-claims, and plugging all this
in (15)–(16), the following hedging results follow.
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Proposition 4.1 (i) One can replicate π̄(HT ) at T by using the strategy ζ = (ζ1, ζ2) based on φ̄ and
ψ̄ (and the riskless, constant asset) defined by, for t ∈ [0, T ] (under the related matrix-invertibility
assumption):

ζt = (δ1u, δ2u)
(

δ1v δ2v
δ1w δ2w

)−1

(t,Ht−) .

(ii) Alternatively, it is possible to min-variance hedge the π̄-claim by the φ̄-claim and the riskless
asset using the strategy ζ such that ζ2 = 0 and, for t ∈ [0, T ]:

ζ1
t =

λ1(δ1u)(δ1v) + λ2(δ2u)(δ2v)
λ1(δ1v)2 + λ2(δ2v)2

(t,Ht−) . (23)

Distributional Approach Let Gi (for i = 1, 2) and G denote the marginal and joint survival
functions of τ1, τ2, so for every u, v ∈ R+,

Gi(u) = P(τi > u) , G(u, v) = P(τ1 > u, τ2 > v).

We assume the Gi’s of class C1 and G of class C2. In particular there is therefore no common
jump in the distributional model, consistently with our standing assumptions in this paper.

Let here and henceforth ∂j
i f (or simply ∂if in case j = 1) denote the partial derivative of order

j of a function f with respect to its ith argument.

Remark 4.1 Since G is continuous, there exists a unique (survival) copula function C(·, ·) such
that

G(u, v) = C(G1(u), G2(v)) .

So in particular, since G, G1 and G2 are differentiable:

∂1G(u, v) = ∂1G
1(u)∂1C(G1(u), G2(v))

and likewise for ∂2G.

The following proposition can be established by using standard conditioning techniques. Note
that in the present approach, the model primitive is G, which determines the joint distribution of
τ1 and τ2 under P. The H-intensities of τ1 and τ2 are then deduced as follows. More generally, the
following proposition establishes the relation between the H1- and the H- intensities of τ1 (of course
symmetric results obey for τ2). Recall J = 1−H.

Proposition 4.2 (i) Let

γ̃1
t = −∂1G

1(t)
G1(t)

.

Then the process N1
t = H1

t − Γ1
t , with Γ1 =

∫ ·
0
J1

t γ̃
1
t dt , is an H1-martingale.

(ii) Let

λ̃1
t = −J2

t

∂1G(t, t)
G(t, t)

−H2
t

∂1∂2G(t, τ2)
∂2G(t, τ2)

= −∂1∂
H2

t
2 G(t, t ∧ τ2)

∂
H2

t
2 G(t, t ∧ τ2)

. (24)

Then the process
M1

t = H1
t − Λ1

t , (25)

with Λ1 =
∫ ·
0
J1

t λ̃
1
t dt , is an H-martingale.

The (predictable versions of the) H1- and H- intensities of τ1 are thus given as, respectively,

γ1
t = J1

t−γ̃
1
t− , λ

1
t = J1

t−λ̃
1
t− . (26)
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For comparison with the Markovian case discussed in the previous paragraph, observe that the
process H = (H1,H2) is not a Markov process here, unless ∂1∂2G(t, τ2) does not depend on τ2 in
(24).

Proposition 4.2 shows explicitly how the pre-default intensity of τ1 depends on the underlying
filtration. In particular, since γ1 and λ1 obviously differ in (26), thus the H-martingale N1 of
Proposition 4.2(i) is therefore not an H-martingale, and we recover the fact that immersion (of H1

into H = H1 ∨H2, here) typically does not hold in multi-name credit (cf. the discussion at the end
of section 3.2.3).

Proposition 4.2 is also interesting with respect to the calibration issue risen in Section 3.5.1. In
the notation introduced therein we should have by application of Proposition A.1 that(

o1Λ1
)p1 = Γ1 , o1λ1 = γ1 . (27)

This can indeed be verified directly using the forms of λ1 and γ1 derived in Proposition 4.2 and the
definitions of the optional and dual predictable projections (see Appendix A and Proposition 3.3).

Remark 4.2 In a practical situation (cf. section 3.5.1), relation (27) would be used in the reverse-
engineering fashion. By this we mean that (27) would provide a calibration constraint for the model,
so that

(
o1Λ1

)p1 computed from the model, meets Γ1, which is extracted from the CDS market on
name one.

In this paragraph we shall consider hedging of claims that are of the form π̂(τ1, τ2) by means of
trading of the claims of the form φ̂(τ1, τ2) and ψ̂(τ1, τ2). Taking

π̂(τ1, τ2) = π(1τ1≤T + 1τ2≤T ) = π(H1
T +H2

T ) = π(LT ) , (28)

and likewise for ψ̂ and φ̂, we can specialize these hedging results to claim depending solely on the
loss process.

Let us introduce the following notation:

Π1,1(s, t) = π̂(s, t) , Π1,0(s, t) =

∫∞
t
π̂(s, v)∂2G(s, v)dv∫∞
t
∂2G(s, v)dv

Π0,1(t, s) =

∫∞
t
π̂(u, s)∂1G(u, s)du∫∞
t
∂1G(u, s)du

, Π0,0(t, t) =

∫∞
t

∫∞
t
π̂(u, v)∂1∂2G(u, v)dudv

G(t, t)
,

so in short-hand notation, for every θ = (t1, t2) ∈ R2
+ and ı = (i1, i2) ∈ {0, 1}2, with  = (j1, j2) =

(1− i1, 1− i2) :

Πı(θ) =

(∫∞
t1

)j1 (∫∞
t2

)j2
π̂ ∂j1

1 ∂
j2
2 G (uj1

1 t
i1
1 , u

j2
2 t

i2
2 ) (du1)j1(du2)j2(∫∞

t1

)j1 (∫∞
t2

)j2
∂j1
1 ∂

j2
2 G (uj1

1 t
i1
1 , u

j2
2 t

i2
2 ) (du1)j1(du2)j2

(29)

Lemma 4.3 The following decomposition holds true, for every t ≥ 0 :

Πt = Π1,1(τ1, τ2)H1
t H

2
t + Π1,0(τ1, t)H1

t J
2
t

+Π0,1(t, τ2)J1
t H

2
t + Π0,0(t, t)J1

t J
2
t

= ΠHt
(t ∧ τ1, t ∧ τ2).

