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1 Introduction

In this work and in the follow-up paper [16], we consider the issue of numerical solution of
a doubly reflected backward stochastic differential equation, with an upper barrier which is
only active on random time intervals (doubly reflected BSDE with an intermittent upper
barrier, or RIBSDE for short henceforth, where the ‘I’ in RIBSDE stands for ‘intermittent’).

From the mathematical point of view, such RIBSDEs and, in the Markovian case, the related
variational inequality (VI for short henceforth) approach, were first introduced in Crépey
[18]. From the point of view of financial interpretation, RIBSDEs arise as pricing equations
of game options (like convertible bonds) with call protection, in which the call times of
the option’s issuer are subject to constraints preventing the issuer from calling the bond
on certain random time intervals. Moreover, in the standing example of convertible bonds,
this protection is typically monitored at discrete times in a possibly very path-dependent
way. Calls may thus be allowed or not at a given time depending on the past values of
the underlying stock S, which leads, after extension of the state space to markovianize the
problem, to highly-dimensional pricing problems. Deterministic pricing schemes are then
ruled out by the curse of dimensionality, and simulation methods appear to be the only
viable alternative.

The purpose of this paper is to propose a practical and mathematically justified approach
to the problem of solving numerically by simulation the RIBSDEs that arise as pricing
equations of game options with call protection. The main result is Theorem 3.3, which
establishes convergences rates for a discrete time approximation scheme by simulation to an
RIBSDE. The practical value of this scheme is assessed in the follow-up paper [16].

1.1 Standing Notation

Let us be given a continuous time stochastic basis (Ω,ℱ ,F,ℙ), where in the financial inter-
pretation ℙ denotes a risk-neutral pricing measure. We assume that the filtration F satisfies
the usual completeness and right-continuity conditions, and that all semimartingales are
càdlàg. Also, since our practical concern consists in pricing a contingent claim with ma-
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turity T, we set F = (ℱt)t∈[0,T ] with ℱ0 trivial and ℱT = ℱ . Moreover, we declare that a
process on [0, T ] (resp. a random variable) has to be F-adapted (resp. ℱ-measurable), by
definition. By default in the sequel, all (in)equalities between random variables or processes
are to be understood dℙ – almost surely or dℙ⊗ dt – almost everywhere, respectively.

We shall denote:
∙ cΩ̃, the complement of an event Ω̃ ⊆ Ω,
∙ ℕn = {0, 1, . . . , n}, for every non-negative integer n,
∙ Rq and R1⊗q, the set of q-dimensional vectors and row-vectors with real components,
∙ ∣ ⋅ ∣p for p ∈ [1,+∞), or simply ∥ ⋅ ∥ in case p = 2 or ∣ ⋅ ∣ in case p = 1, the p-norm of an
element of Rq or R1⊗q,
∙ T, the transposition operator.

2 Results in the Continuous-Time Setting

2.1 Diffusion Set-Up with Marker Process

Given a q-dimensional Brownian motion W , let X be the solution on [0, T ] of the following
SDE:

Xt = X0 +

∫ t

0
b(s,Xs) ds+

∫ t

0
�(s,Xs) dWs , (1)

where X0 ∈ ℝq and the coefficients b : [0, T ]×ℝq → ℝq and � : [0, T ]×ℝq → ℝq⊗q are such
that

(Hx) b, � are Λ-Lipschitz continuous in x, uniformly in t, for some positive constant Λ, and
b(t, 0) and �(t, 0) are bounded by Λ over [0, T ].

Let the time-state space ℰ = [0, T ] × ℝq × K for some finite set K. Given a function u of
three arguments t, x, k where the third argument k takes its values in a discrete set, so that
k can be thought of as referring to the index of a vector or system of functions of time t
and the spatial variable x, we shall denote either u(t, x, k), or uk(t, x), depending on what
is more convenient in the context at hand. Moreover we denote by ∇u, ∂u and ℋu the
gradient, the row-gradient and the Hessian of u with respect to x. We also let ∂tu = ∂u

∂t .

Let us further be given a set T = {T0, T1 . . . , TN} of fixed times with 0 = T0 < T1 < ⋅ ⋅ ⋅ <
TN−1 < TN = T . On the state-space ℰ , we then consider the factor process X = (X,H),
where X is defined by (1), and where the K-valued pure jump marker process H is supposed
to be constant except for deterministic jumps at the (strictly) positive TIs, from HTI− to

HTI = �I(XTI , HTI−) , (2)

for jump functions �I : ℝq ×K → K, starting from an initial condition

H0 = k ∈ K (3)

(note that H does not jump at time T0 = 0).
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Remark 2.1 In the financial interpretation (see section 2.5), the function u typically rep-
resents a pricing function, and T, a set of call protection monitoring times. The marker
process H is used for keeping track of the path-dependence of the call protection clauses, in
view of ‘markovianizing’ the model.

We suppose that the jump function �I is given as

�kI (x) = �k,−I (x)1{d(x)<0} + �k,+I (x)1{d(x)≥0} ,

with �±I : ℝq × K → K, and where d is the algebraic distance function to a closed domain
O = {x ∈ ℝq ∣ d(x) ≤ 0} of ℝq. Note that the function �(TI , ⋅, k) is continuous at every
x /∈ ∂O. One shall work under the following regularity assumption on O.
(Ho) The distance function d is of class C3

b .

Let us finally be given a non-decreasing sequence of stopping times # = (#l)0≤l≤N+1 defined
by #0 = 0 and, for every l ≥ 0:

#2l+1 = inf{t > #2l ; Ht /∈ K} ∧ T , #2l+2 = inf{t > #2l+1 ; Ht ∈ K} ∧ T , (4)

relatively to a given subset K of K. Observe that the #ls, to be interpreted as times of
switching of call protection in the financial interpretation, reduce to T-valued stopping times,
and that #N+1 = T.

2.2 Markovian RIBSDE

We denote by (P ) the class of functions u on ℝq, [0, T ] × ℝq or ℰ such that u is Borel-
measurable, with polynomial growth in its spatial argument x ∈ ℝq. Let us further be given
real-valued and continuous cost functions g(x), ℓ(t, x), ℎ(t, x) and f(t, x, y, z) in (P ), with
y ∈ ℝ and z ∈ ℝ1⊗q in f , such that:
∙ the running payoff function f(t, x, y, z) is Lipschitz in (y, z);
∙ the payoff function at maturity g(x) and the put and call payoff functions ℓ(t, x) and ℎ(t, x)
satisfy ℓ ≤ ℎ, ℓ(T, ⋅) ≤ g ≤ ℎ(T, ⋅).
In the sequel, we shall sometimes use the following assumptions

(Hℓ) ℓ(t, x) = �(t, x) ∨ c, for a constant c ∈ ℝ ∪ {−∞} and a function � of class C1,2 on
[0, T ]× ℝq such that

�, G�, ∂�� ∈ (P ) , (5)

(Hh) ℎ(t, x) is jointly Lipschitz in (t, x).

The Markovian RIBSDE with data

f(t,Xt, y, z) , � = g(XT ) , ℓ(t,Xt) , ℎ(t,Xt) , # , (6)

denoted in the sequel by (ℰ), is a doubly reflected BSDE (see, e.g., [20, 18]) with lower and
upper barriers respectively given by, for t ∈ [0, T ],

Lt = ℓ(t,Xt) , Ut =

[N/2]∑
l=0

1[#2l,#2l+1)∞+

[N+1/2]∑
l=1

1[#2l−1,#2l)ℎ(t,Xt) . (7)
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With respect to standard, ‘continuously reflected’ doubly reflected BSDEs, the peculiarity
of RIBSDEs is thus that the ‘nominal’ upper obstacle ℎ(t,Xt) is only active on the ‘odd’
random time intervals [#2l−1, #2l), l > 0.

Let us introduce the following Banach (or Hilbert, in case of ℒ2 or ℋ2
q) spaces of random

variables or processes, where p denotes here and henceforth a real number in [1,∞):
∙ ℒp, the space of real valued random variables � such that

∥�∥ℒp =
(
E[∣�∣p]

) 1
p
< +∞ ;

∙ Spq , for any real p ≥ 2 (or Sp, in case q = 1), the space of ℝq-valued càdlàg processes Y
such that

∥Y ∥Spd :=
(
E
[

sup
t∈[0,T ]

∣Yt∣p
]) 1

p
< +∞ ;

∙ ℋpq (or ℋp, in case d = 1), the space of ℝ1⊗q-valued predictable processes Z such that

∥Z∥ℋpq =
(
E
[( ∫ T

0
∥Zt∥2 dt

) p
2

]) 1
p
< +∞ ;

∙ A2, the space of finite variation processes A with (non-decreasing) Jordan components
A± ∈ S2 null at time 0.

Under (Hx), one thus has ∥X∥S2 ≤ CΛ, where from now on CΛ is a generic constant whose
value may change from line to line but which depends only on Λ, T , X0 and q (in case this
constant depends on some extra parameter, say �, we shall write C�Λ). p ≥ 1, " > 0 we shall
write CpΛ or C"Λ if it ).

