PRICING AND TRADING CREDIT DEFAULT SWAPS

Tomasz R. Bielecki, Illinois Institute of Technology, USA
Monique Jeanblanc, Université d’Évry Val d’Essonne, France
Marek Rutkowski, University of New South Wales, Australia

AMAMEF CONFERENCE
BEDLEWO
May, 3th, 2007
Dynamics of Prices of Defaultable claims

The default time is a strictly positive random variable τ, defined on a probability space $(\Omega, \mathcal{G}, \mathbb{Q})$. The filtration generated by the jump process $H_t = \mathbb{1}_{\{\tau \leq t\}}$ is denoted by \mathcal{H}. We assume that some auxiliary filtration \mathcal{F} is given, and we write $\mathcal{G} = \mathcal{H} \vee \mathcal{F}$. The filtration \mathcal{G} is referred to as to the full filtration. We assume that any \mathcal{F}-martingale is a continuous process.
Survival Process

$G_t = \mathbb{Q}(\tau > t \mid \mathcal{F}_t)$ is the survival process assumed to satisfy $G_0 = 1$ and $G_t > 0$ for every $t \in \mathbb{R}_+$. We assume that G is continuous.

Then

$$M_t = H_t - \int_0^t (1 - H_u)\lambda_u \, du,$$

is a \mathbb{G}-martingale, where λ is defined via the Doob-Meyer decomposition of the sub-martingale G.
Defaultable Claims

By a defaultable claim maturing at T we mean a quadruple (X, A, Z, τ), where

- X is an \mathcal{F}_T-measurable random variable,
- $A = (A_t)_{t \in [0,T]}$ is an \mathbb{F}-adapted process of finite variation with $A_0 = 0$,
- $Z = (Z_t)_{t \in [0,T]}$ is an \mathbb{F}-predictable process,
- and τ is the default time.
The total dividend process $D^X = (D^X_t)_{t \in \mathbb{R}_+}$ of a defaultable claim maturing at T equals, for every $t \in \mathbb{R}_+$,

$$D^X_t = X 1_{\{\tau > T\}} 1_{[T, \infty[}(t) + \int_{]0, t \wedge T]} (1 - H_u) dA_u + \int_{]0, t \wedge T]} Z_u dH_u.$$

The reduced total dividend process D of a defaultable claim maturing at T equals, for every $t \in \mathbb{R}_+$,

$$D_t = \int_{]0, t \wedge T]} (1 - H_u) dA_u + \int_{]0, t \wedge T]} Z_u dH_u.$$
Price Dynamics of a Defaultable Claim

The **ex-dividend price** process S associated with the dividend process D^X equals, for every $t \in [0, T]$,

$$S_t = B_t \mathbb{E}_{Q^*} \left(B_T^{-1} X \mathbf{1}_{\{\tau > T\}} + \int_{[t,T]} B_u^{-1} dD_u \Big| \mathcal{G}_t \right).$$

The **ex-dividend pre-default price** of a defaultable claim is the unique \mathbb{F}-adapted process \tilde{S} such that

$$S_t = \mathbf{1}_{\{t < \tau\}} \tilde{S}_t$$

The **cumulative price** process S^{cum} associated with the dividend process D^X is

$$S^{cum}_t = B_t \mathbb{E}_{Q^*} \left(\int_{[0,T]} B_u^{-1} dD^X_u \Big| \mathcal{G}_t \right) = S_t + B_t \int_{[0,t]} B_u^{-1} dD_u.$$

The discounted cumulative price $B^{-1} S^{cum}$ is a \mathcal{G}-martingale under Q^*.
Let n be any \mathbb{F}-martingale. Then the process \hat{n} given by

$$
\hat{n}_t = n_{t \wedge \tau} - \int_0^{t \wedge \tau} G_u^{-1} d\langle n, \mu \rangle_u
$$

is a continuous \mathcal{G}-martingale.
• For any Q^*-integrable and \mathcal{F}_T-measurable random variable Y we have

$$E_{Q^*}(1_{\{T<\tau\}} Y \mid \mathcal{G}_t) = 1_{\{t<\tau\}} G_t^{-1} E_{Q^*}(G_T Y \mid \mathcal{F}_t).$$