We are now ready to derive the following martingale representation.
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Proposition 4.4 We have that

Πt = E(π̂(τ1, τ2)) +
∫ t

0

δ1Πs dM
1
s +

∫ t

0

δ2Πs dM
2
s , (30)

where
δ1Πt = Π1,H2

t
(t, t ∧ τ2)−Π0,H2

t
(t, t ∧ τ2)

δ2Πt = ΠH1
t ,1(t ∧ τ1, t)−ΠH1

t ,0(t ∧ τ1, t)

or in short-hand notation, for every l = 1, 2 :

δlΠt = Π
H

l
t
(θl

t)−ΠHl
t
(θl

t)

where H l and H
l
denote the vector H with the lth component replaced by 0 and 1, respectively, and

where θl
t denotes the vector with entries t ∧ τk for k 6= l and t for k = l.

Remark 4.3 A direct proof of this result may be derived at not too much harm by using Proposition
4.2 in combination with Lemma 4.3. Note that the existence of a martingale representation of the
general form (39) for Π is well known by standard results (see, e.g., Brémaud [13] or Last and Brandt
[39]). Under conditions on G stated above, the expression for the coefficient δ1Π (and likewise for
δ2Π) is natural in view of Lemma 4.3, noting that:
• in case τ1 < τ2, the process Π has a jump at time τ1 equal to Π1,0(τ1, t)−Π0,0(t, t) at time t = τ1;
• in case τ1 > τ2, the process Π has a jump at time τ1 equal to Π1,1(τ1, τ2) − Π0,1(t, τ2) at time
t = τ1.

Using similar decompositions for processes Φ and Ψ, the following analog to Proposition 4.1 may
then be formulated,

Proposition 4.5 (i) One can replicate π̂(τ1, τ2) at T by using the hedging strategy ζ in the φ̂- and
ψ̂- claims (and the riskless asset) defined by, for t ∈ [0, T ] (under the related matrix-invertibility
assumption):

ζt = (δ1Πt, δ
2Πt)

(
δ1Φt δ2Φt

δ1Ψt δ2Ψt

)−1

.

(ii) Alternatively, it is possible to min-variance hedge the π̂-claim by the φ̂-claim and the riskless
asset using the strategy ζ such that ζ2 = 0 and, for t ∈ [0, T ]:

ζ1
t =

λ1
t (δ

1Πt)(δ1Φt) + λ2
t (δ

2Πt)(δ2Φt)
λ1

t (δ1Φt)2 + λ2
t (δ2Φt)2

. (31)

It is worth stressing that the explicit formulas of this paragraph are derived in a dynamic non-
Markovian model of credit risk.

4.2.2 Adding a Reference Filtration

Let us now assume, more generally, that F = FH ∨ FZ , where Z is a suitable factor process (to be
specified later). We call the filtration FZ the reference filtration.

Markovian Set-up To cast the model in a Markovian framework, in the sense that the pair
(H,Z) is an F – Markov process, one starts with a generator, say

A = Λ + Γ,

where Λ corresponds to H and where Γ corresponds to Z. Since we assume that there are no common
jumps between processes Hi, so individual pre-default intensities are in one-to-one correspondence
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with Λ (cf. (18)–(19)). To determine Λ it thus suffices to specify pre-default individual intensities,
say

λ̃1
t = λ̃1(t,H2

t , Zt) , λ̃2
t = λ̃2(t,H1

t , Zt) , (32)

so for l = 1 or 2:

λl
t = J l

t λ̃
l
t =: λl(t,Ht, Zt) . (33)

The construction of a Markovian model (H,Z) of stopping times τ1 and τ2 with F-intensity processes
λ1

t and λ2
t satisfying (33) can for example be realized by Markovian change of probability measure,

starting from a model with independent default times and factor process (see [4]).

Setting Zt = (t,Ht, Zt), one may then define the pricing function u = uı(t, z) for the claim
π(LT ) (or, more generally, π̄(ZT )), and, respectively, pricing functions v, w for the claims φ(LT )
and ψ(LT ) (or, more generally, φ̄(ZT ) and ψ̄(ZT )), characterized as the solutions to the related
pricing equations with generator A. The delta functions δ1u and δ2u are defined as in Section 4.2.1,
except for the fact that they involve an additional argument z.

Moreover we have the following hedging results (we refer to [5], Section 3.3, and [36], page 109,
for mathematical details behind these results),

Proposition 4.6 (i) Assume Z satifies the following d-dimensional SDE

dZt = b(Zt)dt+ σ(Zt)dBt ,

for suitable coefficients b and σ and a d-dimensional standard F – Brownian motion B. Then,
denoting by ∂ the row-gradient of a function with respect to the argument z, we have:

det =
(
δ1u− ζt

(
δ1v
δ1w

))
(Zt−)dM1

t +
(
δ2u− ζt

(
δ2v
δ2w

))
(Zt−)dM2

t

+

((
∂u− ζt

(
∂v
∂w

))
σ

)
(Zt)dBt.

In particular one can min-variance hedge the π̄-claim by the φ̄-claim and the riskless asset using the
strategy ζ such that ζ2 = 0 and, for t ∈ [0, T ]:

ζ1
t =

λ1(δ1u)(δ1v) + λ2(δ2u)(δ2v) + (∂u)σσT(∂v)
λ1(δ1v)2 + λ2(δ2v)2 + (∂v)σσT(∂v)

(Zt−). (34)

(ii) Assume Z is given as a pure jump process with finite state space E of cardinality d, jump times
disjoint from τ1 and τ2, jump intensity vector-process Γ(Zt−, z)z∈E and compensated jump vector-
martingale (Mt(z), z ∈ E). Then, denoting by ∆uı(t, z) the d-dimensional row-vector (uı(t, z′) −
uı(t, z))z′∈E and likewise for ∆v and ∆w, we have:

det =
(
δ1u− ζt

(
δ1v
δ1w

))
(Zt−)dM1

t +
(
δ2u− ζt

(
δ2v
δ2w

))
(Zt−)dM2

t

+
(
∆u− ζt

(
∆v
∆w

))
(Zt−)dMt

In particular one can min-variance hedge the π̄-claim by the φ̄-claim and the riskless asset using the
strategy ζ such that ζ2 = 0 and, for t ∈ [0, T ]:

ζ1
t =

λ1(δ1u)(δ1v)(Zt−) + λ2(δ2u)(δ2v)(Zt−) +
∑

z∈E Γ(Zt−, z)∆u(Zt−, z)∆v(Zt−, z)
λ1(δ1v)2(Zt−) + λ2(δ2v)2(Zt−) +

∑
z∈E Γ(Zt−, z)∆v(Zt−, z)∆v(Zt−, z)

. (35)

Remark 4.4 Of course the auxiliary factor process Z introduces potentially several additional
sources of randomness that need to be hedged. This can be dealt with by taking as a hedging instru-
ment (on top of the bank account) a possibly multidimensional claim φ. The results of Proposition
4.6 can then be easily extended to the case of multidimensional claim φ by formulating appropriate
systems of linear equations.
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Distributional Approach Let Gi
t (for i = 1, 2) and Gt denote the marginal and joint conditional

survival survival functions of τ1 and τ2, so for every t, u, v ≥ 0,

Gi
t(u) = P(τi > u | FZ

t ) , Gt(u, v) = P(τ1 > u, τ2 > v | FZ
t ) .

