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Abstract. In order to dynamize the static Gaussian Copula model of portfolio credit risk,

we introduce a model filtration made of a reference Brownian filtration progressively en-

larged by the default times. This yields a multidimensional density model of default times,

where, as opposed to the classical situation of the Cox model, the reference filtration is not

immersed into the enlarged filtration. In mathematical terms this lack of immersion means

that martingales in the reference filtration are not martingales in the enlarged filtration.

From the point of view of financial interpretation this means defaults contagion, a good

feature in the perspective of, say, wrong-way risk modeling of counterparty risk on credit

derivatives. Computational tractability is ensured by invariance of multivariate Gaussian

distributions through conditioning by some components, the ones corresponding to past

defaults. Moreover the model is Markov in an augmented state-space including past default

times. After a discussion of different notions of deltas, the model is applied to valuation of

counterparty risk on credit derivatives.

1 Introduction

This work is an attempt, in the spirit of Fermanian and Vigneron [18], to dynamize the

static Gaussian Copula model of portfolio credit risk [20]. As in [18], one could talk of in-

formational dynamization in the sense that our dynamization takes the route of introducing

a filtration with respect to which conditional expectations are computed to give prices at

future times. However, whereas [18] uses a Brownian filtration, which is tantamount to “not

observing” the defaults as they occur, we use a Brownian filtration progressively enlarged by

the default times. Moreover, the construction and presentation of the model is completely

different from [18], where a structural approach is used. In our case we rely on a conditional

density approach as introduced in El Karoui et al. in [17]. An aside contribution of this

paper is thus to provide a concrete and workable example of a conditional density model.

The model of this paper can be used for dynamic valuation and hedging of counterparty
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risk on credit derivatives. This allows one to assess the related model risk by comparing

the CVA (Credit Valuation Adjustment accounting for the counterparty risk) computed in

this model with the one in the common shocks model of [7], on the benchmark problem of

counterparty risk on one CDS.

Section 2 presents the model. Section 3 deals with the pricing of CDS and CDO

tranches and examines the issue of hedging a CDO tranche by CDS, comparing this model

deltas with the static Gaussian copula bump-sensitivities. Section 4 applies this model to

CVA computations on credit derivatives.

2 Model

In this section, we introduce some notation that will be used all along the paper, and we

specify the model we are working with.

2.1 Exchangeable Gaussian distributions

Let us introduce some notation:

∙ I denotes a generic subset of N = {1, ..., n} with complement set J = N ∖ I and

cardinality ∣I∣,

∙ Φ (respectively �) is the standard Gaussian survival function (respectively density

function),

∙ Φ�,�((zj)j∈J) is the survival function evaluated at (zj)j∈J of a ∣J ∣-dimensional (�, �)-

exchangeable distribution, or distribution of ∣J ∣-dimensional centered Gaussian vector

with homogenous variances �2 and pairwise correlations �.

The exchangeable terminology stands in reference to the fact that Φ�,�((zj)j∈J) is invariant

by permutation of (zj)j∈J . The following straightforward result is the key of the static

Gaussian copula model [20].

Lemma 2.1. If (Zj)j∈J is (�, �)-exchangeable, then

(Zj , j ∈ J)
ℒ
= (�(

√
�Y +

√
1− �Yj), j ∈ J)

where (Y, Y1, . . . , Y∣J ∣) are i.i.d. standard Gaussian random variables.

Therefore

Φ�,�

(
(zj)j∈J

)
=

∫
ℝ

∏
j∈J

Φ(
zj − �

√
� y

�
√

1− �
)�(y)dy, (1)

∂zkΦ�,�

(
(zj)j∈J

)
=

∫
ℝ

−1

�
√

1− �
�(
zk − �

√
� y

�
√

1− �
)
∏

j∈J∖{k}

Φ(
zj − �

√
� y

�
√

1− �
)�(y)dy.

The following stability result of exchangeable distributions through conditioning compo-

nents by others belongs to the folklore of Gaussian distributions. Since this is key in this

paper, we provide a proof in Appendix A.1.

2



Lemma 2.2. If (Xl)l∈N is (%, 1)-exchangeable, then(
(Xj)j∈J ∣ (Xi)i∈I

) ℒ
= (�+ Zj)j∈J

where (Zj)j∈J is (�, �)-exchangeable, with

� =
%

∣I∣%+ 1
, �2 =

(∣I∣ − 1)%+ 1− %2∣I∣
(∣I∣ − 1)%+ 1

, � =
%
∑

i∈I Xi

(∣I∣ − 1)%+ 1
. (2)

2.2 Model of Default Times

One considers a probability space (Ω,F,ℙ) where F = (ℱt)t≥0 is the completed filtration

of an n-dimensional Brownian motion B = (B1, B2, . . . , Bn), whilst ℙ represents a pricing

measure chosen by the market. The components of B are mutually correlated with a

constant %, that is d⟨Bl, Bk⟩t = %dt for any two different indices l and k. For any l ∈ N ,

let ℎl be a differentiable increasing function from ℝ+ to ℝ with lim0 ℎl(s) = −∞ and

lim+∞ ℎl(s) = +∞. We define n random times (positive random variables) on (Ω,ℱ ,ℙ) by,

for every l ∈ N ,

�l = ℎ−1
l

( ∫ +∞

0
&(v)dBl

v

)
(3)

where &(⋅) is a square integrable function with unit L2-norm. So the �l jointly follow

a standard (static) Gaussian copula model [20] with correlation parameter % and with

marginal survival function Φ ∘ ℎl of �l. We denote �2(t) =
∫ +∞
t &2(v)dv, assumed positive

for every t (and �(0) = 1). Letting mt = (ml
t)l∈N with ml

t =
∫ t

0 &(v)dBl
v, we introduce for

fixed t the (%, 1)-exchangeable vector Xt = (X l
t)l∈N with

X l
t :=

1

�(t)

∫ +∞

t
&(v)dBl

v =
ℎl(�l)−ml

t

�(t)
;

Hence, for every real t, tl,

{�l > tl} =

{
X l
t >

ℎl(tl)−ml
t

�(t)

}
(4)

where ml
t is ℱt-measurable. Note that Xt is independent from ℱt. This allows one to derive

the following formula for the joint survival probability given ℱt, which at time 0 reduces to

the well-known Gaussian Copula formula [20].

Lemma 2.3. For every t and (tl)l∈N ,

ℙ(�l > tl, l ∈ N ∣ ℱt) =

∫
ℝ

n∏
l=1

Φ
(Φ−1

(
ℙ(�l > tl ∣ ℱt)

)
−√%y

√
1− %

)
�(y)dy > 0.

Proof. In view of (4) where Xt is (%, 1)-exchangeable and independent from ℱt, one gets

from (1) that

ℙ(�l > tl, l ∈ N ∣ ℱt) =

∫
ℝ

n∏
l=1

Φ
(ℎl(tl)−ml

t − �(t)
√
%y

�(t)
√

1− %

)
�(y)dy
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whereas by (4)

ℙ(�l > tl ∣ ℱt) = Φ(
ℎl(tl)−ml

t

�(t)
) > 0

in which the positivity results from �2(t) > 0.

For any I ⊆ N , we define the filtration GI = (GIt , t ≥ 0) as the initial enlargement of

F by the �i for i ∈ I, so

GIt = ℱt ∨
⋁
i∈I

�(�i ∧ t).

Note that this filtration is right-continuous by a straightforward multidefault extension of

the results of [1], and it is also complete since F is the completed filtration of B and the �i
are in ℱ∞.