Definition 2.2 An (Ω,F,ℙ)-solution Y to (ℰ) is a triple Y = (Y, Z,A), such that:

(i) Y ∈ S2, Z ∈ ℋ2
q , A ∈ A2, A+ is continuous,

and {(!, t) ; ΔYt ∕= 0} = {(!, t) ; ΔA−t ∕= 0} ⊆
∪[N/2]
l=0 [[#2l]] ,

(ii) Yt = � +

∫ T

t
f(s,Xs, Ys, Zs)ds+AT −At −

∫ T

t
ZsdWs , t ∈ [0, T ] ,

(iii) Lt ≤ Yt on [0, T ] , Yt ≤ Ut on [0, T ]

and
∫ T

0
(Yt − Lt)dA+

t =

∫ T

0
(Ut− − Yt−)dA−t = 0 ,

where L and U are defined by (7), and with the convention that 0×±∞ = 0 in (iii).

Note that this definition admits an obvious extension to a random terminal time �, instead
of constant � = T above. This extension will be used in the next results, in the special case
of simply reflected and (continuously) doubly reflected BSDEs.

Also note that (ℰ) is implicitly parameterized by the initial condition (t = 0, x, k) of X .
In the sequel we let the superscript t (whenever necessary) stand in reference to an initial
condition (t, x, k) of X (with in particular t ∈ [0, T ], rather than t = 0 implicitly above).1

By application of the results of [18], one thus has,
1However it is convenient to extend all our processes to [0, T ] ‘in a natural way’ so that they live in spaces

of functions defined over [0, T ], which do not change with t, see Crépey [18].
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Proposition 2.1 (Crépey [18]) We assume (Hℓ).
(i) The following iterative construction is well-defined, for I decreasing from N to 0: YI,t =
(Y I,t, ZI,t, AI,t) is the unique solution, with AI,t continuous, to the reflected BSDE with
random terminal time #tI+1 (for I even) or the doubly reflected BSDE with random terminal
time #tI+1 (for I odd) on [t, #tI+1] with data⎧⎨⎩ f(s,X ts , y, z) , Y

I+1,t
#tI+1

, ℓ(s,X ts) , #tI+1 (I even)

f(s,X ts , y, z) , min(Y I+1,t
#tI+1

, ℎ(#tI+1,X t#tI+1
)) , ℓ(s,X tst) , ℎ(s,X ts) , #tI+1 (I odd)

(8)

where, in case I = N , Y I+1,t
#tI+1

is to be understood as g(X tT ).

(ii) Let us define Yt = (Y t, Zt, At) on [t, T ] by, for every I = 0, . . . , N :
∙ (Y t, Zt) = (Y I,t, ZI,t) on [#tI , #

t
I+1), and also at #tI+1 = T in case I = N ,

∙ dAt = dAI,t on (#tI , #
t
I+1),

ΔKt
#tI

= Y I,t
#tI
−min(Y I,t

#tI
, U t#tI

) = ΔY t
#tI

(= 0 for I odd)

and ΔKt
T = ΔY t

T = 0. So in particular

Y t
t =

{
Y 0,t
t , k ∈ K
Y 1,t
t , k /∈ K ,

(9)

where k is the index which is implicit in the condition initial (t, x, k) of X referred to by the
superscript t.
Then Yt = (Y t, Zt, At) is the unique solution to the RIBSDE (ℰ t). Moreover, At,+ is a
continuous process, and

{(!, s) ; ΔAt,+s ∕= 0} ⊆
∪

{I even}
[[#tI ]] , ΔY t = ΔKt,− on

∪
{I even}

[[#tI ]] .

Note in particular that existence and uniqueness of solutions with a continuous reflecting
process component (process AI,t above) to the auxiliary reflected BSDEs and doubly
reflected BSDEs with random terminal time, that appear in point (i) above, is granted by
the results of [19, 18].

One will need further stability results on Yt, or, more precisely, on the YI,ts. Toward this
end a suitable stability assumption on #t is needed. Our next result is thus a càdlàg property
of #, viewed as a random function of the initial condition (t, x, k) of X .

Proposition 2.2 At every (t, x, k) in ℰ, # is, almost surely:
(i) continuous at (t, x, k) if t /∈ T, and right-continuous at (t, x, k) if t ∈ T,
(ii) left-limited at (t, x, k) if t = TI ∈ T and x /∈ ∂O.

By the above statement, we mean that:
∙ #tn → #t if (tn, xn, k) → (t, x, k) with t /∈ T, or, for t = TI ∈ T, if ℰI+1 ∋ (tn, xn, k) →
(TI , x, k);
∙ if ℰ∗I ∋ (tn, xn, k) → (t = TI , x /∈ ∂O, k), then #tn converges to some non-decreasing
sequence #̃t = (#̃tI)0≤l≤N+1 of [0, T ]-valued stopping times, with in particular #̃tN+1 = T .
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Definition 2.3 One denotes by Ỹt = (ỸI,t)0≤I≤N , with ỸI,t = (Ỹ I,t, Z̃I,t, ÃI,t) and ÃI,t

continuous for every I = 0, . . . , N , the sequence of solutions of the BSDEs with random
terminal times which is obtained by substituting #̃t to #t in the construction of Yt in
Proposition 2.1(i).

Observe that since the #Is are in fact T-valued stopping times:
∙ The continuity assumption effectively means that #tnI = #tI for n large enough, almost
surely, for every I = 1, . . . , N + 1 and ℰ ∋ (tn, xn, k)→ (t, x, k) ∈ ℰ with t /∈ T;
∙ The right-continuity, resp. left-limit assumption, effectively means that for n large enough
#tnI = #tI , resp. #̃tI , almost surely, for every I = 1, . . . , N + 1 and ℰI+1 ∋, resp. ℰ∗I ∋
(tn, xn, k)→ (TI , x, k) ∈ ℰ .

Proposition 2.3 (Crépey [18]) We assume (Hℓ) and (Hℎ). Let Yt = (YI,t)0≤I≤N and
Ỹt = (ỸI,t)0≤I≤N be defined as in Proposition 2.1(i) and Definition 2.3, respectively. Then,
for every I = N, . . . , 0:
(i) One has the following estimate on YI,t,

∥Y I,t∥2S2 + ∥ZI,t∥2ℋ2
q

+ ∥AI,t∥2S2 ≤ C(1 + ∣x∣2q) . (10)

Moreover, an analogous bound estimate is satisfied by ỸI,t;
(ii) tn referring to a perturbed initial condition (tn, xn, k) of X , then:
∙ in case t /∈ T, YI,tn S2 ×ℋ2

q × S2 – converges to YI,t as ℰ ∋ (tn, xn, k)→ (t, x, k);
∙ in case t = Tl′ ∈ T:
— YI,tn S2 ×ℋ2

q × S2 – converges to YI,t as ℰJ+1 ∋ (tn, xn, k)→ (t, x, k);
— if �J is continuous at (x, k) for some J ∈ ℕN , then YI,tn S2 ×ℋ2

q × S2 – converges to
ỸI,t as ℰ∗J ∋ (tn, xn, k)→ (t, x, k).

2.3 Analytic Approach

The main contribution of this article consists in a simulation scheme, shown to be convergent
in theory and efficient in practice, for solving the RIBSDE (ℰ). However, for the sake of
the numerical validation of the results of the simulation scheme, it will be useful to compare
these results with those of an alternative, deterministic numerical scheme. A deterministic
scheme for the Markovian RIBSDE (ℰ) is based on the analytic characterization of (ℰ), or,
more precisely, of a related value function u, in terms of an associated system of VIs.

We denote by G the generator of X, so, with a(t, x) = �(t, x)�(t, x)T,

Gu(t, x) = ∂tu(t, x) + ∂u(t, x)b(t, x) +
1

2
Tr[a(t, x)ℋu(t, x)] , (11)

where ∂u and ℋu denote the row-gradient and the Hessian of a function u = u(t, x) with
respect to x. We also introduce, for I = 1, . . . , N,

ℰI = ℰ ∩ {TI−1 ≤ t ≤ TI} × ℝq ×K , ℰ∗I = ℰ ∩ {TI−1 ≤ t < TI} × ℝq ×K . (12)

Note that the sets ℰ∗I s and {T} × ℝq ×K partition ℰ .
We denote for short �(TI , ⋅, k) = �kI . In view of introducing the value function u in Propo-
sition 2.4, it is convenient to state the following definition.
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Definition 2.4 (i) A Cauchy cascade g, � on ℰ is pair made of a terminal condition g of
class (P ) at T , along with a sequence � = (uI)1≤l≤N of functions uIs of class (P ) on the
ℰIs, satisfying the following jump condition, at every point of continuity of �kI in x:

ukI (TI , x) =

{
min(uI+1(TI , x, �

k
I (x)), ℎ(x)) if k /∈ K and �kI (x) ∈ K,

uI+1(TI , x, �
k
I (x)) else , (13)

where, in case I = N , uI+1 is to be understood as g.
A continuous Cauchy cascade is a Cauchy cascade with continuous ingredients g at T and uIs
on the ℰIs, except maybe for discontinuities of the uIs at the points (TI , x, k) of discontinuity
of �kI in x;
(ii) The function defined by a Cauchy cascade is the function on ℰ given as the concatenation
on the ℰ∗I s of the uIs, and by the terminal condition g at T .