In particular Gi
0 and G0 reduces to the (unconditional) marginal and joint survival function G, for

FZ
0 trivial. Assuming the Gi

t’s of class C1 and Gt of class C2 with respect to u and v, we may then
easily derive formal extensions of the initial times approach of the pure bottom case of Section 4.2.1.
Then, we have (see, for instance, [23]),

Proposition 4.7 The pre-default H1 ∨FZ- and H∨FZ- intensities of τ1 are given by, respectively:

γ̃1
t = −∂1G

1
t (t)

G1
t (t)

, λ̃1
t = −∂1∂

H2
t

2 Gt(t, t ∧ τ2)
∂

H2
t

2 Gt(t, t ∧ τ2)
.

However it seems difficult to derive explicit and constructive martingale representations in this
set-up (so hedging cannot be implemented either), unless we are in the case of an auxiliary factor
process Z given as a pure jump process with finite state space. In this case it is possible to derive an
elementary martingale representation and a suitable analog to Proposition 4.6(ii), valid for payoffs
π̂, φ̂, ψ̂ (τ1, τ2). We leave this to the reader.

4.3 Top Approaches

We now work with a top filtration F. In this context it does not make the notation heavier to
consider directly n stopping times, which we do. Since we work with a top filtration F, the τi’s are
not F-stopping times, as opposed to the ordered default times τ(i)’s. The loss process is therefore an
F-adapted, non-decreasing process. We denote by M its F – compensated martingale, so

M = L−
∫ ·

0

λtdt

where λ is the (predictable version of the) F-intensity, assumed to exist, of L.

4.3.1 Pure Top Approaches

Here F = FL.

Markovian Set-up In the Markovian case L is a pure birth process, or local intensity process
(cf. Laurent, Cousin and Fermanian [40] or Cont and Minca [15]), with F-intensity λt = λ(t, Lt), for
a suitable F-intensity function λ(t, i) (vanishing for i ≥ n, consistently with the fact that the loss
process L is stopped at level n).

In this set-up, we obtain that, for t ∈ [0, T ]

Πt = E(π(LT ) | Ft) = u(t, Lt) , (36)

where u(t, i) or ui(t) for (t, i) ∈ [0, T ]×Nn (with Nn = {0, · · · , n}), is the pricing function (system of
time-functionals ui), solution to the related system of backward Kolmogorov differential equations.
Moreover we have the following martingale representation, for t ∈ [0, T ]:

Πt = E(π(LT )) +
∫ t

0

δu(s, Ls−) dMs (37)

where the delta function δu is defined by, for t ∈ [0, T ] and i ∈ Nn−1 :

δui(t) = ui+1(t)− ui(t) . (38)
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It is rather clear that in this present case it is enough to use just one claim, say φ (and the riskless
account) so to replicate claim π. So, using the analogous martingale representation for the φ claim,
the following result follows (in view of (15)),

Proposition 4.8 One can replicate π(LT ) at T by using the strategy ζ based on the φ-claim (and
on the riskless asset) defined by, for t ∈ [0, T ] (assuming δv 6= 0):

ζt =
δu

δv
(t, Lt−) .

Remark 4.5 Let us emphasize here that the (theoretical) perfect replication can be achieved as
the present model in the local intensity model. We shall see later (cf. Section 5.2.3) that in more
realistic set-ups one may not be able to hedge a claim written on LT with another claim written on
LT .

Distributional Approach We denote Gi
t(u) = P(Lu = i | Ft), for i ∈ Nn.

As an FL-martingale, the process Gi
t(u) admits a representation of the form

Gi
t(u) = Gi

0(u) +
∫ t

0

δGi
s(u) dMs

for some integrand δGi
s(u). We are now ready to write the representation for Π in terms of δG.

Proposition 4.9 We have, for t ∈ [0, T ] :

Πt =
∑

0≤i≤n

π(i)Gi
t(T ) = E(π(LT )) +

∫ t

0

δΠs dMs , (39)

where we set
δΠt =

∑
0≤i≤n π(i)δGi

t(T ) .

Using the analogous representation regarding the φ claim, and plugging all these expressions in
(15)), one gets the following,

Proposition 4.10 One can replicate π at T by using the strategy ζ based on the φ-claim (and on
the riskless asset) defined by, for t ∈ [0, T ] (assuming δΦt 6= 0):

ζt =
δΠt

δΦt
.

To illustrate the feasibility (and the limits) of the approach of this paragraph we need to provide
specific examples in which Gi

t(u) and δGi
t(u) are computable. For this it is enough that the joint

cumulative distribution of the consecutive default times ϑl’s of L be computable and continuous.
Indeed we have, since F = FL :

Gi
t(u) = P(Lu = i | Ft) = P(Lu = i | Ft ∨ σ(Lt)) , (40)

which on the random time interval t ∈ [ϑl, ϑl+1) (or, equivalently, on the event {Lt = l}), is easily
seen to coincide with P(ϑi ≤ u < ϑi+1 |ϑ1, · · · , ϑl ;, ϑl ≤ t < ϑl+1). Now, by the Bayes rule, the latter
quantity is determined by the joint law of the ϑl’s. Moreover, if the joint cumulative distribution
of the ϑl’s is continuous, then Gi

t(u) is thus continuous on every interval [ϑl, ϑl+1), and the only
possible jumps of Gi

t(u) occur at the ϑl’s, where they are given by

Gi
ϑl

(u)−Gi
ϑl−(u) = P(ϑi ≤ u < ϑi+1 |ϑ1, · · · , ϑl)− P(ϑi ≤ u < ϑi+1 |ϑ1, · · · , ϑl−1) , (41)
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which can also be evaluated by the Bayes rule given the joint cumulative distribution of the ϑl’s. So
δGi

t(u) is computable too.

