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Abstract In Crépey (2015, Part II), a basic reduced-form counterparty risk modeling approach was
introduced, under a rather standard immersion hypothesis between a reference filtration and the fil-
tration progressively enlarged by the default times of the two parties, also involving the continuity of
some of the data at default time. This basic approach is too restrictive for application to credit deriva-
tives, which are characterized by strong wrong-way risk, i.e. adverse dependence between the exposure
and the credit riskiness of the counterparties, and gap risk, i.e. slippage between the portfolio and its
collateral during the so called cure period that separates default from liquidation. This paper shows
how a suitable extension of the basic approach can be devised so that it can be applied in dynamic
copula models of counterparty risk on credit derivatives. More generally, this method is applicable in
any marked default times intensity setup satisfying a suitable integrability condition. The integrability
condition expresses that no mass is lost in a related measure change. The changed probability measure
is not needed algorithmically. All one needs in practice is an explicit expression for the intensities of
the marked default times.
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1 Introduction

Counterparty risk is the risk of default of a party in an OTC derivative transaction, a topical issue since
the global financial crisis. As a significant part of the market is moving to central counterparties (also
called clearinghouses), nowadays the problem must be analysed in two different setups, bilateral versus
centrally cleared. In this paper, we focus on the bilateral case. See Brigo, Morini, and Pallavicini (2013)
and Crépey, Bielecki, and Brigo (2014), respectively in a more financial and mathematical perspective,
for recent bilateral counterparty risk references in book form, and see Armenti and Crépey (2014) for
the case of centrally cleared trading. The case of centrally cleared trading is also considered in Brigo and
Pallavicini (2014), but from the point of view of a client, as opposed to a member, of a clearinghouse.
From the point of view of a client of the clearinghouse, the analysis of the present paper applies as
well, as explained in the remark 4.2. With respect to Brigo and Pallavicini (2014), the present paper
is more mathematical and yields a special focus on credit derivatives.
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To mitigate counterparty risk, a margining procedure is set up according to what is called in
the context of bilateral trading a master agreement between the two parties, also referred to as CSA,
for credit support annex. However, accounting for various frictions and delays, notably the so called
cure period that separates default and liquidation, there is gap risk, i.e. risk of slippage between
the portfolio and its collateral. This is why another layer of collateralization, called initial margins as
opposed to the variation margin that only accounts for market risk, is now maintained in both centrally
cleared transactions and bilateral transactions under a sCSA (standard CSA). Gap risk is magnified
in the presence of wrong-way risk, i.e. adverse dependence between the underlying exposure and the
credit risk of the counterparties. This is a special case of concern regarding counterparty risk on credit
derivatives, given the default contagion and frailty effects between the two parties and the underlying
credit names. In fact, to properly deal with counterparty risk embedded in credit derivatives, one needs
a credit portfolio model with the following features. First, the model should be calibratable to relevant
data sets: CDS data if the targeted application consists of counterparty risk computations on CDS
contracts and, additionally, tranches data for computations involving CDO contracts. In particular,
one needs a bottom-up model of portfolio credit risk, with efficient pricing schemes for vanillas (CDS
contracts and/or CDO tranches) as well as a copula separation property between the individual and the
dependence model parameters. Second, as counterparty risk and related funding valuation adjustments
price options on future values of the underlyings, it should be a dynamic model. One possibility is to
use dynamic copula models resulting from the introduction of a suitable filtration on top of a static
copula model for the default times of the two parties and of underlying credit names. The simplest
example is the dynamic Gaussian copula (DGC) model of Crépey, Jeanblanc, and Wu (2013), which
can be sufficient to deal with counterparty risk on CDS contracts. If there are also CDO tranches in
the portfolio, then a Gaussian copula dependence structure is not rich enough for calibration purposes.
Instead, one can use the dynamic Marshall-Olkin (DMO) common-shock model of Bielecki, Cousin,
Crépey, and Herbertsson (2014b).

However, this dynamic copula methodology, reviewed in Crépey et al. (2014, Part IV), does not
immediately extend to the case of bilateral counterparty risk combined with the related funding issue.
As is well known since the seminal papers by Korn (1995), Cvitanic and Karatzas (1993) or El Karoui,
Peng, and Quenez (1997), in presence of different borrowing and lending rates, pricing rules become
nonlinear. This question has known a revival of interest in recent years in connection with the post-
crisis multi-curve issue (see Piterbarg (2010), Mercurio (2014) and Bielecki and Rutkowski (2014)).
Accordingly, in the case of bilateral counterparty risk combined with the related funding issue, the
pricing equations for the corresponding valuation adjustment, dubbed TVA for total valuation adjust-
ment, are implicit and nonlinear (see Crépey (2015, Part I), Brigo and Pallavicini (2014) or M. Bichuch
and Sturm (2015)). Moreover, they are posed over random time intervals and may involve nonstan-
dard, implicit terminal conditions at the first default time of a party. To deal with such equations, a
first reduced-form counterparty risk modeling approach was introduced in Crépey (2015, Part II), in a
rather basic immersion setup between the reference filtration of the underlying market exposure and
the full model filtration progressively enlarged by the default times of the two parties. But this basic
immersion setup, with a related continuity assumption on the data at default time, is too restrictive
for wrong-way and gap risk applications such as counterparty risk on credit derivatives, in which case
one also faces specific dependence and dimensionality challenges.

1.1 Contributions and Outline

To tackle this issue, this paper shows how an extended reduced-form approach can be applied, be-
yond the first approach of Crépey (2015, Part II) dubbed “basic approach” henceforth, in the above-
mentioned dynamic copula models. In the first part of the paper (Sect. 2 through 5), we generalize,
resorting to the notion of invariant times in Crépey and Song (2014c), the basic reduced-form approach
of Crépey (2015, Part II), in view of a proper wrong-way and gap risk modeling in applications. With
respect to our previous works, we also introduce a positive cure period. The TVA is modeled in terms
of solutions to backward stochastic differential equations (BSDEs): the exact TVA BSDE (2.7), the
full BSDE (2.8) and the reduced BSDE (3.1). The exact TVA BSDE (2.7) is derived from hedging
principles. It is then approximated by the full BSDE (2.8), which can also be viewed as the exact BSDE
for slightly simplified data. The reduced TVA is an auxiliary, simpler equation that, if solved, yields
a solution to the full BSDE. In this sense, solving the reduced BSDE is sufficient in practice. This is
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Theorem 3.1, which can also be digged out from the results of Crépey and Song (2014a), but in a more
abstract setup there, mainly motivated by the converse to this theorem, i.e. any solution to the full
BSDE is based on a solution to the reduced BSDE. Beyond self-containedness, the main reason why
we include a direct proof of Theorem 3.1 in this paper is to show how easily it flows once the right
framework has been set up, namely the condition (C) in this paper. In the easiness of the result lies
its power here. But, when one thinks of it, Theorem 3.1 leaves several questions open, namely:

1) how strong is the condition (C)?

1)’ Theorem 3.1 says that a solution to the reduced BSDE always yields a solution to the full BSDE,
but what is then the gap between the full BSDE and the reduced BSDE?

2) how can one compute the data (coefficient f̃) of the reduced BSDE, in particular the term cdva = γξ̂

(cf. (4.6))?

2)’ can one formally establish the well posedness of the reduced BSDE, in which exact meaning?

2)” once the reduced BSDE is well posed and its data can be computed, how can one solve it numer-
ically? is the changed measure P needed algorithmically?

3) what is the usefulness of all this, namely can one find concrete models of counterparty risk where
the two degrees of freedom left by the condition (C) can be exploited to compute numbers more
relevant than without these?

3)’ better than without these?

Crépey and Song (2014c) and Crépey and Song (2014a) address the questions 1) and 1)’ at a theoretical
level by respectively reducing the condition (C) to a suitable integrability condition and by showing
that, under an additional condition (B), the full and reduced BSDEs are essentially equivalent. Hence,
solving the reduced BSDE is not an arbitrary way of approaching the full BSDE and well-posedness
of the reduced BSDE, if it can be proved, implies well-posedness of the full BSDE. The present paper
addresses these and the other questions in the list by checking that all the required conditions hold
and why and how in concrete models of counterparty risk on credit derivatives. As a prerequisite, a
marked default times methodology is developed as a standard machinery to produce concrete models
where all conditions are satisfied. The general reduced-form approach of Theorem 3.1 is then imple-
mented through marked default times in dynamic extensions of two well known copula models: the
Gaussian copula and the exponential (or Marshall Olkin) copula. In each case, the dynamic copula
model full filtration G is decomposed as G = F∨K, where F is a reference filtration and K is a filtration
carrying information about the default times of the two counterparties. However, this is done for a
default filtration K possibly larger than the filtration H, generated by the default indicator processes
of the counterparties, used in the basic approach. In particular, K can encode a mark conveying some
additional information about the defaults, in order to account for various possible wrong-way and gap
risk scenarios and features. Then, a reduced-form approach is developed in F, but with respect to
a possibly changed probability measure P, under an integrability condition expressing that no mass
is lost in the tentative measure change. The marks methodology of this paper allows addressing the
dependence modeling and the high-dimensional nonlinear computational challenges posed by bilateral
counterparty risk and funding costs on credit derivatives. We emphasize that the changed probability
measure P is not needed algorithmically. All one needs in practice is an explicit expression for the
intensities of the marked stopping times. Back to the above list, specific answers to the respective
questions are provided by:

1) Theorems 6.2, 6.3 and 7.2,

2) Lemmas 5.3 and 7.1,

2)’ Theorem 4.1 and Corollaries 6.1, 7.1 and 7.2,

2)” Lemmas 8.1 and 8.2,

3) Lemma 5.2, Theorems 6.2 and 7.2, Figures 3 and 5 compared with Figure 7, Table 5,

3)’ Figures 2, 4, 5, 6 and Tables 2 through 4.

Another contribution is the introduction and study of the cure period (even if a positive cure period
is also considered in Brigo and Pallavicini (2014)). Theorems 6.1 and 7.1 formally establish the main
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properties of the dynamic Gaussian copula and Marshall-Olkin copula models, which is not done
anywhere else. In particular, Sect. B.1 provides a number of explicit formulas in the dynamic Gaussian
copula model. Even if we mainly derive these formulas for the proof of Theorem 6.3, they are of
independent interest.

The detailed outline of the paper is as follows. Sect. 2 fixes the setup and derives the exact and
full TVA BSDEs with respect to the full model filtration G. Sect. 3 develops an extended reduced-form
approach for the full BSDE, applicable whenever the first default time of the two parties satisfies
the condition (C) in this paper (i.e., essentially, is an invariant time satisfying the condition (A) in
Crépey and Song (2014c), where the condition (A) means (C) but also (B) in this paper). In Sect. 4
we establish the well-posedness of the reduced BSDE under a standard CSA specification of the data.
In the marked default times framework of Sect. 5, we derive a CVA/DVA (credit/debit valuation ad-
justment) and LVA (funding liquidity valuation adjustment) decomposition of an all-inclusive TVA.
Sect. 6 and Sect. 7 apply the proposed approach in two dynamic copula models of counterparty risk
on credit derivatives. In Sect. 8 numerical results are presented. An index of symbols is provided after
the bibliography.

1.2 Standing Notation

We use the notation � for stochastic integration and λ for the Lebesgue measure on R+. We write∫ b
a

=
∫
(a,b]

with, in particular,
∫ b
a

= 0 whenever a ≥ b; x+ = max(x, 0), x− = max(−x, 0) = (−x)+.

The Borel σ field on a topological space R is denoted by B(R). Any “deterministic function” of real
(resp. discrete) arguments is measurable with respect to the corresponding Borel (resp. powerset) σ
field. Any function involving discrete arguments is continuous with respect to these, in reference to
the discrete topology. We denote by P(F), O(F) and R(F) the predictable, optional and progressive σ
fields with respect to a filtration F. When a process ft can be represented in terms of a function of
some factor process X, we typically write f(t,Xt), i.e. the function is denoted by the same letter as
the related process. Order relationships between random variables (resp. processes) are meant almost
surely (resp. in the indistinguishable sense).

Part I

Wrong Way and Gap Risks Modeling: A Marked Default Times Perspective

2 Counterparty Risk Setup

In this section we offer a concise introduction to bilateral counterparty risk under funding constraints,
following the replication approach developed originally in Crépey (2015) and recently revised in book
form, using the same unified notation and same sign convention as the present paper, in Crépey et al.
(2014). For the reader convenience we systematically refer to both book and papers1 in the sequel.
With respect to these references, we add consideration of a positive cure period. Given the current
regulatory trend of extensive collateralization, this is important in practice since, once a position is
fully collateralized in terms of variation margins, the gap risk related to the cure period becomes the
first order residual risk.

We consider a netted portfolio of OTC derivatives traded between two defaultable counterparties,
generically referred to as the “contract between the bank and its counterparty”. We adopt the perspec-
tive of the bank. In particular, a cash-flow of ±1 means ±1 to the bank. After having “bought” the
contract from its counterparty at time 0 (see the beginning of Sect. A), the bank sets-up a collateral-
ization, hedging and funding portfolio. Collateral consists of cash or various possible eligible securities
posted through margin calls as default guarantee by the two parties. The margin requirements are
specified by the CSA. Regarding hedging, for simplicity, we restrict ourselves to the situation of a
securely funded hedge, entirely implemented by means of swaps, short sales or repurchase agreements,

1 Preprint versions that can be downloaded from the webpage http://screpey.free.fr.
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at no upfront payment. As explained in Crépey et al. (2014, Section 4.2.1 page 87)2, this assump-
tion encompasses the vast majority of hedges that are used in practice. In particular, it includes
(counterparty-risk-free) CDS contracts that can be used for hedging the counterparty jump-to-default
exposure. We call “funder” of the bank a third party insuring funding of the bank’s strategy. In prac-
tice, the funder can be composed of several entities or devices. Assumed default-free for simplicity,
it plays the role of lender/borrower of last resort after exhaustion of the internal sources of funding
provided to the bank through its hedge and its collateral.

Let (Ω,G,G,Q), with G = (Gt)t∈R+
satisfying the usual conditions and Q expectation denoted

by E, represent a prevailing pricing stochastic basis, such that all our processes are G adapted and all
the random times of interest are G stopping times. The meaning of a risk-neutral pricing measure in
our setup, with different funding rates in particular, is specified by a martingale condition introduced
in the form of the pricing BSDE (A.2) for the contract. But, in the first place, a pricing measure in
our sense must be such that the gain processes related to the trading of the hedging assets, processes
denoted in vector form byM in Sect. A, are local martingales. As explained in the comments following
Assumption 4.4.1 in Crépey et al. (2014, page 96)3, this rules out arbitrage opportunities in the
market of hedging instruments (provided one restricts attention to hedging strategies resulting in a
wealth process bounded from below; see Bielecki and Rutkowski (2014, Corollary 3.1) for a formal
statement).

For reasons pertaining to division and specialisation of tasks in banks, the price of the contract
is computed as the difference (2.5) between a reference price P and a counterparty risk and funding
adjustment Θ. The reference or “clean” price P is the mark-to-market ignoring counterparty risk and
assuming a risk-free funding rate. Specifically, we denote by rt a progressively measurable OIS rate

process and by βt = e−
∫ t
0
rsds the corresponding discount factor. This OIS rate, where OIS stands for

overnight indexed swap rate, stands together as the best market proxy of the risk-free rate and as the
typical reference rate for the remuneration of the collateral. Let a finite variation process D represent
the cumulative promised dividend process of the contract, where by promised we mean contractual
cash-flows ignoring counterparty risk. Hence,

βtPt = E

(∫ T

t

βsdDs
∣∣Gt) , t ∈ [0, T ]. (2.1)

Here T is a relevant time horizon, typically the one of the CSA. If there is some residual value in the
contract at that time, it is treated as a dividend (DT −DT−) at time T .

But the two parties are defaultable. Let τb and τc stand for the default times of the bank and of
the counterparty, modeled as G stopping times with (G,Q) intensities γb and γc. As a consequence, the
first counterparty default time τ = τb ∧ τc is a stopping time with intensity γ such that max(γb, γc) ≤
γ ≤ γb + γc, with indistinguishable equality in the right hand side if τb 6= τc a.s.. Note that in such an
intensity setup, any event {τb = t} or {τc = t}, for any fixed time t, has zero probability and can be
ignored in the analysis. An additional feature is a time lag δ ≥ 0, called the cure period, typically taken
as ten (resp. five) days in the case of bilateral (resp. centrally cleared) transactions, between the first
to default time τ of a party and the liquidation of the contract. We assume that a risk-free liquidator
takes over the hedge of a defaulted party during the cure period. For every time t, we write

t̄ = t ∧ T , tδ = t+ δ, t̄δ = 1t<T t
δ + 1{t≥T}T .

The cure period results in an effective time horizon τ̄δ for the TVA problem. If τ < T , the contractual
dividends dDt cease to be paid from time τ onwards and a terminal cash-flow R paid to the bank at
time τδ closes out its position.

Until τ̄ , the bank needs to fund its position, i.e. the contract and its collateral (the cost of funding
the hedge is already accounted for in the primary gain martingale M). We denote by g = gt(π) an
R(G)⊗ B(R) measurable funding coefficient such that

(−rtWt + gt(−Wt))dt (2.2)

represents the bank’s funding cost over (t, t+ dt), where W is the value process of the hedging, collat-
eralization and funding portfolio of the bank. We refer the reader to Sect. 4 for concrete specifications

2 Or Crépey (2015, Part I, Section 2.1) in the journal version.
3 Or Crépey (2015, Part I, Assumption 4.1) in the journal version.
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τ δc

τc

τb

τ δb

(0, g)

(D, g)

(0, 0)Λ

Fig. 1 Representation of the data of the TVA pricing problem in a (t, ω) state space representation, focusing on the
default and liquidation times and ignoring T to alleviate the picture, i.e. “for T =∞”. The data in parentheses refer
to the effective dividends and funding costs of the bank depending on the time t and scenario ω.

of the data, including R and g, and to Lemma A.1 for the resulting SDE satisfied by W. If a DVA is
acknowledged, one may want to include likewise a funding windfall benefit of the bank at its default,
in the form of an additional cashflow to the bank by the amount

(−Wτb− − Cτb−)+Λ at τb if τb < τ̄δ. (2.3)

Here the process (−C) represents the amount of collateral funded by the bank (see Sect. 4), so that
(−Wτb− − Cτb−)+ represents the debt of the bank to its funder right before τb. The constant Λ cor-
responds to the fractional loss of the external funder (one minus the recovery rate of the bank to its
funder).

2.1 TVA BSDEs

Figure 1 provides a stylized (t, ω) state space representation of the data, focusing on the default and
liquidation times and ignoring T to alleviate the picture, i.e. “for T =∞”. Let

Qt = Pt +∆t, where βt∆t =

∫
[τ,t]

βsdDs (2.4)

(in particular, ∆t = 0 and Qt = Pt for t < τ), and let

ft(ϑ) = gt(Qt − ϑ)− rtϑ (ϑ ∈ R)

τ ′ = τb ∧ τδc , τ̄ ′ = 1τ<T τ
′ + 1{τ≥T}T.

