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Abstract
Following an approach introduced by Lagnado and Osher (Lagnado R and
Osher S 1997 J. Comput. Finance 1 13–25), we study the application of
Tikhonov regularization to the financial inverse problem of calibrating a
local volatility function from observed vanilla option prices. Moreover, we
provide a unified treatment for this problem in two different settings: first, the
generalized Black–Scholes model, and second, a trinomial tree discretization.
We present serial and parallel implementations of the method in the discrete
setting, using a probabilistic interpretation to compute, at significantly reduced
cost, the gradient of the cost criterion. We illustrate the stability of this
regularized calibration procedure by numerical examples. Finally we extend
this methodology to the problem of calibration with American option prices.

1. Introduction

1.1. Presentation of the problem

Following an approach introduced by Lagnado and Osher [1], we study the inverse problem, in
finance, of calibrating a local volatility function from observed option prices, using Tikhonov
regularization. We consider the problem in two different settings: first, the generalized Black–
Scholes model, and second, a trinomial tree discretization. In Crépey [2, 3], we have already
considered this problem from a theoretical point of view, in the continuous setting of the
generalized Black–Scholes model. Here, we shall consider a suitable discretization and the
associated regularized calibration algorithm. Moreover, we also consider the problem of
calibration with American option prices.

Let us recall the framework in Crépey [2, 3]. In market finance, a European call (put)
option with maturity date T and strike K , on an underlying asset S, means a right to buy (sell),
at price K , a unit of S at time T . We consider a theoretical financial market, with two traded

0266-5611/03/010091+37$30.00 © 2003 IOP Publishing Ltd Printed in the UK 91

http://stacks.iop.org/IP/19/91


92 S Crépey

assets: cash, with constant interest rate r , and a risky stock, with diffusion price process driven
by a standard Brownian motion W :

dSt = St (ρ(t, St ) dt + σ(t, St ) dWt), t > t0; St0 = S0.

Moreover, the stock is assumed to yield a continuously compounded dividend at constant rate q .
Suppose finally the market to be liquid, non-arbitrable and perfect. By arbitrage arguments
and Itô’s lemma, European calls/puts on S then have a theoretical fair price within the model
that we will denote by �T,K (t0, S0; a), where a ≡ σ 2/2 and

�T,K (t0, S0; a) = e−r(T −t0)Et0,S0
P (ST − K )+/−. (1)

Here P denotes the so-called risk-neutral probability, under which

dSt = St ((r − q) dt + σ(t, St ) dWt), t > t0; St0 = S0. (2)

Alternatively to the probabilistic representation (1), the prices � can be given as the solution to
a differential equation. One can use either the Black–Scholes backward parabolic equation [4],
in the variables (t0, S0), which is{ −∂t� − (r − q)S∂S� − a(t, S)S2∂2

S2� + r� = 0, t < T
�|T ≡ (S − K )+/−,

(3)

or the Dupire forward parabolic equation [5], in the variables (T, K ), given by{
∂T � − (q − r)K ∂K � − a(T, K )K 2∂2

K 2� + q� = 0, T > t0
�|t0 ≡ (S0 − K )+/−.

(4)

Notice that (1) can be viewed as the Feynman–Kac representation for the solution of (3). As
for (4), it is a Fokker–Planck equation integrated twice with respect to the space variable K ,
using the formal identity

∂2
K 2(S0 − K )+/− ≡ δS0(K ),

where δS0 denotes the Dirac mass at S0.
In (2)–(4), the yields r and q are assumed to be known constants. However, they could in

fact be any deterministic known functions of time. The local volatility function σ ,or a ≡ σ 2/2,
is an unknown function of time and stock. The calibration problem is the inverse problem that
amounts to inferring the local volatility function a from market-quoted prices of liquid, so-
called vanilla, options, typically European calls and puts with various strikes and maturities.
The local volatility function thus inferred is then used to price exotic (non-vanilla) options, and
value hedge ratios or derivative exposure,consistently with the market. This problem, known as
fitting the smile by market practitioners, is hence the reconstruction of a local volatility function,
supposed to be prevailing as the underlier’s risk-neutral dynamics. It is indeed important for
applications that the reconstruction of such a prevailing dynamics be as fair as possible. But this
calibration problem is under-determined (since the set of observed prices is finite) and ill-posed,
so that ad hoc stabilizing procedures must be used. A variant of the problem, also considered in
this paper, consists of the calibration of a local volatility function with American option prices.
We will refer to the former as the European, and the latter as the American, calibration problem.

1.2. Survey of the literature

This calibration problem has received intensive study over the last ten years, see for instance [1–
3, 5–21] and references therein. The American calibration problem is addressed in [22–24].
All these references illustrate both the mathematical interest in the problem and its relevance
from the financial point of view. The Markovian feature of the generalized Black–Scholes
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model (2) is an attractive framework for market practitioners. The drawback is that this model
is more relevant in specific market conditions, namely those where the volatility is strongly
correlated to the market level. In practice, this model is more specifically dedicated to equity
index option markets, especially for shorter-dated options. These are mainly American option
markets, which makes the American calibration problem all the more important. For more
details on these econometric and empirical aspects, we refer the reader to the monograph
by Rebonato [12]. In more general market conditions, one should move to non-Markovian
models, such as stochastic volatility models [25], jump-diffusion models [26, 27] or models
of dynamics of implied volatility [28, 29].

Let us come back to our calibration problem. The first attempts to solve it viewed the
problem as one of differentiation from discrete data, interpolating the finite set of observed
call prices π for (T, K ) ∈ obs to a full set �̃ of call prices for every (T, K ), and recovering
a from Dupire’s equation (4). This approach was introduced in Dupire [5] and developed
in Rubinstein [8], Derman and Kani [6], Derman et al [7] or Andersen and Brotherton-
Ratcliffe [9], among others. It was also applied to the American calibration problem in
Chriss [22] or Barle and Cakici [23]. But it does not address the fact that the calibration
problem is ill-posed. So the local volatility surface thus calibrated was quite unstable and
dependent upon the interpolation procedure used for π . Alternative parametric approaches
came up against the lack of a natural parametrization for the local volatility function. Dumas
et al [10] used an elementary parametrization, while Coleman et al [11] worked with splines.
Finally, Bouchouev et al [13, 14] studied the stationary case σ(S), or the case where the term
and strike structures of the local volatility function are decoupled, taking σ(t, S) ≡ ρ(t)σ (S).

Various regularization methods were also applied to the problem. All of them use a
prior a0, which reflects a priori information about a. We can classify these methods into two
categories.

The first one uses entropic regularization, after reformulation of the problem as one of
constrained stochastic control, with cost criterion

ρ(a, a0)
2 = EP

∫ T

T =t0

(a − a0)
2 ,

and constraints �|obs(a) = π or d(�|obs(a), π) � δ, where d(�|obs(a), π) denotes a distance
between the model prices �(a) and the observed prices π . The probabilistic representation (1)
for option prices then allows us to give to this constrained stochastic control problem a
dual formulation, using Lagrange multipliers. This approach was introduced with equality
constraints by Avellaneda et al [15], while Samperi [16] deepened some theoretical aspects.

The second one, which is also the one considered in this paper, uses Tikhonov variational
regularization by the H 1-norm of a−a0. For seminal and survey references regarding Tikhonov
regularization, we refer the reader to Tikhonov [30] and Engl et al [31, ch 10]. This approach
tackles the calibration problem as a minimization problem, of a cost criterion

Jα(a) ≡ d(�|obs(a), π)2 + αρ(a, a0)
2.

