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1 Introduction

In this work, which is a follow-up paper to [15], we consider the issue of pricing numerically
by simulation convertible bonds on an underlying stock S. A convertible bond pays coupons
from time 0 onwards, until a terminal payoff

1�=�<T ℓ(�, S� ) + 1#<�ℎ(#, S#) + 1�=T g(ST ) (1)

occurs at the minimum � = � ∧ # of two [0, T ]-valued stopping times # and �. Here the
put time � and the call time # are [0, T ]-valued stopping times under the control of the
holder and the issuer of the bond, respectively. Convertible bonds are thus products with
early exercise clauses both by the holder (put clauses, like with American options) and the
issuer (call clauses) of the claim, and represent as such the main practical example of a
game option. Moreover, convertible bond call times # are typically subject to constraints,
called call protections, preventing the issuer from calling the bond on certain random time
intervals.

From the mathematical point of view, the study of game options with call protection leads
to doubly reflected backward stochastic differential equations with an upper barrier which
is only active on random time intervals (doubly reflected BSDE with an intermittent upper
barrier, or RIBSDE for short henceforth, where the ‘I’ in RIBSDE stands for ‘intermittent’).
Such RIBSDEs and, in the Markovian case, the related variational inequality (VI for short
henceforth) approach, were first introduced in Crépey [16].

Now, regarding the numerical solution of the pricing equations (stochastic RIBSDEs or
analytic VIs), a major concern is that in practice, call protection is typically monitored at
discrete times in a possibly very path-dependent way. Issuer calls are thus allowed or not on
the following time period depending on the past values of the underlying stock S, which leads,
after extension of the state space to markovianize the problem, to highly-dimensional pricing
problems. Deterministic pricing schemes are then ruled out by the curse of dimensionality,
and simulation methods appear to be the only viable alternative.

In [14], we established a convergence rate for a discrete time approximation scheme by simu-
lation to an RIBSDE. The purpose of the present paper is to assess the practical value of this
approach, on the benchmark problem of pricing by simulation convertible bonds with highly
path-dependent call protection. The results are quite convincing, so that one ends up with
a both practical and mathematically justified approach to such problems. More generally,
this paper is a contribution to demonstration of the real abilities of simulation/regression
numerical schemes for high to very high-dimensional pricing problems (up to d = 30 in the
context of the application at hand of this paper).

1.1 Outline of the paper

We thus consider in this paper problems corresponding to more and more complex, yet
commonly encountered in practice, clauses of call protection. We propose in each case a
reference, but heavy, if practical, deterministic pricing scheme, as well as a more efficient
(as soon as the problem dimension exceeds a few units) and practical Monte Carlo simula-
tion/regression pricing scheme.

In each case we derive the pricing equation, study (mainly by application of [14, 16]) the
convergence of the pricing schemes, and provide reports on numerical experiments.
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1.2 Standing Notation

Given a finite horizon T > 0, the evolution of a financial market model is modeled throughout
in terms of stochastic processes defined on a continuous time stochastic basis (Ω, (ℱt)t∈[0,T ],ℚ),
where ℚ denotes a risk-neutral pricing measure. We denote by Tt (or simply T , in case t = 0)
the set of [t, T ]-valued stopping times, and by E (resp. Et) the ℚ-expectation (resp. ℚ –
conditional expectation given ℱt) operator.
Note that pricing theory can also be developed in discrete time, on a time grid 0 = t0 <
t1 < . . . < tn = T. In the case of a discrete time set-up, that in the context of this paper
will arise by time discretisation of a continuous-time model, we will often find convenient to
denote the time by i rather than ti. So, in this case:
∙ Xi and ui(Xi) will be used as short-hands for Xti and u(ti, Xti), given a continuous-time
process X and a function u = u(t, x),
∙ Ei refers to the conditional expectation with respect to the discrete information flow ℱi
until time i, and
∙ Ti (with T = T0) stands for the set of stopping times � taking their values in {i, . . . , n}.
For functions u of three arguments t, x, k where the third argument k takes its values in a
discrete set, so that k can be thought of as referring to the index of a vector or system of
functions of time t and the spatial variable x, we shall denote either u(t, x, k), or uk(t, x),
depending on what is more convenient in the context at hand.

We denote finally:
∙ ℕn = {0, 1, . . . , n}, for every non-negative integer n,
∙ Rq and R1⊗q, the set of q-dimensional vectors and row-vectors with real components,
∙ T, the transposition operator.

2 Benchmark Model

2.1 Primary Market Model

For all the numerical experiments, we shall consider the following local drift and volatil-
ity model for a non-negative underlying process S, implicitly parameterized by the initial
condition x of S :

dSt = St(b(t, St)dt+ �(t, St)dWt) , S0 = x (2)

where:
∙W is a standard univariate ℚ – Brownian motion,
∙ b(t, S) is a local drift coefficient, to be interpreted as a risk-neutral drift, possibly account-
ing for riskless interest-rate, dividend yields on S, and/or credit-risk adjustment on S (see,
e.g., [16, 4]), and
∙ �(t, S) is a local volatility function.
Equivalently, S follows a one-dimensional diffusion with generator given by, denoting ∂tu =
∂u
∂t , ∂u = ∂u

∂S , ∂
2u = ∂2u

∂S2 for every function u = u(t, S):

Gu ≡ ∂tu+ bS∂u+
1

2
�2S2∂2u . (3)
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We postulate the standard Lipschitz and growth assumptions on the model coefficients
ensuring that the SDE (2) admits a unique (strictly, say for simplicity) positive solution
(St)t∈[0,T ], where T stands for the maturity of a generic contingent claim on S.

2.1.1 First-Variation Process

Let B(t, S) = b(t, S)S, Σ(t, S) = �(t, S)S. We assume that B and Σ are of class C1
b with

Lipschitz first derivatives. It is then well-known that the so-called first-variation or flow pro-
cess ∇ of S, formally given by, writing explicitly the initial condition x of S as a superscript
in this equation (cf. (2)),

∇t = lim
"→0+

(2")−1(Sx+"
t − Sx−"t ) , (4)

is a well-defined process, which can be characterized as the solution to the following SDE:

d∇t = ∇t
(
∂B(t, St)dt+ ∂Σ(t, St)dWt

)
, ∇0 = 1. (5)

2.1.2 Time-Discretization

The previous processes are involved in the computation of financial derivatives prices and
deltas. For numerical purposes, one needs to approximate both (2) and (5). Given a discrete
time-grid 0 = t0 < t1 < . . . < tn = T, we shall consider the Euler schemes defined by (cf.
end of section 1.2 regarding our notational convention for time-discrete processes),

Si+1 = Si +Bi(Si)(ti+1 − ti) + Σi(Si)(Wti+1 −Wti) , S0 = x

∇i+1 = ∇i
(

1 + ∂Bi(Si)(ti+1 − ti) + ∂Σi(Si)(Wti+1 −Wti)
)
, ∇0 = 1 .

(6)

2.1.3 Model Parameterization

More precisely, we shall take,

b(t, S) = r(t)− q(t) + �(t, S) , �(t, S) = r(t) + (t, S) , (7)

where:
∙ the riskless short interest rate r(t), the equity dividend yield q(t) on S, and the local default
intensity (t, S) ≥ 0 of the firm issuing the bond are bounded, Borel-measurable functions,
and
∙ � ≤ 1 is a real constant, to be interpreted as the fractional loss on S in case of a default
of the firm issuing the bond.
We refer the reader to [4] for details and background, and for the credit-risk interpretation
of this specification. To be even more specific, we shall let

(t, S) = 0(S0/S)� , �(t, S) = � , (8)

for non-negative default intensity parameters 0 and �, and for a constant volatility param-
eter �. Therefore

∂�(t, S) = ∂(t, S) = −�0S
�
0 /S

1+�

B(t, S) = (r(t)− q(t))S + �0S
�
0 S

1−� , Σ(t, S) = �S

∂B(t, S) = r(t)− q(t) + (1− �)�0(S0/S)� , ∂Σ(t, S) = � .

(9)



6

By a suitable choice of the model parameters, this simple equity-to-credit framework allows
one to account for rather different situations. For instance (see [4]):
∙ The ‘total default’ case with � > 0 and � = 1 can be used in the situation where S
represents the value of the equity of the reference entity (firm issuing the convertible bond),
so S jumps to zero in case of default of the reference entity, assuming no recovery upon the
stock of the reference entity upon default;
∙ The ‘partial default’ case with � = 0 and � = 0 can be used in the situation where S
represents the value of the equity of a firm different from that issuing the bond (case of the
so-called exchangeable bonds).

2.2 Convertible Bond

Given a non-decreasing sequence of stopping times #, which will represent the times of
switching of call protection in the financial interpretation (see [16, 15]), let T # denote the
set of all the ∪l>0[#2l−1, #2l) ∪ {T} – valued stopping times.

Using the above model of the underlying asset S, we shall consider a convertible bond
continuously paying coupons c(t, St)dt from time 0 onwards, until a terminal payoff (1) is
paid at time � ∧ #, where (�, #) ∈ T × T #, with, specifically,

ℓ(t, St) = ℓ(St) = Lt = P̄ ∨ St , ℎ(t, St) = ℎ(St) = C̄ ∨ St , g(ST ) = � = N̄ ∨ ST (10)
∂ℓ(S) = 1S≥P̄ , ∂ℎ(S) = 1S≥C̄ , ∂g(S) = 1S≥N̄ , (11)

for non-negative constants P̄ ≤ N̄ ≤ C̄. One also sets

Ut = 1lteven∞+ 1ltoddℎ(St) (12)

with lt defined by #lt ≤ t < #lt+1.

