A BSDE Approach to Counterparty Risk under Funding Constraints

Stéphane Crépey

Université d’Évry Val-d’Essonne
Laboratoire Analyse et Probabilités

Workshop “Liquidity risk modelling”
FBF, Paris, November 18, 2011

This research benefited from the support of the ‘Chaire Risque de crédit’, Fédération Bancaire Française

Thanks to: Zorana Grbac, Marek Rutkowski, Tom Bielecki, Giovanni Cesari, Jeroen Kerkhof, Monique Jeanblanc, Jean-Paul Laurent.
Outline

1. Counterparty Risk under Funding Constraints
2. Application to Counterparty Risk on Interest Rate Derivatives
3. Conclusions
What is it about?

Setup

- A generic “contract” between two defaultable counterparties
 - “The bank” and the “investor”
 - Contract ≡ CSA portfolio of OTC derivatives
 - **CSA** Credit Support Annex prescribing collateral and close-out cash-flows covenants
- **Funding Costs**
 - Higher than the risk-free rate for a credit risky party
 - Also liquidity funding costs
Valuation and Hedging Issues

- Bilateral counterparty risk perspective necessary to agree (at least at first order, if not for funding costs) on the level of the Credit Valuation Adjustment (CVA)
-Benefiting from one’s own default?
 - Contract only partially settled to the other party
 - Funding debt only partially reimbursed to an external funder
-Risk-neutral valuation of this benefit??
 - Hedging one’s own default hardly possible
 - Legal and practical constraints
 - Selling CDS protection on oneself forbidden and repurchasing one’s own bond not always practical
A reduced-form CVA BSDE approach to valuation and hedging of bilateral counterparty risk under funding constraints

CVA price-and-hedge correction for counterparty risk under funding constraints

- Introduced in banks for organizational reasons
 - Industry trading desks lack the global view, and specifically the aggregated data, needed to properly value the CSA cash-flows
 - Industry trading desks in charge of clean valuation and hedging
 - Central CVA desk in charge of CVA valuation and hedging
- Also useful mathematically

- Problem of valuation and hedging of counterparty risk under funding constraints reduced to solving pre-default CVA BSDEs in which defaultability of the two parties only shows up through their default intensities
 - Or equivalent semilinear PDEs in the Markov setup

- Immersion hypothesis and the case of credit derivatives
References

Based on

Related Papers

- Many CVA papers by Brigo and co-authors.

...and a huge (often unpublished) ‘quants’ literature.
Cash-Flows and Strategies

\[
\begin{align*}
\text{Hedge } S_t &= 0 \\
\text{Hedge } \mathcal{P}_t \\
\zeta_t^s (d\mathcal{P}_t^s + dC_t^s) &\quad (r_t + \lambda_t)X_t^- (\mathcal{W}_t, \zeta_t^-)dt - (r_t + \bar{\lambda}_t)X_t^+ (\mathcal{W}_t, \zeta_t)dt \\
\zeta_t^s (d\mathcal{P}_t^s - (r_t\mathcal{P}_t^s + c_t^s)dt + dC_t^s) &\quad (1 - r)X_t^+ (\mathcal{W}_{\tau -}, \zeta_{\tau -})\delta_\theta(dt) = \tilde{R}^f \delta_\theta(dt) \\
\tau &= \theta \land \bar{\theta} \\
\bar{\tau} &= \tau \land T \\
(r_t + b_t)\Gamma_t^+ - (r_t + \bar{b}_t)\Gamma_t^- dt &\quad \Gamma_t \\
W_t - \Gamma_t - \zeta_t^s \mathcal{P}_t^s = -X_t (\mathcal{W}_t, \zeta_t) \\
\text{Investor } \bar{\theta} \\
dC_t = 1_{t<\tau} dD_t &\quad \tilde{R}^f = (1 - r)X_{\theta -}^+ (\mathcal{W}_{\theta -}, \zeta_{\theta -}) \\
R^f\delta_\tau(dt) &\quad \mathcal{W}_t = \tilde{W}_t - 1_{t=\theta} \tilde{R}^f \\
\mathcal{W}_0 = \tilde{W}_0
\end{align*}
\]
Price-and-hedge