Here d(�|obs(a), π) denotes a distance between the model prices �(a) and the observed prices
π , α is the so-called regularization parameter and ρ is a penalty designed to keep a close to
the prior a0, namely ρ(a, a0)

2 ≡ ‖a − a0‖2
H 1 , where

‖u‖2
H 1 ≡

∫ ∫
u2 + ‖∇u‖2,

the H 1-squared norm of u. This formulation of the calibration problem was introduced by
Lagnado and Osher [1]. Jackson et al [17] coupled this approach with a spline parametrization
for the local volatility function. Bodurtha and Jermakyan [18] developed a linearized variant.
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Berestycki et al [20] used as a state variable the implied Black–Scholes volatility corresponding
to the model prices �(a), rather than these prices themselves. Achdou and Pironneau [21]
used as a state variable the prices � in the variables (T, K ) rather than (t0, S0), with H 2-
regularization and a finite element discretization. Huang and Pang [24] studied the American
calibration problem. In my PhD thesis [19, Part IV] (in French), I have proposed an implicit
finite differences implementation which can be used as an alternative to the one in Lagnado
and Osher [1]. The idea was to use an approximate gradient of the cost criterion computed
at the expense of pricing the options and solving one Dupire equation, instead of pricing the
options and solving one Black–Scholes equation with source term by option and mesh node
to obtain the exact gradient in the original presentation by Lagnado and Osher. The present
paper is about an innovative trinomial tree implementation of the method, in which the exact
gradient can be computed at the expense of pricing the options and solving one Fokker–Planck
equation. Therefore the accuracy of the original method is preserved but the computational
time is drastically reduced. Typically the calibration time can be reduced from about 1 h to
about 1 min or less on a standard serial Pentium PC. The use of parallelism allows one to gain
a further factor. Moreover we extend this methodology to the American calibration problem.

1.3. Overview

Let us now give an overview of the paper. Section 2 states results of the general theory,
surveyed for instance in Engl et al [31, ch 10], of the Tikhonov regularization method for
ill-posed nonlinear inverse problems. In the generalized Black–Scholes model (2), results
regarding stability at fixed α > 0, as well as convergence and convergence rates when α → 0,
have been shown for the Tikhonov regularized calibration method in Crépey [2, 3]. We refer
the reader to the latter for every detail, while section 3 recalls the main results useful for a
good understanding of the present paper. In section 4, we obtain the analogous results for a
Markov chain approximation of (2), including a probabilistic interpretation for the gradient of
the cost criterion. This results in section 5 in an efficient implementation of the method, as
accurate as, and faster than, Lagnado and Osher’s algorithm [1]. Moreoverwe propose an MPI-
parallel implementation. Numerical experiments on real data sets illustrate the effectiveness
and robustness of the resulting regularized calibration procedure (section 6). In section 7 we
benchmark our approach with other methods. Finally in section 8 we consider the American
calibration problem.

The numerical experiments presented in this paper were performed with the
CalibrationEngine (of P Cohort, S Crépey, S Farcy and C Martini, Artabel SA). This
embeds, in a unified software, both serial and MPI-parallel implementations of various
approaches to the calibration problem, in particular a splined-based method of differentiation
from discrete data using Dupire’s equation (4), a trinomial tree implementation of the variant
of Avellaneda et al [15] constrained stochastic control approach with inequality constraints,
and the trinomial tree implementation of the Tikhonov regularization method which constitutes
the core of this paper.

2. Tikhonov regularization of nonlinear inverse problems

Let us first recall some known results regarding Tikhonov regularization of ill-posed nonlinear
inverse problems. The reference for this section is the work by Engl et al [32].
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2.1. Definitions and general assumptions

In [32] the authors consider a nonlinear operator between Hilbert spaces

H ⊇ A � a
��−→ �(a) ∈ H′.

The operator � is supposed to be weakly sequentially closed. This means that for every A-
valued sequence an such that an converges weakly to a in H and �(an) converges weakly to π

in H′, then a ∈ A and π = �(a). We will only be concerned with the special case where A is
a closed convex subset of H, H′ = R

M for some fixed M ∈ N
�, and � satisfies the following

stronger assumption.

Assumption 2.1 (Compacity). �(an) → �(a) in R
M if an → a weakly in H as n → ∞.

We will also assume that � is twice Gateaux differentiable as follows.

Assumption 2.2 (Differentiability). There exist linear and bilinear forms d�(a) on H and
d2�(a) on H2 such that

�(a + εh) = �(a) + εd�(a) · h +
ε2

2
d2�(a) · (h, h) + o(ε2); a, a + h ∈ A

with

‖d�(a) · h‖ � C‖h‖; a ∈ A, h ∈ H
‖d2�(a) · (h, h′)‖ � C‖h‖‖h′‖; a ∈ A, h, h′ ∈ H,

where C is a constant independent of a ∈ A.

Remark 2.3. Usually the assumption is stated as Fréchet differentiability of the direct operator,
but only Gateaux differentiability will be required in the following. In any case the operators
that we will consider in sections 3 and 4 are actually Fréchet differentiable, even if not stated
as such.

In practice, the set of observations, or input data for the inverse problem, is only known
up to some noise δ. For instance, market prices πδ are defined as bid–ask spreads. Moreover,
any numerical procedure to tackle an inverse problem entails some computational burden η.
Tikhonov regularization allows us to overcome such data noise and computational burden.

Definition 2.4 (α-solution). By an α-solution of the inverse problem for � with prior a0 ∈ H,
noisy data πδ ∈ R

M and computational burden η � 0, we mean any aδ,η
α ∈ A such that

J δ
α (aδ,η

α ) � J δ
α (a) + η, a ∈ A

where

2J δ
α (a) ≡ ‖�(a) − πδ‖2 + α‖a − a0‖2. (5)

2.2. Properties of Tikhonov regularized solutions

First, the so-called stability, in the following theorem, means the sequential compacity of the
α-solutions, at any fixed α > 0.

Theorem 2.5 (Stability; [32, theorem 2.1]). Assume πδn → πδ and ηn → η ≡ 0 when
n → +∞. Then any sequence of α-solutions aδn,ηn

α admits a subsequence which converges
towards an α-solution aδ,η≡0

α .

Remark 2.6. Engl et al [32, theorem 2.1] assume ηn ≡ 0. However, their proof extends
immediately to the case of a sequence ηn that tends to 0 as n → ∞.
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Assuming further that the data lie in the range of the model leads to asymptotic properties
of α-solutions as α → 0.

Assumption 2.7 (Range property). π ∈ �(A).

Definition 2.8 (a0-MNS). Under assumption 2.7, we shall call an a0-minimal norm solution
(a0-MNS) of the inverse problem for � with data π , any solution a that minimizes ‖a − a0‖
over the set of all solutions.

Theorem 2.9 (Convergence; [32, theorem 2.3]). Under assumption 2.7, suppose that

(n ∈ N) ‖π − πδn ‖ � δn,

(n → +∞) αn, δ
2
n/αn, ηn/αn −→ 0.

Then any sequence aδn,ηn
αn

admits a subsequence which converges towards an a0-MNS a.
Moreover, aδn,ηn

αn
→ a, if a is the unique a0-MNS of the inverse problem for � with data

π .

Remark 2.10. In the special case where the direct operator � is linear,Tikhonov regularization
then appears as an approximating scheme for the pseudo-inverse of �.

Finally, one can get convergence rate estimates, uniform over all data π ∈ �(A)

sufficiently close and smooth with respect to the prior a0. Let d�(a)� denote the adjoint
of the operator h �→ d�(a) · h.

Theorem 2.11 (Convergence rates; [32, theorem 2.4 and remark 2.5]). Under assumption 2.7,
suppose that

‖π − πδ‖ � δ, α ∼ δ, η = O(δ2).