• For any \mathbb{F}-predictable process R such that $E_{Q^*}|R_\tau| < \infty$

$$E_{Q^*}(1_{\{t<\tau \leq T\}} R_\tau \mid \mathcal{G}_t) = -1_{\{t<\tau\}} \frac{1}{G_t} E_{Q^*} \left(\int_t^T R_u \, dG_u \mid \mathcal{F}_t \right).$$
The dynamics of the cumulative price S^{cum} on $[0, T]$ are
\[dS^\text{cum}_t = r_t S^\text{cum}_t \, dt + (Z_t - S_{t-}) \, dM_t + G_t^{-1} (B_t \, d\hat{m}_t - S_t \, d\hat{\mu}_t) \]
where
\[m_t = \mathbb{E}_{Q^*} \left(B_T^{-1} G_T X + \int_0^T B_u^{-1} G_u Z_u \lambda_u \, du - \int_0^T B_u^{-1} G_u \, dA_u \bigg| \mathcal{F}_t \right). \]
and μ is the martingale part of the submartingale G.
Proof. We derive the dynamics of the pre-default ex-dividend price \tilde{S}.
The price S can be represented as follows

$$S_t = 1_{\{t<\tau\}} \tilde{S}_t = 1_{\{t<\tau\}} B_t G_t^{-1} Y_t,$$

where Y is defined as follows

$$Y_t = m_t - \int_0^t B_u^{-1} G_u Z_u \lambda_u \, du + \int_0^t B_u^{-1} G_u \, dA_u,$$

An application of Itô’s formula leads to the result \Box
Price Dynamics of a CDS

A credit default swap (CDS) with a constant rate κ and recovery at default is a defaultable claim $(0, A, Z, \tau)$ where $Z_t = \delta_t$ and $A_t = -\kappa t$ for every $t \in [0, T]$.

The process $\delta : [0, T] \to \mathbb{R}$ represents the default protection, and κ is the CDS rate (also termed the spread, premium or annuity of a CDS).
The ex-dividend price of a CDS equals, for any \(t \in [0, T] \),

\[
S_t(\kappa) = \mathbb{1}_{\{t < \tau\}} \frac{B_t}{G_t} \mathbb{E}_{Q^*}\left(\int_t^T B_u^{-1} G_u \delta_u \lambda_u \, du - \kappa \int_t^T B_u^{-1} G_u \, du \bigg| \mathcal{F}_t \right).
\]

Define the \(F \)-martingale \(n \) by the formula

\[
n_t = \mathbb{E}_{Q^*}\left(\int_0^T B_u^{-1} G_u \delta_u \lambda_u \, du - \kappa \int_0^T B_u^{-1} G_u \, du \bigg| \mathcal{F}_t \right).
\]

Then, the dynamics of the cumulative price \(S^{\text{cum}}(\kappa) \) are

\[
dS^{\text{cum}}_t(\kappa) = r_t S^{\text{cum}}_t(\kappa) \, dt + (\delta_t - S_{t-}(\kappa)) \, dM_t + G_t^{-1}(B_t \, d\hat{n}_t - S_t(\kappa) \, d\hat{\mu}_t).
\]
Replication of a Defaultable Claim

We now assume that k credit default swaps with maturities $T_i \geq T$, spreads κ_i and protection payments δ^i for $i = 1, \ldots, k$ are traded over the time interval $[0, T]$. The 0th traded asset is the savings account B. Our goal is to examine hedging strategies for a defaultable claim (X, A, Z, τ).