Remark 2.5 Recall that �kI is continuous outside ∂O. Yet, at a discontinuity point x of �kI ,
ukI (tn, xn) may fail to converge to ukI (TI , x) as ℰI ∋ (tn, xn, k)→ (TI , x, k).

One then has,

Proposition 2.4 Assuming (Hℓ) and (Hℎ), the state-process Y of Y satisfies, ℙ-a.s.,

Yt = u(t,Xt) , t ∈ [0, T ] , (14)

for a deterministic pricing function u, defined by a continuous Cauchy cascade g, � =
(uI)1≤I≤N on ℰ.

The next step consists in deriving an analytic characterization of the value function u, or,
more precisely, of the cascade � = (uI)1≤I≤N , in terms of solutions to a related analytic
problem.

Note that except in the (too specific, thinking for instance of the situation of Example
2.6 below) case of � not depending on x, � presents discontinuities in x, and the function
uIs typically present discontinuities at the points (TI , x, k) of discontinuity of the �kI s (cf.
Remark 2.5).
It would be possible however, though we shall not develop this further in this article, to
characterize � in terms of a suitable notion of discontinuous viscosity solution [17, 18] to the
following Cauchy cascade of VIs:

For I decreasing from N to 1,
∙ At t = TI , for every k ∈ K and x ∈ ℝq,

ukI (TI , x) =

{
min(uI+1(TI , x, �

k
I (x)), ℎ(x)), k /∈ K and �kI (x) ∈ K

uI+1(TI , x, �
k
I (x)), else ,

(15)

with uI+1 in the sense of g in case I = N ,
∙ On the time interval [TI−1, TI), for every k ∈ K,⎧⎨⎩ min

(
− GukI − fu

k
I , ukI − ℓ

)
= 0 , k ∈ K

max
(

min
(
− GukI − fu

k
I , ukI − ℓ

)
, ukI − ℎ

)
= 0 , k /∈ K

(16)

where G is given by (11) and where we set, for any function � = �(t, x),

f� = f�(t, x) = f(t, x, �(t, x)) . (17)
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It would also be possible to state related convergence results for standard deterministic
(like finite differences) schemes to the viscosity solution of the Cauchy cascade (15)–(16).
Note however that (15)–(16) involves Card(K) equations in the uks. From a deterministic
computational point of view the Cauchy cascade (15)–(16) can thus be considered as a q+d
– dimensional pricing problem, with d = log(Card(K)). For ‘very large’ sets K, like for
instance in the case of Example 2.6(ii), the use of deterministic schemes is thus precluded
by the curse of dimensionality, and simulation schemes are the only viable alternative.

2.4 Case of an Affine Coefficient

We consider in this section the special case of an affine coefficient

f = f(t, x, y) = c(t, x)− �(t, x)y + �(t, x)zT , (18)

for continuous bounded real-valued and ℝ1⊗q-valued functions �(t, x) and �(t, x). In this
case, it is straightforward to verify the following classic

Lemma 2.5 Y = (Y, Z,A) denoting a solution to (ℰ), the triple(
�Y, �(Z + Y �),

∫ ⋅
0
�tdAt

)
solves the RIBSDE with data (cf. (6))

�tc(t,Xt) , �T g(XT ) , �tℓ(t,Xt) , �tℎ(t,Xt) , # , (19)

where the adjoint process � is the solution of the following linear (forward) SDE:

d�t = �t

(
�(t,Xt)dWt − �(t,Xt)dt

)
, t ∈ [0, T ] (20)

with initial condition �0 = 1. In particular, � > 0 on [0, T ].

2.4.1 Verification Principle

Using Lemma 2.5, the following verification principle can be established in a standard way
(see, e.g., [5, 18]). This result establishes the connection between a solution Y = (Y,Z,A)
of the RIBSDE (ℰ) with an affine coefficient f as of (18), and a related Dynkin Game, or
optimal game problem (see [22]).

Let Tt and T #t denote the sets of the [t, T ]-valued and of the ∪l>0[#2l−1∨t, #2l∨t)∪{T}-valued
stopping times, respectively. Let � = � ∧ �, for any �, � ∈ Tt.

Proposition 2.6 Let Y = (Y, Z,A) denote a solution to (ℰ).
(i) Y is the conditional value process of the Dynkin game with cost criterion Et

(
�t(�, �)

)
on

Tt × T #t , where �t(�, �) is the ℱ�-measurable random variable defined by

�t�
t(�, �) =

∫ �

t
�sc(s,Xs)ds+ ��

(
1{�=�<T}L� + 1{�=�<�}U� + 1{�=T}�

)
,
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with � = � ∧ �. One thus has ℙ – almost surely, for every t ∈ [0, T ],

esssup�∈Ttessinf�∈T #t Et�
t(�, �) = Yt = essinf�∈T #t esssup�∈TtEt�

t(�, �) . (21)

More precisely, for any t ∈ [0, T ] and for any " > 0, the pair of stopping times (� ", �") ∈
Tt × T #t given by

� " = inf
{
u ∈ [t, T ] ; Yu ≤ ℓ(u,Xu) + "

}
∧ T

�" = inf
{
u ∈ ∪l≥0[#2l+1 ∨ t, #2l+2 ∨ t) ; Yu ≥ Uu − "

}
∧ T,

(22)

is an " – saddle-point for this Dynkin game at time t, in the sense that one has, for any
(�, �) ∈ Tt × T #t ,

Et
(
�t(�, �")

)
− " ≤ Yt ≤ Et

(
�t(� ", �)

)
+ ". (23)

(ii) If the component A of Y is continuous, then the pair of stopping times (�∗, �∗) ∈ Tt×T #t
obtained by setting " = 0 in (22), is a saddle-point of the game. One thus has in this case,
for any (�, �) ∈ Tt × T #t ,

Et
(
�t(�, �∗)

)
≤ Yt ≤ Et

(
�t(�∗, �)

)
.

2.5 Connection with Finance

In the case of risk-neutral pricing problems in finance, the driver coefficient function f is
typically given as

f = f(t, x, y) = c(t, x)− �(t, x)y , (24)

for dividend and interest-rate related functions c and �. Note that f in (24) is affine in y and
does not depend on z. We are thus in the sub-case of section 2.4 corresponding to � = 0,
and therefore, in view of (20),

� = exp
(
−
∫ ⋅

0
�(t,Xt)dt

)
.

Modeling the pricing problem under the historical probability, as opposed to the risk-neutral
probability by default in this article, would lead to a ‘z-dependent’ driver coefficient func-
tion f . Moreover we tacitly assume in this paper a perfect, frictionless financial market.
Accounting for market imperfections would lead to a nonlinear coefficient f (see, e.g., El
Karoui et al. [24]).
Also note that in a context of vulnerable claims (defaultable game options [4]), it is enough,
to account for counterparty risk, to work with suitably credit-spread adjusted interest-rates
� and recovery-adjusted dividend-yields c in (24), and to amend accordingly the dynamics
of the factor process X (see, e.g., [18]).

Moreover, in the financial interpretation:
∙ g(X tT ) corresponds to a terminal payoff that is paid by the issuer to the holder at time T
if the contract was not exercised before T ;
∙ ℓ(X tt ), resp. ℎ(X tt ), corresponds to a lower, resp. upper payoff that is paid by the issuer
to the holder of the claim in the event of early termination of the contract at the initiative
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of the holder, resp. issuer;
∙ The sequence of stopping time # is interpreted as a sequence of times of switching of a
call protection. More precisely, the issuer of the claim is allowed to call it back (enforcing
early exercise) on the ‘odd’ (random) time intervals [#2l−1, #2l). At other times call is not
possible.

The contingent claims under consideration are thus general game contingent claims [30],
covering convertible bonds, American options (and also European options) as special cases.

Now, in view of a rather standard verification principle and of the arbitrage theory for
game options (see, e.g., [18]), Π = Y is an arbitrage price process for the game option, the
arbitrage price relative to the pricing measure ℙ, which can be thought of as ‘the pricing
measure chosen by the market’.
Given a suitable set of hedging instruments, Π is also a bilateral super-hedging price (see,
e.g., [18, 6]), in the sense that there exists a self-financing super-hedging strategy for the
issuer of the claim starting from any issuer initial wealth greater then Π and a self-financing
super-hedging strategy for the holder of the claim starting from any holder initial wealth
greater than −Π. Finally Π is also the infimum of the initial wealths of all the issuer’s
self-financing super-hedging strategies.

2.5.1 Model Specifications

A rather typical specification of the terminal cost functions is given by, for constants P̄ ≤
N̄ ≤ C̄,

ℓ(t, x) = P̄ ∨ S , ℎ(t, x) = C̄ ∨ S , g(x) = N̄ ∨ S , (25)

where S = x1 denotes the first component of x. Note that this specification satisfies as-
sumptions (Hℓ)-(Hℎ), as well as all the standing assumptions of this paper. In particular,
one then has (cf. (1), (11)),

�(t, x) = x1 = S , G� = b1 , ∂�� = �1 ,

so that condition (5) in (Hℎ) reduces to b1, �1 ∈ (P ), which holds by the Lipschitz property
of b and �.