Let �(I) = (�l(I))l∈N with �l(I) = �l1{l∈I}. Let also supp(�) = {l ∈ N : �l ∕= 0}, for

every � in ℝn+.

Lemma 2.4. For every bounded Borel function ' from ℝ∣J ∣ to ℝ, one has

E
[
'
(
ℎj(�j), j ∈ J

)
∣ GIt
]

= Γ'
(
t,mt, �(I)

)
in which for every s in ℝ+, m = (ml)l∈N in ℝn and � = (�l)l∈N in ℝn+

Γ'
(
s,m, �

)
= E

[
'
(
mj + �(s)(�+ Zj), j /∈ supp(�)

)]
where (Zj)j /∈supp(�) is (�, �)-exchangeable; In these expressions �, � and � are determined

as in (2) for I and Xi in (2) respectively given by supp(�) and ℎi(�i)−mi
�(s) , which we denote

henceforth

� = �(s,m, �), � = �(s,m, �), � = �(s,m, �) (5)

meaning that �, � and � are deterministic functions of (s,m, �). In particular

ℙ(�j > t, j ∈ J ∣ GIt ) = Φ�,�

(ℎj(s)−mj

�(s)
− �, j /∈ supp(�)

)
∣(s,m,�)=(t,mt,�(I)) > 0. (6)

Proof. By ℱt-measurability of mt, one has,

E['
(
ℎj(�j), j ∈ J

)
∣ GIt ]

= E['
( ∫ +∞

0
&(u)dBj

u, j ∈ J
)
∣ ℱt ∨

⋁
i∈I

�(�i)]

= E['
(
mj +

∫ +∞

t
&(u)dBj

u, j ∈ J
)
∣ ℱt ∨

⋁
i∈I

(ℎi(�i)−mi
t

�(t)

)
]∣
mj=m

j
t , j∈J

= E['
(
mj + �(t)Xj

t , j ∈ J
)
∣ ℱt ∨

⋁
i∈I

Xi
t ]∣mj=mjt , j∈J

which, by independence of the Xi
t from ℱt, boils down to

E['
(
mj + �(t)Xj , j ∈ J

)
∣ Xi, i ∈ I]∣

mj=m
j
t , j∈J

.

The result then follows by an application of Lemma 2.2. As a special case one gets (6),

where the positivity in the right-hand side results from �(t) > 0.
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The natural filtration F = (ℱt)t≥0 of B = (Bl)l∈N is used as a reference filtration. The

full model filtration G = (Gt)t≥0 is then defined as the progressive enlargement of F by the

�l, that is

Gt = ℱt ∨
⋁
l∈N

�(�l ∧ t).

Note that this filtration can be shown to be right-continuous by a combination of the

arguments of [1] and of the appendix1 of [3], see [16].

2.2.1 Conditional survival distribution

For pricing purposes, one needs to compute the conditional expectation of cash-flows given

the model information Gt. To this end we recall the following classical result (see page 143

of [6]) which is sometimes referred to as “the key lemma” in a single default credit risk

modeling framework: If X is an integrable random variable, then for every t

1{�>t}E[X∣Gt] = 1{�>t}
E(X1{�>t} ∣ ℱt)
ℙ(� > t ∣ ℱt)

.

The multidimensional counterpart of this result is stated in the following lemma. Let

�t = (�lt)l∈N with �lt = �l1{�l≤t}; let

It = {i ∈ N ∣ �i ≤ t} = supp(�t), resp. Jt = N ∖ It

denote the random set of the indices of the obligor in default, resp. alive, at time t, so for

every fixed I ⊆ N

{It = I} = {�i ≤ t, i ∈ I; �j > t, j ∈ J}. (7)

We also denote, for every random function ft of I

E(ft(It) ∣ GItt ) :=
∑
I⊆N

1{It=I} E(ft(I) ∣ GIt ). (8)

Lemma 2.5. For every integrable random variable X,

E[X ∣ Gt] =
E(X1{�j>t, j∈Jt} ∣ G

It
t )

ℙ(�j > t, j ∈ Jt ∣ GItt )
.

Proof. On the set {It = I}, any Gt-measurable random variable is equal to a GIt -measurable

random variable XI
t , so

E[1{It=I}X ∣ Gt] = 1{It=I}E[X ∣ Gt] = 1{It=I}X
I
t . (9)

Taking conditional expectation given GIt both sides and multiplying by {It = I}, one obtains

1{It=I}E[1{It=I}X ∣ G
I
t ] = 1{It=I}X

I
t E[1{It=I} ∣ G

I
t ]. (10)

1Available online, not present in the Mathematical Finance published version of the paper.
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By (7) where {�i ≤ t, i ∈ I} is GIt -measurable, (10) boils down to

1{It=I}E[1{�j>t, j∈J}X ∣ G
I
t ] = 1{It=I}X

I
t ℙ(�j > t, j ∈ J ∣ GIt ).

We saw in (6) that ℙ(�j > t, j ∈ J ∣ GIt ) > 0. One can thus substitute

1{It=I}
E[1{�j>t, j∈J}X ∣ GIt ]

ℙ(�j > t, j ∈ J ∣ GIt )

for 1{It=I}X
I
t in (9), which yields the result (in notation (8)).

In the following proposition, we compute the conditional survival probability of (�l)l∈N
defined by, for every positive t, tl,

Gt(t1, t2, . . . , tn) = ℙ(�1 > t1, �2 > t2, . . . , �n > tn ∣ Gt),

and in particular the individual pre-default conditional survival probability Glt(v) which

satisfies, for v ≥ t

ℙ(�l > v ∣ Gt) = 1{�l>t}G
l
t(v).

Recalling (5), let

�t, �t, �t = �, �, � (t,mt, �t).

We denote (the second equality arising from (6))

Dt := ℙ(�j > t, j ∈ Jt ∣ GItt ) = Φ�t,�t

((
Zjt (t)

)
j∈Jt

)
(11)

with for every j ∈ Jt and v ≥ t

Zjt (v) =
ℎj(v)−mj

t

�(t)
− �t.

Proposition 2.1. One has for every t and (tl)l∈N

DtGt(t1, t2, . . . , tn) = 1{�i>ti, i∈It}Φ�t,�t

((
Zjt (t ∨ tj)

)
j∈Jt

)
. (12)

and for every l and v ≥ t

DtG
l
t(v) = Φ�t,�t

(
Z lt(v),

(
Zjt (t)

)
j∈Jt∖{l}

)
(13)

with the abuse of notation that an argument
(
zl, (zj)j∈Jt∖{l}

)
of Φ is to be understood as a

∣Jt∣-dimensional vector (the ordering of the components does not matter by exchangeability

of the distributions Φ).

Proof. By Lemma 2.5, one has

Gt(t1, t2, . . . , tn) =
∑
I⊆N

1{It=I}
ℙ(�i > ti, i ∈ I; �j > t ∨ tj , j ∈ J ∣ GIt )

ℙ(�j > t, j ∈ J ∣ GIt )

=
∑
I⊆N

1{It=I}1{�i>ti, i∈I}
ℙ(�j > t ∨ tj , j ∈ J ∣ GIt )

ℙ(�j > t, j ∈ J ∣ GIt )

where by Lemma 2.4 the numerator ℙ(�j > t∨ tj , j ∈ J ∣ GIt ) equals Φ�t,�t

(
Zjt (t∨ tj), j ∈ J

)
and the denominator ℙ(�j > t, j ∈ J ∣ GIt ) equals Φ�t,�t

(
Zjt (t), j ∈ J

)
= Dt. This proves (12),

from which (13) follows by an application of (12) for tl = v ≥ t and tj = 0 for j ∕= l.
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That the “effective” Gaussian copula parameter �t reacts dynamically to defaults is a sign

of credit risk contagion, a realistic feature of a credit portfolio model.