In Sect. A, we start from a TVA primarily defined over [0, τ̄δ] as

Θt = Qt −Πt, (2.5)

where Π represents the overall cost of hedging the contract (inclusive of counterparty risk and funding
costs, as opposed to the clean price P ). Let

ξ = Qτδ −R, ξ̄t = E(β−1
t βτδξ | Gt) (t ≤ τ̄δ), (2.6)

assuming integrability of the so called counterparty risk exposure ξ. Under a replication assumption,
Lemma A.2 derives the following exact TVA BSDE for the (G,Q) semimartingale Θ on [0, τ̄ ′]:

Θτ̄ ′ = 1{τ<T}
(
ξ̄τ ′ − (Qτb− − Cτb− −Θτb−)+

1{τ ′=τb}Λ
)

and

dµt := dΘt + ft(Θt)dt is a (G,Q) local martingale on [0, τ̄ ′].
(2.7)

This equation implicitly includes the time integrability of f·(Θ·) on [0, τ̄ ′]. Similar convention is in force
and will not be repeated regarding the various BSDEs introduced below. Note that the TVA problem
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is originally posed over the domain [0, τ̄δ], which corresponds to the union of the three subdomains in
Figure 1, with effective dividend and funding data respectively abbreviated as (D, g), (0, g) and (0, 0).
But since data (0, 0) simply means, in terms of pricing, taking conditional expectation of the terminal
condition discounted at the risk-free rate, the computations of Sect. A show that the TVA BSDE can
be formulated as (2.7) on the smaller domain [0, τ̄ ′] ⊆ [0, τ̄δ], modulo the modified terminal condition
ξ̄ at τ̄ ′ instead of ξ at τ̄δ.

The replication assumption that underlies the TVA BSDE (2.7) here, or (2.8) for slightly modified
data below, implies that the bank actively risk manages its position. Otherwise, the risk-neutral equa-
tions of this paper are not enough conservative. In view of the incompleteness of the TVA market, our
approach is only a first step. But any incomplete market approach, adding in some way or another one
layer of optimization to the analysis (e.g. utility maximisation), would most likely be hardly feasible
in practice, especially on real-life portfolios with tens to hundreds of thousands of contracts. The TVA
problem entails some nonlinearities but banks can’t really deal with nonlinear pricing rules, because
these are too complicated to manage at the portfolio level. Hence, one should aim in the end for “the
best linear TVA approximation”.

Toward this aim, it is useful to derive an equivalent but simpler reduced BSDE, which will be
the topic of Sect. 3. But the reduction of the exact TVA BSDE (2.7) would lead to nested BSDEs,
where the coefficient of a reduced BSDE on [0, T ] is defined in terms of solutions to auxiliary reduced
BSDEs “conditional on Gτ̄” (see Crépey and Song (2014b, Section 4) for such a treatment in a preprint
version of the present paper). The nested feature arises for, in the scenarios where τc ≤ τb ∧ T, the
nonlinear funding coefficient g of the bank is still in force, hence the funding data of the problem
remain nonlinear, on the time interval [τ̄ , τ̄ ′] = [τc, τ̄

′] (upper right subdomain in Figure 1). However,
because the cure period δ is only a few days, the quantitative impact on Θ of the coefficient g on the
time interval [τ̄ , τ̄ ′] can only be very limited. Hence, in order to avoid the numerical burden of nested
BSDEs, we work henceforth with the following full TVA BSDE:

Θτ̄ = 1{τ<T}
(
ξ̄τ − (Pτb− − Cτb− −Θτb−)+

1{τ=τb}Λ
)
,

dµt = dΘt + ft(Θt)dt is a (G,Q) local martingale on [0, τ̄ ].
(2.8)

This equation is obtained if one replaces g and Λ by 0 on the time interval [τ̄ , τ̄ ′] in the exact TVA
BSDE (2.7) or everywhere in Sect. A, which means replacing (0, g) by (0, 0) and Λ by 0 in the upper
right subdomain in Figure 1. Proceeding in this way, the computations of Sect. A show that the domain
of computation of the TVA can be reduced further, from [0, τ̄δ] initially to [0, τ̄ ′] as explained above
regarding the exact TVA BSDE, to even [0, τ̄ ] now for the appropriately modified terminal condition
regarding the full TVA BSDE (2.8), with all data set to zero outside [0, τ̄ ]. Reformulating the problem
on the smaller domain [0, τ̄ ] makes it simpler in view of the reduced-form analysis of Sect. 3, for τ ,
as opposed to τ ′, has an intensity. Note that (2.8) is also, essentially, the so called master equation in
Brigo and Pallavicini (2014).

Of course, a TVA BSDE modeling approach based on (2.8) supposes the existence (at the very
least) of a solution to (2.8), which is still a quite nonstandard BSDE. Even if a bit simpler than (2.7),
(2.8) does not fall in the classical scope of BSDEs with random but explicit terminal conditions (see e.g.
Kruse and Popier (2014, Sect. 5)). But the results of the next section allow reducing the nonstandard
(G,Q) BSDE (2.8) to the simpler BSDE (3.5) with a null terminal condition at the fixed time horizon
T , stated with respect to a smaller filtration F and a possibly changed probability measure P. Hence,
well-posedness for the full BSDE (2.8) can be established by showing well-posedness for the reduced
BSDE (3.5), which is done in Theorem 4.1. Even in the case where Λ = 0 and the terminal condition
of (2.8) is explicit (does not depend on Θτb−), having a null terminal condition as in (3.5) is key in
the numerical scheme used in Sect. 8.

3 Reduced Form Approach

In this section we develop a reduced-form approach for the full BSDE (2.8), beyond the basic immersion
setup of Crépey (2015, Part II), in view of application to credit derivatives in the second part of this
paper. By Corollary 3.23 2) in He, Wang, and Yan (1992), for any Gτ measurable random variable ζ,
there exists a G predictable process ζ̂ such that

1{τ<∞}E[ζ|Gτ−] = 1{τ<∞}ζ̂τ . (3.1)
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If ζ is integrable, then the Lebesgue integral γtζ̂tdt exists and is independent of the choice of a version
of ζ̂, and

ζtdJt + γtζ̂tdt (3.2)

is a (G,Q) local martingale on R+(cf. Corollary 5.31 1) in He et al. (1992)). In particular, with the
abuse of notation that ξ̂ below refers to ξ̄ instead of ξ, let ξ̂ be a G predictable process such that, on
{τ <∞},

ξ̂τ = E(ξ̄τ | Gτ−) = E(β−1
τ βτ+δξ | Gτ−). (3.3)

For t ∈ [0, τ̄ ] and ϑ ∈ R, we write

f̂t(ϑ) = ft(ϑ) + γtξ̂t − (Pt − Ct − ϑ)+γbtΛ− γtϑ

= γtξ̂t + gt(Pt − ϑ)− (Pt − Ct − ϑ)+γbtΛ− (rt + γt)ϑ.
(3.4)

Let J = 1[0,τ) and Y τ− = JY + (1− J)Y−, for any left-limited process Y. Conditions of the following
kind are studied at the theoretical level in Crépey and Song (2014a,2014c).

Condition (C). There exist:

(C.1) a subfiltration F of G satisfying the usual conditions such that F semimartingales stopped at τ
are G semimartingales,

(C.2) a probability measure P equivalent to Q on FT such that any (F,P) local martingale stopped at
(τ−) is a (G,Q) local martingale on [0, T ],

(C.3) an F progressive reduction f̃t(ϑ) of f̂t(ϑ), i.e. an R(F)⊗B(R) function f̃t(ϑ) such that
∫ ·
0
f̂t(ϑ)dt =∫ ·

0
f̃t(ϑ)dt on [0, τ̄ ].

Let S denote the Azéma supermartingale of τ, i.e. the process such that St = Q(τ > t | Ft), t ≥ 0.

Condition (B). Any G predictable process Y admits an F predictable process Ỹ that coincides with
Y on (0, τ ].

The process Ỹ , uniquely determined until the first zero of S, is called the F predictable reduction of Y .

The condition (C.1) relates to the (H′) hypothesis between F and G, i.e. F semimartingales are G semi-
martingales (see Bielecki, Jeanblanc, and Rutkowski (2009)). The condition (C.3) is a mild technical
condition, which holds in particular under the condition (B). See Crépey and Song (2014c), where
it is shown that the condition (B) also implies the second part in (C.1) (which is also encompassed
by (C.2)). If (F,P) local martingales don’t jump at τ , then the condition (C.2) says that (F,P) local
martingales stopped at τ are (G,Q) local martingales. The conditions (C.1-2-3) with (C.1) and (C.3)
reinforced as (B) above yield the condition (A) in Crépey and Song (2014c). In the case where P = Q,
these properties are related to the notions of immersion of F into G, i.e. (F,Q) local martingales are
(G,Q) local martingales (see Bielecki et al. (2009)), and of an F pseudo-stopping time τ , i.e. (F,Q) local
martingales stopped at τ are (G,Q) local martingales (see Nikeghbali and Yor (2005)). However, even
in this “immersion” case where P = Q, the condition (C) offers a richer framework than a standard
reduced-form intensity model of credit risk, where the full model filtration G is given as the reference
filtration F progressively enlarged by τ , i.e. “G = F ∨ H” in the standard notation of Bielecki et al.
(2009). In fact, under (C.1-2-3), the full filtration G can be bigger than F ∨ H. In particular, even
for P = Q, the conditions (C.1-2-3) do not exclude a jump of an F adapted càdlàg process at time
τ , which happens for instance with a nonvanishing random variable ∆τ = Dτ − Dτ− in the DMO
model of Sect. 7. By contrast, a jump of an F adapted càdlàg process at time τ cannot happen in a
basic reduced-form credit risk setup (see Crépey et al. (2014, Lemma 13.7.3(ii) page 331)4). Above all,
the flexibility of the condition (C) comes from the possibility to choose (F,P) ensuring (C.1-2-3). See
Sect. 6 and Sect. 7 for concrete examples, with P 6= Q and ∆τ = 0 in the first case and P = Q but

4 Or Lemma 2.1(ii) in the journal version Crépey (2015, Part II).
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∆τ 6= 0 in the second case, which we view as respective wrong-way risk and gap risk stylized examples
(as our concluding figure 7 will illustrate).

The result that follows can also be retrieved from Crépey and Song (2014a), but in a much more
abstract setup there, mainly motivated by the converse to this result. Hence, we provide a self-contained
proof. Here this result is derived under the “minimal condition” (C), instead of (A) in Crépey and Song
(2014a), where (A) in Crépey and Song (2014a) means (B) and (C) in this paper. But, as explained
above, the condition (B) is latent in (C.3) and (C.1), hence the random time τ here is essentially an
invariant time in the sense of the condition (A) in Crépey and Song (2014c).

Theorem 3.1 Under the condition (C), assume that an (F,P) semimartingale Θ̃ satisfies the following

reduced TVA BSDE on [0, T ]:

Θ̃T = 0 and dµ̃t := dΘ̃t + f̃t(Θ̃t)dt is an (F,P) local martingale on [0, T ]. (3.5)

Let Θ = Θ̃ on [0, τ̄) and Θτ̄ = 1{τ<T}

(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+1{τ=τb}Λ

)
. Then Θ satisfies the full

TVA equation (2.8) on [0, τ̄ ] and we have, for t ∈ [0, τ̄ ],

dµt = dµ̃τ−t −
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ− Θ̃τ−
)
dJt

−
(
(ξ̂t − Θ̃t)γt − (Pt − Ct − Θ̃t)+γbtΛ

)
dt.

(3.6)

Proof. By definition of Θ here, a (G,Q) semimartingale by (C.1), we have, for t ∈ [0, τ̄ ]:

dΘt = d(JtΘ̃t)−
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ
)
dJt

= dΘ̃τ−t + Θ̃τ− dJt −
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ
)
dJt.

(3.7)

Then by (3.5), for t ∈ [0, τ̄ ]:

−dΘt = f̃t(Θ̃t)dt− dµ̃τ−t +
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ− Θ̃τ−
)
dJt

= ft(Θt)dt− dµ̃τ−t +
(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ− Θ̃τ−
)
dJt

+
(

(ξ̂t − Θ̃t)γt − (Pt − Ct −Θt)+γbtΛ
)
dt,

by (C.3). By (C.2), µ̃τ−t is a (G,Q) local martingale, as is also on [0, τ̄ ]

(
ξ̄τ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ− Θ̃τ−
)
dJt +

(
(ξ̂t − Θ̃t)γt − (Pt − Ct −Θt)+γbtΛ

)
dt

(cf. (3.2)). This yields the decomposition (3.6) of dµt = dΘt + ft(Θt)dt, which implies the martingale
condition in (2.8), where the terminal condition holds by definition of Θτ̄ in the theorem.

Summarizing so far, assuming the condition (C) on an invariant default time τ , based on Theorem
3.1, we can design a TVA process in terms of a solution to the reduced BSDE (3.5). Moreover, this
approach is not arbitrary. In fact, under the additional condition (B) that is latent in (C.3) and (C.1),
the results of Crépey and Song (2014a) show that the full and reduced BSDEs are equivalent (assuming
a positive Azéma supermartingale S of τ , as typical in applications). In particular, as will be seen in
the final statements of Theorems 6.2 and 7.2, the condition (B) holds and S is positive in the concrete
models of Sect. 6 and 7, so that this equivalence applies to each of the reduced TVA BSDEs considered
in Corollaries 6.1, 7.1 and 7.2. Moreover, in Theorem 4.1, the reduced BSDE (3.5) will be seen to
well-posed under mild technical conditions on the data. As a consequence of the equivalence between
(2.8) and (3.5), the full BSDE (2.8) is well-posed too.
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4 Specification of the Data

For applications, we need to specify the close-out cash flow R, hence the counterparty risk exposure
ξ = Qτδ −R, and the funding coefficient gt(π), conformly with usual CSA specifications. Let V denote
the variation margin, where V ≥ 0 (resp. ≤ 0) means collateral posted by the counterparty and received
by the bank (resp. posted by the bank and received by the counterparty). Let I ≥ 0 (resp. I ≤ 0)
represent the initial margin posted by the counterparty (resp. the negative of the initial margin posted
by the bank). Let

C = V + I and C = V + I, (4.1)

respectively the total collateral guarantee for the bank and the negative of the total collateral guarantee
for the counterparty.

Remark 4.1 In practice, the variation and initial margin calls are executed according to a discrete
schedule (tl). Specifically, the variation margin V tracks the mark-to-market P at grid times tl < τ .
The initial margins I and I are also updated at some of the times tl < τ, based on risk measures of
the profit-and-loss of the variation-margined position at the horizon δ of the cure period (see Brigo
and Pallavicini (2014) and Armenti and Crépey (2014) for detailed specifications). Hence, the margin
processes are stopped at the greatest tl < τ (or = τ, but the corresponding event has zero probability
in a default intensity setup).

In particular, we assume all the margin processes are stopped at τ. The bank’s close-out cash-flow R
is derived from the debts of the counterparty to the bank and vice versa, respectively modeled at time
τδ as

χ = (Qτδ − Cτ )+, X = (Qτδ − Cτ )−. (4.2)

Note that χ× X ≡ 0, by nonnegativity of I and (−I). The close-out cash-flow is modeled as

R =


Cτ +Rcχ if χ > 0 and τc ≤ τδb ,

Cτ −RbX if X > 0 and τb ≤ τδc ,
Qτδ otherwise.

(4.3)

Here Rc and Rb stand for constant recovery rates of the counterparty to the bank and vice versa. The
ensuing counterparty risk exposure of the bank results from the left hand side in (2.6) as

ξ = Qτδ −R = 1{τc≤τδb }
(1−Rc)χ− 1{τb≤τδc }(1−Rb)X. (4.4)

Remark 4.2 The expression (4.4) for the counterparty risk exposure ξ is consistent with the one in
Brigo and Pallavicini (2014), where it is also explained that, if the bank is a client of a counterparty
acting as member of a clearinghouse, the above formalism can still be used just by setting Rc = 1 and
I = 0. In fact, as members of a clearinghouse are backed-up by other members if they default, their
actual recovery rate is immaterial and everything happens for their clients as if Rc would be one. In
addition, as clearing members don’t post initial margins to their clients but to the clearinghouse, the
initial margin posted by the counterparty has no impact on the funding costs of the bank in this case,
so that everything happens for the bank as if I would be zero. The situation where the bank itself is
a member (as opposed to a client) of a clearinghouse is dealt with in Armenti and Crépey (2014).

The collateral funded by the bank is (−C), where C = C + I = V + I + I (assuming all the margins
re-hypothecable). We assume that posted collateral is remunerated at a rate (rt+ct) and that the bank
can invest (resp. get some unsecured funding) at a rate (rt + λt) (resp. (rt + λ̄t)). This corresponds to
the following dt-funding cost of the bank, for t < τ̄ ′:

Jt(rt + ct)Ct︸ ︷︷ ︸
remuneration of the collateral

+ (rt + λ̄t) (−Wt − Ct)+ − (rt + λt) (−Wt − Ct)−︸ ︷︷ ︸
funding costs / benefits

,

which is of the form (2.2) with in particular, for t < τ,

gt(π) = ctCt + λ̄t (π − Ct)+ − λt (π − Ct)− . (4.5)
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Remark 4.3 This expression of g corresponds to the case of re-hypothecable margins, as is typical for
the variation margin, whereas the initial margins are sometimes segregated. In the case of segregated
initial margins, the expression for g changes slightly, but the overall structure (2.2) of the funding costs
is preserved.

Assuming (4.5), f̂t(ϑ) in (3.4) is such that, on [0, τ̄ ],

f̂t(ϑ) + (rt + γt)ϑ = γtξ̂t + ctCt + λ̄t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− − (Pt − Ct − ϑ)+γbtΛ

= γtξ̂t︸︷︷︸
cdvat

+ ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)−︸ ︷︷ ︸
lvat(ϑ)

, (4.6)

where λ̃t = λ̄t − γbtΛ can be interpreted as a liquidity borrowing spread of the bank, net of its credit
spread to its external funder. From the perspective of the bank, the term γtξ̂t represents the counter-
party risk component of f̂t(ϑ), whereas the remaining terms can be interpreted as a funding liquid-
ity component. The positive (resp. negative) components of f̂t(ϑ) can be considered as deal adverse
(resp. deal friendly) as they increase (resp. decrease) the TVA Θ of the bank. Depending on the sign of
Π = Q−Θ, a “less positive” Π is interpreted as a lower buyer price by the bank and a “more negative”
Π as a higher seller price by the bank.

Remark 4.4 The materiality of a debit benefit at own default represented by a DVA proportional
to (1 − Rb) and of a funding benefit at own default proportional to Λ are clearly subject to caution,
unless corresponding hedges allow the bank to monetize these benefits before it defaults. Otherwise,
the bank should better set Rb = 1 and Λ = 0 in the equations, a best (at least, the most conservative)
practice that we refer to as the asymmetrical TVA approach. This avoids reckoning “fake benefits” or
benefits to bondholders only, whereas a sound management should only consider the interest of the
shareholders (see Albanese, Brigo, and Oertel (2013) and Albanese and Iabichino (2013)).

