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Abstract

An important issue in quantitative �nance is model calibration. The calibration problem is
the inverse of the pricing problem. Instead of computing prices in a model with given values for
its parameters, one wishes to compute the values of the model parameters that are consistent
with observed prices. Now, it is well-known by physicists that such inverse problems are typi-
cally ill-posed. So, if one perturbs the data (e.g., if the observed prices move from some small
amount between today and tomorrow), it is quite typical that a numerically determined best �t
solution of the calibration problem switches from one `basin of attraction' to the other, thus the
numerically determined solution isunstable. To achieve robustness of model (re)calibration, we
need to introduce some regularization. The most widely known and applicable regularization
method is Tikhonov(�Phillips) regularization method. In this paper we provide a survey about
Tikhonov regularization and we illustrate it by application to the problem of calibrating a local
volatility model.

1 Financial Motivation

An important issue in quantitative �nance is model calibration. The calibration problem is the
inverse of the pricing problem. Instead of computing prices in a model with given values for its
parameters, one wishes to compute the values of the model parameters that are consistent with
observed prices (up to the bid�ask spread).

Now, it is well-known by physicists that such inverse problems are typically ill-posed. Recall that
a problem is well-posed (as de�ned by Hadamard) if its solution exists, is unique, and depends
continuously on its input data. Thus there are three reasons for which a problem might be ill-
posed:
• it admits no solution, or/and
• it admits more than one solution, or/and
• the solution(s) of the inverse problem do(es) not depend on the input data in a continuous way.
In the case of calibration problems in �nance, except for trivial situations, there exists typically
no instance of a given class of models which is exactly consistent with a full calibration data set,
including a number of option prices, a zero-coupons curve, an expected dividend yield curve on
the underlying, etc. But there are often various instances of a given class of models that �t the
data within the bid�ask spread. In this case, if one perturbs the data (e.g., if the observed prices
move from some small amount between today and tomorrow), it is quite typical that a numerically
determined best �t solution of the calibration problem switches from one `basin of attraction' to the
other, thus the numerically determined solution is not stable either.

In order to get a well-posed problem, we need to introduce some regularization. The most widely
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known and applicable regularization method is Tikhonov(�Phillips) regularization method [17, 15,
10].

2 Tikhonov regularization of non-linear inverse problems

We consider a Hilbert space H, a closed convex non-void subset A of H, a direct operator (`pricing
functional')

H ⊇ A 3 a
Π−→ Π (a) ∈ Rd ,

(so a corresponds to the set of model parameters), noisy data (`observed prices') πδ, and a prior
a0 ∈ H (a priori guess for a). The Tikhonov regularization method for inverting Π at πδ, or
estimating the model parameter a given the observation πδ, consists in:
• reformulating the inverse problem as the following nonlinear least squares problem:

mina∈A
∥∥Π (a)− πδ

∥∥2
(1)

to ensure existence of a solution,
• selecting the solutions of the previous nonlinear least squares problem that minimize ‖a− a0‖2
over the set of all solutions, and
• introducing a trade-o� between accuracy and regularity, parameterized by a level of regularization
α > 0, to ensure stability.
More precisely, we introduce the following cost criterion:

Jδ
α (a) ≡

∥∥Π (a)− πδ
∥∥2

+ α ‖a− a0‖2 . (2)

Given α, δ and a further parameter η, where η represents an error tolerance on the minimization,
we de�ne a regularized solution to the inverse problem for Π at πδ, as any model parameter aδ,η

α ∈ A
such that

Jδ
α

(
aδ,η

α

)
≤ Jδ

α (a) + η , a ∈ A .

Under suitable assumptions, one can show that the regularized inverse problem is well-posed, as
follows. We �rst postulate that the direct operator Π satis�es the following regularity assumption.

Assumption 2.1 (Compactness) Π (an) converges to Π (a) in Rd if an weakly-converges to a in
H.

We then have the following stability result.

Theorem 2.1 (Stability) Let πδn → πδ, ηn → 0 when n → ∞. Then any sequence of regularized
solutions aδn,ηn

α admits a subsequence which converges towards a regularized solution aδ,η=0
α .

Assuming further that the data lie in the range of the model leads to convergence properties of
regularized solutions to (unregularized) solutions of the inverse problem as α → 0. Let us then make
the following additional assumption on Π.

Assumption 2.2 (Range property) π ∈ Π(A).

By an a0 � solution to the inverse problem for Π at π, we mean any a ∈ Argmin
{Π(a)=π}

‖a − a0‖. Note

that the set of a0-solutions is non-empty, by Assumption 2.2.

Theorem 2.2 (Convergence; see, for instance, Theorem 2.3 of Engl et al [11]) Let the per-
turbed parameters αn, δn, ηn and the perturbed data πn ∈ Rd satisfy

(n ∈ N) ‖π − πn‖ ≤ δn,
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(n →∞) αn , δ2
n/αn , ηn/αn −→ 0.

Then any sequence of regularized solutions aδn,ηn
αn

admits a subsequence which converges towards an
a0-solution a of the inverse problem for Π at π. In particular, in case when this problem admits a
unique a0-solution a, then aδn,ηn

αn
converges to a.