Accounting for credit risk and recovery on the bond upon default (see [3, 4, 16]), one assumes
the following form for the coupon rate function c :

c(t, S) = c̄(t) + (t, S)
(
(1− �)S ∨ R̄

)
, (13)

where c̄ denotes a nominal coupon rate function, and R̄ stands for a nominal recovery on
the bond upon default. Coupons c(t, St)dt are thus assumed to be continuously paid.

Remark 2.1 In practice coupons are of course discrete rather then continuously paid, which
should result in a discrete stream of nominal coupons instead of the continuously paid
nominal coupon rate c̄ in (13). In the theoretical description of the model and algorithms in
this paper we consider continuously paid coupons for simplicity of presentation. However,
following the guidelines of [3, 4, 16], the results and methods of the present paper can
be extended in a straightforward way to the case of discrete coupons. In the numerical
experiments we thus work with discrete coupons, using the methodology of [3, 4, 16] in this
regard.

We finally denote by �t = e−
∫ t
0 �(s,Ss)ds a risk-neutral credit-risk adjusted discount factor,

where �(t, S) = r(t) + (t, S) is the credit-risk adjusted interest rate (see [4, 16, 3]), and we
set f(t, S, y) = c(t, S)− �(t, S)y.
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2.3 General Conditions for the Numerical Experiments

The numerical data of Table 1 will be used by default throughout,m standing for the number
of Monte Carlo simulations (trajectories) which are used in the stochastic pricing schemes.

P N C � � r q 0 � m

0 100 103 1 0.2 0.05 0 0.02 1.2 104

Table 1: General Data.

In all the numerical experiments we use a constant time-step ti+1 − ti = h, where the time
step index varies from 0 to n, and with:
∙ h = six hours (four time steps per day) in the case of simulation methods, and
∙ h = one day in the case of deterministic schemes.

The space-steps in the S variable are, the superscript j referring to a generic space step
index (space step in the sense of a trajectory’s index varying between 1 and m , in the case
of simulation pricing schemes):
∙ Sj+1 − Sj = 0.5 in the case of deterministic schemes, and
∙ Cells of diameter one in the case of simulation/regression methods involving a method of
cells in the direction of the S variable (see the Appendix); so, at every time step i, the Sji s
are partitioned into segments of ℝ+ of length one.

Regarding the deterministic numerical schemes, fully implicit finite differences schemes are
used throughout.

3 No Call

Sections 3 and 4 respectively deal with the basic cases of no call and no call protection.
Sections 5 to 7 correspond to the special case of a call protection before a stopping time #1

(call possible on [#1, T ]), whereas section 8 corresponds to the case of a more general ‘truly
intermittent’ call protection.

Let us now start by the easiest case in which #1 = T, so ∪l>0[#2l−1, #2l) ∪ {T} = {T}. This
corresponds to the case of dividend-paying American options. If not for dividends, this case
has been studied in depth in the literature. See, among others, Longstaff and Schwartz [25],
Tsitsiklis and VanRoy [31, 32], Broadie and Glasserman [10, 11], Lions and Régnier [24],
Bouchard et al. [6], Pages and Bally [27], or Chapter 6 of Glasserman [19] for a survey.

3.1 Pricing Equation

Let us first present the pricing equations. As is well known, in the risk-neutral model
(2), the discounted ℚ – price process �Π of an American claim with coupon rate c, early
payoff process Lt and payoff at maturity �, is given by the Snell envelope of the cumulative
discounted payoff process defined by, for t ∈ [0, T ],∫ t

0
�scsds+ �t

(
1t<TLt + 1t=T �

)
.
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So, for t ∈ [0, T ],

�tΠt = esssup�∈TtEt
{∫ �

t
�scsds+ ��

(
1{�<T}L� + 1{�=T}�

)}
.

The connection with hedging can be established (see [16]) in terms of the related BSDE (ℰ),
which in this simple case assumes the following form (see, e.g., [4]),

ΠT = �, and for t ∈ [0, T ],{
−dΠt = (ct − �tΠt)dt+ dAt −Δt�(t, St)StdWt

Lt ≤ Πt , (Πt − Lt)dAt = 0
(14)

to be solved in (Π,Δ, A) in the usual spaces of square integrable processes (see, for instance,
[15, 16]). In particular, A is sought for as a continuous and non-decreasing process, and Π
is thus a continuous process as well.

One then has by application of the results of [18] that the reflected BSDE (14) is well-posed,
and that

Πt = u(t, St) , Δt = ∂u(t, St) (15)

(provided u is sufficiently regular, regarding the delta), where u = u(t, S) is the pricing
function, unique solution1 to the following pricing VI :{

max
(
Gu+ c− �u, ℓ− u

)
= 0 on [0, T )× (0,+∞)

u = g at T .
(16)

Let us briefly recall the generic multinomial recombining tree algorithm for solving (16), on
a rectangular time-space grid (ti, S

j) discretizing the time-state space, where i and j index
the time and space step in the algorithm: un(j) = g(Sj) for j = 1, . . . ,m, and then for
i = n− 1 . . . 0, for j = 1 . . .m,

uji = max

(
ℓi
(
Sj
)
, e−�

j
ih
∑
k

pj,ki (uj+ki+1 + hcj+ki+1 )

)
, (17)

where ℓi is the call payoff function at time step i (time ih) in the algorithm, and where the
pj,ki s are suitable weights. These weights are typically obtained by substitution of Taylor
expansions for u and its derivatives in the pricing VI (16), possibly followed by resolution of
a linear system in the case of implicit schemes (see, for instance, Morton and Mayers [26],
or Duffy [17]).
Such deterministic approximation schemes are stable if p ≥ 0 and convergent if, additionally,
consistent, where the latter condition is satisfied for a vast class of discretisation schemes.
An approximation (�ji )

2≤j≤m
1≤i≤n for the delta function Δ(t, S) = ∂u(t, S) at the interior points

of the time-space grid can then be obtained by the formula:

�ji =
uj+1
i − uj−1

i

Sj+1
i − Sj−1

i

. (18)

1Viscosity solution with polynomial growth in S, see [16].
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3.2 Simulation Schemes

For solving (16) by simulation, a possible procedure consists in writing a dynamic program-
ming equation as of (17), but on a stochastically generated (hence, non recombining) mesh
(Sji )

1≤j≤m
0≤i≤n , using an appropriate discretization scheme Si for the underlying diffusion St

(like for instance the Euler scheme of section 2.1.2). We thus get the following amendment
to (17): ujn = g(Sjn) for j = 1 . . .m, and then for i = n− 1 . . . 0, for j = 1 . . .m,

uji = max
(
ℓi
(
Sji
)
, e−�

j
ihEji

(
ui+1 + hci+1

))
(19)

where Eji stands for the conditional expectation given Si = Sji . A numerical approximation
� = (�ji ) of the delta function on the grid could be deduced from (uji ) by the formula (18),
however convergence of the related estimate is not established, and this estimate typically
exhibits a very high variance in practice. A better estimate is the following regression
estimate,

�ji =
Eji {ui+1(Wi+1 −Wi)}

�i(S
j
i )S

j
i h

. (20)

The simulation pricing scheme thus ultimately hinges on the computation of conditional
expectations sitting in (19) or (20) (for i ≥ 1, since for i = 0 the conditional expectation
reduces to a simple expectation). At step i ≥ 1, these conditional expectations can be
computed by non-linear regression of (uji+1 + hcji+1)1≤j≤m or (uji+1(W j

i+1 − W j
i ))1≤j≤m,

which are already known at the time step i of the algorithm, against (Sji )
1≤j≤m. We refer

the reader to the Appendix regarding non-linear regressions.

Rates of convergence regarding the discretization in time which is implicit in (19) are derived
in [5]. A complete time-space convergence analysis could then be conducted by proceeding
along the lines of Lemor, Gobet and Warin [23] (see also Lemor [22, section III.2]).

Remark 3.1 (i) As opposed to the case of standard Monte Carlo pricing schemes, confi-
dence intervals are not available in this case. It is possible however to derive an upper bound
on the price by resorting to a suitable dual Monte Carlo approach (see Rogers [30]). Since
most pricing methods provide lower bounds, one thus end up with an interval. Moreover
it is of course still possible to derive a confidence interval of the method by running the
simulation for various (say, 50) seeds of the generator and computing a standard deviation
of the estimated prices.
(ii) One can recover from the pricing function estimated by (17) or (19) the following esti-
mators of the put region and of the optimal put policy (starting from time 0, for the latter;
cf. Crépey[16]:

ℰp =
{

(i, Sji ) ; uji = ℓi(S
j
i )} , � j = inf{i ∈ ℕn ; Sj ∈ ℰp} ∧ n . (21)

3.2.1 Price and Delta at Time 0

The previous scheme directly suffers from the accumulation of errors that occur through
the iterated computation of the conditional expectations that are involved in the dynamic
programming equations (19). To limit the impact of these errors, an preferred alternative,
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as far as the price at time 0 is concerned, consists in only retaining from (19) the estimated
optimal stopping policy � as of (21). One then uses � for computing an estimator ũ0 of the
option price at time 0 alternative to u0 in (19), defined by the empirical average

ũ0 = Em
{

h
� j∑
i=1

�ji ci(S
j
i ) + �j

� j

(
1{� j<n}ℓ� j (S

j
� j

) + 1{� j=n}g(Sj
� j

)
)}

(22)

where we set �jl = e−h
∑l−1

k=0 �
j
k .