The assumptions in the following reduced BSDE well-posedness result, even though not minimal,
are sufficient for our later purposes in this paper. In particular, the boundedness assumption on P,

from which the one on the margins V, I and I follows quite naturally, is satisfied in the case of vanilla
credit derivatives such as CDS contracts and CDO tranches (cf. (5.12)). Note that, on [0, τ̄ ],

f̂t(ϑ) = γtξ̂t + ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− − (rt + γt)ϑ

= γtξ̂t + ctCt + λ̄t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− − γt (Pt − C)

+ (Pt − Ct − ϑ)+ (γt − γbtΛ)− γt (Pt − C − ϑ)− − rtϑ.

(4.7)

Assuming the condition (B) and denoting by U ′ the F predictable reduction of U−, for any G semi-
martingale U, we may and do henceforth choose for f̃t(ϑ) the process obtained from f̂t(ϑ) by replacing

each process U involved in (4.7) by the corresponding process U ′. Let ‖U‖p
H̃p

= Ẽ
∫ T
0
Upt dt (p > 0),

where Ẽ means P expectation.

Theorem 4.1 Under the condition (B), assuming λ′, λ̄′ and r′ bounded from below on [0, T ], P ′, V ′, I ′

and I′ bounded on [0, T ] and c′, λ′, λ̄′, r′, γ′ in H̃2, then the resulting reduced BSDE (3.5) is well-posed in

H̃2, where well-posedness includes existence, uniqueness, comparison and the standard BSDE a priori bound

and error estimates. The H̃2 solution Θ̃ to (3.5) satisfies

Θ̃t = Ẽ

[∫ T

t

f̃s(Θ̃s)ds
∣∣∣Ft] = Ẽ

[∫ T

t

e−
∫ s
t γ
′
rdr f̄s(Θ̃s)ds

∣∣∣Ft] , t ∈ [0, T ], (4.8)

where we set f̄t(ϑ) = f̃t(ϑ) + γ′tϑ.

Proof. Assuming λ′, λ̄′ and r′ bounded from below, it follows from (4.7), where γt ≥ γbtΛ ≥ 0, that
f̃t(ϑ) satisfies the classical BSDE monotonicity assumption(

f̃t(ϑ)− f̃t(ϑ′)
)
(ϑ− ϑ′) ≤ C(ϑ− ϑ′)2, (4.9)

for some constant C. Hence, by application of the results in Kruse and Popier (2014), the reduced
BSDE (3.5) with coefficient f̃t(ϑ) is well-posed in H̃2 (which includes existence, uniqueness, comparison
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and the standard BSDE bound and error estimates) as soon as the following auxiliary integrability
conditions hold:

sup
|ϑ|≤ϑ̄

|f̃·(ϑ)− f̃·(0)| ∈ H̃1 (ϑ̄ > 0), f̃·(0) ∈ H̃2. (4.10)

Since

|f̃(ϑ)− f̃(0)| ≤
(
|λ̄′|+ |λ′|+ |r′|+ 3γ′

)
|ϑ|,

(4.10) holds in particular for P ′, V ′, I ′ and I′ bounded and c′, λ′, λ̄′, r′, γ′ in H̃2. The left hand side
identity in (4.8) is just the usual integral representation for an H̃2 solution Θ̃ to the reduced BSDE
(3.5), whereas the right hand side identity is obtained by treating the (−γ′ϑ) term in f̃ as a discount
factor at rate γ′.

5 Marked Default Times Framework

A residual issue left open by the above is the specification of a concrete but general enough framework
where cdva = γξ̂ in (4.6) can be computed in practice. Toward this aim, this section implements the
extended reduced-form approach of the last section based on an invariant time τ obtained as a G
stopping time with a mark. The role of the mark is to convey some additional information about
the default, e.g. to encode wrong-way and gap risk features that would be out-of-reach in the basic
immersion setup of Crépey (2015, Part II).

We assume in the sequel that τ is endowed with a mark e in a finite set E, i.e.

τ = min
e∈E

τe, (5.1)

where each τe is a stopping time with intensity γet such that Q(τe 6= τe
′
) = 1, e 6= e′. We assume that

Gτ = Gτ− ∨ σ(ε), (5.2)

where the random variable ε = argmine∈Eτe yields the “identity” of the mark of τ , and we denote by
E the powerset of E.

Lemma 5.1 For any Gτ measurable random variable ζ, there exists a P(G)⊗E measurable function ζ̃et such

that

1{τ=τe}ζ = 1{τ=τe}ζ̃
e
τ , e ∈ E. (5.3)

For any such function ζ̃et , a Q×λ a.e. version of γζ̂ is given by J−
∑
E γ

eζ̃e. In particular, the intensity of

τ satisfies γ = J−
∑
e∈E γ

e, Q× λ a.e., and we have

cdvat = J−
∑
e∈E

γeξ̃e, Q× λ a.e., (5.4)

for any P(G)⊗ E measurable function ξ̃et , which exists, such that, for each e ∈ E,

ξ̄τ = ξ̃eτ on the event {τ = τe}. (5.5)

Proof. The ζ̃eτ are Gτ− locally integrable, by G predictability of the processes ζ̃e(π), processes which
exist due to (5.2). Hence, by localization, one can assume the ζ̃eτ integrable. Then, on {τ <∞},

E[ζ|Gτ−] = E[
∑
e∈E 1{τ=τe}ζ̃

e
τ |Gτ−] =

∑
e∈E ζ̃

e
τE[1{τ=τe}|Gτ−].

Let qet denote a P(G)⊗E measurable function, which exists by Corollary 3.23 2) in He et al. (1992), such
that qeτ1{τ<∞} = E[1{τ=τe}|Gτ−]1{τ<∞} (e ∈ E). For bounded Z ∈ P(G), we compute E[Zτ1{τ=τe<∞}]
in two ways:

E[Zτ1{τ=τe<∞}] = E[Zτ q
e
τ1{τ<∞}] = E[

∫ ∞
0

Zsq
e
sγsds],
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and

E[Zτ1{τ=τe<∞}] = E[Zτe1{τ=τe<∞}] = E[Zτe1{τe≤τ<∞}] = E[

∫ ∞
0

Zs1{s≤τ}γ
e
sds].

Hence, Q almost surely: qet γt = 1{t≤τ}γ
e
t , dt almost everywhere, so that

Q[qeτγτ 6= γeτ , τ <∞] = E[1{qeτγτ 6=γeτ , τ<∞}] = E[

∫ ∞
0

1{qet γt 6=γet }γtdt] = 0.

Therefore, on {τ <∞},
γτ ζ̂τ = γτE[ζ|Gτ−] =

∑
e∈E

ζ̃eτγτ q
e
τ =

∑
e∈E

ζ̃eτγ
e
τ .

This implies that

γζ̂ = J−
∑
E

γeζ̃e, Q× λ-a.e.

In particular, (5.4) follows by definition (4.6) of cdva.

We now give a concrete specification ensuring (5.2), in case where G is the progressive enlargement
of a reference filtration F by n mutually avoiding random times η1, . . . , ηn (n ≥ 1). Let the η(i) be
the increasing ordering of the ηi, with also η(0) = 0 and η(n+1) = ∞. In any multivariate density
or recursively immersed model of default times (see the introductory paragraph to Part II as well
as Theorems 6.1 and 7.1), the optional splitting formula of Song (2013b) holds. Namely, for any G
optional process Y , there exist O(F)⊗ B([0,∞]n)-measurable functions Y (0), Y (1), . . . , Y (n) such that

Y =
n∑
i=0

Y (i)(η1 - η(i), . . . , ηn - η(i))1[η(i),η(i+1)), (5.6)

where a - b denotes a if a ≤ b and ∞ if a > b, for a, b ∈ [0,∞].

Lemma 5.2 Assuming the optional splitting formula in force, e.g. in any multivariate density or recursively

immersed model of default times, let η = η1 ∧ η2. If the ηi avoid each other and F stopping times, then

Gη = Gη− ∨ σ({η = η1}, {η = η2}).

Proof. Let N = {1,2, 3, . . . , n}. By the optional splitting formula (5.6), for any G optional process Y
and i ∈ N ,

Yη1{η=η(i)} = Y
(i)
η (η1 - η, . . . , ηn - η)1{η=η(i)}

=
∑
I⊆N ;|I|=i−1 Y

(i)
η (η1 - η, η2 - η, . . . , ηn - η)1{∀j∈I,ηj<η}1{∀j∈N\I,η≤ηj}

=
∑2
k=1 1{η=ηk}

∑
I⊆N ;|I|=i−1 Y

(i,I,k)
η (η; ηj , j ∈ I)1{∀j∈I,ηj<η}1{∀j∈N\I,η≤ηj},

where Y
(i,I,k)
t (ω, y; yj , j ∈ I) is O(F)⊗B([0,∞])⊗B([0,∞]i−1) measurable. Moreover, as η avoids F stop-

ping times, He et al. (1992, Theorem 3.20) and the monotone class theorem imply that Y
(i,I,k)
η (η; ηj , j ∈

I) is Gη− measurable. So, on each event {η = ηk}, Yη1{η=η(i)} is Gη− measurable. As Gη is generated
by the Yη for the G optional processes Y , this proves the result.

5.1 No Cure Period

If δ = 0, then ξ̄ = ξ, for which the expression in (4.4) reduces to

ξ = 1{τ=τc}(1−Rc)
(
Pτ +∆τ − Cτ

)+ − 1{τ=τb}(1−Rb)
(
Pτ +∆τ − Cτ

)−
, (5.7)

where ∆τ = Dτ −Dτ−. Moreover, for every process U = P, (D −D−), V, I and I, hence also C and C,
there exists by (5.2) a P(G)⊗E measurable function Ũet , abusively renoted ∆̃et in the case of (D−D−),
such that Uτ = Ũeτ on the event {τ = τe}.
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Remark 5.1 As will be illustrated in the DGC and DMO models (see Sect. 8, Figure 7 in particular,
and the explanations following (6.6) and (7.6)), the P̃ e and ∆̃e may include respective wrong way and

gap risk effects. The dependence of C̃e and C̃e on e can be used to render further gap risk features such
as a possible jump of the collateral at the default of a counterparty, e.g. in case of a collateral posted
in a currency strongly dependent on this counterparty (cf. Ehlers and Schönbucher (2006)).

Consistent with (5.1), let’s assume τb = mine∈Eb τe and τc = mine∈Ec τe, where E = Eb ∪ Ec (not
necessarily a disjoint union, as will be exploited in Sect. 7). We may then take in (5.5) (where ξ̄ = ξ

when δ = 0)

ξ̃et = 1e∈Ec(1−Rc)(P̃
e
t + ∆̃et − C̃et )+ − 1{e∈Eb}(1−Rb)(P̃

e
t + ∆̃et − C̃et )

−, (5.8)

so that by (5.4), we have on [0, τ̄ ]:

cdvat =(1−Rc)
∑
e∈Ec

γet

(
P̃ et + ∆̃et − C̃et

)+

− (1−Rb)
∑
e∈Eb

γet

(
P̃ et + ∆̃et − C̃et

)−
, (5.9)

where the two terms have clear respective CVA and DVA interpretation. Hence, in the no cure period
δ = 0 case, (4.6) is rewritten, on [0, τ̄ ], as

f̂t(ϑ) + (rt + γt)ϑ = (1−Rc)
∑
e∈Ec

γet

(
P̃ et + ∆̃et − C̃et

)+

︸ ︷︷ ︸
cvat

− (1−Rb)
∑
e∈Eb

γet

(
P̃ et + ∆̃et − C̃et

)−
︸ ︷︷ ︸

dvat

+ ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)−︸ ︷︷ ︸
lvat(ϑ)

,

(5.10)

where we set λ̃t = λ̄t − Λ
∑
e∈Eb γ

e
t . We can then choose the coefficient f̃ of the reduced TVA BSDE

(3.5) based on (5.10) in the manner described before Theorem 4.1. Once stated in a Markov setup
where

f̃t(ϑ) = f̃(t, X̃t, ϑ), t ∈ [0, T ], (5.11)

for some (F,P) jump diffusion X̃, all the ingredients in the coefficient f̃ can be computed and the
reduced BSDE (3.5) can be solved numerically. This is only for δ = 0 here but we’ll study in Sect. 7.3
a case with δ > 0.

Part II

Application to Credit Derivatives

We write N = {−1, 0, 1, . . . , n} and N? = {1, . . . , n}, for some nonnegative integer n. In the second
part of this paper, we apply the above approach to counterparty risk on credit derivatives traded
between the bank and the counterparty respectively labeled as −1 and 0, i.e. for τb = τ−1 and τc = τ0,

and referencing the names in N (or rather N? for one does not trade credit protection on oneself in
practice, but this makes no difference mathematically). The examples in this part are important, not
only to provide some insights regarding the condition (C) introduced abstractly in the first part of this
paper, but also as concrete models addressing challenge posed by counterparty risk and funding costs
on credit derivatives. This will be demonstrated in two different setups, the dynamic Gaussian copula
(DGC) model of Crépey, Jeanblanc, and Wu (2013) and the dynamic Marshall-Olkin (DMO) copula or
common-shock model of Bielecki, Cousin, Crépey, and Herbertsson (2014b,2014a). These two models,
reviewed in Chapters 7 and 8 of Crépey et al. (2014), are dynamic extensions of the perhaps best
known copula models, namely the Gaussian copula and the exponential (or Marshall-Olkin) copula.
We chose them as prototypes of multivariate density and Markov copula (i.e. recursively immersed
Markov) models of portfolio credit risk, respectively. See Pham (2010) (cf. the condition (DH) in page
1800), extending to the multivariate setup Jeanblanc and Le Cam (2009) or El Karoui, Jeanblanc,
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and Jiao (2010), regarding the former, and see the survey in Crépey et al. (2014, Chapitre 14) for
the latter. Other respectively related models include the one-period Merton model of Fermanian and
Vigneron (2013, Section 6) and the multivariate Poisson model of Brigo, Pallavicini, and Torresetti
(2007). In these models, we shall consider stylized CDS contracts and protection legs of CDO tranches
corresponding to dividend processes D of the respective form, for 0 ≤ t ≤ T :

Dt = Dit =
(
(1−Ri)1{t≥τi} − Si(t ∧ τi)

)
Nomi

Dt = D?t =
(
((1−R?)

∑
j∈N

1{t≥τj} − (n+ 2)a)+ ∧ (n+ 2)(b− a)
)
Nom?,

(5.12)

where all the recoveries Ri and R? (resp. nominals Nomi and Nom?) will be set in the numerics of
Sect. 8 to 40% (resp. to 100). The contractual spreads Si of the CDS contracts will be set such that the
corresponding prices are equal to 0 at time 0. Protection legs of CDO tranches, where the attachment
and detachment points a and b are such that 0 ≤ a ≤ b ≤ 100%, can also be seen as CDO tranches
with upfront payment. Note that credit derivatives traded as swaps or with upfront payment coexist
since the crisis.

Until Sect. 7.3, it is assumed that δ = 0.

6 Dynamic Gaussian Copula TVA Model

6.1 Model of Default Times

We consider a multivariate Brownian motion B = (Bi)i∈N with pairwise correlation % ≥ 0 in its own
completed filtration B = (B)t≥0. Specifically, for i ∈ N, we assume

Bit =
√
%Zt +

√
1− %Zit , (6.1)

where Z and the Zi are independent Brownian motions. For any i ∈ N, let hi be a continuously
differentiable increasing function from R∗+ to R, with lim0 hi(s) = −∞ and lim+∞ hi(s) = +∞, and let

τi = h−1
i

( ∫ +∞

0

ς(u)dBiu
)
, (6.2)

where ς(·) is a square integrable function with unit L2 norm. As a consequence, the (τi)i∈N follow
the standard Gaussian copula model of Li (2000), with correlation parameter % and with marginal
survival function Φ ◦ hi of τi, where Φ is the standard normal survival function. In particular, the τi
avoid each other. In order to make the model dynamic as required by counterparty risk applications,
we introduce the model filtration G = (Gt)t≥0 given as the Brownian filtration B progressively enlarged
by the τi, augmented so as to satisfy the usual conditions. Note that the τi are B∞ measurable, totally
unpredictable G stopping times. Let

mi
t =

∫ t

0

ς(u)dBiu, k
i
t = (1{τi≤t}, τi1{τi≤t}), mt = (mi

t)i∈N , kt = (kit)i∈N .

The reason why we consider τi1{τi≤t} on top of 1{τi≤t} in kit is because of a dependence of future prices
on past default times in the DGC model. Augmenting the factor process in this way allows to take
care of this path-dependence. Conversely, only having τi1{τi≤t} in kit would lead to time discontinuous
functions in the representations (6.4), which would be nonstandard from the point of view of PDE
(continuous) viscosity solutions in Corollaries 6.1, 7.1 and 7.2. Note that τi1{τi≤t} ≤ t, hence the
process k is bounded on [0, T ].

Theorem 6.1 The dynamic Gaussian copula model is a multivariate density model of default times. For

every t ≥ 0, we have

Gt = Bt ∨
∨
i∈N

(
σ(τi ∧ t) ∨ σ({τi > t})

)
. (6.3)
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There exist processes βit and γit of the form

βit , γ
i
t= βi, γi (t,mt,kt), (6.4)

for continuous functions βi and γi with linear growth in the mj , j ∈ N, such that the dW i
t = dBit − βitdt

are (G,Q) Brownian motions and the (G,Q) compensated default indicator processes are written as dM i
t =

d1τi≤t − γ
i
tdt, i ∈ N. The W i and the M i, i ∈ N, have the (G,Q) martingale representation property.

Proof. The τi have the joint conditional density pt given Bt derived in the formula (B.1). Hence, the
dynamic Gaussian copula model is a multivariate density model of default times. The expression for γi

is given in (B.3), where the stated continuity is apparent and the linear growth in the mj follows from
the left inequality in (B.11). The βi can be computed by making use of the probability measure QT ,
classically used in density models, such that dQT

dQ ∝ pT (τj , j ∈ N), for every T > 0. More precisely, the

τi are QT independent between them and from BT (cf. Theorem 4.7 in Song (2013a)), so that the Bi

are (G,QT ) Brownian motions on [0, T ], for every T > 0. Hence, their (G,Q) drifts βi can be obtained
by application of a Girsanov formula from (G,QT ) to (G,Q), T > 0, which reveals the functional
dependence in (6.4) with the claimed properties. The martingale representation property and (6.3)
are proved by induction over the cardinality of N as follows. We write G = GN . If N is reduced to a
singleton, then the density property of τ given Bt implies the results, by the optional splitting formula
(5.6) for (6.3) and by Jeanblanc and Song (2013, Theorem 6.4) for the martingale representation
property. If N ′ is obtained by adding a new name, say (n + 1), to N, then the density properties of
τn+1 and of (τi)i∈N given Bt imply the density property of τn+1 given Bt∨

∨
i∈N

(
σ(τi∧t)∨σ({τi > t})

)
.

