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FORWARD RATE VOLATILITIES, SWAP RATE VOLATILITIES,
AND THE IMPLEMENTATION OF THE LIBOR MARKET MODEL

Abstract

This paper presents a number of new ideas concerned with the implementation of the

LIBOR market model and its extensions. It develops and tests an analytic approximation

for calculating the volatilities used by the market to price European swap options from

the volatilities used to price interest rate caps. The approximation is very accurate for

the range of market parameters normally encountered and enables swap option volatility

skews to be implied from cap volatility skews. It also allows the LIBOR market model to

be calibrated to broker quotes on caps and European swap options so that other interest

rate derivatives can be valued.
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In recent years a new model for valuing interest rate derivatives has been developed

by Brace, Gatarek, and Musiela (1997), Jamshidian (1997), and Miltersen, Sandmann, and

Sondermann (1997). It is usually referred to as the LIBOR market model. It is an extension

of the well-known Heath, Jarrow, and Morton (HJM) (1992) model. Whereas the HJM

model describes the behavior of instantaneous forward rates expressed with continuous

compounding, the LIBORmarket model describes the behavior of the forward LIBOR rates

underlying caps and floors, with the usual market conventions being used for compounding

(that is, the compounding period equals the tenor of the rate). The main advantage of the

LIBOR market model over HJM is that it easier to calibrate the model to the market prices

of interest rate caps and European swap options. Also, as shown by Brace, Gatarek, and

Musiela (1997), the LIBOR market model overcomes some technical existence problems

associated with the lognormal version of the HJM model.

In this paper we explain the LIBOR market model and describe how it can be imple-

mented. We use the model to develop and test a new analytic approximation for pricing

European swap options. We show how this approximation makes it possible to translate

the volatility skews observed for caps into volatility skews for European swap options. We

also explain how it can be used to simplify the process of calibrating the LIBOR market

model to the market prices of caps and swap options.
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I. THE STANDARD MARKET MODELS FOR CAPS AND SWAPTIONS

The most popular over-the-counter interest rate options are interest rate caps/floors

and European swap options. The standard market models for valuing these instruments are

versions of Black’s (1976) model. This model was originally developed for valuing options

on commodity futures, but has found many other applications in financial engineering.

When Black’s model is used to value a caplet (one element of an interest rate cap), the

underlying interest rate is assumed to be lognormal. When it is used to value European

swap options, the underlying swap rate is assumed to be lognormal. Researchers such as

Jamshidian (1997) have shown that the cap/floor market model and the European swap

option market model are each internally consistent in the sense that they do not permit

arbitrage opportunities. However, they are not consistent with each other.

In this section we explain the standard market models for pricing caps and European

swap options. This will form a useful background for our discussions of the LIBOR market

model in later sections. We will use the result of Harrison and Kreps (1979) that, in any

market where there is no arbitrage, for any given numeraire security whose price is g(t),

there exists a measure for which f(t)/g(t) is a martingale for all security prices f(t). The

measure will be denoted byM{g(t)}.

Interest Rate Caps

Consider a cap with strike rate Rc and reset dates at times t1, t2, . . ., tN with a final

payment date tN+1. Define δi = ti+1 − ti and Ri as the δi-maturity rate observed at time

ti and expressed with a compounding period of δi (1 ≤ i ≤ N). The cap is a portfolio of

N caplets. The ith caplet provides a payoff at time ti+1 equal to

Lcδimax[Ri −Rc, 0] (1)

where Lc is the principal.

Define P (t, T ) as the price of a discount bond paying off $1 at time T . To value the
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ith caplet we use P (t, ti+1) as the numeraire. Under the measure,M{P (t, ti+1)}

f(t)

P (t, ti+1)

is a martingale for all security prices f(t). Hence

f(0)

P (0, ti+1)
= Ei+1

[

f(t)

P (t, ti+1)

]

(2)

where Ei+1 denotes expectations underM{P (t, ti+1)}.

By setting f(t) = P (t, ti)− P (t, ti+1) in equation (2), we see that

Fi(0) = Ei+1(Ri) (3)

where Fi(t) is the forward interest rate for the period (ti, ti+1), expressed with a com-

pounding period δi, observed at time t. Equation (3) shows that, under the assumed

measure, the value at time zero of this forward rate equals the expected future spot rate

for (ti, ti+1).

By setting f(t) equal to the price of the ith caplet and noting that P (ti+1, ti+1) = 1,

we see from equation (2) that

f(0) = P (0, ti+1)Ei+1[f(ti+1)]

or

f(0) = P (0, ti+1)LcδiEi+1[max(Ri −Rc, 0)]

Assuming Ri is lognormal, with the standard deviation of ln(Ri) equal to σi
√
ti, this

becomes

f(0) = P (0, ti+1)Lcδi[Ei+1(Ri)N(d1)−RcN(d2)]

where

d1 =
ln[Ei+1(Ri)/Rc] + σ2i ti/2

σi
√
ti

d2 = d1 − σi
√
ti
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and N(x) is the cumulative normal distribution function. Substituting from equation (3)

gives the standard market model for valuing the caplet:

f(0) = P (0, ti+1)Lcδi[Fi(0)N(d1)−RcN(d2)] (4)

where

d1 =
ln[Fi(0)/Rc] + σ2i ti/2

σi
√
ti

d2 = d1 − σi
√
ti

Similarly the standard market model for valuing the ith element of a floor is

f(0) = P (0, ti+1)Lcδi[RcN(−d2)− Fi(0)N(−d1)] (5)

The variable σi is often referred to the volatility of the (ti, ti+1) forward rate. In fact,

there is no requirement that the volatility of this forward rate be constant during the life

of the caplet. All that is required is that the variable σ2i be the average variance rate of

the forward rate during the life of the caplet. This point is important for understanding

of the model in Section II. To avoid confusion with variables introduced in Section II, we

will refer to σi as the spot volatility of the (ti, ti+1) rate, or the spot volatility of the ith

caplet.

In practice brokers usually quote what is known as a flat volatility for a cap. This is

a volatility which, if used as the spot volatility for all the underlying caplets, reproduces

the cap’s market price. When flat volatilities for all cap maturities are available or can be

estimated, spot volatilities can be calculated. The procedure is to use the flat volatilities

and equation (4) to calculate cap prices for a particular strike rate, deduce caplet prices

by subtracting one cap price from the next, and then imply the spot volatilities from these

caplet prices using equation (4).

European Swap Options

We now move on to consider a European swap option. Suppose that the underlying

swap lasts from time tn to time tN+1 and the strike rate is Rs. The swap reset dates are tn,
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tn+1, . . ., tN and the corresponding payment dates are tn+1, tn+2, . . ., tN+1, respectively.