As an explicit example, let us specifically consider two ordered random times ϑ1 and ϑ2 defined
by, given IID unit exponential random variables E1 and E2 :

ϑ1 = inf{t > 0 | ∈ ϑt
0µ1(s)ds > E1} , ϑ2 = inf{t > ϑ1 | ∈ ϑt

ϑ1
µ2(s, ϑ1)ds > E2}

with µ1(t) = 1 , µ2(t, ϑ1) = tϑ1. So

ϑ1 = E1 , ϑ2 = ϑ1 +
E2

ϑ1
.

One can show that the related loss process L is a non-Markovian Hawkes process (see Errais, Giesecke
and Goldberg [24], Hawkes [33]). Moreover, we have in this case

P(ϑ1 > u1, ϑ2 > u2) = P(u1 < E1, u2 < E1 +
E2

E1
) ,

which is explicitly given by ∈ ϑx>u1 ∈ ϑy>x(u2−x)+e
−(x+y)dxdy .

4.3.2 Adding a Reference Filtration

We now assume F = FL ∨ FY , for a suitable factor process Y .

Markovian Set-up We suppose that the pair (L, Y ) is an F – Markov process with generator A,
assuming more specifically that the F-intensity of L satisfies

λt = λ(t, Lt, Yt) (42)

for a given intensity function λi(t, y) (vanishing for i ≥ n). The construction of such a model (L, Y )
can be realized by a Markovian change of probability measure, starting from an auxiliary model
with independent loss and factor processes.

Setting Yt = (t, Lt, Yt), one may then define the pricing function u, v, w = u, v, wi(t, z) for the
π, φ, ψ(LT )-claims (or more general π̌, φ̌, ψ̌(YT )-claims), characterized as the solutions to the related
pricing equations with generator A.

The loss delta function δu is defined by (cf. (38))

δui(t, y) = ui+1(t, y)− ui(t, y) .

Moreover, we have the following hedging result, which is an analog to Proposition 4.6 (and the
analog of Remark 4.4 also holds),

Proposition 4.11 (i) Assume Y satisfies the following d-dimensional SDE

dYt = b(Yt)dt+ σ(Yt)dBt ,

for suitable coefficients b and σ and a d-dimensional standard F – Brownian motion B. Then,
denoting by ∂ the row-gradient of a function with respect to the argument y, we have:5

det =
(
δu− ζtδv

)
(Yt−)dMt +

(
∂uσ − ζt∂vσ

)
(Yt)dBt

5with δu(Yt−) = uLt−+1(t, Yt)− uLt− (t, Yt), and likewise for δv.
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In particular one can min-variance hedge the π̌-claim by the φ̌-claim and the riskless asset using the
strategy ζ such that ζ2 = 0 and, for t ∈ [0, T ]:

ζ1
t =

λ(δu)(δv) + (∂u)σσT(∂v)
λ(δv)2 + (∂v)σσT(∂v)

(Yt−). (43)

(ii) Assume Y given as a pure jump process with finite state space E of cardinality d, jump times
disjoint from L, jump intensity vector-process Γ(Yt−, y)y∈E and compensated jump vector-martingale
(Nt(y), y ∈ E). Then, denoting by ∆ui(t, y) the d-dimensional row-vector (ui(t, y′) − ui(t, y))y′∈E

and likewise for ∆v, we have:

det =
(
δu− ζtδv

)
(Yt−)dMt +

(
∆u− ζt∆v

)
(Yt−)dNt

In particular one can min-variance hedge the π̌-claim by the φ̌-claim and the riskless asset using the
strategy ζ such that ζ2 = 0 and, for t ∈ [0, T ]:

ζ1
t =

λ(δu)(δv)(Yt−) +
∑

y∈E Γ(Yt−, y)∆u(Yt−, y)∆v(Yt−, y)
λ(δv)2(Yt−) +

∑
y∈E Γ(Yt−, y)(∆v(Yt−, y))2

. (44)

Distributional Approach As in the bottom-up initial times approach of Section 4.2.2, there is
little hope to obtain a constructive martingale representation (with computable integrands) in this
set-up, unless maybe we consider a factor process Y taking a finite number of values. The detail is
left to the reader.

5 Numerical Examples

For credit derivatives with stylized payoff given as ξ = π(LT ) at maturity time T, it is tempting
to adopt a Black–Scholes like approach, modeling L as a Markov point process and performing
factor hedging of one derivative by another as in Proposition 4.8, balancing the related sensitivities
computed by the Itô-Markov formula. However, since the loss process L is far from being Markovian
in the market (unless maybe additional factors are considered to form a Markovian vector state-
process), it is quite likely that L a not a sufficient statistics for the purpose of valuation and hedging
of portfolio credit risk. In other words, ignoring the potentially non-Markovian dynamics of L for
pricing and/or hedging may cause huge model risk, even though the payoffs of the products at hand
are given as functions of LT .

In this section we want to illustrate this point further by means of numerical hedging simulations.
We use a homogeneous and constant recovery R = 40% (rather than 0 above). We thus need to
distinguish the cumulative default process N =

∑n
i=1 H

i
t and the cumulative loss process Lt =

(1−R)Nt.

We shall consider the benchmark problem of pricing and hedging a stylized loss derivative.
Specifically, for simplicity, we only consider protection legs of of equity tranches , resp. super-senior
tranches (i.e. detachment of 100%) with stylized payoffs

π(NT ) =
(1−R)NT

n
∧ k =

LT

n
∧ k , resp. (

LT

n
− k)+

at a maturity time T . The ‘strike’ (detachment, resp. attachment point) k belongs to [0, 1]. In this
formalism the (stylized) credit index corresponds to the equity tranche with k = 100% (or senior
tranche with k = 0). With a slight abuse of terminology, we shall refer to our stylized loss derivatives
as to tranches and index, respectively.

We shall now consider the problem of hedging the tranches with the index, using a simplified
bottom-up market model of credit risk.
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5.1 Homogeneous Groups Model

For ease of implementation we consider a Markov chain model of credit risk as of Frey and Backhaus
[26] (see also Bielecki et al. [4]). Namely, the n names of a pool are grouped in d classes of ν−1 = n

d
homogeneous obligors (assuming n

d integer), and the cumulative default processes N l, l = 1, · · · , d,
of the different groups (so N =

∑
N l) are jointly modeled as a d-variate Markov point process N ,

with FN -intensity of N l given as

λl
t = (ν − 1−N l

t)λ̃
l(t,Nt) , (45)

for some pre-default individual intensity functions λ̃l = λ̃l(t, ı), where ı = (i1, · · · , id) ∈ Nd
ν−1 (recall

Nν−1 = {0, · · · , ν − 1}). The related generator (spatial generator at time t) may then be written in
the form of a νd-dimensional (sparse) matrix Λt.