Whereas (19) typically overestimates the exact price, on the opposite (22) typically under-
estimates it (and is also typically more accurate than (19), see Remark 3.2(ii)). Computing
u0 and ũ0 thus gives another way to end up with an interval (cf. Remark 3.1(i)). If this
interval is too large, it typically means that the functional basis used for computing the
conditional expectations is not well chosen (see the Appendix and p. 479 of Glasserman
[19]).

Likewise, a simulation estimate for the option’s delta at time 0 (Δ0 in (14)) alternative to
�j00 in (20), where the superscript j0 refers to the index of the space-grid point Sj closest to
S0, is given by,

�̃0 = Em
{

h
� j∑
i=1

(
�ji ∂ci(S

j
i )∇

j
i + "ji ci(S

j
i )
)

+ �j
� j

(
1{� j<n}∂ℓ� j (S

j
� j

) + 1{� j=n}∂g(Sjn)
)
∇j
� j

+ "j
� j

(
1{� j<n}ℓ� j (S

j
� j

) + 1{� j=n}g(Sjn)
)}

,

(23)

where (cf. (9), (10), (13))

∂�(t, S) = ∂(t, S) = −�0S
�
0 /S

1+� , ∂ℓ(t, x) = 1S≥P̄ , ∂g(x) = 1S≥N̄
∂c(t, S) = ∂(t, S)

(
(1− �)S ∨ R̄

)
+ (1− �)(t, S)1(1−�)S≥R̄

(24)

and where "ji = −h�ji
∑i

l=1 ∂�l(S
j
l )∇

j
l is a discretization of the first-variation process

−�t
∫ t

0
∂�(s, Ss)∇sds

of �t = e−
∫ t
0 �(s,Ss)ds.

Remark 3.2 (i) We refer the reader to Remark 5.5 of Bouchard and Chassagneux [5] for
the derivation of representations similar to (22)-(23) in the context of the discretely re-
flected BSDE associated to the Euler scheme of an underlying diffusion. Actually, working
as they do but using a discrete time Euler scheme of the underlying diffusion instead of
the continuous Euler scheme in their case, would give rise to space-continuous analogs of
the representations (22) and (23) for the quantities denoted in [15] by Ỹ0 and Ẑ0. These
quantities represent the values of discrete time approximations, convergent with some es-
tablished rates, to the option’s price and delta at time 0 (to be precise, Ẑ is the integrand of
the Brownian motion in the integral represention of the discrete time approximation of Z,
itself denoted by Z̄ in [15]). Also note that all these representations admit straightforward
extensions to game options. This will be used without further justification in section 4.2
below.
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(ii) An interpretation of the better practical behavior of (22) and (23) as compared to (19)
and (20) (see section 4.3) is that, as mentioned above, (22)-(23) do not directly suffer from
the accumulation of errors that is present in (19)-(20). Note however that (22)-(23) ulti-
mately rely on the dynamic programming equation (19), which, in their case, is used in a
first stage for deriving � j . Some people argue that the pricing function is typically not very
sensitive to the optimal stopping policy, which in their view would explain why, altogether,
(22)-(23) is more accurate than (19)-(20). It is our opinion however that a serious theoretical
study of this phenomenon still remains to be done.
(iii) The previous approaches by simulation/regression are essentially the ones that were de-
veloped in Tsitsiklis and VanRoy [31, 32] using iteration on the values as of (19), Longstaff
and Schwartz [25] using iteration on the policies as of (22), or Broadie and Glasserman
[10, 11]. See also Chapter 6 of Glasserman [16] for a survey. Since all this is very well
documented in the literature, we do not provide any numerical results.

4 No Call Protection

We now assume no call protection, so #1 = 0, #2 = T, and thus T #t = Tt.

4.1 Pricing Equation

By standard results on game options (see, e.g., [2, 4]), the discounted ℚ – price process �Π
of the bond is then given by the value process of the related Dynkin game, so for t ∈ [0, T ],
with � = � ∧ #,

�tΠt = essinf#∈Ttesssup�∈TtEt
{∫ �

t
�scsds+ ��

(
1{�≤#,�<T}L� + 1{#<�}U# + 1{�=#=T}�

)}
which, under mild assumptions, coincides with the analog expression with esssup�∈Ttessinf�∈Tt
instead of essinf�∈Ttesssup�∈Tt therein, and where in the present case the general expression
for Ut in (12) reduces to Ut = ℎ(St).

The related BSDE (ℰ) writes (see [4, 16]),

ΠT = �, and for t ∈ [0, T ],{
−dΠt = (ct − �tΠt)dt+ dAt −Δt�(t, St)StdWt

Lt ≤ Πt ≤ Ut , (Πt − Lt)dA+
t = (Ut −Πt)dA

−
t = 0

(25)

to be solved in (Π,Δ, A), where in particular A stands for a continuous finite variation
process with square integrable Jordan components2 A±.

Moreover, we have as in section 3.1 that Πt = v(t, St), where the pricing function v solves
the following pricing equation:{

min (max (Gv + c− �v, ℓ− v) , ℎ− v) = 0 on [0, T )× (0,+∞)
v = g at T .

(26)

2Terms A± of the unique decomposition A = A+ −A− as the difference of two non-decreasing processes
null at 0 and defining mutually singular random measures on [0, T ].
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The ‘no call’ deterministic pricing algorithm (17) simply needs to be amended as: vn(j) =
g(Sj) for j = 1 . . .m, and then for i = n− 1 . . . 0, for j = 1 . . .m,

vji = min

(
ℎi
(
Sj
)
, max

(
ℓi
(
Sj
)
, e−�

j
ih
∑
k

pj,ki (vj+ki+1 + hcj+ki+1 )

))
. (27)

In (27), ℓi and ℎi are the call and put payoff functions at time step i in the algorithm. A
delta estimate (�ji ) is then deduced from (vji ) by the formula (18) with v instead of u therein.

Moreover it is possible to conduct a convergence analysis of (27) similar to that of (17) in
the ‘no call’ case, see the comments following (17) in section 3.1.

4.2 Simulation Schemes

Likewise, (19) simply needs to be amended as: vjn = g(Sjn) for j = 1 . . .m, and then for
i = n− 1 . . . 0, for j = 1 . . .m,

vji = min
(
ℎi(S

j
i ) , max

(
ℓi(S

j
i ), e

−�jihEji
(
vi+1 + hci+1

)))
, (28)

whereas (20) holds with vji instead of uji therein. For i ≥ 1 the conditional expectations
involved may be computed by non-linear regression of (vji+1+hcji+1)1≤j≤m against (Sji )1≤j≤m
as in section 3.2. The obvious analogs to Remark 3.1 may be formulated, except for the
fact that it is not possible to surround the price by direct and dual approaches anymore. It
is of course still possible to derive a confidence interval of the method by resimulation, see
Remark 3.1(i).

This time convergence and convergence rates are covered by the results of Chassagneux [12].

We can recover from the pricing function estimated by (28) the following estimators of the
put and call region and of optimal put and call policies (starting from time 0, for the latter;
cf. [16]):

ℰp =
{

(i, Sji ) ; vji = ℓi(S
j
i )} , �

j = inf{i ∈ ℕn ; Sj ∈ ℰp} ∧ n
ℰc =

{
(i, Sji ) ; vji = ℎi(S

j
i )} , �

j = inf{i ∈ ℕn ; Sj ∈ ℰc} ∧ n .
(29)

Moreover, alternatively to v0 and �0, we have the following policy iteration estimators for
the option price and delta at time 0, with �j = � j ∧ �j (cf. (22), (23), (24)),

ṽ0 = Em
{

h

�j∑
i=1

�ji ci(S
j
i ) + �j

�j

(
1{�j=� j<n}ℓ� j (S

j
� j

) + 1{�j<� j}ℎ�j (S
j
�j

) + 1{�j=n}g(Sjn)
)}

�̃0 = Em
{

h

�j∑
i=1

�ji

(
�ji ∂ci(S

j
i )∇

j
i + "ji ci(S

j
i )
)

+ �j
�j

(
1{�j=� j<n}∂ℓ� j (S

j
� j

) + 1{�j<� j}∂ℎ�j (S
j
�j

) + 1{� j∧�j=n}∂g(Sjn)
)
∇j
�j

+ "j
�j

(
1{�j=� j<n}ℓ� j (S

j
� j

) + 1{�j<� j}ℎ�j (S
j
�j

) + 1{� j∧�j=n}g(Sjn)
)}

,

(30)

where the vji s in the second line are given by (28), and where one has, along with (24),
ℎ(t, x) = 1S≥C̄ .
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4.3 Numerical Experiments

Using the general data of Table 1 in section 2.3 along with a maturity T = 125 days and a
nominal coupon rate c̄ = 0 in (13), Table 2 shows the standard deviation of fifty estimates
of the option price obtained by changing the seed of the generator, using:
∙ On one hand, the MC backward estimators (28) for the price, and (20) (with (vji ) instead
of (uji ) therein) for the delta,
∙ On the other hand, the MC forward estimators (30) for the price and the delta.
In both cases a global parametric regression basis 1, S, S2 is used for estimating the condi-
tional expectations involved (see the Appendix).

The MC forward estimator has a much lower deviation, as expected.