As for #, one may consider the following specifications, which are commonly found in the
case of convertible bonds on an underlying stock S.

Example 2.6 Given a constant trigger level S̄ and a constant l ≤ N :
(i) K = ℕl, K = ℕl−1 and � defined by

�kI (x) =

{
(k + 1) ∧ l, S ≥ S̄
0, S < S̄

(independently of I). With the initial condition H0 = 0, Ht then represents the number of
consecutive monitoring dates TIs with STI ≥ S̄ from time t backwards, capped at l. Call is
possible whenever Ht ≥ l, which means that S has been ≥ S̄ at the last l monitoring times;
Otherwise call protection is in force;
(ii) K = {0, 1}d for some given integer d ∈ {l, . . . , N}, K = {k ∈ K ; ∣k∣ < l} with
∣k∣ =

∑
1≤p≤d kp, and � defined by

�kI (x) = (1S≥S̄ , k1, . . . , kd−1) .
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With the initial condition H0 = 0d, Ht then represents the vector of the indicator functions
of the events STI ≥ S̄ at the last d monitoring dates preceding time t. Call is possible
whenever ∣Ht∣ ≥ l, which means that S has been ≥ S̄ on at least l of the last d monitoring
times; Otherwise call protection is in force.

3 Discrete-Time Approximation Results

In this section, we propose an approximation scheme for a solution Y = (Y, Z,A), assumed
to exist, to (ℰ) (for instance because assumption (Hℓ) holds, see Proposition 2.1), and we
provide an upper bound for the convergence rate of this scheme. The proofs are deferred to
section 4.

3.1 Approximation of the Forward Process

When the diffusion X in (1) cannot be perfectly simulated, we use the Euler scheme approx-
imation X̂ defined for a grid t = {0 = t0 < t1 < . . . < tn = T} of [0, T ], n ≥ 1, by X̂0 = X0,
and for i ≤ n− 1,

X̂ti + b(ti, X̂ti)(ti+1 − ti) + �(ti, X̂ti)(Wti+1 −Wti) .

In the sequel, we shall denote by ∣t∣ = maxi≤n−1(ti+1 − ti) the modulus of tt and assume
that

n∣t∣ ≤ Λ .

As usual, we define a continuous-time version of X̂ by setting, for every i ≤ n − 1 and
t ∈ [ti, ti+1),

X̂t = X̂ti + b(ti, X̂ti)(t− ti) + �(ti, X̂ti)(Wt −Wti) , (26)

or in an equivalent differential notation, for t ∈ [0, T ],

dX̂t = b(t̄, X̂t̄)dt+ �(t̄, X̂t̄)dWt , (27)

where we set t̄ = sup{s ∈ t∣s ≤ t}.
Under the Lipschitz continuity assumption (Hx), one has, for every p ≥ 1 (see, for instance,
Kloeden and Platen [31]),

∥ sup
t≤T
∥Xt − X̂t∥ ∥ℒp + max

i<n
∥ sup
t∈[ti,ti+1]

∥Xt − X̂ti∥ ∥ℒp ≤ C
p
Λ ∣t∣

1
2 . (28)

3.2 Approximation of the Upper Barrier

The lower barrier is naturally approximated by ℓ(t, X̂t).

We now present the approximation of the upper barrier, which involves the approximation



13

of the activation/deactivation times. We first define the approximation of the marker process
H, denoted by Ĥ, which is naturally given by

Ĥ0 = H0 and ĤTI = �(TI , X̂TI , ĤTI−) , for 1 ≤ I ≤ N.

We then define the approximation #̂ of # as the sequence of T-valued stopping times obtained
by using X̂ = (X̂, Ĥ) instead of X in (4).

In order to control the error between the call protection times and their approximation, we
make the following assumption on the coefficients of X,

(Hxo) � and b are bounded and of class C2,b on the following set (union of cylinders),

Q = {(t, x) ∈ ∪1≤I≤N−1[TΛ
I , TI ]× ℝq ; ∣d(x)∣ ≤ Λ−1},

where we set, for 1 ≤ I ≤ N − 1,

TΛ
I = TI − Λ−1 > TI−1 .

Moreover, for every (t, x) ∈ Q,

a(t, x) ≥ Λ−1Iq . (29)

The proof of the following Proposition is postoned to the Section 4.1.

Proposition 3.1 Under (Hxo), for every " > 0, there exists a constant C"Λ such that for
every l ≤ N + 1,

E
[
∣#l − #̂l∣

]
≤ C"Λ∣t∣

1
2
−" .

The upper barrier is then approximated by the processes Ũ and Û defined by, for t ∈ [0, T ],

Ũt =

[N/2]∑
l=0

1
[#̂2l,#̂2l+1)

∞+

[N+1/2]∑
l=1

1
[#̂2l−1,#̂2l)

ℎ(t, X̂t)

Ût =

⎛⎝1{0} +

[N/2]∑
l=0

1
(#̂2l,#̂2l+1)

⎞⎠∞+

[N+1/2]∑
l=1

1
[#̂2l−1,#̂2l]

ℎ(t, X̂t) .

3.3 Approximation of the RIBSDE

In the sequel, we shall use one of the following regularity assumptions:
(Hb) ℎ and ℓ are Λ-Lipschitz continuous with respect to (t, x).

(Hb)’ ℎ and ℓ verify for a constant Λ and some Λ1,Λ2 : ℝq → ℝ1⊗q and Λ3 : ℝq → ℝ+,

∣Λ1(x)∣+ ∣Λ2(x)∣+ ∣Λ3(x)∣ ≤ Λ(1 + ∣x∣Λ)

ℓ(t, x)− ℓ(t, y) ≤ Λ1(x)(y − x) + Λ3(x)∣x− y∣2 , ∀ x, y ∈ ℝq .
ℎ(t, y)− ℎ(t, x) ≤ Λ2(x)(y − x) + Λ3(x)∣x− y∣2 , ∀ x, y ∈ ℝq .
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Remark 3.1 (i) Assumption (Hb)’ is slightly weaker than the semi-convexity assumption
of Definition 1 in [1].

(ii) Observe that (Hb)’ implies (Hb).

Given % = # or #̂, let the projection operator P% be defined by

P%(t, x, y) = y + [ℓ(t, x)− y]+ − [y − ℎ(t, x)]+
[N+1/2]∑
l=1

1{%2l−1≤t≤%2l} . (30)

To tackle the reflection issue, we introduce a discrete set of reflection times defined by

r = {0 = r0 < r1 < ⋅ ⋅ ⋅ < r� = T} with T ⊆ r ⊆ t (31)
and ∣r∣ := max

{≤�−1
(r{+1 − r{) ≤ CΛ min

{≤�−1
(r{+1 − r{) , (32)

for some � ≥ 1.

The idea is that in the approximation scheme the reflection will operate only on r. The
components Y and Z of a solution Y = (Y,Z,A) to the RIBSDE (ℰ) are then approximated
by a triplet of processes (Ŷ , Ỹ , Z̄) defined on t by the terminal condition

ŶT = ỸT = g(X̂T ) ,

and then for i decreasing from n− 1 to 0,⎧⎨⎩
Z̄ti = (ti+1 − ti)−1 E

[
Ŷti+1(Wti+1 −Wti) ∣ ℱti

]
Ỹti = E

[
Ŷti+1 ∣ ℱti

]
+ (ti+1 − ti)f(ti, X̂ti , Ỹti , Z̄ti)

Ŷti = Ỹti1{ti /∈r} + P
#̂
(ti, X̂ti , Ỹti)1{ti∈r} , i ≤ n− 1 .

(33)

We also let Z̄T = 0.

Using an induction argument and the Lipschitz-continuity assumption on f , g, l, ℎ, one
easily checks that the above processes are square integrable. It follows that the conditional
expectations are well defined at each step of the algorithm.

We also consider a piecewise continuous version of the scheme. Using the martingale repre-
sentation theorem, we define Ẑ on [ti, ti+1) by

Ŷti+1 = Eti
[
Ŷti+1

]
+

∫ ti+1

ti

ẐsdWs .

We then define Ỹ on [ti, ti+1) by

Ỹt = Ŷti+1 + (ti+1 − t)f(ti, X̂ti , Ỹti , Z̄ti)−
∫ ti+1

t
ẐsdWs

and we let finally, for t ∈ [0, T ],

Ŷt = Ỹt1{t/∈r} + P
#̂
(t, X̂t, Ỹt)1{t∈r} . (34)
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Observe that one has, for i ≤ n− 1,

Z̄ti =
1

ti+1 − ti
Eti
[∫ ti+1

ti

Ẑsds

]
.

For later use, we also define Z̄t = Z̄t̄, for t ∈ [0, T ].

When there is no call or no call protection, the convergence of the scheme is given by
Theorem 6.2 in [14] in the general setting where f depends on z.

Theorem 3.2 Under (Hb), the following holds

max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt − Ỹti ∣2

]
+ max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt − Ŷti ∣2

]
≤ CΛ∣t∣

1
2 .