We define

An,N (t) =
N
∑

i=n

δiP (t, ti+1)

where as before P (t, T ) is the price of a discount bond paying off $1 at time T and

δi = ti+1 − ti. We will denote by Sn,N (t) (0 ≤ t ≤ tn) the forward swap rate. This is

the fixed rate which, when it is exchanged for floating in a forward start swap, causes the

value of the swap to be zero. An expression for Sn,N (t) is

Sn,N (t) =
P (t, tn)− P (t, tN+1)

An,N (t)
(6)

Define Rn,N = Sn,N (tn) as the swap rate observed at time tn. Both Rn,N and Rs

are expressed with a compounding frequency reflecting the number of swap payments per

year. A European swap option where the holder has the right to pay fixed and receive

floating can be viewed as providing payments of

Lsδimax(Rn,N −Rs, 0)

at times ti+1 for n ≤ i ≤ N where Ls is the swap principal. The value of the swap option

at time tn is therefore

LsAn,N (tn)max(Rn,N −Rs, 0) (7)

We will value the European swap option at time zero using An,N (t) as the numeraire.

Under the measureM{An,N (t)}
f(t)

An,N (t)

is a martingale for all security prices f(t). Hence

f(0)

An,N (0)
= EA

[

f(tn)

An,N (tn)

]

(8)

where EA denotes expectations under the measure. By setting f(t) = P (t, tn)−P (t, tN+1)

in equation (8) we see that

Sn,N (0) = EA[Sn,N (tn)] = EA(Rn,N ) (9)
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The forward swap rate, therefore, equals the expected future swap rate under the measure.

We now set f(t) equal to the value of the swap option. Equation (8) gives

f(0) = An,N (0)EA

[

f(tn)

An,N (tn)

]

Substituting for f(tn) from equation (7) we obtain

f(0) = LsAn,N (0)EA[max(Rn,N −Rs, 0)]

Assuming Rn,N is lognormal with the standard deviation of ln(Rn,N ) equal to σn,N
√
tn

this becomes

f(0) = LsAn,N (0)[EA(Rn,N )N(d1)−RsN(d2)]

where

d1 =
ln[EA(Rn,N )/Rs] + σ2n,N tn/2

σn,N
√
tn

d2 = d1 − σn,N
√
tn

Substituting from equation (9) gives the standard market model for valuing the swap

option

f(0) = LsAn,N (0)[Sn,N (0)N(d1)−RsN(d2)] (10)

where

d1 =
ln[Sn,N (0)/Rs] + σ2n,N tn/2

σn,N
√
tn

d2 = d1 − σn,N
√
tn

Similarly the standard market model for valuing a swap option that gives the holder the

right to receive fixed and pay floating is

f(0) = LsAn,N (0)[RsN(−d2)− Sn,N (0)N(−d1)] (11)

We will refer to σn,N as the spot volatility of the swap rate or the spot volatility of

the European swap option. As in the case of interest rate caps, we emphasize that the

model does not require the forward swap rate’s volatility to be constant between times 0

and tn. It is sufficient for its average variance rate to be σ2n,N during this period.
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II. THE LIBOR MARKET MODEL

In this section we discuss the development and implementation of the LIBOR market

model. Our notation is consistent with Section I. We consider a cap with reset dates

at times t1, t2, . . . , tn and a final payment date tn+1. We define t0 = 0, δi = ti+1 − ti

(0 ≤ i ≤ n), and

Fi(t): Forward rate observed at time t for the period (ti, ti+1), expressed with a com-

pounding period of δi

P (t, T ): Price at time t of a zero-coupon bond that provides a payoff of $1 at time T

m(t): Index for the next reset date at time t. This means that m(t) is the smallest

integer such that t ≤ tm(t).

p: Number of factors

ζi,q: qth component of the volatility of Fi(t) (1 ≤ q ≤ p)

vi,q: qth component of the volatility of P (t, ti) (1 ≤ q ≤ p)

We assume that the components to the volatility are independent. (This is not re-

strictive since they can be orthogonalized.) The processes followed by Fi(t) and P (t, ti)

are:

dFi(t) = . . . dt+

p
∑

q=1

ζi,q(t)Fi(t) dzq (12)

dP (t, ti) = . . . dt+

p
∑

q=1

vi,q(t)P (t, ti) dzq

where the dzq are independent Wiener processes and the drifts depend on the measure. In

this section and the next, we will assume a model where ζi,q(t) is a function only of time.

The bond price volatility, vi,q(t), is in general stochastic in this model.

We will use as numeraire a money market account that is invested at time t0 for a

period δ0, reinvested at time t1 for a period δ1, reinvested at time t2 for a period δ2, and

so on. This is equivalent to using a numeraire at time t equal to P (t, tm(t)). Under the
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chosen measure

f(t)

P (t, tm(t))

is a martingale for all security prices f(t) when tm(t)−1 ≤ t ≤ tm(t) so that

f(tm(t)−1)

P (tm(t)−1, tm(t))
= Em(t)

{

f(tm(t))

P (tm(t), tm(t))

}

or

f(tm(t)−1) = P (tm(t)−1, tm(t))Em(t){f(tm(t))}

where Em(t) denotes expectations under M{P (t, tm(t))} This equation shows that the

chosen measure allows us to discount expected values �one accrual period at a time� when

security prices are valued. Since cash flows and early exercise opportunities usually occur

only on reset dates, this is an attractive feature of the measure.

It can be shown that the qth component of the market price of risk under the measure

M{P (t, tj)} is vj,q for all j. [See for example, Jamshidian (1997).] As shown in Section I,

under the measureM{P (t, ti+1)}, Fi(t) is a martingale so that its drift is zero. It follows

that the expected growth rate of Fi(t) under theM{P (t, tm(t))} measure is

p
∑

q=1

ζi,q(t)[vm(t),q(t)− vi+1,q(t)]

so that

dFi(t)

Fi(t)
=

p
∑

q=1

ζi,q(t)[vm(t),q(t)− vi+1,q(t)] dt+

p
∑

q=1

ζi,q(t) dzq (13)

The relationship between forward rates and bond prices is

P (t, tj)

P (t, tj+1)
= 1 + δjFj(t)

Using this in conjunction with Ito’s lemma leads to

vj,q(t)− vj+1,q(t) =
δjFj(t)ζj,q(t)

1 + δjFj(t)
(14)
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Repeated application of this result gives

vm(t),q(t)− vi+1,q(t) =
i
∑

j=m(t)

δjFj(t)ζj,q(t)

1 + δjFj(t)

and substituting into equation (13) we see that the process followed by Fi(t) under the

measureM{P (t, tm(t))} is

dFi(t)

Fi(t)
=

i
∑

j=m(t)

δjFj(t)
∑p
q=1 ζj,q(t)ζi,q(t)

1 + δjFj(t)
dt+

p
∑

q=1

ζi,q(t) dzq (15)

When we take limits allowing the δi’s to approach zero, this becomes

dF (t, T ) =

p
∑

q=1

ζq(t, T )F (t, T )

∫ T

τ=t
ζq(t, τ)F (t, τ)dτ +

p
∑

q=1

ζq(t, T )F (t, T ) dzq

where the notation is temporarily changed so that F (t, T ) is the instantaneous forward

rate at time t for maturity T and ζq(t, T ) is the qth component of the volatility of F (t, T ).