Hence, the results for GN
′

follow likewise from those, if assumed, for GN .

6.2 TVA Model

A DGC setup can be used as a TVA model for credit derivatives, with mark i = −1, 0 and Eb =
{−1}, Ec = {0}. Since there are no joint defaults in this model, it is harmless to assume that the
contract promises no cash-flow at τ, i.e. ∆τ = 0, so that (cf. (4.2) with currently δ = 0)

χ = (Pτ − Cτ )+, X = (Pτ − Cτ )−.

The results of Crépey et al. (2014, Corollaries 7.3.1 page 178 and 7.3.3 page 181)5 show that in the
case of a portfolio of vanilla credit derivatives on names in N , e.g. CDS contracts and CDO tranches
as of (5.12), one has a semi-explicit formula for P of the form

Pt = P (t,mt,kt), (6.5)

for a continuous function P.

Remark 6.1 The “true domain of definition” of the variables ti corresponding to the second compo-
nents of the ki ∈ {0, 1} × R+, i ∈ N, is given as the union of all the strict order sets of ti for i ∈ I, i.e.
the sets of the form {(ti)i∈I ; tπ(1) < · · · < tπ(|I|)}, for all the subsets I ⊆ N and all the bijections π
of {1, · · · , |I|} to I. In fact, the τi, which correspond to the second (positive) components of the ki in
the probabilistic interpretation, don’t take values outside this union. Here and below any continuity
statement with respect to the ti has to be understood in the sense of the corresponding domain and
topology.

We assume that for every process U = P, V, I and I, hence also C and C, there exists a continuous
function Ũi such that

Uτ = Ũi(τ,mτ ,kτ−), (6.6)

or Ũ iτ in a shorthand notation, on the event {τ = τi}, i = −1, 0. In view of (6.5), this always holds
regarding U = P for vanilla credit derivatives on names in N , since

Pτ = P (τ,mτ ,kτ ) = P (τ,mτ ,k
i,τ
τ−) on {τ = τi}, (6.7)

5 Or Crépey et al. (2013, Corollaries 3.1 and 3.2) in the journal version.
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where ki,t denotes the vector obtained from k by replacing the component with index i by (1, t). Note
that, since the ith component of ki,ττ− equals (1, τ) and not (0, 0), the functions P̃ i incorporate a wrong-
way risk effect through the spike of intensities of surviving names at other names’ defaults in the DGC
model (this will be illustrated by the left graph in Figure 7). The conditions (6.6) regarding U = C

and C may be satisfied or not depending on the CSA. By (5.8) and (5.10),

ξ̃it = 1i=0(1−Rc)(P̃ it − C̃t)+ − 1i=−1(1−Rb)(P̃ it − C̃t)
−, i = −1, 0, (6.8)

f̂t(ϑ) + (rt + γt)ϑ = (1−Rc)γ0
t

(
P̃ 0
t − C̃0

t

)+ − (1−Rb)γ−1
t

(
P̃−1
t − C̃−1

t

)−
+ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− , t ∈ [0, τ̄ ],

where γt = γ0
t +γ1

t and λ̃t = λ̄t−Λγ−1
t . We assume that the processes r, c, λ, λ̄, P and C are given before

τ as continuous functions of (t, X̃t), where X̃t = (mt, k̃t) with k̃t = (1i∈N?k
i
t)i∈N . Regarding P , (6.5)

shows that this property always holds in the case of vanilla credit derivatives on names in N . In view
of (6.4), this property is also verified by the process γ.

Remark 6.2 In the DGC or in the DMO model without cure period, the only modification required
to deal with path-dependent margins tracking the mark-to-market P at discrete grid times (cf. the
remark 4.1) would be to augment the pre-default factor process X̃t by additional margin components,
as already done for reasons pertaining to the cure period in the DMO setup of Sect. 7.3.

Note that P 6= Q in (DGC.2), hence the DGC model is a case of “no immersion” in the sense of the
comments following the statement of the condition (C).

Theorem 6.2 The condition (C) holds, for:

(DGC.1) a reference filtration F = (Ft)t≥0 in (C.1) given as B progressively enlarged by the default times

for i ∈ N?, which satisfies

Ft = Bt ∨
∨
i∈N?

(
σ(τi ∧ t) ∨ σ({τi > t})

)
, t ≥ 0, (6.9)

(DGC.2) a probability measure P equivalent to Q on FT such that a family of (F,P) martingales with the

(F,P) martingale representation property is given by the

dW̃ i
t = dBit − β̃itdt, i ∈ N and dM̃ i

t = d1τi≤t − γ̃
i
tdt, i ∈ N?, (6.10)

where

β̃it := βi(t,mt, k̃t) = βi(t, X̃t), γ̃
i
t := γi(t,mt, k̃t) = γi(t, X̃t), (6.11)

(DGC.3) a Markov specification

f̃t(ϑ) = f̃(t, X̃t, ϑ) (6.12)

in (C.3), for the (F,P) jump diffusion X̃t = (mt, k̃t) and for the function f̃ = f̃(t, x̃, ϑ) given, writing

x̃ = (m, k̃) for every m = (mi)i∈N ∈ RN and k̃ = (ki)i∈N ∈ {(0, 0)} × {(0, 0)} × ({(0, 0)} ∪ ({1} ×
R+))N

?

, by:

f̃(t, x̃, ϑ)+(r(t, x̃) + γ(t, x̃))ϑ = (1−Rc)γ0

(
P̃0 − C̃0

)+

(t, x̃)− (1−Rb)γ−1

(
P̃−1 − C̃−1

)−
(t, x̃)

+
(
cC + λ̃ (P − C − ϑ)+ − λ (P − C − ϑ)−

)
(t, x̃),

(6.13)

where γ(t, x̃) = γ0(t, x̃) + γ−1(t, x̃) and λ̃(t, x̃) = λ̄(t, x̃)− γ−1(t, x̃)Λ.

In addition, (F,P) local martingales don’t jump at τ , τ avoids F stopping times, the condition (B) is satisfied

and the Azéma supermartingale S of τ is positive. In particular, the DGC model is a marked default times

setup, satisfying (5.2), where the full and reduced BSDEs are equivalent.
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Proof. (DGC.1) and (DGC.3) can be proven as Theorem 6.1 above, whereas (DGC.2) is proven in
Theorem 6.3 below. Moreover, (DGC.1) and (DGC.3) obviously imply (C.1) and (C.3). In view of
(6.11), each (F,P) martingale in (6.10), stopped at (τ−) or, equivalently by avoidance between the τi,
at τ , is a (G,Q) local martingale. Hence, (DGC.2) implies (C.2) via the (F,P) martingale representation
property that is included in (DGC.2). This also shows that (F,P) local martingales don’t jump at τ . By
He et al. (1992, Theorem 5.27 1)) applied to the indicator process 1{τ=ν}, where ν is any F predictable
stopping time, we have Q(τ = ν) = 0 as soon as the (F,Q) drift of S is continuous, as it is in the DGC
model in view of the formula (B.2) for S. Besides, by the (F,Q) martingale representation property in
this model (see the end of the proof of Theorem 6.3), the (F,Q) compensated martingale of the default
indicator process of an F totally inaccessible stopping time ν only jumps at the τi, i ∈ N?. But, by the
same argument as for (F,P) above, (F,Q) local martingales don’t jump at τ . Hence, Q(τ = ν) = 0. We
conclude that τ avoids all F stopping times. To check the condition (B), by the monotone class theorem,
we only need consider the elementary G predictable processes of the form Y = νf(τc ∧ s, τb ∧ s)1(s,t],

for an Fs measurable random variable ν and a Borel function f . Since Y 1(0,τ ] = νf(s, s)1(s,t]1(0,τ ], we

may take Ỹ = νf(s, s)1(s,t]. The positivity of S is apparent on the explicit formula in (B.2). The final
statements follows from the other results by Lemma 5.2 and in view of the explanations given in the
last paragraph of Sect. 3.

Note that for any P ensuring the martingale representation property in (DGC.2), the corresponding
argument in the above proof shows that (C.2) is satisfied. This reduces the problem of finding P
satisfying (C.2) to finding P for which the martingale representation property stated in (DGC.2) holds.
As we will see in Sect. 6.3, the tentative stochastic exponential Q to P density (6.17) is precisely defined
so that, on the one hand, the drift in the (F,Q) to (F,P) Girsanov measure change compensates the
drift in the (F,Q) to (G,Q) Jeulin progressive enlargement of filtration formula for the (F,Q) Brownian
motions W̄ i and, on the other hand, the default intensities, given by γ̄i as of (B.4) under (F,Q), become
γ̃i under (F,P), where by construction γ̃i coincides with the (G,Q) intensity γi before τ. Then the proof
of (DGC.2) becomes a matter of checking that the tentative measure change density defined in this
way is a valid measure change, i.e. a positive (F,Q) martingale, which is done in Theorem 6.3.

Corollary 6.1 In the DGC model we have γ′ = γ(·, X̃·−) ∈ H̃2. Assuming all the other conditions in

Theorem 4.1 and no cure period, so for δ = 0 and f̃ = f̃(t, X̃, ϑ) = f̃(t,m, k̃, ϑ) as of (6.13), then the

corresponding reduced TVA BSDE (3.5) admits a unique square integrable solution Θ̃t = Θ̃(t, X̃t), where

the function Θ̃(t, x̃) is a continuous viscosity solution to the corresponding semilinear PIDE (not written as

not directly used in the paper). A solution Θ to the full TVA BSDE (2.8) is obtained by setting Θ = Θ̃ on

[0, τ̄) and

Θτ̄ = 1{τ<T}

(
ξ̃ıτ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τ−1}Λ
)
,

where ı = 0 or −1 denotes the identity of the defaulting counterparty (cf. (6.8)). The (G,Q) local martingale

component µ of Θ satisfies, for t ∈ [0, τ̄ ]:

dµt = dµ̃t −
(
ξ̃ıτ − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τ−1}Λ− Θ̃τ−
)
dJt

−
( ∑
i=−1,0

(ξ̃it − Θ̃t)γit − (Pt − Ct − Θ̃t)+γ−1
t Λ

)
dt.

(6.14)

Proof. By (DGC.2) in Theorem 6.2, W̃ i = Bi − β̃i � λ is an (F,P) Brownian motion (i ∈ N?). Set

m̃i = ς � W̃ i, hence mi = m̃i + ςβ̃i � λ. For fixed t ≤ T , for any p ≥ 1, there exist constants, all denoted
by the same symbol C, such that

Ẽ[
∑
i sups≤t |m

i
s|p] ≤ CẼ

[ ∑
i sups≤t |m̃

i
s|p +

∑
i(|ςβ̃

i| � λt)p
]

≤ CẼ
[ ∑

i sups≤t |m̃
i
s|p
]

+ CẼ
[

(1 +
∑
j sups≤· |m

j
s|p) � λt

]
= CẼ

[ ∑
i sups≤t |m̃

i
s|p
]

+ C + CẼ
[∑

j sups≤· |m
j
s|p
]
� λt,

where the definition of the process β̃i in (6.11) was used in conjunction with the linear growth of the
function βi in (6.4) to pass to the second line. Hence, by virtue of the Gronwall inequality,

Ẽ[
∑
i

sup
s≤t
|mi

s|p] ≤

(
1 + Ẽ

[ ∑
i

sup
s≤t
|m̃i

s|p
])

CeCt <∞,



Counterparty Risk and Funding: Immersion and Beyond 19

from which γ′ = γ(·, X̃·−) = γ0(·, X̃·−) + γ−1(·, X̃·−) ∈ H̃2 follows by linear growth in the mj of the

functions γi in (6.4). As a consequence, well-posedness in H̃2 of the corresponding reduced TVA BSDE
(3.5) follows from Theorem 4.1 (assuming all the other conditions there). Since well-posedness in the
sense of Theorem 4.1 includes comparison and the usual a priori bound and error BSDE estimates,
the representation of the solution Θ̃· to the BSDE in terms of a continuous viscosity solution to the
corresponding semilinear PIDE (with continuous coefficients) follows from standard arguments (see
e.g. Delong (2013) or Crépey (2013, Chapter 13)). By Theorem 6.2, the reduced stochastic basis (F,P)
satisfies the condition (C), so that the remaining statements follow from Theorem 3.1.

Presumably, reinforcing as needed the assumptions on f̃ , one could show that the function Θ̃(t, x̃) in
Corollary 6.1 is a classical (not only viscosity) solution to the corresponding PIDE (see e.g. Becherer
and Schweizer (2005)). In this case, an application of the Itô formula related to the (F,P) jump diffusion
X̃t = (mt, k̃t) yields the following functional representation of µ̃ in (6.14):

dµ̃t = ς(t)
∑
i∈N

∂miΘ̃(t,mt, k̃t)dW̃
i
t +

∑
i∈N?

δiΘ̃(t,mt, k̃t−)dM̃ i
t , (6.15)

where ∂miΘ̃ denotes the partial derivative of the function Θ̃ with respect to mi and where

δiΘ̃(t,m, k̃) = Θ̃(t,m,ki,t)− Θ̃(t,m, k̃). (6.16)

This formula shows the nature of the TVA Greeks in the DGC model, namely the integrands ∂miΘ̃(t,mt, k̃t)
and δiΘ̃(t,mt, k̃t−) in (6.15). For length care, we do not conduct the above-mentioned regularity anal-
ysis. Similar comments apply and will not be repeated regarding Corollaries 7.1 and 7.2.

6.3 Proof of (DGC.2)

Let Qc denote the continuous martingale component of S. For i ∈ N?, let γi be the (F,Q) intensity of

τi and let M
i

= 1[τi,+∞) − γi � λ. We consider the (F,Q) local martingale given as the Doléans-Dade

exponential E(ν), where ν = 1(0,T ]
1
S �Qc +

∑
i∈N? 1(0,T ](

γ̃i

γi
− 1) �M

i
, i.e.

E(ν) = E
(
1(0,T ]ν

c) ∏
i∈N?

(
1 + (

γ̃iτi
γiτi
− 1)1{τi≤T}1[τi,+∞)

)
exp

∫ ·∧τi∧T
0

(
γis − γ̃

i
s

)
ds, (6.17)

where νc = 1
S �Qc.

Theorem 6.3 E(ν) is a positive (F,Q) martingale and the probability measure P with Q density process

E(ν) satisfies the condition (DGC.2).

Proof. Note that γ̃i, defined through γi by (6.10), is positive in view of (B.3), for any i ∈ N?. Hence,
E(ν) > 0. The following property will be proven later (cf. Lemma 6.1):

There exists ε > 0 such that, for any s ∈ [0, T ]: E
[
E
(
1(s,t]ν

) ∣∣Fs] = 1, t ∈ [s, s+ ε]. (6.18)

If T ≤ ε, then the first part of the theorem follows. Otherwise, we write

E[E(ν)] = E
[
E
(
1(0,T−ε]ν

)
E
[
E
(
1(T−ε,T ]ν

) ∣∣FT−ε]] = E
[
E
(
1(0,T−ε]ν

)]
,

by (6.18) applied with s = T − ε and t = T, so that the first part of the theorem follows by induction.
Since E(ν) is a positive (F,Q) martingale, one can define a probability measure P equivalent to Q on
FT by the Q density process E(ν). By the Girsanov theorem, the (F,P) intensity of τi is γ̃i, i ∈ N?, and,

denoting by W
i

= Bi−βi �λ the (F,Q) Brownian motion obtained as the (F,Q) martingale component
of Bi, the process

Ŵ i = W
i − 〈νc, Bi〉 = Bi − (β

i
� λ + 〈νc, Bi〉)

is an (F,P) Brownian motion, for each i ∈ N . Moreover, by the Jeulin formula (see e.g. Dellacherie,

Maisonneuve, and Meyer (1992, no 77 Remarques b))), Ŵ i is a (G,Q) Brownian motion until time τ,

as is also W̃ i = Bi− β̃i �λ in (6.10), for β̃i·∧τ = βi·∧τ . Hence, W̃ i
·∧τ = W i

·∧τ . Therefore, the F predictable
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processes β̄i � λ + 〈νc, Bi〉 and β̃i � λ coincide until τ , hence on [0, T ] by a classical optional section
argument (valid for S positive, as so in our case in view of (B.2); see e.g. Crépey and Song (2014c,

Lemma 2.3)). In conclusion, W̃ i = Ŵ i, an (F,P) Brownian motion, for any i ∈ N?. The (F,P) martin-

gale representation property of the W̃ i, i ∈ N and M̃ i, i ∈ N? follows by equivalent change of measure

from the (F,Q) martingale representation property of the W
i
, i ∈ N and M

i
, i ∈ N?, which can be

proven as the (G,Q) martingale representation property of the W i, i ∈ N and M i, i ∈ N in Theorem
6.1. Thus, all the conditions hold in (DGC.2).

Remark 6.3 W
i

yields an (F,Q) local martingale that, stopped at τ, or equivalently (τ−) by continuity

of W
i
, fails to be a (G,Q) local martingale. In fact, by the above computations:

W
i
·∧τ = W̃ i

·∧τ + J−(β̃i − βi) � λ,

where (β̃i−βi) �λ = 〈νc, Bi〉 is not null on [0, τ ], in view of the expression for dνct in (B.2). This justifies
the “no immersion” statement before Theorem 6.2.

It remains to establish (6.18). For notational simplicity, we only prove it for s = 0, i.e.:

Lemma 6.1 For t small enough, E (ν) is an (F,Q) martingale on [0, t].

Proof. This relies on explicit formulas in the dynamic Gaussian copula model, which then need be
controlled by means of Gaussian estimates, so that Lepingle and Mémin (1978, Theorem IV.3) can
eventually be applied to establish the true martingality of E (ν). This is done in Sect. B.

Note that the controls of Sect. B, even if technical, are not optimal and don’t need be so for showing
the desired integrability. The practical conclusion is that once the “right” candidate P has been guessed
based on martingale representation considerations (see the comments following Theorem 6.2), checking
the condition (C) reduces to checking a rather mild integrability condition.

7 Dynamic Marshall-Olkin Copula TVA Model

The above dynamic Gaussian copula model can suffice to deal with TVA on CDS contracts. But a
Gaussian copula dependence structure is not rich enough for permitting a joint calibration to CDS
and CDO data. If CDO tranches are also present in a portfolio, a possible alternative is the following
dynamic Marshall-Olkin (DMO) copula model.