2.3 Fundamental martingales

We denote by H l
t = 1{�l≤t} the ltℎ default indicator process.

2.3.1 Univariate case

Let us first consider the case n = 1 of one default time. We drop any index l = 1 in the

notation, e.g., �1 = �. The following result shows that our model is an example of a density

model in the sense of El Karoui et al. [17], as Equation (14) provides a continuous version

of the F-conditional density of � with respect to the Lebesgue measure on the half-line.

Lemma 2.6. The F-conditional density of � is given by, for every t and v in ℝ+,

ft(v) :=
ℙ(� ∈ dv ∣ ℱt)

dv
= �(

ℎ(v)−mt

�(t)
)
ℎ′(v)

�(t)
. (14)

Proof. In view of (4), the F-conditional survival probability of � is given as

Ft(v) = ℙ(� > v ∣ ℱt) = Φ(
ℎ(v)−mt

�(t)
)

which differentiates with respect to v into (14).

As Ft(v) ∕= Fv(v) for t > v, the reference filtration F is not immersed into the full

model filtration G. Also, under immersion, the Azéma supermartingale F of � would be

non-increasing in t, which cannot be in view of the right-hand side in the following equation

(15).

Lemma 2.7. Let F be the Azéma supermartingale of � , i.e., Ft = ℙ(� > t ∣ ℱt). The

dynamics of f(v) and F are

dft(v) = ft(v)�t(v)dBt, dFt = −ft(t)dt+ �tdBt (15)

with �t(v) = − (mt−ℎ(v))
�(t)

&(t)
�(t) and �t = �(mt−ℎ(t)

�(t) ) &(t)�(t) .

Proof. Noting that �′(x) = −x�(x), an application of Itô’s formula to the right-hand side

of (14) yields the left-hand side in (15); the right-hand side follows from the Itô-Ventcell

formula dFt = dtFt(v)∣t=v + dvFt(v)∣t=v.

An application of a result of Jeanblanc and Le Cam [19] (specified to the case of

a density model with F and f continuous) shows that every F-local martingale X̃ is a

G-special semimartingale with the following canonical decomposition:

X̃t = Xt +

∫ t∧�

0

d⟨X̃ , F ⟩u
Fu

+

(∫ t

t∧v

d⟨X̃, f(v)⟩u
fu(v)

)
∣v=�

(16)
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where X is a G-local martingale. In particular, the following G-canonical decomposition of

the F-Brownian motion B follows from (16):

Bt = Wt +

∫ t∧�

0

d⟨B ,F ⟩u
Fu

+

(∫ t

t∧v

d⟨B , f(v)⟩u
fu(v)

)
∣v=�

= Wt +

∫ t∧�

0

�u
Fu
du+

(∫ t

t∧v
�u(v)du

)
∣v=�

(17)

where W is a continuous G-martingale with the same predictable bracket t as the Brownian

motion B, hence a G-Brownian motion; and � and � were defined in Lemma 2.7.

Besides, by application of the results of Section 4 of [17], the G-compensated martingale

of the default indicator process Ht = 1{�≤t} is given by

Mt = Ht −
∫ t∧�

0
�vdv (18)

for a pre-default intensity of � given as �t = ft(t)
Ft
.

2.3.2 Portfolio case

In the portfolio case with an arbitrary number n of obligors, an immediate multi-default

extension of the results of Jeanblanc and Le Cam [19] shows that one has for every l a

G-Brownian motion and a compensated jump-to-default G-martingale of the form

W l
t = Bl

t −
∫ t

0
lvdv, M

l
t = H l

t −
∫ t∧�l

0
�lvdv;

Moreover the family of the W l and M l has the G-martingale representation property. We

denote by It−, resp. Jt−, the left-limit of It, resp. Jt (random set of obligors in default, resp.

alive, ”right before t”). By order set, we mean any subset of the state space ℝ+×ℝn×ℝn+
made of all the triplets (s,m, �) corresponding to a given support I of � and with the

components of � in I in a certain order (strict order, say, which is enough for our purpose

since there are no joint defaults in a Lebesgue-density model).

Proposition 2.2. (i) Denoting t = (lt)l∈N , �t = (�lt)l∈N , one has

t = (t,mt, �t), �t = �(t,mt, �t)

for Borel functions  and �, differentiable in m on every order set.

(ii) The following Itô formula holds, for every function u = u(s,m, �) of class C1,2 in (s,m)

du(t,mt, �t) = &(t)
∑
l∈N

∂mlu(t,mt, �t)dW
l
t +

∑
j∈Jt−

�ju(t,mt, �t−)dM j
t

+Au(t,mt, �t)dt (19)

where

Au = ∂su+ &
∑
l∈N

l∂mlu+
&2

2

⎛⎝∑
l∈N

∂2
m2
l
u+ %

∑
l,k∈N, l ∕=k

∂2
ml,mk

u

⎞⎠+
∑
l∈N

�l�lu
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and

�lu(s,m, �) = u(s,m, �l,s)− u(s,m, �)

in which �l,s stands for � with �l replaced by s.

(iii) The process (t,mt, �t) is G-Markov with generator A.

Proof. Part (i) follows from arguments similar to the ones developed in Cousin et al. [11].

The Itô Formula (19) in part (ii) is a standard Itô formula between the �l, amended in

the obvious way to account for the jumps of �t at the �l (which in this model cannot occur

simultaneously). This Itô formula where A is, by part (i), deterministic, implies the Markov

property of part (iii).

We refer the reader to [16] for explicit formulas for the functions (s,m, �) and �(s,m, �)

in the case of two obligors.

3 Valuation and hedging of credit derivatives

In this Section we address the issues of valuation and hedging of credit derivatives in the

above dynamized Gaussian copula setup. Note this is in a counterparty risk-free environ-

ment, so clean valuation and hedging in this sense, as opposed to the counterparty risky

setup of the next Section.

For notational convenience, we assume zero interest rates. The extension of the theo-

retical results to deterministic interest rates is straightforward but cumbersome notionally.

Deterministic interest rates r(t) will be used however in the numerical applications.

In a zero interest rates environment, the (ex-dividend) price process of an asset is

simply given by the risk neutral conditional expectation of future cash flows; The martingale

cumulative value process is the sum of the price process and of the cumulative cash-flows

process.

3.1 Pricing of a CDS

The cumulative cash-flow of a Credit Default Swap (CDS) on firm l with maturity T and

recovery Rl (assumed constant) is, assuming swapped and continuously paid fees,∫ T

0
(1−Rl)dH l

v −
∫ T∧�l

0
�ldv

where the constant �l represents the contractual spread.