Value VI Dev MC Bd Dev MC Fd
Price 102.049 0.821 0.010
Delta 0.416 0.071 0.019

Table 2: VI Values and MC Backward and Forward Standard Deviations over 50 trials for
the option prices and deltas (S0 = 100.55).

Table 3 shows the option prices and deltas computed for various S0s by the MC forward
estimators (30), using as above a global parametric regression basis 1, S, S2 in (28), or by
the deterministic scheme (27) for the VI (26). The errors (%Err) in this and the following
Tables are the (unsigned) percentage relative errors of the MC price with respect to the VI
price. So an error of 1 in the table means a relative error of 1% of the MC price with respect
to the VI price.

S0 VI Price %Err MC Bd %Err MC Fd VI delta %Err MC Bd %Err MC Fd
98.55 101.246 1.90 0.04 0.376 1.07 0.07
99.55 101.637 1.92 0.01 0.396 0.95 0.50
100.55 102.049 1.99 0.01 0.416 2.77 0.67
101.55 102.479 1.65 0.07 0.435 3.97 3.47

Table 3: MC versus VI prices and deltas.

The MC forward estimates are more accurate than the MC backward estimates.

MC forward estimates are used by default henceforth. MC estimate is thus to be
understood in the sequel as MC forward estimate.

Call protections until a stopping time In the following sections we shall consider
various forms of call protection until a stopping time #1. Given a nominal call payoff process
ℎ(t,Xt), the effective call payoff process Ut (12) accounting for the call protection is thus
given by

Ut = 1{t<#1}∞+ 1{t≥#1}ℎ(t,Xt) . (31)

The related BSDE (ℰ) is still given by (25), but with U therein given by (31) (using then
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the convention that 0×∞ = 0 in the last line of (25)). The process A, and thus Π, are still
sought for as continuous processes (see [16, 15]).

It is intuitively clear and established in [16, 4] that the ℚ-price process Π of a convertible
bond with call protection before #1 coincides on [#1, T ] with the no protection convertible
bond price process of section 4. The only remaining issue is thus the (pre-lifting time of a
call) protection pricing problem.

The most basic kind of lifting time of a call protection of course consists of a constant
#1 = T1 ∈ (0, T ). In this case the protection pricing problem reduces to a no call pricing
problem as of section 3.

5 Standard Call Protection

The next case we consider is the case of a continuously-monitored call protection (we call it
‘standard call protection’) corresponding to

#1 = inf{t ∈ ℝ+ ; St ≥ S̄} ∧ T (32)

for some trigger level S̄ > S0.

Note that this case falls outside the scope of [14], since #1 in (32) does not take discrete
values. But this case was studied in details in [16, 4].

5.1 Pricing Equation

The following equation for the related protection pricing function u = u(t, S) on the domain
[0, T ]× (0, S̄] was established in [4]:{

max (Gu+ c− �u, ℓ− u) = 0 on [0, T )× (0, S̄)
u = v at T ∪ S̄ (33)

where v is the no call protection pricing function of section 4.1, solution to (26). Moreover,
provided that the functions u and v are sufficiently regular for Itô formulas to be applicable,
one has, for t ∈ [0, T ] (see [16, 4]):

Δt = 1{t≤#1}∂Su(t, St) + 1{t>#1}∂Sv(t, St) . (34)

Knowing an approximation (vji ) of v, computed for instance by the deterministic scheme (27)
of section 4.1, the Cauchy-Dirichlet problem (33) can be solved by standard finite differences
deterministic numerical schemes, like

uji = max

(
ℓi
(
Sj
)
, e−�

j
ih
∑
k

pj,ki (uj+ki+1 + hcj+ki+1 )

)
(35)

at the grid points interior to the domain [0, T ]× [0, S̄], with a Dirichlet boundary condition
u = v at the grid points on the boundary ({T}× [0, S̄])∪ ([0, T ]×{S̄}). Convergence results
for this scheme can be found in Crépey [16].
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Remark 5.1 In fact the convergence results of [16] can only be considered as partial results,
since one only gets the convergence of the scheme for u on [0, T ] × [0, S̄] conditionally on
its convergence on [0, T ) × {S̄}, for which no explicit criterion is given. Moreover the
convergence analysis of [16] is conducted under the working assumption that the true value
for v is plugged on [0, T )× {S̄} in the approximation scheme for u, whereas in practice one
has to use an approximation (vji ) of v. Finally this analysis only yields convergence, not
convergence rates.

5.2 Simulation Scheme

Given a stochastically generated mesh (Sji )
1≤j≤m
0≤i≤n , and setting (cf. (32))

#j1 = inf{i ∈ ℕn ; Sji ≥ S̄} ∧ n ,

a simulation algorithm for estimating the u(ti, S
j
i )’s writes as follows: Set un = vn = g, then

do for i = n− 1 . . . 0, for j = 1 . . .m :

∙ vji = min
(
ℎi(S

j
i ) , max

(
ℓi(S

j
i ), e

−�jihEji
(
vi+1 + hci+1

)))
,

∙ If i ≥ #j1, u
j
i = vji , else

uji = max
(
ℓi

(
Sji

)
, e−�

j
ihEji

(
ui+1 + hci+1

))
. (36)

So (vji ) here is but the no call protection price of section 4.2 that was estimated by simulation
in (28).
For i ≥ 1 the conditional expectations in (36) may be computed by non-linear regression of
(uji+1 + hcji+1)j∈Ωi against (Sji )j∈Ωi , where Ωi denotes the subset of the trajectories j such
that {i < #j1}.
Convergence of this scheme to the solution (Π,Δ, A) of the pricing BSDE (ℰ), in the form
here of (25) with U given by (31)-(32) therein, could be dealt with by combining arguments of
Chassagneux [13] with approximation of the call time by techniques a la Bouchard–Menozzi
[8]. Note that the related convergence results regarding Π would not suffer from the same
limitations than those regarding the deterministic approximation of u in section 5.1 (cf.
Remark 5.1). Moreover, one would also get in this way convergence and convergence rates
regarding Δ, which in view of (34) essentially corresponds to the gradient of u and v.

5.2.1 Price and Delta at Time 0

We can recover from the protection pricing function u above the following estimators of the
protection put region and of the optimal protection put policy (starting from time 0, for the
latter; see Crépey [4, 16]):

ℰ̃p =
{

(i, Sji ) ; uji = ℓi(S
j
i )} , �̃ j = inf{i ∈ ℕ

#j1
; Sj ∈ ℰ̃p} ∧ n (37)

One then has the following policy iteration estimator for the option price at time 0, with
�̃j = �̃ j ∧ #j1,

ũ0 = Em
⎧⎨⎩h

�̃j∑
i=1

�ji ci(S
j
i ) + �j

�̃j

(
1{�̃ j<#j1}ℓ�̃ j (S

j
�̃ j

) + 1{#j1≤�̃ j}v
j

#j1

)⎫⎬⎭ . (38)
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S0 78.55 79.55 80.55 81.55
MC 103.188 103.114 103 103
VI 103.187 103.111 103 103

%Err 0.085 0.33 0 0

Table 4: Standard Call Protection: MC price versus VI price for four values of S0 (S̄ = 80).

S0 100.55 101.55 102.55 103.55
MC 103.841 103.724 103.713 103.55
VI 103.874 103.785 103.693 103.55

%Err 0.032 0.059 0.019 0

Table 5: Same as Table 4 for S̄ = 103.

Remark 5.2 It would be possible to write down an analogous forward estimator for the
option delta at time 0 (cf. (30)), however the convergence of this estimator is not established
(see Remark 3.2(i)).

5.3 Numerical Experiments

Using the general data of Table 1 in section 2.3 along with a maturity T = 180 days and a
nominal coupon of c̄ = 1.2 per month (cf. (13) and Remark 2.1), Tables 4, 5 and 6 show
the bond prices computed in two ways:
∙ First, by the MC forward method associated to the scheme of section 5.2, where the
conditional expectations are estimated by a method of cells in S,
∙ Second, by the deterministic numerical scheme of section 5.1.
Again the accuracy of the simulation pricing scheme is quite satisfactory.

6 Path dependent Call Protection

Real-life protection call clauses are typically discretely monitored, e.g., reexamined at the
end of each trading day, rather than continuously monitored like in section 5. Given S̄ > 0
and a fixed, increasing sequence of monitoring times T = {T0 = 0, T1 . . . , TN = T}, let Ht

for t ∈ [0, T ] stand for the number of consecutive monitoring dates TIs with STI ≥ S̄ from
time t backwards, capped at some fixed integer level l. So in particular at any given time
t one has Ht = 0 if S was smaller than S̄ at the last monitoring date before or at t. We

S0 100.55 101.55 102.55 103.55
MC 110.082 110.819 111.351 111.809
VI 110.324 110.896 111.488 112.099

%Err 0.22 0.069 0.12 0.26

Table 6: Same as Table 4 but for S̄ = 120.
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consider the call protection t ≥ #1 with

#1 = inf{t ∈ ℝ+ ;Ht ≥ l} ∧ T . (39)

The lifting time of the call protection #1 is thus given as the first time that St has been ≥ S̄
at the last l monitoring dates, capped at T .

6.1 Pricing Equation

One then has by application of the results of [16] that Πt = u(t, St, Ht) on [0, #1), for a
protection pricing function u = u(t, S, k) = uk(t, S), with k ∈ ℕl−1, where the restrictions
of the uks to every set [TI−1 TI)× [0,+∞) are continuous, and where the limit

uk(TI−, S) = lim
(t,x)→(TI ,S) with t≤TI

uk(t, x) (40)

exists for every k ∈ ℕl−1, I ≥ 1 and S ∕= S̄.