7.1 Model of Default Times

We define a family Y of “shocks”, i.e. subsets Y ⊆ N of obligors, usually consisting of the singletons
{−1}, {0}, {1}, . . . , {n}, and a few “common shocks” representing simultaneous defaults. The shock
intensities are given in the form of extended CIR processes as, for every Y ∈ Y,

dγYt = a(bY (t)− γYt )dt+ c

√
γYt dW

Y
t , (7.1)

for nonnegative constants a and c, continuous functions bY (t) and independent Brownian motions WY

in their own completed filtration W = (Wt)t≥0, under the pricing measure Q. The case of deterministic

intensities γYt = bY (t) can be embedded in this framework as the limiting case of an “infinite speed
of mean-reversion” a. In fact, one could use any independent Markov processes γY with semi-analytic

formulas for Ee−
∫ t
0
γYs ds, for calibration purposes, and square integrable, for the sake of (4.10). We

emphasize that, even if we don’t engage into any calibration exercise in this paper, the empirical
study in Bielecki, Cousin, Crépey, and Herbertsson (2014a, Part II) shows that this model is efficiently
calibratable to CDS and CDO market data, including at the peak of the credit crisis. For Y ∈ Y, we
define mutually avoiding random times and their indicator processes by

ηY = inf{t > 0;

∫ t

0

γYs ds > εY }, HY
t = 1{ηY ≤t}, (7.2)
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where the εY are i.i.d. standard exponential random variables, Y ∈ Y. The full model filtration G is
given as W progressively enlarged by the random times ηY , Y ∈ Y. Let MY denote the compensated
martingale dMY

t = dHY − (1 − HY
t )γYt dt, t ≥ 0. We define Γ = (γY )Y ∈Y ,H = (HY )Y ∈Y and τi =

min{Y ∈Y;i∈Y } ηY , i ∈ N.

Theorem 7.1 The common-shock model is a recursively immersed model of default times. For t ≥ 0,we

have

Gt =Wt ∨
∨
Y ∈Y

(
σ(ηY ∧ t) ∨ σ({ηY > t})). (7.3)

The WY and the MY , Y ∈ Y, have the (G,Q) martingale representation property.

Proof. We prove the martingale representation property and (7.3) by induction as follows. We write
G = GY . If Y is a singleton (case of a Cox time in view of (7.2)), then the immersion of W into GY
implies the results, by the optional splitting formula (5.6) for (7.3) and by Jeanblanc and Song (2013,
Theorem 6.4) for the martingale representation property. Moreover, if Z is obtained by addition of a
new Z ⊆ N to Y, then the independence of the εY implies that ηZ is a Cox time with intensity in GY ,
hence immersion of GY into GZ follows (this is the recursively immersed feature stated in the lemma)
and the results for GZ are implied likewise from those, if assumed, for GY .

7.2 TVA Model

A DMO setup can be used as a TVA model for credit derivatives, with

Eb = Yb := {Y ∈ Y; −1 ∈ Y }, Ec = Yc := {Y ∈ Y; 0 ∈ Y }, E = Y• := Yb ∪ Yc.

In particular,

τb = τ−1 = min
Y ∈Yb

ηY , τc = τ0 = min
Y ∈Yc

ηY , hence τ = min
Y ∈Y•

ηY , γ = J−
∑
Y ∈Y•

γY . (7.4)

The results of Crépey et al. (2014, Corollary 8.3.1 page 205)6 show that in the case of a portfolio of
vanilla credit derivatives on names in N , e.g. CDS contracts and CDO tranches as of (5.12), one has
a semi-explicit formula for P of the form

Pt = P (t,Γt,Ht), (7.5)

for a continuous function P. We assume that for every process U = P, (D−D−), V, I and I, hence also
C and C, there exists a continuous function Ũ , abusively renoted ∆̃ in the case of (D−D−), such that

Uτ = ŨY (τ,Γτ ,Hτ−), (7.6)

or ŨYτ in a shorthand notation, on every event of the form {τ = ηY }, Y ∈ Y•. For vanilla credit
derivatives on names in N , e.g. CDS contracts and CDO tranches as of (5.12), this always holds
regarding U = P , by (7.5) and the DMO analog of the DGC identity (6.7), and in view of (5.12) it
also holds for U = D − D−. As will be illustrated by the right graph in our concluding figure 7, the
∆̃Y incorporate the gap risk effect in the DMO model. The conditions (7.6) on U = V, I and I may
be satisfied or not depending on the CSA (see the remark 6.2). In view of (5.8), the coefficient ξ̃ (in
the present no cure period case where δ = 0) is given as

ξ̃Yt = 1Y ∈Yc(1−Rc)
(
P̃Yt + ∆̃Yt − C̃Yt

)+ − 1Y ∈Yb(1−Rb)(P̃Yt + ∆̃Yt − C̃Yt
)−
, Y ∈ Y•. (7.7)

The coefficient f̂t(ϑ) in (5.10) is given, on [0, τ̄ ], by

f̂t(ϑ) + (rt + γt)ϑ = (1−Rc)
∑
Y ∈Yc

γYt
(
P̃Yt + ∆̃Yt − C̃Yt

)+ − (1−Rb)
∑
Y ∈Yb

γYt
(
P̃Yt + ∆̃Yt − C̃Yt

)−
+ ctCt + λ̃t (Pt − Ct − ϑ)+ − λt (Pt − Ct − ϑ)− ,

(7.8)

6 Or Bielecki et al. (2014a, Part II, Corollary 3.1) in the journal version.
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where λ̃t = λ̄t − Λ
∑
Y ∈Yb γ

Y
t . Let Y◦ = Y \ Y• and let X̃t = (Γt, H̃t), where H̃ = (1Y ∈Y◦H

Y )Y ∈Y .

We assume that the processes r, c, λ, λ̄, P and C are given before τ as continuous functions of (t, X̃t).
Regarding P , (7.5) shows that this property always holds in the case of vanilla credit derivatives on
names in N . In view of the last identity in (7.4), this property is also verified by the process γ. The next
result, stated without proof, is the DMO analog of the DGC Theorem 6.2, where the main difficulty,
related to (DGC.2), came from the fact that we had to use P 6= Q there, as opposed to P = Q simply
here. This is an easier case of immersion in the sense of the comments following the statement of the
condition (C), hence we state the result without proof.

Theorem 7.2 The condition (C) holds, for:

(DMO.1) a reference filtration F = (Ft) in (C.1) given as W progressively enlarged by the ηY , Y ∈ Y◦,
which satisfies

Ft =Wt ∨
∨

Y ∈Y◦

(
σ(ηY ∧ t) ∨ σ({ηY > t})

)
, t ≥ 0,

(DMO.2) P = Q in (C.2), where the WY , Y ∈ Y, and the MY , Y ∈ Y◦, have the (F,P = Q) martingale

representation property,

(DMO.3) a Markov specification f̃t(ϑ) = f̃(t, X̃t, ϑ) of (C.3), for the (F,P = Q) jump diffusion X̃t =
(Γt, H̃t) and the function f̃ = f̃(t, x̃, ϑ) given, writing x̃ = (t,γ, k̃) for γ = (γY )Y ∈Y ∈ RY+ and

k̃ = (kY )Y ∈Y ∈ {0, 1}Y with kY = 0 if Y ∈ Y•, by:

f̃(t, x̃, ϑ) + (r(t, x̃) + γ(t, x̃))ϑ =

(1−Rc)
∑
Y ∈Yc

γY
(
P̃Y + ∆̃Y − C̃Y

)+
(t, x̃)− (1−Rb)

∑
Y ∈Yb

γY
(
P̃Y + ∆̃Y − C̃Y

)−
(t, x̃)

+
(
cC + λ̃

(
P − ϑ− C

)+ − λ(P − ϑ− C)−)(t, x̃),

(7.9)

where γ(t, x̃) =
∑
Y ∈Y•γY , λ̃ = λ̄− Λ

∑
Y ∈Yb γY .

In addition, (F,P = Q) local martingales don’t jump at τ , τ avoids F stopping times, the condition (B) is

satisfied and the Azéma supermartingale S of τ is given, for t ∈ [0, T ], by

St = e−
∑
Y∈Y•

∫ t
0
γYs ds > 0. (7.10)

In particular, the DMO model is a marked default times setup, satisfying (5.2), where the full and reduced

DGC BSDEs are equivalent.

Similar comments as those formulated after the DGC Theorem 6.2 are applicable regarding the role
of the martingale representation property here. Also note that the Azéma supermartingale (7.10) is
continuous and nonincreasing, consistent with the immersion property of the setup. Since the condition
(C) is satisfied, we can derive the following DMO analog, stated without proof, of the DGC corollary
6.1.

Corollary 7.1 In the DMO model, we have γ′ = γ(·, X̃·) =
∑
Y ∈Y•γ

Y ∈ H̃2. Assuming all the other

conditions in Theorem 4.1 and without cure period, so for δ = 0 and f̃ = f̃(t,γ, k̃, ϑ) as of (7.9), the

corresponding reduced TVA BSDE (3.5) admits a unique square integrable solution Θ̃t = Θ̃(t, X̃t), where

the function Θ̃(t, x̃) is a continuous viscosity solution to the corresponding semilinear PIDE. A solution Θ

to the full TVA BSDE (2.8) is obtained by setting Θ = Θ̃ on [0, τ̄) and

Θτ̄ = 1{τ<T}

(
ξ̃ıτ − (Pτ− − Cτ− − Θ̃τ−)+

1{−1∈ı}Λ
)
,

where ı ∈ Y• is the identity of the shock triggering the first default of a party. The (G,Q) local martingale

component µ of Θ satisfies, for t ∈ [0, τ̄ ]:

dµt = dµ̃t −
(
ξ̃ıτ − Θ̃τ− − (Pτ− − Cτ− − Θ̃τ−)+

1{−1∈ı}Λ
)
dJt

−
( ∑
Y ∈Y•

(ξ̃Yt − Θ̃t)γYt − (Pt − Ct − Θ̃t)+Λ
∑
Y ∈Yb

γYt

)
dt.

(7.11)
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7.3 Cure Period

In our DGC and DMO examples so far, we postulated no cure period, i.e. δ = 0. Let’s now assume, in a
DMO setup, a positive cure period δ, with a P(G) measurable C = (V, I,I) and deterministic interest
rates rt for simplicity. Similar considerations would apply in a DGC setup. In the case of vanilla credit
derivatives (CDS contracts and CDO tranches with dividends given by (5.12)), in a deterministic

interest rate environment, the process ∆t =
∫
[τ,t]

e
∫ t
s rududDs is a function of the default times in [τ, t].

We write KY
t = (1{ηY ≤t}, ηY 1{ηY ≤t}) = (HY

t , ηYH
Y
t ), K = (KY )Y ∈Y , ∆?t =

∫
[0,t]

e−
∫ s
t rududDs, so

that ∆t = ∆?t−∆?τ−, and we consider a cure period (G,Q) factor process Xt = (t,Γt,Kt). By application
of the results of Bielecki, Jakubowski, and Niewȩglowski (2012) (or by a direct proof based on Heath
and Schweizer (2000, Theorem 1) and Becherer and Schweizer (2005, Corollary 2.3)), X is a (G,Q)
homogenous strong Markov process. Recall from (4.4) and (4.2) that

ξ = 1{τc≤τδb }
(1−Rc)(Qτδ − Cτ )+ − 1{τb≤τδc }(1−Rb)(Qτδ − Cτ )+,

where

1{τc≤τδb }
= 1{τc≤τδ} = 1−

∏
Y ∈Yc

(1−HY
τδ ), 1{τb≤τδc } = 1{τb≤τδ} = 1−

∏
Y ∈Yb

(1−HY
τδ ).

Moreover, in the case of vanilla credit derivatives such as CDS and CDO contracts as of (5.12), we
have in the DMO model:

Qτδ = Pτδ +∆τδ = Pτδ +∆?τδ −∆
?
τ− = P (τδ,Γτδ ,Kτδ ) +∆?(τ

δ,Γτδ ,Kτδ )−∆
?
τ−,

for continuous functions P and ∆?.

Remark 7.1 Similar as in the DGC case (see the remark 7.1), any continuity statement with respect
to the second components tY of the kY values of the KY

t , Y ∈ Y, has to be understood in the sense of
the corresponding “order sets” domain and topology.

Hence, ξ can be written in functional form as

ξ = ξ?(τ
δ,Γτδ ,Kτδ ,Cτ ,∆

?
τ−) = ξ?(Xτδ ,Cτ ,∆

?
τ−), (7.12)

for some function ξ? continuous in the values x of X and where Cτ and ∆?τ− are considered as Gτ
measurable parameters. We consider the (F,P = Q) reduced factor process X̃t = (Γt, K̃t, C̃t,∆

′
t),

where K̃ = (1Y ∈Y◦K
Y )Y ∈Y and where C̃ (resp. ∆′) is an F predictable process that coincides with C

(resp. ∆?−) on (0, τ ]. Such processes C̃ (having assumed a G predictable process C) and ∆′ exist by
virtue of the DMO condition (B) established in Theorem 6.2. We denote by k and x̃ respective values
of K (or K̃) and X̃ and we write kY,t for the vector obtained from k by replacing the component with
index Y by (1, t).

Lemma 7.1 We have cdvat = Jt−cdva(t, X̃t), Q× λ a.e., where

cdva(t, X̃t) =
∑
Y ∈Y•

γYt ξ̄
(
t,Γt, K̃

Y,t
t , C̃t,∆

′
t), (7.13)

for a continuous function ξ̄(t, x̃) such that

ξ̄τ = ξ̄(τ, X̃τ ). (7.14)

Proof. In view of (7.12), the (G,Q) Markov property of X yields

ξ̄τ = ξ̄(Xτ ,Cτ ,∆
?
τ−), (7.15)

for some continuous function ξ̄(x, c, d). On {τ = ηY < T}, we have

Kτ = (Kτ−)Y,τ
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and hence

ξ̄τ = ξ̄
(
Xτ ,Cτ ,∆

?
τ−
)

= ξ̄
(
τ,Γτ ,Kτ ,Cτ ,∆

?
τ−
)

= ξ̄
(
τ,Γτ , (Kτ−)Y,τ ,Cτ ,∆

?
τ−
)

= ξ̄
(
τ,Γτ , (K̃τ−)Y,τ , C̃τ ,∆

′
τ

)
,

(7.16)

from which the results follows by an application of Lemma 5.1.

As a consequence of Lemma 7.1, postulating that lvat(ϑ) in (4.6) is given before τ as a continuous
function lva(t, X̃t, ϑ), the condition (5.11) holds for the function f̃(t, x̃, ϑ) such that, with x̃ = (γ, k̃, c, d)
and γ(t, x̃) =

∑
Y ∈Y• γY :

f̃(t, x̃, ϑ) + (r(t) + γ(t, x̃))ϑ = cdva(t, x̃) + lva(t, x̃, ϑ). (7.17)

Therefore, Theorem 7.2 still holds for δ > 0 with f̃ as of (7.17) instead of (7.9) in (DMO.3). Hence,
the condition (C) is satisfied and we can derive the following cure period analog of Corollary 7.1.

Corollary 7.2 In the DMO model, we have γ′ = γ(·, X̃·) =
∑
Y ∈Y•γ

Y ∈ H̃2. Assuming all the other

conditions in Theorem 4.1 and for a cure period δ > 0, hence for f̃ = f̃(t,γ, k̃, c, d, ϑ) as of (7.17), the

corresponding reduced TVA BSDE (3.5) admits a unique square integrable solution Θ̃t = Θ̃(t, X̃t), where

the function Θ̃(t, x̃) is a continuous viscosity solution to the corresponding semilinear PIDE. A solution Θ

to the full TVA BSDE (2.8) is obtained by setting Θ = Θ̃ on [0, τ̄) and

Θτ̄ = 1{τ<T}

(
ξ̄
(
τ,Γτ , (K̃τ−)ı,τ , C̃τ ,∆

′
τ

)
− (Pτ− − Cτ− − Θ̃τ−)+

1{−1∈ı}Λ
)
,

where ı ∈ Y• is the identity of the shock triggering the first default of a party. The (G,Q) local martingale

component µ of Θ satisfies, for t ∈ [0, τ̄ ]:

dµt = dµ̃t −
(
ξ̄
(
τ,Γτ , (K̃τ−)ı,τ , C̃τ ,∆

′
τ

)
− Θ̃t− − (Pτ− − Cτ− − Θ̃τ−)+

1{τ=τb}Λ
)
dJt

−
( ∑
Y ∈Y•

(ξ̄
(
t,Γt, (K̃t)

Y,t, C̃t,∆
′
t

)
− Θ̃t)γYt − (Pt − Ct − Θ̃t)+Λ

∑
Y ∈Yb

γYt

)
dt.

8 Numerical Implementation and Results

Due to funding costs, the TVA equations are nonlinear BSDEs. In the case of credit derivatives, they are
also very high-dimensional. For nonlinear and very high-dimensional problems, any numerical scheme
based, even to some extent, on dynamic programming, such as purely backward deterministic PDE
schemes, but also forward/backward simulation/regression BSDE schemes, are ruled out by the curse
of dimensionality (see e.g. Crépey (2013, Part IV)). Now, in any bottom-up credit portfolio model
such as the DGC or the DMO model, the dimension is at least the number of credit names. Hence,
for n greater than a few units, the only feasible TVA schemes are purely forward simulation schemes,
such as Monte Carlo simulation with m runs based on the linear expansion of Fujii and Takahashi
(2012a,2012b) or the branching particles scheme of Henry-Labordère (2012), respectively dubbed “FT
scheme” and “PHL scheme” below. In our setup, the PHL scheme involves a nontrivial and rather
sensitive fine-tuning for finding a polynom in ϑ that approximates the terms (Pt − Ct − ϑ)± in lvat(ϑ)
in a suitable range for ϑ. Ideally, such a polynom should be adaptive and depend on (Pt−Ct), but in a
PHL scheme the approximating polynom has to be fixed once for all in the simulation. The only way
we were able to achieve a good fine-tuning is by using a preliminary knowledge on the solution obtained
by running the FT scheme in the first place. Since a numerical scheme that can be run automatically
and does not involve any fine-tuning is preferable, we focus on the FT scheme in the sequel.
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8.1 Fujii and Takahashi’s TVA Linear Expansion

The FT scheme is based on an expansion of the coefficient, hence of the solution Θ̃, to a Markovian
BSDE on [0, T ] such as (3.5)/(5.11), as a series Θ̃ ≈ Θ̃(0) + Θ̃(1) + Θ̃(2) + Θ̃(3) + · · · of solutions to linear
BSDEs, where the next BSDE in the series uses the solution to the previous one as input data. Let

f̄(t, x̃, ϑ) := f̃(t, x̃, ϑ) + γ(t, x̃)ϑ = cdva(t, x̃) + lva(t, x̃, ϑ)− r(t, x̃)ϑ (8.1)

(cf. (4.6)). In order to exploit some cancellation between related discount factors in Lemma 8.1, it is
preferable to use an FT expansion of the coefficient f̄ rather than f̃ , treating the γ(t, x̃)ϑ term in f̃ as
a discount factor (cf. the right identity in (4.8)). In terms of f̄ , the reduced BSDE (3.5) is written as:
Θ̃T = 0 and, for t ∈ [0, T ],

−dΘ̃t = f̃(t, X̃t, Θ̃t)dt− dµ̃t =
(
f̄(t, X̃t, Θ̃t)− γ(t, X̃t)Θ̃t

)
dt− dµ̃t.

