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Abstract. An important recent development in the pricing of interest rate deriva-
tives is the emergence of models that incorporate lognormal volatilities for for-
ward Libor or forward swap rates while keeping interest rates stable. Thesemar-
ket modelshave three attractive features: they preclude arbitrage among bonds,
they keep rates positive, and, most distinctively, they price caps or swaptions ac-
cording to Black’s formula, thus allowing automatic calibration to market data.
But these features of continuous-time formulations are easily lost when the mod-
els are discretized for simulation. We introduce methods for discretizing these
models giving particular attention to precluding arbitrage among bonds and to
keeping interest rates positive even after discretization. These methods transform
the Libor or swap rates to positive martingales, discretize the martingales, and
then recover the Libor and swap rates from these discretized variables, rather
than discretizing the rates themselves. Choosing the martingales proportional to
differences of ratios of bond prices to numeraire prices turns out to be particularly
convenient and effective. We can choose the discretization to price one caplet
of arbitrary maturity without discretization error. We numerically investigate the
accuracy of other caplet and swaption prices as a gauge of how closely a model
calibrated to implied volatilities reproduces market prices. Numerical results in-
dicate that several of the methods proposed here often outperform more standard
discretizations.
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1 Introduction

A major development in the modeling of interest rates for pricing term structure
derivatives is the emergence of models that incorporate lognormal volatilities
for forward rates while keeping rates stable. It was noted by Heath, Jarrow, and
Morton [12] that in the general class of models they developed based on continu-
ously compounded forward rates, lognormal volatilities lead to rates that become
infinite in finite time with positive probability. By working instead with various
types of discretely compounded rates, Sandmann and Sondermann [23, 24], Brace
et al. [5], Goldys et al. [10], Miltersen et al. [19], Musiela and Rutkowski [21],
and Jamshidian [14, 15] have overcome this difficulty and developed well-posed
models that indeed admit deterministic diffusion coefficients for the logarithms of
forward rates — i.e., lognormal volatilities. The rates themselves are not simul-
taneously lognormal, but each becomes lognormal under an appropriate change
of measure.

This class of models — often referred to asmarket modelsbecause of their
consistency with market conventions — have three principal attractions:

◦ they preclude arbitrage among bonds (and just as in the HJM [12] framework
this means that the drift is determined once the volatilities are specified);
◦ they keep rates positive (a consequence of the lognormal form of the volatility

that further precludes arbitrage between bonds and cash);
◦ they price caplets or swaptions according to Black’s [3] formula, consistent

with market practice.

The first property corresponds to what Musiela and Rutkowski [20] call aweak
no-arbitrage conditionand the first two together make up their fullno-arbitrage
condition. The last feature means that the models are easily calibrated to market
data. Market participants quote caplet and swaption prices according to their
Black implied volatility; if these implied volatilities are used as inputs to a
market model, market prices are recovered exactly.

These attractive properties must, however, be understood as features of
continuous-time models. (Though discretely compounded, the forward rates
evolve continuously). Pricing complex path-dependent instruments in these mod-
els typically requires numerical computation and thus discretization. A casual
discretization can easily lead to a model without any of the three attractive prop-
erties identified above. Since it is ultimately the discretized model that is used for
pricing, the theoretical advantages of the continuous-time models are potentially
lost in practice. The gap between the discretized and continuous models can be
substantial because rather coarse time discretizations (e.g., with an increment of
three months) are frequently used in practice.

This paper develops discretizations of lognormal forward Libor and forward
swap rates that preserve some, though not all of the attractive features of the
continuous-time formulations, and appear to be substantially better than naive
discretizations in several respects. We put particular emphasis on discretizations
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ensuring that bond prices deflated by a numeraire asset are martingales, since
this is the key condition for the absence of arbitrage.

There is a well-established practice in the derivatives industry of making
adjustments to discretized versions of continuous-time models to keep them
arbitrage-free. In the open literature, such adjustments are commonly found in
binomial models (e.g., [11]) where the discretization is in both time and space.
They seem to be less commonly employed in the Monte Carlo setting, where the
discretization may be in time alone. In simulating an HJM model using an Euler
discretization, a simple adjustment to the drift (reviewed in Sect. 2) keeps the
discrete model arbitrage-free; this adjustment appears to be widely known in the
industry. It may be viewed as a special case of a general strategy of solving for
the correct higher-order adjustment to an otherwise straightforward discretization.

For reasons that will be made clear in Sect. 2, this strategy is inapplicable
to the simulation of forward Libor and forward swap rates; depending on the
discretization used, the desired adjustment may not exist or may be intractable.
We therefore develop a different strategy. For each model, we find a change
of variables thatcan be discretized in an arbitrage-free way and simulate those
variables instead, easily recovering the original Libor and swap rates along the
way. For example, the variables may be ratios of bond prices to the price of
a numeraire asset, linear combinations of these ratios, or logarithms of linear
combinations. In several cases, the new variables are martingales if and only
if the model is arbitrage-free. This obviates the need to make a higher-order
adjustment to the drift to keep the model arbitrage-free — both the discrete and
continuous drift are fixed at zero. We also show how to develop discretizations
that keep Libor and swap rates positive. And while it does not seem possible
to simultaneously price caplets of all maturities without discretization error, we
show how to simulate forward Libor rates to eliminate bias in any one caplet
(not necessarily the last). This flexibility may prove useful in adapting the choice
of discretization to the instrument to be priced.

There is, of course, a large literature on discretization schemes for stochastic
differential equations that accelerate convergence to continuous-time limits; see,
e.g., Kloeden and Platen [17]. We view our approach as a complement rather than
an alternative to these methods. For example, although we detail only Euler dis-
cretizations of our transformed variables, one could also consider higher-order
discretizations like those of Milstein [18] and Talay [26]. This would poten-
tially further reduce discretization error while continuing to preclude arbitrage.
At the same time, simply applying a higher-order discretization to the origi-
nal continuous-time equations would not by itself make the discretized process
arbitrage-free.

The rest of the paper is organized as follows. Section 2 reviews background
on lognormal models of forward Libor and the discretization of continuous-time
term structure models. We work within the discrete-tenor formulation of Jamshid-
ian [14, 15] and Musiela and Rutkowski [20, 21] because it is the best suited for
simulation. Section 3 develops discretizations in the terminal measure used by
Brace et al. [5] and Musiela and Rutkowski [20, 21], in the spot Libor measure
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introduced by Jamshidian [14, 15], and in a hybrid that provides the flexibil-
ity to choose the bias-free caplet. Section 4 carries out a similar analysis for
swap rates, first discretizing in the terminal measure, then in the spot Libor mea-
sure. In Sect. 5, we numerically compare our discretizations with more standard
approaches. We also take the arbitrage-free requirement one step further by en-
forcing it in finite samples. We argue that the feasibility of such a finite-sample
adjustment depends critically on our discretization approach and observe through
numerical examples that it can lead to substantial variance reduction. All proofs
are deferred to an appendix.

2 Preliminaries on lognormal Libor models

We begin with a brief review of discrete-tenor formulations of Libor market
models based on finitely many bonds, as developed by Jamshidian [14, 15] and
Musiela and Rutkowski [20, 21]. Thetenor structureis a finite set of dates

0 = T0 < T1 < · · · < TN < TN+1

representing maturities spaced, e.g., three months or six months apart. We will

assume throughout that the day-count fractionsδi
4
= Ti +1− Ti , i = 0, . . . , N , are

all equal to a fixedδ (e.g.,δ = 0.25 years). In practice, day-count conventions
would make these slightly different; we use a fixedδ merely to lighten the
notation. Define a right-continuous functionη : [0, TN+1) → {1, . . . , N + 1} by
taking η(t) to be the unique integer satisfying

Tη(t)−1 ≤ t < Tη(t) .

Associated with each tenor dateTi is a zero-coupon bond maturing at that date;
Bi (t) is the price of that bond at timet ∈ [0, Ti ] and Bi (Ti ) = 1.

The forward Libor rate at time t for the accrual period [Ti , Ti +1], t ≤ Ti is

Li (t) =
1
δ

(
Bi (t)

Bi +1(t)
− 1

)
, i = 1, . . . , N . (1)

It is at times notationally convenient to extend the definition ofLi beyond the
i th tenor date; we do so by settingLi (t) = Li (Ti ) for t > Ti . At a tenor dateTi

the price of any bondBn, n > i , that has not yet matured is given by

Bn(Ti ) =
n−1∏
j =i

1
1 + δLj (Ti )

;

more generally, at an arbitrary timet < Tn we have

Bn(t) = Bη(t)(t)
n−1∏

j =η(t)

1
1 + δLj (t)

. (2)
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As discussed by Jamshidian [14], this reveals an indeterminacy in the model: the
bond prices cannot be fully recovered from the forward Libor rates alone, because
between tenor dates the forward Libor rates do not specify how to discount back
from the next tenor date to the current time. The indeterminacy is removed by
the choice of numeraire asset; different choices of numeraire lead to different
constructions of the forward Libor processes.