Then ‖aδ,η
α − a‖ = O(

√
δ), for any a0-MNS a of the inverse problem for � with data π such

that

a − a0 = d�(a)∗λ, (6)

for some sufficiently small λ ∈ R
M.

Proof. In our notation, the condition on λ in [32, theorem 2.4 and remark 2.5] can be rewritten
as

2

〈
λ,

∫ 1

0
(1 − t)d2�(a + t (aδ,η

α − a))(aδ,η
α − a, aδ,η

α − a) dt

〉
� ρ‖aδ,η

α − a‖2,

for some ρ < 1. But, provided that λ is sufficiently small in R
M , this indeed follows from our

differentiability assumption 2.2 by the Cauchy–Schwarz inequality. �
Remark 2.12. This theorem is the only one that requires the differentiability assumption 2.2.

Remark 2.13. An interesting feature of Tikhonov regularization is that the data set π does
not have to belong to the range of the direct operator for applicability of the method—even if
assumption 2.7 is the simplest assumption for the previous results regarding convergence and
convergence rates (in fact, the minimum assumption for such results is the existence of a least
squares solution to the inverse problem, see [33, proposition 3.2]).

To alleviate the notation, we shall assume in the following sections 3–5 that there are
only calls in the calibration data. The next two sections give two concrete settings in which
assumptions 2.1 and 2.2 will be seen to hold true, so that all the results in this section are
applicable.
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3. Continuous setting

The first of these settings is the generalized Black–Scholes model, already considered in
Crépey [2, 3]. The results presented in this section are not new, except theorem 3.3, which
does not appear explicitly in Crépey [2, 3] but can be derived in the same manner as theorem 3.2.
We state these results once again here to emphasize their analogy with the results obtained in
the next section. These will be obtained in a new setting, which can be seen as a discretization
of the generalized Black–Scholes model with trinomial trees, or explicit finite differences.

3.1. The setting

Given a plane strip Q = ]t0, T [×R, constant bounds 0 < a � a and a real measurable prior
a0 on Q such that a � a0 � a, let us denote by

A ≡ {a ∈ a0 + H 1(Q); a � a � a},
where H 1(Q) is the usual Sobolev space on Q such that

‖u‖2
H 1(Q)

≡
∫ ∫

Q
u2 + ‖∇u‖2.

Let there also be given a finite subset F ⊂ Q with |F | = M ∈ N
�. We define � as the pricing

functional

A � a
��−→ �F (t0, y0 = 0; a) ∈ R

M ,

where

�T,k(t0, y0; a) = e−r(T −t0)Et0,S0
P (ST − K )+

denotes, for (T, k) ∈ F , the price of the European call with maturity T and strike K = exp(k),
at the current date t0 and underlying asset value S0, in the generalized Black–Scholes model (2)
expressed with the logarithmic variable

y ≡ ln

(
S

S0

)
− (r − q − a)(t − t0).

Now, it follows from the results in Crépey [2, 3] that the pricing functional � satisfies the
regularity assumptions 2.1 and 2.2. We refer the reader to Crépey [2, 3] for the technical details
and other results. The proofs use W 1

2,p estimates for Black–Scholes and Dupire equations, as
well as viscosity considerations. The main difficulty is to show the estimates in assumption 2.2
for a bound C independent of a ∈ A. Notice that Crépey [2, 3] uses the logarithmic variable
y = ln(S), instead of y as above. The present choice of variables gives rise to better stability
conditions after discretization of the problem (see section 4.1). With this choice, all the results
in Crépey [2, 3] are easily seen to be applicable, except those, irrelevant here, concerning the
analysis of the stability of the method with respect to perturbations of (t0, S0).

3.2. The gradient

Furthermore,

Theorem 3.1 (See [2, 3]). For (T, k) ∈ F , the derivative of �T,k(t0, y0; a) in the direction
h ∈ H 1(Q), admits the following Feynman–Kac representation:

d�T,k(t0, y0; a) · h =
∫ T

t=t0

∫ ∞

y=−∞
h(t, y)�T,k(t, y; a)γt0,y0(t, y; a) dy dt, (7)
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where �T,k(t, y; a) ≡ (∂2
y2 − ∂y)�T,k(t, y; a) and γt0,y0(t, y; a) denotes, for almost every

t > t0, the transition probability density between t0 and t discounted at rate r , that is, e−r(t−t0)×
the density, of the process

yt ≡ ln

(
St

S0

)
− (r − q − a)(t − t0).

Finally, let � denote the Laplacian operator on H 2(Q).

Theorem 3.2 (See [2, 3]). Assuming moreover that a is uniformly continuous with respect to
its space variable y, then condition (6) means that � ≡ a − a0 is the unique strong solution
in H 2(Q) of the following nonlocal problem:


� − �� =

∑
(T,k)∈F ;t�T

λT,k�T,k(t, y; a)γt0,y0(t, y; a), Q a.e.

∂n� = 0, ∂ Q a.e.
(8)

where the normal derivative ∂n� ∈ L2(∂ Q) is well defined, for � ∈ H 2(Q).

In the same way, let ∇ denote the Gateaux derivative in H 1(Q).

Theorem 3.3 (See [2, 3, 19]). If a is uniformly continuous with respect to its space variable
y, then u ≡ ∇ J δ

α (a) − α(a − a0) belongs to H 2(Q), and u is the unique strong solution in
H 2(Q) of the following problem:


u − �u =
∑

(T,k)∈F;t�T

(�T,k(t0, y0; a) − πδ
T,k)�T,k(t, y; a)γt0,y0(t, y; a), Q a.e.

∂nu = 0, ∂ Q a.e.
(9)

where the normal derivative ∂nu ∈ L2(∂ Q) is well defined, for u ∈ H 2(Q).

To simplify the notation, we will assume in the next two sections that all maturities with
observed prices fall at steps of a constant time subdivision of [t0, T ], where T ≡ max(T,k)∈F T .

4. The problem within a trinomial tree

It turns out that there is a natural discretization of the setting of the problem in section 3.1,
which keeps all the required properties. The idea is to use a Markov chain algorithm to specify
the same problem in a fully discrete setting. In order to handle the key point that the local
volatility may vary within a range, we adopt a trinomial tree method where the mesh is fixed
once and for all, and the local volatility varies from node to node.

4.1. The setting

Define σ and σ such that a, a ≡ σ 2/2, σ 2/2. We choose a Markov chain with time step
τ = (T − t0)/N and space step ε ≡ βσ

√
τ , where β is some fixed parameter, the so-

called stretch factor. Starting from y0 = 0, we look for a scheme with, at each node yn, a
local transition probability p = P(yn+1 = yn − ε|yn), p′ = P(yn+1 = yn + ε|yn), so that
P(yn+1 = yn|yn) = 1 − p − p′.