The corresponding FT expansion reads (cf. Fujii and Takahashi (2012a, Equations (2.4), (2.6) and
(2.7) in the arxiv version)): Θ̃εT = 0 and, for t ∈ [0, T ],

− dΘ̃εt =
(
εf̄(t, X̃t, Θ̃

ε
t)− γ̃(t, X̃t)Θ̃

ε
t

)
dt− dµ̃εt

Θ̃εt = Θ̃
(0)
t + εΘ̃

(1)
t + ε2Θ̃

(2)
t + ε3Θ̃

(3)
t + · · ·

f̄(t, X̃t, Θ̃
ε
t) = f̄(t, X̃t, Θ̃

0
t ) +

(
εΘ̃(1) + ε2Θ̃(2) + ε3Θ̃(3) + · · ·

)
∂ϑf̄(t, X̃t, Θ̃

(0)
t ) + . . . .

Quoting Fujii and Takahashi (2012a, page 4 in the arxiv version), “by putting ε = 1, Θ̃(0) + Θ̃(1) +
Θ̃(2) + Θ̃(3) + · · · is expected to provide a reasonable approximation for the original Θ̃ as long as the
residual term is small enough to allow the perturbative treatment.” This is studied mathematically in
a diffusive setup in Takahashi and Yamada (2014). Collecting all terms in εi, the resulting first Θ̃(i)

terms are written as Θ̃(0) = 0, due to the null terminal condition of the reduced TVA BSDE (3.5), and

Θ̃
(1)
t = Ẽ

[ ∫ T

t

e−
∫ s
t γ(r,X̃r)dr f̄

(
s, X̃s, Θ̃

(0)
s = 0

)
ds
∣∣Ft],

Θ̃
(2)
t = Ẽ

[ ∫ T

t

e−
∫ s
t γ(r,X̃r)dr∂ϑf̄

(
s, X̃s, Θ̃

(0)
s = 0

)
Θ̃

(1)
s ds

∣∣Ft],
Θ̃

(3)
t = Ẽ

[ ∫ T

t

e−
∫ s
t γ(r,X̃r)dr∂ϑf̄

(
s, X̃s, Θ̃

(0)
s = 0

)
Θ̃

(2)
s ds

∣∣Ft].
(8.2)

The first two lines correspond to the identities (2.19) and (2.22) in the arxiv version of Fujii and
Takahashi (2012a). Compared with the third line, the complete third order term comprises another
component based on ∂2

ϑ2 f̃ . In our case, ∂2
ϑ2 f̃ involves a Dirac measure via the terms (Pt − Ct − ϑ)±

in lvat(ϑ) (cf. (4.6)), so that we truncate the expansion to the term Θ̃
(3)
t as above. Moreover, we use

the interacting particles implementation of these formulas in Fujii and Takahashi (2012c) and Fujii,
Sato, and Takahashi (2014). Namely, we estimate by randomization, based on independent exponential
draws ζj with parameters µj , each time integral that intervenes in (8.2) either explicitly or implicitly

through the terms Θ̃
(1)
s and Θ̃

(2)
s . Specifically, the following identities follow from (8.2) by the tower

rule :

Θ̃
(1)
0 = Ẽ

[
1ζ1<T

eµ1ζ1

µ1
e−

∫ ζ1
0 γ(r,X̃r)dr f̄

(
ζ1, X̃ζ1 , 0

)]
,

Θ̃
(2)
0 = Ẽ

[
1ζ1+ζ2<T

eµ1ζ1+µ2ζ2

µ1µ2
e−

∫ ζ1+ζ2
0 γ(r,X̃r)dr∂ϑf̄

(
ζ1, X̃ζ1 , 0

)
f̄
(
ζ1 + ζ2, X̃ζ1+ζ2 , 0

)]
,

Θ̃
(3)
0 = Ẽ

[
1ζ1+ζ2+ζ3<T

eµ1ζ1+µ2ζ2+µ3ζ3

µ1µ2µ3
e−

∫ ζ1+ζ2+ζ3
0 γ(r,X̃r)dr×

∂ϑf̄
(
ζ1, X̃ζ1 , 0

)
∂ϑf̄

(
ζ1 + ζ2, X̃ζ1+ζ2 , 0

)
f̄
(
ζ1 + ζ2 + ζ3, X̃ζ1+ζ2+ζ3 , 0

)]
.

(8.3)

In the spirit of reduction of filtration of this work, a model is originally defined and can be simulated
with respect to the full stochastic basis (G,Q). Even in the case where there exists a stochastic basis
(F,P) satisfying the condition (C), (F,P) simulation may be nontrivial. That would for instance be
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an issue in the DGC model (in the DMO model (F,P = Q) simulation is equally easy as (G,P = Q)
simulation due to the immersion properties of the setup). But, as explained after the next result, it is
always possible to reformulate the P expectations in (8.3) as Q expectations, by a direct formula not

involving any Girsanov weights, which allows estimating the Θ̃
(i)
0 simply by (G,Q) simulation.

Lemma 8.1 Assume the conditions (B) and (C). If the Azema supermartingale S of τ is positive, then, for

any F progressively measurable process h and independent nonnegative random variable ζ,

Ẽ
[
1{ζ<T}e

−
∫ ζ
0
γ′sdshζ

]
= E

[
1{ζ<τ̄}hζ

]
. (8.4)

Proof. By Fubini’s theorem, we only need to prove the lemma for ζ = s constant positive. Let Hs =
1{s<T}hs. Since h is F adapted, E[Hs1{s<τ}] = E[HsSs]. We recall from Crépey and Song (2014c,
Lemma 2.2 5)) the following multiplicative stochastic exponential decomposition of S on R+ (for S
positive):

S = S0E(−
1

S−
�D)E( 1

pS
�Q),

where S = Q−D is the (F,Q) canonical Doob-Meyer decomposition of S. By Crépey and Song (2014c,
Theorem 3.1 2)), the (F,Q) density process of P is given by E( 1

pS �Q) on [0, T ]. Therefore,

E[Hs1{s<τ}] = E[HsSs] = E[HsS0E(−
1

S−
�D)sE(

1
pS

�Q)s] = Ẽ[HsS0E(−
1

S−
�D)s]. (8.5)

Note that S0 = 1 and D is the drift of the Azema supermartingale of τ in (F,Q), so that D is absolutely
continuous, i.e. D = ν�λ for some density process ν. Hence, the stochastic exponential E(− 1

S−
�D) is a

usual exponential. By Jeulin (1980, Remark 4.5), 1(0,τ ]
ν
S−

�λ is the (G,Q) predictable dual projection

of 1[τ,∞). Therefore,

1(0,τ ]
ν

S−
= γ−1(0,τ ],

so that ν
S−

is the F predictable reduction of γ−, i.e. ν
S−

= γ′. As a consequence, after substitution of

ζ for s, the identity (8.5) is rewritten as (8.4).

Applications of Lemma 8.1 to (8.3) yield

Θ̃
(1)
0 = E

[
1ζ1<τ̄

eµ1ζ1

µ1
f̄
(
ζ1, X̃ζ1 , 0

)]
,

Θ̃
(2)
0 = E

[
1ζ1+ζ2<τ̄

eµ1ζ1+µ2ζ2

µ1µ2
∂ϑf̄

(
ζ1, X̃ζ1 , 0

)
f̄
(
ζ1 + ζ2, X̃ζ1+ζ2 , 0

)]
,

Θ̃
(3)
0 = E

[
1ζ1+ζ2+ζ3<τ̄

eµ1ζ1+µ2ζ2+µ3ζ3

µ1µ2µ3

∂ϑf̄
(
ζ1, X̃ζ1 , 0

)
∂ϑf̄

(
ζ1 + ζ2, X̃ζ1+ζ2 , 0

)
f̄
(
ζ1 + ζ2 + ζ3, X̃ζ1+ζ2+ζ3 , 0

)]
.

(8.6)

In the two models considered with δ = 0 in this paper, the reduced factor process X̃ consists of some
components of a full factor process X, namely Xt = (mt,kt) in the DGC setup without cure period of
Sect. 6.2 and Xt = (Γt,Ht) in the DMO setup without cure period of Sect. 7.2. Hence, for δ = 0, we

can compute the Θ̃
(i)
0 based on (8.6) by (G,Q) simulation of X, which is well understood in both cases

(cf. Crépey et al. (2014, Part IV)). In the DMO setup with positive cure period δ > 0 of Sect. 7.3, one
residual difficulty with the formulas (8.6) is that f̄(t, x̃, ϑ) in (8.1) involves nontrivial cdva(t, x̃) terms as
of (7.13). But the computation of these can be avoided by resorting to the following add-on to Lemma

8.1, where (8.7) implies that the Θ̃
(i)
0 in (8.6) can be computed by (G,Q) simulation of X, C and ∆?.

Lemma 8.2 In the DMO setup with positive cure period δ > 0 of Sect. 7.3, the notation of which we use

here, for any F predictable process h and for any independent random variable ζ with density p, we have:

E[1{ζ<τ̄}hζcdva(ζ, X̃ζ)] = E
[
1{ζ<τ̄}hζ

∑
Y ∈Y• γ

Y
ζ e
−

∫ ζ+δ
ζ r(s)dsξ?

(
XY,ζ
ζδ

,Cζ ,∆
?
ζ

)]
, (8.7)

where we write XY,s
t = (t,Γt, (Kt)

Y,s), for any 0 ≤ s ≤ t.
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Proof. On {τ = ηY }, we have Kτδ = (Kτδ )
Y,τ , hence

ξ = ξ?(τ
δ,Γτδ , (Kτδ )

Y,τ ,Cτ ,∆
?
τ−) = ξY (X−Y

τδ
, τ,Cτ ,∆

?
τ−),

for some function ξY . By the recursively immersed feature (Markov copula properties) of the DMO
model (see Bielecki et al. (2014a, Part I) and Bielecki, Jakubowski, and Niewȩglowski (2012)), the
process X−Y obtained as X deprived from the Y th component of K is a (G,Q) homogenous strong
Markov process, for any Y ∈ Y. We denote by T Yε the transition function of the process X−Y killed at
the rate r over a time horizon ε, i.e., k−Y representing a value of K deprived from its Y th component,

(ϕ, (t,γ,k−Y ))→ T Yε [ϕ](t,γ,k−Y ) = E
[
e−

∫ t+ε
t r(s)dsϕ(X−Yt+ε )|X

−Y
t = (t,γ,k−Y )

]
= E

[
e−

∫ t+ε
t r(s)dsϕ(X−Yt+ε )|Gt

]
,

we compute:

ξ = E[e−
∫ τ+δ
τ r(s)dsξ|Gτ ] =

∑
Y ∈Y•

E[e−
∫ τ+δ
τ r(s)dsξY (X−Y

τδ
, τ,Cτ ,∆

?
τ−)1{τ=ηY }|Gτ ]

=
∑
Y ∈Y•

T Yδ [ξY (·, τ,Cτ ,∆
?
τ−)](X−Yτ )1{τ=ηY } =

∑
Y ∈Y•

T Yδ [ξY (·, τ,Cτ ,∆
?
τ−)](X−Yτ− )1{τ=ηY },

where the fact that {τ = ηY } = {τ ≥ ηY } ∈ Gτ (resp. X−Y doesn’t jump at τ on {τ = ηY }) was used
to pass to the second line (resp. in the last identity). Hence, Lemma 5.1 yields

γtξ̂t = Jt−
∑
Y ∈Y•

γYt T Yδ [ξY (·, t,Ct,∆
?
t−)](X−Yt− ), Q× λ a.e. (8.8)

As a consequence, given an independent random variable ζ with density p, we can write, using respec-
tively the formula (8.8) and the definition of T Yδ to pass to the second and third line:

E[hζ 1{ζ≤τ̄}cdva(ζ, X̃ζ)] =
∫ T
0

E
[
ht1{t<τ̄}cdva(t, X̃t)

]
p(t)dt

=
∫ T
0

E
[
ht1{t≤τ}

∑
Y ∈Y• γ

Y
t T Yδ [ξY (·, t,Ct,∆

?
t−)](X−Yt )

]
p(t)dt

=
∫ T
0

E
[
ht1{t≤τ}

∑
Y ∈Y• γ

Y
t E
[
e−

∫ t+δ
t r(s)dsξY (X−Y

tδ
, t,Ct,∆

?
t−)|Gt]

]
p(t)dt

=
∫ T
0

E
[
ht1{t≤τ}

∑
Y ∈Y• γ

Y
t e
−

∫ t+δ
t r(s)dsξ?(t

δ,Γtδ , (Ktδ )
Y,t,Ct,∆

?
t−)
]
p(t)dt

= E
[
1{ζ≤T}h(ζ)1{ζ≤τ}

∑
Y ∈Y• γ

Y
ζ e
−

∫ ζ+δ
ζ r(s)dsξ?(X

Y,ζ
ζδ

,Cζ ,∆
?
ζ)
]
.

Note that this proof exploits the specific immersion and Markov copula properties of the DMO model,
through which each process X−Y is Markov in the full model filtration G.

Summarizing this section, in our dynamic copula specifications of the generic marked default
times setup of Sect. 5, the reduced factor process X̃ is made of certain components of a full factor
process X that one knows how to simulate under (G,Q), and the successive terms of the FT expansion
(8.6) can be computed by (G,Q) simulation of the related components of X. By contrast with methods
such as importance sampling, which requires simulation under a modified probability measure and in-
volves a related reweighting of all paths and payoffs, in our case, once the existence of (F,P) satisfying
the condition (C) has been checked mathematically, algorithmically, all one needs is (G,Q) simulation
and use of the appropriate reduced coefficient f̃ (for which, admittedly, the explicit expression of the
(G,Q) intensity of the marked default times τe, e ∈ Eb∪Ec, is required). One doesn’t even need remem-
ber what F and P really are. As soon as the existence of a reduced stochastic basis (F,P) satisfying the
condition (C) is known and there is an explicit formula for the (G,Q) intensity of the τe, the method
can be implemented by any standard user.

To conclude this paper we present7 TVA computations in the above DGC and DMO models,
on CDS contracts and protection legs of CDO tranches corresponding to dividend processes of the
respective forms Di and D? in (5.12). For these computations we follow the most conservative TVA

7 We thank Hai Nam Nguyen, Tuyet Mai Nguyen, Abdallah Rahal and Dong Li Wu, current and former PhD
students of the University of Evry, for their Matlab implementation of the DGC and DMO models.
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approach of ignoring windfall benefits at own default, setting Rb = 1 and Λ = 0 (see the remark 4.4),
which allows numerical validation of the results based on the reduced BSDE by results based on the
full BSDE. In fact, also setting c = λ = 0, we have the following linear approximation formula for the
time-0 value of the solution to the full TVA BSDE (2.8):

Θ0 ≈ E
[
1{τ<T}βτδξ +

∫ τ̄

t

βsgs(Ps)ds
]

= E
[
1{τ<T}βτδ1{τc≤τδb }

(1−Rc)(Pτδ +∆τδ − Cτ )+ +

∫ τ̄

t

βsλ̄s (Ps − Cs)+
ds
]
.

(8.9)

On the one hand, for λ̄ = 0, this approximation is exact and a Monte Carlo loop based on the
second line in (8.9) yields an unbiased estimate for Θ0 = Θ̃0 alternative to Monte Carlo estimates for

Θ̃
(1)
0 + Θ̃

(2)
0 + Θ̃

(3)
0 in (8.3) or (8.6). But, on the other hand, for λ̄ 6= 0, (8.9) analogs of higher order

terms such as the second or third lines in (8.3) or (8.6), even if they could possibly be devised based
on the full BSDE (2.8), would not be practical, due to the nonzero terminal condition in the full TVA
BSDE (2.8). The tractability of (8.3) or (8.6) results from the null terminal condition in the reduced

TVA BSDE (3.5). Otherwise, nested simulations would be required for estimating the Θ
(0)
s (whereas

Θ̃
(0)
s = 0 everywhere in (8.2), (8.3) and (8.6)). Based on the full TVA BSDE (2.8), it might be possible

to devise a PHL scheme, but at the cost of the already mentioned fine-tuning issue and for a variance
bounded below by the variance of the standard Monte Carlo scheme based on (8.9), already found
significatively greater below than the variance of the FT scheme based on the reduced BSDE.

Unless stated otherwise, the following numerical values are used (on top of Rb = 1 and Λ = c =
λ = 0 for consistency with (8.9)):

r = 0, Rc = 40%, δ = 0, V = I = I = 0, λ̄ = 100 bp = 0.01, µj =
2

T
, m = 104 (8.10)

(see also after (5.12)). In particular, Θ is nonnegative.

8.2 Numerical Results in the DGC Model

We start by TVA computations on CDS contracts with maturity T = 10 years in a DGC model with
ς =

1[0,T+1]√
T+1

and % = 0.6 unless otherwise stated. Table 1 displays the contractual spreads of the CDS

contracts used in these experiments. In Figure 2, the left graph shows the TVA on a CDS on name 1,

i -1 0 1
Si 36 41 47

i −1 0 1 2 3 4 5 6 7 8 9 10
Si 39 40 47 36 41 48 54 54 27 30 36 50

Table 1 Time-0 bp CDS spreads of names -1 (the bank), 0 (the counterparty) and of the reference names 1 to n
used when n = 1 (left) and n = 10 (right).

computed in a DGC model with n = 1 by FT scheme of order 1 to 3, for different levels of nonlinearity
represented by the value of the unsecured borrowing spread λ̄. The right graph shows similar results
regarding a portfolio of one CDS contract on each name i = 1, . . . , 10. The time-0 clean value of the
default leg of the CDS in case n = 1, respectively the sum of the ten default legs in case n = 10, is 4.52,
respectively 40.78 (of course P0 = 0 in both cases by definition of fair contractual spreads). Hence, in
relative terms, the TVA numbers visible in Figure 2 are quite high, much greater for instance than in
the cases of counterparty risk on interest rate derivatives considered in Crépey, Gerboud, Grbac, and
Ngor (2013). This is explained by the wrong-way risk feature of the DGC model, namely, the default
intensities of the surviving names and the value of the CDS protection spike at defaults in this model
(cf. the left graph in our concluding figure 7). When λ̄ increases (for λ̄ = 0 that’s a case of linear TVA
where FT higher order terms equal 0), the second (resp. third) FT term may represent in each case up
to 5% to 10% of the first (resp. second) FT term, from which we conclude that the first FT term can
be used as a first order linear estimate of the TVA, with a nonlinear correction that can be estimated
by the second FT term.
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Fig. 2 Left: DGC TVA on one CDS computed by FT scheme of order 1 to 3, for different levels of nonlinearity
(unsecured borrowing spread λ̄). Right: Similar results regarding the portfolio of CDS contracts on ten names.

