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cording to Black’s formula, thus allowing automatic calibration to market data.
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differences of ratios of bond prices to numeraire prices turns out to be particularly
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1 Introduction

A major development in the modeling of interest rates for pricing term structure
derivatives is the emergence of models that incorporate lognormal volatilities
for forward rates while keeping rates stable. It was noted by Heath, Jarrow, and
Morton [12] that in the general class of models they developed based on continu-
ously compounded forward rates, lognormal volatilities lead to rates that become
infinite in finite time with positive probability. By working instead with various
types of discretely compounded rates, Sandmann and Sondermann [23, 24], Brace
et al. [5], Goldys et al. [10], Miltersen et al. [19], Musiela and Rutkowski [21],
and Jamshidian [14, 15] have overcome this difficulty and developed well-posed
models that indeed admit deterministic diffusion coefficients for the logarithms of
forward rates — i.e., lognormal volatilities. The rates themselves are not simul-
taneously lognormal, but each becomes lognormal under an appropriate change
of measure.

This class of models — often referred to market modeldecause of their
consistency with market conventions — have three principal attractions:

o they preclude arbitrage among bonds (and just as in the HIM [12] framework
this means that the drift is determined once the volatilities are specified);

o they keep rates positive (a consequence of the lognormal form of the volatility
that further precludes arbitrage between bonds and cash);

o they price caplets or swaptions according to Black’s [3] formula, consistent
with market practice.

The first property corresponds to what Musiela and Rutkowski [20] caleak
no-arbitrage conditionand the first two together make up their fab-arbitrage
condition The last feature means that the models are easily calibrated to market
data. Market participants quote caplet and swaption prices according to their
Black implied volatility; if these implied volatilities are used as inputs to a
market model, market prices are recovered exactly.

These attractive properties must, however, be understood as features of
continuous-time models. (Though discretely compounded, the forward rates
evolve continuously). Pricing complex path-dependent instruments in these mod-
els typically requires numerical computation and thus discretization. A casual
discretization can easily lead to a model without any of the three attractive prop-
erties identified above. Since it is ultimately the discretized model that is used for
pricing, the theoretical advantages of the continuous-time models are potentially
lost in practice. The gap between the discretized and continuous models can be
substantial because rather coarse time discretizations (e.g., with an increment of
three months) are frequently used in practice.

This paper develops discretizations of lognormal forward Libor and forward
swap rates that preserve some, though not all of the attractive features of the
continuous-time formulations, and appear to be substantially better than naive
discretizations in several respects. We put particular emphasis on discretizations
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ensuring that bond prices deflated by a numeraire asset are martingales, since
this is the key condition for the absence of arbitrage.

There is a well-established practice in the derivatives industry of making
adjustments to discretized versions of continuous-time models to keep them
arbitrage-free. In the open literature, such adjustments are commonly found in
binomial models (e.g., [11]) where the discretization is in both time and space.
They seem to be less commonly employed in the Monte Carlo setting, where the
discretization may be in time alone. In simulating an HIM model using an Euler
discretization, a simple adjustment to the drift (reviewed in Sect. 2) keeps the
discrete model arbitrage-free; this adjustment appears to be widely known in the
industry. It may be viewed as a special case of a general strategy of solving for
the correct higher-order adjustment to an otherwise straightforward discretization.

For reasons that will be made clear in Sect. 2, this strategy is inapplicable
to the simulation of forward Libor and forward swap rates; depending on the
discretization used, the desired adjustment may not exist or may be intractable.
We therefore develop a different strategy. For each model, we find a change
of variables thatan be discretized in an arbitrage-free way and simulate those
variables instead, easily recovering the original Libor and swap rates along the
way. For example, the variables may be ratios of bond prices to the price of
a numeraire asset, linear combinations of these ratios, or logarithms of linear
combinations. In several cases, the new variables are martingales if and only
if the model is arbitrage-free. This obviates the need to make a higher-order
adjustment to the drift to keep the model arbitrage-free — both the discrete and
continuous drift are fixed at zero. We also show how to develop discretizations
that keep Libor and swap rates positive. And while it does not seem possible
to simultaneously price caplets of all maturities without discretization error, we
show how to simulate forward Libor rates to eliminate bias in any one caplet
(not necessarily the last). This flexibility may prove useful in adapting the choice
of discretization to the instrument to be priced.

There is, of course, a large literature on discretization schemes for stochastic
differential equations that accelerate convergence to continuous-time limits; see,
e.g., Kloeden and Platen [17]. We view our approach as a complement rather than
an alternative to these methods. For example, although we detail only Euler dis-
cretizations of our transformed variables, one could also consider higher-order
discretizations like those of Milstein [18] and Talay [26]. This would poten-
tially further reduce discretization error while continuing to preclude arbitrage.
At the same time, simply applying a higher-order discretization to the origi-
nal continuous-time equations would not by itself make the discretized process
arbitrage-free.

The rest of the paper is organized as follows. Section 2 reviews background
on lognormal models of forward Libor and the discretization of continuous-time
term structure models. We work within the discrete-tenor formulation of Jamshid-
ian [14, 15] and Musiela and Rutkowski [20, 21] because it is the best suited for
simulation. Section 3 develops discretizations in the terminal measure used by
Brace et al. [5] and Musiela and Rutkowski [20, 21], in the spot Libor measure
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introduced by Jamshidian [14, 15], and in a hybrid that provides the flexibil-
ity to choose the bias-free caplet. Section 4 carries out a similar analysis for
swap rates, first discretizing in the terminal measure, then in the spot Libor mea-
sure. In Sect. 5, we numerically compare our discretizations with more standard
approaches. We also take the arbitrage-free requirement one step further by en-
forcing it in finite samples. We argue that the feasibility of such a finite-sample
adjustment depends critically on our discretization approach and observe through
numerical examples that it can lead to substantial variance reduction. All proofs
are deferred to an appendix.

2 Preliminaries on lognormal Libor models

We begin with a brief review of discrete-tenor formulations of Libor market
models based on finitely many bonds, as developed by Jamshidian [14, 15] and
Musiela and Rutkowski [20, 21]. Thenor structureis a finite set of dates

0=Tog<T1 < -+ <Tn <Tnu1

representing maturities spaced, e.g., three months or six months apart. We will

assume throughout that the day-count fractiéné Ti+1—T;,1i =0,...,N, are

all equal to a fixed (e.g.,d6 = 0.25 years). In practice, day-count conventions
would make these slightly different; we use a fixédmerely to lighten the
notation. Define a right-continuous functien: [0, Ty+1) — {1,...,N +1} by
taking n(t) to be the unique integer satisfying

Thp-1 <t < Ty -

Associated with each tenor dafg is a zero-coupon bond maturing at that date;
Bi(t) is the price of that bond at timee [0, T;] and B (T;) = 1.
The forward Libor rate at timet for the accrual periodT, Ti+1], t < T, is

o _ 1 [ Bi(t) .
L'(t)_6<Bi+1(t)_1>’ i=1...,N. )

It is at times notationally convenient to extend the definitionLpbeyond the
ith tenor date; we do so by settihg(t) = L;i(T;) for t > T;. At a tenor dateT;
the price of any bondB,,, n > i, that has not yet matured is given by

n—1 1
Bn(Ti) = H m,
j=i !
more generally, at an arbitrary time< T, we have

n—1 1

Ba(®) =Byy(® || 7o @)
0 1:1;[(01+5Lj )
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As discussed by Jamshidian [14], this reveals an indeterminacy in the model: the
bond prices cannot be fully recovered from the forward Libor rates alone, because
between tenor dates the forward Libor rates do not specify how to discount back
from the next tenor date to the current time. The indeterminacy is removed by
the choice of numeraire asset; different choices of numeraire lead to different
constructions of the forward Libor processes.