Moreover (see [16]), u solves the following Cauchy–Dirichlet cascade of VIs, in which v is
the no-protection pricing function of section 4.1,

For I decreasing from N to 1,
∙ At t = TI , for k ∈ ℕl−1,

uk(TI−, S) =

{
uk+1(TI , S), or v(TI , S) if k = l − 1, on {S > S̄} ,
u0(TI , S) on {S < S̄} , (41)

or, in case I = N, uk(T−, S) = v(T, S) = g(S) for S > 0,
∙ On the time interval [TI−1, TI),

max (Gu+ c− �u , ℓ− u) = 0 . (42)

Knowing an approximation (vji ) of v, this cascade of VIs can be solved by standard determin-
istic numerical schemes as of section 5.1. Partial convergence results for this deterministic
scheme can be obtained by application of the general results of [16], with the complication
however that in the jump condition (41) for uk at TI for I < N , the limit uk(TI−, S) may
not exist at S = S̄.

6.2 Simulation Schemes

To solve this problem by simulation, given a time mesh (ti)0≤i≤n refining the tenor T and
a given pair (S0, H0) at time 0, we generate a stochastic grid (Sji , H

j
i )1≤j≤m

0≤i≤n by an Euler
scheme for S, using past values of S to fill H.

Example 6.1 Assuming here for simplicity r = q = � = 0 and � = 20%: and setting
ti+1 − ti = h = six hours (four time-steps per day):
∙ Simulate, starting from S0 given, S6h = S0(1 + �

√
h"1), S12h = S6h(1 + �

√
h"2), S18h =

.., S24h, S30h, ..., S100days for standard IID Gaussian random variables "i;
∙ Whenever ti coincides with one the TIs (i.e., one every fourth i), update the variable H,
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so: H0 =number of consecutive monitoring dates with S ≥ S̄ viewed from time 0 backwards,
H6h = H0, H12h = H0, H18h = H0, H1day = H0 + 1 if S1day ≥ S̄, otherwise H1day = 0,
etc..until H100days;

∙ Redo this m = 105 times, hence 105 trajectories (Si, Hi)
1≤j≤m
0≤i≤n .

The analog to the algorithms of sections 5.2 and 5.2.1 may then be formulated, #j1 therein
being now understood as (cf. (39))

#j1 = inf{i ∈ ℕn ; Hj
i ≥ l} ∧ T , (43)

and Eji in (36) being now understood as the conditional expectation given t = ti, Si =

Sji , Hi = Hj
i . For computing Eji , one can then perform, for every k ∈ ℕl−1, a non-linear

regression of the (uji+1 + hcji+1)j∈Ωk
i
against (Sji )j∈Ωk

i
, where Ωk

i denotes the subset of the

indices j such that i < #j1 and Hj
i = k. Denoting by �i(⋅, k)’s the estimators of the maps

S 7→ uk(ti, S)’s obtained in this way, one then sets (cf. (36)),

uji = max
(
ℓi

(
Sji

)
, e−�

j
ih�i(S

j
i , N

j
i )
)
.

For the indices i, k’s such that the set Ωk
i is empty or too small for the non-linear regression

over Ωk
i to be doable or significant, the ‘missing regression functions’ �i(⋅, k)’s are set equal

to zero.

This procedure for computing the conditional expectations in (36) can be interpreted as
using a method of cells in the direction of the k variable and whatever method of choice in
the direction of the S variable, a method of cells again being a simple and robust alternative,
for estimating the protection pricing function u = uk(t, S) (see the Appendix).

Convergence of the scheme is covered by the results of [14].

6.3 Numerical Experiments

Using the same data as in section 5.3 but a path-dependent call protection with daily
monitoring TI+1 − TI = one day, Tables 7 and 8 show the bond prices computed in two
ways:
∙ First, by the MC scheme of section 6.2 (MCl in the tables below), where the conditional
expectations are estimated by a method of cells in S and N ,
∙ Second, by solving numerically the cascade of VIs of section 6.1 (VIl in the tables below).
The simulation results appear to be quite accurate.

l 1 5 10 20 30
Price MCl 103.823 105.302 106.211 107.169 107.882
Price VIl 103.874 105.105 106.066 107.273 108.021
%Err 0.05 0.19 0.14 0.10 0.13

Table 7: Path-Dependent Call Protection: MC Forward price versus VI Cascade price for
five values of l (S0 = 100.5)
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l 1 5 10 20 30
Price MCl 103.738 105.300 106.330 107.528 108.213
Price VIl 103.693 105.103 106.172 107.545 108.543
%Err 0.04 0.19 0.15 0.02 0.30

Table 8: Same as Table 8 for S0 = 102.55

7 Highly Path dependent Call Protection

Given a further integer d such that l ≤ d ≤ N , let Ht for t ≤ T represent the vector of the
indicator functions of the events STI ≥ S̄ at the last d monitoring dates preceding time t.
We now consider the case:

#1 = inf{t ∈ ℝ+ ; ∣Ht∣ ≥ l} ∧ T (44)

with

∣Ht∣ =
∑

1≤k≤d
Hk
t . (45)

So #1 represents the first time, capped at T , such that S ≥ S̄ on at least l among the last
d monitoring dates.

Remark 7.1 For l = 0, resp. l = d, we are back to the no call protection case of section 4,
resp. to the l consecutive monitoring dates call protection of section 6. Moreover, in case of
a discretization time grid defined by the call protection monitoring time T, the case l = 1
corresponds to a time-discretized version of the standard call protection of section 5.

7.1 Pricing Equation

Let us set K = {k ∈ {0, 1}d ;
∑

1≤p≤d kp < l}. By application of the results of [16], we now
have Πt = u(t, St, Ht) on [0, #1), for a protection pricing function u = u(t, S, k) = uk(t, S),
with k ∈ K, where the restrictions of the uks to every set [TI−1 TI)× [0,+∞) are continuous,
and where the limit uk(TI−, S) exists in the sense of (40) exists for every k ∈ K, I ≥ 1
and S ∕= S̄. Moreover, u solves the following Cauchy-Dirichlet cascade of VIs, in which v
denotes the no-protection pricing function of section 4.1, and with

k+ = k+(k, S) = (1S≥S̄ , k1, . . . , kd−1) (46)

in the jump condition (47):

For I decreasing from N until 1:
∙ At t = TI , for k ∈ K,

uk(TI−, S) = uk+(TI , S), or v(TI , S) if k+ /∈ K, for every S ∕= S̄ , (47)

Or, in case I = N, uk(T−, S) = v(T, S) = g(S) for every S > 0,
∙ On the time interval [TI−1, TI),

max (Gu+ c− �u , ℓ− u) = 0 . (48)
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Like in section 6.1, this cascade of VIs can in theory be solved by standard deterministic
numerical schemes, knowing an approximation (vji ) of v. (Partial) convergence results for
such schemes can be obtained by application of the general results of [16].

However note that this is a VIs cascade of size Card(K) (= 2d − 1 in case l = d), which
precludes in practice the use of such deterministic schemes for l and d more than a few units.

7.2 Simulation Schemes

To solve this system by simulation, given a pair (S0, H0) and a time mesh (ti)0≤i≤n refining
the tenor (TI), we generate a stochastic grid (Sji , H

j
i )1≤j≤m

0≤i≤n in the obvious way, using past
values of S to fill H.

Example 7.2 In the set-up of Example 6.1, and for d = 30:
∙ Simulate S0, S6h, . . . , S100days as before;
∙ Whenever ti coincides with one the TIs (i.e., one every fourth i), update the vector H,
so: H0 = 30 given values of S (representing past values of S corresponding to the 30 last
monitoring dates TI preceding the pricing time t = 0), H6h = H0, H12h = H0, H18h = H0,
H1day = (1S1day≥S̄ , H̄0) where H̄0 stands for the vector made of the components 1 to 29 of
H0, H30h = H1day, and so on until H100days;
∙ Redo this m = 105 times, hence 104 trajectories (Si, Hi)0≤i≤n.

The exact analogs to the algorithms of section 6.2 may then be formulated, with ∣Hj
i ∣ instead

of Hj
i , and Eji as the conditional expectation given t = ti, Si = Sji , Hi = Hj

i . For computing
the related conditional expectations in (36), one can perform, for every k ∈ K, a non-linear
regression of (uji+1 + hcji+1)j∈Ωk

i
against(Sji )j∈Ωk

i
, where Ωk

i denotes the subset of the indices

j such that i < #j1 and Hj
i = k. Denoting by �i(S, k)’s the estimators of the uk(ti, S)’s

obtained in this way, one then sets (cf. (36))

uji = max
(
ℓi

(
Sji

)
, e−�

j
ih�i(S

j
i , H

j
i )
)
.

In case Ωk
i is empty or too small for performing a non-linear regression with respect to S

over Ωk
i , the ‘missing estimates’ �i(S, k)’s are set equal to zero.

Of course it is rather clear in this new setting that for large (but typical, like d = 30) values
of d, values of k for which Ωk

i is empty or too small will become the rule rather than the
exception (since there are now potentially up to 2d possible states of the vector k). However
this is in a sense the power of the simulation approach, which automatically selects the
most likely states of the vector k relative to a starting point (S0, H0), as opposed to the
deterministic scheme, which loops over all the possible states of k.