Then, given a local node volatility a ≡ a(tn+1, yn) ∈ [a, a], it is easy to show that the
choice

p =
(

a

ε2
+

(a − a)

2ε

)
τ, p′ =

(
a

ε2
− (a − a)

2ε

)
τ



Tikhonov regularized calibration with trees 99

will yield nonnegative weights as long as the following stability conditions hold true:

ε � 2a

(a − a)
, 1 � β; (10)

and also that the first and second moments of the Markov chain, after the change of variables

y �→ S = S0 exp(y + (r − q − a)(t − t0)),

will match those of the continuous diffusion (2) with an o(τ ) accuracy as τ → 0.
Now we set exactly the same problem as in section 3.1, except that the space A is the set

of all possible a ≡ σ 2/2 at the nodes of the sub-tree I starting at (t1, y0) with a � a � a, and
� means the price, or discounted expectation of the payoff function, of a call in the tree with
local volatility. Obviously, A can be identified in a natural way with the product set [a, a]N 2

.
Moreover, denoting by αt and αy auxiliary regularization parameters to be defined later, and
by B the set of bottom nodes of I, we endow A with the inner product

〈u, v〉h1 = αt Dt (u, v) + αy Dy(u, v), (11)

where

Dt (u, v) ≡ τ−1ε
∑

(tn ,ym)∈I
(u(tn−1, ym) − u(tn, ym))(v(tn−1, ym) − v(tn, ym)) (12)

Dy(u, v) ≡ τε−1

( ∑
(tn,ym)∈I

(u(tn, ym+1) − u(tn, ym))(v(tn, ym+1) − v(tn, ym))

+
∑

(tn,ym)∈B
(u(tn, ym) − u(tn, ym−1))(v(tn, ym) − v(tn, ym−1))

)
, (13)

with homogeneous boundary conditions, Neumann at the origin of the tree and Dirichlet
elsewhere.

In this setting, the pricing functional a �→ �(a) is multilinear, hence continuous. More
precisely,

�T,k(t0, y0; a) =
∑
J⊆I

CJ
∏

(t,y)∈J
a(t, y), (14)

where CJ is a linear combination, with rational functions of ε and τ as coefficients, of the
values of the call payoff at the terminal nodes of the tree. These are the

(S0e(ym+(r−q−a)(T−t0)) − ek)+,

where |ym| � Nε and N = (T −t0)/τ . The first and second partial derivatives of�T,k(t0, y0; a)

with respect to the values of the local volatility function a at the nodes of I inherit the
structure (14), whence the differentiability assumption 2.2 for

� ≡ �T,k(t0, y0; a), (T, k) ∈ F
where the bound C in this assumption is independent of a ∈ A, as wished. Finally, � satisfies
the regularity assumptions 2.1 and 2.2.

4.2. The gradient

Furthermore,

Theorem 4.1. For (T, k) ∈ F , the partial derivative of �T,k(t0, y0; a) with respect to the
value of the local volatility function a at node (tn, ym) ∈ I with tn � T admits the following
Feynman–Kac representation:

d�T,k(t0, y0; a) · δ(tn, ym) = �T,k(tn, ym; a)γt0,y0(tn−1, ym; a) exp(−rτ )τ, (15)
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where

�T,k(tn, ym; a) ≡
(

1

ε2
+

1

2ε

)
�T,k(tn, ym−1; a) − 2

ε2
�T,k(tn, ym; a)

+

(
1

ε2
− 1

2ε

)
�T,k(tn, ym+1; a),

and γt0,y0 denotes the map of Arrow–Debreu prices in the tree at the current phase (t0, y0).

The Arrow–Debreu prices are the transition probabilities discounted at rate r . They can
thus be computed forward in the tree using a Fokker–Planck discrete equation that expresses
the composition of discounted probabilities.

Proof. By direct calculus,

�T,k(tn−1, yl; a + δ(tn, ym)) − �T,k(tn−1, yl; a) = 1{l=m}�T,k(tn, ym; a) exp(−rτ )τ.

So, by linearity, d�T,k(t0, y0; a) · δ(tn, ym) is equal to the value at (t0, y0) of the diffusion
backward in the tree of a single nonzero term

�T,k(tn, ym; a) exp(−rτ )τ

at (tn−1, ym). Now, (15) is nothing but the Feynman–Kac representation for d�T,k(t0, y0; a) ·
δ(tn, ym). �

Finally, let us define the following discretized Laplacian operator on R
N 2

:

�ε
τ u · (tn, ym) ≡ αt (u(tn−1, ym) − 2u(tn, ym) + u(tn+1, ym))/τ 2

+ αy(u(tn, ym−1) − 2u(tn, ym) + u(tn, ym+1))/ε
2, (tn, ym) ∈ I

with homogeneous boundary conditions, Neumann (Dirichlet) at the origin and at an artificial
tN+1 ≡ T + τ time step of the tree (elsewhere).

Theorem 4.2. Condition (6) means that � ≡ a − a0 is the unique solution in R
N 2

of the
following nonlocal problem:

−�ε
τ� · (tn, ym) =

∑
(T,k)∈F;tn�T

λT,k�T,k(tn, ym; a)γt0,y0(tn−1, ym; a)

× exp(−rτ )/ε, (tn, ym) ∈ I. (16)

Proof. Operate an elementary discrete Green identity on the following adjunction relations:

〈δ(tn, ym),�〉h1 =
∑

(T,k)∈F
λT,kd�T,k(t0, y0; a) · δ(tn, ym), (tn, ym) ∈ I

and scale by τε. �

In the same way, let ∇ denote the gradient with respect to the h1-inner product (11) in
R

N 2
.

Theorem 4.3. u ≡ ∇ J δ
α (a)−α(a−a0) is the unique solution in R

N 2
of the following problem:

−�ε
τ u · (tn, ym) =

∑
(T,k)∈F;tn�T

(�T,k(t0, y0) − πδ
T,k)�T,k(tn, ym; a)γt0,y0(tn−1, ym; a)

× exp(−rτ )/ε, (tn, ym) ∈ I. (17)

Remark 4.4. Observe the analogy between the identities (15)–(17) and (7)–(9), respectively.
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5. A trinomial tree variant of the Lagnado–Osher algorithm

5.1. Outline

Hence, a natural way to tackle numerically the Tikhonov regularized calibration problem
in the tree consists of η-minimizing J δ

α on a ∈ [a, a]N 2
, where a ≡ σ 2/2 and N is the

number of time steps in the tree, using the gradient with respect to the h1-inner product (11)
in R

N 2
. This gradient can be computed by solving (17), by cyclic reduction using for example

Genbun in Slatec at Netlib, or by fast Fourier transform. We will instead use the Euclidean
gradient, corresponding, as is seen immediately from above, to the right-hand side of (17) minus
α�ε

τ (a − a0), all of it factored by τε. We thus spare the computational cost of solving (17).
But our main point here is that sophisticated black-box bound constrained gradient descent
minimization routines, such as, for instance, Lbfgs b in Toms atNetlib, require the Euclidean
gradient as their argument.

With respect to Lagnado and Osher’s algorithm [1], the main interest of this tree
implementation follows from the probabilistic representation (15). This allows us to compute
the gradient of the cost criterion by pricing the options and solving one Fokker–Planck equation
in the tree, instead of pricing the options and solving one Black–Scholes equation with source
term by option and mesh node in the Lagnado–Osher original presentation. Indeed we refer
the reader to [1, p 17, equation (2.12) and step 4 in the algorithm]. Step 4 in the algorithm
requires them to solve one Black–Scholes equation with source term (2.12) for each i , j , m, n,
where (i, j) and (m, n) parametrize the options and mesh nodes, whence ‘a large number of
direct solutions to the PDE (2.12)’ are required. In contrast, our tree implementation amounts
to computing the adjoint

γt0,y0(·; a)(�T,k(t0, y0·; a) − πδ
T,k)

for the state �T,k(.; a), (T, k) ∈ F , exactly in reverse mode. The expression for the gradient can
be coded by hand; no automatic differentiation tool is needed. The accuracy of the Lagnado–
Osher algorithm is preserved, but the computational time is drastically reduced. Typically the
calibration time can be reduced from about one hour to about one minute or less on a standard
serial Pentium PC. Moreover a parallel implementation allows one to gain a further factor. To
do so, one shares between the available processors, for each maturity with observed prices,
the computations relative to the options with various strikes. This can be done by using, for
instance, the MPI library.