In the constructions we consider, the forward Libor processes are determined
by a stochastic differential equation of the form

dLn(t) _
La(t)

in which W is a standardi-dimensional Brownian motion, thie,(0) are deter-
ministic, and\,(t) are bounded, deterministit-dimensional row vectors having

at most finitely many discontinuities. This is what is meant by a lognormal
specification of the volatility. The drift in (3) is determined by the choice of
numeraire. (Throughout, we u¥é to denote a standard Brownian motion under
the measure relevant to the context, rather than introduce a separate symbol for
Brownian motion under each measure. This notational simplification should not
cause confusion because we seldom consider more than one measure at a time.)
If M is a strictly positive semimartingale, then to construct forward Libor in the
measure associated with numeraifeis to choose the drift in (3) so that the
deflated bond prices

Da(t) £ Blf/l(tt),

which then precludes arbitrage from trades among the bonds. Thisvstieno-
arbitrage condition of Musiela and Rutkowski [20]. See Musiela and Rutkowski
[20, 21] and Jamshidian [15] for a thorough development of these issues, and
see Duffie [7] and El Karoui et al. [8] for background on changes of numeraire
and changes of measure.

TakingM; = By+1(t) leads to the construction of forward Libor in ttexminal
(or forward) measure used by Musiela and Rutkowski [20], in which

L.dt+A(t)dW, n=1,...,N, A3)

n=1...,N+1  are martingales 4)

N

dLn(t) _ SAn()Ni ()L (t)
La®) 2 1+0Li(t)

and in which the deflated bond prices become (cf. (2))

dt+M\(®)dW, n=1,....N, (5
i=n+1

N
Da(t) = [J@+6L®), n=1... N+1 (6)

j=n

Under this measure, the time-0 price of a security payirag time T, is

N
Bn+1(0)E[¢Dn(Tn)] = Bu+a(0)E |¢ [ J(2 +6L(Tn))| - 7

J=n



40 P. Glasserman, X. Zhao

(Here and throughout, we ug&eto denote expectation under whatever measure
is relevant to the context — in this case, the terminal measure.)
Jamshidian [14, 15] introduces the numeraire

n(t)—1

* — B’I(t)(t)
"0=50 U

B; (T;)
BJ +1 (-I—]

which may be interpreted as the result of buyin®4(0) bonds at time 0 maturing

at T1, and then at each tenor date selling the bonds that matured and investing
the proceeds in the bond that matures next. (Jamshidigis’'teft-continuous but

for discretization the right-continuous version will be preferable.) This is thus a
discretely compounded analog of the money market account that gives rise to the
usual risk-neutral measure in, e.g., Heath et al. [12] and numerous other settings.
From B*, Jamshidian defines thepot Libor measurén which

dLn(t) _ <= SAa()N (O)'Li(t)
La(t) 2. 1+6L;(t)

dt+Aq(t)dW, n=1... N. (8)
i=n(t)

The deflated bond prices become (cf. (2))

1
Bl(O)gm, n=1...,N+1 (9)

Dn(t)

n(ilIl 1 n—1 1
B]_(O) )
1 1oL M) L 1oL

and the time-0 price of a security payiggat time T, is

n—1

E[CD(To)] = By (0 [c 1T u(leJ(m] . (10
j=1

In Sect. 3.3, we introduce a hybrid of these two numeraires.

In a Monte Carlo implementation, we deal not with the continuous-time
processed, but with some approximatiofi, defined on a finite set of times
0=ty <t <- - <t and then possibly extended to all times intlQ by
interpolation. For simplicity, we will take thg to be evenly spaced and further
assume that their common spacimndivides the tenor spacing This ensures that
the tenor dates are among the simulated dates without burdening the notation. We
call a discretizatiorarbitrage-freeif the discrete deflated bond pricBs, defined
by replacingL, with L, in (6) or (9) are discrete-parameter positive martingales
on{0,h,2h,...}.

This condition is by no means automatically satisfied. In particular, it is
violated by the standard Euler scheme

La(G + Dhy = LaGh) + LaGh)nGh)h + LaG)AaGH)[Wgap — W], (12)
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(with un the drift in either (5) or (8)) and also by the discretization
La(G +Dh) = LaGh) (12)
) 1 . . .

X exp<[un(1h) - E/\n(Jh))\n(Jh)’ h + A (ih)[W+20 — V\/jh]) ,
which corresponds to an Euler scheme forllgg(Because we take to be right-
continuous, ifjh = Ty then in computingu,(jh) according to (8) the summation
starts at = k + 1 rather thari = k. This is consistent with the recommendation
in Sidenius [25].)

Similar issues arise in discretizing other models, but it is informative to

contrast this setting with the closely related HIM framework. A continuous-time
HJIM model (with scalakV; for simplicity) sets

dfr(t) = pr(t) dt + o (t) dW,

with fr(t) the forward rate forT, T +dT] as of timet and

T
ur(t) = o7 1) / ou(t) du (13)

under the risk-neutral measure. This choice of drift ensures that the deflated bond

prices
T t
exp(—/ fu(t)du>/exp</ fu(u)du)
t 0

are martingales (it) under the regularity conditions detailed by Heath et al. [12].
Given a discretizatiofy, (jh) in both time and maturity, the corresponding discrete
no-arbitrage condition reduces to

~ k ; . k 2 ,.
e niMhg, [6” D i @ +1)h)h] — e pO fjh(uh)h7 (14)
with Ej, denoting expectation conditional on the history of the process over
{0,h,...,ih}. This condition will not be met by the Euler scheme
fin((i + D) = fin(ih) + i (ih)h + o (h) Ve, (15)

with /i defined by replacing integration in (13) by summation and witht; .1 =
[Wi+1n — Win]. Nevertheless, starting from a specification of the forward rate
volatilities and inductively enforcing (14) one can solve for fh¢hat satisfies
(14) when the forward rates are simulated via a modified Euler scheme that
replacesu"with /i in (15). The appropriate modified drift is

h j 2 /i1 2

this is a straightforward consequence of the fact that the conditional expectation in
(14) involves only the expectation of the exponential of normal random variables,



42 P. Glasserman, X. Zhao

which is available explicitly. Formally lettindgp — O in this expression while
holdingt =ih andT = jh yields

%d'iT [/tTau(t)du}

The modification to the drift is therefore negligible as— 0 but forh > 0
is just enough to keep the discretized model arbitrage-free. This adjustment is
derived in Andersen [1] (in a more general form that does not assume the same
discretization for calendar time and maturity) and in Hull [13].

An attempt to apply a similar adjustment to a forward Libor process is quickly
defeated. To make the discretization of (9) a martingale by replacinghe
(11) with someun we would need in particular (taking = 2)

2

]
= or(t) / ou(t) du = jir (1), (17)

1 1
1+6L1(0)(L +/1(0)h + VhA(0)¢1) | 1 +6La(0)’

but the expectation on the left is infinite for all choices0f(0). Using (12)
(again withu, replaced by somg,,) entails, at a minimum, quantities of the form
E[1/(1 + expK))] with X ~ N(a,b) — an expression involving three infinite
trigonometric series (equation (56) of Johnson [16]). The necessary adjustment
quickly becomes intractable. One could replace the nogmalth, say, Bernoulli
increments without affecting the validity of the Euler scheme ([17, p.458]), but
even this does not lead to a tractable drift correction. Enforcing conditions on the
apparently simpler case of (6) becomes unmanageable too. A different approach
is required.