Proposition 3.1. (i) The price process of a CDS on firm l is given as 1{�l>t}C
l
t for a

pre-default price

C lt = Cl(t,mt, �t) = (1−Rl)
(
1−Glt(T )

)
− �l

∫ T

t
Glt(v)dv (20)

where the explicit form of Glt(v) = Gl(v; t,mt, �t) is given in (13);

(ii) The dynamics of the cumulative price of a CDS on firm l is given as

9



dĈ lt = 1{�l>t}
[
&(t)

∑
k∈N

∂mkCl(t,mt, �t)dW
k
t + (1−Rl − Cl(t,mt, �t−)) dM l

t

+
∑

j∈Jt−∖{l}

�jCl(t,mt, �t−)dM j
t

]
. (21)

Proof. One has

1{�l>t}C
l
t = E[

∫ T

t
(1−Rl)dH l

v −
∫ T∧�l

t
�ldv ∣ Gt]

= (1−Rl)ℙ(t < �l ≤ T ∣ Gt)− �l
∫ T

t
ℙ(�l > v ∣ Gt)dv

= 1{�l>t}
[
(1−Rl)

(
1−Glt(T )

)
− �l

∫ T

t
Glt(v)dv

]
where the third equality follows from (13) and Glt(t) = 1. This proves part (i). Since

a cumulative price can be seen as the martingale component of a (special semimartingale)

price process, part (ii) immediately follows from part (i) by an application of the Itô-Markov

Formula (19) to process Cl(t,mt, �t).

3.2 Pricing of a CDO

We denote by Nv =
∑n

l=1 1{�l≤v} the number of defaults at time v (or cardinality of Iv).

The conditional distribution

Γℓt(v) = ℙ(Nv = ℓ ∣ Gt)

is the key in the pricing of CDO tranches. It can be computed thanks to the next lemma,

in which the cℓ can be efficiently computed for by standard recursive procedures (see, e.g.,

[2]).

Lemma 3.1. One has for every v ≥ t and ∣It∣ ≤ ℓ ≤ n

DtΓ
ℓ
t(v) =

∫
ℝ
cyℓ (v; t,mt, �t)�(y)dy =: Γℓ(v; t,mt, �t) (22)

where cyℓ (v; s,m, �) is the order (ℓ−∣It∣)-coefficient of the polynomial P y in x parameterized

by a real y (and its other arguments v and s,m, �) given as

P y(x, v; s,m, �) =
∏

j /∈supp(�)

(pyj (v)x+ qyj (v))

in which pyj (v) = pyj (v; s,m, �) and qyj (v) = qyj (v; s,m, �) are shorthand notation for

pyj (v) = Φ
(ℎj(s)−mj − �(s)�− �(s)�

√
�y

�(s)�
√

1− �
)
− Φ

(ℎj(v)−mj − �(s)�− �(s)�
√
�y

�(s)�
√

1− �
)

qyj (v) = Φ
(ℎj(v)−mj − �(s)�− �(s)�

√
�y

�(s)�
√

1− �
)

(23)

with �, � and � as in Lemma 2.4.
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Proof. An application of Lemma 2.5 yields

ℙ(Nv = ℓ ∣ Gt) =
∑
I⊆N

1{It=I}
ℙ
(
Nv = ℓ; �j > t, j ∈ J ∣ GIt

)
ℙ
(
�j > t, j ∈ J ∣ GIt

)
in which the denominator ℙ(�j > t, j ∈ J ∣ GIt ) is given by (11). For the numerator, setting

NJ
v =

∑
j∈J 1{�j≤v}, one has, on {It = I},

ℙ(Nv = ℓ; �j > t, j ∈ J ∣ GIt ) = ℙ(NJ
v = ℓ− ∣I∣; �j > t, j ∈ J ∣ GIt ).

Recalling (4), one can thus use Lemma 2.4, choosing ' such that

'
(
ℎj(�j), j ∈ J

)
= 1{NJ

v =ℓ−∣I∣; �j>t, j∈J}

in order to get

ℙ(NJ
v = ℓ− ∣I∣; �j > t, j ∈ J ∣ GIt ) = Γ'(v; t,mt, �t)

with

Γ'(v; s,m, �) = E
[
'
(
mj + �(s)Zj , j ∈ J

)]
= ℙ

(∑
j∈J

1{ℎj(s)<mj+�(s)�+�(s)Zj≤ℎj(v)} = ℓ− ∣I∣; ℎj(s) < mj + �(s)�+ �(s)Zj , j ∈ J
)

for some (�, �)-exchangeable (Zj , j ∈ J). We apply Lemma 2.1 to represent (Zj , j ∈ J) in

terms of an independent standard Gaussian vector (Y, Yj , j ∈ J), which yields with XY
j as

a shorthand for mj + �(s)�+ �(s)�(
√
�Y +

√
1− �Yj)

Γ'(v; s,m, �) = ℙ
(∑
j∈J

1{ℎj(s)<XY
j ≤ℎj(v)} = ℓ− ∣I∣; ℎj(s) < XY

j , j ∈ J
)

=

∫
ℝ
ℙ
(∑
j∈J

"yj = ℓ− ∣I∣
)
�(y)dy

where the random variables "yj are defined, for every real y,

"yj =

⎧⎨⎩
∞, Xy

j ≤ ℎj(s)
1, ℎj(s) < Xy

j ≤ ℎj(v)

0, Xy
j > ℎj(v).

so that ℙ(
∑

j∈J "
y
j = ℓ − ∣I∣) = cyℓ (v; s,mt, �) as introduced in the statement of the propo-

sition.

Assuming a common (and constant) recovery R on the n firms, the cumulative loss on

the portfolio at time t writes

Lt = (1−R)Nt.

The cumulative cash flow of a CDO tranche of maturity T, attachment point a, detachment

point b and contractual spread �, is given by∫ T

0
[�(b− a− La,bv )dv − dLa,bv ]

where the tranche cumulative loss process La,bt is given as

La,bt = (Lt − a)+ − (Lt − b)+ =: La,b(Nt).

11



Proposition 3.2. (i) The price process of a CDO tranche [a, b] is given by

Ca,bt := Ca,b(t,mt, �t) = �(b−a)(T−t)−
n∑

ℓ=Nt

La,b(ℓ)
(
�

∫ T

t
Γℓt(v)dv+Γℓt(T )

)
+La,b(Nt) (24)

for Γℓt(v) = ℙ(Nv = ℓ ∣ Gt) = Γℓ(v; t,mt, �t) as in (22).

(ii) The dynamics of the cumulative price of a CDO tranche [a, b] is given as

dĈa,bt = &(t)
∑
k∈N

∂mkCa,b(t,mt, �t)dW
k
t +

∑
j∈Jt−

�jCa,b(t,mt, �t−)dM j
t . (25)

Proof. One has

Ca,bt = E
[ ∫ T

t
[�(b− a− La,bu )dv − dLa,bv ] ∣ Gt

]
= �(b− a)(T − t)− �

∫ T

t
E[La,bv ∣ Gt]dv − E[La,bT ∣ Gt] + La,bt

where

E[La,bv ∣ Gt] = E[La,b(Nv) ∣ Gt] =

n∑
ℓ=∣It∣

La,b(ℓ)Γℓ(v; t,mt, �t),

which proves part (i), from which part (ii) follows as in the proof of Proposition 3.1.

3.3 Hedging CDO with CDS

In the dynamized Gaussian copula setup of this paper, one can consider the issue of dynamic

hedging of a CDO tranche by individual CDS, in various senses. Mimicking the pre-crises

market practice of hedging the spread risk of a CDO tranche (not caring about default

risk), one can thus get rid of the dW -exposures in (25) through suitable dynamic positions

in individual CDS (this was also one of the motivations of the related paper [18]). In view

of (21) and (25), until the first default in the portfolio, this objective is achieved by the

following row-vector �spdt of dynamic positions in CDS on all the names underlying the

tranche:

�spdt =
(
∂mCa,b(∂mC)−1

)
(t,mt, �t−) (26)

where C = (Cl)l∈N . In general these deltas are obtained by numerical solution of a linear

system. However at t = 0 this is a diagonal system so the numerical solution is elemen-

tary. These time-0 deltas will be found below very similar numerically to standard “static”

Gaussian copula bump-sensitivities. Note that after the first default time in the portfolio,

say �k, the matrix ∂mC becomes degenerate as the corresponding Ckt and its sensitivities

vanish, whereas dĈa,bt in (25) still depends on dW k
t ; So another non-redundant instrument

(e.g., another non-redundant CDS on one of the surviving names) must be substituted to

12



the CDS on the defaulted name if one wants to sustain a perfect hedge of the spread risk

of the tranche.