Convergence and convergence rates are granted by application of the results of Crépey [16].

7.3 Numerical Experiments

We first test the simulation pricing scheme of section 7.2 in cases which are reducible (see
Remark 7.1) to no call protection (l = 0, section 7.3.1), standard call protection (l = 1
and TI+1 − TI = one day, section 7.3.2) or path-dependent call protection (l = d, section
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7.3.3). The Monte Carlo results can then be validated by VI results, included for ‘large’
d’s (up to a typical market value of d = 30). Then in section 7.3.4 we present examples in
the general case where 1 < l < d for d up to 10. In the general case where 1 < l < d, VI
results are not available for d > 10 due to the curse of dimensionality. So, for d = 10, the
numerical solution of the VIs cascade of section 7.3.4 takes about four days of computation
on a standard PC, versus about twenty minutes by simulation. Twenty minutes is of course
already much too long, but there is lots of room for improvement here, thinking in particular
of massively parallel computation techniques (‘graphics card programming’) which could be
fruitfully used for this purpose. In any case deterministic methods are ruled out by the curse
of dimensionality, and simulation methods are the only viable computational alternative.

7.3.1 Case reducible to No Call Protection

In case l = 0 the ‘l out of d’ call protection clause effectively reduces to ‘no call protection’.
Using the data of Section 4.3, we thus computed the related MC prices by the simulation
pricing scheme of section 7.2 (MCl,d in the tables), and we validated the results by the
deterministic scheme (27). The results are given in Table 9.
Note that in the situation of this section, the deterministic scheme (27) and the one of section
7.1 produce the same numbers, but in time independent of d for (27) versus exponential in
d for the scheme of section 7.1.

In Table 10, we displayed the average computation times for the MC results of Table 9,
versus those (VIl,d in the table) for the scheme of section 7.1 (at least, for d ≤ 10, since for
greater values of d, computations via the scheme of section 7.1 become prohibitively long).

S0 MC0,d d = 1 5 10 20 30
98.55 0.04 0.04 0.04 0.04 0.04 0.04
99.55 0.01 0.02 0.02 0.01 0.02 0.02
100.55 0.01 0.05 0.05 0.01 0.05 0.05
101.55 0.07 0.07 0.07 0.08 0.07 0.07

Table 9: % Err MC No Call Protection versus MCl,d for various ‘l = 0 out of d’ cases.

d 1 5 10 20 30
VI0,d 332s 5332s 44h — —
MC0,d 154s 212s 313s 474s 628s

Table 10: VIl,d versus MCl,d Computation Times corresponding to Table 9.

7.3.2 Case reducible to a Standard Call Protection

In case l = 1 and TI+1−TI = 1
4 day, the ‘l out of d’ call protection clause effectively reduces

to standard protection. The deterministic scheme (35) and the one of section 7.1 therefore
produce the same numbers, but in time independent of d for (27) versus exponential in d
for the scheme of section 7.1.
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Using the data of Section 5.3 and S̄ = 103, we computed the MC prices by the simulation
pricing scheme of section 7.2, and we validated the results by the deterministic scheme (35).
The results are given in Table 11.

In Table 12 we displayed the average computation times for the MC results of Table 9, versus
those of the scheme of section 7.1 (whenever practical).

S VI Price d = 1 5 10 20 30
100.55 103.874 0.053 0.041 0.025 0.045 0.045
101.55 103.786 0.022 0.026 0.045 0.011 0.028
102.55 103.694 0.021 0.071 0.036 0.005 0.019
103.55 103.55 0.000 0.000 0.000 0.000 0.000

Table 11: VI Prices and MCl,d % Errors for various ‘l = 1 out of d’ cases.

d 1 5 10 20 30
VI 737s 11125s 49 h — —

MCl,d 342s 526s 702s 1111s 1518s

Table 12: VI versus MCl,d Computation Times corresponding to Table 11.

7.3.3 Case reducible to a Path-Dependent Call Protection

Using the data of section 6.3, Tables 13 and 14 show the relative error with respect to the
VIs cascade prices of section 6.1 for two MC methods: the path-dependent MC method of
section 6.2 (cf. Tables 7, 8) versus the highly path-dependent MC method of section 7.2
(with d = l therein).

l 1 5 10 20 30
%Err1 0.05 0.19 0.14 0.10 0.13
%Err2 0.03 0.03 0.15 0.64 0.41

Table 13: Path-Dependent Call Protection: Error with respect to the VIl price by MCl versus
MCl,l (S0 = 100.5).

Table 15 gives the computation times corresponding to Tables 7 and 13.

7.3.4 General Case

We now consider the general case where 1 < l < d. We use the data of section 6.3, except
for the nature of the call protection.

Tables 16 (d = 5) and 17, 18 (d = 10) show the relative error of the MC price with respect
to the VIs cascade price of section 7.1, using two alternative methods for estimating the
conditional expectations involved in the MC prices, based on simulated trajectories of the
process (S,H) as of section 7.2:
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l 1 5 10 20 30
%Err MCl 0.04 0.19 0.15 0.02 0.30
%Err MCl,l 0.04 0.03 0.24 0.53 1.02

Table 14: Same as Table 13 for S0 = 102.55.

l 1 5 10 20 30
VI 8m 21m 38m 72m 105m
MCl 212s 221s 275s 294s 332s
MCl,l 173s 252s 374s 721s 1008s

Table 15: Computation times relative to Tables 7 and 13.

MCl,d Conditional expectations computed by a method of cells in (S,H) as described in
section 7.2,

%Err MC♯
l,d Conditional expectations computed by a method of cells in (S, ∣H∣♯), where

∣H∣♯ is defined as the number of ones in H, starting from the (l − ∣H∣)tℎ zero in H.

For instance, assuming d = 10, l = 8:
∙ If H = (1, 1, 1, 1,0, 1, 1, 1, 0, 0), then l− ∣H∣ = 8− 7 = 1 and ∣H∣♯ = 3 (number of ones on
the right of the first zero, in bold in H),
∙ If H = (1, 1, 1, 0, 1, 1, 1,0, 0, 0), then l− ∣H∣ = 8− 6 = 2 and ∣H∣♯ = 0 (number of ones on
the right of the second zero, in bold in H).

The MC♯l,d-algorithm can be thought of as an approximate algorithm based on the ‘good
regressor’ ∣H∣♯ for estimating highly path-dependent conditional expectations. The rationale
for using the regressor ∣H∣♯ is that in the ‘l out of d’ case, the entries of H preceding its
(l − ∣H∣)tℎ zero are irrelevant to the price, since these entries will necessarily have to be
superseded by new ones before the bond may become callable. This approximate algorithm
in the highly path-dependent case is in fact inspired by the ‘exact algorithm’ of section 6.2 in
the path-dependent case. Note in particular that in case l = d, a highly path-dependent call
protection reduces to a path-dependent call protection, ∣H∣♯ = ∣H∣, and the MC♯l,d-algorithm
of this section reduces to the MCl-algorithm of section 6.2.

In view of the results of Tables 16, 17 and 18, the ‘approximate’ MC♯l,d-algorithm appears
to be reasonably accurate.
In case l = d = 10 it actually gives more accurate results than the ‘exact’ MCl,d algorithm.
This makes sense, since, in the case l = d, high path-dependence reduces to path-dependence,
and both algorithms are ‘exact’. But the MC♯l,d-algorithm (alias MCl, in the case l = d)
works in a lower state-dimension, which can explain its more accurate results.
In the general ‘l out of d’ case, the interest of the MC♯l,d-algorithm with respect to the MCl,d
Cell algorithm is of course that it is faster (see Table 15).

The ability to work with a ‘good approximate’ (as opposed to ‘exact’), low-dimensional
regressor, is also an interesting feature of simulation as opposed to deterministic numerical
schemes.

In the general ‘l out of d’ case, as soon as d exceeds a few units, VIl,d prices cannot be
computed, so that the accuracy of MCl,d and MC♯l,d prices cannot be assessed anymore. In
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l 1 3 5
Price VIl,d 103.693 104.434 105.103
%Err MCl,d 0.048 0.062 0.011
%Err MC♯l,d 0.048 0.090 0.187

Table 16: Error as a function of l (d = 5, S0 = 102.55).

l 1 5 10
Price VIl,d 103.693 104.906 106.172
%Err MCl,d 0.045 0.021 0.236
%Err MC♯l,d 0.043 0.054 0.149

Table 17: Error as a function of l (d = 10, S0 = 102.55).

case d = 30 and for increasing values of l, we compare in Table 19 the MCl,d and the MC♯l,d
estimates in terms of standard deviations over 50 trials corresponding to different seeds of
the random generator. The Table also displays the % Err, in the sense here of the relative
difference between the average estimates obtained by the two methods.

8 Intermittent Call Protection

We now come to ‘truly intermittent’ protection with call payoff processes of the form, given
a non-decreasing sequence of [0, T ]-valued stopping times # = (#l)l≥0 :

Ut = Ωc
t∞+ Ωtℎ(t,Xt) , (49)

with Ωt = 1{lt odd} for lt defined by #lt ≤ t < #lt+1, rather than more specifically (cf. (31))

Ut = 1{t<#1}∞+ 1{t≥#1}ℎ(t,Xt) (50)

for a stopping time #1 as in the previous sections.