£~ N(O,1);

3 Discretization of forward Libor
3.1 Terminal measure

Rather than discretize forward Libor and try to enforce the martingale property
indirectly, we simulate suitable martingales directly and then recover discretized
Libor from these. There is some flexibility in the choice of martingales and this
can be used to advantage; differences of deflated bond prices will turn out to be
particularly effective and convenient. We begin with the specification of forward
Libor in (5), corresponding to the dynamics under the terminal measure. Set

N
X = Lo(®) [] A +6L@) = 500 ~ Dpa®), n=1...N. (19

i=n+1

Lemma 1 Each X is a martingale and satisfies

dX, _ N 5%\
xn_(A“+Zl+5x,-+m+5xN dw. (19)

j=n+1
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Also,
Xn

T X+ Xy
This immediately suggests an algorithm for arbitrage-free simulation: simu-

late a discretization of th&,, ensuring that the discretized process remains a
martingale, and then use (20) define

Ln

(20)

L= % 21)
1+6Xner + -+ Xy
The discretized deflated bond prices (cf. (6))
~ N ~ N ~
Do =[J@+o0)=1+5> "X (22)
j=n j=n

are automatically positive martingales because)?;hare. Enforcing the martin-
gale property orX, is straightforward and circumvents the need to make a dfrift
adjustment to thd,. Indeed, even an Euler discretization Xf preserves the
martingale property. We will see in Theorem 1 below that discretizing<jog
instead will keep the Libor rates positive. We use a modified Euler scheme that
accounts for time-varying volatilities. First, let(t) be theN x d matrix with

nth row equal toAn(t), n = 1,...,N. With h fixed, letA(ih) denote any solution

to the equation

h
A(ih)A(ih) = % / A(ih + u)A(ih +u) du (23)
0
and let\,(ih) denote thenth row of A(ih). Now set

Xa((i + 1h) = Xa(ih) exp (_;%(ih)a;n @inh +vhoy_ (ih)£i+1) (24)

with " .
N X A
PR . —, (25)
o 140X +-- - +0Xy
andé&s, &, . . ., independent standard norntkidimensional vectors. (Thg could

be replaced with other random vectors satisfying moment conditions discussed
in Kloeden and Platen [17, p.458] and Talay [26, p.307] but normal inputs give a
better approximation to the desired distribution, particularly whes not very
small.) This differs slightly from a standard Euler scheme forxdggwhich would
use;(ih),j =n,...,N, in (25) rather thanij (ih). The two would coincide (or
could be made to by choosin@ = A) if the A\, were constant functions of
timet. Over each intervaliff, (i +1)h), the scheme in (25) freezes the stochastic
elements of the diffusion coefficient at their valueshabut uses the average over
the interval (in the sense of (23)) of the deterministically time-varying elements.
In practice, the distinction is unlikely to matter because in calibrating to a finite
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number of cap prices one would typically choose piecewise constgnfor
which the two methods are the same. The formulation in (25) is slightly more
convenient for our analysis.

In Sect. 1 we noted that the defining property of market models of forward
Libor is that they price caplets according Black’s formula, the industry convention
(cf. [5, 14, 15, 19, 21]). This means that using implied volatilities for e
automatically calibrates the model to market prices. This, however, is strictly
true only for the continuous-time forward Libor process; we examine the extent
to which it remains true after discretization.

Let

C(o,K,r,b,T) = éb

log(r /K) + 35°T
ro <aﬁ >

B log(r /K) — 30°T
K@( = )] : (26)

with @ the standard normal cumulative distribution. This is Black’s formula for
the price at time 0 of a caplet covering the interval T + 4], settled at time

T + 6 and struck aK, when the forward rate at time O fof [T + ] is r, the
implied volatility is o, and the price of a discount bond maturingTat ¢ is b;
see, e.g., [21§15.3] or [22,51.4]. The expression in square brackets on the right
side of (26) evaluates

Ef(re 27 T*VT¢ _K)*, & ~N(0,1). 27)

In terms of forward Libor, the payoff on a caplet ové[T,+1] (received at time

Th+1) iS 0(Ln(Tn) — K)*. Under the terminal measuRN*! associated witfy 1,

the time-0 value of a payoff of (say) at timeT,.1 is Bn+1(0)E[¢/Bn+1(Tn+1)]-

Using superscripts on expectations to emphasize the underlying measure, we have

Bn+1(0)EN [C} = Bna(0)E"™ [C

Bn+1(Th+1)Bn +1(0)}
Bn+1(Th+1)

Bn+1(Tn+1)Bn+1(0)
Bn+1(0E™[] ,

ne>

where the new measuRR"™! is defined by

dP™\ _ Bua(t)Bn+1(0) _ Bns1(0) 1 _
<de+1>t - Bn+1(t)Bns1(0) - Bre1(0) H 1 +(5L] 1) (28)

j=n+1

It follows from (28) thatl, is a martingale undé?"*! becauseX, is a martingale
underPN*1 (in fact, P"*! is just the terminal measure associated Wigh,), so

Girsanov’s theorem implies thaL, = \,L, dW underP"*! (W here denoting a
standard Brownian motion undBf*). Consequently, the price of tmgh caplet

is
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Brn+1(0)EN(Ln(Tn) — K)*/Brsa(Tnen)] = 0Braa(0)E™H(La(Tn) — K)*1
C(An(Tn), K, Ln(0), Bas1(0), Tn),

with .
R0 =1 [ i du
0

using (26) and (27). A
The pricing rule in the discretized model replades with D, in (7). The
price of the caplet is

N
Bn+1(Q)E[S(L(Tn) — K)* T (@ +6L; (Tasa))].

j=n+1

Under our discretization (but not (11) or (12)), the product inside this expectation
(which is simplyDp.1) remains a positive martingale even after discretization.
Thus, it may still be used to define a new measure, iani$ a martingale under

this measure (Theorem 1(iii), below). Again, we stress that this is a specific
consequence of the scheme in (21) and (24) and would not hold under standard
discretizations of forward Libor.

At this point, however, we encounter a fundamental difference between dis-
crete and continuous time. In continuous time, any absolutely continuous change
of measure that makds, a martingale must in fact maksg, lognormal. But in
discrete time an absolutely continuous change of measurg féy, . . . , ém may
not simply correspond to a change of mean. So, we cannot conclude from the
fact thatL, is a martingale under the new measure that it is lognormal under
the new measure. Indeed, to accomplish this would require that both, lagd
logD, be linear in thes;, and this is clearly not possible. Thus, we cannot ex-
pect all caplets to be priced simultaneously by Black’s formula in a discretized
model; but the arbitrage-free discretization above arguably brings us closer to
this ideal by at least ensuring that edghis a martingale in the discrete terminal
measure associated willy,;. We return to this issue in Sect. 3.3, in part (iv) of
Theorem 1, and in the numerical results of Sect. 5.

It remains to address the question of whether ithedefined above, in ad-
dition to having various desirable properties already noted, actually bear some
relation to their ostensive continuous-time counterparts. To formulate a conver-
gence result, it is useful to extend the definition of the discretized variables to the
interval [0, Ty+1]. Proceeding by induction on over each intervaliff, (i + 1)h)
we may construct the solution to

N

dXa(t) _ 5% (i) ()
Xn(t) M+ D 1+6%(ih) +- - + 6%y (ih)

dW; (29)

j=n+1

and if we takevhés1 = Wi+1h — Wih then (24) will indeed coincide with the
solution to (29) at every grid poinh. We can apply (20) to obtain interpolated
L, from X,. This makesL a random element o€xn [0, Ty+1], the space of
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continuous functions from [@y+1] to RN. Endow this space with the topology
of uniform convergence. Le#, be the measure on this space induced tnd

2’ that induced by.. Let = denote weak convergence. We summarize properties
of L in the following result.

Theorem 1 (i) The discretization (18)-(21) makes the deflated bond prides
discrete-time positive martingales and is thus arbitrage-free. (i) Theemain
strictly positive, almost surely. (iii) For each Qf_n(ih),i =1,2,...} is amartin-
gale with respect to the meastig., defined by #"** = [(By+1(0)Dn+1/Bn+1(0))]
dPN*1, (iv) The last caplet is priced without discretization error; i.e.,

Bn+1(0)SE[(Ln (Tn) — K)*1 = C(An(Tn), K, Ln (0), Bu+1(0), Tn);
(V) A= Fash—0.