Alternatively, it is also possible to compute in our dynamized Gaussian copula setup

the min-variance deltas �vat which minimize the risk-neutral variance of the hedging error

(spread risk and jump-to-default risk altogether [5, 15, 12] as opposed to a focus on spread

risk only with �spdt ). Moreover for comparison we shall also compute min-variance deltas in

the dynamized Marshall-Olkin copula model of [5]. DGC and DMO will be used as acronyms

for dynamized Gaussian copula (the model of this paper) and dynamized Marshall-Olkin

(the model of [5]). Note that a DGC model can only be fitted to one tranche quote at a time

(as it has a unique correlation parameter %), whereas a DMO model has a richer dependence

structure which can be jointly fitted to all the tranches. A DGC model is sufficient to deal

with, for instance, counterparty risk (see Section 4) on CDS, but a DMO setup is necessary

for the calibration sake if CDO tranches are also present in the portfolio.

We shall use, as a common data set for all deltas, the North American CDX 17 De-

cember 2007 data set, a set of credit data on 125 underlying credit names, including [0-3%],

[3-7%], [7-10%], [10-15%] and [15-30%] CDO tranches market quotes. This data set was

already used for numerical purposes in the dynamized Marshall-Olkin setup of [5], which

will make it possible to draw comparisons between DGC and DMO results. We refer the

reader to [10] for the classical notions of compound correlation and base correlation of a

CDO tranche. The notion of base correlation is an alternative to the compound correla-

tion for cases in which the latter is not well-defined, as happens on our data set with the

junior-mezzanine tranche 3%-7%; See Figure 1.

To sum-up, we shall discuss the following notions of deltas of a CDO tranche with

respect to individual CDS on all or part of the credit names underlying a CDO tranche,

all these deltas being calibrated (in the sense implied by their respective definitions) to the

same data set of CDX 17 December 2007:

∙ Market compound (resp. base) spread deltas: Static Gaussian copula bump-sensitivities

for a level of the static Gaussian copula correlation parameter equal to the compound

(resp. base) correlation of the tranche;

∙ DGC compound spread deltas: Time-0 values of the dynamic deltas in the sense of

(26) for a level of the DGC correlation parameter % equal to the compound correlation

of the tranche;

∙ DGC compound min-variance deltas: Time-0 values of the dynamic deltas which

minimize the risk-neutral variance of the hedging error in a DGC model, for a level of

the DGC correlation parameter % equal to the compound correlation of the tranche;

∙ DMO min-variance deltas: Time-0 values of the dynamic deltas which minimize the

risk-neutral variance of the hedging error in a DMO model jointly calibrated to all

the tranches and to all the CDS which are used as hedging instruments.

These deltas are computed using semi-explicit formulas for the ∂mkCl(s,m, �) and ∂mkCa,b(s,m, �)

which are derived in Subsections A.2 and A.3.
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The left panel of Figure 2 displays the DGC and the market compound spread deltas

for all individual CDS (x-axis) and CDO tranches (y-axis), except the junior mezzanine

tranche 3%-7% with undefined compound correlation on these data (cf. Figure 1). For

every tranche the DGC and the market compound spread deltas are found very similar

numerically (the two delta curves are essentially superposed for each tranche). This means

in particular that as also found in [18], the practical notion of market compound spread

deltas can be related to a sound dynamic definition, in the sense of the DGC compound

spread deltas.

For comparison the right panel of Figure 2 also displays the market base spread deltas

for all tranches. As opposed to the previous notions of deltas, these are only ad-hoc bump-

sensitivities which cannot be related to a sound dynamic approach; but they still provide a

possible hedge for the junior-mezzanine tranche 3%-7% with undefined compound correla-

tion. Except for the equity tranche, there is a significant difference between the (DGC or

market) compound (left panel) and base (right panel) spread deltas.

Figure 3 displays the DGC compound min-variance deltas for the various tranches

other than junior-mezzanine, and for portfolios of hedging CDS comprising respectively all

the 125 underlying names, the 61 riskiest names and the 64 safest names (safest and riskiest

in the sense of the corresponding CDS spreads at time 0; in [5] the 61 riskiest names are

used for technical reasons which are explained in the paper, which is the reason why we also

display the deltas on the 61 riskiest names here and the ones in the complement set of the

64 safest names, for comparison purposes). The corresponding (DGC or market) compound

spread deltas are also displayed on the same graphs. For all tranches there are significant

numerical differences between these different notions of deltas, as one would expect.

In the case of the junior-mezzanine tranche 3%-7% with undefined compound corre-

lation, there is no consistently calibrated notion of DMO deltas on these data; Figure 4

displays instead the corresponding static market base correlation spread deltas, as well as

the dynamic DMO min-variance deltas based on the portfolio of the 61 riskiest names in

the portfolio at time 0, where the DMO model is jointly calibrated to these 61 names and

to all the five years CDO tranches at time 0 (see [5]). These two notions of deltas show

quite different patterns.

4 Counterparty risk

We now consider a credit derivative (which could also be a portfolio of contracts) with

maturity T between a bank and a defaultable counterparty with default time �. We denote

by �̄ = � ∧ T the effective time horizon of the problem, as there will be no cash-flows after

it. Our goal is to assess the price-and-hedge correction accounting for counterparty risk

with respect to a so-called “clean” price-and-hedge of the contract disregarding this risk.

Remark 4.1. In this paper where our main object is to understand the mathematical

structure of the dynamized Gaussian copula, we disregard the default risk of the bank,

assuming it risk-free for simplicity. In nowadays market environments banks are of course

14



Figure 1: CDX 17 December 2007 – Left : Compound correlation (undefined on these data

for the junior mezzanine tranche 3%-7%). Right : Base correlation (all tranches).

Figure 2: CDX 17 December 2007 – Left : DGC compound spread deltas versus market

compound deltas (undefined on these data for the junior mezzanine tranche 3%-7%). Right :

Market base deltas (all tranches).
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Figure 3: CDX 17 December 2007 – DGC compound min-variance deltas versus DGC (very

close to market) compound spread deltas (all tranches except junior mezzanine for which

the compound correlation is undefined on this data set).
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Figure 4: [Right panel drawn from [5]] CDX 17 December 2007 – Junior mezzanine deltas.

not default-free and one should take a bilateral counterparty risk perspective. A companion

issue is then the cost of funding, as it does not make sense to assume that a default-risky

bank can lend and borrow cash at a common and locally risk-free rate rt (set to zero for even

greater simplicity in this paper). The interaction between counterparty risk and funding

induces some nonlinearities (see [13, 14]), which in the high-dimensional case of portfolio

credit derivatives make it very challenging computationally. Extension of the results of

this section to bilateral counterparty risk under funding constraints will be considered in a

follow-up work.