Standard stochastic basis \((\Omega, \mathcal{G}_T, \mathcal{G} = (\mathcal{G}_t)_{t \in [0, T]}, \mathbb{P})\) used for modeling the evolution of a financial market model

- “Martingale pricing measure” \(\mathbb{P}\) equivalent to the historical probability measure \(\widehat{\mathbb{P}}\) over \((\Omega, \mathcal{G}_T)\)

Definition (Price-and-hedge \((\Pi, \zeta)\) over \([0, \bar{t}]\))

- Semimartingale price process \(\Pi\) such that \(\Pi_{\bar{t}} = 1_{\bar{t} < T} R^i\)
- Hedge \(\zeta\) in primary risky (infinite variation) assets
- Wealth \(\tilde{W}\) of the collateralization, hedging and funding portfolio
- Algebraic debt \(\bar{x}_t (\tilde{W}_t, \zeta_t)\) of the bank towards its “external funder”
- Hedging error \(\varrho = \Pi - \tilde{W} = \Pi^* - \mathcal{W}\) where
 \[
 \Pi_t^* = \Pi_t - 1_{t=\theta} \bar{R}^f, \quad \mathcal{W}_t = \tilde{W}_t - 1_{t=\theta} \bar{R}^f
 \]

in which \(\bar{R}^f := (1 - r) \bar{x}^+_t (\tilde{W}_{\theta-}, \zeta_{\theta-}) = (1 - r) \bar{x}^+_t (\mathcal{W}_{\theta-}, \zeta_{\theta-})\)
Notation

For every real number π and \mathbb{R}^d-valued row-vector ζ

$$f_t(\pi, \zeta) = b_t \Gamma^+_t - \bar{b}_t \Gamma^-_t + \lambda_t (\pi - \Gamma_t - \zeta^s \mathcal{P}_t^s)^+ - \bar{\lambda}_t (\pi - \Gamma_t - \zeta^s \mathcal{P}_t^s)^- - \zeta^s \mathcal{C}_t^s$$

Self-Financing Property (Assumed throughout)

$\mathcal{W}_0 = \Pi_0$ and for $t \in [0, \bar{t}]$

$$d\mathcal{W}_t = -dC_t + (r_t \mathcal{W}_t + f_t(\mathcal{W}_t, \zeta_t)) dt + \zeta_t (d\mathcal{P}_t - r_t \mathcal{P}_t dt + dC_t)$$

where $f_t(\mathcal{W}_t, \zeta_t)$ is the dt-excess-funding-benefit of the bank
Assumption (Primary risky assets gain martingale)

\[M_0 = 0 \text{ and for } t \in [0, \bar{t}] \]

\[dM_t = dP_t - (r_t P_t + c_t) dt + dC_t \]

- Precludes arbitrage opportunities in the primary market of hedging assets (traded in swapped form)

→ Self-financing property rewritten “in martingale form”

\[d\mathcal{W}_t = -dC_t + (r_t \mathcal{W}_t + g_t(\mathcal{W}_t, \zeta_t)) dt + \zeta_t dM_t \]

where \(g_t(\pi, \zeta) = f_t(\pi, \zeta) + \zeta c_t \)
Given a hedge ζ and a semimartingale Π, we denote $R = R^i - 1_{\tau=\theta}R^f$ in which

$$R^f := (1 - r)\mathcal{X}^+_{\tau-}(\Pi_{\tau-}, \zeta_{\tau-})$$

Definition (\mathbb{P}-Price-and-Hedge)

- Solution (Π, ζ) to the following Backward Stochastic Differential Equation (BSDE) on $[0, \bar{\tau}]$:
 \[\Pi_{\bar{\tau}} = 1_{\tau<T}R \] and for $t \in [0, \bar{\tau}]$:
 \[
 d\Pi_t + dC_t - (r_t \Pi_t + g_t(\Pi_t, \zeta_t))dt = \zeta_t dM_t + d\varepsilon_t
 \]
 for a cost martingale ε null at time 0