In the benchmark model of section 2 and assuming

Ωt = Ω(t, St,St) (51)

for a suitably extended finite-dimensional Markovian factor process (St,St) and a Boolean
function Ω of (t, S,S), so

Ut = U(t, St,St) := Ωc(t, St,St)∞+ Ω(t, St,St)ℎ(t, St) , (52)

l 1 5 10
Price VIl,d 103.874 104.931 106.066
%Err MCl,d 0.026 0.056 0.154
%Err MC♯l,d 0.049 0.065 0.138

Table 18: Error as a function of l (d = 10, S0 = 100.55).
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l 5 10 20 30
Dev MCl,d 0.081 0.089 0.126 0.251
Dev MC♯l,dd 0.052 0.102 0.173 0.165

% Err 0.11 0.34 0.88 1.31

Table 19: Standard Deviations over 50 trials and % Err : MCl,d vs MC♯l,d as a function of l
(d = 30, S0 = 102.55).

it is expected that one should then have Πt = u(t, St,St) on [0, T ], for a pricing function
u = u(t, S,S). This is precisely what comes out from the results of [16] in case of a call
protection discretely monitored at the dates of a finite time grid T.

Generic Simulation Scheme Given a stochastically generated mesh (Sji ,S
j
i )1≤j≤m

0≤i≤n , the
generic simulation pricing scheme of [14] for estimating u(ti, S

j
i ,S

j
i )1≤j≤m

0≤i≤n writes: un = g,
and then for i = n− 1 . . . 0, for j = 1 . . .m

uji = min
(
Ui

(
Sji ,S

j
i

)
, max

(
ℓi

(
Sji

)
, e−rℎEji

(
ui+1 + hci+1

)))
. (53)

Here the conditional expectations Eji
(
ui+1 + hci+1

)
stand for the conditional expectations

given t = ti, Si = Sji , Si = Sji , which can be computed by non-linear regression of (ui+1 +
hci+1)1≤j≤m against (Si,Si)1≤j≤m, using for example a method of cells in (S,S).

Note that in (53) the min plays no role outside the support of Ω, where Ui (S,S) is equal to
+∞.

8.1 Intermittent Standard Protection

We first consider the ‘intermittent analogue’ of the standard protection clause of section
5. Given activating and desactivating trigger levels S̄ and S with S̄, S < S̄, let thus the
non-decreasing sequence # of stopping times be defined by #0 = 0 and, for every l ≥ 0:

#2l+1 = inf{t > #2l ; St ≥ S̄} ∧ T , #2l+2 = inf{t > #2l+1 ; St ≤ S} ∧ T . (54)

Remark 8.1 For S = S̄, (54) would typically not define increasing sequences of stopping
times, and one would get an ill-posed problem. This is why we assume S < S̄.

8.1.1 Pricing Equation

Let Ht be defined as the parity of lt, i.e., Ht = 0 whenever lt is even (‘call protection’), and
Ht = 1 whenever lt is odd (‘no call protection’). So H0 = 0, H jumps from 0 to 1 at the #ls
such that S#l ≥ S̄ and H#l− = 0, and H jumps from 1 to 0 at the #l’s such that S#l ≤ S and
H#l− = 1. In particular one has Ht = 1 on {(!, t);St ≥ S̄} and Ht = 0 on {(!, t);St ≤ S}.
The pair (S,H) is a Markov process, with an effective upper barrier process U of the form
(51), for Ω(t, S,S) = S. It is thus expected that Πt = u(t, St, Ht), for a pricing function
u = u(t, S, k) = uk(t, S), with k ∈ {0, 1}.
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Note however that the call protection # is continuously monitored in time, and not discretely
monitored at the dates of a finite time grid T. Continuously monitored intermittent call pro-
tection clauses falls outside the scope of the results of [16]. However, existence (uniqueness
is easy) of a solution to the related RIBSDE (ℰ) follows by application of the results of Peng
and Xu [29]. More precisely, existence follows from an immediate extension of these results
to the case of an ℝ ∪ {+∞} – valued upper barrier U , noting that the results of Peng and
Xu, even if stated for real-valued barriers, only use the square-integrability of the random
variable supt∈[0,T ] U

−
t , a condition which is satisfied in our case (note U−t = ℎ(t,Xt)

−).

Building upon this existence result, one can then proceed much like in [16] to deduce that
Πt = u(t, St,St) on [0, T ], for a pricing function u = u(t, S,S). The formally related analytic
problem writes,⎧⎨⎩

u = g at T
u0(t, S̄) = u1(t, S̄)
max (Gu0 + c− �u0, ℓ− u0) = 0 on [0, T )× (0, S̄)
u1(t, S) = min(u0(t, S), ℎ(t, S))
min (max (Gu1 + c− �u1, ℓ− u1) , ℎ− u1) = 0 on [0, T )× (S,+∞)

(55)

We thus get a system of two equations in the pair of functions (u0, u1), where u0 and u1

are defined on [0, T ] × (0, S̄] × {0, 1} and [0, T ] × [S,+∞) × {0, 1}, respectively. From a
practical point of view this system of equations can be solved by standard finite differences
deterministic numerical schemes on a fixed time-space grid, like (cf. (35)):

uj,0n = uj,1n = g(Sjn) for j = 1 . . .m, and then for i = n− 1 . . . 0, for j = 1 . . .m :⎧⎨⎩ uj,0i = max
(
ℓi
(
Sj
)
, e−�

j
ih
∑

l p
j,l
i (uj+l,0i+1 + hcj+li+1)

)
uj,1i = min

(
ℎi
(
Sj
)
,max

(
ℓi
(
Sj
)
, e−�

j
ih
∑

l p
j,l
i (uj+l,1i+1 + hcj+li+1)

)) (56)

where, in the right hand side, uj+l,0i+1 is to be understood as uj+l,1i+1 for Sj+l ≥ S̄, and uj+l,1i+1

is to be understood as min(uj+l,0i+1 , ℎj+li+1) for Sj+l ≤ S.

Remark 8.2 Note however that the analytic characterization of the pricing function u =
(u0, u1) as unique solution in some sense to (56) (continuous viscosity solution with growth
conditions, presumably) is not established yet. This is due to the absence of stability results
so far (beyond existence and uniqueness) for the related Markovian RIBSDE (ℰ). To be
more precise, the absence of stability results makes it difficult to establish the continuity of
the pricing function u = (u0, u1), which would be the first step in proving that u solves (55)
in the viscosity sense.

8.1.2 Simulation Scheme

The related simulation pricing algorithm is (53), with U(t, S, k) defined by (52) for Ω(t, S, k) =
k.

Note however that the convergence of this scheme falls outside the scope of [14], since one
deals here with a continuously monitored intermittent form of call protection.
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8.2 Intermittent Path-Dependent Protection

Let us further be given a sequence T = (TI)I≤N of monitoring dates as of sections 6 or 7.
The cases considered in section 6, resp. 7, correspond to an upper payoff process of the form
(50) for

#1 = inf{t ∈ ℝ+ ; Ht ≥ l} ∧ T , resp. inf{t ∈ ℝ+ ; ∣Ht∣ ≥ l} ∧ T ,

where the respective interpretations of H are given in sections 6 and 7. In this section and
in section 8.3, we consider the corresponding intermittent call protections, with upper payoff
processes of the form (49) for

Ωt = 1{Ht≥l} , resp. 1{∣Ht∣≥l} .

Let thus for now Ht stand, as in section 6, for the number of consecutive monitoring dates
with S ≥ S̄ from time t backwards, capped at l.

8.2.1 Pricing Equation

One thus has by application of [16] that Πt = u(t, St, Ht) on [0, T ], for a pricing function
u = u(t, S, k) = uk(t, S) with k ∈ ℕl, where the restrictions of the uks to every set [TI−1 TI)×
[0,+∞) are continuous, and where the limit uk(TI−, S) as defined by (40) exists for every
k ∈ ℕl, I ≥ 1 and S ∕= S̄. By application of the results of [16], the pricing equation
now assumes the form of the following Cauchy cascade of VIs (to be compared with the
Cauchy–Dirichlet cascade of VIs of section 6.1):

For I decreasing from N to 1:
∙ At t = TI , for k ∈ ℕl,

uk(TI−, S) =

{
uk+1(TI , S), or uk(TI , S) if k = l, on {S > S̄} ,
u0(TI , S), or min(u0(TI , S), ℎ(TI , S)) if k = l, on {S < S̄} , (57)

Or, in case I = N, uk(TI−, S) = g(S) for S > 0,
∙ On the time interval [TI−1, TI),

max (Guk + c− �uk , ℓ− uk) = 0 , k = 0 . . . l − 1

min (max (Gul + c− �ul , ℓ− ul) , ℎ− ul) = 0 .
(58)

Once more, this Cauchy problem can be solved by standard deterministic numerical schemes
(cf. section 5.1).

8.2.2 Simulation Scheme

The related simulation pricing algorithm is (53), with U(t, S, k) defined by (52) for Ω(t, S, k) =
1{k≥l}.

Convergence and convergence rates are granted by application of the results of [14].