Remark 5.1 We are not claiming here that this kind of models should necessarily be used for
dealing with credit derivatives (cf. the reservation made in Section 2.2.1). In particular note that
simultaneous defaults are implicitly excluded from our modeling, which may not be such an innocuous
restriction in practice (on this issue, see, for instance, Bielecki et al. [10] or Brigo et al. [9], or the
comments at the beginning of section 6.1 of Schönbucher [46]).

For d = 1, we recover the well-known local intensity model already considered in the first para-
graph of Section 4.3.1 (pure top approach with N modeled as a Markov birth point process stopped
at level n; see, for instance, Laurent, Cousin and Fermanian [40], Cont and Minca [15] or van der
Voort [48]. At the other extreme, for d = n, we are in effect modeling the vector of the default
indicator processes of the pool names. As d varies between 1 and n, we thus get a variety of models
of credit risk, ranging from pure top models for d = 1 to pure bottom-up models for d = n.

Remark 5.2 Observe that in the homogeneous case where λ̃l(t, ı) = λ̂(t,
∑

j ij) for some function
λ̂ = λ̂(t, i) (independent of l), the model (whatever the nominal value of d / structure of the matrix
generator used for encoding the model) effectively reduces to a local intensity model (with d = 1
and pre-default individual intensity λ̂(t, i) therein).
Further specifying the model to λ̂ independent of i corresponds to the situation of homogeneous and
independent obligors.
In general, introducing parsimonious parameterizations of the intensities allows one to account for
inhomogeneity between groups and/or defaults contagion. It is also possible to extend this set-
up to more general credit migrations models, or to generic bottom-up models of credit migrations
influenced by macro-economic factors (see Bielecki et al. [4, 10] or Frey and Backhaus [27]).

5.1.1 Pricing

Since N is a Markov process and N is a function of N , the related tranche price process writes, for
t ∈ [0, T ] (assuming π(NT ) integrable):

Πt = E(π(NT )|FNt ) = u(t,Nt) , (46)

where u(t, ı) or uı(t) for t ∈ [0, T ] and ı ∈ Nd
ν−1, is the pricing function (system of time-functions

uı). Using the Itô formula in conjunction with the martingale property of Π, the pricing function
can then be characterized as the solution to the following pricing equation (system of ODEs):

(∂t + Λt)u = 0 on [0, T ) (47)

with terminal condition uı(T ) = π(ı), for ı ∈ Nd
ν−1. In particular, in the case of a time-homogeneous

generator Λ (independent of t), we have the following semi-closed formula, for t ∈ [0, T ] :

u(t) = exp[(T − t)Λ]π . (48)
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Pricing in this model can be achieved by various means, like numerical resolution of the ODE system
(47), numerical matrix exponentiation based on (48) (in the time-homogeneous case) or Monte Carlo
simulation. However solution of (47) or computation of (48) by deterministic numerical schemes is
typically precluded by the curse of dimensionality for d greater than a few units (depending on
ν). So for high d simulation is the only way to go, which can be done quite efficiently by suitable
importance sampling techniques (see Crépey and Carmona [16]).

The distribution of the vector of time-t losses (for each group), that is, qı(t) = P(Nt = ı) for
t ∈ [0, T ] and ı ∈ Nd

ν−1, and portfolio loss distribution, p = pi(t) = P(Nt = i) for t ∈ [0, T ] and
i = 0, · · · , n, can be computed likewise by numerical solution of the associated forward Kolmogorov
equations (for more detail, see, e.g., Crépey and Carmona [16]).

5.1.2 Hedging

In general, in the Markovian model described above, it is possible to replicate dynamically in con-
tinuous time any payoff provided d non-redundant hedging instruments are available (see Frey and
Backhaus [25] or Bielecki, Vidozzi and Vidozzi [10]; see also Laurent, Cousin and Fermanian [40] for
results in the special case where d = 1). From the mathematical side this corresponds to the fact
that the model is of (Davis-Varaiya) multiplicity d [18], in general. So, in general, it is not possible
to replicate a payoff, such as tranche, by the index alone in this model, unless the model dimension
d is equal to one (or reducible to one, cf. Remark 5.2). Now our point is that this potential lack of
replicability is not purely speculative, but can be very significant in practice.

Since delta-hedging in continuous time is expensive in terms of transaction costs, and because
main changes occur at default times in this model (in fact, default times are the only events in
this model, if not for time flow and the induced time-decay effects), we shall focus on semi-static
hedging in what follows, only updating at default times the composition of the hedging portfolio.
More specifically, denoting by τ(1) the first default time of a reference obligor, we shall examine the
result at τ(1) of a static hedging strategy on the random time interval [0, τ(1)].
Let Π and Θ denote the tranche and index model price processes, respectively. Using a constant
hedge ratio δ0 over the time interval [0, τ(1)], the tracking error or profit-and-loss of the delta-hedged
tranche at τ(1) writes:

eτ(1)
= (Πτ(1)

−Π0)− δ0(Θτ(1) −Θ0) . (49)

The question we want to consider is whether it is possible to make this quantity ‘small’ (in terms,
say, of risk-neutral variance) by a suitable choice of δ0. It is expected that this should depend on
the model dimension d and on the characteristics of the products at hand (value of the strike k in
particular). However, it is intuitively clear that for too large values of τ(1) time-decay effects matter
and the hedge should be rebalanced at some intermediate points of the time interval [0, τ(1)] (even
though no default occurred yet). To keep it as simple as possible we shall merely apply a cutoff and
restrict our attention to the random set {ω : τ(1)(ω) < T1} for some fixed T1 ∈ [0, T ].

5.2 Numerical Results

We work with the above model for d = 2 and ν = 5 (we thus consider a stylized credit portfolio of
n = 8 obligors), and λ̃l given by, for l = 1, 2 (cf. (45)):

λ̃l(t, ı) = l

(
1 + il
n

)
. (50)

So the pre-default individual intensities of the obligors of group 1 and 2 are given as 1+i1
n = 1+i1

8

and 1+i2
4 , where i1 and i2 represent the number of currently defaulted obligors in groups 1 and 2,

respectively.
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Recall that the computation time for exact pricing (using matrix exponentiation based on (48))
in such model grows as νd, which motivated the previous modest choices for d and ν. So in this case
the model is two-dimensional and the model generator is a matrix of dimension νd = 25.

We set the maturity T equal to 5 years and the cutoff T1 equal to 1 year. We thus make a focus
on the random set of trajectories for which τ(1) < 1, meaning that a default occurred during the
first year of hedging.