Remark 2.3 In the special case where the direct operator Π is linear, Tikhonov regularization thus
appears as an approximating scheme for the pseudo-inverse of Π.

Finally, assuming further regularity of Π, one can get convergence rates estimates, uniform over all
data π ∈ Π(A) su�ciently close and smooth with respect to the prior a0 (so that the additional
source condition (3) is satis�ed). Let us thus make the following additional assumption on Π.

Assumption 2.4 (Twice Gateaux di�erentiability) There exists linear and bilinear forms dΠ (a)
on H and d2Π (a) on H2 such that

Π (a + εh) = Π (a) + εdΠ (a) · h + ε2

2 d2Π (a) · (h, h) + o
(
ε2

)
; a, a + h ∈ A

‖dΠ (a) · h‖ ≤ C ‖h‖ ,
∥∥d2Π (a) · (h, h′)

∥∥ ≤ C ‖h‖ ‖h′‖ ; a ∈ A , h, h′ ∈ H

where C is a constant independant of a ∈ A.

In the following theorem the operator

dΠ (a)∗ : Rd 3 λ 7→ dΠ (a)∗ λ ∈ H1

denotes the adjoint of
dΠ (a) : H1 3 h 7→ dΠ (a) h ∈ Rd ,

in the sense that (see [10]):

〈h, dΠ(a)?λ〉H1 = λ′dΠ(a).h ; (h, λ) ∈ H1 × Rd .

Theorem 2.3 (Convergence Rates; see, for instance, Theorem 10.4 of Engl et al [10]) Assume

(n ∈ N) ‖π − πn‖ ≤ δn,

(n →∞) αn −→ 0 , αn ∼ δn , ηn = O
(
δ2
n

)
.

Then ‖aδn,ηn
αn

− a‖ = O(
√

δn), for any a0-solution a of the inverse problem for Π at π such that

a− a0 = dΠ (a)∗ λ (3)

for some λ su�ciently small in Rd (in particular, there exists at most one such a0-solution a).

Remark 2.5 An interesting feature of Tikhonov regularization is that the data set π does not need
to belong to the range of the direct operator for applicability of the method � even if Assumption
2.2 is the simplest assumption for the previous results regarding convergence and convergence rates
(in fact a minimal assumption for such results is the existence of a least squares solution to the
inverse problem, see Proposition 3.2 of Binder et al [2]).

An important issue in practice is the choice of the regularization parameter α, that determines the
trade-o� between accuracy and regularity in the method. To set α, the two main approaches are:
• a priori methods, in which the choice of α only depends on δ, the level of noise on the data (such
as the size of the bid�ask spread, in the case of market prices data in �nance);
• more general a posteriori methods, in which α may depend on the data in a less speci�c way.
In applications to calibration problems in �nance, the most commonly used method for choosing α
is the a posteriori method based on the so-called discrepancy principle, which consists in choosing
the greatest level of α for which the `distance'

∥∥Π
(
aδ,η

α

)
− πδ

∥∥ (for given δ, η) does not exceed the
level of noise δ on the observations (as measured by the bid-ask spread).
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2.1 Implementation

For implementation purposes, the minimization problem (2) is discretized, thus becoming e�ectively
a nonlinear minimization problem on (some subset of) Rk (see, e.g., [14]), where k is the number of
model parameters to be estimated.

In the case of a strictly convex cost criterion J = Jδ
α in (2), and if, additionally, J is di�erentiable,

one can prove the convergence to the (unique) minimum of various gradient descent algorithms.
These consist in moving at each step from some amount (�xed step descent vs optimal step descent)
in a direction de�ned by the gradient ∇J at the current step of the algorithm, in combination
with, in some variants of the method (conjugate gradient method, quasi-Newton algorithms, etc),
the gradient(s) ∇J at the previous step(s).

In the non strictly convex case, (actually, in the context of calibration problems in �nance, J is
typically not even convex w.r.t. a), or if the cost criterion is only almost everywhere di�erentiable
(as in the American calibration problem, see Remark 3.1(i)), such algorithms can still be used, in
which case they typically converge to one among many local minima of J .
When there are no constraints (case A = H), the minimization problem is, in practice, much
easier, and many implementations of the related gradient descent algorithms are available (see
for instance [16]). As for constrained problems, a state-of-the-art open-source implementation of
the quasi-Newton method for minimizing a function on a box, the lbfgs algorithm, is available on
www.ece.northwestern.edu/~nocedal/lbfgsb.html.

When the gradient ∇J is not computable in closed form, and not computable numerically with the
required accuracy either, an alternative to gradient descent methods is to use the nonlinear simplex
method (not to be confused with the simplex algorithm for solving linear programming problems,
see [16]). As opposed to gradient descent methods, the nonlinear simplex algorithm only uses the
values (and not the gradient) of J , but the convergence of the algorithm is not proved in general,
and there are known counter-examples in which it does not converge.