8.3 Intermittent Highly Path-Dependent Protection

Let now Ht be defined, as in section 7, as the vector of the indicator functions of the events
STI ≥ S̄ at the last d monitoring dates preceding time t.
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8.3.1 Pricing Equation

One has by application of the results of [16] that Πt = u(t, St, Ht) on [0, T ], for a pricing
function u = u(t, S, k) = uk(t, S) over [0, T ]×(0,+∞)×{0, 1}d, where the restrictions of the
uks to every set [TI−1 TI) × [0,+∞) are continuous, and where the limit uk(TI−, S) exists
in the sense of (40) for every k ∈ {0, 1}d, I ≥ 1 and S ∕= S̄. Moreover,

By application of the results of [16], the pricing equation now assumes the following form ,
with as before K = {k ∈ {0, 1}d ;

∑
1≤p≤d kp < l}, and where k+ = k+(k, S) in the jump

condition (59) is defined by (46),

For I decreasing from N to 1:
∙ At t = TI , for every k ∈ {0, 1}d,

uk(TI−, S) = uk+(TI , S), or min(uk+(TI , S), ℎ(TI , S)) if k /∈ K and k+ ∈ K,
for every S ∕= S̄ ,

(59)

Or, in case I = N , uk(TI−, S) = g(S) for S > 0,
∙ On the time interval [TI−1, TI), for every k ∈ {0, 1}d,

max (Guk + c− �uk , ℓ− uk) = 0 , k ∈ K
min (max (Guk + c− �uk , ℓ− uk) , ℎ− uk) = 0 , k /∈ K .

Like in section 7.1, this Cauchy cascade of VIs can in theory be solved by standard deter-
ministic numerical schemes, but this is a system of 2d equations, which precludes the use of
deterministic schemes for l and d more than a few units.

8.3.2 Simulation Scheme

The related simulation pricing algorithm is (53), with U(t, S, k) defined by (52) for Ω(t, S, k) =
1{∣k∣≥l}.

Convergence and convergence rates are covered by the results of [14].

8.4 Numerical Experiments

For the numerical experiments relative to all the forms of intermittent call protection con-
sidered above, we shall use the general data and conventions of section 4.3, and the specific
data of Table 20.

T c̄ S̄ S

180 days 1.2/month 103 97

Table 20: Data specific to section 8.4.
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S0 92 93 94 102 103 104
VI price 104.128 104.147 104.154 103.716 103 104
MC %Err 0.094 0.051 0.012 0.001 0 0

Table 21: Intermittent standard call protection.

l 1 5 10 20 30
VIl price 103.91 105.10 106.03 107.22 108.01
MCl %Err 0.04 0.16 0.47 0.88 1.34
MCl,l %Err 0.04 0.15 0.03 0.04 0.24

Table 22: Intermittent path-dependent call protection (S0 = 100).

8.4.1 Standard Protection

We first consider convertible bonds with intermittent standard call protection as of section
8.1, that we evaluate by the deterministic scheme of section 8.1.1, or, alternatively, by the
(forward variant of the) standard protection Monte Carlo method of section 8.1.2.

The results are presented in Table 21: reference prices computed by the deterministic scheme
versus relative errors of the MC method.

8.4.2 Path-dependent Protection

We first consider convertible bonds with intermittent path-dependent call protection as of
section 8.2, that we evaluate by the deterministic scheme of section 8.2.1, or, alternatively,
the following Monte Carlo methods:

MCl The path-dependent scheme of section 8.2.2, using a method of cells for the compu-
tation of the conditional expectations, or

MCl,d The highly path-dependent scheme of section 8.3.2 with d = l, using a method of
cells therein for the computation of the conditional expectations.

The results are presented in Tables 22 for S0 = 100 and 23 for S0 = 90: reference prices com-
puted by a deterministic scheme versus relative errors of the various Monte Carlo methods.
The highly path-dependent scheme happens to be more accurate than the path-dependent
scheme.

l 1 5 10 20 30
VIl price 104.07 104.50 104.81 105.17 105.37
MCl %Err 0.04 0.20 0.32 0.40 0.60
MCl,l %Err 0.098 0.087 0.066 0.007 0.037

Table 23: Intermittent path-dependent call protection (S0 = 90).
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l 2 3 5
VIl,d price 104.07 104.43 105.10
MCl,d %Err 0.21 0.15 0.15
MC♯l,d %Err 0.19 0.23 0.18

Table 24: Intermittent highly path-dependent call protection (d = 5, S0 = 100).

l 2 3 5
VIl,d price 104.10 104.25 104.50
MCl,d %Err 0.01 0.01 0.10
MC♯l,d %Err 0.155 0.108 0.034

Table 25: Intermittent highly path-dependent call protection (d = 5, S0 = 90).

8.4.3 Highly Path-dependent Protection

We now come to convertible bonds with intermittent highly path-dependent call protection
as of section 8.3. The bonds are evaluated by the deterministic scheme of section 8.3.1, or,
alternatively, by the highly path-dependent Monte Carlo scheme of section 8.3.2. using a
method of cells in (S,H) (MCl,d) or in (S, ∣H∣♯) (MC♯l,d) therein for the computation of the
conditional expectations (see section 7.3.4 for the definition of ∣H∣♯).
Results for S0 = 100 or 90 and d = 5 or 10 are presented in Tables 24 to 27. For larger
values of d, Table 28 compares MCl,d and MC♯l,d in terms of standard deviations over 50
trials corresponding to different seeds of the random generator, and of relative difference.

A Computing Conditional Expectations by Simulation/Regression

Pricing game options by simulation ultimately reduces to the numerical computation of
conditional expectations. An embedded issue is therefore the computation of conditional
expectations by simulation, which can simply be done by a combination of simulation and
regression tools. In this Appendix we provide a brief and informal review about this, referring
the interested reader to, for instance, Chapter 6 of Glasserman [19], for more details and
references.

Let � and X denote real- and ℝq-valued square integrable random variables. Under suitable
conditions, the conditional expectation E(�∣X) is equal to the Hilbert space ℒ2-projection
of � over the vector space of random variables ⟨X⟩ spanned by the measurable and bounded
functions of X. So, in terms of a basis ('l)l∈ℕ of the set of the functions from ℝq to ℝ,

E(�∣X) = EL(�∣('l(X))l∈ℕ) ,

l 2 5 10
VIl,d price 104.27 104.87 106.03
MCl,d %Err 0.01 0.15 0.03
MC♯l,d %Err 0.04 0.26 0.38

Table 26: Intermittent highly path-dependent call protection (d = 10, S0 = 100).
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l 2 5 10
VIl,d price 104.24 104.41 104.82
MCl,d %Err 0.01 0.02 0.07
MC♯l,d %Err 0.05 0.09 0.32

Table 27: Intermittent highly path-dependent call protection (d = 10, S0 = 90).

l 5 10 20 30
Dev MCl,d 0.056 0.061 0.086 0.152
Dev MC♯l,d 0.060 0.069 0.092 0.175
% Err 0.09 0.24 0.72 1.06

Table 28: Intermittent Standard Deviations over 50 trials and % Err : MCl,d vs MC♯l,d as a
function of l (d = 30, S0 = 102.55).

where EL stands for the ℒ2-projection operator. Given pairs (Xj , �j)1≤j≤m simulated inde-
pendently according to the law of (X, �), the conditional expectation E(�∣X) may thus be
simulated by linear regression of the �js against the ('l(Xj))1≤j≤m

1≤l≤p , a procedure called non-
linear regression in the sequel, where the truncation order p is a parameter in the method.
The computational cost of the regression is of the order of O(mp2).

We refer the interested reader to the monograph by Györfi et al. [21] for every detail about
these simulation/regression approaches for computing conditional expectations, or, more
precisely in the terminology of [21], regression functions

x 7→ �(x) = E(�∣X = x) .

In a nutshell, the (truncated) regression basis may be:
∙ Either parametric, i.e., made of functions parameterized by a few parameters, or non-
parametric, meaning in practice that it is made of functions parameterized by a very large
set, like one function by point of a discretization of the state space, and
∙ Either global, that is, made of functions supported by the whole state space or with ‘large’
support, or local, to be understood as made of functions with ‘small’ support.
One typically deals with either a parametric and global regression basis, like a regression
basis made of a few monomials parameterized by their coefficients, or a non-parametric and
local basis, like a regression basis made of the indicator functions of the cells of a grid of
hyperrectangles partitioning the state space. Statistic theory tells us that a global basis is
preferable in case of a ‘regular’ regression function �(x), especially in case where a good
guess is available as for the shape (used to define the regression basis) of �. Otherwise a
local basis is better (and it is often simpler and more robust in terms of implementation).

In the context of mathematical finance, these approaches were successfully introduced in
the late 90’s for pricing American options by simulation, by Longstaff and Schwartz [25]
(in combination with iteration on the stopping policies as of section 3.2.1), Tsitsiklis and
VanRoy [31, 32] (with iteration on the values) or Broadie and Glasserman [10, 11], among
others. They were subsequently developed by, for instance, Gobet et al. [20, 23], in a more
general context of numerical simulation methods for BSDEs. The latter references deal
in particular with the issue of controlling the cumulative regression approximation error
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that arises in the context of a dynamic model in which non-linear regressions in space are
performed repeatedly over a discrete time grid.

Remark A.1 Regarding alternative methods for computing conditional expectations in the
context of pricing by simulation: Malliavin Calculus methods, quantization methods, etc.,
we refer the reader to, for instance, Lions and Régnier [24], Bouchard et al. [6], or Pagès
and Bally [27].
Note however that Malliavin Calculus methods are typically harder to implement than non-
linear regression methods, and that quantization methods suffer significantly the curse of
dimensionality. Therefore we only resort in this paper to non-linear regression methods as
exposed above, either parametric and global with respect to a simple polynomial basis, or
non-parametric and local with respect to a basis of hypercubes partitioning the state space,
referred to for the latter as methods of cells in this article.
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