We conclude our discussion of discretization in the terminal measure with
some remarks about an alternative discretization. We could enforce the absence
of arbitrage by directly discretizing the deflated bond pribgs rather than the
X,. Observe that

N

dD, _ oL .
Dn ,Z:n: 1+0L A dw.

Suppose, for simplicity, that; and the); (t) are one-dimensional. This suggests
the martingale discretization

2
N ~
Dn((i + 1)h) = Dp(ih) exp —% (Z m)\j(ih)) h
j=n ]

Noostiany L
+Zm)\j(lh)hgi+l s

j=n

with the & independent standard normals. Using (6), we can solve fok,tte
get
(1 +0Lq(( +1)h)) =
N

2
(1+5L,(ih)) exp ;(Z m/\j(ih)) h
j=n+1 ]

N

2
1 sLi(h) | .
= (Z WA, (|h)) h

j=n

6Ln(ih) .
X exp(M:mAn(lh)hgi+1) . (30)
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Simulating notL,, itself but rather 1 L, in this way thus leads to an alternative
arbitrage-free discretization. The expression in the exponent

2 2
h Noosiih) L, NOsiany L
= ———=——)(ih — — 322\ (ih
2 (J.;llﬂm(ih) i(h) ;1+6Lj(ih) i(h)
is reminiscent of the adjusted discrete HIM drift (16). Indeed, one could view
this as the appropriate drift adjustment to keep an Euler scheme for log¢) +
arbitrage-free. A drawback of this discretization, compared to the one based on

Xn, is that while it ensures that 15t, stays positive, it does not ensure that
itself stays positive. We compare them numerically in Sect. 5.

3.2 Spot Libor measure

For discretization in the spot Libor measure, we introduce the variables

n—-1
Vat) =@ =Ya@®) ] Yi®), n=1,...,N, and
i=1

_ 1
Yn(t) - 1 +(5Ln(t)’

N
Vn+1 = H Yi (1),
i=1
An expression for the deflated bond prides was given in (9), from which it
follows thatVp(t) = (Dn(t) — Dn+1(t))/B1(0). Under our convention that,(t) =
Ln(Ty) for t > Ty, the definitions ofY,, V, and D, extends to all of [QTy.+1].
We record some additional useful formulas in the following lemma.

Lemma 2 Under the spot Libor measure, each,\i=1,...,N + 1, is a mar-
tingale and satisfies

dvi, Vo +Vo_g+---+V;—1 n—1 v,
v, A + v aw
Vn ( Vn—l+..,+V1—1 ) n Z Vi—1+"'+V1—1 i s

i=n

(31)
with the convention\y+1 = 0. Also,
dDns+1 _ <~ ( Dint
— = —1)XNdw 32
5rs - 2=\ D o 42

n N+1
Dn+1 = By(0) (1 - Zvi> = By(0) (Z vi> : (33)
i=1

i=n+1
and

Dn — Dn#1 Vh
obn = = 34
"7 Diu 1-Vo—-- =V (39

Vi
= — 35
Vosr + -+ Vn (33)
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At first sight, (31) and (32) may seem problematic; in each case, multiplying
both sides by the denominator on the left makes plain that the diffusion coefficient
as writtenfails to be Lipschitz. This however is only a matter of appearance and is
easily circumvented. An obvious consequence of (8) and (9) i€that D, >
0 throughout [0T;], so (32) is unchanged if we write it @Dn+1 = Dp+10p,,, dW,

with
O = Z 6 (1 - D'“) (36)

and ¢(x) = min{1,x*}. Similarly, we can use (33) in (31) to write (with the
conventionDy+, = 0)

dVi, _ Dn+1 = Di — Din1
Vo { By T2 T M| W

i=n !

and thusdV;,, = Vyoy, dW with

D + D +
¢( “)An Z¢( '1)Ai] (37)
5 Vo Vit +Vy 1) nz:1¢ Vi N
vn_1+~-~+v1—1 K 1-Vieg—- =V ) 7"
Rewriting the equations this way makes the diffusion coefficieydD,, and
ov,Vn Lipschitz functions of theD; andV; respectively without affecting the

continuous-time dynamics.
Lemma 2 suggests several possible discretizations. We can set

oy,

~ ~ 1 . ,
Vi((i +21)h) =V, (ih) exp (—zavn(lh)a\cln(lh)h + U\*,n(lh)\fhfi +1> , (38)
with oy, as in (37) but with thev; replaced bWi and )\ by \i; or we can set

Ba((i + 1)h) = ﬁn(ih)exp(—iasn(ih)o.gn(ih)h + af,n(ihwﬁfm) . (@9)

with o5 the corresponding quantity from (36). Using (39), we then recover
discretized forward Libor rateis, from the first equality in (34). Using (38) and
the second equality in (34) we can set

6ln= —— —, n=1....N, (40)

leading (via (9)) to

R n—-1 1 ) ( n—-1 ~ )
Dy, = B1(0) — = =80 [1-S"V . (41)
' (H 1+ ) 2
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Alternatively, we can use (35) to define

V,
oL = = L

Vst -+ Vst

...N. (42)

In continuous timeyV; + - - - +Vy+1 = 1 (this is implicit in (34)-(35)), so

n—1

Dn(t) = B1(0) <H 1740, (t)) (Va(t) + - - - + Vinaa(t))

is equivalent to the representation of the deflated bond prices in (9). We may
therefore choose to define the discrete deflated bond prices as

n—1
1 N -
Dy = B1(0) (H 1+5L> (Vo -+ Viyaa), (43)
i=1 i
which simplifies to
N+1 .
Dy =B1(0)> V. (44)

i=n

Depending on whether we use (40) or (42), we repRgavith Dn or D/ in the
pricing rule (10).

We summarize properties of the discretizations in this section in the following
result. InterpolateV and D to continuous time the way we interpolatéd in
the previous section. Let4, A, and A be the measures 08r4[0, Ty+1]
associated with the interpolations bf L, and L’ resulting from (34) (40) and
(42), respectively, and let” denote the corresponding measure induced.by
under the spot Libor measure.

Theorem 2 (i) The discretizations above make the deflated bond piitemd

D, and D' discrete-time martingales. (ii) ThB, are decreasing in n, th®,
remain positive, and the Dare both positive and decreasing in n. (iii) Thg &re
positive. (iv) Eachl, is a discrete-time martingale with respect to the measure
Py defined by @nir = (Bl(0)5n+1/ Bn+1(0))dP*, with P* the spot Libor measure.
Each L is a discrete-time martingale with respect to the measyfg Befined

by dP.,,; = (B1(0)D},;/Bn+1(0))dP*. (v) As h— O, A= P, R = &, and

AR =P,

This result suggests that the discretizatiorvVpfcombined with (42) and (44)
is the most attractive from a theoretical viewpoint. It makes the deflated bond
prices positive martingales and it keeps all forward Libor rates positive. Numer-
ical results in Sect. 5, however, indicate that there are sometimes advantages to
using V,, with (40) and (41). None of the caplets is priced exactly by Black’s
formula under any of these discretizations, essentially becaudg ia mar-
tingale under the spot Libor measure. This motivates the approach of the next
section.



50 P. Glasserman, X. Zhao

3.3 A hybrid numeraire

We saw in Sect. 3.1 that it is possible to discretize forward Libor in a way that
prices caplets ovefTy, Ty + §] without discretization error. By letting the strike
vary, we see that this is equivalent to the statement that the distribution(®f)
coincides exactly with that ofy(Ty) under the terminal measure (indeed, the
distributions match at all grid points). It is possible, however, that one may want
to price a Libor derivative that depends on the entire tenor strudture ., Ty
and yet for which one is most concerned about getting the distribution of some
intermediatd., correct, rather thahy . To accomplish this, we introduce a family
of numeraires and an associated family of measures.