In the unilateral counterparty risk setup of this paper, the counterparty risk correction to

the contract’s value, known as Credit Valuation Adjustment (CVA) (see [4, 9]), boils down

to the process Θ given on [0, �̄ ] as

Θt = E
[
1�<T �

∣∣Gt] (27)

for a G� -measurable exposure � defined as

� = (1−R0)�+ (28)

in which R0 is the recovery rate of the counterparty and � represents the algebraic “debt”

� of the counterparty to the bank at time �, in the sense of

� = P� + (D� −D�−)− Γ� , (29)

where:

∙ P� is the clean value of the contract at � ;

∙ D� −D�− represents a contractual promised cash flow at time � ;
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– For instance, assuming CDS protection on firm one sold to the bank by the

counterparty, this cash flow would correspond to a CDS protection payment due

to the bank by the counterparty in case of a joint default of the counterparty

and firm one at � ;

∙ Γ� is the value of the margin account at �, representing the cumulative collateral

posted by the counterparty to the bank in order to mitigate counterparty risk.

The reader is referred to [4] for more details, and for the derivation of the CVA process (27)

as the output of some computation rather than as a definition for simplicity of presentation

in this paper. Also note that this definition implicitly assumes that the valuation Q of the

contract by the liquidator at the time of default of the counterparty, is a clean valuation

Q = P (see [4]).

In view of (27)-(29), the CVA appears as essentially an option on the clean value of

the contract at time �. In order to compute the CVA one therefore needs a dynamic and

tractable model for Pt. Toward this end we use a dynamized Gaussian copula (DGC) model

of the default times (�0 = �, �1, . . . , �n) =: (�l)l∈N of the counterparty and of the reference

names underlying the credit derivative. Since there are no joint default in this model one

can assume here that the contract promises no cash-flow at � (as opposed to the situation

of the dynamized Marshall-Olkin model of [5] which is used in this paper for comparison

purposes in Subsection 3.3 and Subsubsection 4.1.2). So in a DGC setup, one has that

D�− = D� and � in (28)-(29) reduces to

� = (1−R0)(P� − Γ� )+

in which a constant recovery R0 is postulated for simplicity. The G-Markov property of

(t,mt, �t) with generator A then implies the following pricing equations for the CVA.

Proposition 4.1 (CVA linear BSDE/PDE). If Pt = P (t,mt, �t) and Γt = Γ(t,mt, �t), then

Θt = Θ(t,mt, �t) where Θt satisfies the following linear CVA BSDE: Θ�̄ = 1�<T � and for

t ∈ [0, �̄ ]

dΘt = &(t)
∑
l∈N

∂mlΘ(t,mt, �t)dW
l
t +

∑
j∈Jt−

�jΘ(t,mt, �t−)dM j
t . (30)

An equivalent linear CVA PDE with generator A holds in Θ = Θ(s,m, �).

Note that from the results of Section 3, the assumption Pt = P (t,mt, �t) in this proposition

is met for every CDS, CDO tranche, or (by linearity) for every portfolio of CDS and CDOs

(in practice the CVA has to be computed at the level of netted portfolios); One also has Γt =

Γ(t,mt, �t) in the “extreme” cases of no (Γ = 0) or continuous (Γ = P ) collateralization.

Regarding the latter, note however that accounting for the delay in setting the collateral

in response to market moves, continuous collateralization cannot (and would not even if it

could, for operational cost reasons) be implemented in practice. As will be developed in a

follow-up work, more realistic cases of path-dependent collateralization can be considered

by augmentation of the state space, treating in particular the collateral process Γ as an

additional factor.
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Equation (30) implies that the CVA exposure 1�<T � at �̄ can be dynamically replicated

by using 2n+2 non-redundant hedging instruments, plus a funding riskless (constant) asset.

Of course in practice people would more realistically hedge of a selection of risk factors.

Specific hedging schemes can be implemented on the basis of the linear BSDE (30) or of the

equivalent PDE. A CDS on the counterparty can thus be used by the bank for hedging her

CVA exposure at time � (with a hedging CDS clean of counterparty risk and rolled-over in

time, as in [4]). However for large n (like with a CDO tranche) the CVA BSDE/PDE are

untractable numerically due to the curse of dimensionality. Even the data in these equations

become very involved due to the combinatorial structure of the coefficients  and � in the

generator A. As a consequence, a Monte-Carlo computation of the CVA based on (27) (for

t = 0) seems to be the only feasible computational procedure.

4.1 Numerics

To conclude this paper, we provide some results regarding the CVA on a CDS computed

in the dynamized Gaussian copula (DGC) model. We shall also give comparative results

obtained in the dynamized Marshall-Olkin (DMO) model of [7], which will point out to the

issue of CVA model risk.

The following results are derived for �0 and �1 given as exponential random variables

with constant parameters �̄0 and �̄1 (which in the real-life should be calibrated to the

related CDS market spreads). Moreover, one uses a function &(⋅) in (3) constant before T.

We shall see below that the number√∫ T

0
&2(u)du = &(0)

√
T ∈ [0, 1]

(since the L2-norm of the function &(⋅) is one) can then be interpreted as a volatility param-

eter (also depending on T ), which is denoted by %(T ) (to be understood as “the proportion

of the volatility of
∫ +∞

0 &(t)dB1
t before T”).

4.1.1 Spread volatilities

Since the CVA on a CDS is an option on the clean value of the CDS, an important driver

of this CVA is the volatility of CDS spreads. We shall now assess this volatility in terms of

CDS option implied volatilities. A CDS (call) option with maturity Ta on name one gives

the investor the right to enter at Ta a payer CDS on name one with contractual spread �1

and termination time Tb > Ta. As explained in [8], the corresponding price process is given

by

Ot = E
[
1{�1>Ta}

(
C1
Ta

)− ∣ Gt] (31)

in which C1
t stands for the time-t pre-default value of the underlying CDS. A CDS option is

typically quoted on the market in terms of its Black implied volatility Σt, defined (at time

0) through the following identity, in which F 1 denotes the forward (Ta, Tb)-CDS swap rate

process on name one

O1
0 =

(∫ Tb

Ta

ℙ(�1 > u)du

)(
F 1

0 Φ(d+)− �1Φ(d−)
)

(32)
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with

d± =
ln(F 1

0 /K)

Σ0

√
Ta
± Σ0

√
Ta

2

(see Brigo [8] for details regarding the Black model of a CDS forward swap rate). In the

DGC model with two names 0 and 1, we compute the price O0 of the option by Monte

Carlo simulation based on Formula (31) at time 0, in which by (20)

C1
Ta =

[
(1−R1)

(
1−G1

Ta(Tb)
)
− S1

∫ Tb

Ta

G1
Ta(u)du

]
where G1 is given by Formula (13) (here with two names).

We set Ta = 3 years, Tb = 10 years, R1 = 40%, �1 = �̄1(1 − R1), and use a constant

level of risk-free interest rates r = 5% (with the obvious amendments to all the formulas

in case of a non-null but constant funding rate r). For a Gaussian copula correlation

parameter % = 40%, Figure 5 shows the prices (left panel) and the corresponding implied

volatilities (right panel) of the option as %(Ta) varies from 0 to 1, and for four values

0.0083, 0.0125, 0.0167 and 0.0250 of the intensities �̄1, corresponding for the chosen recovery

of 40% to respective credit spreads of 50, 75, 150 and 200 basis points. The prices O0 are

computed by Monte Carlo simulation based on 5000 scenarios and the implied volatilities

are deduced from the prices by numerical solution of (32) in Σ0. The profile of the implied

volatility on the right panel justifies the interpretation of the quantity %(Ta) = &(0)
√
Ta as

a volatility parameter. The range of implied volatilities obtained as %(Ta) varies from 0 to

1 is very wide, from a few percents to more than 200% of implied volatility. The implied

volatility is slightly decreasing in �̄1, a feature that was already observed in the DMO setup

of [7]. As visible on Equation (21), due to absence of immersion in a DGC model, the

dynamics of the price of the CDS depend not only on the underlying name 1, but also on

name 0 which is present as well in the model. However one expects intuitively that the

impact of name 0 should be rather limited quantitatively. This is confirmed on Figure 6

which shows the prices (left panel) and the corresponding implied volatilities (right panel)

of the option as %(Ta) varies from 0 to 1, for �̄1 fixed to 0.167 (corresponding to a credit

spread �1 of 100 basis points) and for three values 10%, 40% and 70% of the Gaussian copula

correlation parameter %; The three curves corresponding to the three different values of %

are quite close to each other.

