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Abstract

We study a BSDE with random terminal time that appears in the modeling of
counterparty risk in finance. We proceed by reduction of the original BSDE into a
simpler BSDE posed with respect to a smaller filtration and a changed probability
measure. This is done under a relaxation of the classical immersion hypothesis, stated in
terms of the changed probability measure, of which we characterize the Radon-Nikodym
derivative. Our study reveals the importance of a new class of so-called invariant times
that we characterize in terms of their Azéma supermartingale.
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1 Introduction

We study a BSDE with random terminal time ϑ = T ∧θ, where T is a positive constant and
the stopping time θ has an intensity. As developed in the companion papers by Crépey and
Song (2014a, 2014b) (following up on Crépey (2012)), this BSDE is key to the modeling
of counterparty risk in finance (see Brigo, Morini, and Pallavicini (2013) for general coun-
terparty risk references and Crépey, Bielecki, and Brigo (2014) for a more mathematical
perspective). But this BSDE comes in a rather unusual form. Our approach in this work
is to reduce the problem to simpler BSDEs relative to a smaller filtration and a possibly
changed probability measure. Moreover, we want to achieve this under minimal assumptions
on θ, so that the model stays as flexible and can fit as many counterparty risk scenarios and
features as possible (notably bilateral counterparty risk and the related nonlinear funding
issue, wrong-way risk and gap risk). This leads us to introduce and study a new class of so-
called invariant times that appear in the follow-up papers Crépey and Song (2014a, 2014b)
as the appropriate notion to model an arbitrary nature and level of dependence between the
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Fédération Bancaire Française.
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reference filtration and the default time θ (as opposed to the weak or indirect dependence
that would be implied by a basic immersion setup).

The paper is organized as follows. Sect. 2 deals with the compensator of ϑ and measur-
ability issues in relation with a single step martingale that corresponds to the compensation
of a jump process associated with the terminal condition of our BSDE. In Sect. 3, the orig-
inal BSDE is rewritten in terms of an auxiliary BSDE with solution continuous at ϑ. The
two BSDEs are posed with respect to a common stochastic basis (Ω,G,Q). After revisiting
the Barlow-Jeulin-Yor theory under a condition (B) relative to a subfiltration F of G, Sect. 4
reduces the auxiliary (G,Q) BSDE with random terminal time ϑ to an (F,Q) BSDE with a
null terminal condition at the fixed time T . Next, an even simpler (F,P) BSDE is obtained
under an additional condition (A) on a changed probability measure P. In Sect. 5 invariant
times are introduced and studied based on a characterization of the condition (A) in terms
of the Radon-Nikodym density dP

dQ and of the Azéma supermartingale S of θ.

1.1 Standing Assumptions and Notation

We work on a space Ω equipped with a σ-field B, with a probability measure Q on B and
with a filtration G = (Gt)t∈R+ of sub-σ-fields of B, satisfying the usual conditions. We
use the terminology of the general theory of processes and of filtrations as given in the
books by Dellacherie and Meyer (1975) and He, Wang, and Yan (1992). In particular,
we use the notions of predictable and optional processes, and of predictable and optional
projections and dual projections (or compensator, in case of the dual predictable projection
of a finite variation adapted process). Sometimes we say projection of a stopping time τ for
projection of its indicator process 1[τ,∞). As also implicit in all these notions of projections,
we work with the notion of generalized conditional expectation that is applicable to any
locally integrable random variable (see Sect. I.4 in He, Wang, and Yan (1992)). We denote
by P(F) and O(F) the predictable and optional σ-fields with respect to a filtration F. All
semimartingales are taken in a càdlàg version. For any semimartingale Y and predictable
Y -integrable process L, the stochastic integral process of L with respect to Y is denoted by
L �Y (with the usual precedence convention KL �Y = (KL) �Y , if K is another predictable
Y -integrable process). For any càdlàg process Y , for any random time (nonnegative random
variable) τ , we write ∆τY for the jump of Y at τ (with the convention ∆0Y = Y0). We use
the Dellacherie and Meyer (1975) notation Y τ− to represent the process Y stopped “right
before τ” or “at τ−”, i.e.

Y τ− = Y 1[0,τ) + Yτ−1[τ,+∞); (1.1)

δτ (dt) denotes the Dirac measure at (a possibly random) time τ ; a Lebesgue measure is
denoted by λ; the real line and half-line and the nonnegative integers are respectively
denoted by R, R+ and N. Unless otherwise stated, a function (or process) is real-valued;
order relationships between random variables (respectively processes) are meant almost
surely (respectively in the indistinguishable sense). We don’t explicitly mention the domain
of definition of a variable x in h(x) when it is implied by the measurability, writing e.g. “a
B(R) measurable function h (or h(x))” rather than “a B(R) measurable function h defined
on R”. As is usual, for a function h(ω, x) defined on a product space Ω×E, we often write
h(x) without ω.
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2 Preparatory Results

Throughout the paper ϑ denotes a G stopping time with indicator process H = 1[ϑ,+∞)

and J = 1−H, so that Y ϑ− = Y J + Yϑ−H (cf. (1.1)).

2.1 Stopping Time and Compensator

For A ∈ Gϑ, we denote by ϑA the following random time (see Definition 3.8 in He, Wang,
and Yan (1992)):

ϑA(ω) =


ϑ(ω), if ω ∈ A,

∞, if ω /∈ A.

Note that ϑA is again a G stopping time. Therefore, so is also ϑAc . According to Theorem
4.20 in He, Wang, and Yan (1992), there exists A ∈ Gϑ− such that ϑA is accessible and ϑAc

is totally inaccessible. Writing ϑa = ϑA, ϑ
i = ϑAc , we have, for any bounded G predictable

process h,

E[hϑ1{ϑ<∞}] = E[hϑa∧ϑi1{ϑa∧ϑi<∞}] = E[hϑa1{ϑa<∞}] + E[hϑi1{ϑi<∞}], (2.1)

i.e. in terms of the compensators v of ϑ, va of ϑA and vi of ϑAc ,

E[
∫

[0,∞) hs dvs] = E[
∫

[0,∞) hs dv
a
s ] + E[

∫
[0,∞) hs dv

i
s] = E[

∫
[0,∞) hs d(va + vi)s],

so that v = va + vi. More precisely, we have the following result regarding the structure of
the compensator v of ϑ.

Lemma 2.1 The processes vi and va are the continuous component and the pure jump
component of v.

Proof. In view of Corollary 5.28 in He, Wang, and Yan (1992), vi is continuous. As for va,
by definition of an accessible time, there exists an at most countable family of predictable
stopping times (τi)i∈I such that [[ϑA]] ⊂ ∪i∈I [[τi]] and [[τi]]∩ [[τj ]] = ∅ for i 6= j. Consequently,

E[hϑA1{ϑA<∞}] =
∑
i∈I

E[hτi1{ϑA=τi}1{τi<∞}] =
∑
i∈I

E[hτi∆τiv1{τi<∞}], (2.2)

where we make use of

Q[{ϑA = τi}|Gτi−] = Q[{ϑ = τi}|Gτi−] = ∆τiv,

which holds by Theorem 5.27 in He, Wang, and Yan (1992). By Theorem 3.33 in He, Wang,
and Yan (1992), the process

∑
i∈I ∆τiv1[τi,∞) is predictable. Moreover, being nondecreasing

(recall v itself is nondecreasing as the compensator of the nondecreasing process H), it is
integrable since ∑

s≤t
∆sv ≤

∫ t

0
|dv| = v,

where v itself is integrable as the compensator of the bounded, hence integrable process H.
Now, the identity (2.2), for a predictable integrable process

∑
i∈I ∆τiv1[τi,∞), proves that

this process is equal to va. 2
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2.2 Parameterized Conditioning

To solve our BSDEs we need to compute conditional expectations of the form E[h(ξ)|Gϑ−]
for a nonnegative measurable function h(ω, x) and a Gϑ− measurable random variable ξ
depending on a real x. The intuition suggests that, under the conditioning, the random
variable ξ can be treated as a constant, so that the computation can be performed in two
steps: first for a constant x instead of ξ, then by substituting ξ for x, i.e.

“E[h(ξ)|Gϑ−] = E[h(x)|Gϑ−]x=ξ”.

However, this is not well defined because the conditional expectation E[h(x)|Gϑ−] is an
equivalence class depending on the real x. A “bad” choice of the class (one for each x) in
the first step may result in a nonmeasurable expression in the second step.

Example 2.1 Let B denote the Borel σ-field over [0, 1], considered as a sub-σ-field of the
Borel σ-field over Ω = [0, 1]2 equipped with the Lebesgue measure (“sub-σ-field” through
the inverse of the first coordinate projection p). Let h(ω, x) be a nonnegative Borel function
on Ω × R. By Fubini’s theorem, there exists a Borel function h′ on Ω × R+ such that, for
any x, ω → h′(ω, x) is a version of E[h(x)|B](ω) (“expectation with respect to v for u frozen
in ω = (u, v) ∈ Ω = [0, 1]2”). Let

h′′(ω, x) = h′(ω, x) + 1V (x)1{x}(p(ω)),

where V is the Vitali set in [0, 1] (assuming the axiom of choice). Since x is fixed here,
h′(·, x) and h′′(·, x) are almost surely equal, i.e. h′′(·, x) is a version of E[h(x)|B] (for fixed
x). However, since the Vitali set is not Lebesgue measurable, the function

h′′(ω, p(ω)) = h′(ω, ω) + 1V (p(ω))

is not Borel.