Foranym=1,...,N +1, define

v | Bm(D), t<Tm;
Bm(t) = { B,() Hn(t) 1 t> T (45)

i=m+1 B{(T;_1)°’

This is the value of a trading strategy that holds one unit of the bond maturing
at T, until maturity and at each subsequent tenor date rolls the proceeds over
into the next bond to mature. Witln = N + 1 we get the terminal bond and with
m = 1 we get Jamshidian’s numeraire (up to a factor ,10)). Thus, (45) may
be viewed as interpolating between the extremes of the spot Libor and terminal
numeraires.

Since B}, can evidently be realized by a self-financing trading strategy,
B /Bn+1 iS @ positive martingale under the terminal measBPe?. Define a
new measurd; by setting

dPy ) _ Bm(t)Bn+1(0)
(dPN+1>t ~ Bua(H)B(0)’

Lemma 3 The dynamics of forward Libor under;Pare as follows: for n=
1,....,m—-1,

dln _ T2 LA,

= — + .
L, _ 1+oL, dt + A\, dW;
i=n+1
and forn=m,... N
dly _ [ S "T0" dt+ A dW 0n [0, To)
b Zin=n 5|f+i\siL/i\n dt+ A dW on [T, Tn+a].

In particular, Lin—1 is a martingale under B, m=2,... N +1.
To construct a discretization, we introduce

L JI%h@+6L), n=1....m-1,

i=n+1

Lo [Tty (L+6L)"% n=m,... N +1,

i=mvn

Z,=2zm = {
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with the convention thaty+; = An+1 = 0. Clearly, Z, coincides withX, from
Sect. 3.1 fom < m and withV,/§ from Sect. 3.2 fom > m. (We could alter-
natively have constructed, for n > m to parallelD,; this would lead to an
alternative discretization.)

Lemma 4 The % are martingales and satisfy dZ Z, 0z, dW with

m—1 5Z; ) —
An+ D it Tz sz N n=1....m-1

07, ={ (Briatimert) da (46)
T D (m)x n=m,... N+L

Also,
an{m n=1....m—1, )

Z,
T=5z—=5z, N=nvm

The discretization scheme suggested by this result sets
s 5, 1 Ly .
Zn((i + 1)h) = Z,(ih) exp —éazn(m)azn(m) +azn(|h)\m§i+1

(with o5 equal tooz, but withZ and replaced by and3\) and then applies (47)

to recover discretized Libor ratés, from Z,. We have chosen the representation

in (47) to be consistent with (21) fon < m — 1 and consistent with (40)

for n > m, though we could consider other combinations of the schemes in
Sections 3.1 and 3.2. The properties of this discretization are minor modifications
of the ones in Theorems 1 and 2; we therefore record only the most notable feature
in the following result:

Proposition 1 Fix m € {2,...,N + 1}. Under the discretization above of
(Ly,...,Ln+1) in the B}, measurel.n—1 is a martingale,

0BAOE(Em-1(Tm-1) = K)'1= COm-1(Tm-1), K, Lm-1(0), B(0), Tn);
i.e., the(m — 1)th caplet is priced without discretization error.

Thus, the discretization of this section provides the flexibility to pinch the
caplet bias to zero at any maturity, while simultaneously constructing forward
Libor rates of all maturities and making the discretized deflated bond prices
martingales.

4 Discretization of forward swap rates

We now turn to the discretization of the term structure of forward swap rates,
starting from the continuous-time constructions of Jamshidian [14, 15]. Jamshid-
ian [14] constructs all forward swap rates associated with a tenor structure, in
particular allowing each forward swap rate to have a lognormal volatility so that
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swaptions are priced by Black’s formula. He carries out the construction in both
the terminal and spot Libor measures. We consider the discretization of each of
these cases. Although the guiding principles in this setting are the same as in the
forward Libor setting, the expressions involved tend to be more complicated. As
a consequence, our results in this section are somewhat less explicit than in the
previous sections.

4.1 Swap rates in the terminal measure

Our notation largely follows Jamshidian [14, 15]. Let

N
Ban(t) =0 Bisa(t), te€[0,Tnual;

i=n

the nth forward swap raten =1,... N, is
Bn(t) — Bn+a(t)

St)=—=——""° t€]0,T,]

( ) Bn,N(t) [ n]

This is the fixed rate at timé that equates the present values of streams of
fixed-rate paymentsS, (t) and floating-rate payments (T;) occurring atT;+1,

i =n,...,N. We extend the definition d&, to all of [0, Ty+1] by settingS,(t) =
S(T,) for t > T,. Forward Libor rates can be recovered from forward swap
rates through the relation

1+ 581 ZiN:n HJI :n+1(1 + 53)
1+ 6S1+1 EiN:n+1 HJI :n+2(1 + 63 )

(from Sect. 7 of [14]), and in fact (48) could be inverteddefineforward swap
rates in terms of forward Libor rates. Expressions for deflated bond prices in
terms of forward swap rates follow from (48), using (6) and (9).

A lognormal (ormarke) model of forward swap rates specifies

4% _
S

for some bounded, deterministic, possibly time-varying row veétor 6,(t)

having at most finitely many discontinuities. The drift depends on the choice of
numeraire asset — i.e., the measure under which the process is constructed. The
defining property of the terminal measure is the choic8gf; as the numeraire
asset. In this measure, Jamshidian [14] shows that the missing drift in (49) is
given by an(t)6(t) with

1+6La(t) =

(48)

... dt+6,dw, (49)

S S kens1 0SB TT ooy (1 +6S ()

n(t) = — '
an(t) Sien [Tjznea (1 +0S (1)

(50)
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He also shows tha$, is a martingale under théarward swap measure PV
defined by

(dpn’N) _ Ban()Bn+1(0),
dPN*1 /. Bn+a(t)Ban(0)

this is the measure associated with the numerjrg.

A payer's swaptionexpiring at timeT < T, grants the holder the right to
enter into a swap with start dale and end datdy.+1, making fixed payments
0K and receiving floating paymentd, (T;) at Ti+1, i = n,...,N. Its value at
expiration can thus be expressedBag (T)(S:(T) — K)*. Jamshidian [14] shows
that with a lognormal specification of the volatility

Br+1(0)E"[Bo,n (T)(S(T) = K)/Brsa(T)] = Ban (OE™M[(Sh(T) ~ K)']
C(QH(T)7 K ) 31(0)1 Bn,N (0)7 T)a

with .
9?(0:% /O 0 (U0, (u) du;

i.e., swaptions are priced by the Black formula for swaptions. (See Musiela and
Rutkowski [20] and Rebonato [22] for further discussion of this and related
formulas for swaptions.)