4.1.2 CVA

Having checked that the model is adequately responsive in terms of volatility of CDS

spreads, we now show on the left panel of Figure 7 the CVA on the CDS computed by

Monte Carlo simulation based on Formula (27) at time 0 using the same values of the

parameters as before and 105 scenarios. The CVA at time 0 is shown for a level of the

Gaussian correlation parameter % increasing from 0 to 1, for a fixed �̄1 = 0.0140 (corre-

sponding through the assumed recovery R1 = 40% to a credit spread �1 of 84 basis points).

Moreover the right panel of Figure 7 shows the values of the CVA in the DMO setup of

[7, 5] calibrated to the same data. In a DMO setup, dependence between names mostly

stems from the possibility of joint defaults. In the context of counterparty risk on credit
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Figure 5: DGC price (left; Monte Carlo with 5000 scenarios) and corresponding implied

volatilities (right) of CDS options on name one for four values of �̄1 as %(Ta) varies from 0

to 1 (contractual spread of the underlying CDS �1 = (1−R1)�̄1 with R1 = 40%, correlation

parameter % = 40%).

Figure 6: DGC price (left, Monte Carlo with 5000 scenarios) and corresponding implied

volatilities (right) of CDS options on name one for a contractual spread of the underlying

CDS for three values of %% as %Ta varies from 0 to 1 (contractual spread of the underlying

CDS �1 = (1 − R1)�̄1 = (1 − 40%) × 0.167 = 100 basis points, correlation parameter

% = 40%).

21



Figure 7: CVA0 versus % for �̄1 = 0.0140 (credit spread �1 = 84 basis points) in the DGC

(left) vs DMO (right) models.

derivatives, the possibility of joint defaults between the counterparty and the underlying

names of a reference contract, is a factor of strong wrong-way risk (adverse dependence

between the exposure � and the default time of a party). Regarding for instance counter-

party risk on a CDS, it makes it possible that the default time of the counterparty coincides

with that of the name underlying the CDS, which impacts the bank at a very high level of

exposure (corresponding to the protection payment non paid by the counterparty). From a

mathematical point of view this corresponds to the fact that in a model with joint defaults

the (D� −D�−)-term can be non-zero and in fact very large in (27)-(29). So, even though

the two graphs of Figure 7 represent CVAs computed in models calibrated to the same data,

the levels of CVA in the DMO setup of [7] are significantly (up to about twice) higher than

in the DGC model of this paper. This illustrates the dynamic and optional flavor of the

CVA and gives an idea of the high level of related model risk.
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A Appendix

A.1 Proof of Lemma 2.2

Proof. Let in vector form XI := (Xi)i∈I and XJ := (Xj)j∈J with covariance matrix of(
XI

XJ

)
denoted

(
RI RTJ,I
RJ,I RJ

)
. The conditional distribution of XJ given XI is well

known to be N
(
RJ,IR

−1
I XI , RJ −RJ,IR−1

I RTJ,I

)
. Denoting by 1l (resp. 1l×k) the l-

dimensional vector (resp. l× k-matrix) whose entries are all equal to 1, and by Rl(x, y) the

l × l-matrix ⎛⎜⎜⎜⎜⎝
x y ⋅ ⋅ ⋅ y

y
. . .

. . .
...

...
. . .

. . . y

y ⋅ ⋅ ⋅ y x

⎞⎟⎟⎟⎟⎠ ,

one first has for the mean that

RJ,IR
−1
I XI = %1∣J ∣×∣I∣R

−1
∣I∣ (1, %)(Xi)i∈I

= %1∣J ∣×∣I∣R∣I∣(a, b)(Xi)i∈I

= m1∣J ∣

where R−1
∣I∣ (1, %) = R∣I∣(a, b) with

a = − −(∣I∣ − 2)%+ 1

(∣I∣ − 1)%2 + (2− ∣I∣)%− 1
, b =

%

(∣I∣ − 1)%2 − (∣I∣ − 2)%− 1

and

m =
(%2 − %)

∑
i∈I Xi

(∣I∣ − 1)%2 + (2− ∣I∣)%− 1
=

%
∑

i∈I Xi

(∣I∣ − 1)%+ 1
.

For the variance one has likewise that

RJ −RJ,IR−1
I RTJ,I = R∣J ∣(1, %)− %1∣J ∣×∣I∣R−1

∣I∣ (1, %)%1∣I∣×∣J ∣

= R∣J ∣(1, %)− ∣I∣%2

(∣I∣ − 1)%+ 1
1∣J ∣×∣J ∣

= �2R∣J ∣(1, �)

where �2 = (∣I∣−1)%+1−%2∣I∣
(∣I∣−1)%+1 and � = −%3+2%2−%

(∣I∣−1)%2+(2−∣I∣)%−1
= %
∣I∣%+1 .

In the remaining subsections, we compute the functions ∂mkCl(s,m, �) and ∂mkCa,b(s,m, �)

for any (s,m, �). We use the notation introduced in (11),(12), (13) and (22), omitting

the argument (s,m, �) everywhere for the sake of readability. Observe that Zjt (v) =

Zj(v; t,mt, �t), Dt = D(t,mt, �t), Γℓt(v) = Γℓ(v; t,mt, �t), G
l
t(v) = Gl(v; t,mt, �t). We

also denote

Z lt(v) :=
(
Z lt(v),

(
Zjt (t)

)
j∈Jt∖{l}

)
= Zl(v; t,mt, �t)
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A.2 Semi-explicit formula for the gradient of a CDS pricing function

In the next proposition, we derive a semi-explicit formula for the sensitivities ∂mkCl(s,m, �)

which intervene in the dynamics of the CDS pre-default price in Proposition 3.1(ii).

Proposition A.1. One has for every k, l ∈ N and (s,m, �)

∂mkCl = −1{�k=0}

(
(1−Rl)Lk(T ) + �l

∫ T

s
Lk(v)dv

)
− 1{�k ∕=0}

(
(1−Rl)LI(T ) + �l

∫ T

s
LI(v)dv

)
where I = supp(�) and for every v, with also J = N ∖ I

Lk(v) = − 1

�(s)D2

(
D∂zkΦ�,�

(
Zl(v)

)
− Φ�,�

(
Zl(v)

)
∂zjD

))
LI(v) = − %

�(t)D2

1

(∣I∣ − 1)%+ 1

(
D
∑
j∈J

∂zjΦ�,�

(
Zl(v)

)
− Φ�,�

(
Zl(v)

)∑
j∈J

∂zjD
))
.