Under stronger assumption on the boundaries, it is possible to obtain a better control of the
convergence rate of the approximation see Theorem 6.2 in [14].

Regarding call protection, our main result is the following

Theorem 3.3 Under (Hb) and if f does not depend on z, the following holds

max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt − Ỹti ∣2

]
+ max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt− − Ŷti ∣2

]
≤ C"Λ∣t∣

1
2
−" .

Under (Hb)’ and if f does not depend on z, the following holds

max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt − Ỹti ∣2

]
+ max
i≤n−1

sup
t∈[ti,ti+1)

E
[
∣Yt− − Ŷti ∣2

]
≤ CΛ∣t∣ .

4 Proofs

We denote by � a positive random variable which may change from line to line but satisfies
E[�p] ≤ CpΛ, for p ≥ 1.

4.1 Stability of Call Protection Monitoring Times

In the following, we consider two diffusions. The first one X starts at (t, x) (t < T ) and is
the solution of the following SDE:

Xs = x+

∫ s

t
b(s,Xs)ds+

∫ s

t
�(s,Xs)dWs , for s ∈ [t, T ] .

The second one � starts at (t′, x′) (t′ < T ) and can be written:

�s = x′ +

∫ s

t′
b�(s)ds+

∫ s

t′
��(s)dWs , for s ∈ [t′, T ] .

In practice, � will be the solution of an SDE with coefficient (b, �) or the Euler scheme
associated to this SDE.
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We consider the following ‘monitoring grid’ for X (resp. �) Tt := {s ∈ T ∣ s > t}, T t = inf Tt

(resp. Tt′ = {s ∈ T ∣ s > t′}, T t′ = inf Tt
′).

As in Section 2.1, we are given a finite set K, a subset K of K and an initial condition k ∈ K.
We introduce for � the marker process X ′, recalling Section 2.1. Namely, X ′ = (�,H ′), with
H ′ defined by

H ′t′ = k ∈ K and H ′T = �(T , �T , H ′T −), ∀T ∈ Tt
′

and H ′ is constant between two dates of {t′} ∪ Tt
′ . Observe that H ′ does not jump at t′.

We also consider a non-decreasing sequence of stopping times #′ = (#′l)0≤l≤N+1, representing
the call protection monitoring times, defined by #′0 = t′ and, for every l ≥ 0:

#′2l+1 = inf{t > #′2l ; H
′
t /∈ K} ∧ T , #2l+2 = inf{t > #′2l+1 ; H ′t ∈ K} ∧ T . (35)

The #′ls effectively reduce to {t′} ∪ Tt
′-valued stopping times, and that #N+1 = T.

To the process X, we associate two different marker processes X ans X̃ . The first one
X = (X,H) is defined as above, replacing � by X. Observe that H does not jump at t and
that Ht = H ′t′ = k. We also consider the sequence of call protection monitoring times #,
defined as in (35) with t and H instead of t′ and H ′.

The second marker process X̃ = (X, H̃) is given by

H̃t = �(t, x, k) and H̃T = �(T , XT , H̃T −), ∀T ∈ Tt ∖ {t}

and H̃ is constant between two dates of {t} ∪ Tt. Observe that, contrary to H, H̃ may not
jump at t.

We also consider the corresponding call protection monitoring times sequence #̃ defined as
in (35) with t and H̃ instead of t′ and H ′.

We are then interested in two different cases regarding the initial set of data (t, x) and
(t′, x′).

Case 1: T t = T t′ .
Case 2: T t′ = t and d(x′) ∕= 0.

Let us finally introduce, for 0 < ℎ < minr ∕=s∈Tt ∣r − s∣, and T ∈ Tt, the sets

Ωh
T = { sup

T −h≤u≤T
∣Xu −XT ∣ ≤

1

3Λ
} , Ωh =

∩
T ∈Tt

Ωh
T

Ω̂� = { sup
u∈[T t,T ]

∣�u −Xu∣ < �} .

The proof of the following Lemma is deferred to Appendix A.

Lemma 4.1 Assume (Hxo).
(i) One has, for T ∈ Tt,

ℙ(Ωh
T ∩ {∣d(XT )∣ ≤ �}) ≤ CΛ

�

h
. (36)
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(ii) For p, p̄ > 0, for l ≥ 0, one has in Case 1,

E
[
∣#l − #′l∣

]
≤ ∣t− t′∣+ CΛ

�

h
+ C p̄Λhp̄ + CpΛ

E
[
supu∈[T t,T ] ∣�u −Xu∣p

]
�p

and in Case 2,

E
[
∣#̃l − #′l∣

]
≤ ∣t− t′∣+ CΛ

�

h
+ C p̄Λhp̄ + CpΛ

E
[
supu∈[T t,T ] ∣�u −Xu∣p

]
�p

.

4.1.1 Proof of Proposition 3.1

We set � = X̂, in the framework introduced at the beginning of this section. We have here
that t = t′ = 0, so we shall use the results of Case 1 above. Observing that

E

[
sup

u∈[0,T ]
∣X̂u −Xu∣p

]
≤ CpΛ∣t∣

p
2 ,

and applying the results of Case 1 in Lemma 4.1(ii), we thus get

E
[
#l − #̂l

]
≤ CΛ

�

h
+ C p̄Λhp̄ + CpΛ

∣t∣
p
2

�p

The proof is then concluded setting � = ∣t∣
1
2
− "

2 , p̄ = p = 1
" − 2, for " and ∣t∣ small enough.

4.1.2 Proof of Proposition 2.2

For (tn, xn) ∈ [0, T [×ℝq, we set � = Xtn,xn .

(i) When tn ↓ t, we want to control the difference between #t and #tn to prove the càd
property. We shall use here the result of Case 1.

(ii) When tn ↑ t, we want to control the difference between #̃t and #tn to prove the làg
property, under the assumption d(x) ∕= 0. Since xn → x, we have for some n ≥ 0, d(xn) ∕= 0.
We shall use here the result of Case 2.

To prove (i), we observe that

E

[
sup

u∈[0,T ]
∣Xtn,xn

u −Xt,x
u ∣p

]
≤ CpΛ(∣x− xn∣p + ∣t− tn∣

p
2 ).

We then obtain, applying Lemma 4.1(ii), that

E
[
#tl − #

tn
l

]
≤ ∣t− tn∣CΛ

�n
hn

+ C p̄Λhp̄n + CpΛ
∣x− xn∣p + ∣t− tn∣

p
2

�pn
.

The proof is then concluded taking �2
n = ∣x− xn∣ ∨ ∣t− tn∣

1
2 , ℎ2

n = �n, p̄ = p = 2 and letting
n go to ∞.

Arguing exactly as above, we obtain the proof of (ii).
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4.2 Proof of Proposition 2.4

By standard semi-group properties of X and Y immediately resulting from the uniqueness
of solutions to the related SDEs, one gets, for every I = 1, . . . , N and TI−1 ≤ t ≤ r < TI
(see Crépey [18] for the detail),

Y t
r = uI(r,X tr ) , ℙ−a.s. (37)

for a deterministic function uI on ℰ∗l . In particular,

Y t
t = uk(t, x) , for any (t, x, k) ∈ ℰ , (38)

where u is the function defined on ℰ by the concatenation of the uIs and the terminal
condition g at T . In view of (9), the fact that u is of class P then directly follows from the
bound estimates (10) on Y0,t and Y1,t.

Let us show that the uIs are continuous over the ℰ∗l s. Given ℰ ∋ (tn, xn, k)→ (t, x, k) with
t /∈ T or tn ≥ TI = t, one decomposes by (9):

∣uk(t, x)− uk(tn, xn)∣ = ∣Y t
t − Y

tn
tn ∣ ≤{

∣E(Y 0,t
t − Y

0,t
tn )∣+ E∣Y 0,t

tn − Y
0,tn
tn ∣, k ∈ K

∣E(Y 1,t
t − Y

1,t
tn )∣+ E∣Y 1,t

tn − Y
1,tn
tn ∣, i /∈ K

In either case we conclude classically by using Proposition 2.3 as a main tool, as for instance
in the proof of Theorem 9.3(i) of Crépey [18, Part II], that ∣uk(t, x) − uk(tn, xn)∣ goes to
zero as n→∞.
It remains to show that the uIs can be extended by continuity over the ℰIs, except maybe at
the boundary points (TI , x, k) such that �kI is discontinuous at x. Given ℰ∗I ∋ (tn, xn, k)→
(TI , x, k) with �I continuous at (x, k), one needs to show that ukI (tn, xn) = uk(tn, xn) →
ukl (TI , x), where ukl (TI , x) is given by (13)). We distinguish four cases.
∙ In case k /∈ K and �kI (x) ∈ K, one has, denoting ũj(s, y) = min(u(s, y, �jI(y)), ℎ(y)),

∣ũk(TI , x)− uk(tn, xn)∣2 = ∣ũk(TI , x)− Y 1,tn
tn ∣

2 ≤
2E∣ũk(TI , x)− ũ(TI ,X tnTI )∣2 + 2∣E

(
ũ(TI ,X tnTI )− Y 1,tn

tn

)
∣2 . (39)