Several appoaches exist to deal with this version choice problem. By the same mono-
tone class argument as in Stricker and Yor (1978), there exists a Gϑ− ⊗ B(R) measurable
function ĥ(ω, x) such that

E[h(ξ)|Gϑ−] = ĥ(ξ), x ∈ R.

But the function ĥ obtained in this way only works for a fixed random variable ξ (i.e. the
function ĥ depends on ξ), whereas we need it below in an equation for an unknown random
variable ξ (i.e. we need a common function ĥ that works for all ξ). This motivates the
following development.

Definition 2.1 For any measurable space (E, E), for any nonnegative B ⊗ E measurable
function h(ω, x), we say that ĥt(ω, x) exists and that a nonnegative P(G) ⊗ E measurable
function gt(ω, x) is a version of ĥt(ω, x) (ĥ = g in a shorthand notation) if, for any E valued
Gϑ− measurable random variable ξ,

E[h(ξ)|Gϑ−]1{ϑ<∞} = gϑ(ξ)1{ϑ<∞}.

For a general (not necessarily nonnegative) B⊗E measurable function h, we say that ĥ exists

and equals ĥ1− ĥ2 if there exist two nonnegative functions h1 and h2 such that h = h1−h2,
ĥ1 and ĥ2 exist and ĥ1 − ĥ2 is well defined.
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The following result establishes the existence of ĥ by monotone class arguments. Under
suitable topological conditions, ĥ can be computed using the notion of regular conditional
distribution with respect to Gϑ− (see the paragraphs 88 to 90, Sect. II.6 in Rogers and
Williams (2000)).

Lemma 2.2 For any measurable space (E, E), for any nonnegative B⊗E measurable func-
tion h(ω, x), ĥ exists.

Proof. Let C denote the class of all bounded B⊗E measurable function h for which ĥ exists.
Obviously, the class C contains the constants and is stable by multiplication by constants.
Given two nonnegative functions h, h′ ∈ C, we can check directly from the definition that

ĥ+ ĥ′ is a version of ĥ+ h′. Given two real valued bounded functions h, h′ ∈ C, let h1 and
h2 (respectively h′1 and h′2) be two nonnegative functions such that h = h1−h2 and ĥ1 and

ĥ2 exist (respectively same properties with ′). Hence h1 + h′1 ≥ 0, h2 + h′2 ≥ 0, ĥ1 + h′1 and

ĥ2 + h′2 exist, and

h+ h′ = h1 + h′1 − (h2 + h′2).

This shows that h+ h′ ∈ C. The class C is a linear space of real functions.
Let (hn)n∈N be a nondecreasing uniformly bounded sequence of nonnegative functions

in C. For any n ∈ N, for any E valued Gϑ− measurable random variable ξ,

E[hn(ξ)|Gϑ−]1{ϑ<∞} = (ĥn)ϑ(ξ)1{ϑ<∞}.

By the monotone convergence theorem,

E[sup
n∈N

hn(ξ)|Gϑ−]1{ϑ<∞} = sup
n∈N

E[hn(ξ)|Gϑ−]1{ϑ<∞} = (sup
n∈N

ĥn)ϑ(ξ)1{ϑ<∞}.

This formula shows that supn∈N hn is an element in C and

ŝup
n∈N

hn = sup
n∈N

ĥn.

Finally, let’s consider A ∈ B, B ∈ E . The random variable Q[A|Gϑ−] is Gϑ− measurable.
There exists a G predictable process L such that (cf. Corollary 3.22 in He, Wang, and Yan
(1992))

Lϑ = Q[A|Gϑ−]1{ϑ<∞}.

We check directly that Lt(ω)1B(x) is a version of 1̂A1B, which shows that 1A(ω)1B(x) is
an element in C. We can now apply the monotone class theorem (cf. Theorem 1.4 in He,
Wang, and Yan (1992)) to say that C contains all bounded B ⊗ E measurable functions.
Last, by taking suprema over sequences, the result is extended to general (non necessarily
bounded) nonnegative B ⊗ E measurable functions. 2

In this paper the function ĥ is mainly used to compute compensation martingales
through the following lemma (classical after the above clarification regarding the definition
of ĥ).

Lemma 2.3 Let vt, t ∈ R+, be the compensator of the nondecreasing process H. Given

a B ⊗ B(Rd) measurable function h(ω, x), we set ĥ = ĥ+ − ĥ−. Let Y be a G adapted
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càdlàg process in R. If h ≥ 0 or |h|(Yϑ−)1{ϑ<∞} is integrable, then, for every G predictable
bounded process L,

E[Lϑh(Yϑ−)1{ϑ<∞}] = E[

∫
[0,∞)

Lvĥv(Yv−)dvv].

If |h|(Yϑ−)1{ϑ<∞} is integrable, the process

h(Yϑ−)H − 1[0,ϑ]ĥ·(Y−) � v

is a G uniformly integrable martingale. 2

The following result gives an explicit formula for ĥ in the case, used in the application
paper Crépey and Song (2014b), of a so-called marked stopping time. Namely, we consider
a stopping time ϑ(ω) taking, for every ω, the value of one of the ϑe(ω), where for every e
in an at most countable space of marks E endowed with some σ-algebra E , ϑe represents a
totally inaccessible stopping time with intensity γet , such that Q[ϑe 6= ϑe

′
] = 1 for e′ 6= e.

Lemma 2.4 Let xt(ω, e, x) be a nonnegative P(G)⊗E⊗B(R) measurable function. Writing
ζ(ω) =

∑
e∈E 1{ϑe(ω)=ϑ(ω)}e, which is Gϑ measurable, let

h(ω, x) = xϑ(ω)(ω, ζ(ω), x). (2.3)

A version of ĥt(ω, x) is given by
∑

e∈E q
e
t xt(e, x), where, for every e ∈ E, qe is a [0, 1] valued

G predictable process (which exists) such that qeϑ = Q[{ϑe = ϑ}|Gϑ−] on {ϑ <∞}.

Proof. On {ϑ <∞}, we have

E[h(x)|Gϑ−] = E[xϑ(ζ, x)|Gϑ−] =
∑
e∈E

Q[{ϑe = ϑ}|Gϑ−]xϑ(e, x) =
∑
e∈E

qeϑxϑ(e, x).

2

The following result shows that the shape (2.3) that is postulated for the function
h(ω, x) in the example 2.4 is, in fact, general under the structural condition (2.4) below on
Gϑ and Gϑ−.

Lemma 2.5 Let (E, E) be a measurable space. Suppose that there exists a random variable
ζ taking at most countably many values in E such that

Gϑ = Gϑ− ∨ σ(ζ). (2.4)

Then, for any nonnegative Gϑ⊗B(R) measurable function h(ω, x), there exists a nonnegative
P(G)⊗ E ⊗ B(R) measurable function xt(ω, e, x) such that

h(ω, x) = xϑ(ω)(ω, ζ(ω), x).

A version of ĥt(ω, x) is given by
∑

e∈E q
e
t (ω)xt(ω, e, x), where E = ζ(Ω) and, for every e ∈ E,

qe is a [0, 1] valued G predictable process such that qeϑ = Q[{ζ = e}|Gϑ−] on {ϑ <∞}.
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Proof. The existence of xt(ω, e, x) is a consequence of the monotone class theorem. The
second part of the result follows by an application of Lemma 2.4. 2

We now give a concrete specification for (2.4) in case where G is the progressive
enlargement of a reference filtration F by n random times ϑ1, . . . , ϑn, assuming the optional
splitting formula of Song (2012) holds (as is the case under the density hypothesis or under
the immersion hypothesis), i.e. for any G optional process Y , there exist O(F)⊗ B[0,∞]n-
measurable functions Y (0), Y (1), . . . , Y (n) such that

Y =

n∑
i=0

Y (i)(ϑ1 - ϑ(i), . . . , ϑn - ϑ(i))1[ϑ(i),ϑ(i+1)), (2.5)

where the ϑ(i) are a nondecreasing reordering of the ϑi with ϑ(0) = 0 and ϑ(n+1) =∞.

Lemma 2.6 Suppose that the ϑi don’t intercept each other. Let ϑ = ϑ1 ∧ ϑ2. Then

Gϑ = Gϑ− ∨ σ({ϑ = ϑ1}, {ϑ = ϑ2}).

Proof. For a, b ∈ [0,∞], let a - b denote a is a ≤ b and ∞ if a > b. Let I = {1,2, 3, . . . , n}.
By the optional splitting formula (2.5),

Yϑ1{ϑ=ϑ(i)} = Y
(i)
ϑ (ϑ1 - ϑ, . . . , ϑn - ϑ)1{ϑ=ϑ(i)}

=
∑

I⊆I:#I=i−1 Y
(i)
ϑ (ϑ1 - ϑ, ϑ2 - ϑ, . . . , ϑn - ϑ)1{∀j∈I,ϑj<ϑ}1{∀j∈I\I,ϑ≤ϑj}

=
∑2

k=1

∑
I⊆I:#I=i−1 Y

(i,I,k)
ϑ (ϑ, ϑj , j ∈ I)1{∀j∈I,ϑj<ϑ}1{∀j∈I\I,ϑ≤ϑj}1{ϑ=ϑk},

where Y
(i,I,k)
t (ω, x, yj , j ∈ I) is O(F)⊗ B[0,∞]⊗ B[0,∞]i−1 measurable and such that

Y
(i,I,k)
ϑ (ϑ, ϑj , j ∈ I)1{∀j∈I,ϑj<ϑ}1{∀j∈I\I,ϑ≤ϑj}

is Gϑ− measurable. 2

3 Full BSDEs

In addition to our standing G stopping time ϑ, let gt(ω, x) be a P(G) ⊗ B(R) measurable
function and G(ω, x) be a Gϑ⊗B(R) measurable function. We consider the backward mar-
tingale problem consisting of the following integrability, equation and terminal conditions:

∫ t
0 |gs(Xs−)|ds <∞ for t ∈ [0, ϑ],

Xϑ
t +

∫ t∧ϑ
0 gs(Xs−)ds defines a (G,Q) local martingale,

Xϑ = G(Xϑ−).