5.2.1 Model Simulation

In this toy model the simulation takes the following very simple form (see also [25] or [4] for more
details in more general set-ups):
Compute Π0 (for the tranche) and Θ0 (for the index) by numerical matrix exponentiation based on
(48), and then for every j = 1, · · · ,m:
• draw a pair (t̃j1, t̂

j
1) of independent exponential random variables with parameter 4×( 1

8 ,
1
4 ) = ( 1

2 , 1);
• set τ j

(1) = min(t̃j1, t̂
j
1) and Nτ(1) = (1, 0) or (0, 1) depending on whether τ j

(1) = t̃j1 or t̂j1;
• compute Πτj

(1)
(for the tranche) and Θτj

(1)
(for the index) by (48).

Doing 6 this for m = 104, we got 9994 draws with τ(1) < 5, among which 7701 ones with τ(1) < 1,
subdividing themselves into 2628 defaults in the first group of obligors and 5073 defaults in the
second one.

5.2.2 Pricing

We consider two T = 5y-tranches in the above model: an ‘equity tranche’ with k = 20%, cor-
responding to a payoff (1−R)NT

n ∧ k = ( 60NT

8 ∧ 20)% (of a unit nominal amount), and a ‘senior
tranche’ defined simply as the complement of the equity tranche to the index, thus with payoff
( (1−R)NT

n − k)+ = ( 60NT

8 − 20)+%.

We also computed the portfolio loss distribution at maturity by numerical matrix exponentiation
corresponding to explicit solution of the associated forward Kolmogorov equations (see, e.g., [16]).

Note that there is virtually no error involved in the previous computations, in the sense that our
simulation is exact (without simulation bias), and the prices and loss probabilities were computed
by matrix exponentiation.

The left pane of Figure 1 represents the histogram of the loss distribution at the time horizon
T ; we indicate by a vertical line the loss level x beyond which the equity tranche is exhausted, and
the senior tranche starts being hit (so (1−R)x

n = k, e.g. x = 2.66).
The right pane of Figure 1 displays the equity (labeled by +), senior (×) and index (◦) tranche
prices at τ(1) versus τ(1), for all the points in the simulated data with τ(1) < 5 (9994 points). Blue
and red points correspond to defaults in the first and in the second group of obligors, respectively.
We also represented in black the points (0,Π0) (for the tranches) and (0,Θ0) (for the index).

Note that in the case of the senior tranche and of the index, there is a clear difference between
prices at τ(1) depending on whether τ(1) corresponds to a default in the first or in the second group
of obligors, whereas in the case of the equity tranche there seems to be little difference in this regard.
In view of the portfolio loss distribution in the left pane, this can be explained by the fact that in
the case of the equity tranche, the probability conditional on τ(1) that the tranche will be exhausted
before maturity is essentially one unless τ(1) is close to T. Therefore the equity tranche price at τ(1)
is essentially equal to k = 20% for τ(1) not to close to T. Moreover for τ(1) close to T the intrinsic
value of the tranche at τ(1) constitutes the major part of the equity tranche price at τ(1) (since the
tranche has low time-value close to maturity). In conclusion the state of N at τ(1) has a low impact
on Πτ(1) , whatever the value of τ(1) may be (far or close to T ).

6All the numerical conmputations were made using the free statistical software R (see www.r-project.org).
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On the other hand, in the case of the senior tranche or in case of the index, the state of N at τ(1)
has a high impact on the corresponding price, unless τ(1) is close to T (in which case intrinsic value
effects are dominant). This explains the ‘two-track’ pictures seen on the right pane of Figure 1
(whereas the two-tracks are essentially superimposed in the case of the equity tranche).

Looking at these results in terms of price changes Π0−Πτ(1)
of a tranche versus the corresponding

index price changes Θ0−Θτ(1) , we obtain the graphs of Figure 2 for the equity tranche and 3 for the
senior tranche. We consider all points with τ(1) < T on the left panes and focus on the points with
τ(1) < T1 on the right ones. We use the same blue/red color code as above, and we further highlight
in green on the left panes the points with τ(1) < 1, which are focused upon on the right panes.
Figure 2 gives a further graphical illustration of the low level of correlation between price changes of
the equity tranche and of the index. Indeed the cloud of points on the right pane is obviously “far
from a straight line”, due to the partitioning of points between blue points / defaults in group one
on one segment versus red points / defaults in group two on a different segment.
On the opposite (Figure 3), price changes of the senior tranche and of the index evidently exhibit
a high degree of correlation, since in this case the blue and the red segments are essentially on a
common line.

Figure 1: (Left) Portfolio loss distribution at maturity T = 5yr; (Right) Tranche Prices at τ(1) for
τ(1) < T = 5 (equity tranche (+), senior tranche (×) and index (◦)).

5.2.3 Hedging

We then computed the (empirical, risk-neutral) variance of the profit-and-loss eτ(1)
in (49) (restricting

attention to the subset τ(1) < T1 = 1), using for δ0 the empirical regression delta of the tranche with
respect to the index at time 0, so

δ0 =
Ĉov(Πτ(1)

−Π0,Θτ(1) −Θ0)

V̂ar(Θτ(1) −Θ0)
.

Moreover, we also did these computations restricting further attention to the subsets of τ(1) < 1
corresponding to defaults in the first and in the second group of obligors (blue and red points on
the figures), respectively. The latter results are to be understood as giving proxies of the situation
that would prevail in a one-dimensional complete model of credit risk (local intensity model for N).
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Figure 2: Equity vs Index Price Changes between 0 and τ(1) (τ(1) < T = 5, last pane; zoom on
τ(1) < T1 = 1, right pane).

Figure 3: Senior vs Index Price Changes between 0 and τ(1) (τ(1) < T = 5, last pane; zoom on
τ(1) < T1 = 1, right pane).
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The results are displayed in Table 1. In this table we denoted by Σ0 = 104

kT Π0 or 104

(1−R−k)T Π0 (for

the equity or senior tranche) or Σ0 = 104

(1−R)T Θ0 (for the index) stylized ‘bp spreads’ corresponding
to the time zero prices Π0 and Θ0 of the equity or senior tranche and of the index. Note that

by construction the hedging variance reduction factor
V̂ar(Πτ(1)−Π0)

V̂ar(eτ(1) )
(displayed in the last column

of Table 1) is equal to 1
1−ρ2 , where ρ (displayed in column four) is the empirical correlation of

the tranche price increments Πτ(1) − Π0 versus the index price increments Θτ(1) − Θ0 (so ρ2 is the
coefficient of determination R2 of the regression).