It is evident from (48) that forward Libor rates cannot have lognormal volatil-
ities if the forward swap rates do. Hence, one cannot use the discretizations of
Sect. 3 to simulate a model consistent with (49). To discretize (49) in the terminal
measure, we introduce the variables

Bn.n
Xy = 0
" 0Bnst]

with Xg = 1+ (1 +6S;)X;. Notice thatY,,_; = D, — 1 = Dy, — Dy+1; this particular
difference of deflated bond prices turns out to be particularly convenient and
effective in discretizing swap rate models.

a.nd Yn7]_:Xn7]__Xn_l, nzl,...,N,

Lemma 5 Under the terminal measure,,)and Y, are martingales or0, Tp+1]
and satisfy

N -1 o q
dX = > {ei(xi_l_xi -0 JI J;(] dw

i=n+1 j=n+1 J

and

d¥ _ One1 + 1
- 1 —
Yo "N e Ly,

N i—1
Yi-1
x Zei\n_1H<N_j+l+zN_1Yk+1> dw.

i=n+2 j=n+2 k=j
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Also,
=Xy —1 _ Yn_1

Xn
0 =
Xn N—n+1+300 0y,

(51)

The natural counterpart to the discretization methods developed in Sect. 3
applies the modified Euler scheme to Mgto construct discrete martingales
\?n(ih), i =0,1,..., and then applies (51) to recover discretized forward swap
ratesS,. One could use (48) to construct discretized forward Libor rates as well.
We summarize properties of this method in the following result:

Theorem 3 (i) The discretization above makes the deflated bond prices pos-
itive martingales and is thus arbitrage-free. (ii) TH remain strictly pos-
itive, almost surely. (iii) Each§, is a martingale with respect to the mea-
sure PN = (5Bn+1(0)XaBnn(0))dPN*L. (iv) If T is a grid point ih, then
Bn+2(0)E[(Su(T)—K)*] = C(6n, K, Su(0), Bn,n(0), T); i.e., the last swaption is
priced without discretization error. (v) THs, converge in law to thesas h— 0.

4.2 Swap rates in the spot Libor measure

A consequence of Jamshidian’s [14] analysis is that in the spot Libor measure
the missing drift in (49) is4,, — an)fn With o as in (50) and

_ 631 EiNzn (9n + Zik=n+1 56ks<) H]I =n+l,j;4<(l + 63)
- 1408 e T pea(1+6) '

As this might suggest, the relevant expressions in this setting become alge-
braically cumbersome, though they do not raise any fundamentally new issues.
Consequently, we cover only the key steps.

For purposes of discretization we introduce the variables

1446 L [Toea (140
M, = S i H]—n+1( 3) n=1....,N+1, (53)

1408 Y [T +65)
R: = My+1, andR, = M, — Mn+1, N = 2,...,N. Under our convention that

S(t) =§(T;) for t > T;, these processes are well-defined throughout the interval
[0, Tn+a]-

Lemma 6 Under the spot Libor measure, the,Mnd R, are positive martingales.
Moreover,

In (52)

Mo — My _ Rn
Mnsz+---+Mysz Rpat--+Ry+(N+1—-n)Ry

Using (49), (50), (52), and (53) we can find the diffusion coefficiemntsand
oR, Of logM, and logR, as functions of thé; and§ through straightforward but
tedious differentiation. Using (54) we can then expregs purely as functions
of the §; and M; and we can expressg, purely as a function of thg; and

0S =

(54)
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R;. In this way, we arrive at equations of the fordM,/M, = o, dW and
dR,/R, = or, dW analogous to those derived in previous sections. The resulting
expressions fopy, andog, are lengthy and unenlightening so we omit them.
Nevertheless, we may simulate an Euler scheme foMlpgr logR, to produce
discretized variablel, or R, and then use (54) to recover discretized swap rates
S.

Several features of these schemes are easily verified. Both ensure that deflated
bond prices are positive martingales. For it follows from (9) and (48) that the
discrete deflated bond prices are

& N A
D, Bl(O)l +6S:Zi:'\? Hji:nﬂ(l +(§S’)
1 +(Ssl Zi:l szz(l +5$)

B1(0)My = B1(0)(Ra + Ry),

and theM,, or R, are positive martingales by construction. In addition, recovering
the discretized swap rates from tRg through (54) ensures that the swap rates
stay positive.

As a final observation, we consider the discrete counterpart of the forward
swap measure resulting from the discretization ofNgg In continuous time, the
forward swap measu@™N is related to the spot Libor measure through

dP™N\ _ Ban(t)B*(0) _ [ = B*(0)
(&), Bt (5.2 o m) Bun(0)

i=n+1

We therefore define

N+1
dP"N = (s Z D, dP*
Bn N(O)

i=n+1

Now

N+1
Z Di = B1(0)(Mna1 + - - - + Mns1) = B1(0)(Ruet + - - - Ru + (N + 1 — n)Ry)

i=n+1

so we see from (54) that under either dlscrenzaﬁ‘fs.)ri:I " Di is a martingale
underP* and thusS, is a martingale undep™N .

5 Numerical comparison

Thus far, our discussion of discretization has focused primarily on the extent to
which the absence of arbitrage is preserved after discretization. To a lesser extent,
we have considered the impact on the accuracy of caplet and swaption prices, the
prices to which a model is commonly calibrated. The purpose of this section is to
show, through numerical examples, that the discretizations proposed in previous
sections do not entail a loss of accuracy in pricing caplets and swaptions. On the
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contrary, we find that these discretizations often introduce lower discretization
bias in these prices than more obvious schemes. In addition, we investigate the
effect of making a finite-sample adjustment that exploits the martingale property
of deflated bond prices. In our experiments, this reduces the mean square error
in caplet and swaption price, in some cases by vast amounts. The applicability
of this method depends crucially on our approach to discretization.

The number of variations of methods, scenarios, and instruments one could
investigate numerically is limitless. Our objective here is by no means to be
exhaustive. In particular, among the interesting possibilities not explored here is
the use of the many higher-order schemes in Kloeden and Platen [17] with either
the variables introduced in Sections 3 and 4 or the forward Libor and swap rates
themselves.

5.1 Libor models

The base scenario we use for most of our resultsésets = 0.25 andN +1 = 40,
corresponding to a ten-year term structure of quarterly rates. The initial values
are of the formL,(0) = log(@+bn), with a andb chosen so thdty(0) = 0.05 and
L3g(0) = 0.07. The base-case volatilities are constant over the interval$; 1),

with

An(T) = 0.1500 + 000250 — i), i=0,....n—1, n=1,...,39

These values for the initial forward ratés(0) and initial implied volatilities
An(0) are broadly consistent with the U.S. dollar term structure in late 1997.
The assumption that volatility depends only on time to maturity is made for
simplicity. In addition to this base case, we will consider a few other scenarios.
We compare the discretizations of Sect. 3 with Euler schemek,fand logL,
(asin (11) and (12)). We mainly compare performance of the methods in pricing
at-the-money caplets — the strike for théh caplet isK = L,(0). In the base
scenario, the prices for these caplets increase wiftom 3.74 to 23.77.

Figure 1 compares the estimated bias in caplet prices for four methods in
the terminal measure: th§, discretization of (24), th®, discretization of (30),
and Euler schemes fdr, and logL,. The error bars have a halfwidth of one
standard error and show that the apparent biases are highly significant and not
attributable to simulation error. As expected, e and logL,, discretizations
produce unbiased estimates of the final caplet. But for shorter maturities the
Xn method produces substantially smaller errors. The method in (30) does not
appear competitive. Because it makesdLy lognormal rather thaty, it does
not correctly price the final caplet. But in considering Fig.1 and subsequent
figures it is important to keep an additional consideration in mind: the martingale
discretizations (including, andD,, in Fig. 1) price bonds without bias precisely
because they make the deflated bond prices martingales. The other methods
(including L, and logL,, in Fig.1) are subject to discretization bias in pricing
bonds as well as caplets.
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To obtain the tight error intervals in Fig. 1, we ran 10 million replications
and used the control variat€% = §Bn+1(0)(¢n — K)* where

n—1 n—-1
¢n = La(0) exp<—;h D O X(h)+vh > )\n(ih)Zi) ,
i=0 i=0

and thez; are the standard normals used to drive the simula}tions. Eadh an
unbiased estimator of theh caplet price. For any discretizatidf, our estimate
of the bias in thenth caplet is

BN+1(0)(Cn(Tn) — K)*Dpet(Tna1) — Ch.

Because of the high correlation between theand the discretized variables,
subtractingC,, rather than the Black price itself substantially reduces the variance
of the estimated bias. We used this method in all our results.