This is the HJM result. The HJM model is, therefore, a limiting case of the LIBOR market

model.

Determining Forward Rate Volatilities

We now simplify the model by assuming that ζi,q(t) is a function only of the number

of whole accrual periods between the next reset date and time ti. Define λj,q as the value

of ζi,q(t) when there are j such accrual periods. This means that

ζi,q(t) = λi−m(t),q (16)

Define Λj as total volatility of a forward rate when there are j whole accrual periods

until maturity so that

Λj =

√

√

√

√

p
∑

q=1

λ2j,q (17)

The Λ’s can be in theory be calculated from the spot volatilities, σi, used to value caplets

in equation (4). Equating variances we must have:

σ2i ti =
i
∑

j=1

Λ2
i−jδj−1 (18)
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so that the Λ’s can be obtained inductively. For example, if σ1, σ2, and σ3 are 20%, 22%

and 21%, respectively and the δi are all equal, Λ0 = 20%, Λ1=23.83% and Λ2 = 18.84%

We prefer to calculate the Λ’s directly from the flat volatilities quoted by brokers. In

the United States brokers quote volatilities for quarterly reset caps with maturities of 1,

2, 3, 4, 5, 7, and 10 years. A 10-year LIBOR market model with quarterly resets requires

that Λj be estimated for 0 ≤ j ≤ 38. We assume that Λj is constant for 0 ≤ j ≤ 2, for

3 ≤ j ≤ 6, for 7 ≤ j ≤ 10, for 11 ≤ j ≤ 14, for 15 ≤ j ≤ 18, for 19 ≤ j ≤ 26, and

for 27 ≤ j ≤ 38. (Given the data available this seems reasonable. The values of Λj for

0 ≤ j ≤ 2 determine the price of a one-year cap; these values of Λj together with the values

for 3 ≤ j ≤ 6 determine the price of the 2-year cap; and so on.) The Λ’s are chosen to

minimize the sum of the squares of the errors in the flat volatilities implied by the model.

To avoid extreme variations in the Λ’s and the possibility of negative Λ’s, we impose the

smoothness condition that the Λj be a non-increasing function of j for j ≥ 11.1

Similarly to Rebonato (1999), we favor a two step approach to obtaining the λj,q. The

first stage is to determine the Λj from market data as just described; the second stage is

to use historical data to determine the λj,q from the Λj . Rebonato (1999) proposes a way

of determining the λj,q from the Λj to provide as close a fit as possible to the correlation

matrix for the Fj(t) (1 ≤ j ≤ N). As Rebonato points out, the approach gives similar

results to a principal components analysis. If output from a principal components analysis

on the Fj(t) (1 ≤ j ≤ N) is available, we can use it in a direct way to determine values of

λj,q. The principal components analysis model is

∆Fj =
N
∑

q=1

αj,qxq

where αi,q is the factor loading for the ith forward rate and the qth factor, xq is the factor

score for the qth factor, and
N
∑

j=1

αj,q1αj,q2
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equals 1 when q1 = q2 and zero when q1 6= q2. Define sq is the standard deviation of the

qth factor score If the number of factors being used, p, were equal to N , the number of

forward rates, it would be correct to set

λj,q = αj,qsq

for 1 ≤ j, q ≤ N . When p < N , the λj,q can be scaled so that the relationship in equation

(17) holds. This involves setting

λj,q =
Λjsqαj,q

√

∑p
q=1 s

2
qα

2
j,q

(19)

The analyses reported in this paper are based on a three-factors (p = 3). The fac-

tors are typical of those obtained from a principal components analysis. The first factor

corresponds to a roughly parallel shift in the yield curve; the second factor corresponds

to a �twist� in the zero curve where short maturity rates move in one direction and long

maturity rates move in the opposite direction; the third factor corresponds to a �bowing�

of the zero curve where short and long maturity rates move in one direction and interme-

diate maturity rates move in the opposite direction. After application of equation (19),

the first, second, and third factors accounted for about 87%, 10%, and 3% of the variance,

respectively.

Implementation of the Model

From equation (15), the process for Fi(t) under the measureM{P (t, tm(t))} is

dFi(t)

Fi(t)
=

i
∑

j=m(t)

δjFj(t)
∑p
q=1 λj−m(t),qλi−m(t),q

1 + δjFj(t)
dt+

p
∑

q=1

λi−m(t),q dzq (20)

or

d lnFi(t) =





i
∑

j=m(t)

δjFj(t)
∑p
q=1 λj−m(t),qλi−m(t),q

1 + δjFj(t)
−

p
∑

q=1

λ2i−m(t),q

2



 dt+

p
∑

q=1

λi−m(t),q dzq

(21)
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An approximation that simplifies the Monte Carlo implementation of the model is

that the drift of lnFi is constant between times tk and tk+1 so that

Fi(tk+1) = Fi(tk) exp

[





i
∑

j=k+1

δjFj(tk)
∑p
q=1 λj−k−1,qλi−k−1,q

1 + δjFj(tk)
−

p
∑

q=1

λ2i−k−1,q
2



 δk

+

p
∑

q=1

λi−k−1,qεq
√

δk

]

(22)

where εq are independent random samples from standard normal distributions. We can

test this approximation by choosing a set of test Λj and a test zero curve, using Monte

Carlo simulation in conjunction with equation (22) to value caplets, and comparing the

prices of the caplets with the exact prices given by equation (4). The σi for equation (4)

are calculated from equation (18). Each Monte Carlo trial consists of using equation (22)

to generate a path for each forward rate under theM{P (t, tm(t))} measure. The value of

Fi(ti) is the realized rate for the time period between ti and ti+1 and enables the caplet

payoff at time ti+1 to be calculated. This payoff is discounted to time zero using Fj(tj) as

the discount rate for the interval (tj , tj+1). The estimated caplet value is the mean of the

discounted payoffs.