(3.1)

The motivation for such problems is the study of backward stochastic differential appli-
cations (BSDEs) that arise in counterparty risk applications (see Sect. 1). Therefore we
refer to such problems as BSDEs henceforth. Of course, (3.1) is a rather unusual BSDE,
due in particular to the generality of the terminal condition G(Xϑ−), which depends on
the solution and with, for fixed x, G(ω, x) only Gϑ measurable, as opposed to Gϑ− mea-
surable in standard credit risk problems (where, in addition, the terminal condition would
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not depend on x). But this generality is needed to fit all the specifications of counterparty
risk problems. Our goal is to reduce the “full” BSDE (3.1) to simpler BSDEs relative to
a reduced filtration F, with constant terminal time T and exogenous terminal condition
(a given random variable at time T ). Moreover, we want to achieve this under minimal
assumptions on ϑ, so that the model stays as flexible and can fit as many situations as
possible.

Remark 3.1 At the abstract level of this paper, with unspecified structure of the (G,Q)
local martingales, considering a more general (or more standard from a BSDE point of
view) coefficient “gt(x,w)”, where w would correspond to some integrand in a martingale
representation of the martingale part of X, would make no difference (except for the fact
that we would need to define a solution as a pair process (X,W ) in a suitable space).

Remark 3.2 BSDEs with random terminal time (given as first exit time of a domain by
a diffusion) were first introduced in Darling and Pardoux (1997), in order to give a BSDE
formulation to semilinear elliptic PDE. This and the present work are completely unrelated.

The main findings of this section can be summarized in the form of the following result,
which is an immediate consequence of lemmas 3.2 and 3.3.

Theorem 3.1 If the BSDE (3.1) has a solution X, then the process Z = XJ is a solution
to the following BSDE:

∫ t
0 |gs(Zs−)|ds+

∫ t
0 |Ĝs(Zs−)|dvs <∞ for t ∈ [0, ϑ],

Zϑ−t +
∫ t∧ϑ

0 gs(Zs−)ds+
∫ t∧ϑ

0

(
Ĝs(Zs−)− Zs−

)
dvs defines a (G,Q) local martingale,

or equivalently when the accessible component ϑa of ϑ is predictable:

∫ t
0 |gs(Zs−)|ds+

∫ t
0 |Ĝs(Zs−)|dvs <∞ for t ∈ [0, ϑ],

Zϑ−t +
∫ t∧ϑ

0 gs(Zs−)ds+
∫ t∧ϑ

0 (Ĝs(Zs−)− Zs−)dvis defines a (G,Q) local martingale,

1{ϑa<∞}(Ĝϑa(Zϑa−)− Zϑa−) = 0.

Conversely, if Z is a solution to the above BSDE such that the process G(Zϑ−)H has locally
integrable total variation, then the process

X = ZJ +G(Zϑ−)H

is a solution to the BSDE (3.1). 2

3.1 BSDE Transformations

Assuming (3.1), we denote by

Rt = Xt +

∫ t∧ϑ

0
gs(Xs−)ds, t ∈ R+ (3.2)

the (G,Q) local martingale component of X, so that

∆ϑR = ∆ϑX = G(Xϑ−)−Xϑ−. (3.3)
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Lemma 3.1 Assuming (3.1), the processes ∆ϑRH and G(Xϑ−)H have locally integrable
total variation, the dual predictable projection of ∆ϑRH is given by (Ĝ·(X−)−X−) � v and
we have ∫ t

0
|Ĝs(Xs−)|dvs <∞ for t ∈ [0, ϑ]. (3.4)

In particular, we can decompose R as the sum of the two following local martingales:

R• = ∆ϑRH − (Ĝ·(X−)−X−) � v, R◦ = R−R•.

Proof. Let (τn) denote an increasing sequence of stopping times such that each Rτn is a
uniformly integrable martingale and each Rτn− is bounded. We have

(∆ϑRH)τn = 1ϑ≤τn∆ϑRH

= 1ϑ≤τn∆ϑ(Rτn)H

= 1ϑ≤τn(Rϑn −Rϑn−)H,

which is integrable by construction of (τn). Therefore, the process ∆ϑRH has locally inte-
grable total variation and admits as such a dual predictable projection. For any G stopping
time τ such that

(∆ϑRH)τ = (G(Xϑ−)−Xϑ−)1{ϑ≤τ}H

has integrable total variation, Lemma 2.3 implies that

(G(Xϑ−)−Xϑ−)1{ϑ≤τ}H − (Ĝ·(X−)−X−)1[0,τ) � v

is a G uniformly integrable martingale. This shows that (Ĝ·(X−) − X−) � v is the dual
predictable projection of ∆ϑRH. As a consequence, for any G predictable bounded process
L,

E[Lϑ∆ϑR1{ϑ<∞}] = E[

∫
[0,∞)

Ls(Ĝs(Xs−)−Xs−)dvs],

Since
∫ ·

0 |Xs−|dvs is finite (by left-continuity ofX−), (3.4) follows by taking L = sgn(Ĝ·(X−)−
X−). 2

We consider the following BSDE:

∫ t
0 |gs(Ys−)|ds+

∫ t
0 |Ĝs(Ys−)|dvs <∞ for t ∈ [0, ϑ],

Y ϑ
t +

∫ t∧ϑ
0 gs(Ys−)ds+

∫ t∧ϑ
0 Ĝs(Ys−)dvs defines a (G,Q) local martingale.

Yϑ = 0.

(3.5)

Lemma 3.2 If X is a solution to the BSDE (3.1), then Y = XJ is a solution to the BSDE
(3.5). Conversely, if Y is a solution to the BSDE (3.5) such that the process G(Yϑ−)H has
locally integrable total variation, then the process

X = Y J +G(Yϑ−)H.

is a solution to the BSDE (3.1).
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Proof. Assuming (3.1), the Itô formula yields (recall Xϑ− = XJ +Xϑ−H)

dXϑ−
t = d(XJ)t + d(Xϑ−H)t

= Jt−dXt −Xtδϑ(dt) +Xϑ−δϑ(dt)
= Jt−dRt − Jt−gt(Xt−)dt−Xϑδϑ(dt) +Xϑ−δϑ(dt)
= Jt−dR

◦
t + Jt−dR

•
t − Jt−gt(Xt−)dt−∆ϑXδϑ(dt)

= Jt−dR
◦
t − Jt−(Ĝt(Xt−)−Xt−)dvt − Jt−gt(Xt−)dt.

Hence

dYt = d(XJ)t
= Jt−dR

◦
t − d(Xϑ−H)t − Jt−(Ĝt(Xt−)−Xt−)dvt − Jt−gt(Xt−)dt

= Jt−dR
◦
t − (d(Xϑ−H)t − Jt−Xt−dvt)− Jt−Ĝt(Xt−)dvt − Jt−gt(Xt−)dt

= Jt−dR
◦
t − Jt−Xt−d(H − v)t − Jt−Ĝt(Xt−)dvt − Jt−gt(Xt−)dt.

The process (H − v) being a local martingale, this computation and (3.4) show that the
process Y = XJ solves (3.5).

Conversely, given Y solving (3.5) such that G(Yϑ−)H has locally integrable total vari-
ation, let

X = Y J +G(Yϑ−)H.

Hence, by Lemma 2.3,

R = G(Yϑ−)H − J−Ĝ·(Y−) � v (3.6)

is a (G,Q) local martingale. Set

R′ = Y ϑ + J−g·(X−) � λ + J−Ĝ·(Y−) � v, (3.7)

another (G,Q) local martingale. The Itô formula gives

dXt

= d(Y J)t + d(G(Yϑ−)H)t

= Jt−dYt − Ytδϑ(dt) + dRt + Jt−Ĝt(Yt−)dvt

= Jt−dR
′
t − Jt−gt(Yt−)dt− Jt−Ĝt(Yt−)dvt − Yϑδϑ(dt)

+ dRt + Jt−Ĝt(Yt−)dvt

= Jt−dR
′
t − Jt−gt(Yt−)dt+ dRt,

thus

dXt + Jt−gt(Xt−)dt = Jt−dR
′
t + dRt, (3.8)

which shows that X is a solution to the BSDE (3.1). 2

For the application of the previous lemma in the reduced form models of Sect. 4.1, we
need another form of the BSDE (3.5).