By continuity of �I at (x, k), one has �I(X tnTI ) = �kI (x) ∈ K for X tnTI close enough to x, say
∣∣X tnTI − x∣∣ ≤ c. In this case TI = � tn2 , therefore (cf. (8)) Y 1,tn

TI
= ũ(TI ,X tnTI ). So

E∣1∣∣X tnTI−x∣∣≤c
(
ũ(TI ,X tnTI )− Y 1,tn

tn

)
∣2 ≤ E∣Y 1,tn

TI
− Y 1,tn

tn ∣
2 ,

which can be shown to converge to zero as n→∞ by using the R2BSDE satisfied by Y 1,tn

and the convergence of Y1,tn to Ỹ1,t. Moreover E∣1∣∣X tnTI−x∣∣> c

(
ũ(TI ,X tnTI )− Y 1,tn

tn

)
∣2 goes to

zero as n → ∞ by the a priori estimates on X and Y 1,tn and the continuity of ũ already
established over ℰ∗l+1. Moreover by this continuity and the a priori estimates on X the first
term in (39) also goes to zero as n→∞. So, as n→∞,

uk(tn, xn)→ ũk(TI , x) = min(u(TI , x, �
k
I (x)), ℎ(x)) = ukl (TI , x) .
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∙ In case k ∈ K and �kI (x) /∈ K, one can show likewise, using ûj(s, y) := u(s, y, �jI(y))
instead of ũj(s, y) and Y 0 instead of Y 1 above, that

uk(tn, xn)→ u(TI , x, �
k
I (x)) = ukl (TI , x) (40)

as n→∞.
∙ If k, �kI (x) /∈ K, it comes,

∣ûk(TI , x)− uk(tn, xn)∣2 = ∣ûk(TI , x)− Y 1,tn
tn ∣

2

≤ 2E∣ûk(TI , x)− û(TI ,X tnTI )∣2 + 2∣E
(
û(TI ,X tnTI )− Y 1,tn

tn

)
∣2

≤ 2E∣ûk(TI , x)− û(TI ,X tnTI )∣2 + 2∣E
(
Y 1,tn
TI
− Y 1,tn

tn

)
∣2 .

which goes to zero as → ∞ by an analysis similar to (but simpler than) that of the first
bullet point. Hence (40) follows.
∙ If k, �kI (x) ∈ K, (40) can be shown as in the above bullet point.

4.3 Discretely reflected BSDEs

As in [14, 7], the study of the convergence of the scheme will be done in several steps, using
a suitable concept of discretely reflected BSDEs that we introduce now. Given % = # or #̂,
the solution of the discretely reflected BSDE is a triplet (ℑ%, ℑ̃%,ℨ%) defined by the terminal
condition

ℑ%T = ℑ̃%T = g(XT ) ,

and then for { decreasing from � − 1 to 0 and t ∈ [r{, r{+1),{
ℑ̃%t = ℑ%r{+1 +

∫ r{+1

t f(Xu, ℑ̃
%
u)du−

∫ r{+1

t ℨ%udWu ,

ℑ%t = ℑ̃%t1{t/∈r} + P%(t,Xt, ℑ̃
%
t )1{t∈r} .

(41)

Under (Hx)-(Hb), such a solution can be defined by backward induction. At each step,
existence and uniqueness of a solution in S2 ×ℋ2

q follow from [24].

Remark 4.1 (i) ℑ̃% is a càdlàg process whereas ℑ% is a càglàd process. By convention, we
set Y0− = Y0.
(ii) One has, for r ∈ r,

Yr− = P#(r,Xr, Yr) , ℑ
#
r = P#(r,Xr, ℑ̃

#
r ) , ℑ#̂r = P

#̂
(r, X̂r, ℑ̃

#̂
r ) . (42)

We now present two properties of discretely reflected BSDEs which will be useful to prove
the bound of convergence rate of the approximation scheme. We first show that under
suitable conditions the discretely reflected BSDE with % = # is a ‘good’ approximation of
the RIBSDE (ℰ). In view of Definition 2.2(i), the component Y of Y may be discontinuous
at #2l. This discontinuity is problematic and the fact that T ⊆ r is essential to obtain the
following result.
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Proposition 4.2 Let � = 1
2 or � = 1 under (Hb) or (Hb)’, respectively. If f does not

depend on z, then

sup
t∈[0,T ]

E
[
∣Yt − ℑ̃#t ∣2

]
+ sup
t∈[0,T ]

E
[
∣Yt− − ℑ#t ∣2

]
+ E
[∫ T

0
∣Zs − ℨ#s ∣2ds

]
≤ ∣r∣� .

Proof. Let for t ≤ T,

�Ỹt = Yt − ℑ̃#t , �Yt = Yt− − ℑ#t , �Zt = Zt− − ℨ#t , �ft = f(t,Xt, Yt)− f(t,Xt, ℑ̃
#
t ) .

Observe that is continuous outside r and that �Ỹt− = �Yt for t ∈ (0, T ]. Applying Itô’s
formula to the càdlàg process ∣�Ỹ ∣2 and observing that the local martingale term is in fact
a martingale, we compute,

Er{
[
∣�Ỹt∣2 +

∫ r{+1

t
∣�Zu∣2du

]
= Er{

[
∣�Ỹr{+1−∣2 + 2

∫ r{+1

t
�Ỹs�fsds+ 2

∫
(t,r{+1)

�ỸsdAs

]
,

for t ∈ [r{, r{+1). Moreover, one has by (42), for r ∈ r,

∣�Yr∣ = ∣Yr− − ℑ#r ∣ ≤ ∣�Ỹr∣ .

Using then usual arguments, we obtain, for t ∈ [r{, r{+1),

Er{
[
∣�Ỹt∣2 +

∫ r{+1

t
∣�Zs∣2ds

]
≤ (1 + CΛ∣r∣)Er{

[
∣�Ỹr{+1 ∣2 + 2

∫
(t,r{+1)

�ỸsdA
+
s − 2

∫
(t,r{+1)

�ỸsdA
−
s

]
.

We first study the term related to the upper barrier. One has,

−Er{

[∫
(t,r{+1)

�ỸsdA
−
s

]
= Er{

[∫
(t,r{+1)

(ℑ̃#s − ℎ(s,Xs))dA
−
s

]

= Er{

[∫
(t,r{+1)

(ℑ#r{+1
− ℎ(s,Xs))dA

−
s +

∫
(t,r{+1)

∫ r{+1

s
f(u,Xu, ℑ̃

#
u)dudA−s

]
where in particular the upper barrier minimality condition in (ℰ) was used in the first
identity. The second term is bounded by

Er{
[
�∣r∣(A−r{+1− −A

−
r{)
]
≤ Er{

[
�∣r∣(A−r{+1

−A−r{)
]
,

since f does not depend on z and A− is increasing. For the first term, we use the fact
dA−1]]#2l,#2l+1[[ = 0, 0 ≤ l ≤ [N + 1/2], to obtain that

Er{

[∫
(t,r{+1)

(ℑ#r{+1
− ℎ(s,Xs))dA

−
s

]
= Er{

⎡⎣[N+1/2]∑
l=1

∫
(t,r{+1)

(ℑ#r{+1
− ℎ(s,Xs))1{#2l−1≤s≤#2l}dA

−
s

⎤⎦
≤ Er{

⎡⎣[N+1/2]∑
l=1

∫
(t,r{+1)

(ℎ(r{+1, Xr{+1)− ℎ(s,Xs))1{#2l−1≤s≤#2l}dA
−
s

⎤⎦
≤ Er{

[∫
(t,r{+1)

(ℎ(r{+1, Xr{+1)− ℎ(s,Xs))dA
−
s

]
.
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The proof is then concluded using the same argument as in the proof of Propositions 2.6.1
and 1.4.1 in [13]. □

We now give a control of the difference between the two discretely reflected BSDEs (ℑ#, ℑ̃#,ℨ#)

and (ℑ#̂, ℑ̃#̂,ℨ#̂).

Proposition 4.3 Set � = 0 or 1 under (Hb) or (Hb)’, respectively. If f does not depend on
z, then for every " > 0, there exists C"Λ such that

sup
t∈[0,T ]

E
[
∣ℑ#t − ℑ#̂t ∣2

]
+ sup
t∈[0,T ]

E
[
∣ℑ̃#t − ℑ̃#̂t ∣2

]
+ ∥ℨ# − ℨ#̂∥2ℋ2 ≤ C"Λ∣r∣�

N∑
l=1

(
E
[
∣#l − #̂l∣

] )1−"
.

Proof. Let, for t ≤ T,

�ℑ̃t = ℑ̃#t − ℑ̃#̂t , �ℑt = ℑ#t − ℑ#̂t , �ℨt = ℨ#t − ℨ#̂t

�t = ∣�ℑt∣2 − ∣�ℑ̃t∣2 , �ft = f(t,Xt, ℑ̃
#
t )− f(t,Xt, ℑ̃

#̂
t ) .

Step 1 Applying Itô’s formula to the càdlàg process ∣�ℑ̃∣2, we compute for t ∈ [r{, r{+1)

Er{
[
∣�ℑ̃t∣2 +

∫ r{+1

t
∣�ℨu∣2du

]
= Er{

[
∣�ℑ̃r{+1 ∣2 + �r{+1 + 2

∫ r{+1

t
�ℑ̃s�fsds

]
.