In the constructions we consider, the forward Libor processes are determined
by a stochastic differential equation of the form

dLn(t)
Ln(t)

= . . . dt + λn(t) dWt , n = 1, . . . , N , (3)

in which W is a standardd-dimensional Brownian motion, theLn(0) are deter-
ministic, andλn(t) are bounded, deterministicd-dimensional row vectors having
at most finitely many discontinuities. This is what is meant by a lognormal
specification of the volatility. The drift in (3) is determined by the choice of
numeraire. (Throughout, we useWt to denote a standard Brownian motion under
the measure relevant to the context, rather than introduce a separate symbol for
Brownian motion under each measure. This notational simplification should not
cause confusion because we seldom consider more than one measure at a time.)
If M is a strictly positive semimartingale, then to construct forward Libor in the
measure associated with numeraireM is to choose the drift in (3) so that the
deflated bond prices

Dn(t)
4
=

Bn(t)
Mt

, n = 1, . . . , N + 1, are martingales, (4)

which then precludes arbitrage from trades among the bonds. This is theweak no-
arbitrage condition of Musiela and Rutkowski [20]. See Musiela and Rutkowski
[20, 21] and Jamshidian [15] for a thorough development of these issues, and
see Duffie [7] and El Karoui et al. [8] for background on changes of numeraire
and changes of measure.

TakingMt = BN+1(t) leads to the construction of forward Libor in theterminal
(or forward) measure used by Musiela and Rutkowski [20], in which

dLn(t)
Ln(t)

= −
N∑

i =n+1

δλn(t)λi (t)′Li (t)
1 + δLi (t)

dt + λn(t) dWt , n = 1, . . . , N , (5)

and in which the deflated bond prices become (cf. (2))

Dn(t) =
N∏

j =n

(1 + δLj (t)), n = 1, . . . , N + 1. (6)

Under this measure, the time-0 price of a security payingζ at timeTn is

BN+1(0)E[ζDn(Tn)] = BN+1(0)E


ζ

N∏
j =n

(1 + δLj (Tn))


 . (7)
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(Here and throughout, we useE to denote expectation under whatever measure
is relevant to the context — in this case, the terminal measure.)

Jamshidian [14, 15] introduces the numeraire

B∗(t) =
Bη(t)(t)
B1(0)

η(t)−1∏
j =1

Bj (Tj )
Bj +1(Tj )

,

which may be interpreted as the result of buying 1/B1(0) bonds at time 0 maturing
at T1, and then at each tenor date selling the bonds that matured and investing
the proceeds in the bond that matures next. (Jamshidian’sη is left-continuous but
for discretization the right-continuous version will be preferable.) This is thus a
discretely compounded analog of the money market account that gives rise to the
usual risk-neutral measure in, e.g., Heath et al. [12] and numerous other settings.
From B∗, Jamshidian defines thespot Libor measurein which

dLn(t)
Ln(t)

=
n∑

i =η(t)

δλn(t)λi (t)′Li (t)
1 + δLi (t)

dt + λn(t) dWt , n = 1, . . . , N . (8)

The deflated bond prices become (cf. (2))

Dn(t) = B1(0)
n−1∏
j =1

1
1 + δLj (t)

, n = 1, . . . , N + 1 (9)

= B1(0)
η(t)−1∏

j =1

1
1 + δLj (Tj )

n−1∏
j =η(t)

1
1 + δLj (t)

,

and the time-0 price of a security payingζ at timeTn is

E[ζDn(Tn)] = B1(0)E


ζ

n−1∏
j =1

1
1 + δLj (Tj )


 . (10)

In Sect. 3.3, we introduce a hybrid of these two numeraires.
In a Monte Carlo implementation, we deal not with the continuous-time

processesLn but with some approximation̂Ln defined on a finite set of times
0 = t0 < t1 < · · · < tk and then possibly extended to all times in [0, tk ] by
interpolation. For simplicity, we will take theti to be evenly spaced and further
assume that their common spacingh divides the tenor spacingδ. This ensures that
the tenor dates are among the simulated dates without burdening the notation. We
call a discretizationarbitrage-freeif the discrete deflated bond pricesD̂n defined
by replacingLn with L̂n in (6) or (9) are discrete-parameter positive martingales
on {0, h, 2h, . . .}.

This condition is by no means automatically satisfied. In particular, it is
violated by the standard Euler scheme

L̂n((j + 1)h) = L̂n(jh) + L̂n(jh)µn(jh)h + L̂n(jh)λn(jh)[W(j +1)h −Wjh ], (11)
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(with µn the drift in either (5) or (8)) and also by the discretization

L̂n((j + 1)h) = L̂n(jh) (12)

×exp

([
µn(jh)− 1

2
λn(jh)λn(jh)′

]
h + λn(jh)[W(j +1)h −Wjh ]

)
,

which corresponds to an Euler scheme for logLn. (Because we takeη to be right-
continuous, ifjh = Tk then in computingµn(jh) according to (8) the summation
starts ati = k + 1 rather thani = k. This is consistent with the recommendation
in Sidenius [25].)

Similar issues arise in discretizing other models, but it is informative to
contrast this setting with the closely related HJM framework. A continuous-time
HJM model (with scalarWt for simplicity) sets

dfT (t) = µT (t) dt + σT (t) dWt ,

with fT (t) the forward rate for [T, T + dT] as of timet and

µT (t) = σT (t)
∫ T

t
σu(t) du (13)

under the risk-neutral measure. This choice of drift ensures that the deflated bond
prices

exp

(
−
∫ T

t
fu(t) du

)/
exp

(∫ t

0
fu(u) du

)
are martingales (int) under the regularity conditions detailed by Heath et al. [12].
Given a discretization̂fih (jh) in both time and maturity, the corresponding discrete
no-arbitrage condition reduces to

e−f̂ih (ih)hEih [e
−
∑k

j =i +1
f̂jh ((i +1)h)h

] = e
−
∑k

j =i
f̂jh (ih)h

, (14)

with Eih denoting expectation conditional on the history of the process over
{0, h, . . . , ih}. This condition will not be met by the Euler scheme

f̂jh ((i + 1)h) = f̂jh (ih) + µ̃jh (ih)h + σjh (ih)
√

hξi +1, (15)

with µ̃ defined by replacing integration in (13) by summation and with
√

hξi +1 =
[W(i +1)h −Wih ]. Nevertheless, starting from a specification of the forward rate
volatilities and inductively enforcing (14) one can solve for the ˆµ that satisfies
(14) when the forward rates are simulated via a modified Euler scheme that
replaces ˜µ with µ̂ in (15). The appropriate modified drift is

µ̂jh (ih) =
h
2


( j∑

k=i +1

σkh(ih)

)2

−
(

j −1∑
k=i +1

σkh(ih)

)2 ; (16)

this is a straightforward consequence of the fact that the conditional expectation in
(14) involves only the expectation of the exponential of normal random variables,
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which is available explicitly. Formally lettingh → 0 in this expression while
holding t = ih andT = jh yields

1
2

d
dT

[∫ T

t
σu(t) du

]2

= σT (t)
∫ T

t
σu(t) du ≡ µT (t). (17)

The modification to the drift is therefore negligible ash → 0 but for h > 0
is just enough to keep the discretized model arbitrage-free. This adjustment is
derived in Andersen [1] (in a more general form that does not assume the same
discretization for calendar time and maturity) and in Hull [13].

An attempt to apply a similar adjustment to a forward Libor process is quickly
defeated. To make the discretization of (9) a martingale by replacing theµn in
(11) with some ˆµn we would need in particular (takingn = 2)

E

[
1

1 + δL1(0)(1 +µ̂1(0)h +
√

hλ1(0)ξ1)

]
=

1
1 + δL1(0)

, ξ1 ∼ N (0, I );

but the expectation on the left is infinite for all choices of ˆµ1(0). Using (12)
(again withµn replaced by some ˆµn) entails, at a minimum, quantities of the form
E[1/(1 + exp(X))] with X ∼ N (a, b) — an expression involving three infinite
trigonometric series (equation (56) of Johnson [16]). The necessary adjustment
quickly becomes intractable. One could replace the normalξi with, say, Bernoulli
increments without affecting the validity of the Euler scheme ([17, p.458]), but
even this does not lead to a tractable drift correction. Enforcing conditions on the
apparently simpler case of (6) becomes unmanageable too. A different approach
is required.