Lemma 3.3 Given a (G,Q) semimartingale Z, the process Y = ZJ solves the BSDE (3.5)
if and only if
∫ t

0 |gs(Zs−)|ds+
∫ t

0 |Ĝs(Zs−)|dvs <∞ for t ∈ [0, ϑ],

Zϑ−t +
∫ t∧ϑ

0 gs(Zs−)ds+
∫ t∧ϑ

0 Ĝs(Zs−)dvs −
∫ t∧ϑ

0 Zs−dvs defines a (G,Q) local martingale.
(3.9)
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When the accessible component ϑa of ϑ is predictable, the BSDE (3.9) for Z becomes

∫ t
0 |gs(Zs−)|ds+

∫ t
0 |Ĝs(Zs−)|dvs <∞ for t ∈ [0, ϑ],

Zϑ−t +
∫ t∧ϑ

0 gs(Zs−)ds+
∫ t∧ϑ

0 (Ĝs(Zs−)− Zs−)dvis defines a (G,Q) local martingale,

1{ϑa<∞}(Ĝϑa(Zϑa−)− Zϑa−) = 0.
(3.10)

Remark 3.3 The BSDE (3.9) has a solution if and only if the following BSDE has a
solution (with Z̄ = Zϑ− as a particular solution below if Z solves (3.9))

∫ t
0 |gs(Z̄s−)|ds+

∫ t
0 |Ĝs(Z̄s−)|dvs <∞ for t ∈ [0, ϑ],

Z̄t +
∫ t∧ϑ

0 gs(Z̄s−)ds+
∫ t∧ϑ

0 Ĝs(Z̄s−)dvs −
∫ t∧ϑ

0 Z̄s−dvs defines a (G,Q) local martingale,

∆ϑZ̄ = 0.

(3.11)

In particular, the integrability conditions (on [0, ϑ]) for Z to solve (3.9) and for Z̄ = Zϑ−

to solve (3.11) are clearly equivalent.

Proof. Let R′′t denote the semimartingale

R′′t = Zϑ−t +

∫ t∧ϑ

0
gs(Zs−)ds+

∫ t∧ϑ

0
Ĝs(Zs−)dvs −

∫ t∧ϑ

0
Zs−dvs. (3.12)

The Itô formula applied to Y = ZJ yields

dYt = d(ZJ)t = d(Zϑ−J)t
= Jt−dZ

ϑ−
t − Zϑ−t dHt

= Jt−dR
′′
t − Jt−gt(Zt−)dt− Jt−Ĝt(Zt−)dvt + Jt−Zt−dvt − Zϑ−dHt

= Jt−dR
′′
t − Jt−gt(Zt−)dt− Jt−Ĝt(Zt−)dvt − Jt−Zt−d(H − v)t,

which proves the first part of the lemma. If ϑa is predictable, then va = 1[ϑa,∞). Hence,

R′′t = Zϑ−t +

∫ t∧ϑ

0
gs(Zs−)ds+

∫ t∧ϑ

0
(Ĝs(Zs−)− Zs−)dvis + (Ĝϑa(Zϑa−)− Zϑa−)1[ϑa,∞).

As a consequence,

∆ϑaR
′′1{ϑa<∞} = 1{ϑa<∞}(Ĝϑa(Zϑa−)− Zϑa−).

Therefore (3.10) obviously implies (3.9). Conversely, assuming (3.9), so that R′′t is a local
martingale, taking the (generalized) conditional expectation given Gϑa− both sides of the
above identity, we obtain since ϑa is predictable:

1{ϑa<∞}(Ĝϑa(Zϑa−)− Zϑa−) = 0,

hence (3.10) follows. 2
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Remark 3.4 By combining (3.7) and (3.12), if Z solves (3.9), so that Y = ZJ solves
(3.5) and X = Y J +G(Yϑ−)H solves (3.1) (assuming G(Yϑ−)H has locally integrable total
variation), then

R′t = R′′t − Zϑ−Ht +

∫ t∧ϑ

0
Zs−dvs, t ≥ 0. (3.13)

Therefore, in view of (3.2), (3.8) and (3.6), the local martingale component R of X satisfies

dRt = Jt−dR
′
t + dRt

= Jt−dR
′′
t − Jt−Zt−(dH − dvt) +G(Zϑ−)dHt − Jt−Ĝt(Zt)dvt,

which, in case ϑa is predictable, reduces, in view of the terminal condition in (3.10), to:

dRt = Jt−

(
dR′′t − Zt−(dH − dvit) +G(Zϑ−)dHt − Ĝt(Zt)dvit

)
. (3.14)

4 Reduction of Filtration

In Sect. 4.1 the auxiliary BSDE (3.10) (in the case of Sect. 4.1 where ϑa is predictable)
will be transformed into a reduced BSDE relative to a smaller filtration F ⊆ G, under the
following assumption on F.

Condition (B). For any G predictable process L, there exists an F predictable process K,
which we call the F predictable representative of L, such that K coincides with L until ϑ,
i.e. J−K = J−L.

Note that J− could equivalently be replaced by J in this condition, since the predictable
σ-field is generated by left-continuous processes. Also, if L is bounded, K may and will be
chosen bounded. A similar statement applies and will not be repeated regarding the various
notions of F representative introduced later.

The following is an immediate consequence of the condition (B):

{ϑ <∞} ∩ Gϑ− = {ϑ <∞} ∩ Fϑ−.

But we can say more. The next result establishes the connection between the condition (B)
and a classical condition in the theory of enlargement of filtrations, stated in terms of the
auxiliary filtration F = (F t)t∈R+ (Jeulin (1980) writes G, whereas Dellacherie, Maisonneuve,
and Meyer (1992) use FL), where

F t = {B(t) ∈ B : ∃A(t) ∈ Ft, A(t) ∩ {t < ϑ} = B(t) ∩ {t < ϑ}}. (4.1)

Lemma 4.1 The filtration F satisfies the condition (B) if and only if G is a subfiltration
of F = (F t)t∈R+.

Proof. As seen in n◦75 Chapitre XX in Dellacherie, Maisonneuve, and Meyer (1992), F is
a filtration satisfying the usual conditions. Suppose the condition (B). For any t ∈ R+, for
any B(t) ∈ Gt, 1B(t)

1(t,∞) is a G predictable process, with F predictable representative
L such that J−1B(t)

1(t,∞) = J−L1(t,∞). In particular, 1B(t)
1{t<s≤ϑ} = Ls1{t<s≤ϑ}, or
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lim infs↓t 1B(t)
1{t<s≤ϑ} = lim infs↓t Ls1{t<s≤ϑ}. But lim infs↓t 1B(t)

1{t<s≤ϑ} = 1B(t)
1{t<ϑ}

while lim infs↓t Lt1{t<s≤ϑ} = (lim infs↓t Ls)1{t<ϑ}, which proves B(t) ∈ F (t).
Conversely (note that this converse is already known as Lemma 1 in Jeulin and Yor

(1978)), suppose that G is a subfiltration of F. For any t ∈ R+, for any B(t) ∈ G(t), let
A(t) ∈ F(t) satisfy B(t) ∩ {t < ϑ} = A(t) ∩ {t < ϑ}, so that

J−1A(t)
1(t,∞) = J−1B(t)

1(t,∞).

Note that 1A(t)
1(t,∞) is an F predictable process. Similarly, for B(0) ∈ G(0), there exists

A(0) ∈ F(0) such that B(0) ∩ {0 < ϑ} = A(0) ∩ {0 < ϑ} and therefore J−1B(0)
1{0} =

J−1A(0)
1{0}. Again we note that 1A(0)

1{0} is an F predictable process. Since the processes
1B(t)

1(t,∞) and 1B(0)
1{0} generate the G predictable σ-algebra (cf. Theorem 3.21 in He,

Wang, and Yan (1992)), this proves the condition (B). 2

The condition (B) is henceforth postulated. Let o· denote the F optional projection.
In particular, let S = oJ denote the Azéma supermartingale of ϑ with respect to F, with F
canonical nondecreasing predictable component A. The part 2 in the lemma below is known
as the “key lemma” (see Bielecki, Jeanblanc, and Rutkowski (2009)). The part 3 is stated
as Remarque (4,5)3) in Jeulin (1980). The semimartingale decomposition formula in the
part 5, in which the jump of Q at ϑ is removed by stopping Q at ϑ−, is a celebrated result,
sometimes called the Jeulin-Yor theorem, stated as no 77 Remarques b) in Dellacherie,
Maisonneuve, and Meyer (1992).

Lemma 4.2 1. For any G stopping time τ , there exists an F stopping time σ, which we
call the F representative of τ , such that {τ < ϑ} = {σ < ϑ} ⊆ {τ = σ}.

2. For any positive t and nonnegative G∞ measurable random variable χ,

JtE[χ|Gt] = Jt
1

St
E[Jtχ|Ft].

3. The G compensator of H is given by J−
1
S−

� A. The F dual predictable projection of H

is given by A.

4. For any G optional process Y , there exists an F optional process X, which we call the
F optional representative of Y , such that X coincides with Y before ϑ, i.e. JX = JY .

5. For any bounded F martingale Q, the process

Qϑ− − J−
1

S−
� 〈Q, S〉 (4.2)

is a G uniformly integrable martingale. In particular, any F semimartingale stopped
at ϑ is G semimartingale.

Proof. We notice that, even if the filtration F was introduced in Jeulin and Yor (1978)
or Chapitre XX in Dellacherie, Maisonneuve, and Meyer (1992) for a classical progressive
enlargement setting, their study on the filtration F depends only on the relation G ⊆ F.
Hence, in view of Lemma 4.1, we can repeat the arguments in Jeulin and Yor (1978) or
Chapitre XX in Dellacherie, Maisonneuve, and Meyer (1992) to get all the results. However,
regarding the part 4, they state it without demonstration. Since this result is key in the
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sequel, we give a proof as follows. Let χ be a bounded G∞ measurable random variable.
Let Y be any (càdlàg) G martingale with terminal variable χ. By the key lemma, for every
t ∈ R+, we can write the almost sure identity

JtYt = JtE[χ|Gt] = Jt
1

St
Q[Jtχ|Ft] = JtXt,

where

Xt = 1{St>0}
o(Jχ)t
St

.