- \mathbb{P}-price-and-hedge $(\tilde{\Pi}, \zeta)$ where for $t \in [0, \bar{\tau}]$
 \[
 \tilde{\Pi}_t := \Pi_t + 1_{t=\theta}R^f
 \]
The \mathbb{P}-price-and-hedge BSDE made non-standard by:

- the random terminal time τ
- the dependence of the terminal condition R in (Π_τ, ζ_τ)
- the contract effective dividend term dC_t
- the fact that it is not driven by an explicit set of fundamental martingales like Brownian motions and/or compensated jump measures
Lemma

In case of a \(\mathbb{P} \)-price-and-hedge \((\tilde{\Pi}, \zeta)\):

- The wealth process \(\mathcal{W} \) of the hedging portfolio satisfies for \(t \in [0, \tilde{\tau}] \):
 \[
 \left(\Pi_t - \int_0^t (r_s \Pi_s + g_s(\Pi_s, \zeta_s)) \, ds \right) - \left(\mathcal{W}_t - \int_0^t (r_s \mathcal{W}_s + g_s(\mathcal{W}_s, \zeta_s)) \, ds \right) = \varepsilon_t
 \]

- The hedging error \(\varrho \) of \((\tilde{\Pi}, \zeta)\) is such that \(\varrho_0 = \varepsilon_0 = 0 \) and for \(t \in [0, \tilde{\tau}] \):
 \[
 d\varrho_t = d\varepsilon_t + \left(r_t \varrho_t + g(\Pi_t, \zeta_t) - g(\mathcal{W}_t, \zeta_t) \right) dt
 - 1_{\tau=\theta}(1 - r)(\tilde{R}^f - R^f)\delta\tau(dt)
 \]

where \(\tilde{R}^f - R^f = \mathcal{X}_{\tau}^+(\mathcal{W}_{\tau^-}, \zeta_{\tau^-}) - \mathcal{X}_{\tau}^+(\Pi_{\tau^-}, \zeta_{\tau^-}) \).

- \(\Pi = \mathcal{W} \) and \(\varrho = 0 \) ("Complete Market Case") if \(\varepsilon = 0 \)
 - \(\Pi \approx \mathcal{W} \) and \(\varrho \) "small" if \(\varepsilon \) "small"

- Theoretically arbitrable \(\mathbb{P} \)-price-and-hedge if the market is incomplete and \(r < 1 \)
 - The corresponding "free lunch" seems difficult to lock in however
CVA Valuation and Hedging Approach (Sketched)

- “Clean” (of counterparty risk and funding costs) price-and-hedge (P, ϕ)
- CVA price-and-hedge correction (Θ, η)
 - Counterparty risk exposure $= \text{Positive part of the mark-to-market } P_\tau$
 - Cannot be simply handled by the application of a credit spread, has an intrinsically optional and dynamic flavor
 - CVA $\sim \text{Option ("CCDS") on the counterparty clean price process } P$
- Overall price-and-hedge $(\Pi = P - \Theta, \zeta = \phi - \eta)$
• Markov pre-default factor process X with infinitesimal generator \mathcal{X}
 • (Pre-default) funding costs $\tilde{g}(t, x, \theta, \eta)$
• Relating a suitable notion of orthogonal solution of a pre-default CVA BSDE to a corresponding min-variance hedging objective of the bank
• CVA Greeking task of the bank reduced to the (numerical) solution of a classical Markovian BSDE, or an equivalent semilinear parabolic PDE
Approach applicable to the risk-management of either the overall contract, or of its CVA component

- Pre-default CVA BSDE key to the mathematical analysis in both cases

Three possible hedging objectives of the bank considered

- Min-variance hedging of market risk ignoring jump-to-default risk
- Min-variance hedging (of market risk) constrained to perfect hedging of jump-to-default risk
- Min-variance hedging of market risk constrained to perfect hedging of an isolated default of the investor
Case of a Fully Swapped Hedge $\tilde{g}(t, X_t, \theta, \eta) = \tilde{g}(t, X_t, \theta)$