Usual arguments then yield that

sup
s∈[t,T ]

E
[
∣�ℑ̃s∣2 +

∫ T

s
∣�ℨs∣2ds

]
≤ CΛE

[∑
r∈r

�r

]
. (43)

Step 2a In order to study the right-hand side term of (43), we introduce the processes
defined by, for r ∈ [0, T ],

Ir =

[N+1/2]∑
l=1

1{#2l−1≤r≤#2l} , Îr =

[N+1/2]∑
l=1

1{#̂2l−1≤r≤#̂2l}
, cIr = 1− Ir ,

ĉIr = 1− Îr . (44)

Observe that I = 1 (or Î = 1) means that the upper barrier is activated for reflection. Also
notice that one has, for r ∈ r,

�r ≤ ([ℑ̃#r − ℎ(r,Xr)]
+)2Ir

ĉIr + ([ℑ̃#̂r − ℎ(r,Xr)]
+)2ÎcrIr . (45)

The two terms at the right-hand side of (45) are treated similarly, we thus concentrate on
the first one. We have here to take into account the fact that a reflection date may be a
deactivation date for the upper boundary, i.e., for r ∈ r,

([ℑ̃#r − ℎ(r,Xr)]
+)2Ir

ĉIr = ([ℑ̃#r − ℎ(r,Xr)]
+)2 ĉIr(

[N+1/2]∑
l=1

1{r=#2l} +

[N+1/2]∑
l=1

1{#2l−1≤r<#2l})

(46)
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Step 2b We first study the first term in the right hand side of (46). We obviously have
that ([ℑ̃#r − ℎ(r,Xr)]

+)2 ≤ �, thus, since the #ls are T-valued stopping-times,

∑
r∈r

([ℑ̃#r − ℎ(r,Xr)]
+)2 ĉIr

[N+1/2]∑
l=1

1{r=#2l} ≤
∑
r∈T

� ĉIr

[N+1/2]∑
l=1

1{r=#2l}.

Moreover, by definition of I and Î,

∑
r∈T

� ĉIr

[N+1/2]∑
l=1

1{r=#2l} =
∑
r∈T

� ĉIr

[N+1/2]∑
l=1

1{r=#2l,r ∕=#̂2l}

≤
∑
r∈T

[N+1/2]∑
l=1

�1{∣#2l−#̂2l∣≥mini≤n−1 ∣Ti+1−Ti∣} .

Using the Cauchy-Schwartz inequality with 1
p = 1− " and the Markov inequality, we obtain

E

⎡⎣∑
r∈T

[N+1/2]∑
l=1

�1{∣#2l−#̂2l∣≥infi∕=j ∣Ti−Tj ∣}

⎤⎦ ≤ C"Λ [N+1/2]∑
l=1

E
[
∣#2l − #̂2l∣

]1−"
. (47)

Step 2c We now study the last term in the right hand side of (46). On the event {#2l−1 ≤
r < #2l}, which is ℱr-measurable, the upper barrier is active on [#2l−1, #2l], thus

ℑ̃#r − ℎ(r,Xr) ≤ Er

[
ℎ(r+, Xr+)− ℎ(r,Xr) +

∫ r+

r
∣f(s,Xs, ℑ

#
s )∣ds

]

where we set r+ = inf{s ∈ r∣s > r} ∧ T . One thus gets,

([ℑ̃#r − ℎ(r,Xr)]
+)21{#2l−1≤r<#2l} ≤ �∣r∣

�+1 . (48)

This leads to

∑
r∈r

(
([ℑ̃#r − ℎ(r,Xr)]

+)2 ĉIr

[N+1/2]∑
l=1

1{#2l−1≤r<#2l}

)

≤ ∣r∣�+1�
∑
r∈r

(
ĉIr

[N+1/2]∑
l=1

1{#2l−1≤r<#2l}

)
. (49)

Moreover,

∑
r∈r

[N+1/2]∑
l=1

ĉIr1{#2l−1≤r<#2l} ≤
∑
r∈r

[N+1/2]∑
l=1

1{#2l−1≤r<#2l}(1{#̂2l−1>r}
+ 1{r>#̂2l}

)

≤
∑
r∈r

[N+1/2]∑
l=1

(1{#2l−1≤r<#̂2l−1}
+ 1{#̂2l<r<#2l}

)

Since the quantity ∑
r∈r

(1{#2l−1≤r<#̂2l−1}
+ 1{#̂2l<r<#2l}

)
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counts the number of reflection date r between #2l−1 and #̂2l−1 and between #2l and #̂2l, we
have the following control,∑

r∈r
(1{#2l−1≤r<#̂2l−1}

+ 1{#̂2l<r<#2l}
) ≤ CΛ(1 +

∣#2l−1 − #̂2l−1∣+ ∣#2l − #̂2l∣
∣r∣

) .

Using (49), this leads to

E

⎡⎣∑
r∈r

(
([ℑ̃#r − ℎ(r,Xr)]

+)2 ĉIr

[N+1/2]∑
l=1

1{#2l−1≤r<#2l}

)⎤⎦
≤ CΛ

(
∣r∣�+1 + ∣r∣�

N∑
l=0

E
[
�∣#l − #̂l∣

] )
≤ CΛ

(
∣r∣�+1 + ∣r∣�

N∑
l=0

E
[
∣#l − #̂l∣

]1−" )
,

where for the last inequality we used the Cauchy-Schwartz inequality with 1
p = 1 − " and

the fact that ∣#l − #̂l∣p ≤ C"Λ∣#l − #̂l∣. Combining this last inequality with (47), it comes
that

E

[∑
r∈r

�r

]
≤ CΛ

(
∣r∣�+1 + ∣r∣�

N∑
l=0

E
[
∣#l − #̂l∣

]1−" )
.

Step 3 Since ∣�ℑs∣2 = �r + ∣�ℑ̃s∣2, the proof is concluded by combining the last inequality
with (43). □

4.4 Proof of Theorem 3.3

Step 1 We first study the error between (ℑ#̂, ℑ̃#̂,ℨ#̂) and the continuous-time Euler scheme
for Y defined in section 3.3. Observe that these have the same activation/desactivation time
sequence #̂. We are thus going to show that

sup
t∈[0,T ]

E
[
∣ℑ̃#̂t − Ỹt∣2

]
+ sup
t∈[0,T ]

E
[
∣ℑ#̂t − Ŷt∣2

]
≤ CΛ∣t∣ and ∥ℨ#̂ − Z̄∥2ℋ2 ≤ CΛ�∣t∣ . (50)

Toward this end, arguing as in the proof of Lemma 2.1 in [14] (See also Remark 5.2 in [14]),
one could show that under (Hb), for t ∈ t, there exists St, Qt in ℱt such that St ∩ Qt = ∅
and

∣ℑ#̂t − Ŷt∣2 ≤ ∣ℑ̃#̂t − Ỹt∣21St + CΛ∣Xt − X̂t∣21Qt . (51)

Observe in particular that for t ∈ t ∖ r, one can take St = Ω and Qt = ∅ in (51) since, for
t ∈ [0, T ] ∖ r, we have ∣ℑ#̂t − Ŷt∣ = ∣ℑ̃#̂t − Ỹt∣.
The proof of (50) is then similar to the proof of Proposition 5.1 (steps ia and ii) in [14]. Note
that since f does not depend on z, the expression of Bi in equation (5.5) of [14] reduces in
the present case to

Bi =

∫ ti

ti−1

(∣Xu − X̂ti−1 ∣2 + ∣ℑ̃#̂u − ℑ̃#̂ti−1
∣2)du .
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Observing that, for u ∈ [ti−1, ti),

E
[
∣ℑ̃#̂u − ℑ̃#̂ti−1

∣2
]
≤ CE

[∫ ti

ti−1

∣f(s,Xs, ℑ̃
#̂
s )∣2ds+

∫ ti

ti−1

∣ℨ#̂s ∣2du

]
,

we obtain E[
∑

iBi] ≤ C∣t∣. Inequalities (50) then follow from exactly the same arguments
as in the proof of Proposition 5.1.

Step 2 Since

∣Yt− − Ŷt∣2 ≤ CΛ(∣Yt− − ℑ#t ∣2 + ∣ℑ#t − ℑ#̂t ∣2 + ∣ℑ#̂t − Ŷt∣2) ,

we obtain using (50), Proposition 4.2 and Proposition 4.3 that

sup
t∈[0,T ]

E
[
∣Yt− − Ŷt∣2

]
≤ CΛ

(
∣t∣+ ∣r∣� + C"Λ∣r∣�−1

N∑
l=1

E
[
∣#̂l − #l∣

]1−"
)
.

Similarly, one has that

sup
t∈[0,T ]

E
[
∣Yt − Ỹt∣2

]
≤ CΛ

(
∣t∣+ ∣r∣� + C"Λ∣r∣�−1

N∑
l=1

E
[
∣#̂l − #l∣

]1−"
)

∥ℨ− Z̄∥2ℋ2 ≤ CΛ

(
�∣t∣+ ∣r∣� + C"Λ∣r∣�−1

N∑
l=1

E
[
∣#̂l − #l∣

]1−"
)
.