By Lemma 3.1 in Jeanblanc and Song (2010) and Lemma 3.1 in Jeanblanc and Song (2012),
the process J1{S>0}

1
S

is indistinguishably a càdlàg process. So is also the process o(Jχ),
by Problem 4.13 in He, Wang, and Yan (1992). Therefore, JY = JX holds in the indis-
tinguishable sense. This shows that the G martingale Y has an F optional representative,
which is also true for any deterministic process (obviously). Now, let C denote the family of
all the bounded B[0,∞)⊗G∞ measurable functions Y such that there exists a version of ōY
admitting an F optional representative, where ō· denotes the G optional projection. We can
verify that C is a functional monotone class in the sense of Theorem 1.4 in He, Wang, and
Yan (1992). It results from above that C contains all the random variables 1(a,b]χ, where
a, b ∈ R+ and χ is a bounded G∞ measurable random variable. Therefore, by the monotone
class theorem, C contains all the bounded B[0,∞) ⊗ G∞-measurable random variables, so
that every bounded G optional process Y admits a (bounded) F optional representative. By
taking suprema over sequences and then differences between positive and negative parts,
the result is extended to nonnegative and in turn general G optional processes. 2

Lemma 4.3 Any P(G) ⊗ B(R) (respectively O(G) ⊗ B(R)) measurable function ht(ω, x)
admits a P(F)⊗B(R) (respectively O(F)⊗B(R)) representative, i.e. a P(F)⊗B(R) (respec-
tively O(F)⊗B(R) measurable) function ft(ω, x) such that 1[0,ϑ(ω)]ft(ω, x) = 1[0,ϑ(ω)]ht(ω, x)
everywhere.

Proof. Since F satisfies the usual conditions, any evanescent measurable process is F pre-
dictable (Theorem 4.26 in He, Wang, and Yan (1992)). Therefore, all indistinguishable
identities between processes can be established everywhere for suitably modified versions.
In particular, in the condition (B), one can achieve J−K = J−L everywhere (not only
outside an evanescent set) by taking another version of K. Likewise, in Lemma 4.2.4, one
can achieve JX = JY everywhere (not only outside an evanescent set) by taking another
version of X. Therefore, the statement in the lemma holds for any function h given as the
product of a G predictable (respectively optional) process by a Borel function. The proof
is completed by a standard monotone class argument. 2

The Jeulin-Yor theorem stated as Lemma 4.2.5 above establishes the relation between F
martingales and G semimartingales. The next result addresses the partial “inverse problem”
of knowing when an F semimartingale P is such that = P ϑ− is a G local martingale. Note
that p below yields an F predictable process by n◦90 Chapitre IV in Dellacherie and Meyer
(1975), whereas the left-limit process of P does not need to exist on the right of ϑ, for lack
of regularity of P that is only the F optional representative of R.

Lemma 4.4 Let R be a G local martingale without jump at ϑ, i.e. ∆ϑR = 0, with F optional
representative of R denoted by P . For t > 0, we write pt = lim infs↑↑t Ps. There exists an
increasing sequence (σn)n∈N of F stopping times such that Sσ∞ = 0 and (oR)σn , (PS+p�A)σn .
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are F martingales, for every n. Conversely, if P is an F semimartingale such that S− �P +
[P, S] is an F local martingale, then the process R = P ϑ− is a G local martingale.

Proof.
⇒ Let (τn)n≥0 be a sequence of bounded G stopping times reducing R to a martingale in
H1 (the space of local martingales with 1

2 -times integrable bracket) and R− to a bounded
process, with F representatives of the τn denoted by σn, which can be assumed to form an
nondecreasing sequence with a limit σ∞. Omitting the subscript n, we have

o(Rϑ∧τ ) = o(Rϑ∧σ) = o((Rσ)ϑ) = o(RσJ +RσϑH) = o(RσJ +Rσϑ−H)

because ∆ϑR = 0. For t > 0, we write ρt = lim infs↑↑t P
σ
s , and R = ρϑH − ρJ− 1

S−
� A, a G

martingale. We compute

o(Rϑ∧τ ) = o(P σJ + ρϑH)
= P σS + o(R) + (o(ρJ−

1
S−

� A)− ρ � A) + ρ � A,

= P σSσ + o(R) + (o(ρJ−
1
S−

� A)− ρ � A) + 1(0,σ]ρ � A

+P σ(S− Sσ) + 1(σ,∞)ρ � A
= o(Rσ) + (o(ρJ−

1
S−

� A)− ρ � A) + (PS + p � A)σ

+Pσ(S− Sσ + A− Aσ),

where the last equality holds because ρ = p on (0, σ] and ρ = Pσ on (σ,∞). Since the
processes o(Rϑ∧τ ), oR, (o(ρJ−

1
S−

� A)− ρ � A), and Pσ(S− Sσ + A− Aσ) are F martingales, so

is the process (PS + p � A)σ. Note that

E[Sσn ] = Q[σn < ϑ] = Q[τn < ϑ]→ 0,

which, since S is a nonnegative F supermartingale, implies Sσ∞ = 0. This completes the
proof of the first assertion of the lemma.
⇐ Let R be defined as in the second assertion of the lemma. For any F stopping time σ
and t ∈ R+, we have Rσt = (P σ)ϑ−t . Hence, we may and do restrict attention to the case
where S− � P + [P, S] is an F martingale in H1 and P− is a bounded process. Using both
statements in Lemma 4.2.3,

E[Pϑ−Hσ − P− � Aσ] = E[Pϑ−Hσ − P−J−
1

S−
� Aσ + P−J−

1

S−
� Aσ − P− � Aσ] = 0.

As a consequence, for a bounded G stopping time τ with F reduction σ,

E[Rτ ] = E[PτJτ + Pϑ−Hτ ]
= E[PσJσ + Pϑ−Hσ]
= E[(PS + P− � A)σ]
= E[(S− � P + [P, S])σ]
= E[(S− � P + [P, S])0] = E[P0S0],

a constant, so that by Theorem 4.40 in He, Wang, and Yan (1992), R is a G uniformly
integrable martingale. 2

Remark 4.1 In view of this result and of the Jeulin-Yor Theorem stated as Lemma 4.2.5
above (see the comments preceding the lemma), the transform ·ϑ− seems more natural than
·ϑ (though the latter is more commonly used in the enlargement of filtration literature).
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This explains the relevance of Lemma 3.3 for our BSDE problem. In particular, working
with ·ϑ− allows us to consistently work with the dual predictable projection A of H, which
is more practical than the dual optional projection also used in Jeulin (1980) (and not
only also, but even exclusively in the pseudo-stopping times theory of Nikeghbali and Yor
(2005)).

4.1 Reduced BSDEs

We are now in the position to derive reduced forms of the BSDE (3.1) relative to the
filtration F. Let θ be a G stopping time with F dual predictable projection of the form α �λ,
for some F predictable process α, which implies that θ is a G totally inaccessible stopping
time with G compensator 1(0,θ]γ �λ, where γ = 1S−>0

α
S−

. We assume the condition (B) for
θ, so that it also holds for ϑ = θ ∧ T ≤ θ, where T > 0 is any fixed real number. In the
notation already used in (2.1), ϑi = θ{θ<T}, ϑ

a = T{T≤θ} (which is predictable) and

vi = 1(0,θ]1(0,T )γ � λ, va = 1{T≤θ}1[T,∞).

In the sequel we suppose a terminal function G of the form 1{θ<T}F (x) in (3.1), so that

Ĝt(x) = 1t<T F̂t(x). Since ϑa = T{T≤θ}, this yields the terminal condition

1{T≤θ}ZT− = 0 (4.3)

in (3.10), which is equivalent to (3.1) (as ϑa is predictable). Now, if the BSDE (3.10) has
a solution Z, then

R′′t = Zθ∧T−t +

∫ t∧θ∧T

0
gs(Zs−)ds+

∫ t∧θ∧T

0
(Ĝs(Zs−)− Zs−)dvis

is a (G,Q) local martingale. Let f and F be P(F) ⊗ B(R) representatives of g and Ĝ.
Denoting by U an F optional representative of Z, for t ∈ R+,

R′′t 1{t<θ∧T} =
(
Ut +

∫ t
0 fs(Us−)ds+

∫ t
0 (F s(Us−)− Us−)1[0,T ]γsds

)
1{t<θ∧T} .

In view of Lemma 4.4, this suggests to consider the following F BSDE for an F semimartin-
gale U : 

∫ t∧T
0 |fs(Us−)|+ |F s(Us−)γs|ds <∞, t ∈ R+,

S− � P + [P, S] is an F local martingale,

UT− = 0,

(4.4)

where, in the second line,

Pt = UTt +

∫ t∧T

0

(
fs(Us−) + (F s(Us−)− Us−)γs

)
ds. (4.5)

Theorem 4.1 If an F semimartingale U solves the F BSDE (4.4), then the process Z =
U θ∧T− is a solution, stopped at θ ∧ T = ϑ, to the BSDE (3.10). As a consequence, if the
process 1[θ∧T,∞)1{θ<T}F (Uθ∧T−) is locally integrable, the process

X = 1[0,θ∧T )U + 1[θ∧T,∞)1{θ<T}F (Uθ∧T−)

solves the BSDE (3.1) with the data ϑ = θ ∧ T, g = f and G = 1θ<TF.
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Proof. Clearly, the process Z satisfies the integrability condition in (3.10). According to
Lemma 4.4, P θ∧T− is a G local martingale, such that (with H = 1[ϑ,∞) = 1[θ∧T,∞))

P θ∧T−t = P θ∧Tt − (∆θ∧TP )Ht

=
(
U θ∧Tt +

∫ t∧θ∧T
0

(
fs(Us−) + (F s(Us−)− Us−)γs

)
ds
)
− (∆θ∧TU)Ht

= U θ∧T−t +
∫ t∧θ∧T

0

(
gs(Us−) + (Ĝs(Us−)− Us−)γs

)
ds

= Zθ∧T−t +
∫ t∧θ∧T

0

(
gs(Zs−) + (Ĝs(Zs−)− Zs−)γs

)
ds,

so that the martingale condition in (3.10) is satisfied. Finally,

1{T≤θ}ZT− = 1{T≤θ}UT− = 0,

which is the terminal condition (4.3) in (3.10). 2

In the F BSDE (4.4), the martingale condition is quite involved. Next, we study the
reduction of the BSDE (3.1) under the following additional assumption (on top of the con-
dition (B)), given a probability measure P equivalent to Q on FT .