3 Discretization of forward Libor

3.1 Terminal measure

Rather than discretize forward Libor and try to enforce the martingale property
indirectly, we simulate suitable martingales directly and then recover discretized
Libor from these. There is some flexibility in the choice of martingales and this
can be used to advantage; differences of deflated bond prices will turn out to be
particularly effective and convenient. We begin with the specification of forward
Libor in (5), corresponding to the dynamics under the terminal measure. Set

Xn(t) = Ln(t)
N∏

i =n+1

(1 + δLi (t)) =
1
δ

(Dn(t)− Dn+1(t)), n = 1, . . . , N . (18)

Lemma 1 Each Xn is a martingale and satisfies

dXn

Xn
=


λn +

N∑
j =n+1

δXj λj

1 + δXj + · · · + δXN


 dW. (19)
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Also,

Ln =
Xn

1 + δXn+1 + · · · + δXN
. (20)

This immediately suggests an algorithm for arbitrage-free simulation: simu-
late a discretization of thêXn, ensuring that the discretized process remains a
martingale, and then use (20) todefine

L̂n =
X̂n

1 + δX̂n+1 + · · · + δX̂N
. (21)

The discretized deflated bond prices (cf. (6))

D̂n =
N∏

j =n

(1 + δL̂j ) ≡ 1 + δ
N∑

j =n

X̂j (22)

are automatically positive martingales because theX̂j are. Enforcing the martin-
gale property on̂Xn is straightforward and circumvents the need to make a drift
adjustment to thêLn. Indeed, even an Euler discretization ofXn preserves the
martingale property. We will see in Theorem 1 below that discretizing logXn

instead will keep the Libor rates positive. We use a modified Euler scheme that
accounts for time-varying volatilities. First, letΛ(t) be theN × d matrix with
nth row equal toλn(t), n = 1, . . . , N . With h fixed, letΛ̂(ih) denote any solution
to the equation

Λ̂(ih)Λ̂(ih)′ =
1
h

∫ h

0
Λ(ih + u)Λ(ih + u)′ du (23)

and letλ̂n(ih) denote thenth row of Λ̂(ih). Now set

X̂n((i + 1)h) = X̂n(ih) exp

(
−1

2
σX̂n

(ih)σ′
X̂n

(ih)h +
√

hσX̂n
(ih)ξi +1

)
(24)

with

σX̂n
= λ̂n +

N∑
j =n+1

δX̂j λ̂j

1 + δX̂j + · · · + δX̂N
, (25)

andξ1, ξ2, . . ., independent standard normald-dimensional vectors. (Theξi could
be replaced with other random vectors satisfying moment conditions discussed
in Kloeden and Platen [17, p.458] and Talay [26, p.307] but normal inputs give a
better approximation to the desired distribution, particularly whenh is not very
small.) This differs slightly from a standard Euler scheme for logXn, which would
useλj (ih), j = n, . . . , N , in (25) rather than̂λj (ih). The two would coincide (or
could be made to by choosinĝΛ = Λ) if the λn were constant functions of
time t . Over each interval [ih, (i + 1)h), the scheme in (25) freezes the stochastic
elements of the diffusion coefficient at their values atih but uses the average over
the interval (in the sense of (23)) of the deterministically time-varying elements.
In practice, the distinction is unlikely to matter because in calibrating to a finite
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number of cap prices one would typically choose piecewise constantλn, for
which the two methods are the same. The formulation in (25) is slightly more
convenient for our analysis.

In Sect. 1 we noted that the defining property of market models of forward
Libor is that they price caplets according Black’s formula, the industry convention
(cf. [5, 14, 15, 19, 21]). This means that using implied volatilities for theλn

automatically calibrates the model to market prices. This, however, is strictly
true only for the continuous-time forward Libor process; we examine the extent
to which it remains true after discretization.

Let

C(σ, K , r , b, T) = δb

[
r Φ

(
log(r /K ) + 1

2σ2T

σ
√

T

)

−KΦ

(
log(r /K )− 1

2σ2T

σ
√

T

)]
, (26)

with Φ the standard normal cumulative distribution. This is Black’s formula for
the price at time 0 of a caplet covering the interval [T, T + δ], settled at time
T + δ and struck atK , when the forward rate at time 0 for [T, T + δ] is r , the
implied volatility is σ, and the price of a discount bond maturing atT + δ is b;
see, e.g., [21,§15.3] or [22,§1.4]. The expression in square brackets on the right
side of (26) evaluates

E[(re− 1
2 σ2T+σ

√
Tξ − K )+], ξ ∼ N (0, 1). (27)

In terms of forward Libor, the payoff on a caplet over [Tn, Tn+1] (received at time
Tn+1) is δ(Ln(Tn)−K )+. Under the terminal measurePN+1 associated withTN+1,
the time-0 value of a payoff ofζ (say) at timeTn+1 is BN+1(0)E[ζ/BN+1(Tn+1)].
Using superscripts on expectations to emphasize the underlying measure, we have

BN+1(0)EN+1

[
ζ

BN+1(Tn+1)

]
= Bn+1(0)EN+1

[
ζ

Bn+1(Tn+1)BN+1(0)
BN+1(Tn+1)Bn+1(0)

]
4
= Bn+1(0)En+1[ζ] ,

where the new measurePn+1 is defined by

(
dPn+1

dPN+1

)
t

=
Bn+1(t)BN+1(0)
BN+1(t)Bn+1(0)

=
BN+1(0)
Bn+1(0)

N∏
j =n+1

(1 + δLj (t)). (28)

It follows from (28) thatLn is a martingale underPn+1 becauseXn is a martingale
underPN+1 (in fact, Pn+1 is just the terminal measure associated withTn+1), so
Girsanov’s theorem implies thatdLn = λnLn dW underPn+1 (W here denoting a
standard Brownian motion underPn+1). Consequently, the price of thenth caplet
is
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BN+1(0)EN+1[δ(Ln(Tn)− K )+/BN+1(Tn+1)] = δBn+1(0)En+1[(Ln(Tn)− K )+]

= C(λ̄n(Tn), K , Ln(0), Bn+1(0), Tn),

with

λ̄2
n(t) =

1
t

∫ t

0
λn(u)λ′

n(u) du,

using (26) and (27).
The pricing rule in the discretized model replacesDn with D̂n in (7). The

price of the caplet is

BN+1(0)E[δ(L̂(Tn)− K )+
N∏

j =n+1

(1 + δL̂j (Tn+1))].

Under our discretization (but not (11) or (12)), the product inside this expectation
(which is simply D̂n+1) remains a positive martingale even after discretization.
Thus, it may still be used to define a new measure, andL̂n is a martingale under
this measure (Theorem 1(iii), below). Again, we stress that this is a specific
consequence of the scheme in (21) and (24) and would not hold under standard
discretizations of forward Libor.

At this point, however, we encounter a fundamental difference between dis-
crete and continuous time. In continuous time, any absolutely continuous change
of measure that makesLn a martingale must in fact makeLn lognormal. But in
discrete time an absolutely continuous change of measure forξ1, ξ2, . . . , ξm may
not simply correspond to a change of mean. So, we cannot conclude from the
fact that L̂n is a martingale under the new measure that it is lognormal under
the new measure. Indeed, to accomplish this would require that both logL̂n and
log D̂n be linear in theξi , and this is clearly not possible. Thus, we cannot ex-
pect all caplets to be priced simultaneously by Black’s formula in a discretized
model; but the arbitrage-free discretization above arguably brings us closer to
this ideal by at least ensuring that eachL̂n is a martingale in the discrete terminal
measure associated withTn+1. We return to this issue in Sect. 3.3, in part (iv) of
Theorem 1, and in the numerical results of Sect. 5.

It remains to address the question of whether theL̂n defined above, in ad-
dition to having various desirable properties already noted, actually bear some
relation to their ostensive continuous-time counterparts. To formulate a conver-
gence result, it is useful to extend the definition of the discretized variables to the
interval [0, TN+1]. Proceeding by induction oni , over each interval [ih, (i + 1)h)
we may construct the solution to

dX̂n(t)

X̂n(t)
=


λn(t) +

N∑
j =n+1

δX̂j (ih)λj (t)

1 + δX̂j (ih) + · · · + δX̂N (ih)


 dWt ; (29)

and if we take
√

hξi +1 = W(i +1)h −Wih then (24) will indeed coincide with the
solution to (29) at every grid pointih. We can apply (20) to obtain interpolated
L̂n from X̂n. This makesL̂ a random element ofCRN [0, TN+1], the space of
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continuous functions from [0, TN+1] to RN . Endow this space with the topology
of uniform convergence. LetPh be the measure on this space induced byL̂ and
P that induced byL. Let⇒ denote weak convergence. We summarize properties
of L̂ in the following result.