In Figure 3, the left graph shows the TVA on one CDS computed by FT scheme of order 3
as a function of the DGC correlation parameter %, with other parameters set as before. The right
graph shows the analogous results regarding the portfolio of ten CDS contracts. In both cases, the
TVA numbers increase (roughly linearly) with %, including for high values of %, as desirable from the
financial interpretation point of view, whereas it has been noted in Brigo and Chourdakis (2008) (see
the blue curve in Figure 1 of the ssrn version of the paper) that for high levels of the correlation
between names, other models may show some pathological behaviours.
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Fig. 3 Left: TVA on one CDS computed by FT scheme of order 3 as a function of the DGC correlation parameter %.
Right: Similar results regarding a portfolio of CDS contracts on ten different names.

In Figure 4, the left graph shows that the errors, in the sense of the % relative standard errors
(% rel. SE), of the different orders of the FT scheme don’t explode with the dimension (number of
credit names that underlie the CDS contracts). The middle graph, produced with n = 1, shows that
the errors don’t explode with the level of nonlinearity represented by the unsecured borrowing spread
λ̄. Consistent with the fact that the successive FT terms are computed by purely forward Monte Carlo
schemes, their computation times are essentially linear in the number of names, as visible in the right
graph.

Table 2 illustrates the statements made after (8.9). Namely, for λ̄ = 0, the 95% confidence interval
of the FT scheme based on (8.6) is included into (in particular, fully consistent with) the 95% confidence
interval of the Monte Carlo based on the formula (8.9), formula which is unbiased for λ̄ = 0. But, as λ̄
increases (i.e. from bottom to top in the table), the approximation (8.9) reveals a significant upward
bias increasing with λ̄, for (8.9) uses (Ps − Cs)+ instead of what should be (Ps − Cs −Θs)+ under the
time integral, with Θ ≥ 0 here. On top of this bias, one can see in Table 2 that the confidence intervals
of the Monte Carlo estimates based on (8.9) are substantially broader than the FT ones. In addition,
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Fig. 4 Left: The % relative standard errors of the different orders of the expansions don’t explode with the number
of names (λ̄ = 100 bp). Middle: The % relative standard errors of the different orders of the expansions don’t explode
with the level of nonlinearity represented by the unsecured borrowing spread λ̄ (n = 1). Right: Since FT terms
are computed by purely forward Monte Carlo schemes, their computation times are linear in the number of names
(λ̄ = 100 bp).

to evaluate the time integral in (8.9) with the required accuracy, we used time discretisation with 500
time points (i.e. a time mesh of T/500 ≈ one week for T = 10y here), so that the computation times
with (8.9) are much larger than the FT ones, typically a few minutes for FT versus a few hours with
(8.9) (all of course proportional to the number of CDS contracts that are used). Note that regarding
a PHL scheme that one could possibly devise for solving the full TVA BSDE (2.8), on top of the
fine-tuning issue discussed after (8.9), such a scheme would use randomization to evaluate the time
integral in (8.9), resulting in an even greater variance than for (8.9) in Table 2 (for computation times
similar to the FT scheme). Summarizing, in the DGC model, TVA numbers based on the full BSDE
take significantly more time and/or are significantly less accurate than TVA numbers based on the
reduced BSDE.

λ̄ (bps) FT3 95% CI (8.9) 95% CI
300 0.60 [0.58, 0.63] 1.17 [1.11, 1.22]
200 0.54 [0.52, 0.56] 0.91 [0.85, 0.96]
100 0.48 [0.47, 0.50] 0.65 [0.59, 0.70]
0 0.43 [0.41, 0.44] 0.40 [0.34, 0.45]

Table 2 TVA computations on one CDS (% = 0.6). Columns 2 and 3: by the FT scheme based on (8.6)). Columns
4 and 5: by Monte Carlo based on the formula (8.9).

8.3 Numerical Results in the DMO Model

We consider a DMO model with constant shock intensities and n = 120 credit names (unless stated
otherwise). Note that the dependence between names is all in the common shocks in this model.
The stochasticity of the intensities is not crucial for the gap risk feature that we want to investigate
here. Using deterministic (constant in this case) intensities allows speeding up the simulations. We
use individual shock intensities γ{i} = 10−4 × (100 + i), which increases from 101 bp to 220 bp as
i increases from 1 to 120. We use four nested groups of joint defaults, respectively consisting of the
riskiest 3%, 9%, 21% and 100% (i.e. all) names, with respective shock intensities of 20, 10, 6.67 and 5
bp. The counterparty (resp. the bank) is taken as the eleventh (resp. tenth) less riskiest name (name
with median risk) in the portfolio. In this model, we consider CDO tranches with upfront payment
(dividend process D? as of (5.12)), for a maturity T = 2 years and attachment (resp. detachment)
points 0%, 3% and 14% (resp. 3%, 14% and 100%). Figure 5 shows the corresponding TVA computed
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by FT scheme of order 1 to 3 for different levels of nonlinearity (unsecured borrowing spread λ̄). The
respective values of P0 (upfront payment) for the equity, mezzanine and senior tranche are 229.65,
5.68 and 2.99. Compared with these, the TVA numbers of Figure 5 are very high, especially for the
higher tranches, considerably greater again (cf. Figure 2 and related comments) than the TVA numbers
computed on interest rate derivatives in Crépey et al. (2013). This is explained by the gap risk feature
of the DMO model, namely, the joint default dividend ∆τ 6= 0. By comparison, in the DGC model
we have ∆τ = 0 but the default intensities of surviving names and the cost of credit protection spike
at defaults (whereas default intensities of surviving names are not affected by defaults in the DMO
model). It is in this sense that we view the DGC and the DMO model as respective wrong-way and
gap risk setups (see Figure 7).

The second (resp. third) FT term never exceeds in each case, depending on λ̄ increasing from 0
to 300 bp (for λ̄ = 0 that’s a case of linear TVA with higher order FT terms all equal to 0), more than
5% of the first (resp. second) FT term in Figure 5, from which we conclude that the first FT term can
be used as a first order linear estimate of the TVA, with a nonlinear correction that can be estimated
by the second FT term. Figure 6 is the analog of the DGC CDS Figure 4, but for the DMO CDO
tranches of Figure 5, with similar conclusions. Table 3 compared with Figures 5 and 6 shows that
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Fig. 5 TVA on CDO tranches with 120 underlying names computed by FT scheme of order 1 to 3, for different
levels of nonlinearity (unsecured borrowing spread λ̄). Left: Equity tranche. Middle: Mezzanine tranche. Right: Senior
Tranche.
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Fig. 6 Analog of Figure 4 for the CDO tranche of Figure 5 in the DMO model.
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on top of being biased (depending on λ̄, equal to 100 bp in Table 3), a Monte Carlo estimate based
on the linear approximation formula (8.9) has a large variance, especially for higher tranches. In fact,
for higher tranches, nonzero payoffs become quite rare events, so that exploiting the knowledge of the
explicit formulas for the intensities in an FT scheme greatly improves the variance by comparison with
a crude simulation based on (8.9). In addition, the simulations for (8.9) take considerably more time,

Tranche TVA Rel. SE 95% CI
Eq. 5.00 7.43% [4.63 , 5.37]

Mezz. 2.05 63.25% [0.75 , 3.34]
Sen. 1.67 64.59 % [0.59 , 2.75]

Tranche TVA Rel. SE 95% CI
Eq. 4.94 2.40% [4.82 , 5.06]

Mezz. 2.14 19.60% [1.72 , 2.55]
Sen. 1.74 20.02% [1.39 , 2.09]

Table 3 Linearized DMO TVA on CDO tranches computed by a Monte Carlo based on the formula (8.9) (λ̄ = 100 bp).
Left: m = 104. Right: m = 105.

due to the discretisation that is used for valuing the time integral (or, if the integral is randomized as
in the FT scheme, then this increases the variance further).

Table 4 compares the performance of the FT scheme based on the reduced BSDE and of Monte
Carlo simulations based on the formula (8.9) to compute the TVA in the continuous variation-margining
case where Vτ = Pτ− (cf. the remark 4.1). As already repeatedly found above, the FT scheme has sig-
nificantly less variance, crucially so for higher tranches. The FT scheme also takes considerably less
computation time, due to the need of computing the time integral in the case of (8.9) (unless this
integral is randomized but this increases the variance).

Tranche TVA Rel. SE 95% CI
Eq. 0.99 5.02% [0.96 , 0.99]

Mezz. 2.12 4.94% [2.09 , 2.15]
Sen. 1.76 4.94% [1.74 , 1.79]

Tranche TVA Rel. err. 95% CI
Eq. 1.02 17.02% [0.84 , 1.19]

Mezz. 1.95 66.51% [0.65 , 3.24]
Sen. 1.62 66.64% [0.54 , 2.70]

Table 4 TVA computations in the continuous variation-margining case Vτ = Pτ− (λ̄ = 100 bp, δ = 0, m = 104).
Left: FT scheme based on (8.3). Right : Monte Carlo based on the formula (8.9).

Last, we show some results computed in the DMO setup with positive cure period δ or initial
margin I, in the continuous variation-margining case where Vτ = Pτ− (cf. Table 4). Even in this
continuous variation-margining case, we have

Qτδ − Cτ = (Pτδ − Pτ−) +∆τδ − Iτ , (8.11)

where the wrong-way and gap terms (Pτδ − Pτ−) and ∆τδ = β−1
τδ

∫
[τ,τδ]

βsdDs, which includes the

“joint default dividend” Dτ −Dτ− = ∆τ , can be quite substantial. Accordingly, observe from the left
panel in Table 4 that the TVA numbers are still important relatively to the corresponding values of P0,
even for δ = 0, especially for higher tranches. This motivates the need for the initial margins I. First,
still for I = 0, the left panel in Table 5 shows the impact of the cure period δ, using Lemma 8.2 to

compute the Θ̃
(i)
0 by (G,Q) simulation based on the formula (8.7). Regarding long default protection

positions of the bank corresponding to payoffs such as D? in (5.12), most of the CVA is due to the joint
default dividend ∆τ in the common-shock model, especially for higher tranches (cf. the right graph in
Figure 7). This gap risk is already there for δ = 0, instantaneously realized in the joint default dividend
∆τ = Dτ − Dτ−, rather than developing progressively through δ > 0. Accordingly, the left panel in
Table 5 shows that the impact of δ is very limited, even if a bit less for the equity tranche. In the DGC
model, we would have a similar effect through a large term (Pτδ − Pτ−) in (8.11), already large for
δ = 0 as revealed by the comparison between the left graph in Figure 3 and the right graph in Figure 7.
However, this limited impact of δ > 0 (or instantaneous impact of τ, already present for δ = 0) is likely
to be rather restricted to this particular situation of counterparty risk on credit derivatives that we
consider here. For counterparty risk on other kinds of derivatives, the methodology of the first part of
this paper (Sect. 2 through 5) is equally relevant and the relative impact of δ would typically be much
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bigger. Next, the right panel of Table 5, computed with δ = 0 based on (8.3), shows that the amount of
initial margins, assumed a constant proportional to Θ0 for simplicity here, that is required to balance
the DMO gap risk term (joint default dividend ∆τ = Dτ −Dτ−) is huge. This reflects the extreme tail
event feature of CVA on long protection (especially higher) CDO tranches. Namely, most of the CVA
comes from the few joint default scenarios giving rise to the joint default dividends ∆τ = Dτ −Dτ−.
To compete with these, initial margins must be of the same level of magnitude, i.e. very large, and this
at every point in time of every possible scenario, as DMO default times are totally unpredictable. Such
levels of initial margins would represent a huge funding charge for the counterparty. We only consider
the perspective of the bank here, but a huge funding charge for the counterparty means that the bank
could hardly claim such levels of initial margins.

Tranche/ δ 0 2 weeks 1 year

Eq. 0.99 0.99 1.49
Mezz. 2.12 2.12 2.14
Sen. 1.76 1.76 1.76

Tranche/I Θ0 10Θ0 102Θ0 103Θ0 104Θ0

Eq. 0.97 0.85 0.16 0.00 0.00
Mezz. 2.12 2.11 1.99 0.87 0.00
Sen. 1.77 1.76 1.66 0.73 0.00

Table 5 Impact of the cure period δ ≥ 0 (left panel with I = 0) and of the initial margin I posted by the counterparty
(right panel with δ = 0) on Θ0, in the continuous variation-margining case where Vτ = Pτ−.

8.4 Conclusions

To put a final point on the respective wrong-way and gap risk features of the DGC and DMO models,
our concluding figure 7 shows the analogs of the left graph in Figure 3 and of the middle graph in
Figure 5 using flawed simulations where we replace P̃ et + ∆̃et by Pt− in all the coefficients f̃ (cf. (5.10),
(6.13) and (7.9)), thus artificially removing the respective wrong-way and gap risk from the DGC and
DMO models. We can see from the figure that the corresponding fake TVA numbers are up to five
(resp. ten) times smaller than the “true” TVA levels that can be seen in Figure 3 (resp. 5).
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Fig. 7 Left: Analog of the left graph of Figure 3 in a fake DGC model without wrong-way-risk. Right: Analog of the
middle graph of Figure 5 in a fake DMO model without gap risk.

From a broader numerical perspective, independent of the particular models that are used in the
second part of this paper (Sect. 6 through 8), let’s recap the advantages of the reduced TVA BSDE (3.5)
with respect to the full TVA BSDE (2.8) from a numerical point of view. First, in case Λ > 0, no direct
simulation approach for the full TVA BSDE (2.8) seems possible. Second, when Λ = 0 and a direct
simulation approach for the full BSDE (2.8) could be possible, in the case of high dimensional credit
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portfolio applications where only purely forward simulation schemes are feasible, it’s only a first order
linear approximation (8.9) that can be estimated directly based on (2.8) (in our setup a tentative PHL
scheme would involve the fine-tuning of a polynomial approximation hard to automate in practice).
By contrast, successive orders of approximation and a nonlinear correction can be computed for (3.5)
based on the FT expansion (8.2) and its particle implementation (8.3) or (8.6). The high tractability
of the FT schemes (8.3) or (8.6) is due to the null terminal condition Θ̃T = 0 in (2.8), implying that

Θ̃
(0)
s = 0 in (8.2), (8.3) or (8.6), which would not be the case in a tentative adaptation of the FT

scheme to the full BSDE (2.8). Third, even in cases where one can neglect the nonlinearity in (2.8) and
solve it by standard Monte Carlo, using the reduced BSDE (3.5) significantly improves the variance of
the simulations.

The method of this paper is applicable in any marked default times intensity setup satisfying
a suitable integrability condition. The integrability condition expresses that no mass is lost in some
tentative measure change. The changed probability measure is not needed algorithmically. All one
needs in practice is an explicit expression for the intensities.

A Derivation of the Exact TVA Equation (2.7)

As introduced in Sect. 2, M is the vector (G,Q) local martingale of the gain processes related to the
trading of unit positions in the hedging assets, assumed securely funded. We assume that the bank,
having obtained the contract from the counterparty at time 0 in exchange of an upfront payment of a
certain premium Π0, sets up a hedge (−ζ), which is a left-continuous row-vector process of the same
dimension as M. The “short” negative sign notation in (−ζ) is only for consistency with the idea, just
to fix the mindset, that the contract is “bought” by the bank at time 0. Let WΠ0,ζ = W denote the
value of the collateralization, hedging and funding portfolio, supposed held by the bank itself before
τ̄ and, if τ < T, taken over by a risk-free liquidator on [τ̄ , τ̄δ]. We write J ′t = 1{t<τ ′}, where we recall

that τ ′ = τb ∧ τδc .

Lemma A.1 Ignoring the terminal cashflow R at τ̄δ if τ < T , which will be added separately in Lemma

A.2, we have W0 = −Π0 and, for 0 < t ≤ τ̄δ,

dWt = rtWtdt+ JtdDt − J ′tgt(−Wt)dt− (−Wτb− − Cτb−)+Λ1{τ ′=τb<T}dJ
′
t − ζtdMt. (A.1)

Proof. Collecting all terms in the collateralization, hedging and funding scheme described in Sect. 2,
we obtain W0 = −Π0 and, for 0 < t ≤ τ̄δ:

dWt = JtdDt︸ ︷︷ ︸
bank gets dividends

− J ′t−ζtdMt︸ ︷︷ ︸
bank pays on its hedge

+ J ′t(rtWt − gt(−Wt))dt︸ ︷︷ ︸
funding benefits / costs to bank

− (−Wτb− − Cτb−)+Λ1{τ ′=τb<T}dJ
′
t︸ ︷︷ ︸

windfall funding benefit to bank at own default

− (1− J ′t−)ζtdMt︸ ︷︷ ︸
liquidator pays on the hedge of the bank during the cure period

+ (1− J ′t)rtWtdt,︸ ︷︷ ︸
risk-free funding benefits/costs of the liquidator during the cure period

which yields (A.1).

In particular, our assumption of a securely funded hedge is reflected by the fact that the hedge ζ

doesn’t enter the g and (−Wτb− − Cτb−)+ terms in (A.1). This can be compared with Crépey et al.
(2014, Example 4.4.3 page 97)8, where a more general funding policy for the hedge is considered

8 Or the equation (3.4) in the journal version Crépey (2015, Part I).



Counterparty Risk and Funding: Immersion and Beyond 35

A.1 Price

Definition A.1 A price of the contract for the bank is a (G,Q) semimartingale Π that satisfies the
following price BSDE on [0, τ̄δ]:

Πτ̄δ = 1{τ<T}R,

dνt := dΠt − rtΠtdt+ (Πτb− − Cτb−)+Λ1{τ ′=τb<T}dJ
′
t + JtdDt − J ′tgt(Πt)dt

defines a (G,Q) local martingale on [0, τ̄δ].

(A.2)

The justification for this definition is provided by the following result.

Lemma A.2 Assume gt(π) given by (4.5). If a price Π can be found with dνt = ζtdMt for some hedge ζ,

then (Π0, ζ) yields an exact replication price and hedge for the bank, i.e. W = WΠ0,ζ = −Π on [0, τ̄δ]. In

particular,

Wτ̄δ = −Πτ̄δ = −1{τ<T}R,

so that after the terminal cash flow 1{τ<T}R at τ̄δ, the bank’s position is closed break-even.

Proof. If dνt = ζtdMt, then W = −Π on [0, τ̄δ], which shows the result. In fact, by construction,

Z = βΠ + βW satisfies Z0 = 1 and dZt = αtZtdt on [0, τ̄), where αt := 1{Πt 6=Wt}
gt(Πt)+gt(−Wt)

Πt+Wt
is

Lebesgue integrable over [0, T ] (for gt(π) given by (4.5)). Hence,

d
(
e−

∫ t
0
αsdsZt

)
= e−

∫ t
0
αsds

(
dZt − αtZtdt

)
= 0,

i.e. e−
∫ t
0
αsdsZt is constant on [0, τ̄), equal to 0 in view of the initial condition for Z, i.e. W = −Π on

[0, τ̄). This is followed by a jump of the two processes by the same amount

(−Wτb− − Cτb−)+Λ = (Πτb− − Cτb−)+Λ

at τ̄ ′ (if = τb < T ), after which W and (−Π) coincide again on [τ̄ ′, τ̄δ] by the same argument as above.
Hence, W = −Π on [0, τ̄δ].