Condition (A). For any (F,P) local martingale P , P θ− is a (G,Q)-local martingale on
[0, θ ∧ T ] (or [0, T ]).

The condition (A) is nonstandard in the enlargement of filtration literature. Its statement
immediately raises questions such as the materiality of stopping at θ− rather than at θ in
this definition (in other words, can the condition (A) be satisfied in cases where (F,P) mar-
tingales really jump at θ) and its connection with the classical notions of pseudo-stopping
times (see Nikeghbali and Yor (2005)), or initial times satisfying Jacod’s condition (see e.g.
Jeanblanc and Le Cam (2009)). To address these issues, we need a characterization of this
condition in terms of the Azéma supermartingale of θ. This will be the topic of Sect. 5. For
now, we consider the following (F,P) BSDE for an (F,P) semimartingale V :

∫ t
0 |fs(Vs−)|ds+

∫ t
0 |F s(Vs−)|γsds <∞ for t ∈ [0, θ ∧ T ],

V T
t +

∫ t∧T
0

(
fs(Vs−) + (F s(Vs−)− Vs−)γs

)
ds is an (F,P) local martingale,

VT = 0.

(4.6)

Theorem 4.2 If V solves the (F,P) BSDE (4.6), then Z = V θ∧T− is a solution, stopped
at θ ∧ T , to the BSDE (3.10). As a consequence, if the process 1[θ∧T,∞)1{θ<T}F (Vθ∧T−) is
locally integrable, then the process

X = V 1[0,θ∧T ) + 1{θ<T}1[θ∧T,∞)F (Vθ∧T−)

solves the BSDE (3.1) with the data ϑ = θ ∧ T, g = f and G = 1θ<TF.

Proof. By the martingale condition in (4.6),

P = V T
t +

∫ t∧T

0

(
fs(Vs−) + (F s(Vs−)− Vs−)γs

)
ds
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is an (F,P) local martingale. Hence, the condition (A) implies that P θ− is a (G,Q) local
martingale on [0, θ ∧ T ]. Note that

∆TP = ∆TV = −VT−.

As T is predictable and P is an (F,P) local martingale, taking conditional expectation with
respect to FT− yields VT− = 0 and in turn ∆TP = 0, so that

P θ− = P θ∧T− = Zθ∧T− + 1(0,θ∧T ](g·(Z−) + (Ĝ·(Z−)− Z−)γ � λ.

Therefore, the martingale condition is satisfied in the BSDE (3.10), where the integrability
condition is clearly satisfied, while the terminal condition, which reduces to (4.3), holds
because 1{T≤θ}VT− = 0. 2

Corollary 4.1 Under the conditions of Theorem 4.2,

dRt = Jt−

(
dP θ∧T−t + (1{θ<T}F (Zϑ−)− Zϑ−)dHt − 1{t<T}(F̂t(Zt)− Zt)γtdt

)
. (4.7)

Proof. In the present setup, (3.14) implies

dRt = Jt−

(
dR′′t − Zt−(dHt − γtdt) + 1{θ<T} F (Zθ−)dHt − 1{t<T}F̂t(Zt)γtdt

)
,

which is (4.7) since R′′ = P θ∧T−. 2

Remark 4.2 Formally, the BSDE (4.6) is the BSDE (3.10) with ϑ there replaced by T
(i.e. θ replaced by +∞ in ϑ = θ ∧ T ). From the financial point of view, Theorem 4.2
can be interpreted as an invariance principle, stating a consistency relation between a non-
arbitrable pre-default pricing model (F,P) and a non-arbitrable “full” pricing model (G,Q).

5 Invariant Times

The condition (A) is nonstandard in the enlargement of filtration literature. The aim of
this section is to introduce invariant times, based on a characterization of this condition
in terms of the (F,Q) Azéma supermartingale S of θ in ϑ = θ ∧ T (so that S = 1[0,T )S).
As before, superscripts p and o (respectively p̄ and ō) are used for the (F,Q) (respectively
(G,Q)) projections; E represents the Q expectation, whereas the P expectation will be
denoted by Ẽ; the (F,Q) predictable bracket is denoted by 〈·, ·〉 (cf. (4.2)), whereas the
(F,P)) predictable bracket will be denoted by 〈·, ·〉 (in fact, it is enough to know that all
the predictable brackets in this paper are relative to (F,P) when both arguments are (F,P)
local martingales and relative to (F,Q) otherwise; of course, when both arguments are
continuous, the two brackets coincide). The continuous and discontinuous components of
a local martingale (with respect to a given stochastic basis) are denoted by c and d. Let
q = 1

p denote the (F,Q) martingale of the density functions dP
dQ |Ft∧T

, t ∈ R+. Let P be a

bounded (F,P) martingale null at the origin. By the Girsanov theorem,

P̃ = P − q− � 〈p, P 〉 (5.1)

is an (F,Q) local martingale on [0, T ].
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Lemma 5.1 Let Q be an (F,Q) uniformly integrable martingale null at the origin such that
P̃Q is an (F,Q) local martingale, for any bounded (F,P) martingale P null at the origin.
Then Q = 0 on [0, T ].

Proof. For any F stopping time σ ≤ T reducing the concerned processes into integrable
processes,

0 = E[P̃σQσ] = Ẽ[P̃σQσpσ] = Ẽ[(P − q− � 〈p, P 〉)σQσpσ]

= Ẽ[〈Qp, P 〉σ −Q− � 〈p, P 〉σ] = Ẽ[[Qp−Q− � p, P ]σ],

where the (F,P) local martingale property of Qp was used to pass to the second line. This
computation shows that

Qp−Q− � p = Qp− (Qp)−q− � p = 0, on [0, T ].

By uniqueness of the solution to the exponential stochastic differential equation, we conclude
that Q = 0 on [0, T ]. 2

Lemma 5.2 For any bounded (F,P) martingale P null at the origin, P̃ c and P̃ d are a
continuous (F,Q) martingale and a purely discontinuous (F,Q) martingale on [0, T ], re-
spectively.

Proof. We prove the assertion about P̃ d (the one about P̃ c is clear). Let Q be any
continuous (F,Q) martingale null at the origin, hence an (F,P) continuous semimartingale
on [0, T ]. For any F stopping time σ ≤ T reducing the concerned processes into integrable
processes, as in the proof of Lemma 5.1, we can write

E[P̃ dσQσ] = Ẽ[[Qp−Q− � p, P d]σ],

where, by the integration by parts formula on [0, T ],

[Qp−Q− � p, P d] = [p− �Q+ [Q, p], P d] = 0,

because p− �Q+ [Q, p] is continuous. 2

Let Q denote the martingale part of the (F,Q) Azéma supermartingale S of θ (with
Q0 = 0). Note that, for any F predictable stopping time σ ≤ T ,

E[Kσqσ∆σp] = Ẽ[Kσ∆σp] = 0,

so that by Theorem 7.42 in He, Wang, and Yan (1992), there exists an (F,Q) purely
discontinuous local martingale q on [0, T ] such that ∆sq = qs∆sp.

Lemma 5.3 For any bounded (F,P) martingale P null at the origin, we have

〈p, P 〉 = 〈pc, P c〉+ p− � 〈q, P d〉 (5.2)

and the (G,Q) dual predictable projection of the process 1[0,θ)q− � 〈p, P 〉 is given by(
1[0,θ)q− � 〈p, P 〉

)p̄
= 1[0,θ]q− � 〈pc, P c〉 + 1[0,θ]

pS

S−
� 〈q, P d〉. (5.3)

The process P θ− is a (G,Q) local martingale if and only if

S−q− � 〈pc, P c〉 + pS � 〈q, P d〉 + 〈Q,P 〉 = 0 (5.4)

on [0, T ].
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Proof. For any bounded F predictable process K, for any F stopping time σ ≤ T reducing
the concerned processes into integrable processes,

Ẽ[K � 〈p, P 〉σ] = Ẽ[K � [p, P ]σ]
= E[Kq � [p, P ]σ]
= E[K � (q � [p, P ])pσ]

= Ẽ[Kp− � (q � [p, P ])pσ]

= Ẽ[Kp− �
(
q− � 〈pc, P c〉σ + (

∑
0<s≤· qs∆sp∆sP )pσ

)
].

This computation implies

〈p, P 〉 = 〈pc, P c〉 + p− � (
∑

0<s≤·
qs∆sp∆sP )p,

which yields (5.2). Now we compute the (G,Q) dual predictable projection of 1[0,θ) � 〈q, P d〉
on [0, T ]. For any bounded G predictable process L null outside of [0, T ], with F predictable
representative (until θ) denoted by K, and for any G stopping time τ :

E[L1[0,θ) � 〈q, P d〉τ ] = E[K1[0,θ) � 〈q, P d〉τ ]

= E[KS � 〈q, P d〉τ ]
= E[KpS � 〈q, P d〉τ ]

= E[K1[0,θ]
pS
S−

� 〈q, P d〉τ ]

= E[L1[0,θ]
pS
S−

� 〈q, P d〉τ ].