Theorem 1 (i) The discretization (18)-(21) makes the deflated bond pricesD̂
discrete-time positive martingales and is thus arbitrage-free. (ii) TheL̂n remain
strictly positive, almost surely. (iii) For each n,{L̂n(ih), i = 1, 2, . . .} is a martin-
gale with respect to the measureP̂n+1 defined by d̂Pn+1 = [(BN+1(0)D̂n+1/Bn+1(0))]
dPN+1. (iv) The last caplet is priced without discretization error; i.e.,

BN+1(0)δE[(L̂N (TN )− K )+] = C(λ̄N (TN ), K , LN (0), BN+1(0), TN );

(v) Ph ⇒ P as h→ 0.

We conclude our discussion of discretization in the terminal measure with
some remarks about an alternative discretization. We could enforce the absence
of arbitrage by directly discretizing the deflated bond pricesDn, rather than the
Xn. Observe that

dDn

Dn
=

N∑
j =n

δLj

1 + δLj
λj dW.

Suppose, for simplicity, thatWt and theλj (t) are one-dimensional. This suggests
the martingale discretization

D̃n((i + 1)h) = D̃n(ih) exp


−1

2


 N∑

j =n

δL̃j (ih)

1 + δL̃j (ih)
λj (ih)




2

h

+
N∑

j =n

δL̃j (ih)

1 + δL̃j (ih)
λj (ih)hξi +1


 ,

with the ξi independent standard normals. Using (6), we can solve for theL̃n to
get

(1 + δL̃n((i + 1)h)) =

(1 + δL̃n(ih)) exp


1

2


 N∑

j =n+1

δL̃j (ih)

1 + δL̃j (ih)
λj (ih)




2

h

− 1
2


 N∑

j =n

δL̃j (ih)

1 + δL̃j (ih)
λj (ih)




2

h




×exp

(
δL̃n(ih)

1 + δL̃n(ih)
λn(ih)hξi +1

)
. (30)
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Simulating notLn itself but rather 1 +δLn in this way thus leads to an alternative
arbitrage-free discretization. The expression in the exponent

h
2




 N∑

j =n+1

δL̃j (ih)

1 + δL̃j (ih)
λj (ih)




2

−

 N∑

j =n

δL̃j (ih)

1 + δL̃j (ih)
λj (ih)




2



is reminiscent of the adjusted discrete HJM drift (16). Indeed, one could view
this as the appropriate drift adjustment to keep an Euler scheme for log(1 +δLn)
arbitrage-free. A drawback of this discretization, compared to the one based on
Xn, is that while it ensures that 1 +δLn stays positive, it does not ensure thatLn

itself stays positive. We compare them numerically in Sect. 5.

3.2 Spot Libor measure

For discretization in the spot Libor measure, we introduce the variables

Yn(t) =
1

1 + δLn(t)
, Vn(t) = (1− Yn(t))

n−1∏
i =1

Yi (t), n = 1, . . . , N , and

VN+1 =
N∏

i =1

Yi (t),

An expression for the deflated bond pricesDn was given in (9), from which it
follows thatVn(t) = (Dn(t)− Dn+1(t))/B1(0). Under our convention thatLn(t) =
Ln(Tn) for t ≥ Tn, the definitions ofYn, Vn and Dn extends to all of [0, TN+1].
We record some additional useful formulas in the following lemma.

Lemma 2 Under the spot Libor measure, each Vn, n = 1, . . . , N + 1, is a mar-
tingale and satisfies

dVn

Vn
=


(Vn + Vn−1 + · · · + V1− 1

Vn−1 + · · · + V1− 1

)
λn +

n−1∑
i =η

(
Vi

Vi −1 + · · · + V1− 1

)
λi


 dW,

(31)
with the conventionλN+1 ≡ 0. Also,

dDn+1

Dn+1
=

n∑
i =η

(
Di +1

Di
− 1

)
λi dW, (32)

Dn+1 = B1(0)

(
1−

n∑
i =1

Vi

)
= B1(0)

(
N+1∑

i =n+1

Vi

)
. (33)

and

δLn =
Dn − Dn+1

Dn+1
=

Vn

1− Vn − · · · − V1
(34)

=
Vn

Vn+1 + · · · + VN+1
. (35)
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At first sight, (31) and (32) may seem problematic; in each case, multiplying
both sides by the denominator on the left makes plain that the diffusion coefficient
as writtenfails to be Lipschitz. This however is only a matter of appearance and is
easily circumvented. An obvious consequence of (8) and (9) is thatDi > Di +1 >
0 throughout [0, Ti ], so (32) is unchanged if we write it asdDn+1 = Dn+1σDn+1 dW,
with

σDn+1 = −
n∑

i =η

φ

(
1− Di +1

Di

)
λi (36)

and φ(x) = min{1, x+}. Similarly, we can use (33) in (31) to write (with the
conventionDN+2 ≡ 0)

dVn

Vn
=


Dn+1

Dn
λn −

n−1∑
i =η

Di − Di +1

Di
λi


 dW,

and thusdVn = VnσVn dW with

σVn =


φ

(
Dn+1

Dn

)
λn −

n−1∑
i =η

φ

(
Di − Di +1

Di

)
λi


 (37)

= φ

(
Vn + Vn−1 + · · · + V1− 1

Vn−1 + · · · + V1− 1

)
λn −

n−1∑
i =η

φ

(
Vi

1− Vi −1− · · · − V1

)
λi .

Rewriting the equations this way makes the diffusion coefficientsσDn Dn and
σVn Vn Lipschitz functions of theDi and Vi respectively without affecting the
continuous-time dynamics.

Lemma 2 suggests several possible discretizations. We can set

V̂n((i + 1)h) = V̂n(ih) exp

(
−1

2
σV̂n

(ih)σ′
V̂n

(ih)h + σV̂n
(ih)
√

hξi +1

)
, (38)

with σV̂n
as in (37) but with theVi replaced byV̂i andλi by λ̂i ; or we can set

D̃n((i + 1)h) = D̃n(ih) exp

(
−1

2
σD̃n

(ih)σ′
D̃n

(ih)h + σD̃n
(ih)
√

hξi +1

)
, (39)

with σD̃n
the corresponding quantity from (36). Using (39), we then recover

discretized forward Libor rates̃Ln from the first equality in (34). Using (38) and
the second equality in (34) we can set

δL̂n =
V̂n

1− V̂n − · · · − V̂1
, n = 1, . . . , N , (40)

leading (via (9)) to

D̂n = B1(0)

(
n−1∏
i =1

1

1 + δL̂i

)
= B1(0)

(
1−

n−1∑
i =1

V̂i

)
. (41)
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Alternatively, we can use (35) to define

δL′
n =

V̂n

V̂n+1 + · · · + V̂N+1
, n = 1, . . . , N . (42)

In continuous time,V1 + · · · + VN+1 ≡ 1 (this is implicit in (34)-(35)), so

Dn(t) = B1(0)

(
n−1∏
i =1

1
1 + δLi (t)

)
(V1(t) + · · · + VN+1(t))

is equivalent to the representation of the deflated bond prices in (9). We may
therefore choose to define the discrete deflated bond prices as

D ′
n = B1(0)

(
n−1∏
i =1

1
1 + δL′

i

)
(V̂1 + · · · + V̂N+1), (43)

which simplifies to

D ′
n = B1(0)

N+1∑
i =n

V̂i . (44)

Depending on whether we use (40) or (42), we replaceDn with D̂n or D ′
n in the

pricing rule (10).
We summarize properties of the discretizations in this section in the following

result. InterpolateV̂ and D̃ to continuous time the way we interpolatedX̂ in
the previous section. Let ˆPh, ˜Ph, and P ′

h be the measures onCRd [0, TN+1]
associated with the interpolations ofL̃, L̂, and L′ resulting from (34) (40) and
(42), respectively, and letP denote the corresponding measure induced byL
under the spot Libor measure.

Theorem 2 (i) The discretizations above make the deflated bond pricesD̃ and
D̂, and D′ discrete-time martingales. (ii) ThêDn are decreasing in n, thẽDn

remain positive, and the D′n are both positive and decreasing in n. (iii) The L′
n are

positive. (iv) EachL̃n is a discrete-time martingale with respect to the measure
P̃n+1 defined by d̃Pn+1 = (B1(0)D̃n+1/Bn+1(0))dP∗, with P∗ the spot Libor measure.
Each L′n is a discrete-time martingale with respect to the measure P′

n+1 defined
by dP′

n+1 = (B1(0)D ′
n+1/Bn+1(0))dP∗. (v) As h→ 0, ˜Ph ⇒ P , ˆPh ⇒ P , and

P ′
h ⇒ P .