Another interest of this tree implementation is that explicit finite difference computations
in the tree are less costly than implicit methods for computing option prices. Of course, explicit
schemes are subject to the stability condition (10). But, to handle this condition, one only needs
to take a space step ε � 2a

(a−a)
, and then a time step τ such that σ

√
τ � ε. One could also

object that explicit finite differences converge slower than implicit ones, so that the gain in
using an explicit scheme would be overwhelmed by the need to use a finer discretization. This
is discussed in the appendix.

5.2. Choice of the regularization parameter

Results regarding convergence and convergence rates in section 2.2 relate to a priori strategies
α ≡ α(δ, η). In the special case where the direct operator � is linear, various a posteriori
strategies α(δ, η; πδ), as well as error-free strategies α(πδ), are known. For a survey, we
refer the reader to Engl et al [31, sections 4.3–4.5]. A posteriori strategies include, for
instance, the ones based upon discrepancy principles. Well known error-free strategies are
the generalized cross-validation or the L-curve methods. All these strategies come out onto
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algorithms that are iterative with respect to α. However, in the linear case, much of the
computation can be factorized and done once and for all across all the values of α used. Some
of these strategies, such as those based upon discrepancy principles [31, section 10.3], and the
associated algorithms iterative with respect to α, extend to the nonlinear framework. But the
computations cannot be factorized any more. These methods then require the resolution of
several large-scale minimization problems, one for each value of α used, which is often too
time-consuming.

Regarding our implementation of the calibration problem, we have heuristically chosen
an error-free two-stage strategy as follows. We will come back later to the choices of the
bounds a and a, and of the prior a0. Now, in order to take care of normalization, we minimize
a functional slightly different from J δ

α in (5), namely j δ
α such that

2 j δ
α(a) ≡ 1

M

∑
(T,k)∈F

(
�T,k(t0, y0; a) − πδ

T,k

ωT,k

)2

+ αt Dt (a − a0, a − a0) + αy Dy(a − a0, a − a0), (18)

where the penalization terms were defined in (12), (13) and

ωT,k ≡ max(�T,k(t0, y0; a) − πδ
T,k, π

δ
T,k − �T,k(t0, y0; a)), (T, k) ∈ F .

To determine αt and αy , we first solve the unregularized calibration problem, by minimization
of the least square term in (18),without penalization. Denoting by a� the solution thus obtained,
we then choose αt and αy such that


1

M

∑
(T,k)∈F

(
�T,k(t0, y0; a�) − πδ

T,k

ωT,k

)2

= αt Dt (a
� − a0, a� − a0) + αy Dy(a

� − a0, a� − a0)

αt Dt (a
� − a0, a� − a0) = αy Dy(a

� − a0, a� − a0).

Moreover, so as to reduce the computation cost, we perform this minimization in a tree with
half as many time steps as in the original one. Indeed, at this stage of the computation, we
are only interested in the value of the minimum, and not in the solution a� itself. Therefore
this minimization may be less accurate than the full regularized calibration procedure, namely
minimizing (18) in the original tree with the values of αt and αy thus determined. Incidentally,
computing the regularization parameters in the halved tree results in greater values for these
parameters than those which one would obtain in the full tree, hence a greater stability for the
overall regularized calibration procedure. We will refer to the resolution of the unregularized
and regularized minimization problem as the first stage and the second stage of the overall
regularized calibration procedure.

Notice that the least square term and the penalization term are equal in j δ
α(a�). Rather like

in the L-curve method, the idea is to equilibrate the contributions of the quadratic residual and
penalty terms, so as to realize a fair compromise between accuracy and stability in the method.
Since the regularization parameters αt and αy depend on πδ , but not directly on δ or η, this
is an error-free strategy. This choice is mainly a heuristic one. One could have made other
choices, such as a posteriori strategies α(δ, η; πδ), in which one can use the bid–ask spread
on the market prices as an estimator for δ, or take δ as the distance between the model and the
data, computed by solving the unregularized minimization problem.

6. Numerical experiments

Now we report exhaustive numerical experiments performed on real market data, using
the above two-stage trinomial tree regularized calibration algorithm. In the following, the
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European call/put implied volatility, for given data r , q , t0, y0, T , k and price π , means the
unique constant volatility such that π is the price of the European call/put in the classic,
nongeneralized Black–Scholes model corresponding to these data. The implied volatility
mismatch between the observed price πδ

T,K and the generalized Black–Scholes model price
�T,K (t0, S0; a) is thus the difference between the corresponding implied volatilities. The
implied volatility surface, for a local volatility function a, means the surface of implied
volatilities corresponding to the call model prices for all T � t0 and K > 0, or (T, K )

in a suitable discretization. This computation for an implied volatility surface may thus be
considered as an indirect interpolation procedure for the input call prices, or their implied
volatilities. Moreover, in contrast to an arbitrary interpolation procedure, the resulting implied
volatility surface is inherently arbitrage-free.

We use a trinomial tree as in section 4.1, but with variable time step, so that all maturities
with observed prices indeed fall at steps of the time subdivision. To handle the stability
condition (10) in the time adaptive tree, we first choose a space step ε � 2a

(a−a)
, and then a time

step τi such that σ
√

τi � ε in each slice ]Ti−1, Ti ] of the tree. The bounds a and a are fixed
thanks to a specific pre-minimization procedure based upon the input implied volatilities. The
prior a0 is taken as a constant equal to the weighted average of the input implied volatilities,
with weights proportional to the implied Black–Scholes vegas. Use of a nonconstant prior will
also be considered in section 6.5.

The data consist of daily sets of vanilla European call and put option prices on the FTSE
and DAX indexes. The current time t0 corresponding to each of these data sets has been
translated to t0 = 0. We filtered out the options with prices outside the well known arbitrage
bounds, as well as the less liquid options with moneyness K/S0 smaller than 0.8 or larger
than 1.2. Finally, for data sets with both call and put option prices, the dividend rates that
we used were computed so that the observed prices match as well as possible the theoretical
call–put parity relation, in the overall least-squares sense. This is an indirect way of correcting
the gap between the quotation times for the underlier and the option prices, which are often
asynchronous in public data.

6.1. A school example

The first example involves a FTSE data set of call prices at 11 February 2000. These prices are
displayed in table 1. The corresponding value of the index was S0 = 6219.0. We used N = 52
time steps in the tree, a constant dividend rate based upon a dividend of amount −0.047 38 at
maturity 0.191 781 and a constant interest rate based upon a zero coupon equal to 0.988 284
at maturity 0.191 781. Figure 1 displays

(a) the squared local volatility surface σ 2 obtained at the end of the second computation stage,
(b) the implied volatility surface reconstructed thanks to it, and
(c) the accuracy of the overall calibration procedure.

Observe the typical strike structure of the implied volatility surface, smiling at low time-to-
maturity and skewed downwards as the time-to-maturity increases. To show the impact of the
regularization term, figure 2 (beware of the scale of the ordinate axis) displays the squared
local volatility surface at the end of the first computation stage.

6.2. Stability with respect to calendar time

The second experiment illustrates the stability of the method by showing the local squared
(figure 3) and implied (figure 4) volatility surfaces obtained on successive DAX data sets at
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Figure 1. Squared local volatility (a), implied volatility surface (b) and calibration accuracy (c) at
the end of the second computation stage, on a FTSE European data set at 11 February 2000.
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Figure 2. Squared local volatility at the end of the first computation stage, on a FTSE European
data set at 11 February 2000.

Table 1. A FTSE data set of European call prices.