- **Pre-default CVA PDE**
 $$
 \begin{cases}
 \tilde{\Theta}(T, x) = 0 \\
 (\partial_t + X) \tilde{\Theta}(t, x) + \tilde{g}(t, x, \tilde{\Theta}(t, x)) = 0, \quad t < T
 \end{cases}
 $$

- **Deterministic PDE schemes** only practical provided the dimension of X is less than 3 or 4
- Otherwise **simulation schemes** are the only viable computational alternative
 - **BSDE simulation schemes** unless linear funding costs \tilde{g}
Outline

1 Counterparty Risk under Funding Constraints

2 Application to Counterparty Risk on Interest Rate Derivatives

3 Conclusions
Multiple Curve Issue

Left: Eonia swaps - Libor bases 2005-10, Right: Discount functions bootstrapped from 2 Sept 2010 data (We thank Jeroen Kerkhof, from Jefferies bank, for these graphs)

- Credit risk and liquidity risk fundamentals
- Special concern for interest rate derivatives (this part)
Counterparty Clean Valuation

- Multiple curve modeling of P
 - Using different yield curves for discounting and fixing
- Defaultable HJM methodology
 - Introducing credit risk to explain the divergence in the yield curves
 - Low-dimensional Markovian short-term specifications X
 - $P_t = P(t, X_t)$ needed for all vanilla interest rate derivatives needed for the CVA application
 - Vector factor process X made of the risk-free short rate process r, a stylized short credit spread process λ of the LIBOR banks, and auxiliary processes if need be for the Markov sake
Extended CIR Model

- **Given Brownian Motions** W^r and W^λ,
 \[
 dr_t = (\rho(t) - k(t)r(t))dt + \zeta(t)\sqrt{r_t}dW_t^r \\
 d\lambda_t = (\rho^*(t) - k^*(t)\lambda(t))dt + \zeta^*(t)\sqrt{\lambda_t}dW_t^\lambda \\
 d\nu_t = ((\zeta(t))^2r_t - 2k(t)\nu_t)dt \\
 d\nu_t = (((\zeta^*(t))^2\lambda_t - 2k^*(t)\nu_t)dt
\]
 in which the model coefficients are defined in connection with a
defaultable HJM setup.

- **Generator** \mathcal{X} of process $X_t = (r_t, \lambda_t, \nu_t, \mu_t)$ with $x = (r, \lambda, \nu, \mu)$,
 \[
 \mathcal{X}\tilde{\Theta}(t, x) = (\rho(t) - k(t)r)\partial_r\tilde{\Theta} + (\rho^*(t) - k^*(t)\lambda)\partial_\lambda\tilde{\Theta} \\
 + ((\zeta(t))^2r - 2k(t)\nu)\partial_\nu\tilde{\Theta} + (((\zeta^*(t))^2\lambda - 2k^*(t)\nu)\partial_\nu\tilde{\Theta} \\
 + \frac{1}{2}((\zeta(t))^2r + \frac{1}{2}((\zeta^*(t))^2\lambda - 2k^*(t)\nu)\partial_\nu\tilde{\Theta},
\]
 where ϱ is the correlation between W^r and W^λ.
Assuming $\tilde{g}(t, X_t, \theta)$, the corresponding pre-default CVA Markovian BSDE writes: $\tilde{\Theta}(T, X_T) = 0$, and for every $t \in [0, T]$

$$
- d\tilde{\Theta}(t, X_t) = \tilde{g}(t, X_t, \tilde{\Theta}(t, X_t))dt
- \partial_r \tilde{\Theta}(t, X_t) \zeta(t) \sqrt{r_t} dW_t^r
- \partial_{\lambda} \tilde{\Theta}(t, X_t) \zeta^*(t) \sqrt{\lambda_t} dW_t^\lambda.
$$
Lévy Hull–White Model