More broadly, if a price can be found with dνt = ζtdMt + dεt for some hedge ζ and a “small” cost
martingale ε, then the hedging error ρ = W + Π, which starts from 0 at time 0, remains “small” all
the way through. In particular,

Wτ̄δ ≈ −Πτ̄δ = −1{τ<T}R,

so that after the close-out cash flow 1{τ<T}R at τ̄δ, the bank’s position is closed with a “small” hedging
error.

A.2 TVA

In this section we define and derive a representation of the bilateral counterparty risk and funding
valuation adjustment (TVA).

Definition A.2 Given a price Π, the corresponding TVA is the process defined on [0, τ̄δ] as Θ = Q−Π.

Lemma A.3 Let there be given G semimartingales Π and Θ such that Θ = Q−Π on [0, τ̄δ]. The process

Π is a price of the contract for the bank if and only if the process Θ satisfies the following (G,Q) TVA

BSDE on [0, τ̄δ]:

Θτ̄δ = 1{τ<T}ξ,

dµt = dΘt − rtΘtdt+ J ′tgt(Qt −Θt)dt+ (Qτb− −Θτb− − Cτb−)+Λ1{τ ′=τb<T}dJ
′
t

defines a (G,Q) local martingale on [0, τ̄δ],

(A.3)

which is equivalent to (2.7) on [0, τ̄ ′] and Θ = 1{τ<T}ξ̄ on (τ̄ ′, τ̄δ]. This equivalence is modulo the value of Θ

at τb = τ ′ in case τb = τ ′ < T, with a windfall funding benefit at default (Qτb−−Cτb−−Θτb−)+Λ1{τ=τb<T}
considered as a dividend at the intermediate time τb in (A.3) and as part of the valuation adjustment at the

terminal time τb = τ ′ in (2.7), but this difference is immaterial in practice for the bank.
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Proof. Assuming Θ defined in terms of a price Π as (Q −Π) on [0, τ̄δ], the terminal condition for Θ
in (A.3) results from the terminal condition for Π in (A.2) and the left hand side in (2.6). Moreover,
for t ∈ [0, τ̄δ],

− βtΘt = −βtQt + βtΠt = −βtPt −
∫ t

0

βsdDs + (βtΠt +

∫ t

0

βsJsdDs).

Hence, by the martingale equation in (A.2),

− βtΘt −
∫ t

0

βsJ
′
sgs(Qs −Θs)ds

+

∫ t

0

(Qτb− −Θτb− − Cτb−)+Λ1{τ ′=τb<T}dJ
′
s = −

(
βtPt +

∫ t

0

βsdDs

)
+

∫ t

0

βsdνs,

a (G,Q) local martingale (cf. (2.1)). This establishes the martingale condition in (A.3). Hence, (A.2)
implies (A.3). The converse implication is proven similarly. Next, (A.3) is obviously equivalent to
Θ = 1{τ<T}ξ̄ on [τ̄ , τ̄δ] and (2.7) on [0, τ̄ ], up to the value of Θ at τ ′ if = τb < T , but this is immaterial
for the bank, which only risk manages Θ before τb.

B Proof of Lemma 6.1

B.1 Explicit Formulas in the DGC Model

Let f2(t) =
∫+∞
t

ς2(v)dv, assumed positive for all t for simplicity. Denoting by I and J generic subsets
of N, meant to represent sets of defaulted and alive obligors in the financial interpretation, and for
j ∈ N, we write:

ρI =
%

|I|%+ 1
, (σI)2 =

(|I| − 1)%+ 1− %2|I|
(|I| − 1)%+ 1

, αI =
%

(|I| − 1)%+ 1
,

Zj,It (u) =
hj(u)−mj

t

f(t)
− αI

∑
i∈I

hi(τi)−mi
t

f(t)
,

dζj,It , the (F,Q) martingale component of

(
− 1

f(t)
dmj

t + αI
∑
i∈I

1

f(t)
dmi

t

)
,

and for any σ > 0 and ρ ∈ [−1, 1] :

Φρ,σ(z) = Q(Zj > zj , j ∈ J), ψjρ,σ
(
z
)

= −
∂zjΦρ,σ

Φρ,σ

(
z
)
,

where z = (zj)j∈J is a real vector and Z = (Zj)j∈J is a |J |-dimensional centered Gaussian vector under
Q, with homogenous marginal variances σ2 and pairwise correlations ρ. The standard normal survival
and density functions are respectively denoted by Φ and φ. In addition, we define

ρt, σt, αt = ρI , σI , αI , Zjt = Zj,It (t) on {I = It},

ρ?t , σ
?
t , α

?
t = ρI , σI , αI , Z?,jt = Zj,It (t), dζjt = dζj,It on {I = I?t },

where It (resp. I?t ) represents the set of obligors in N (resp. N?) that are in default at time t. Let also

Jt = N \ It, J ?t = N? \ I?t , J̃t = {−1, 0} ∪ J ?t ,

Zt =
(
Zjt , j ∈ Jt

)
, Z?t =

(
Z?,jt , j ∈ J ?t

)
, Z̃t =

(
Z?,−1
t , Z?,0t ;Z?,jt , j ∈ J ?t

)
.

Let pt(ti, i ∈ N) = ∂t1 . . . ∂tnQ(τi < ti, i ∈ N | Bt) denote the conditional Lebesgue density of the
τi, i ∈ N , and recall νc from (6.17) .
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Lemma B.1 For any nonnegative ti, i ∈ N , we have, for t ∈ R+,

pt(ti, i ∈ N) =

∫
R
φ(y)

∏
i∈N

φ

(
hi(ti)−mi

t + f(t)
√
%y

f(t)
√

1− %

)
h′i(ti)

f(s)
√

1− %
dy, (B.1)

St = Q(τ > t | Ft) =
Φρ?t ,σ?t

(
Z̃t
)

Φρ?t ,σ?t
(
Z?t
) > 0 , dνct =

∑
j∈J̃t−

ψjρ?t ,σ?t

(
Z̃t
)
dζjt −

∑
j∈J ?t−

ψjρ?t ,σ?t

(
Z?t
)
dζjt . (B.2)

For any j ∈ N , respectively N?, we have, for t ∈ R+,

γjt = 1{τj≥t}
(h′j
f

)
(t)ψjρt,σt

(
Zt
)

= γj(t,mt,kt), (B.3)

respectively

γjt = 1{τj≥t}
(h′j
f

)
(t)ψjρ?t ,σ?t

(
Z?t
)

= γj(t,mt, k̃t). (B.4)

Proof. The expression for the conditional density p of the τi given Bt is obtained by differentiation of
their conditional survival function, given in Crépey et al. (2014, page 172)9. The expression for the
Azéma supermartingale S of τ , which implies the one for dνct , results from the following “multiname
key lemma formula” (cf. Crépey et al. (2014, Lemma 13.7.6 page 333)10), which can be established in
any density model of default times thanks to the optional splitting formula (5.6):

St =
Q
(
τ > t; τj > t, j ∈ J ?t | Bt ∨

∨
i∈I?t

σ(τi)
)

Q
(
τj > t, j ∈ J ?t | Bt ∨

∨
i∈I?t

σ(τi)
) .

Finally, (B.3) and (B.4) result from the following Laplace formulas that can also be rigorously estab-
lished using (5.6):

γjt = −1{τj≥t}
∂uΦρt,σt

(
Zj,It (u);Zlt, l ∈ Jt \ {j}

)
|u=t,I=It

Φρt,σt

(
Zjt ;Zlt, l ∈ Jt \ {j}

)
γjt = −1{τj≥t}

∂uΦρ?t ,σ?t

(
Zj,It (u);Z?,lt , l ∈ J ?t \ {j}

)
|u=t,I=I?t

Φρ?t ,σ?t

(
Z?,jt ;Z?,lt , l ∈ J ?t \ {j}

) .

B.2 Gaussian Estimates

Lemma B.2 Given a positive decreasing continuously differentiable function Γ on R+ such that∫
R+

tdΓ (t)dt <∞ and lim
t↑∞

td−1Γ (t)→ 0,

for some integer d ≥ 0, let

g(y) = −Γ
′(y)

Γ (y)
, G(y) =

∫ ∞
y

tdΓ (t)dt.

Let y ≥ 0 and α, ε > 0.

(i) If g(y) ≥ αy for y > y, then

G(y) ≤
( 1

α
+ ε
)
yd−1Γ (y) for y > y ∨

√
|d− 1|( 1

εα2
+

1

α
).

(ii) If g(y) ≤ αy for y > y, then

G(y) ≥
( 1

α
− ε
)
yd−1Γ (y) for y > y ∨

√
|d− 1|( 1

εα2
− 1

α
).

9 Or Crépey et al. (2013, page 3) in the journal version.
10 Or Crépey et al. (2013, Lemma 2.5) in the journal version.
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Proof. We only prove (i), for (ii) is similar. For every positive continuously differentiable function ϕ

on (0,+∞),

(G(y)− ϕ(y)Γ (y))
′ = −ydΓ (y)− ϕ′(y)Γ (y) + ϕ(y)g(y)Γ (y)

= (ϕ(y)g(y)− yd − ϕ′(y))Γ (y) ≥ (αyϕ(y)− yd − ϕ′(y))Γ (y)

for y ≥ y. For ϕ(y) = ( 1
α + ε)yd−1,

αyϕ(y)− yd − ϕ′(y) = (1 + εα)yd − yd − (
1

α
+ ε)(d− 1)yd−2 =

εαyd − (
1

α
+ ε)(d− 1)yd−2 = (εαy2 − (

1

α
+ ε)(d− 1))yd−2.

Therefore, if y > y ∨
√
|d− 1|( 1

εα2 + 1
α ), then (G(y)− ϕ(y)Γ (y))

′ ≥ αyϕ(y) − yd − ϕ′(y) ≥ 0. But

limy↑∞ (G(y)− ϕ(y)Γ (y)) = 0, hence G(y)− ϕ(y)Γ (y) ≤ 0.

By a first application of Lemma B.2, to the standard normal density Γ = φ, we recover the following
classical inequalities on ψ = φ

Φ : for any constant c > 1,

c−1y ≤ ψ(y) ≤ cy, y > y0, (B.5)

for some y0 > 0 depending on c. The following estimate, where c and y0 are as here, can be seen as a
multivariate extension of the right hand side inequality in (B.5).

Lemma B.3 There exist constants a and b such that, for every j ∈ J,

0 ≤ ψjρ,σ
(
z
)
≤ a+ b||z||∞. (B.6)

Proof. By conditional independence, we have Φρ,σ
(
z
)

=
∫
R Γ (y)dy, where Γ (y) =

∏
l∈J Φ

(
zl+σ

√
ρ y

σ
√

1−ρ

)
φ(y).

Hence

ψjρ,σ
(
z
)

=
1

σ
√

1− ρ

∫
R
wρ,σ(z, y)ψ

(
zj + σ

√
ρ y

σ
√

1− ρ

)
dy, (B.7)

where wρ,σ(z, y) = Γ (y)

Φρ,σ
(
z
) . Straightforward computations yield

g(t) = −Γ
′(t)

Γ (t)
=
∑
l∈J

ψ(
zl + σ

√
ρt

σ
√

1− ρ
)

σ
√
ρ

σ
√

1− ρ
+ t ≥ t,

whereas for t > maxl∈J
1

σ
√
ρ (σ
√

1− ρy0 − zl) and t > 1
σ
√
ρ maxl∈J zl, we have

g(t) ≤
∑
l∈J c

zl+σ
√
ρt

σ
√

1−ρ
σ
√
ρ

σ
√

1−ρ + t ≤ ᾱt,

with ᾱ :=
∑
l∈J 2c

σ
√
ρ

σ
√

1−ρ
σ
√
ρ

σ
√

1−ρ + 1 ≥ 1. Applying Lemma B.2(i) with d = 1, α = 1 and ε = 1,

respectively (ii) with d = 0, α = ᾱ and ε = 1
2ᾱ , yields∫ ∞

y

tΓ (t)dt ≤ 2Γ (y), y > 0, respectively

∫ ∞
y

Γ (t)dt ≥ 1

2ᾱy
Γ (y), y > y ∨ 1√

ᾱ
,

where y = 1
σ
√
ρ maxl∈J |zl|+ 1

σ
√
ρσ
√

1− ρy0. Thus, setting y1 = y+1 = 1
σ
√
ρ maxl∈J |zl|+ 1

σ
√
ρσ
√

1− ρy0+

1, ∫ ∞
0

tΓ (t)dt =

∫ y1

0

tΓ (t)dt+

∫ ∞
y1

tΓ (t)dt ≤ y1

∫ y1

0

Γ (t)dt+ 2Γ (y1)

≤ y1

∫ y1

0

Γ (t)dt+ 4ᾱy1

∫ ∞
y1

Γ (t)dt ≤ (1 + 4ᾱ)

∫ ∞
0

Γ (t)dt,
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i.e. ∫ ∞
0

twρ,σ(z, t)dt ≤ (1 + 4ᾱ)y1. (B.8)

Now, by (B.7) and the right hand side inequality in (B.5),

0 ≤ σ
√

1− ρψjρ,σ
(
z
)

≤
∫
R

(
1

Φ(y0)
1
{
zj+σ

√
ρy

σ
√

1−ρ ≤y0}
+ c

zj + σ
√
ρy

σ
√

1− ρ
1
{
zj+σ

√
ρy

σ
√

1−ρ >y0}

)
wρ,σ(z, y)dy

=

(
1

Φ(y0)
+

czj

σ
√

1− ρ

)
+

cσ
√
ρ

σ
√

1− ρ

∫
R
1{σ√ρy>σ

√
1−ρy0−zj}ywρ,σ(z, y)dy

≤
(

1

Φ(y0)
+

czj

σ
√

1− ρ

)
+

cσ
√
ρ

σ
√

1− ρ

∫ ∞
0

ywρ,σ(z, y)dy,

(B.9)

so that by substitution of (B.8) into (B.9)

0 ≤ σ
√

1− ρψjρ,σ
(
z
)
≤
(

1

Φ(y0)
+

czj

σ
√

1− ρ

)
+

cσ
√
ρ

σ
√

1− ρ
(1 + 4ᾱ)y1.

Corollary B.1 (i) There exists a constant C > 0 such that, for 0 ≤ r ≤ t and j ∈ N?,

〈νc〉t ≤ C(
∑
i∈N

sup
0<s≤t

|mi
s|2 + 1)t, (B.10)

γjr ∨ γ̃jr ∨ γ̄jr ≤ C(
∑
i∈N

sup
0<s≤t

|mi
s|+ 1), γ̃jr ln(γ̃jr ∨ γjr) ≤ C

∑
i∈N

sup
0<s≤t

(|mi
s|+ 1) ln(|mi

s|+ 1).(B.11)

Proof. Applying Lemma B.3 to the formulas derived in Lemma B.1, we obtain, for constants denoted
by the same symbol C,

〈νc〉t ≤ C
∫ t

0

(
∑
I⊆N

∑
j∈N\I

|Zj,Is (s)|+ 1)2ds ≤ C(
∑
I⊆N

∑
j∈N\I

sup
0<s≤t

|Zj,Is (s)|+ 1)2t,

as well as the left hand side inequality in (B.11) (recalling also γ̃jt = γj(t,mt, k̃t)), whence the right
hand side inequality follows from

γ̃jr ln(γ̃jr ∨ γjr) ≤ C(max
i∈N

sup
0<s≤t

|mi
s|+ 1) ln

(
C(max

i∈N
sup

0<s≤t
|mi

s|+ 1)
)

= max
i∈N

sup
0<s≤t

C(|mi
s|+ 1) ln(C|mi

s|+ 1).

Lemma B.4 For any constant q > 0 and i ∈ N, eq sup0≤s≤t(m
i
s)

2

is Q integrable for sufficiently small t.

Proof. The process (mi
t)t≥0 is equal in law to a time changed Brownian motion (Bt̄)t≥0, where B is a

a univariate standard Brownian motion and t̄ =
∫ t
0
ς2(s)ds goes to 0 with t. Thus, it suffices to show

the result with mi replaced by B. Let rt be the density function of the law of sup0≤s≤t |Bs| and let

Rt(y) =
∫∞
y
rt(x)dx, y > 0, so that

E[eq sup0≤s≤t B
2
s ] =

∫ ∞
0

eqy
2

rt(y)dy = −[Rt(y)e
qy2

]∞0 + 2q

∫ ∞
0

yRt(y)e
qy2

dy (B.12)

and
Rt(y) = Q[sup0≤s≤t(B

+
s +B−s ) > y] ≤ Q[sup0≤s≤tB

+
s > y

2 ] + Q[sup0≤s≤tB
−
s > y

2 ]
= 2Q[sup0≤s≤tBs >

y
2 ] = 2Q[|Bt| > y

2 ] = 2Q[|B1| > y

2
√
t
] = 4Φ( y

2
√
t
),

where by the left hand side in (B.5)

Φ(
y

2
√
t
)
y

2
√
t
≤ cφ(

y

2
√
t
) =

c√
2π
e−

y2

8t ,
y

2
√
t
> y0.
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Therefore, for 1
8t > q, both terms are finite in the right hand side of (B.12), which shows the result.

By Corollary B.1, multivariate Hölder inequality and Lemma B.4,

exp
(
〈νc〉t +

∑
i∈N?

∫ t

0

(γ̃is ln(γ̃is)− γ̃is ln(γis)− γ̃
i + γis)ds

)
is Q integrable for sufficiently small t. Hence Lemma 6.1 follows by an application of Lepingle and
Mémin (1978, Theorem IV.3).
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Bielecki, T. R., J. Jakubowski, and M. Niewȩglowski (2012). Study of dependence for some stochastic
processes: symbolic Markov copulae. Stochastic Processes and their Applications 122 (3), 930–951.

Bielecki, T. R., M. Jeanblanc, and M. Rutkowski (2009). Credit Risk Modeling. Osaka University
Press, Osaka University CSFI Lecture Notes Series 2.

Bielecki, T. R. and M. Rutkowski (2014). Valuation and hedging of contracts with funding costs and
collateralization. http://arxiv.org/abs/1405.4079v2.

Brigo, D. and K. Chourdakis (2008). Counterparty risk for credit default swaps: Impact of spread
volatility and default correlation. International Journal of Theoretical and Applied Finance 12 (7),
1007–1026.

Brigo, D., M. Morini, and A. Pallavicini (2013). Counterparty Credit Risk, Collateral and Funding:

With Pricing Cases For All Asset Classes. Wiley.
Brigo, D. and A. Pallavicini (2014). Nonlinear consistent valuation of CCP cleared or CSA bilat-

eral trades with initial margins under credit, funding and wrong-way risks. Journal of Financial

Engineering 1, 1450001 (60 pages).
Brigo, D., A. Pallavicini, and R. Torresetti (2007). Cluster-based extension of the generalized Poisson

loss dynamics and consistency with single names. International Journal of Theoretical and Applied

Finance 10 (4), 607–632.
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