Proof. Recalling from (20) that Cl = (1 − Rl)
(
1 − Gl(T )

)
− �l

( ∫ T
s Gl(v)dv

)
with Gl(v) =

Φ�,�

(
Zl(v)

)
/D, we compute

∂mkΦ�,�

(
Zl(v)

)
= −1{�k=0}

1

�(s)
∂zkΦ�,�

(
Zl(v)

)
−1{�k ∕=0}

%

�(s)

1

(∣I∣ − 1)%+ 1

∑
j∈J

∂zjΦ�,�

(
Zl(v)

)
∂mkD = ∂mkΦ�,�

((
Zj(s)

)
j∈J

)
= −1{�k=0}

1

�(s)
∂zkΦ�,�

((
Zj(s)

)
j∈J

)
−1{�k ∕=0}

%

�(s)

1

(∣I∣ − 1)%+ 1

∑
j∈J

∂zjΦ�,�

((
Zj(s)

)
j∈J

)
, (33)

since ∂mjZl(v) = −1
�(s) and ∂miZl(s) = − %

�(s)
1

(∣I∣−1)%+1 , for any v, j ∈ J, i ∈ I . The result

then follows from ∂mkGl(v) = 1{�k=0}Lk(v) + 1{�k ∕=0}LI(v).

A.3 Semi-explicit formula for the gradient of a CDO pricing function

In this subsection we derive a semi-explicit formula for the sensitivities ∂mkCa,b(s,m, �)

which intervene in the dynamics of the CDO price in Proposition 3.2(ii). For ∣I∣ ≤ ℓ ≤ n,

the order (ℓ− ∣I∣)-coefficient of the polynomial P y(x, v) in x, denoted by

cyℓ (v) = ∂
ℓ−∣I∣
xℓ−∣I∣

P y(x, v)∣x=0
/(ℓ− ∣I∣)! ,

is the core term in Ca,b(s,m, �). In order to compute ∂mkc
y
ℓ (v), we introduce P y,l(x, v) =∏

j∈J∖{l}
(
pyj (v)x+qyj (v)

)
with order (ℓ−1−∣I∣)-coefficient cy,lℓ−1(v), in which conventionally

cy,l∣I∣−1(v) equals 0. We also denote ℎyj (v) =
ℎj(v)−mj−�(s)�−��(s)

√
�y

��(s)
√

1−� .
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Lemma A.1. One has, for any k ∈ N and ℓ ≥ ∣I∣,

∂mkc
y
ℓ (v)

= 1{k∈J}
−1

��(s)
√

1− �

{
− cy,kℓ (v)�

(
ℎyk(v)

)
+ cy,kℓ−1(v)

(
�
(
ℎyk(v)

)
− �

(
ℎyk(s)

))}
+ 1{k∈I}

−%
��(s)

√
1− �

(
(∣I∣ − 1)%+ 1

)∑
j∈J

{
− cy,jℓ (v)�

(
ℎyj (v)

)
+ cy,jℓ−1(v)

(
�
(
ℎyj (v)

)
− �

(
ℎyj (s)

))}
.

Proof. It is straightforward to compute from (23)

∂mkp
y
j (v) =

(
�
(
ℎyj (v)

)
− �

(
ℎyj (s)

))(
1{k=j}

−1

��(s)
√

1− �
− 1{k∈I}

−%
��(s)

√
1− �((∣I∣ − 1)%+ 1)

)
,

∂mkq
y
j (v) = −�

(
ℎyj (v)

)(
1{k=j}

−1

��(s)
√

1− �
− 1{k∈I}

−%
��(s)

√
1− �

(
(∣I∣ − 1)%+ 1

)) . (34)

Then, by the definition of P y(x, v), one has that

(ℓ− ∣I∣)!∂mkc
y
ℓ (v) = ∂mk

(
∂
ℓ−∣I∣
xℓ−∣I∣

P y(x, v)
)
∣x=0

= ∂
ℓ−∣I∣
xℓ−∣I∣

(
∂mkP

y(x, v)
)
∣x=0

= ∂
ℓ−∣I∣
xℓ−∣I∣

(
∂mk

(∏
j∈J

(
pyj (v)x+ qyj (v)

)))
∣x=0

= ∂
ℓ−∣I∣
xℓ−∣I∣

(∑
j∈J

P y,j(x, v)∂mk
(
pyj (v)x+ qyj (v)

))
∣x=0

=
∑
j∈J

∂
ℓ−∣I∣
xℓ−∣I∣

(
P y,j(x, v)∂mk

(
pyj (v)x+ qyj (v)

))
∣x=0

= (ℓ− ∣I∣)!
∑
j∈J

(
cy,jℓ−1(v)∂mkp

y
j (v) + cy,jℓ (v)∂mkq

y
j (v)

)
.

The result follows by plugging (34) into the last equality.

Proposition A.2. One has for every k ∈ N and s,m, �

∂mkCa,b = −1{�k=0}

(
�

∫ T

s

n∑
ℓ=∣I∣

La,b(ℓ)L
ℓ
k(v) dv +

n∑
ℓ=∣I∣

La,b(ℓ)L
ℓ
k(T )

)

−1{�k ∕=0}

(
�

∫ T

s

n∑
ℓ=∣I∣

La,b(ℓ)L
ℓ
I(v)dv +

n∑
ℓ=∣I∣

La,b(ℓ)L
ℓ
I(T )

)
where I = supp(�) and for every l, v, with also J = N ∖ I,

Lℓk(v) =
−1

D��(s)
√

1− �

∫
ℝ
dy�(y)

(
− cy,kℓ (v)�

(
ℎyj (v)

)
+ cy,kℓ−1(v)

(
�
(
ℎyj (v)

)
− �

(
ℎyj (s)

)))
+

1

D
Γℓ(v)

−1

�(s)
∂zjΦ�,�

(
(Zj(v))j∈J

)
LℓI(v) =

%

D��(s)
√

1− �
(
%(∣I∣ − 1) + 1

)∑
j∈J

∫
ℝ
�(y)dy

(
− cy,jℓ (v)�

(
ℎyj (v)

)
+ cy,jℓ−1(v)

(
�
(
ℎyj (v)

)
−�
(
ℎyj (s)

)))
+

Γℓ(v)

D

( %

�(s)

1

(∣I∣ − 1)%+ 1

∑
j∈J

∂zjΦ�,�

(
(Zjv(v))j∈J

))
.
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Proof. By the definition of the CDO value process in (24), one has

∂mkCa,b = −
n∑

ℓ=∣I∣

La,b(ℓ)
(
�

∫ T

s
∂mkΓℓ(v)dv + ∂mkΓℓ(T )

)
.

Since Γℓ(v) =
∫
ℝ c

y
ℓ (v)�(y)dy/D, therefore ∂mkΓℓ(v) = 1

D∂mk
∫
ℝ c

y
ℓ (v)�(y)dy− 1

DΓℓ(v)∂mkD

where ∂mkD has been computed in (33) and from Lemma A.1

∂mk

∫
ℝ
cyℓ (v)�(y)dy =

∫
ℝ
∂mkc

y
ℓ (v)�(y)dy

= 1{k∈J}
−1

��(s)
√

1− �

∫
ℝ
dy�(y)

{
− cy,kℓ (v)�

(
ℎyk(v)

)
+ cy,kℓ−1(v)

(
�
(
ℎyk(v)

)
− �

(
ℎyk(s)

))}
+ 1{k∈I}

−%
��(s)

√
1− �

(
(∣I∣ − 1)%+ 1

) ∫
ℝ
dy�(y)

∑
j∈J

{
− cy,jℓ (v)�

(
ℎyj (v)

)
+cy,jℓ−1(v)

(
�
(
ℎyj (v)

)
− �

(
ℎyj (s)

))}
.

The results then follows from the fact that ∂mkΓℓ(v) = 1{k∈J}L
ℓ
k(v) + 1{k∈I}L

ℓ
I(v) .
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