We have carried out the test just described for a variety of term structures, volatility

structures, strike rates, and number of factors. Typical results are shown in Table 1.

This table is based on an upward sloping term structure, a �humped� volatility structure

similar to that observed in the market, and at-the-money caplets (that is, caplets where

the strike rate equals the forward rate). Three factors and 200,000 Monte Carlo trials

were used. The δi were set equal to one year.2 This table shows the mean and standard

error of the difference between the true spot volatility of a caplet and the volatility implied

from the caplet price calculated using the LIBOR market model, with both volatilities

being measured in percent. The results shown are for the fifth caplet. Similar results are

obtained for other caplets, other term structures, other volatility structures, and other

choices for the strike rate and the number of factors. The average interest rates reported
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in Table 1 are the arithmetic average the zero rates for maturities of 1, 2, 3, . . ., 10 years.

The average volatilities are similarly the arithmetic average of the spot volatilities between

one and ten years.

Table 1 shows that, for the volatility and interest rate environments that are typically

encountered in North America and Europe, the implementation of the model in equation

(22) gives very accurate results. Consider, for example, the case where the average interest

rate is 5% and the average volatility is 20%. If the true spot volatility for a particular caplet

is V%, Table 1 shows that we can be 95% certain that the equation (22) implementation of

the LIBOR market model is implicitly assuming a spot volatility between V − 0.12% and

V + 0.08%. As the volatility increases the approximation in equation (22) works less well.

In some countries (for example, Japan), very low short-term interest rates are sometimes

coupled with spot volatilities as high as 100% for short-maturity caplets. Table 1 shows

that the approximation in equation (22) may not be appropriate in this case.3
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III. APPROXIMATE PRICING OF EUROPEAN SWAP OPTIONS

In this section we present an approximate, but very accurate, procedure for pricing

European swap options in the LIBOR market model. Other approximations have been

suggested by Brace, Gatarek, and Musiela (1997) and Andersen and Andreasen (1997).

Our approach is similar in spirit to that of Andersen and Andreasen, but is much easier

to implement than either of the other two approaches. It is motivated by the observation

that when forward LIBOR rates are lognormal, swap rates are approximately lognormal

and approximately linearly dependent on forward LIBOR rates.

As in Section I we consider an option on a swap lasting from tn to tN+1 with reset

dates at times tn, tn+1, . . ., tN . Initially we assume that the reset dates for the swap

coincide with the reset dates for caplets underlying the LIBOR market model. Later we

relax this assumption.

The relationship between bond prices and forward rates is

P (t, tk)

P (t, tn)
=

k−1
∏

j=n

1

1 + δjFj(t)

for k ≥ n+1. It follows that the formula for the forward swap rate in equation (6) can be

written

Sn,N (t) =
1−

∏N
j=n

1
1+δjFj(t)

∑N
i=n δi

∏i
j=n

1
1+δjFj(t)

(We employ the convention that empty sums equal zero and empty products equal one.)

Equivalently

Sn,N (t) =

∏N
j=n[1 + δjFj(t)]− 1

∑N
i=n δi

∏N
j=i+1[1 + δjFj(t)]

(23)

or

lnSn,N (t) = ln







N
∏

j=n

[1 + δjFj(t)]− 1







− ln







N
∑

i=n

δi

N
∏

j=i+1

[1 + δjFj(t)]







so that

1

Sn,N (t)

∂Sn,N (t)

∂Fk(t)
=

δkγk(t)

1 + δkFk(t)
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where

γk(t) =

∏N
j=n[1 + δjFj(t)]

∏N
j=n[1 + δjFj(t)]− 1

−
∑k−1
i=n δi

∏N
j=i+1[1 + δjFj(t)]

∑N
i=n δi

∏N
j=i+1[1 + δjFj(t)]

From Ito’s lemma the qth component of the volatility of Sn,N (t) is

N
∑

k=n

1

Sn,N (t)

∂Sn,N (t)

∂Fk(t)
ζk,q(t)Fk(t)

or
N
∑

k=n

δkζk,q(t)Fk(t)γk(t)

1 + δkFk(t)

The variance rate of Sn,N (t) is therefore

p
∑

q=1

[

N
∑

k=n

δkζk,q(t)Fk(t)γk(t)

1 + δkFk(t)

]2

Assuming as in Section II that ζk,q(t) = λk−m(t),q, the variance rate of Sn,N (t) is

p
∑

q=1

[

N
∑

k=n

δkλk−m(t),qFk(t)γk(t)

1 + δkFk(t)

]2

This expression is in general stochastic showing that when the forward rates underlying

caplets are lognormal, swap rates are not lognormal. For the purposes of evaluating the

expression we assume that Fk(t) = Fk(0). This means that the volatility of Sn,N (t) is

constant within each accrual period and the swap rate is lognormal. The average variance

rate of Sn,N (t) between time zero and time tn is then

1

tn

n−1
∑

j=0







δj

p
∑

q=1

[

N
∑

k=n

δkλk−j−1,qFk(0)γk(0)

1 + δkFk(0)

]2






The spot swap option volatility is therefore

√

√

√

√

√

1

tn

n−1
∑

j=0







δj

p
∑

q=1

[

N
∑

k=n

δkλk−j−1,qFk(0)γk(0)

1 + δkFk(0)

]2






(24)

The swap option price can be calculated by substituting this volatility into equation (10)

or (11).
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Non-Matching Accrual Periods

The accrual periods for the swaps underlying broker quotes for European swap options

do not always match the accrual periods for the caps and floors underlying broker quotes.

For example, in the United States the benchmark caps and floors have quarterly resets while

the swaps underlying the benchmark European swap options have semiannual resets. To

accommodate this, we now extend the analysis to the situation where each swap accrual

period includes M cap accrual periods where M ≥ 1 is an integer.

Assume that δn, δn+1, . . ., δN are the swap accrual periods and that within the ith

swap accrual period the cap accrual periods are εi,1, εi,2, . . ., εi,M with

δi =
M
∑

m=1

εi,m

Assume that Gi,m(t) is the forward rate observed at time t for the εi,m accrual period.