- **Lévy subordinators** (non-decreasing Lévy processes) L^r and L^λ
 \[
 \begin{align*}
 dr_t &= a(\rho(t) - r_t)dt + \sigma dL_t^r \\
 d\lambda_t &= a^*(\rho^*(t) - \lambda_t)dt + \sigma^* dL_t^\lambda.
 \end{align*}
 \]

- **Generator** \mathcal{X} of $X_t = (r_t, \lambda_t)$, with $x = (r, \lambda)$,
 \[
 \mathcal{X}\tilde{\Theta}(t, x) = (a(\rho(t) - r))\partial_r\tilde{\Theta} + (a^*(\rho^*(t) - \lambda))\partial_\lambda\tilde{\Theta} + \\
 \int_{\delta,\varepsilon > 0} \left(\tilde{\Theta}(t, r + \sigma\delta, \lambda + \sigma^*\varepsilon) - \tilde{\Theta}(t, r, \lambda) \right) F(d(\delta, \varepsilon)),
 \]

 where F stands for the Lévy measure of (L^r, L^λ).
Assuming \(\tilde{g}(t, X_t, \theta) \), the corresponding pre-default CVA Markovian BSDE writes: \(\tilde{\Theta}(T, X_T) = 0 \), and for every \(t \in [0, T] \):

\[
-d\tilde{\Theta}(t, X_t) = \tilde{g}(t, X_t, \tilde{\Theta}(t, X_t))dt \\
-\int_{\delta, \varepsilon > 0} \left(\tilde{\Theta}(t, r_{t-} + \sigma \delta, \lambda_{t-} + \sigma^* \varepsilon) - \tilde{\Theta}(t, X_{t-}) \right) N(dt, d(\delta, \varepsilon))
\]

where \(N \) stands for the compensated jump measure of \((L^r, L^\lambda) \).
Possible Specifications of the Subordinators L^r, L^λ

- The jumps of a subordinator can only be positive
 - Compound Poisson process with positive jumps
 - Inverse Gaussian (IG) process and generalized inverse Gaussian (GIG) processes
 - Gamma process
 - Some degenerate CGMY processes
- Common factor specifications such as $L^r = Z^1 + Z^3$, $L^\lambda = Z^2 + Z^3$, for independent Lévy subordinators Z^1, Z^2 and Z^3
- Two Lévy subordinators L^r, L^λ with a given Lévy copula
Outline

1. Counterparty Risk under Funding Constraints
2. Application to Counterparty Risk on Interest Rate Derivatives
3. Conclusions
Take-Away Messages

- Even though considering bilateral counterparty risk on a contract between two parties, focus on a party of interest, “the bank” in these slides
 - Symmetrical considerations apply to “the investor” but with non-symmetrical hedging positions and funding conditions
 - Different prices/CVAs

- Consider explicitly the three pillars of the position consisting of the contract itself, its hedging portfolio and its funding portfolio
 - As opposed to getting rid of funding costs through discounting at the risk-free rate in a classical one-curve setup

- Concrete recipes for risk-managing the contract as a whole or its CVA component, according to various possible objectives of the bank
 - E.g., minimizing the (risk-neutral) variance of the cost process (~hedging error) of the contract or of its CVA component, whilst achieving a perfect hedge of the related jump-to-default exposure

- Practical notion of CVA also useful mathematically
Devising a Cross – Asset Classes Model of Counterparty Risk

- Above reduced-form approach possible on most markets
- But $\Delta D_T \neq 0$ needed for counterparty credit risk

Facing the simulation computational challenge of CCR on real-life portfolios with tens of thousands of contracts

- More intensive than (Credit-)VaR or other risk measure computations
 - Value the portfolio at every time point of every simulated trajectory
- Devise appropriate variance reduction techniques
 - Importance Sampling exploiting the Markovian structure of the model
 - Particles
- Approximate simulation/regression pricing schemes for ‘exotic’ and/or path-dependently collateralized portfolios.