Figure 2 compares five discretizations in the spot Libor measure.VEhe
method refers to (38) with the second line of (37) and (40); the modified
method refers to (38) with the first line of (37) using (42) to determine the
discrete deflated bond prices; tbg method refers to (39); and the other two are
Euler schemes fok,, and logL,,. As in the terminal measure, the results based
on D, andL, are very similar; and whereas these are biased high, discretization
of logL, produces results biased low. Tkl method and modifie®/,, methods
give the best results across all maturities. Becaus®/thmethod does somewhat
better than the modifieW,, method, we use it in subsequent comparisons.

Figure 3 illustrates the effect of using the hybrid numeraire of Sect. 3.3. The
terminal measure correspondsno= N +1 and the spot measurerto= 1. These
are compared with two intermediate valuesnaf As anticipated, thenf — 1)th
caplet is priced without bias in each case for whinh> 1. (Notice the change
of scale compared with the previous figures.) In this and most subsequent figures
we omit the error bars for clarity; they are of the same magnitude as in Figures 1
and 2.
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Figures 4 and 5 compare various methods for caplets that are 5% in-the-
money (strikes of @5L,(0)) and out-of-the-money (strikes ofdbL,(0)), respec-
tively. The results are generally consistent with what we observe at-the-money,
except for some additional bias at very short maturities. Over most of the range,
the X, andV, methods appear to be the best.

Figure 6 compares select methods in a variant of our base case in which the
volatilities areAn(T;) = 0.25— 0.00250 — i) and are thus decreasing rather than
increasing with maturity. In Fig. 7 we again use increasing volatilities but now
takeN =19, = 0.5, h =4/2, andL,(0) = log(@ + bn) with a andb chosen so
that Lo(0) = 0.05 andL;9(0) = 0.07. Neither of these maodifications affects the
relative performance of the methods.

5.2 Finite-sample adjustment

As previously noted, discretizations that make the deflated bond prices mar-
tingales (and are initialized to the initial term structure) price bonds without



Arbitrage-free discretization

Estimated Bias
0.0 0.05 0.10

-0.05

-0.10

Estimated Bias
-0.05 0.0 0.05 0.10

-0.10

Estimated Bias
0.05 0.15

-0.05

-0.15

- D: Spotlog(L{n])

A: Terminal log(L[n])
B: Terminal X[n]
C: Spot V[n]

E: Spot L[n] D

2 4 6 8
Caplet Expiration (in years)

10

—— A Terminal log(L[n]) ™~

8: Terminal X[n] ™~

C: Spot V[n] '
— -~ D: Spot log(L{n]) / ~

E: Spot L{n] b N\

.
N
2 . 6 8 10

Caplet Expiration (in years)

A: Terminal log(L[n])

B: Terminal X[n] T~
— —-  C:SpotV[n] \'\
——-- D: Spot log(L[n]) T~
E: Spot L[n] D
2 4 6 8 10

Caplet Expiration (in years)

59

Fig. 4. In-the-money caplets

Fig. 5.
caplets

Out-of-the-money
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discretization bias. We now take this idea one step further and introduce a finite-
sample adjustment that makes the simulated bond prices match true bond prices
over finitely many paths. We then examine the impact of this adjustment on caplet
prices. A similar adjustment is proposed in a setting without discretization error
by Duan and Simonato [6]; see also the discussion in Boyle et al. [4]. Similar
adjustments appear to be in widespread use in practice.

We detail the method in the case of the discretizatignin the terminal
measure. LeK{(ih), k = 1,...,K, denote the values of, simulated at théth
step ofK independent replications. Because eHglis a martingaleE[X,(ih)] =
Xn(0) = X,(0). To match this mean over the paths, we set

X(ih) «— >“<n<k>(ih)fx+$),, k=1...,K, (55)
Sy X4 (ih)

and then recover the discretized Libor ratgg§h) from these adjusted variables.
A similar adjustment is possible with any of our discretizations. It does not
appear to be applicable to a standard discretizatioh,0br logL,, because
neitherE[L,(t)] nor E[log Ln(t)] is readily available, and the discretized deflated
bond prices will not be martingales.

Although this method causes bonds to be priced without simulation error
over finitely many paths — and may therefore reduce variance in pricing other
instruments — it potentially introduces bias in dividing by the sample mean in
(55). To balance bias and variance we examine the impact on mean square error
of caplet prices.

Figure 8 plots mean square errors with and without the finite sample adjust-
ment using theX, method in the terminal measure and ¥emethod in the spot
measure. These estimates are based on 5000 batches each consliéting@d0
replications. (The finite-sample adjustment makesKhpaths in a single batch
dependent so batching is necessary for proper estimation of mean square errors.)
The results show modest improvement from the adjustment.
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Fig. 8. Variance reduction in
base case

Fig. 9. JPY scenario — spot
measure

Fig. 10. Variance reduction in
JPY spot measure
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We find much greater improvements in a different scenario. Here we take
values broadly consistent with the Japanese ten-year term structure in late 1997.
Specifically,L,(0) = 0.01+00007%, n =1,...,39, and\y(i) = 0.70—0.01(h —

i), so the rates are much lower and the volatilities much higher than in the U.S.
market. The corresponding caplet prices increasemitbm 3.71to 46.11. These

are rather extreme parameter values and no method appears to give satisfactory
results in this setting. This is reflected in Fig.9. Figure 10, based onv/the
method in the spot measure, shows both that the errors in this setting can be
quite large but also that the adjustment can produce substantial improvements.
Figure 11 is even more dramatic. Over 1000 paths, the errors from simulating
under the terminal measure are enormous, but they are brought under control by
the finite-sample adjustment. The adjustment would not be available in a direct
discretization ofL, or logL,.

20

A: Before Reduction
— —  B: After Reduction

15

Mean Square Errors
10

Fig. 11. Variance reduction in
“““““““““““““““““““““ JPY terminal measure

Caplet Expiration (in years)

5.3 Swap rate models

Our base case for comparing discretizations of lognormal swap rate models uses
the same initial term structure as in Sect.5.1 and specifies swap rate volatilities
of

0n(T;) = 0.2475— (N —i)0.0025 i=1,....n—1, n=1,...,N.

As should be clear from the formulas in Sect. 4, simulating any discretization
of a lognormal swap rate model is considerably more demanding than simulat-
ing a lognormal model of forward Libor. Our investigations in this setting use
fewer replications (1 million rather than 10 million) and have explored fewer
alternatives.

Figure 12 summarizes the comparison of various methods. (These use a con-
trol variate similar to the one described in Sect.5.1.) The worst methods are
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the straightforward Euler discretizations &f and logS,. The best method ap-
pears to be th&}, discretization under the terminal measure, but the spot Libor
discretizations perform quite well also.

6 Conclusions

The main conclusion of this work is that simulating linear combinations of de-
flated bond prices can have advantages over direct simulation of forward Libor
or swap rates. Linear combinations of deflated bond prices are martingales, and it
is often easier to preserve the martingale property in a discretization scheme than
to find the appropriate drift adjustment for a discretization of Libor or swap rates.
By enforcing the martingale property in the discretization, we can keep the dis-
cretized model arbitrage-free. Our numerical results suggest that this advantage
does not come at the expense of accuracy of the discretization; on the contrary,
the schemes we have proposed generally give better results (and sometimes much
better results) than more standard discretizations. They also lend themselves to
a simple finite-sample adjustment that can further reduce errors.

We have by no means exhausted the possibilities opened up by this approach.
One could investigate other linear combinations and other numeraire assets, lin-
ear combinations with time-varying coefficients, nonlinear transformations other
than logarithms, variable step sizes, and any of the many higher-order methods
developed in the discretization literature. Ruling out arbitrage does not, by it-
self, provide guidance in choosing among these many possibilities; we view these
many variations and potential enhancements as complementing the approach pro-
posed here.