This result suggests that the discretization ofVn combined with (42) and (44)
is the most attractive from a theoretical viewpoint. It makes the deflated bond
prices positive martingales and it keeps all forward Libor rates positive. Numer-
ical results in Sect. 5, however, indicate that there are sometimes advantages to
using Vn with (40) and (41). None of the caplets is priced exactly by Black’s
formula under any of these discretizations, essentially because noLn is a mar-
tingale under the spot Libor measure. This motivates the approach of the next
section.
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3.3 A hybrid numeraire

We saw in Sect. 3.1 that it is possible to discretize forward Libor in a way that
prices caplets over [TN , TN + δ] without discretization error. By letting the strike
vary, we see that this is equivalent to the statement that the distribution ofL̂N (TN )
coincides exactly with that ofLN (TN ) under the terminal measure (indeed, the
distributions match at all grid points). It is possible, however, that one may want
to price a Libor derivative that depends on the entire tenor structureT1, . . . , TN

and yet for which one is most concerned about getting the distribution of some
intermediateLn correct, rather thanLN . To accomplish this, we introduce a family
of numeraires and an associated family of measures.

For anym = 1, . . . , N + 1, define

B∗
m(t) =

{
Bm(t), t < Tm;

Bη(t)(t)
∏η(t)

i =m+1
1

Bi (Ti −1) , t ≥ Tm.
(45)

This is the value of a trading strategy that holds one unit of the bond maturing
at Tm until maturity and at each subsequent tenor date rolls the proceeds over
into the next bond to mature. Withm = N + 1 we get the terminal bond and with
m = 1 we get Jamshidian’s numeraire (up to a factor of 1/B1(0)). Thus, (45) may
be viewed as interpolating between the extremes of the spot Libor and terminal
numeraires.

Since B∗
m can evidently be realized by a self-financing trading strategy,

B∗
m/BN+1 is a positive martingale under the terminal measurePN+1. Define a

new measureP∗
m by setting(

dP∗
m

dPN+1

)
t

=
B∗

m(t)BN+1(0)
BN+1(t)B∗

m(0)
.

Lemma 3 The dynamics of forward Libor under P∗m are as follows: for n =
1, . . . , m− 1,

dLn

Ln
= −

m−1∑
i =n+1

δLi λi λ
′
n

1 + δLi
dt + λn dWt ;

and for n = m, . . . , N

dLn

Ln
=



∑n

i =m
δLi λi λ

′
n

1+δLi
dt + λn dWt on [0, Tm)∑n

i =η
δLi λi λ

′
n

1+δLi
dt + λn dWt on [Tm, TN+1].

In particular, Lm−1 is a martingale under P∗m, m = 2, . . . , N + 1.

To construct a discretization, we introduce

Zn ≡ Z (m)
n =

{
Ln
∏m−1

i =n+1(1 + δLi ), n = 1, . . . , m− 1,

Ln
∏n

i =m∨η(1 + δLi )−1, n = m, . . . , N + 1,
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with the convention thatLN+1 ≡ λN+1 ≡ 0. Clearly,Zn coincides withXn from
Sect. 3.1 forn < m and with Vn/δ from Sect. 3.2 forn ≥ m. (We could alter-
natively have constructedZn for n ≥ m to parallel Dn; this would lead to an
alternative discretization.)

Lemma 4 The Zn are martingales and satisfy dZn = ZnσZn dW with

σZn =




λn +
∑m−1

i =n+1
δZi

1+δZi +···+δZm−1
λi , n = 1, . . . , m− 1,(

δZn+δZn−1+···+δZm−1
δZn−1+···+δZm−1

)
λn

+
∑n−1

i =m∨η

(
δZi

δZi −1+···+δZm−1

)
λi , n = m, . . . , N + 1.

(46)

Also,

Ln =

{ Zn
1+δZn+1+···+δZm−1

n = 1, . . . , m− 1,

Zn
1−δZn−···−δZm

n ≥ η ∨m.
(47)

The discretization scheme suggested by this result sets

Ẑn((i + 1)h) = Ẑn(ih) exp

(
−1

2
σẐn

(ih)σẐn
(ih)′ + σẐn

(ih)
√

hξi +1

)

(with σẐn
equal toσZn but withZ andλ replaced bŷZ andλ̂) and then applies (47)

to recover discretized Libor ratesL̂n from Ẑn. We have chosen the representation
in (47) to be consistent with (21) forn ≤ m − 1 and consistent with (40)
for n ≥ m, though we could consider other combinations of the schemes in
Sections 3.1 and 3.2. The properties of this discretization are minor modifications
of the ones in Theorems 1 and 2; we therefore record only the most notable feature
in the following result:

Proposition 1 Fix m ∈ {2, . . . , N + 1}. Under the discretization above of
(L1, . . . , LN+1) in the P∗

m measure,̂Lm−1 is a martingale,

δB∗
m(0)E[(L̂m−1(Tm−1)− K )+] = C(λ̄m−1(Tm−1), K , Lm−1(0), B∗

m(0), Tm);

i.e., the(m− 1)th caplet is priced without discretization error.

Thus, the discretization of this section provides the flexibility to pinch the
caplet bias to zero at any maturity, while simultaneously constructing forward
Libor rates of all maturities and making the discretized deflated bond prices
martingales.

4 Discretization of forward swap rates

We now turn to the discretization of the term structure of forward swap rates,
starting from the continuous-time constructions of Jamshidian [14, 15]. Jamshid-
ian [14] constructs all forward swap rates associated with a tenor structure, in
particular allowing each forward swap rate to have a lognormal volatility so that
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swaptions are priced by Black’s formula. He carries out the construction in both
the terminal and spot Libor measures. We consider the discretization of each of
these cases. Although the guiding principles in this setting are the same as in the
forward Libor setting, the expressions involved tend to be more complicated. As
a consequence, our results in this section are somewhat less explicit than in the
previous sections.

4.1 Swap rates in the terminal measure

Our notation largely follows Jamshidian [14, 15]. Let

Bn,N (t) = δ
N∑

i =n

Bi +1(t), t ∈ [0, Tn+1];

the nth forward swap rate,n = 1, . . . , N , is

Sn(t) =
Bn(t)− BN+1(t)

Bn,N (t)
, t ∈ [0, Tn].

This is the fixed rate at timet that equates the present values of streams of
fixed-rate paymentsδSn(t) and floating-rate paymentsδLi (Ti ) occurring atTi +1,
i = n, . . . , N . We extend the definition ofSn to all of [0, TN+1] by settingSn(t) =
Sn(Tn) for t > Tn. Forward Libor rates can be recovered from forward swap
rates through the relation

1 + δLn(t) =
1 + δSn

∑N
i =n

∏i
j =n+1(1 + δSj )

1 + δSn+1
∑N

i =n+1

∏i
j =n+2(1 + δSj )

(48)

(from Sect. 7 of [14]), and in fact (48) could be inverted todefineforward swap
rates in terms of forward Libor rates. Expressions for deflated bond prices in
terms of forward swap rates follow from (48), using (6) and (9).

A lognormal (ormarket) model of forward swap rates specifies

dSn

Sn
= . . . dt + θn dW, (49)

for some bounded, deterministic, possibly time-varying row vectorθn = θn(t)
having at most finitely many discontinuities. The drift depends on the choice of
numeraire asset — i.e., the measure under which the process is constructed. The
defining property of the terminal measure is the choice ofBN+1 as the numeraire
asset. In this measure, Jamshidian [14] shows that the missing drift in (49) is
given byαn(t)θ′

n(t) with

αn(t) = −
∑N

i =n

∑i
k=n+1 δSk(t)θk(t)

∏i
j =n+1,j 6=k(1 + δSj (t))∑N

i =n

∏i
j =n+1(1 + δSj (t))

. (50)
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He also shows thatSn is a martingale under theforward swap measure Pn,N

defined by (
dPn,N

dPN+1

)
t

=
Bn,N (t)BN+1(0)
BN+1(t)Bn,N (0)

;

this is the measure associated with the numeraireBn,N .
A payer’s swaptionexpiring at timeT ≤ Tn grants the holder the right to

enter into a swap with start dateTn and end dateTN+1, making fixed payments
δK and receiving floating paymentsδLi (Ti ) at Ti +1, i = n, . . . , N . Its value at
expiration can thus be expressed asBn,N (T)(Sn(T)−K )+. Jamshidian [14] shows
that with a lognormal specification of the volatility

BN+1(0)EN+1[Bn,N (T)(Sn(T)− K )+/BN+1(T)] = Bn,N (0)En,N [(Sn(T)− K )+]

= C(θ̄n(T), K , Sn(0), Bn,N (0), T),

with

θ̄2
n(t) =

1
t

∫ t

0
θn(u)θ′

n(u) du;

i.e., swaptions are priced by the Black formula for swaptions. (See Musiela and
Rutkowski [20] and Rebonato [22] for further discussion of this and related
formulas for swaptions.)