Since

1 + δiFi(t) =
M
∏

m=1

[1 + εi,mGi,m(t)]

∂Fi(t)

∂Gi,m(t)
=

εi,m[1 + δiFi(t)]

δi[1 + εi,mGi,m(t)]

The qth component of the volatility of Sn,N (t) is

N
∑

k=n

M
∑

m=1

1

Sn,N (t)

∂Sn,N (t)

∂Gk,m(t)
ζk,m,q(t)Gk,m(t)

where ζk,m,q is the qth component of the volatility of Gk,m(t). Using

∂Sn,N (t)

∂Gi,m(t)
=
∂Sn,N (t)

∂Fi(t)

∂Fi(t)

∂Gi,m(t)

we find that the estimate in equation (24) of the spot swap option volatility is

√

√

√

√

√

1

tn

n−1
∑

j=0







δp

p
∑

q=1

[

N
∑

k=n

M
∑

m=1

δkλk−j−1,m,qGk,m(0)γk,m(0)

1 + δkFk(0)

]2






(25)
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where

γk,m(t) = γk(t)
εk,m[1 + δkFk(t)]

δk[1 + εk,mGk,m(t)]

and λj,m,q is the qth component of the volatility of Gi,m(t) when i−m(t) = j.

Accuracy of Approximation

To assess the accuracy of the assumption that forward rates are constant in equations

(24) and (25) we performed tests analogous to those described in section II for testing

the accuracy of caplet pricing. Typical results are shown in Table 2. These are based on

200,000 Monte Carlo trials of equation (22) using δi = 1, an upward sloping term structure,

a �humped� volatility structure similar to that observed in the market, and three factors.

The table shows the mean and standard error of the difference between the estimates of the

spot volatility of swap options calculated from the LIBOR market model and estimates of

the spot volatilities of swap options calculated from the approximation in Section III. The

results shown are for a 5 × 5 swap option (that is, a five year option to enter into a five year

swap) with the underlying swap being reset annually. The strike rates are at-the money

(that is, the strike rate equals the forward swap rate). Similar results are obtained for

other swap options, other strike rates, other interest rate term structures, other volatility

structures, and other choices for the number of factors. Average interest rates and average

volatilities are defined as in Table 1.

The results in Table 2 are a little more difficult to interpret than those in Table 1. This

is because we do not know what the true swap option volatility is. To obtain the �true�

swap option volatility for the LIBOR market model we used Monte Carlo simulation and

equation (22) to calculate the swap option price, and equation (10) to convert the price into

a volatility. There are therefore three sources of error in the difference reported in Table

2: the Monte Carlo error, the error arising from the approximation in equation (22), and

the error arising from the approximations in equations (24) and (25). Tests using equation

(21) and large number of time steps indicate that for a given term structure and volatility

structure, the errors in estimating swap option volatilities are similar in magnitude to those
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reported for caps in Table 1. For situations where the errors in both Tables 1 and 2 are

low, we can therefore assume that the approximation in Section III works well.

The results show that the approximation in Section III works well for the interest

rates and volatilities normally encountered in North America and Europe. Consider, for

example, the situation where interest rates average 5% and volatilities average 20%. Even

after the �equation (22) error� is taken into account, the error in the approximation of the

5 × 5 swap option volatility is likely to be less than 0.1%. This translates into a pricing

error of less than $2 per $1 million of principal.4
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IV. MODELING VOLATILITY SKEWS

The volatility skew for equities has been well documented by authors such as Jackwerth

and Rubinstein (1996). As pointed out by Andersen and Andreasen (1997), caps and floors

exhibit a similar volatility skew to equities.5 The lower the strike price, the higher the

volatility implied from the standard market model in equations (4) and (5). Some brokers

do provide quotes periodically for caps that are not at the money, but there is very little

data on the pricing of non-at-the-money European swap options. It is, therefore, of interest

to investigate how cap volatility skews can be converted to swap option volatility skews.

As shown by Andersen and Andreasen (1997), the LIBOR market model can be ex-

tended to incorporate volatility skews. We consider the version of their model where the

process for forward rates in equation (12) is replaced by a CEV model

dFi(t) = . . .+

p
∑

q=1

ζi,q(t)Fi(t)
αdzq (26)

where α is a positive constant. We generalize the notation in Section II to define λj,q as

the value of ζi,q(t) in this model when there are j whole accrual periods between time t

and time ti. This means that

ζi,q(t) = λi−m(t),q

The process for forward rates in equation (20) becomes

dFi(t)

Fi(t)α
=

i
∑

j=m(t)

δjFj(t)
α
∑p
q=1 λj−m(t),qλi−m(t),q

1 + δjFj(t)
dt+

p
∑

q=1

λi−m(t),q dzq

or

dQi(t) =
i
∑

j=m(t)

[

δjFj(t)
α
∑p
q=1 λj−m(t),qλi−m(t),q

1 + δjFj(t)
−

p
∑

q=1

αFi(t)
α−1λ2i−m(t),q

2

]

dt

+

p
∑

q=1

λi−m(t),q dzq

where

Qi(t) =
1

1− α
Fi(t)

1−α
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Analogously to the approach taken in section II in arriving at equation (22), we assume

that the drift of Qi(t) is constant between times tj and tj+1 to get

Qi(tk+1) = Qi(tk)+δk

i
∑

j=k+1

[

δjFj(tk)
α
∑p
q=1 λj−k−1,qλi−k−1,q

1 + δjFj(tk)
−

p
∑

q=1

αFi(tk)
α−1λ2i−k−1,q
2

]

+

p
∑

q=1

λi−k−1,qεq
√

δk (27)

We define Λj by

Λj =

√

√

√

√

p
∑

q=1

λ2j,q (28)

and σi by:

σ2i =
1

ti

i
∑

j=1

Λ2
i−jδj−1 (29)

These definitions are consistent with equations (17) and (18) in Section II. However, our

notation is now more general than in Section II. In equations (17) and (18) the Λ’s and

σ’s were volatilities whereas here they are merely volatility parameters.

Andersen and Andreasen (1997) show that the process in equation (26) implies that

the price of the ith caplet is

P (0, ti+1)Lcδi[Fi(0)− Fi(0)χ2(a, b+ 2, c)−Rcχ2(c, b, a)] (30)

when 0 < α < 1 and

P (0, ti+1)Lcδi[Fi(0)− Fi(0)χ2(c,−b, a)−Rcχ2(a, 2− b, c)] (31)

when α > 1 where

a =
R
2(1−α)
c

(1− α)2σ2i ti
; b =

1

1− α
; c =

Fi(0)
2(1−α)

(1− α)2σ2i ti

and χ2(z, v, k) is the cumulative probability that a non-central chi-squared distribution

with non-centrality parameter v and k degrees of freedom is less than z. The price of the

ith floorlet is

P (0, ti+1)Lcδi[Rc − Fi(0)χ2(a, b+ 2, c)−Rcχ2(c, b, a)]
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when 0 < α < 1 and

P (0, ti+1)Lcδi[Rc − Fi(0)χ2(c,−b, a)−Rcχ2(a, 2− b, c)]

when α > 1. When α = 1, equations (4) and (5) give the caplet and floorlet prices,

respectively.