Maturity Strike Price

0.095 890 5825 469.5
0.095 890 6175 223.5
0.095 890 6225 195.5
0.095 890 6275 169
0.095 890 6325 144.5
0.095 890 6575 56.5
0.095 890 6875 10.5
0.095 890 7225 0.5
0.191 781 5725 631
0.191 781 6075 378
0.191 781 6125 345.5
0.191 781 6175 314.5
0.191 781 6225 284.5
0.191 781 6275 256.5
0.191 781 6325 229.5
0.191 781 6725 72.5
0.191 781 6775 60.5
0.191 781 7025 24
0.191 781 7425 2

May 2 (a), 3 (b) and 4 (c), 2001. We used N = 31, 26 and 47 time steps in the trees. Figure 5
displays the accuracy of the calibrations. These are already very satisfying, especially if one
considers the small size of the trees we used in these experiments. Notice that the data with
shortest time-to-maturity in parts (a) and (b) are not taken into account any longer in part
(c), as they become too close to expiry. Recall that in a given generalized Black–Scholes
model, hence at fixed local volatility function, the implied volatility surface does vary with
calendar time. In contrast, any dynamics of the local volatility surface might reveal some model
misspecification. Actually, figure 3 shows that the local volatility functions thus calibrated are
fairly regular at fixed date and stable from day to day.
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Figure 3. Squared local volatility at the end of the second computation stage, on the DAX data
sets of May 2 (a), 3 (b) and 4 (c), 2001.
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Figure 5. Calibration accuracy at the end of the second computation stage, on the DAX data sets
of May 2 (a), 3 (b) and 4 (c), 2001.
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Table 2. Execution times on a PC Cluster with nproc processors.

N × nproc 1 3 6

54 25 s 9 s 10 s
101 4 min 30 s 1 min 57 s 1 min 36 s

6.3. Stability with respect to the size of the tree

Figures 6–8 illustrate another kind of stability, by showing what happens when one increases
the number N of time steps in the tree on the first data set of section 6.2. Observe how the
implied volatility surfaces become more regular (figure 7), while the cloud of implied volatility
mismatches narrows around 0 (figure 8: beware of the scale of the ordinate axis),as N increases.
On a standard serial Pentium PC, execution times corresponding to these experiments vary from
a few seconds (section 6.2, N = 31) to a few minutes (N = 101). Furthermore, table 2 shows
the computation times by the MPI-parallel implementation described in section 5.1 on a PC
Cluster with a variable number of active processors (1.3 GHz each). Notice that, because of
the communication times between processors, the optimal number of active processors does
not exceed a few units in these experiments.

6.4. Sensitivity with respect to the moneyness of the data

An interesting parameter is the width of the moneyness spread of the input data. In the previous
experiments, we used data with moneyness K/S0 ranging from 0.8 to 1.2. Figure 9 displays,
for instance, the results of the calibration on the subset of the options in the first data set of
section 6.2 with moneyness contained between 0.9 and 1.1, using N = 74 time steps in the
tree. The local volatility surface is still much more regular, the implied volatility surface is
also more regular, and the calibration is more accurate, than in the analogous experiments with
moneyness bounds 0.8 and 1.2 (see parts (b) in figures 6–8).

6.5. Use of a nonconstant prior

If one wishes to reduce the dimension of the minimization program, our algorithm can be
combined with a parametrization for the local volatility function, as for instance with splines
in Jackson et al [17]. To do so, one computes the derivatives of the cost criterion along the
basis vectors h of the parametrized family, through the chain rule

d�T,k(t0, y0; a) · h =
∑

(tn,ym)∈I
h(tn, ym)d�T,k(t0, y0; a) · δ(tn, ym).

In this manner, we computed, on the DAX data set of 2 May 2001, a solution of the least
square unregularized calibration problem in which a is to be found in the subclass of the local
volatility functions that are constant on each slice ]Ti−1, Ti ] of a tree with N = 76 time steps.
The interesting point to note is that, although we obtained a time functional a0 with values
contained between 0.004 34 and 0.0358, this hardly improved the data fit with respect to the
starting point in the algorithm, taken as a constant equal to our usual implied vegas weighted
average of the input implied volatilities. Indeed the corresponding quadratic residues were
equal to 0.002 57 and 0.002 31, respectively, while in the previous calibration experiments, the
quadratic residues decreased by one or two orders of magnitude between the beginning and
the end of the calibration. This illustrates a posteriori the need to look for a with a term and
strike structure, as a ≡ a(t, S). A mere term structure for a is unable to explain the volatility
smile.



110 S Crépey
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Figure 6. Squared local volatility at the end of the second computation stage, on the DAX data set
of 2 May 2001 with N = 54 (a), 75 (b) and 101 (c) time steps in the tree.
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Figure 7. Implied volatility surface at the end of the second computation stage, on the DAX data
set of 2 May 2001 with N = 54 (a), 75 (b) and 101 (c) time steps in the tree.
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Figure 8. Calibration accuracy at the end of the second computation stage, on the DAX data set
of 2 May 2001 with N = 54 (a), 75 (b) and 101 (c) time steps in the tree.
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Figure 9. Squared local volatility (a), implied volatility surface (b) and calibration accuracy (c) at
the end of the second computation stage, on a filtered DAX data set at 2 May 2001, with N = 74
time steps in the tree.
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Another interesting feature of our Tikhonov regularized calibration procedure is that any
local volatility function a0 can be used as a prior. Recall that, in the continuous setting
of section 3, a0 was only bound to be measurable and positively bounded. In a context of
daily calibration, a good choice for the prior at the current day could thus be the local volatility
function calibrated the day before, so as to soften still more the daily variations of the calibrated
model. A related further experiment consisted of using the time functional a0 obtained above
as a nonconstant prior on the DAX data set of 2 May 2001. The results are displayed in
figure 10. Of course, the resulting local volatility function does not appear as regular as the
ones before. Indeed the regularized function is a − a0, which does not ensure that a is regular,
for nonconstant a0. However, the theoretical properties shown previously guarantee that the
local volatility function a thus obtained, though irregular, has all the desired stability and
convergence features as developed in section 2.

7. Comparison with other methods

7.1. Use of Dupire’s formula

Figure 11 displays the local volatility surface obtained by the method of differentiation from
discrete data implemented in the CalibrationEngine (see section 1.2) on the DAX data sets
of May 2 (a), 3 (b) and 4 (c), 2001. The accuracy of the calibration is perfect, by construction.
Moreover, the computation is almost instantaneous. But, as expected, the local volatility
surface thus calibrated exhibits a highly irregular and unstable behaviour.

7.2. Constrained stochastic control

Figure 12 displays the results obtained on the DAX data set of 2 May 2001, using the constrained
stochastic control method implemented in the CalibrationEngine (see section 1.2). There
were N = 75 time steps in the tree. The accuracy of the calibration is still very good and
the computation is somewhat faster than by Tikhonov regularization. Indeed the size of the
minimization program is proportional to the number of tree nodes in the latter case, while in
the former dual reformulation of the problem it is proportional to the number of input data.
These numbers are typically of the order of a few thousands and a few hundreds, respectively.
But the squared local volatility surface calibrated by the constrained stochastic control method
is much less regular that those obtained by Tikhonov regularization. In particular it presents
characteristic spikes, with values up to 0.3, in the neighbourhood of the pairs (T, K ) with
observed prices. By contrast, the maximum value of the squared local volatility obtained by
Tikhonov regularization with N = 75 time steps in the tree was of the order of 0.18 (see
figure 6(b)). Recall that Tikhonov regularization penalizes the fluctuations of the gradient of
a − a0, instead of those of the values of a − a0 for the constrained stochastic control method.