Π0 or Θ0 Σ0 or S0 δ0 ρ d̂ev(Πτ(1)
−Π0)

V̂ar(Πτ(1)
−Π0)

V̂ar(eτ(1)
)

Eq 0.1994141 1994.141 -0.0005463 -0.2282511 0.0002934755 1.054962
Eq1 – – 0.006361217 0.9896867 0.0003284477 48.73252
Eq2 – – 0.003125651 0.9806078 0.0001670460 26.03603
Sen 0.2862444 1431.222 1.000546 0.9999973 0.08546279 184335.6
Sen1 – – 0.9936388 0.9999973 0.03537296 1164639
Sen2 – – 0.9968743 0.9999998 0.03639573 2546628
Ind 0.4856585 1618.861 – – – –

Table 1: Hedging Tranches by the Index in the Semi-Homogeneous Model (dev=standard deviation).

Recall that the senior tranche’s behaviour is very close to that of the index itself (see Section
5.2.2). Accordingly, we find that hedging the senior tranche with the index works extremely well
(huge variance reduction factor in bold blue in the last column). This case thus seems to be sup-
portive of the claim according to which one could use the index for hedging a loss derivative, even
in a non Markovian model of portfolio loss process L.

But in the case of the equity tranche we get the exact opposite message: the index is essentially
useless for hedging the equity tranche (variance reduction factor equal to 1.05 in bold red in the
table).
Moreover, the equity tranche variance reduction factors conditional on defaults in the first and in
the second group of obligors (in purple in the table) amount to 48.73 and 26.03, respectively. This
supports the interpretation that the impossibility of hedging the equity tranche with the index really
comes from the fact that the full model dynamics is not represented in the loss process.

We conclude that in general, unless specific values of the model parameters and tranche charac-
teristics are considered, hedging tranches with the index may not be possible in a non Markovian
model of portfolio loss process L.

Note that the equity and the senior tranche sum-up to the index, by construction. Therefore
a perfect replication of the equity tranche (say) is provided by a long position in the index and a
short position in the senior tranche. As a reality-check of this statement, we performed a bilinear
regression of the equity price increments versus the index and the senior tranche price increments,
in order to minimize over (δind

0 , δsen
0 ) the (risk-neutral) variance of

ẽτ(1) = (Πeq
τ(1)

−Πeq
0 )− δind

0 (Θτ(1) −Θ0)− δsen
0 (Πsen

τ(1)
−Πsen

0 ) . (51)

The results are displayed in Table 2. We recover the perfect two-instruments replication strategy
mentioned above, whereas a single-instrument hedge using only the index was essentially useless in
this case (cf. red entry in Table 1).

Observe that these results were derived in a very simple two-dimensional model of portfolio credit
risk (for computational cost issues). And we got the message that even in a market that would be
given by this simple (but not Markovian in L) model, a pure top approach can be doomed to failure
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δind
0 δsen

0 d̂ev(ẽτ(1))
V̂ar(Πτ(1)−Π0)

V̂ar(eτ(1) )

1 -1 1.968e-17 8.842381e+24

Table 2: Replicating the equity tranche by the index and the senior tranche.

(since there may be virtually no correlation between the tranche and the index price increments).
We let the reader imagine what the situation can be in a real market of credit derivatives.

5.2.4 Fully Homogeneous Case

Admittedly, the previous example is an extreme case, since the equity tranche is almost bound to
be exhausted at T given the value of the strike k and the structure of the portfolio loss distribution
at the horizon T (cf. the left pane of Figure 1).

For confirmation of the previous analysis and interpretation of the results, we thus redid the
computations using the same values as before for all the model, products and simulation parameters,
except for the fact that the following pre-default individual intensities were used, for l = 1, 2 :

λ̃l(ı) =
1
n

+

∑
1≤`≤d i`

nd
=: λ̂(

∑
1≤`≤d

i`) . (52)

We are thus in the case of homogeneous obligors mentioned in Remark 5.2, reducible to a local
intensity model (with d = 1 and pre-default individual intensity λ̂(i) therein). So in this case we
expect that hedging tranches by the index should work, including in the case of the equity tranche.
This is exactly what happens numerically, as it is evident from the following figures and tables
(which are the analogs of those in previous sections, using the same notation everywhere).

Out of our new 104 draws using the intensities given in (52), we got 9922 draws with τ(1) < 5,
among which 6267 ones with τ(1) < 1, subdividing themselves into 3186 defaults in the first group
of obligors and 3081 defaults in the second one.

Note that all red and blue curves are superimposed, which is consistent with the fact that the
identity of a defaulted name has no bearing in this case, given the present specification of the
identities.

Looking at Table 3, we find as before that hedging the senior tranche with the index works
extremely well (huge variance reduction factor in bold blue in the last column). But as opposed
to the previous parameterization, hedging the equity tranche with the index also works very well
(variance reduction factor of 84.40411 in bold purple in the last column). Moreover the equity
unconditional variance reduction factor and variance reduction factor conditional on defaults in the
first and in the second group of obligors are now roughly the same.

These results confirm our previous analysis that the impossibility of hedging the equity tranche
by the index in the previous case was due to the non-Markovianity of the loss process L.

6 Conclusions

Even for basket credit derivatives which can be considered as derivatives on the (non-traded) loss
process L in the sense that their payoff processes are given as functions of L, this loss process L
is not a sufficient statistic for pricing and hedging them. This effectively means that their prices
depend on factors others than L, like the identity (and not only the number) of the defaulted names,
the ratings (or implied ratings, and not only the identities) of survivors, etc. This makes of course
perfect sense since it is rather clear that the default of a major name in the index does not bear the



T.R. Bielecki, S. Crépey and M. Jeanblanc 29

Figure 4: (Left) Portfolio loss distribution at maturity T = 5y (Right) Tranche Prices at τ(1) (for
τ(1) < T ).

Figure 5: Equity vs Index Price Decrements between 0 and τ(1) (τ(1) < T, last pane; zoom on τ(1) < 1,
right pane).
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Figure 6: Senior vs Index Price Decrements between 0 and τ(1) (τ(1) < T, last pane; zoom on τ(1) < 1,
right pane).