Andersen and Andreasen (1997) also show that skews for swap rates can be analyzed

in an analogous way to skews for forward rates. Suppose that the swap rate considered in

Section I follows a process of the form

dSn,N (t) = . . .+

p
∑

q=1

ηq,n,N (t)Sn,N (t)βdzq (32)

where β is a positive constant. Generalizing our earlier definition of σn,N , we set:

σ2n,N =
1

tn

∫ tn

τ=0

p
∑

q=0

ηq,n,N (τ)2 dτ

(In the special case where β = 1 this is the same as the σn,N in Section I.) The value of

the European swap option that gives the holder the right to pay fixed is

LsAn,N (0)[Sn,N (0)− Sn,N (0)χ2(e, f + 2, g)−Rsχ2(g, f, e)] (33)

when 0 < α < 1 and

LsAn,N (0)[Sn,N (0)− Sn,N (0)χ2(g,−f, e)−Rsχ2(e, 2− f, g)] (34)

when α > 1 where

e =
R
2(1−β)
s

(1− β)2σ2n,N tn
; f =

1

1− β
; g =

Sn,N (0)2(1−β)

(1− β)2σ2n,N tn

The value of the European swap option that gives the holder the right to pay floating is

LsAn,N (0)[Rs − Sn,N (0)χ2(e, f + 2, g)−Rsχ2(g, f, e)] (35)
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when 0 < α < 1 and

LsAn,N (0)[Rs − Sn,N (0)χ2(g,−f, e)−Rsχ2(e, 2− f, g)] (36)

when α > 1. When β = 1, equations (10) and (11) give the swap option price.

In Section III we showed that, for the volatility and interest rate environments nor-

mally encountered, when α = 1 in equation (26) it is reasonable to assume that swap rates

follow the process in equation (32) with β = 1. We now hypothesize that a more general

version of this result holds. We suppose that, when rates follow the process in equation

(26), to a reasonable approximation swap rates follow the process in equation (32) with

β = α. This is an attractive hypothesis. A similar analysis to that in Section III shows

that it leads to σn,N being approximately equal to6

Sn,N (0)1−β

√

√

√

√

√

1

tn

n−1
∑

j=0







δp

p
∑

q=1

[

N
∑

k=n

M
∑

m=1

δkλk−j−1,m,qGk,m(0)αγk,m(0)

1 + δkFk(0)

]2






(37)

where Sn,N (0) is given by equation (23).

To test the hypothesis we compared European swap option prices calculated from:

1. A Monte Carlo simulation of the extended LIBOR market model using the approxi-

mation in equation (27); and

2. Equation (35) or (36) combined with the estimate of σn,N in equation (37) and β = α.

Typical results, based on 100,000 antithetic simulation trials, are shown in Table 3.

These are for a 3 × 3 European swap option in which the holder has the right to pay

floating. The average ten year interest rate is 5% and the average ten year volatility is

20%. The term structure is upward sloping and the volatility structure is humped. The

tenor of the caplets underlying the model is three months and the swap underlying the

European swap option is reset semiannually.

The results for α 6= 1 are not quite as good as those for α = 1, but they are still quite

acceptable. The largest errors (about 0.4%) are for deep-in-the-money swap options. The
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prices of these options are relatively insensitive to volatilities and so these errors are not a

cause for serious concern.

Figures 1 and 2 use the results in this section to compare cap volatility skews with

swap option volatility skews in a variety of situations. The figures show flat volatilities

for a five year cap and spot volatilities for 3 × 3 European swap option. In Figure 1 the

term structure is flat at 5%; in Figure 2 it is upward sloping. Three different values of α

are considered. The cap is reset quarterly; the swap underlying the swap option is reset

semiannually. In Figures 1(a) and 2(a) the volatility structure is flat at 20%. In Figures

1(b) and 2(b) it has a hump similar to that observed in the market.

The figures show that care must be exercised in interpreting cap volatility skews. The

latter are affected by the way in which the flat volatilities quoted by brokers are calculated.

A flat volatility is the volatility that, when applied to all caplets, produces the market price.

It is, therefore, a complex non-linear function of the caplet spot volatilities. As shown by

the cap volatilities for the α = 1 case in Figure 1(b), the function depends on the strike

price. (If the function did not depend on the strike price, these cap volatilities would be

the same for all strike prices.)

When the term structure is upward sloping (Figure 2), the cap results are affected

by the fact that the moneyness of the early caplets is less than that of the later caplets.

Consider, for example, the case where the volatility structure is flat and the cap is at the

money (Figure 2a). The short maturity caplets are out of the money and the long maturity

caplets are in the money. When α = 1 they are all priced with the same volatility. When

α = 0.5, the short maturity caplets are priced with relatively low volatilities and long

maturity caplets are priced with relatively high volatilities. This increases the value of the

cap. When α = 1.5 the short maturity caplets are priced with relatively high volatilities

and long maturity caplets are priced with relatively low volatilities. This decreases the

value of the cap.

The figures show that, once an appropriate model has been chosen 3× 3 swap option
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volatilities are relatively insensitive to the shape of the volatility term structure. Implied

volatilities are slightly higher for the humped volatility structure. This is simply a reflection

of the fact the volatilities during the first three years are slightly higher for the humped

volatility structure we used than for a flat 20% volatility structure.
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V. APPLICATIONS OF THE MODEL

There are two main applications of the model in Section IV. The first is to valuation

and marking to market of non-standard interest rate derivatives. The second is to the

valuation and marking to market of non-at-the-money European swap options. We will

discuss both of these applications in this section. We will use for illustration U.S. data on

caps and European swap options for August 12, 1999, kindly supplied to us by a major

investment bank. The data were compiled by averaging mid-market quotes from a number

of different brokers.7 It was used by the bank to mark to market its portfolio of caps and

European swap options on August 12, 1999. The cap data consist of 133 flat volatility

quotes where the strike prices range from 3% to 10% and the cap lives range from one to

ten years. The swap data consist of at-the-money volatility quotes for a range of different

option maturities and swap lives. The caps were reset quarterly and the swaps were reset

semiannually. The zero curve on August 12, 1999 was upward sloping with short rates

approximately 5.3% and long rates approximately 7.2%.