This shows that the (G,Q) dual predictable projection of 1[0,θ) � 〈q, P d〉 on [0, T ] is given
by

1[0,θ]

pS

S−
� 〈q, P d〉

on the time interval [0, T ], hence (5.3) follows from (5.2). Combining Lemma 4.2.5 with the
Girsanov formula (5.1), we obtain that

P θ− − 1[0,θ)q− � 〈p, P 〉− 1[0,θ]
1
S−

� 〈Q,P 〉

is a (G,Q) local martingale on [0, T ]. If P θ− is a (G,Q) local martingale on [0, T ], so is in
turn the G optional process with finite variation

1[0,θ)q− � 〈p, P 〉 + 1[0,θ]
1

S−
� 〈Q,P 〉, (5.5)

the (G,Q) dual predictable projection of which must therefore vanish, i.e. by (5.3)

1[0,θ]q− � 〈pc, P c〉 + 1[0,θ]

pS

S−
� 〈q, P d〉 + 1[0,θ]

1

S−
� 〈Q,P 〉 = 0

on [0, T ] under both probability measures P and Q. Taking the (F,Q) dual predictable pro-
jection of the above equation, we obtain the equivalent equation (5.4) (under the condition
(B)). 2

Let us write the processes p and q = 1/p on [0, T ] in stochastic exponential form

p = E(p), q = E(q), (5.6)



21

where p is an (F,P) local martingale on [0, T ] and q is an (F,Q) local martingale on [0, T ].
By Lemma 3.4 in Karatzas and Kardaras (2007), we have the following relation between q
and p:

q = −p + 〈pc, pc〉 +
∑
s≤·

(∆sp)2

1 + ∆sp
. (5.7)

We are now in the position to derive the following characterization of the condition (A).

Lemma 5.4 The condition (A) holds if and only if on [0, T ]

S− � qc = Qc, pS � qd = Qd. (5.8)

Proof. In view of the second assertion in Lemma 5.3, the condition (A) holds if and only
if any bounded (F,P) martingale P null at the origin satisfies (5.4), or, equivalently in view
of Lemma 5.2,

S−q− � 〈p̃c, P̃ c〉+ pS � 〈q, P̃ d〉+ 〈Qc, P̃ c〉+ 〈Qd, P̃ d〉 = 0. (5.9)

For any bounded (F,P) local martingale P null at the origin, the formula (5.9) applied with
P c instead of P yields

0 = S−q− � 〈p̃c, P̃ c〉+ 〈Qc, P̃ c〉 = 〈S−q− � p̃c +Qc, P̃ c〉 = 〈S−q− � p̃c +Qc, P̃ 〉

on [0, T ] under the probability measure P and also Q. So, under the probability measure
Q, the (F,Q) local martingales S−q− � p̃c +Qc is orthogonal to P̃ on [0, T ]. Since this holds
for any P bounded (F,P) local martingale P null at the origin, an application of Lemma
5.1 yields that

S−q− � p̃c +Qc = 0. (5.10)

Likewise, the formula (5.9) applied with P d instead of P yields

0 = pS � 〈q, P̃ d〉+ 〈Qd, P̃ d〉 = 〈pS � q +Qd, P̃ d〉 = 〈pS � q +Qd, P̃ 〉

on [0, T ] under the probability measure P and Q. So, under the probability measure Q, the
(F,Q) local martingales pS � q +Qd is orthogonal to P̃ on [0, T ], for any P bounded (F,P)
local martingale P null at the origin, which implies as above that

pS � q +Qd = 0. (5.11)

We note that p is a positive (F,Q) semimartingale and q is a positive (F,Q) martingale on
[0, T ]. In terms of the process p, we can write, on the time interval [0, T ],

S−q− � p̃c = S−q−p− � p̃c = S− � p̃c,

∆tq =
∆tp

pt
=

pt−∆tp

pt− + ∆tp
=

∆tp

1 + ∆tp
, (5.12)

and the Girsanov formula (5.1) appears as

P̃ = P − q− � 〈p, P 〉 = P − 〈p, P 〉,
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where, using (5.2) in the second line,

〈p, P 〉 = q− � 〈p, P 〉
= q− � 〈pc, P c〉 + 〈q, P̃ d〉 = 〈pc, P c〉 + 〈q, P̃ d〉.

Now, by (5.7),
q = −pc + 〈pc, pc〉− pd + [q, pd]

= −p̃c − p̃d − 〈q, p̃d〉+ [q, pd].

As a consequence, qc = −p̃c, whereas, by (5.7),

∆tq
d = ∆tq = −∆tp +

(∆tp)2

1 + ∆tp
= − ∆tp

1 + ∆tp
= −∆tq,

by (5.12). Since qd and q are both (F,Q) purely discontinuous local martingales, according
to Corollary 7.23 in He, Wang, and Yan (1992),

qd = −q.

Hence, qc = −p̃c and qd = −q, so that (5.10) and (5.11) can be rewritten as (5.8). 2

The condition (A) is stated relative to a fixed reduced stochastic basis (F,P). But, in
applications, such as the one of Theorem 4.2 further developed in Crépey and Song (2014a)
and Crépey and Song (2014b), the choice of a reduced stochastic basis (F,P) is a degree of
freedom of the modeler. Thus, our next aim is to characterize stopping times θ such that the
conditions (A) and (B) (recall (B) was postulated everywhere before in this section) hold
for at least one reduced basis (F,P). First, echoing the remark 4.2, we state the following:

Definition 5.1 A G stopping time θ is said to be invariant if there exists a filtration
F satisfying the usual conditions, along with a probability measure P equivalent to the
probability measure Q on FT , such that the conditions (A) and (B) are satisfied.

Comparing invariant times with other classical notions of random times, such as
pseudo-stopping times (see Nikeghbali and Yor (2005)) or initial times (see Jeanblanc and
Le Cam (2009) or El Karoui, Jeanblanc, and Jiao (2010)), is not easy in general. Pseudo-
stopping times are defined with respect to a fixed probability measure Q and admit several
equivalent characterizations, e.g. (F,Q) local martingales stopped at θ are (G,Q) local mar-
tingale, or Ho∞ ≡ 1, where H = 1[θ,∞). It’s only in the case where P = Q that a few things
can be said regarding the corresponding condition (A) (also assuming (B) as before) versus
pseudo-stopping times. So, for θ avoiding F-stopping times, the two notions are equivalent
(and obviously hold under immersion from F into G). In the case where P = Q, we have
q ≡ 0, so that, by (5.8), the condition (A) is equivalent to Q ≡ 0, which means that S is an F
nonincreasing predictable process, i.e. S has no F local martingale component. Hence, still
in the case where P = Q, we can also say that when S is nonincreasing, the predictability
of S is equivalent to the condition (A), whereas it is the continuity of S that implies (only)
that θ is a pseudo-stopping time (see Nikeghbali and Yor (2005)). But all these remarks are
of limited interest since the flexibility of invariant times lies precisely in the possibility to
use a changed measure P on top of a reduced filtration F (see Crépey and Song (2014b) for
concrete illustrations). The connection with initial times seems even less clear. However,
based on Lemma 5.4, we can state the following theoretical characterization of invariance.
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Theorem 5.1 A G stopping time θ is invariant if and only if there exists a filtration F
satisfying the usual conditions such that F ⊆ G ⊆ F, 1

S−
(F,Q) integrates Qc, 1

pS (F,Q)

integrates Qd and q = E( 1
S−

� Qc)E( 1
pS � Qd) is a positive (F,Q) true martingale on [0, T ].

In this case, a probability measure P such that (F,P) fulfills all the required conditions is
uniquely characterized on FT by the Q density q given as above.

Proof. In view of Lemma 4.1 and Definition 5.1, one is reduced to show that, given a
filtration F satisfying the usual conditions and F ⊆ G ⊆ F (i.e. the condition (B)), there
exists a probability measure P equivalent to Q on FT and satisfying the condition (A) if
and only if 1

S−
(F,Q) integrates Qc, 1

pS (F,Q) integrates Qd and q = E( 1
S−

�Qc)E( 1
pS �Qd)

is a positive (F,Q) true martingale on [0, T ] (a probability measure P equivalent to Q on
FT granting the condition (A) being then characterized on FT by the Q density q in view
of Lemma 5.4). Assuming some P ∼ Q on FT satisfies (A), by the necessity in Lemma
5.4, q, the stochastic logarithm of the Q density q of P has to solve the equation (5.8). By
Theorem 9.3 in He, Wang, and Yan (1992), this implies the stated integrabilities, hence
the stochastic exponential formula for q follows from (5.8). Therefore, this formula must
yield an (F,Q) true martingale on [0, T ], positive for the sake of the equivalence of P and
Q on FT . Conversely, if q is given as the solution to (5.8) under the stated integrabilities,
then, by the sufficiency in Lemma 5.4, the condition (A) holds for the equivalent probability
measure P on FT defined by the Q density q = E(q) (under the postulated positivity and
(F,Q) true martingality of q = E(q) on [0, T ]). 2

What follows illustrates the role of the positivity condition, studied theoretically in
Sect. 5.1, on the Doleans-Dade exponential in Theorem 5.1, i.e. the role of the equivalence
between P and Q on FT .