It is evident from (48) that forward Libor rates cannot have lognormal volatil-
ities if the forward swap rates do. Hence, one cannot use the discretizations of
Sect. 3 to simulate a model consistent with (49). To discretize (49) in the terminal
measure, we introduce the variables

Xn =
Bn,N

δBN+1
, and Yn−1 = Xn−1− Xn − 1, n = 1, . . . , N ,

with X0 = 1 + (1 +δS1)X1. Notice thatYn−1 = Dn−1 = Dn−DN+1; this particular
difference of deflated bond prices turns out to be particularly convenient and
effective in discretizing swap rate models.

Lemma 5 Under the terminal measure, Xn and Yn are martingales on[0, Tn+1]
and satisfy

dXn =
N∑

i =n+1


θi (Xi −1− Xi − 1)

i −1∏
j =n+1

Xj −1− 1
Xj


 dW

and

dYn

Yn
=


θn+1 +

1

N − n +
∑N−1

k=n+1 Yk

×

 N∑

i =n+2

θi Yi −1

i −1∏
j =n+2

(
Yj −1

N − j + 1 +
∑N−1

k=j Yk

+ 1

)

 dW.
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Also,

δSn =
Xn−1− Xn − 1

Xn
=

Yn−1

N − n + 1 +
∑N−1

i =n Yi

(51)

The natural counterpart to the discretization methods developed in Sect. 3
applies the modified Euler scheme to logYn to construct discrete martingales
Ŷn(ih), i = 0, 1, . . ., and then applies (51) to recover discretized forward swap
ratesŜn. One could use (48) to construct discretized forward Libor rates as well.
We summarize properties of this method in the following result:

Theorem 3 (i) The discretization above makes the deflated bond prices pos-
itive martingales and is thus arbitrage-free. (ii) ThêSn remain strictly pos-
itive, almost surely. (iii) EachŜn is a martingale with respect to the mea-
sure dP̂n,N = (δBN+1(0)X̂nBn,N (0))dPN+1. (iv) If T is a grid point ih, then
BN+1(0)δE[(ŜN (T)−K )+] = C(θ̄N , K , SN (0), Bn,N (0), T); i.e., the last swaption is
priced without discretization error. (v) ThêSn converge in law to the Sn as h→ 0.

4.2 Swap rates in the spot Libor measure

A consequence of Jamshidian’s [14] analysis is that in the spot Libor measure
the missing drift in (49) is (γη − αn)θn with αn as in (50) and

γn =
δSn

∑N
i =n

(
θn +

∑i
k=n+1 δθkSk

)∏i
j =n+1,j 6=k(1 + δSj )

1 + δSn
∑N

i =n

∏i
j =n+1(1 + δSj )

. (52)

As this might suggest, the relevant expressions in this setting become alge-
braically cumbersome, though they do not raise any fundamentally new issues.
Consequently, we cover only the key steps.

For purposes of discretization we introduce the variables

Mn =
1 + δSn

∑N
i =n

∏i
j =n+1(1 + δSj )

1 + δS1
∑N

i =1

∏i
j =2(1 + δSj )

, n = 1, . . . , N + 1, (53)

R1 = MN+1, and Rn = Mn − MN+1, n = 2, . . . , N . Under our convention that
Sj (t) = Sj (Tj ) for t > Tj , these processes are well-defined throughout the interval
[0, TN+1].

Lemma 6 Under the spot Libor measure, the Mn and Rn are positive martingales.
Moreover,

δSn =
Mn −MN+1

Mn+1 + · · · + MN+1
=

Rn

Rn+1 + · · · + RN + (N + 1− n)R1
. (54)

Using (49), (50), (52), and (53) we can find the diffusion coefficientsσMn and
σRn of logMn and logRn as functions of theθj andSj through straightforward but
tedious differentiation. Using (54) we can then expressσMn purely as functions
of the θj and Mj and we can expressσRn purely as a function of theθj and
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Rj . In this way, we arrive at equations of the formdMn/Mn = σMn dW and
dRn/Rn = σRn dW analogous to those derived in previous sections. The resulting
expressions forσMn and σRn are lengthy and unenlightening so we omit them.
Nevertheless, we may simulate an Euler scheme for logMn or logRn to produce
discretized variableŝMn or R̂n and then use (54) to recover discretized swap rates
Ŝn.

Several features of these schemes are easily verified. Both ensure that deflated
bond prices are positive martingales. For it follows from (9) and (48) that the
discrete deflated bond prices are

D̂n = B1(0)
1 + δŜn

∑N
i =n

∏i
j =n+1(1 + δŜj )

1 + δŜ1
∑N

i =1

∏i
j =2(1 + δŜj )

= B1(0)M̂n = B1(0)(R̂n + R̂1),

and theM̂n or R̂n are positive martingales by construction. In addition, recovering
the discretized swap rates from theR̂n through (54) ensures that the swap rates
stay positive.

As a final observation, we consider the discrete counterpart of the forward
swap measure resulting from the discretization of logMn. In continuous time, the
forward swap measurePn,N is related to the spot Libor measure through

(
dPn,N

dP∗

)
t

=
Bn,N (t)B∗(0)
B∗(t)Bn,N (0)

=

(
δ

N+1∑
i =n+1

Di (t)

)
B∗(0)

Bn,N (0)
.

We therefore define

dP̂n,N =

(
δ

N+1∑
i =n+1

D̂i

)
B∗(0)

Bn,N (0)
dP∗.

Now

N+1∑
i =n+1

D̂i = B1(0)(M̂n+1 + · · · + M̂N+1) = B1(0)(R̂n+1 + · · · R̂N + (N + 1− n)R̂1)

so we see from (54) that under either discretizationŜn
∑N+1

i =n+1 D̂i is a martingale
underP∗ and thusŜn is a martingale under̂Pn,N .

5 Numerical comparison

Thus far, our discussion of discretization has focused primarily on the extent to
which the absence of arbitrage is preserved after discretization. To a lesser extent,
we have considered the impact on the accuracy of caplet and swaption prices, the
prices to which a model is commonly calibrated. The purpose of this section is to
show, through numerical examples, that the discretizations proposed in previous
sections do not entail a loss of accuracy in pricing caplets and swaptions. On the
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contrary, we find that these discretizations often introduce lower discretization
bias in these prices than more obvious schemes. In addition, we investigate the
effect of making a finite-sample adjustment that exploits the martingale property
of deflated bond prices. In our experiments, this reduces the mean square error
in caplet and swaption price, in some cases by vast amounts. The applicability
of this method depends crucially on our approach to discretization.

The number of variations of methods, scenarios, and instruments one could
investigate numerically is limitless. Our objective here is by no means to be
exhaustive. In particular, among the interesting possibilities not explored here is
the use of the many higher-order schemes in Kloeden and Platen [17] with either
the variables introduced in Sections 3 and 4 or the forward Libor and swap rates
themselves.

5.1 Libor models

The base scenario we use for most of our results setsδ = h = 0.25 andN +1 = 40,
corresponding to a ten-year term structure of quarterly rates. The initial values
are of the formLn(0) = log(a +bn), with a andb chosen so thatL0(0) = 0.05 and
L39(0) = 0.07. The base-case volatilities are constant over the intervals [Ti , Ti +1),
with

λn(Ti ) = 0.1500 + 0.0025(n − i ), i = 0, . . . , n − 1, n = 1, . . . , 39.

These values for the initial forward ratesLn(0) and initial implied volatilities
λn(0) are broadly consistent with the U.S. dollar term structure in late 1997.
The assumption that volatility depends only on time to maturity is made for
simplicity. In addition to this base case, we will consider a few other scenarios.
We compare the discretizations of Sect. 3 with Euler schemes forLn and logLn

(as in (11) and (12)). We mainly compare performance of the methods in pricing
at-the-money caplets — the strike for thenth caplet isK = Ln(0). In the base
scenario, the prices for these caplets increase withn from 3.74 to 23.77.