The first step in implementing the model in Section IV is to estimate α. This can

be done by simultaneously estimating α and the Λj from cap prices.8 We search for the

values of α and the Λj that minimize the root mean square cap pricing error

√

√

√

√

1

K

K
∑

i=1

(ui − vi)2 (38)

where K is the number of caps for which market data is available, ui is the market price

of the ith cap calculated from the broker (flat) volatility quotes using equation (4), and vi

is the model price of the ith cap calculated using equations (30) and (31).

The best fit value of α on August 12, 1999 was found to be 0.716. This value of α

reflects a situation where, for caps with maturities of three years or more, quoted volatilities

declined in absolute terms by between 2% to 4% as the strike price increased from 3% to

10%. The best fit values of the Λj obtained from this analysis of cap prices are shown in

the Caps column of Table 4. As in the case of the lognormal model discussed in Section

27



II, we assumed seven different levels for Λ (see footnote 2) and imposed the smoothness

constraint that Λj be a non-increasing function of j for j ≥ 11.

A natural application of the LIBOR market model, once it has been calibrated to plain

vanilla caps in the way just described, is to the valuation of non-standard cap products.

Hull (2000) examines three such products: ratchet caps, sticky caps, and flexi caps. In a

ratchet cap the strike rate for a caplet equals the LIBOR rate at the previous reset date

plus a spread. In a sticky cap it equals the previous capped LIBOR rate plus a spread. In

a flexi cap there is an upper bound to the total number of caplets that are exercised. Hull

finds that the prices of all three types of nonstandard caps are dependent on the number

of factors. This is because their payoffs, unlike those of a plain vanilla cap, depend on the

joint behavior of two or more forward rates. Hull’s analysis used Monte Carlo simulation

in conjunction with equation (22) to price the instruments.

To value non-standard swap option products, such as Bermudan swap options, the

most appropriate procedure would seem to be to set α equal to its best fit value calculated

from caps and choose the Λj so that they fit broker quotes on at-the-money European

swap options. We did this using 30 swap option quotes where the option maturity ranged

from 0.5 years to 5 years and the swap life ranged from 1 to 5 years. We used a three

factor model, determining the λj,q from the Λj as indicated in equation (19). The results

are shown in the Swap Option column of Table 4.

If the three-factor extended LIBOR market model were perfect, we would of course

obtain the same parameter values regardless of the calibrating instruments being used.

The reality is that all derivative models 	 even those involving several factors 	 have to

be fine tuned to reflect the use to which they are being put. Table 4 shows that the Λj

values obtained by fitting the model to swap options are different from those obtained by

fitting it to caps. Specifically, the Λ’s implied from swap options are less humped than

those implied from caps. This appears to be because the pricing of options on one and two

year swaps does not fully reflect the hump observed in cap volatilities.

28



The root mean square pricing error for caps in Table 4 is greater than that for swap

options. This reflects the fact that we are fitting the model to 133 caps and only 30 swap

options. The relatively high average absolute percentage error for caps reflects both this

and the existence of some errors in deep-out-of-the-money caps that, although small in

absolute terms, were large when measured as percentages.

Incorporating Volatility Skews when European Swap Options are Priced

As already mentioned broker quotes are available only for at-the-money European

swap options. This creates problems for financial institutions when they price and mark

to market non-at-the-money swap options. Given the volatility skew in the cap market it

is unlikely to be correct to assume the same volatility for all strike prices in the European

swap option market.

The analysis in Section IV makes it possible to calculate a complete volatility skew for

European swap options from broker quotes on at-the-money instruments. The procedure

is as follows.

1. Calculate the price of the at-the-money swap option from its volatility using equation

(10) or (11)

2. Imply a value of σn,N from the price of the at-the-money European swap option using

equation (33) or (35) with α set equal to its best fit value

3. Use this value of σn,N to calculate the price of non-at-the-money European swap

option using equation (33) or (35)

4. Imply a Black volatility for the non-at-the-money swap options using equation (10)

or (11)9

As an example we consider a 5 × 5 European swap option on August 12, 1999. (For

the purposes of calculating the volatility skew it does not matter whether it is an option to

receive fixed or receive floating.) The broker quote for the volatility of this instrument is

17.58% and the at-the-money strike swap rate is 7.47%. The results of the above procedure

are displayed in Figure 3.
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Note that the calculation of a volatility skew for European swap options depends only

on the best fit value of α (0.716 for the case considered) and the at-the-money volatilities.

It does not require an estimate of the Λj or the λj,q. It should be relatively easy for

financial institutions to store a value of α and update it periodically so that very fast

volatility skew calculations can be made whenever required.
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VI. CONCLUSIONS

Caps and European swap options are quite different instruments. A cap is a portfolio

of options; a European swap option is an option on an annuity. This paper has provided a

simple robust procedure for relating the volatilities used by the market to price European

swap options to the volatilities used by the market to price caps. Given the popularity

of caps and European swap options, the procedure presents traders with opportunities to

fine tune their pricing and search for arbitrage opportunities. A key contribution of the

results in the paper is to make it very easy for traders to quickly calculate volatility skews

for European swap options (which are not provided by brokers) from volatility skews for

caps (which are provided by brokers).

The model underlying our results is the multifactor extended LIBOR market model

proposed by Andersen and Andreasen (1997). The results we have produced make it

possible to calibrate the model very quickly to either caps or European swap options.

Non-standard European-style options can be easily priced using the model. New numerical

procedures developed by authors such as Andersen (1998), Broadie and Glasserman (1997),

and Longstaff and Schwartz allow American-style non-standard instruments to be handled.
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Table 1

Typical Results for Accuracy of Caplet Volatilities
The table shows the amount by which the true spot caplet volatility exceeds the volatility
given by the Monte Carlo implementation of the LIBOR market model in equation (22).
For example, when the average rate is 1%, the average volatility is 50%, and the true caplet
volatility is V%, the Monte Carlo simulation produces a price consistent with a volatility
of V +0.08%. The standard error of the volatility difference is in parentheses. Results are
for 200,000 antithetic simulation trials, an upward sloping term structure, and a humped
volatility structure. The caplet has a maturity of five years and tenor of one year. All
volatilities are measured as percentages.