7.3. Advantages and disadvantages of the different methods

The Tikhonov variational regularization method is somewhat slower than the other ones, but,
thanks to the reduced cost procedure for the gradient, the computation times are still very
acceptable, especially in the parallel implementation. The accuracy of the resulting calibration
is very good, still better in general than by the constrained stochastic control method. Above
all, Tikhonov regularization appears to be the only method that gives acceptable local volatility
surfaces, from the point of view of regularity and stability. It is actually the only method to
demonstrate that there is no intrinsic trade-off between stability and accuracy in the calibration
problem.
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Figure 10. Squared local volatility (a), implied volatility surface (b) and calibration accuracy (c)
at the end of the second computation stage, on the DAX data set of 2 May 2001 with nonconstant
prior and N = 76 time steps in the tree.



116 S Crépey
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Figure 12. Squared local volatility (a), implied volatility surface (b) and calibration accuracy (c)
obtained by the constrained stochastic control method on the DAX data set of 2 May 2001, with
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A further distinguishing feature of the variational approach, to which we now come, is
the possibility of extending it to the problem of calibration with American option prices, at
least in the discrete setting, giving rise to an effective algorithm. This is all the more important
since, as already mentioned in section 1.2, many of the equity index option markets to which
the generalized Black–Scholes model is more specifically dedicated are American options
markets.

8. The American calibration problem

8.1. Theoretical results

In the continuous setting of the generalized Black–Scholes model, it is an open question
whether or not the theoretical results summed up in section 3 can be extended to the American
calibration problem. In fact, given a measurable and positively bounded local volatility function
a, we do not even know whether the well known free boundary problem for American call
prices (see for instance Huang and Pang [24, problem (3)]) is well posed. Therefore we will
move directly to the discrete setting of section 4. Let us denote by � the call payoffs, namely

�T,k(tn, ym) ≡ (S0e(ym+(r−q−a)(tn−t0)) − ek)+, (T, k) ∈ F .

We thus consider the pair

(�,�′) ≡ (�T,k(tn, ym; a),�′
T,k(tn, ym; a)), (T, k) ∈ F,

jointly defined by the terminal condition �(T, ·; a) ≡ �(T, ·), and for n = N, . . . , 1:

(a) �′(tn−1, ·; a) defined from �(tn, ·; a) in the same way as �(tn−1, ·; a) from �(tn, ·; a) in
the European case.

(b) �(tn−1, ·; a) = max(�′(tn−1, ·; a),�(tn−1, ·)).
We will then denote by Cn−1

T,k (a) the set of all ym such that �′
T,k(tn−1, ym; a) � �(tn−1, ym).

Moreover, we will qualify the local volatility function a as regular, if this inequality is strict
for every n = 1, . . . , N and ym ∈ Cn−1

T,k (a).

Remark 8.1. Since the non-regular local volatility functions are to be sought among the
solutions of one out of a finite number of equations, namely one for each node of I, it is
reasonable to expect that most local volatility functions are regular or, more precisely, that the
regular volatility functions form a full Lebesgue measure subset of A.

An important difference between European and American call and put option prices is
that, in the exercise zone of the American options, their prices are locally constant with respect
to the local volatility function. Moreover, the following theorem regarding American option
prices shows that these are less regular than the European prices.

Theorem 8.2. For every (T, k) ∈ F , the American call or put price � ≡ �T,k(t0, y0; a) is
Lipschitz continuous and directionally differentiable with respect to the local volatility function
a ∈ A. Moreover, if a is regular, then � is differentiable and the partial derivative of � with
respect to the value of the local volatility function a at node (tn, ym) ∈ I with tn � T admits
the following Feynman–Kac representation:

d�T,k(t0, y0; a) · δ(tn, ym) = �T,k(tn, ym; a)γ T,k
t0,y0

(tn−1, ym; a) exp(−rτ )τ, (19)

where

�T,k(tn, ym; a) ≡
(

1

ε2
+

1

2ε

)
�T,k(tn, ym−1; a)

− 2

ε2
�T,k(tn, ym; a) +

(
1

ε2
− 1

2ε

)
�T,k(tn, ym+1; a),
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and γ
T,k
t0,y0

(tn−1, ym; a) means the probability, discounted at rate r , that the Markov chain yn

goes from (t0, y0) to (tn−1, ym) through CT,k(a).

In particular γ
T,k
t0,y0

(tn−1, ym; a) is equal to 0 if y0 �∈ C0
T,k(a) or ym �∈ Cn−1

T,k (a).

Proof. Following Huang and Pang [24, theorem 1],� is Lipschitz continuous and directionally
differentiable with respect to a. Huang and Pang work with general θ -schemes and assume a
condition to ensure the positive definiteness of a matrix Q. But this is always verified in the
particular case of the explicit scheme in which Q is, up to a positive factor, equal to the identity
matrix. Moreover, still following Huang and Pang [24, theorem 1], � is differentiable if a is
regular, and the partial derivative

δ�(ti , y j) ≡ d�T,k(ti , y j ; a) · δ(tn, ym); i = 0, . . . , n − 1, j = −i, . . . , i

satisfies the usual European-like dynamic programming equation if y j ∈ C i
T,k(a), with

boundary condition δ�(ti , y j ) = 0 otherwise. Moreover, δ� satisfies the terminal condition

δ�(tn−1, y j ) =
{

1{ j=m}�T,k(tn, ym; a) exp(−rτ )τ, y j ∈ Cn−1
T,k (a)

0, else.

Now, (19) is nothing but the Feynman–Kac representation for δ�(t0, y0). �
Remark 8.3. As a matter of fact, it is rather obvious, in our trinomial tree setting, that � is
Lipschitz continuous and that � is differentiable if a is regular, with the dynamic programming
characterization as in the proof above for the partial derivatives. This could have been shown
directly in a similar way to the analogous statements in the European case (see the theorem 4.1
and its proof), without referring to the more general results of Huang and Pang. Anyway,
as in the European case, the explicit finite differences, or trinomial tree setting, is interesting
because of the probabilistic representation (19) for these derivatives, in which the γ T,k can
be computed forward in the tree, using Fokker–Planck discrete equations that express the
composition of discounted probabilities in CT,k(a). This results in a reduced cost procedure
for these derivatives. Since γ now depends on T and k, one must solve one Fokker–Planck
equation by option, instead of one Fokker–Planck equation as a whole in the European case.
But this is still one or two orders of magnitude faster than solving one equation with source
term by option and mesh node if one uses the dynamic programming characterization for the
partial derivatives directly. Moreover, our computation for the γ T,k can be parallelized in the
same way as the one for the option prices (see section 5.1).

Since � is continuous, the stability and convergence theorems 2.5 and 2.9 are applicable
(see remark 2.12). But as � is not everywhere differentiable, we can no longer apply
theorem 2.11.