Example 5.1 Take for F = G (so that the condition (B) holds trivially) the augmentation
of the natural filtration of a Poisson process stopped at its first time of jump θ, with survival
process J = 1[0,θ), relative to some probability measure Q. For any P equivalent to Q on
GT , any (G,P) local martingale P can be represented as a (G,Q) local martingale minus
some predictable bracket deterministic until θ, so that P θ− is a nonconstant finite variation
process, predictable as a càdlàg predictable process stopped before a totally inaccessible
stopping time (Theorem 3.33 in He, Wang, and Yan (1992)), hence not a (G,Q) local mar-
tingale. Therefore, (G,P) does not satisfy the condition (A). Consistent with this conclusion
in regard of Lemma 5.4, note (this is general) pS = J− + ∆A = J− (since At = t ∧ θ here).
Also, in this case, S = J = J + A − A, so that Q = Qd = J + A, which is stopped at θ,
whereas pS = J− = 1 on [0, θ]. Consequently,

E(
1
pS

�Qd)t = E(Q)t = eQt−Q0
∏
s≤t

(1 + ∆sQ)e−∆sQ = eJt+t∧θ−1Jte
(1−Jt) = et∧θJt,

a (G,Q) true martingale but vanishing on [θ ∧ T, T ].
Now, for F trivial and P = Q in this example, any G predictable process coincides with

a Borel function before θ, hence the condition (B) is satisfied. The constants are the only
(F,Q) local martingales, so that the condition (A) holds. In particular, θ is an invariant
time. Consistent with these conclusions in regard of Lemma 5.4 and Theorem 5.1, S is
deterministic (equal to the survival function of θ), Q is constant, q ≡ 0 and q ≡ 1.

Theorem 5.1 can help us to answer the questions we were asking after the statement
of the condition (A), i.e. what is the materiality of stopping at θ− rather than θ in this
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condition, and to understand a little bit more of the above-mentioned connections between
invariance, the condition (A) and pseudo-stopping times. The following stopping time θ
is an invariant time that intersects F stopping times in a reduced basis (F,P) satisfying
the condition (A). This invariant time θ is a also a pseudo-stopping time, a feature that is
removed by considering the modified time θ̃.

Example 5.2 For i = 1, 2, let µi = νi ∧ Ci, where Ci is a positive constant and νi is a
totally inaccessible F stopping time with bounded compensator. Assuming µ2 > T , define
θ = 1Aµ1 + 1Acµ2, which intersects the F stopping times µi, for some A ∈ G∞ independent
from F∞ such that α = Q(A) ∈ (0, 1). On [0, T ],

St = 1t<µ1α+ 1t<µ2(1− α) ≥ (1− α), S− ≥ 1− α.

Moreover, we have Q = Qd and, by Theorem I.8 in Lepingle and Mémin (1978), E( 1
pS �Q

d) is
a positive Q true martingale that defines the Q density of a probability measure P equivalent
to Q on FT . By construction, the reduced basis (F,P) satisfies the condition (A), which
shows that θ is an invariant time. Note that, writing H = 1[θ,∞),

Ho = 1[µ1,∞)α+ 1[µ2,∞)(1− α), Ho∞ ≡ 1,

so that, by application of Theorem 1 (3) in Nikeghbali and Yor (2005), θ is also a pseudo-
stopping time.

Now, to obtain an invariant time τ intersecting F stopping times without being a
pseudo-stopping time, set

τ = 1A1µ1 + 1A2µ2 + 1A3η,

for a non pseudo-stopping time η and a partition Ai, i = 1, 2, 3, independent from F∞ and
η. Writing K = 1[τ,∞), L = 1[η,∞), αi = Q(Ai), we have

Ko = 1[µ1,∞)α1 + 1[µ2,∞)α2 + Loα3, Lo∞ 6= α1 + α2 + α3 = 1 with positive Q probability,

so that, by the converse part in the above-quoted theorem, τ is not a pseudo-stopping time.
But the Azéma supermartingale of τ is given by

S̃t = 1t<µ1α1 + 1t<µ2α2 + Ztα3 ≥ α2,

where Zt is the Azéma supermartingale of η. Hence, the other computations above do not
change, which shows that τ is an invariant time.

5.1 Positivity of the Dolean-Dade exponential

In Theorem 5.1 the strongest requirements are the martingality and positivity conditions on
the Dolean-Dade exponential E( 1

S−
�Qc)E( 1

pS �Q
d). We assume the existence of the stochastic

integrals 1
S−

� Qc and 1
pS � Qd. In this concluding section we show that the positivity of

E( 1
pS � Qd) (the one of E( 1

S−
� Qc) is obvious) reduces to the predictability of the stopping

time ς{ς≤T}, where ς = inf{s > 0;Ss = 0}.

Lemma 5.5 Let σ be a predictable stopping time. Then pSσ = 0 if and only if σ ≥ ς.

Proof. pSσ = 0⇔ pSσ = E[Sσ|Fσ−] = 0⇔ Sσ = 0⇔ σ ≥ ς. 2
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Lemma 5.6 ς{ς<∞,pSς=0} is a predictable stopping time.

Proof. Let A be the drift (nondecreasing predictable component) in the canonical decom-
position of S. Since pS = S−−∆A, therefore Sς− = ∆ςA > 0 on {ς <∞, pSς = 0,∆ςA > 0}.
The set

A = {pS = 0,∆A > 0}

is thin and predictable. If Q[A 6= ∅] > 0, by the section theorem 4.8 in He, Wang, and Yan
(1992), there exists a sequence of predictable stopping times σn such that [[σn]] ⊆ A and
limn→∞Q[σn < ∞] = Q[π(A)] > 0, where π(A) = {A 6= ∅} is the projection of A onto Ω.
Note that ∆A ≡ 0 on (ς,∞), thus σn(ω) < ∞ implies σn(ω) ≤ ς(ω). But by Lemma 5.5,
σn(ω) ≥ ς(ω). We conclude that σn = ς on {σn < ∞}, i.e. [[σn]] ⊆ [[ς]]. Set σ∞ = infn σn.
Since σn(ω) can only take two values (∞ and ς(ω)), σ∞ is a stationary infimum of predictable
stopping times, hence a predictable stopping time by Theorem 3.29 in He, Wang, and Yan
(1992). Clearly, ∆σ∞A > 0 on {σ∞ < ∞}, [[σ∞]] ⊂ [[ς]], {σ∞ < ∞} ⊂ {A 6= ∅} and
Q[σ∞ <∞] = Q[A 6= ∅]. As ς ≤ σ∞, (σ∞){ς<∞,pSς=0,Sς−>0} is predictable by Theorem 3.29
in He, Wang, and Yan (1992). Therefore,

ς <∞, pSς = 0,∆ςA > 0 ⇒ ς <∞,A 6= ∅, pSς = 0, Sς− > 0
⇒ ς <∞, σ∞ <∞, pSς = 0, Sς− > 0
⇒ ς = (σ∞){ς<∞,pSς=0,Sς−>0} <∞

and
ς <∞, pSς = 0,∆ςA = 0 ⇒ ς <∞, pSς = 0, Sς− = 0

⇒ ς = ς{ς<∞,pSς=0,Sς−=0} <∞.

As a consequence,

ς{ς<∞,pSς=0} = (σ∞){ς<∞,pSς=0,Sς−>0} ∧ ς{ς<∞,pSς=0,Sς−=0}.

The stopping time (σ∞){ς<∞,pSς=0,Sς−>0} is predictable because σ∞ is predictable and {ς <
∞, pSς = 0, Sς− > 0} ∈ Fσ∞−. The stopping time ς{ς<∞,pSς=0,Sς−=0} is predictable by the
proof of Theorem 9.41 in He, Wang, and Yan (1992) (to clarify the connection with their
setup, note that ς = inf{s > 0;Ss = 0} = inf{s > 0;Ss = Ss−}, because S is a nonnegative
supermartingale). Hence, ς{ς<∞,pSς=0} is predictable as the minimum of two predictable
stopping times. 2

Last, we can state the following characterization (consistent with the findings of ex-
ample 5.1) of the positivity of the Dolean-Dade exponential in Theorem 5.1.

Theorem 5.2 E( 1
pS �Q

d) > 0 on [0, T ] ⇐⇒ pSς = 0 on {ς ≤ T} ⇐⇒ ς{ς≤T} is a predictable
stopping time.

Proof. We know that E( 1
pS �Qd) > 0 on [0, T ] if and only if

1
pSt

∆tQ > −1, t ∈ [0, T ] (5.13)

(with the convention 0
0 = 0). We know that S − pS = ∆Q (see page 79 in Jeulin and Yor

(1978)). Hence, for t ∈ [0, ς),

1
pSt

∆tQ =
St − pSt

pSt
=

St
pSt
− 1 > −1.
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At ς, whenever it is finite and that pSς > 0, the above computation again applies, which
implies

1
pSς

∆ςQ = −1.

If pSς = 0, ∆ςQ = Sς − pSς = 0. For t > ς, ∆tQ = 0. Putting together these three
observations yields that the condition (5.13) is equivalent to

pSς = 0 on {ς ≤ T}. (5.14)

By Lemma 5.6, the condition (5.14) implies that ς{ς≤T} is predictable. Conversely, if ς{ς≤T}
is predictable, as it is greater than ς, the condition (5.14) holds by Lemma 5.5. 2
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Crépey, S., T. R. Bielecki, and D. Brigo (2014). Counterparty Risk and Funding–A Tale
of Two Puzzles. Taylor & Francis. Forthcoming Spring 2014.
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