Average Average Volatility

Rate 10% 20% 50% 100%

1% �0.01 (0.02) �0.01 (0.05) �0.08 (0.25) 0.25 (1.19)

5% �0.02 (0.02) �0.02 (0.05) �0.56 (0.17) 2.57 (0.60)

10% �0.02 (0.02) �0.01 (0.04) �0.02 (0.12) 9.42 (0.44)

20% �0.01 (0.02) �0.02 (0.03) 0.39 (0.08) 14.64 (0.43)

50% 0.00 (0.01) 0.01 (0.02) 1.65 (0.11) 14.55 (0.52)
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Table 2

Typical Results for Accuracy of Swap Option Volatilities
The table shows the amount by which 5 × 5 swap option spot volatilities, calculated
using the approximation in Section III, exceed those calculated using the Monte Carlo
implementation of the LIBOR market model in equation (22). For example, when the
average rate is 1%, the average volatility is 50%, and the swap option volatility calculated
from the approximation in Section III is V%, the Monte Carlo simulation produces a price
consistent with a volatility of V − 0.05%. The standard error of the Monte Carlo estimate
is in parentheses. Results are for 200,000 antithetic simulation trials, an upward sloping
term structure, and a humped volatility structure. Both the caps underlying the LIBOR
market model and the swaps underlying the swap option are reset annually. All volatilities
are measured as percentages.

Average Average Volatility

Rate 10% 20% 50% 100%

1% �0.01 (0.01) �0.02 (0.02) 0.05 (0.02) 1.00 (0.06)

5% �0.01 (0.01) 0.00 (0.02) 0.14 (0.04) 3.29 (0.05)

10% 0.00 (0.02) 0.02 (0.03) 0.34 (0.08) 5.11 (0.16)

20% �0.01 (0.02) 0.04 (0.04) 1.01 (0.14) 4.13 (0.35)

50% 0.01 (0.03) 0.24 (0.07) �0.65 (0.35) �71.24 (4.13)
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Table 3

Typical Results for Accuracy of Swap Option Volatilities
When There is a Volatility Skew

The table shows the amount by which 3 × 3 swap option volatilities calculated from the
approximation in Section IV exceed those calculated using the Monte Carlo implementation
of the extended LIBOR market model in equation (27). For example, when α is 0.50, the
strike rate is 80% of the forward par yield, and the lognormal swap volatility calculated
using Section IV is V%, the Monte Carlo simulation produces a price consistent with a
lognormal volatility of V − 0.19%. The standard error of the Monte Carlo price is in
parentheses. Results are for 100,000 antithetic simulation trials, an upward sloping term
structure and a humped volatility structure. Caps used to define the LIBOR market
model are reset quarterly and the swap underlying the swap option is reset semiannually.
All volatilities are measured as percentages.

Strike Rate (% of Forward Par Yield)

α 60 80 100 120 140

0.10 0.15 (0.05) 0.03 (0.05) �0.03 (0.04) �0.02 (0.04) �0.01 (0.05)

0.25 0.34 (0.05) 0.14 (0.04) �0.11 (0.04) �0.11 (0.04) �0.01 (0.04)

0.50 0.38 (0.04) 0.19 (0.04) 0.09 (0.04) 0.09 (0.03) 0.12 (0.03)

0.75 0.17 (0.04) 0.05 (0.04) 0.01 (0.04) 0.01 (0.04) 0.05 (0.02)

1.00 0.09 (0.04) 0.02 (0.04) � 0.01 (0.04) 0.01 (0.03) 0.06 (0.02)

1.50 0.21 (0.04) 0.04 (0.04) 0.01 (0.03) 0.05 (0.02) 0.09 (0.02)
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Table 4

Best Fit Values of Volatility Parameters on August 12, 1999
The table shows best fit values for the volatility parameters, Λj when the model defined
by equations (26) to (28) is fitted to 133 caps (column 2) and 30 European swap options
(column 3). The CEV parameter α was set equal to its best fit value of 0.716. Princi-
pal=$1,000 and δj = 0.25 for all j.

Values of Λj for

Caps Swap Options

1 ≤ j ≤ 3 0.0795 0.0866

4 ≤ j ≤ 7 0.1300 0.1076

8 ≤ j ≤ 11 0.1274 0.0890

12 ≤ j ≤ 15 0.0795 0.0890

16 ≤ j ≤ 19 0.0756 0.0890

20 ≤ j ≤ 27 0.0756 0.0808

28 ≤ j ≤ 39 0.0756 0.0730

RMS Pricing Error ($) 0.57 0.21

Mean Abs % Pricing Error 5.72 1.27
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Figure 1

Volatility skews for a flat term structure. The cap is reset quarterly and has a
life of 3 years. The European swaption is a 3 year option into a 3 year swap that is reset
semiannually. Results are based on the model in Section IV. In (a) the volatility structure
is flat. In (b) it is humped.
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Figure 2

Volatility skews for a upward sloping term structure. The cap is reset quarterly
and has a life of 3 years. The European swaption is a 3 year option into a 3 year swap that
is reset semiannually. Results are based on the model in Section IV. In (a) the volatility
structure is flat. In (b) it is humped.
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Figure 3

Volatility skew for 5 × 5 swap options on August 12, 1999. This is based on
a value of 0.716 for the CEV parameter, α (estimated from cap data) and a broker quote
of 17.58 % for the volatility of an at-the-money 5× 5 swap option
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ENDNOTES

1. Other approaches, involving the inclusion in the objective function of penalties for

changes in the Λ’s, can also be used

2. The error in equation (22) is likely to increase with the length of the accrual period.

Setting the accrual period equal to one year therefore provides a relatively tough test

of the approximation.

3. The lognormal LIBOR market model described here may itself be inappropriate in

very-low interest rate environments. This is because it assumes a stationary volatility

structure. When short rates are in the region of 1%, their volatilities are very high.

But, if as time passes short rates increase, more normal volatilities are likely to be

observed.

4. Brace, Gatarek, and Musiela (1997) report errors for a 5 × 5 swap option of about

$5 per $1 million of principal using their approximation. Although their errors are

higher than ours, they are acceptably low. The chief advantage of our approach over

theirs is that it is much easier to implement.

5. To be precise, the predominant pattern in the implied volatilities appears to be a

skew. For short maturity caps there is a tendency for the implied volatility to start

increasing when the strike price.

6. A more general version of the hypothesis is that swap rates follow the process in

equation (32) for some value of β not necessarily equal to α. We tested whether we

should use the more general hypothesis by defining a �best fit� value of β as the value

for which the expression in equation (37) is least sensitive to perturbations in forward

rates. In a wide range of situations this value of β was found to be very close to α.

Encouragingly, the best fit value of β also led to the expression in equation (37) being

almost exactly constant.

7. Because different brokers quote data in different ways, some judgment must be used

in averaging quotes.

8. Note that cap prices depend only on the Λj in equation (28) 	 not on the way in

which Λj is divided into its component parts, λj,q.

9. In theory, this last step is unnecessary since the third step provides the price. In

practice it is likely to be desirable as most traders and analysts naturally think in

terms of Black volatilities.
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