8.2. Calibration algorithm and numerical results

Now the calibration algorithm is the same as in the European case, except that we provide
the minimization descent routines with the right-hand side of (19) instead of the Euclidean
gradient of �, knowing that both of them coincide, at the (presumably) full set of regular local
volatility functions in A. Moreover, by American call/put implied volatility, for given data
r , q , t0, y0, T , k and price π , we mean the unique (or largest, in the exercise zone) constant
volatility such that π is the price of the American call/put in the classic, nonlocal trinomial tree
with 200 time steps corresponding to these data. There is indeed no closed pricing formula
in the American case. By remark 8.3, the overall computation cost of the calibration does
not exceed twice that required in the European case, both in the serial and in the MPI-parallel
implementation.
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Figure 13. Squared local volatility at the end of the second computation stage, on the FTSE
American data sets of January 4 (a), 5 (b) and 6 (c), 1999.
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Figure 14. Implied volatility surface at the end of the second computation stage, on the FTSE
American data sets of January 4 (a), 5 (b) and 6 (c), 1999.
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-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.9  0.92  0.94  0.96  0.98  1  1.02  1.04  1.06  1.08  1.1

Im
pl

ie
d 

V
ol

at
ili

ty
 m

is
m

at
ch

Moneyness

(a)

maturity:
0.128
0.205
0.282
0.454
0.953

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.9  0.92  0.94  0.96  0.98  1  1.02  1.04  1.06  1.08  1.1

Im
pl

ie
d 

V
ol

at
ili

ty
 m

is
m

at
ch

Moneyness

(b)

maturity:
0.126
0.202
0.279
0.452
0.950

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.9  0.92  0.94  0.96  0.98  1  1.02  1.04  1.06  1.08  1.1

Im
pl

ie
d 

V
ol

at
ili

ty
 m

is
m

at
ch

Moneyness

(c)

maturity:
0.123
0.200
0.276
0.449
0.948

Figure 15. Calibration accuracy at the end of the second computation stage, on the FTSE American
data sets of January 4 (a), 5 (b) and 6 (c), 1999.
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Remark 8.4. Huang and Pang have proposed a similar heuristic, but without the reduced cost
procedure for the partial derivatives, and called it an implicit programming algorithm [24,
section 4.1]. This consists of a descent method with optimal step, in which the descent step is
positively bounded below to ensure that the algorithm does not loop in a nondescent direction.
Since there is no reason why the calibration algorithm should drive the local volatility function
a outside the full set of regular local volatility functions, this latter precaution seemed a bit
superfluous to us. If a problem occurs on a specific data set, it is still possible to perturb the
data so as to bring the problem back to a regular case.

Figures 13 and 14 show the local (squared) and implied volatility surfaces obtained on
data sets of vanilla American call and put option prices on the FTSE index at January 4 (a),
5 (b) and 6 (c), 1999. We filtered out the options with prices outside the American arbitrage
bounds, as well as the less liquid options with moneyness smaller than 0.9 or larger than 1.1.
All dividends were taken equal to 0. There were N = 66, 90 and 88 time steps in the trees.
Figure 15 displays the accuracy of the calibrations. The results are fairly comparable in nature
to those obtained in the European case.

Of course nothing guarantees that the subset E ⊆ F of the options to be exercised in the
market coincides with the one in the calibrated model. This could be guaranteed by adding to
the minimization problem the following non-convex constraints:{

�T,k(t0, y0; a) = �T,k(t0, y0), (T, k) ∈ E
�′

T,k(t0, y0; a) � �T,k(t0, y0), (T, k) ∈ F\E .

9. Conclusion

In Crépey [2, 3], we obtained results regarding stability, convergence and convergence rates
for applying Tikhonov regularization to the inverse problem of calibrating a local volatility
function from observed vanilla option prices, in a generalized Black–Scholes model. Here,
we have shown that the analogous results hold true in a suitable trinomial tree or explicit finite
differences discretization. We have also presented efficient serial and parallel implementations
of the method in the discrete setting, as well as their extension to the American calibration
problem.

Numerical experiments on real data sets involving several hundreds of input prices support
strong evidence that there is no trade-off between stability and accuracy when using this
regularized calibration procedure, both in the European and in the American case. Except for
those corresponding to the shortest maturities, for which calibration is irrelevant, most prices
are calibrated up to a few tens of basis points of implied volatility, while the local and implied
volatility functions thus calibrated exhibit satisfactory regularity and stability properties. The
stability of the results contrasts with the instability that occurs if elementary reconstruction
procedures are used for the local volatility function.
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Appendix. Explicit finite differences, implicit finite differences and the pricing of
vanilla options

We discuss in this appendix a point raised at the end of section 5.1. In the special case of
pricing a vanilla call or put option, an explicit scheme may converge as fast in practice as a
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Figure A.1. Error in the pricing of a European call with one year time-to-maturity and strike 100.

Table A.1. Percentage of average calibration error, European case.

N 30 54 72 97

Explicit scheme 1.02 0.66 0.36 0.38
Implicit scheme 0.79 0.63 0.77 1.03

fully implicit one. Figure A.1 (drawn from my PhD thesis [19, p 147]) displays the error in
the pricing of a European call in a classic, nongeneralized Black–Scholes model, computed
numerically using explicit, fully implicit and Crank–Nicholson θ -schemes. Here by error we
mean the basis 10 logarithm of the percentage of relative error, computed by using the closed
formulae. For instance, the level 0 curve on the figure corresponds to a relative error of 1%.
The Crank–Nicholson scheme is more accurate, but this scheme is at the limit of stability with
respect to the high frequencies modes entailed by the Dirac masses present in the solutions of
our calibration equations.

Further use of the calibrated local volatility function may require more elaborate numerical
schemes. This may be the case if one wants to investigate the exercise boundary of an American
option, or to deal with barriers. It is then possible to interpolate the local volatility function
calibrated in the tree and fit it into another scheme. Table A.1 shows that an implicit scheme
obtained in this way is still calibrated to the data. These consist of a set of vanilla European
option prices on the DAX index at 2 May 2001. Here by average calibration error we mean∑

(T,k)∈F |�T,k(t0, y0; a) − πδ
T,k |∑

(T,k)∈F πδ
T,k

,

where �T,k(t0, y0; a) is the price in the tree with local volatility function a and N time steps,
or the price in the implicit scheme with 100 time steps, 200 space steps and a local volatility
function interpolated from a. By interpolated value for a at the mesh node (t, y) in the implicit
scheme, we have taken the value of a at a node (tn, ym) in the tree as close as possible to (t, y).
Table A.2 displays the analogous results for data consisting of American vanilla option prices
in the FTSE index at 4 January 1999.
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Figure A.2. Price and Greeks of options with half-year time-to-maturity: (a) European call, (b)
American put.

Table A.2. Percentage of average calibration error, American case.

N 41 72 108

Explicit scheme 5.01 4.69 4.50
Implicit scheme 4.79 4.84 7.28

Moreover, figure A.2(a) displays the price, delta and gamma of a European call with a
half-year time-to-maturity and variable moneyness K/S0, computed in four different ways:

(a) Using a trinomial tree with local volatility function a and N = 97 time steps, calibrated
on the set of vanilla option prices on the DAX index at 2 May 2001.
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(b) Using an implicit scheme with 100 time steps and 200 space steps and a local volatility
function interpolated from a as above.

(c) and (d) Computing the implied Black–Scholes volatilities corresponding to the prices
obtained at points (a) and (b) and using the closed Black–Scholes formulae to obtain the
associated Greeks.

Therefore points (a) and (b) correspond to computations in calibrated local volatility models,
while points (c) and (d) correspond to a common practice, whereby the smile on option markets
is handled by using the Greeks of the implied volatilities of the options. These points (a)–(d)
correspond to the curves labelled on the figure as tree/local, Gauss/local, tree/implied and
Gauss/implied, respectively. Figure A.2(b) displays the analogous results for an American
put option, where a classic, nonlocal trinomial tree with 200 time steps is used to compute
the implied Black–Scholes volatilities and the associated Greeks. There are indeed no closed
pricing formulae in the American case. One can observe that the prices, deltas and gammas
obtained at points (a) and (b) are very close to one another, as are also the ones obtained at
points (c) and (d). In contrast, there is a clear discrepancy between the local deltas and gammas
obtained at points (a) and (b) on the one hand, and the implied deltas and gammas obtained at
points (c) and (d) on the other.
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[2] Crépey S 2002 Tikhonov regularization and calibration of a local volatility in finance—stability, convergence
and convergence rates issues CMAP Internal Research Report no 474
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