3 Application: Extracting Local Volatility

In the case of parametricmodels in �nance, namely models with a small number of scalar parameters,
such as Heston's stochastic volatility model or Merton's jump-di�usion model (as opposed to models
with functional, e.g., time-dependent, parameters), the choice of a suitable regularization term is
generally not obvious. In this case, the calibration industry standard rather consists in solving the
unregularized non linear least squares problem (1). So Tikhonov regularization is rather used for
calibrating non parametric �nancial models.

In this Section we consider the problem of inferring a local volatility function σ(t, S) (see Dupire
[8]) from observed option prices, namely European vanilla calls and/or puts with various strikes and
maturities on the underlying S. The local volatility function thus inferred may then be used to price
exotic options and/or Greeking, consistently with the market (see, for instance, Crépey [6]).

3.1 The ill-posed Local Volatility Calibration problem

But the local volatility calibration problem is under-determined (since the set of observed prices is
�nite whereas the nonparametric function σ has an in�nity of degrees of freedom) and ill-posed. So
a naïve approach based on numerical di�erentiation using the so-called Dupire's formula [8] gives
a local volatility which is highly oscillatory (see Figure 1), and thus unstable, for instance when
performing a day-to-day calibration.

To meet this issue, the �rst idea that comes to mind is to seek for σ within a parameterized family
of functions. However �nding classes of functions with all the �exibility required for �tting implied
volatility surfaces with several hundred of implied volatility points and a variety of shapes, turns
out to be a very challenging task (unless a large family of splines is considered, see Coleman et al.
[3], in which case the ill-posedness of the problem shows up again).
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Figure 1: Local Variance σ(t, S)2 obtained by application of Dupire's formula on the DAX index,
May 2 2001.

The best way to proceed is to stay non-parametric, and to use regularization methods to stabilize
the calibration procedure. Since we use a non-parametric local volatility, the model contains a
su�cient number of degrees of freedom to provide a perfect �t to virtually any market smile. And
the regularization method guarantees that the local volatility thus calibrated is nice and smooth.

3.2 Approach by Tikhonov regularization

Among the various regularization methods at hand, the most popular one is the Tikhonov regu-
larization method of Section 2. One thus rewrites the local volatility calibration problem as the
following nonlinear minimization problem:

min
{σ≡σ(t,S);σ≤σ≤σ}

J(σ) = ‖Π (σ)− π‖2 + α‖σ − σ0‖2H1 (4)

where:
• the bounds σ and σ are given positive constants specifying the abstract set A of Section 2,
• π is the vector of market prices observed at the calibration time,
• Π (σ) is the related vector of prices in the Dupire model with volatility function σ,
• σ0 is a suitable prior (a priori guess on σ), and for u ≡ u(t, S) :

‖u‖2H1 :=
∫ ∞

t0

∫ ∞

0

[
u(t, S)2 + (∂tu(t, S))2 + (∂Su(t, S))2

]
dtdS .

Problem (4) and a related gradient descent approach to solve it numerically (cf. Subsection 2.1)
were introduced in Lagnado and Osher [13]. Crépey [7] (see also Egger and Engl [9]) further showed
that the general conditions of Section 2 are satis�ed in this case. Stability and convergence of the
method follow.

In Crépey [6] an e�cient trinomial tree implementation of this approach was presented, based on an
exact computation of the gradient of the (discretized) cost criterion J in (4). Figure 2 displays the
local variance surface σ(t, S)2 (to be compared with that of Figure 1), the corresponding implied
volatility surface and the accuracy of the calibration, obtained by running this algorithm on the DAX
index European options data set of May 2, 2001 (consisting of about 300 European vanilla option
prices distributed throughout 6 maturities with moneyness K/S0 ∈ [0.8, 1.2]). At the initiation of
the algorithm, the norm of the gradient of the cost criterion J in (4) was equal to 5.73E-02, and
upon convergence after 65 iterations of the gradient descent algorithm, a local minimum of the cost
criterion was found, with related value of the norm of the gradient of the cost criterion equal to
6.83E-07. In the accuracy graph, implied volatility mismatch refers to the di�erence between
the Black�Scholes implied volatility corresponding to the market price of an option and its price in
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Figure 2: Local variance, implied volatility and calibration accuracy obtained by application of the
Tikhonov regularization method on the DAX index, May 2 2001.

the calibrated local volatility model, for each option in the calibration data set.

Such calibration procedures are typically computationally intensive, however it is possible to make
them faster by resorting to parallel computing (see Table 1 and Crépey [6]).

n× nproc 1 3 6
54 25s 9s 10s
101 4m30s 1m57s 1m36s

Table 1: Calibration CPU times on a cluster of nproc 1.3 GHz processors connected on a fast Myrinet
network, using a calibration tree with n time steps (thus n2/2 nodes in the tree).

Remark 3.1 (i) This approach by Tikhonov regularization can be extended to the problem of
calibrating a local volatility function using American observed option prices as input data (see
Crépey [6]), or to the problem of calibrating a Lévy model with local jump measure (see Cont and
Rouis [4], Kindermann et al. [12]).
(ii) An alternative approach for this problem is to use entropic regularization, rewriting the local
volatility calibration problem as a related stochastic control problem (see Avellaneda et al. [1]).
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