Figure 1 compares the estimated bias in caplet prices for four methods in
the terminal measure: theXn discretization of (24), theDn discretization of (30),
and Euler schemes forLn and logLn. The error bars have a halfwidth of one
standard error and show that the apparent biases are highly significant and not
attributable to simulation error. As expected, theXn and logLn discretizations
produce unbiased estimates of the final caplet. But for shorter maturities the
Xn method produces substantially smaller errors. The method in (30) does not
appear competitive. Because it makes 1 +δL̂N lognormal rather thanLN , it does
not correctly price the final caplet. But in considering Fig. 1 and subsequent
figures it is important to keep an additional consideration in mind: the martingale
discretizations (includingXn andDn in Fig. 1) price bonds without bias precisely
because they make the deflated bond prices martingales. The other methods
(including Ln and logLn in Fig. 1) are subject to discretization bias in pricing
bonds as well as caplets.
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Fig. 1. Base case under termi-
nal measure

To obtain the tight error intervals in Fig. 1, we ran 10 million replications
and used the control variatesCn = δBn+1(0)(ζn − K )+ where

ζn = Ln(0) exp

(
− 1

2h
n−1∑
i =0

λ2
n(ih) +

√
h

n−1∑
i =0

λn(ih)Zi

)
,

and theZi are the standard normals used to drive the simulations. EachCn is an
unbiased estimator of thenth caplet price. For any discretizationL̂n, our estimate
of the bias in thenth caplet is

δBN+1(0)(L̂n(Tn)− K )+D̂n+1(Tn+1)− Cn.

Because of the high correlation between theζn and the discretized variables,
subtractingCn rather than the Black price itself substantially reduces the variance
of the estimated bias. We used this method in all our results.

Figure 2 compares five discretizations in the spot Libor measure. TheVn

method refers to (38) with the second line of (37) and (40); the modifiedVn

method refers to (38) with the first line of (37) using (42) to determine the
discrete deflated bond prices; theDn method refers to (39); and the other two are
Euler schemes forLn and logLn. As in the terminal measure, the results based
on Dn andLn are very similar; and whereas these are biased high, discretization
of logLn produces results biased low. TheVn method and modifiedVn methods
give the best results across all maturities. Because theVn method does somewhat
better than the modifiedVn method, we use it in subsequent comparisons.

Figure 3 illustrates the effect of using the hybrid numeraire of Sect. 3.3. The
terminal measure corresponds tom = N +1 and the spot measure tom = 1. These
are compared with two intermediate values ofm. As anticipated, the (m− 1)th
caplet is priced without bias in each case for whichm > 1. (Notice the change
of scale compared with the previous figures.) In this and most subsequent figures
we omit the error bars for clarity; they are of the same magnitude as in Figures 1
and 2.
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Figures 4 and 5 compare various methods for caplets that are 5% in-the-
money (strikes of 0.95Ln(0)) and out-of-the-money (strikes of 1.05Ln(0)), respec-
tively. The results are generally consistent with what we observe at-the-money,
except for some additional bias at very short maturities. Over most of the range,
the Xn andVn methods appear to be the best.

Figure 6 compares select methods in a variant of our base case in which the
volatilities areλn(Ti ) = 0.25− 0.0025(n− i ) and are thus decreasing rather than
increasing with maturity. In Fig. 7 we again use increasing volatilities but now
takeN = 19, δ = 0.5, h = δ/2, andLn(0) = log(a + bn) with a andb chosen so
that L0(0) = 0.05 andL19(0) = 0.07. Neither of these modifications affects the
relative performance of the methods.

5.2 Finite-sample adjustment

As previously noted, discretizations that make the deflated bond prices mar-
tingales (and are initialized to the initial term structure) price bonds without
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discretization bias. We now take this idea one step further and introduce a finite-
sample adjustment that makes the simulated bond prices match true bond prices
over finitely many paths. We then examine the impact of this adjustment on caplet
prices. A similar adjustment is proposed in a setting without discretization error
by Duan and Simonato [6]; see also the discussion in Boyle et al. [4]. Similar
adjustments appear to be in widespread use in practice.

We detail the method in the case of the discretizationX̂n in the terminal
measure. Let̂X (k)

n (ih), k = 1, . . . , K , denote the values of̂Xn simulated at thei th
step ofK independent replications. Because eachX̂n is a martingale,E[X̂n(ih)] =
X̂n(0) = Xn(0). To match this mean over theK paths, we set

X̂ (k)
n (ih)←− X̂ (k)

n (ih)
KXn(0)∑K

j =1 X̂ (j )
n (ih)

, k = 1, . . . , K , (55)

and then recover the discretized Libor ratesL̂n(ih) from these adjusted variables.
A similar adjustment is possible with any of our discretizations. It does not
appear to be applicable to a standard discretization ofLn or logLn, because
neitherE[Ln(t)] nor E[log Ln(t)] is readily available, and the discretized deflated
bond prices will not be martingales.

Although this method causes bonds to be priced without simulation error
over finitely many paths — and may therefore reduce variance in pricing other
instruments — it potentially introduces bias in dividing by the sample mean in
(55). To balance bias and variance we examine the impact on mean square error
of caplet prices.

Figure 8 plots mean square errors with and without the finite sample adjust-
ment using theXn method in the terminal measure and theVn method in the spot
measure. These estimates are based on 5000 batches each consisting ofK = 1000
replications. (The finite-sample adjustment makes theK paths in a single batch
dependent so batching is necessary for proper estimation of mean square errors.)
The results show modest improvement from the adjustment.
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We find much greater improvements in a different scenario. Here we take
values broadly consistent with the Japanese ten-year term structure in late 1997.
Specifically,Ln(0) = 0.01+0.00075n, n = 1, . . . , 39, andλn(i ) = 0.70−0.01(n−
i ), so the rates are much lower and the volatilities much higher than in the U.S.
market. The corresponding caplet prices increase withn from 3.71 to 46.11. These
are rather extreme parameter values and no method appears to give satisfactory
results in this setting. This is reflected in Fig. 9. Figure 10, based on theVn

method in the spot measure, shows both that the errors in this setting can be
quite large but also that the adjustment can produce substantial improvements.
Figure 11 is even more dramatic. Over 1000 paths, the errors from simulating
under the terminal measure are enormous, but they are brought under control by
the finite-sample adjustment. The adjustment would not be available in a direct
discretization ofLn or logLn.
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5.3 Swap rate models

Our base case for comparing discretizations of lognormal swap rate models uses
the same initial term structure as in Sect. 5.1 and specifies swap rate volatilities
of

θn(Ti ) = 0.2475− (n − i )0.0025, i = 1, . . . , n − 1, n = 1, . . . , N .

As should be clear from the formulas in Sect. 4, simulating any discretization
of a lognormal swap rate model is considerably more demanding than simulat-
ing a lognormal model of forward Libor. Our investigations in this setting use
fewer replications (1 million rather than 10 million) and have explored fewer
alternatives.

Figure 12 summarizes the comparison of various methods. (These use a con-
trol variate similar to the one described in Sect. 5.1.) The worst methods are
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the straightforward Euler discretizations ofSn and logSn. The best method ap-
pears to be theYn discretization under the terminal measure, but the spot Libor
discretizations perform quite well also.

6 Conclusions

The main conclusion of this work is that simulating linear combinations of de-
flated bond prices can have advantages over direct simulation of forward Libor
or swap rates. Linear combinations of deflated bond prices are martingales, and it
is often easier to preserve the martingale property in a discretization scheme than
to find the appropriate drift adjustment for a discretization of Libor or swap rates.
By enforcing the martingale property in the discretization, we can keep the dis-
cretized model arbitrage-free. Our numerical results suggest that this advantage
does not come at the expense of accuracy of the discretization; on the contrary,
the schemes we have proposed generally give better results (and sometimes much
better results) than more standard discretizations. They also lend themselves to
a simple finite-sample adjustment that can further reduce errors.

We have by no means exhausted the possibilities opened up by this approach.
One could investigate other linear combinations and other numeraire assets, lin-
ear combinations with time-varying coefficients, nonlinear transformations other
than logarithms, variable step sizes, and any of the many higher-order methods
developed in the discretization literature. Ruling out arbitrage does not, by it-
self, provide guidance in choosing among these many possibilities; we view these
many variations and potential enhancements as complementing the approach pro-
posed here.