Under (Hb)’, the proof is concluded by using the last inequality together with Proposition
3.1 and letting ∣r∣ ∼ ∣t∣

1
2 .

Under (Hb), one chooses ∣r∣ ∼ ∣t∣
1
3 .

A Proof of Lemma 4.1

A.1 Proof of Part (i)

Step 1a In order to prove the result, we define C2
b extensions �̃ and b̃ of � and b from Q to

[0, T ]×ℝq, such that �̃ satisfies (29) on [0, T ]×ℝq. We then introduce, for every t ≤ s ≤ T ,

X̃t
s = Xt +

∫ s

t
b̃(u, X̃t

u)du+

∫ s

t
�̃(u, X̃t

u)dWu , �
t
s = d(X̃t

s) .

Since d, b̃ and �̃ are smooth enough, we may introduce the gradient process of X̃ with
respect to the initial condition x of X, which is defined by, for t ≤ s ≤ T,

∇X̃t
s = Iq +

∫ s

t
∂b̃(u, X̃t

u)∇X̃t
udu+

∫ s

t
∂�̃(u, X̃t

u)∇X̃t
udWu . (52)

Note the following standard estimates,

∥∇X̃t∥Sp + ∥(∇X̃t)−1∥Sp ≤ CΛ . (53)
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Observe moreover that one has, for t ≤ r ≤ s ≤ T,

DrX̃
t
s = �̃(t, X̃t

s) +

∫ s

t
∂b̃(u, X̃t

u)DrX̃
t
udu+

∫ s

t
∂�̃(u, X̃t

u)DrX̃
t
udWu

and therefore

DrX̃
t
s = ∇X̃t

s(∇X̃t
r)
−1�̃(r, X̃t

r)1t≤r≤s . (54)

Step 1b We now prove that (36) is satisfied by X̃TI−h, namely, for every 1 ≤ I ≤ N,

ℙ{a ≤ d(X̃TI−h
TI

) ≤ b} ≤ CΛ
b− a

h
. (55)

For this step, integration with respect to dW has to be understood in the Skorohod sense.
Without loss of generality we fix I ∈ {1, . . . , N}. For x ∈ ℝ, let

x 7→ �(x) =

∫ b

a
1{x>z}dz =

∫ x

−∞
1[a,b]dz

and let �̃ stand for a regularization of �. For every TI − h ≤ r ≤ TI , we compute

Dr�̃(d(X̃TI−h
TI

)) = ∇�̃(d(X̃TI−h
TI

))Drd(X̃TI−h
TI

)

= ∇�̃(d(X̃TI−h
TI

))∇d(X̃TI−h
TI

)DrX̃
TI−h
TI

= ∇�̃(d(X̃TI−h
TI

))∇d(X̃TI−h
TI

)∇X̃TI−h
TI

(∇X̃TI−h
r )−1�̃(r, X̃TI−h

r )1TI−h≤r≤TI .

Multiplying by  Ir = �̃T(r, X̃TI−h
r )∇X̃TI−h

r (∇X̃TI−h
TI

)−1a(r, X̃TI−h
r )−1, it comes,

E
[
∇�̃(d(X̃TI−h

TI
))
]

= h−1E
[∫ TI

TI−h
Dr�̃(d(X̃TI−h

TI
)) Irdr

]
= h−1E

[
�̃(d(X̃TI−h

TI
))

∫ TI

TI−h
 IrdWr

]
.

Recalling that �̃ is the regularization of �, the last equality leads, together with Fubini
theorem and (53), to,

E
[
∇x�(X̃TI−h

TI
)
]

= h−1
q∑

k=1

∫ b

a
E
[
1{X̃TI−h

TI
>x}

∫ TI

TI−h
 IrdWr

]
.

which concludes the proof of (55).

Step 2 We now prove that we can replace X̃TI−h
TI

by XTI on Ωh
I .

Let Bh
I = {∣d(XTI−h)∣ ≤ 1

3Λ}, and

�h
I = inf{s ≥ TI − h ; ∣d(Xs)∣1Bh

I
≥ Λ−1} ∧ T .

For every u ∈ [TI − h, T ], one has,

X̃TI−h

u∧�hI
1Bh

I
= Xu∧�hI

1Bh
I
. (56)
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Observe that �h
I > TI − h and that for TI − h ≤ u ≤ T , one has,

(b, �)(Xu∧�hI
)1Bh

I
= (̃b, �̃)(Xu∧�hI

)1Bh
I
.

Let, for u ≥ t, �(u) = E
[
∣X̃t

u∧�hI
−Xu∧�hI

∣21Bh
I

]
. Straightforward computations based on

the Itô formula yield,

�(u) ≤ CΛ

∫ u

t
�(s)ds ,

Identity (56) then follows by an application of Gronwall’s Lemma.

The proof of the Lemma is then concluded by combining (56) and (55).

A.2 Proof of Part (ii)

We consider the two different cases.

Case 1: (i) By definition of #, #′, we have that E[∣#0 − #′0∣] = ∣t − t′∣, and obviously, for
l ≥ 1,

E
[
∣#l − #′l∣

]
= E
[
∣#l − #′l∣1 cΩh∪ cΩ̂�

]
+ E
[
∣#l − #′l∣1Ωh∩Ω̂�∩{#l ∕=#′l}

]
. (57)

It follows then from Tchebytchev’s inequality applied on cΩh
T , for T ∈ Tt, on cΩ̂� and the

fact that ∣#l − #′l∣ ≤ T

E
[
∣#l − #′l∣1 cΩh∪ cΩ̂�

]
≤ C p̄Λhp̄ + CpΛ

E
[
supu∈[T t,T ] ∣�u −Xu∣p

]
�p

, (58)

for p, p̄ > 0.

(ii) We now work on the second term of the right-hand side of (57).

By definition of #, #′, if k /∈ K, we have E
[
∣#1 − #′1∣1{k/∈K}

]
= ∣t− t′∣. We are going to prove

a control between # and #′, for l ≥ 2, and for l = 1, k ∈ K.

To this end, we observe that

1{d(XT )≥0} = 1{d(�T )≥0},∀ T ∈ Tt =⇒ H = H ′, (59)

thus for l ≥ 2, #l = #′l and if k ∈ K, #1 = #′1.

We then introduce the set

Ω1 =
∪
T ∈Tt

({d(XT ) ≥ 0} ∩ {d(�T ) < 0}) ∪ ({d(XT ) < 0} ∩ {d(�T ) ≥ 0})

Since d is 1-Lipschitz continuous, by definition of Ω̂�, we have

Ω1 ⊂
∪
T ∈Tt
{∣d(XT)∣ ≤ �}
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This leads, by definition of Ωh, to

Ωh ∩ Ω̂� ∩ Ω1 ⊂ Ω̄ , with Ω̄ :=
∪
T ∈TT∗

Ωh
T ∩ {∣d(XT )∣ < �}

Using (59), we have that, for l ≥ 2, {#l ∕= #′l} ⊂ Ω1 and if k ∈ K, {#1 ∕= #′1} ⊂ Ω1. Thus,
for l ≥ 2, Ωh ∩ Ω̂� ∩ {#l ∕= #′l} ⊂ Ω̄ and if k ∈ K, Ωh ∩ Ω̂� ∩ {#1 ∕= #′1} ⊂ Ω̄.

Using the result of part (i), one then gets,

E
[
∣#l − #′l∣1Ωh

T ∩Ω̂�∩{#l ∕=#′l}

]
≤ CΛ

�

h
,

for l ≥ 2 and l = 1, if k ∈ K. In this case, the proof is concluded combining the last
inequality with (58) and (57).

Case 2: In this case, Tt′ = Tt ∪ {t}.
As in Case 1 (i) above, we compute

E
[
∣#̃l − #′l∣

]
≤ C p̄Λhp̄ + CpΛ

E
[
supu∈[T t,T ] ∣�u −Xu∣p

]
�p

+ E
[
∣#̃l − #′l∣1Ωh∩Ω̂�∩{#̃l ∕=#′l}

]
, (60)

for l ≥ 0 and p, p̄ > 0.

Recall that by definition of #̃, #′, E
[
∣#̃0 − #′0∣

]
= ∣t− t′∣ and if k /∈ K, E

[
∣#̃1 − #′1∣

]
= ∣t− t′∣.

Regarding the last term of (60), we observe here that

1{d(XT )≥0} = 1{d(�T )≥0},∀ T ∈ Tt ∪ {t} =⇒ H̃ = H ′.

The set Ω1 is now replaced by

Ω2 =
∪

T ∈Tt∪{t}

({d(XT ) ≥ 0} ∩ {d(�T ) < 0}) ∪ ({d(XT ) < 0} ∩ {d(�T ) ≥ 0})

The difference with the last step is that the reunion is on Tt ∪ {t}. But, since for � small
enough {∣d(Xt)∣ < �} = ∅, we have

Ωh ∩ Ω̂� ∩ Ω2 ⊂ Ω̄ .

The proof is then concluded arguing as in the last step.
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