Π0 or Θ0 Σ0 or S0 δ0 ρ d̂ev(Πτ(1)
−Π0)

V̂ar(Πτ(1)
−Π0)

V̂ar(eτ(1)
)

Eq 0.1948869 1948.869 0.02067877 0.9940585 0.001549888 84.40411
Eq1 – – 0.02071242 0.9940464 0.001563447 84.23423
Eq2 – – 0.02064252 0.9940747 0.00153585 84.63472
Sen 0.2488361 1244.180 0.9793212 0.9999973 0.05714564 187064.2
Sen1 – – 0.9792876 0.9999973 0.05754927 186064.3
Sen2 – – 0.9793575 0.9999973 0.05673051 188254.7
Ind 0.443723 1479.076 – – – –

Table 3: Hedging Tranches by the Index in the Fully-Homogeneous Model (dev=standard deviation).
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same informational content as that of an arbitrary firm, and, moreover, pricing is done by agents
with regard to the quality of the remaining names in the portfolio rather than with regard to the
defaulted names.
As a consequence, the use of pure top and top approaches should be considered with caution.

As for top-down approaches possibly used for hedging of basket credit derivatives by single-name
derivatives, we saw in Section 3.6 that they eventually boil down to the bottom-up approach, since
except for the case of a full ‘down’ filtration (which effectively corresponds to ending ‘bottom-up’),
there is no way to establish connection between a top-down model and real-life single-name default
markets. Recall for instance that the ‘down’ intensity of a name in the sense of a general top-down
approach typically fails to vanish after that name’s default.

Our conclusion is that only the bottom-up approaches allow adequate risk management of portfolio
credit derivatives. To further support of the bottom-up approaches, note that it is quite likely that
sooner or later the financial markets will introduce credit portfolio derivatives that will derive their
cash flows from the evolution of the credit ratings in the underlying portfolio of credits. Then,
of course, methodologies capable of only modeling the dynamics of the loss process L and/or the
dynamics of the related conditional probabilities, will not be adequate. It is also clear that such
methodologies are inadequate for pricing and hedging of credit portfolio derivatives whose cash-
flows depend not only on the evolution of the cumulative loss process, but also on the identity of
the defaulting names in the portfolio.

6.1 Bottom-Up Approaches, Curse of dimensionality and Markovian cop-
ulae

At this point one may raise the issue of the so called curse of dimensionality that is commonly
associated with the bottom-up approaches: for example, if considered as a Markov chain, the process
H lives in a ‘n-dimensional’ state space of the size of 2n. However, recent developments in the
bottom up modeling enable one to efficiently cope with this curse of dimensionality. It is thus
possible to specify high-dimensional bottom-up dynamic Markovian models of portfolio credit risk
with automatically calibrated model marginals (to the individual CDS curves, say), see Bielecki,
Vidozzi and Vidozzi [10].
Much like in the standard static copula framework, this effectively reduces the main computational
cost issue, that relative to model calibration, to calibration of the few dependence parameters in the
model at hand. This calibration can thus be achieved in a very reasonable time, including by pure
simulation procedures if need be (without using any closed pricing formulae, if there aren’t any in
the model under consideration). Appropriate reduction variance methods may help in this regard
(see Crépey and Carmona [16]) .

A A glimpse of General Theory

In this Appendix we recall well known definitions and results from the theory of processes that we
use repeatedly in this paper (see, e.g., Dellacherie and Meyer [19]).

A.1 Optional Projections

Let X be an integrable process (not necessarily adapted). Then there exists a unique adapted
process (pXt)t≥0, called the optional projection of X, such that, for any stopping time τ,

E (pXτ | Fτ ) = E (Xτ | Fτ ) .
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A.2 Dual Predictable Projections and Compensators

Let A be an integrable non-decreasing process (not necessarily adapted). Then there exists a unique
predictable non-decreasing process (Ap

t )t≥0, called the dual predictable projection of A, such that,
for any positive predictable process H:

E
(∫ ∞

0

HsdAs

)
= E

(∫ ∞

0

HsdA
p
s

)
.

In case A is adapted, hence a sub-martingale, and admitting as such a unique Doob-Meyer
decomposition

At = Mt + Ãt

where M is a local martingale and the compensator Ã is a predictable finite variation process, then
Ap = Ã .

Moreover (see Dellacherie and Meyer [19] or Last and Brandt [39], Brémaud [13]), these defini-
tions and results admit straightforward extensions to integer-valued random measures (rather than
processes) A, viewing such a measure A as a family, parameterized by α, of increasing processes
At(ω, α), counting the jumps with mark α in the mark space A of an underlying marked point
process.

A.3 A General Result

Let τ denote an F̂-stopping time where F̂ ⊆ F. Let Λ and Λ̂ denote the F-compensator and the
F̂-compensator of τ , respectively. We denote by oΛ the optional projection of Λ on the sub-filtration
F̂ (see Section A.1). Since Λ is non-decreasing, oΛ is an F̂-submartingale, thus it admits a Doob-
Meyer decomposition. With a slight abuse of notation (see Section A.2), we denote by (oΛ)p the
F̂-compensator (in the sense of the predictable non-decreasing component) of the F̂-submartingale
oΛ.

Proposition A.1 Λ̂ and Λ denoting the F̂- and the F- compensators of τ , one has,

Λ̂ = (oΛ)p
. (53)

Moreover, in case Λ̂ and Λ are time-differentiable with related F̂- and F- intensity processes λ̂ and
λ, then λ̂ is the F̂-optional projection of λ (see Section A.1), so

λ̂ =oλ . (54)

Proof. Λ̂ := (oΛ)p is an F̂-predictable non-decreasing process. Moreover the tower property of
iterated conditional expectations yields, for 0 ≤ t ≤ T,

E(
∫ T

t

dHu − dΛ̂u|F̂t) = E(
∫ T

t

dHu − d(oΛ)u|F̂t)

= E(
∫ T

t

dHu − dΛu|F̂t) = E
(
E(
∫ T

t

dHu − dΛu|Ft)|F̂t

)
= 0 ,

since H −Λ is an F-martingale. This proves (13). Now, in case Λ and Λ̂ are time-differentiable with
related intensity processes λ and λ̂, (13) means that∫ t

0

λ̂sds− E(
∫ t

0

λsds|F̂t) (55)
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is an F̂-martingale. Moreover it is immediate to check, using the tower property of iterated condi-
tional expectations, that

E(
∫ t

0

λsds|F̂t)−
∫ t

0

E(λs|F̂s)ds (56)

is an F̂-martingale as well. By addition between (55) and (56),∫ t

0

λ̂sds−
∫ t

0

E(λs|F̂s)ds

is in turn an F̂-martingale. Since it is also a predictable (as continuous) finite variation process, it
is thus in fact identically equal to 0, so for t ≥ 0,

λ̂t = E(λt|F̂t) ,

and (54) follows. 2
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