Appendix: Proofs

Proof of Lemma 1.Equation (20) follows from (18) by induction, starting at
n = N (at whichXN = LN ) and proceeding down ton = 1. Ito’s lemma applied



64 P. Glasserman, X. Zhao

to (18) using (5) gives

dXn

Xn
=

(
λn +

N∑
i =n+1

δLi λi

1 + δLi

)
dW. (56)

Substituting on the right using (20) gives (19). ThatXn is indeed a martingale
follows from the boundedness of the expression in parentheses in (56).�

Proof of Theorem 1.(i) That theD̂n are positive martingales follows from (22)
and the fact that thêXi are positive martingales by construction. (ii) Positivity of
L̂n follows from (21). (iii) Let ˆFi be theσ-algebra generated byξ1, . . . , ξi . For
i < j ,

Ên+1[L̂n(jh)| ˆFi ] = EN+1

[
L̂n(jh)

(
dP̂n+1

dPN

)
jh

| ˆFi

](
dP̂n+1

dPN

)−1

ih

= EN+1[L̂n(jh)D̂n+1(jh)| ˆFi ]D̂n+1(ih)−1

= L̂n(ih)D̂n+1(ih) · D̂n+1(ih)−1 = L̂n(ih),

using a standard change-of-measure identity for conditional expectations in the
first equation, the definition of̂Pn+1 in the second, and finally the fact that
L̂nD̂n+1 = X̂n is a martingale underPN+1.
(iv) Observe thatdXN = XNλN dW so

XN (t) = XN (0) exp

(
−1

2
λ̄2

N (t)t +
∫ t

0
λN (u) dWu

)
.

Consequently, forn = N , (24) constructs the solution without discretization error.
In particular,X̂N (ih) has the distribution ofXN (ih) at every grid pointih, and
using the interpolation in (29) this property extends to intermediate times as well.
But LN ≡ XN and, under (21),̂LN ≡ X̂N , so L̂N (t) has the distribution ofLN (t)
for all t , and thenE[(L̂N (TN )− K )+] = E[(LN (TN )− K )+] for all K .
(v) Defineσn : RN × R+ → Rd by

σn(x, t) = x+
n


λn(t) +

N∑
j =n+1

δx+
j λj (t)

1 + δx+
j + · · · + δx+

N


 , n = 1, . . . , N ,

so that dXn(t) = σn(X(t), t) dWt . Set λmax = supn,t ‖λn(t)‖. Then eachσn is
linearly boundedbecause

‖σn(x, t)‖ ≤ |xn|
N∑

j =n

‖λj (t)‖ ≤ Nλmax‖x‖,

and Lipschitz because

‖σn(x, t)− σn(y, t)‖ ≤ 2Nλmax‖x − y‖,
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for all x, y ∈ Rd. It now follows from Theorem II.2.13 of Gihman and Skorohod
[9] that X̂ converges in law toX ash→ 0. Because the mapping from̂X to L̂ is
continuous and the same as the mapping fromX to L, it follows from Billingsley
[2, Theorem 5.1, p.30] that̂L converges in law toL. �

Proof of Lemma 2.From Jamshidian [14, 15], we know that the deflated bond
pricesDn are martingales. Moreover,Dn = B1(0)

∏n−1
1 Yi , so

dDn = B1(0)
n−1∑
i =1

(Yi − 1)λi

n−1∏
j =1

Yj dW,

and

dDn

Dn
=

n−1∑
i =1

(Yi − 1)λi dW,

which becomes (32) upon substitution ofDi +1/Di for Yi .
SinceVn = B1(0)[Dn−Dn+1], the Vn inherit the martingale property from the

Dn. Ito’s lemma gives

dVn

Vn
=

(
λnYn +

n−1∑
i =1

(Yi − 1)λi

)
dW.

Solving for theYi in terms of theVj we get

Yi =
Vn − Vn−1− · · · − V1− 1

Vn−1− · · · − V1− 1
,

and making this substitution yields (31). Straightforward induction arguments
verify (33) and (34). To establish (35) observe that

N+1∑
n=1

Vi =
N∑

n=1

(
n−1∏
i =1

Yi −
n∏

i =1

Yi

)
+

N∏
i =1

Yi =
0∏

i =1

Yi = 1,

so (35) follows from (34).�

Proof of Theorem 2.(i) That the D̃n are martingales is immediate from (39),
that the D̂n are martingales follows from (38) and (41), and that theD ′

n are
martingales follows from (38) and (44). (ii) Positivity of̃Dn is also immediate
from (39). In light of (41), positivity ofV̂n implies that theD̂n decrease withn in
a scheme based on (40). Similarly, (44) and positivity ofV̂n imply that theD ′

n are
both positive and decreasing withn. (iii) Positivity of L′

n is a direct consequence
of (42). (iv) From (34) we find that̃LnD̃n+1 = [D̃n − D̃n+1]/δ, so L̃nD̃n+1 is a
martingale. Using the same argument as in Theorem 1(iii), this implies thatL̃n is
a martingale under̃Pn+1. Similarly, L′

nD ′
n+1 is a martingale soD ′

n is a martingale
underP′

n+1. (v) For x ∈ RN and t ∈ [0, TN+1], let
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σn(x, t) = xn

(
φ

(
xn + xn−1 + · · · + x1− 1

xn−1 + · · · + x1− 1

)
λn(t)

+
n−1∑

i =η(t)

φ

(
xi

1− xi −1− · · · − x1

)
λi (t)


 ,

so thatdVn(t) = σn(V (t), t) dWt . Just as in the proof of Theorem 1(iv), eachσn

is linearly bounded and Lipschitz, so convergence in law of theV̂ to V follows
from Theorem II.2.13 of Gihman and Skorohod [9]. Convergence in law ofL̂
and L′ to L then follows from the continuity of the mappings in (34) and (35).
The same argument applies toD̃ and L̃. �

Proof of Lemma 3.Let

ξt =

(
dP∗

m

dPN+1

)
t

=
B∗

m(t)BN+1(0)
BN+1(t)B∗

m(0)
.

Then

ξt =

{
BN+1(0)

∏N
i =m(1 + δLi (t)), t ≤ Tm;

BN+1(0)
∏η(t)

i =m+1
1

Bi (Ti −1)

∏N
i =η(t)(1 + δLi (t)), t > Tm.

Thus,

dξt

ξt
=

{ ∑N
i =m

δλi (t)Li (t)
1+δLi (t) dWt , t ≤ Tm∑N

i =η(t)
δλi (t)Li (t)

1+δLi (t) dWt , t > Tm.

It now follows from Girsanov’s theorem that

Wo
t = Wt −

∫ t

0

N∑
i =m∨η(s)

δλ′
i (s)Li (s)

1 + δLi (s)
ds

is a standard Brownian motion underP∗
m. In view of (5), this means that the

dynamics of forward Libor underP∗
m are given by

dLn(t)
Ln(t)

=



∑n

i =m∨η(t)
δλn(t)λi (t)′Li (t)

1+δLi (t) dt + λn(t) dWo
t , m∨ η(t) ≤ n;

−∑m−1
i =n+1

δλn(t)λi (t)′Li (t)
1+δLi (t) dt + λn(t) dWo

t , m∨ η(t) ≥ n + 1.

This is equivalent to the representation in the statement of the lemma.�

Proof of Lemma 4.The calculations involved in verifying these expressions are
very similar to those used in Lemmas 1 and 2 so we omit the details.�

Proof of Proposition 1.The proofs of the two assertions in the proposition are
essentially the same as the proofs given for parts (iii) and (iv) of Theorem 1.�

Proof of Lemma 5.A simple induction argument verifies that

Xn = 1 + (1 +δSn+1)Xn+1, n = 1, . . . , N − 1, (57)

from which follows
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dXn =
N∑

i =n+1


δθi Si Xi

i −1∏
j =n+1

(1 + δSj )


 dW.

Making the substitution 1 +δSj = (Xj −1 − 1)/Xj yields the expression in the
lemma. ForYn we have

dYn = d(Xn − Xn+1− 1)

=


δθn+1Sn+1Xn+1 +

N∑
i =n+2


δθi Si Xi δSn+1

i −1∏
j =n+2

(1 + δSj )




 dW.

Noting thatδSn+1 = Yn/Xn+1, this becomes

dYn =


θn+1Yn +

Yn

Xn+1


 N∑

i =n+2

θi Yi −1

i −1∏
j =n+2

Xj −1− 1
Xj




 dW. (58)

Finally making the substitutionXn =
∑N−1

i =n Yi + N − n + 1 yields the expression
in the lemma.�

Proof of Theorem 3.(i) The deflated bond prices are given byDn = Yn−1 + 1, so
the D̂n are positive martingales because theŶn are. (ii) Follows from (51) and
positivity of theŶn. (iii) and (iv) are proved similarly to Theorem 1(iii)-(iv). (v)
As in Theorems 1 and 2, the key step is verifying that the diffusion coefficient of
Yn is linearly bounded and Lipschitz. In fact, from (58) we can see that the norm
of the diffusion coefficient is bounded by a constant times the norm ofY . In
particular, each of the factors (Xj −1−1)/Xj is between 0 and 1, becauseYj −1 ≥ 0;
and eachYi −1/Xn+1 is between 0 and 1 becauseXn+1 =

∑N−1
i =n+1 Yi + N − n + 1.

�
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