Appendix: Proofs

Proof of Lemma 1Equation (20) follows from (18) by induction, starting at
n =N (at whichXy = Ly) and proceeding down to = 1. Ito’s lemma applied
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to (18) using (5) gives

N
s (e s P aw 5

i=n+1

Substituting on the right using (20) gives (19). Th&tis indeed a martingale
follows from the boundedness of the expression in parentheses in({56).

Proof of Theorem 1(i) That the D, are positive martingales follows from (22)
and the fact that th&; are positive martingales by construction. (ii) Positivity of
L, follows from (21). (iii) Let.Z be theo-algebra generated kg, ..., & . For

I <j,
a1 |r oy (AP | /dPTN T
= [Ln(Jh) <dPN>Jh |J11 (dPN>ih
ENLa(h)Dnea(ih)[ 7] Dnsa(in)
L (lh)Dn+1(|h) Dn+1(|h) 1= Ln(lh)

1
EMYL,(h) . 7]

using a standard change-of-measure identity for conditional expectations in the
first equation, the definition oP™! in the second, and finally the fact that
LnDns1 = X, is a martingale undePN*2.

(iv) Observe thatiXy = Xy Ay dW so

Xu (1) = XN(O)exp<—)\ (Ot + / )\N(u)d\/\/u>

Consequently, fon = N, (24) constructs the solution without discretization error.
In particular, Xy (ih) has the distribution oKy (ih) at every grid pointh, and
using the interpolation in (29) this property extends to intermediate times as well.
But Ly = Xy and, under (21)[y = Xy, soLn(t) has the distribution ofy (t)

for all t, and thenE[(Ln (Tn) — K)*] = E[(Ln(Tn) — K)*] for all K.

(v) Defineo, : RN x Ry — RY by

XA (t
LCON xn(w) > o .‘.‘_)st;)’ n=LN,

j=n+1 X1+

so thatdX,(t) = on(X(t),t) dW. Set Amax = sup,; [|An(t)[|. Then eachoy is
linearly boundedbecause

N
o@D < %0l Y IA O < NAmad]I,

j=n
and Lipschitz because

llon(X,t) = an(y, )|l < 2N Amaxl|X =yl
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for all x,y € RY. It now follows from Theorem I11.2.13 of Gihman and Skorohod
[9] that X converges in law tX ash — 0. Because the mapping frokito L is
continuous and the same as the mapping f¥mo L, it follows from Billingsley

[2, Theorem 5.1, p.30] thdt converges in law td.. [J

Proof of Lemma 2From Jamshidian [14, 15], we know that the deflated bond
pricesD, are martingales. MoreoveR),, = Bl(O)HT’lYi, SO0

n—-1 n—-1
dDy = By(0) Y _(Yi — DA [ v aw,

i=1 j=1

and
n—1

=D (% — DA dw,

i=1

an
Dn

which becomes (32) upon substitution Bf,;/D; for ;.
SinceV, = B1(0)[D,, — Dn+1], the V,, inherit the martingale property from the
Dy. Ito’s lemma gives

av, =
n
— = /\Y+§ Yi —1)N | dw.
Vn ( n'n i:l( 1 ) I>
Solving for theY; in terms of theV; we get

\/n - \/n——l - \/l -1
\/nll .= \/l -1 ’

\ﬁ =

and making this substitution yields (31). Straightforward induction arguments
verify (33) and (34). To establish (35) observe that

0

iVi :XNI<1_11Y —i{“)ﬂﬂh =[[v=1

n=1 \i=1 i=1 i=1
S0 (35) follows from (34)C1

Proof of Theorem 2(i) That the D, are martingales is immediate from (39),
that theD, are martingales follows from (38) and (41), and that fhe are
martingales follows from (38) and (44). (ii) Positivity &f, is also immediate
from (39). In light of (41), positivity oV, implies that theD,, decrease witim in

a scheme based on (40). Similarly, (44) and positivity,ofmply that theD/, are
both positive and decreasing with (i) Positivity of L}, is a direct consequence
of (42). (iv) From (34) we find that,Dn:1 = [Dy — Dn+1]/d, S0 LnDyss is @
martingale. Using the same argument as in Theorem 1(iii), this implies ghiat

a martingale undeP,.1. Similarly, LD/, is a martingale s®}, is a martingale

underP/,,. (v) Forx € RN andt € [0, Ty+1], let
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o) = %, (¢ (xn+xn1+...+x1—1> ()

Xn_1+--+x1—1

n—1
Xi
N e LI L

i=n(t)

so thatdV, (t) = on(V (1), t) dW. Just as in the proof of Theorem 1(iv), eagh

is linearly bounded and Lipschitz, so convergence in law ofth® V follows
from Theorem 11.2.13 of Gihman and Skorohod [9]. Convergence in law of
andL’ to L then follows from the continuity of the mappings in (34) and (35).
The same argument appliesfoand L. O

Proof of Lemma 3Let

_ < dPn, ) _ B (t)Bn+1(0)
& =
t

dPN*1 /" Byia(t)By(0)
Then \ | .
_ { Bn+1(0) [ [izm(1 +0Li (1)), t<Tm;
L =
Bn+1(0) H?:(:%ﬂ ﬁ HiN:n(t)(l +0Li (1)), t > Tm.
Thus,

N I (DL (t
dée _ { 2i=m 1+§Ei(t())dV\4’ t<Tm
- N O (H)L (t
& Sttt o (t()) dW, t > Tm.
It now follows from Girsanov’s theorem that

t
we=w - [
0

is a standard Brownian motion undBf;. In view of (5), this means that the
dynamics of forward Libor unde®p;;, are given by

N AN(S)Li(s)

1+6Li(s)

i=mvn(s)

n SAn(DAi (1) Lit -
dLa(t) | 2izmvae 2l dt+ A0 AW, mv () < n;
=1 AN ()L
DO | - S G O dwe, my) Zn -l

This is equivalent to the representation in the statement of the leMma.

Proof of Lemma 4The calculations involved in verifying these expressions are
very similar to those used in Lemmas 1 and 2 so we omit the defails.

Proof of Proposition 1.The proofs of the two assertions in the proposition are
essentially the same as the proofs given for parts (iii) and (iv) of Theordm 1.

Proof of Lemma 5A simple induction argument verifies that
Xn=1+(1+0S+1)Xn+1, N=21,...,N —1, (57)

from which follows
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i—1

N
dX, = > [d6isx [ @+ds) | dw.

i=n+1 j=n+1

Making the substitution 1 4§ = (X;_1 — 1)/X; yields the expression in the
lemma. ForY, we have

dYp = d(Xp — Xp+1 — 1)
-1

N i
00ns1SrXoer + Y | 66:SXi 0% [T (1 +8)| | dw.

i=n+2 j=n+2

Noting thatdS,+1 = Yn/Xn+1, this becomes

X
dYy = | neaYn + Z 0 Yi 1 H S——| | dw.  (58)
i=n+2 j=n+2
Finally making the substitutiod, = S>>t~ Y, + N — n + 1 yields the expression

in the lemmal

Proof of Theorem 3(i) The deflated bond prices are given By = Y,_; +1, so

the D, are positive martingales because theare. (ii) Follows from (51) and
positivity of theY,,. (iii) and (iv) are proved similarly to Theorem A(iii)-(iv). (v)

As in Theorems 1 and 2, the key step is verifying that the diffusion coefficient of
Y, is linearly bounded and Lipschitz. In fact, from (58) we can see that the norm
of the diffusion coefficient is bounded by a constant times the norn .ofn
particular, each of the factorX;(_1—1)/X; is between 0 and 1, becauge.; > 0;

and eachy;_;/Xn+1 is between 0 and 1 becauXg:; = iN:;,,llYi +N —n+1.
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