Here, we assume that immersion property holds: any \mathcal{F}-martingale is a \mathcal{G}-martingale. In that case, G is a non-increasing process.
We consider a trading strategy \(\phi = (\phi^0, \ldots, \phi^k) \) where \(\phi^0 \) is \(\mathbb{G} \)-adapted and \(\phi^1, \ldots, \phi^k \) are \(\mathbb{G} \)-predictable processes. The associated wealth process \(V(\phi) \) equals, for \(t \in [0, T] \),

\[
V_t(\phi) = \phi^0_t B_t + \sum_{i=1}^{k} \phi^i_t S^i_t(\kappa_i)
\]
A strategy \(\phi \) is said to be **self-financing** if

\[
dV_t(\phi) = \phi_t^0 dB_t + \sum_{i=1}^{k} \phi_t^i dS_{t}^{c,i}(\kappa_i)
\]

where \(S_{t}^{c,i}(\kappa_i) \) is the cumulative price process of the \(i \)th traded CDS.
We consider a defaultable claim \((X, A, Z, \tau)\) such that the price process \(S\) for this claim is well defined:

\[
S_{t}^{\text{cum}} = 1_{\{t < \tau\}} \frac{B_t}{G_t} \left(- \int_0^t B_u^{-1} G_u Z_u \lambda_u \, du + \int_0^t B_u^{-1} G_u \, dA_u + m_t \right)
\]

with

\[
m_t = \mathbb{E}_{Q^*} \left(B_T^{-1} G_T X + \int_0^T B_u^{-1} G_u Z_u \lambda_u \, du - \int_0^T B_u^{-1} G_u \, dA_u \mid \mathcal{F}_t \right).
\]

We say that a self-financing strategy \(\phi = (\phi^0, \ldots, \phi^k)\) replicates a defaultable claim \((X, A, Z, \tau)\) if its wealth process \(V(\phi)\) is equal to the price \(S\) of the claim \(t \in [0, T]\).

In particular, the equality \(V_{t \wedge \tau}(\phi) = S_{t \wedge \tau}\) holds for every \(t \in [0, T]\).
For any $t \in [0, T]$,

$$dV_t(\phi) = r_t V_t(\phi) \, dt + \sum_{i=1}^{k} \phi_t^i \left((\delta_t^i - \tilde{S}_t^i(\kappa_i)) \, dM_t + (1 - H_t) B_t G_t^{-1} \, dn_t^i \right)$$

where

$$n_t^i = \mathbb{E}_{Q^*} \left(\left(\int_0^{T_i} B_u^{-1} G_u \delta_u \lambda_u \, du - \kappa_i \int_0^{T_i} B_u^{-1} G_u \, du \right) \mid \mathcal{F}_t \right) .$$
We assume from now on that the filtration \mathbb{F} is generated by a (possibly multi-dimensional) Brownian motion W under \mathbb{Q}^* and Hypothesis (H) holds (so that W is also a Brownian motion with respect to \mathbb{G}).

In view of the predictable representation property of a Brownian motion, there exist \mathbb{F}-predictable processes ζ and ζ^i, $i = 1, \ldots, k$ such that $dm_t = \zeta_t \, dW_t$ and $dn_t^i = \zeta^i_t \, dW_t$.
Assume that there exist \(\mathbb{F} \)-predictable processes \(\phi^1, \ldots, \phi^k \) such that, for any \(t \in [0, T] \),

\[
\sum_{i=1}^{k} \phi^i_t (\delta^i_t - \tilde{S}^i_t(\kappa_i)) = Z_t - \tilde{S}_t, \quad \sum_{i=1}^{k} \phi^i_t \zeta^i_t = \zeta_t.
\]

Let

\[
dV_t(\phi) = r_t V_t(\phi) \, dt + \sum_{i=1}^{k} \phi^i_t \left((\delta^i_t - \tilde{S}^i_t(\kappa_i)) \, dM_t + (1 - H_t) B_t G_t^{-1} \, dn^i_t \right)
\]

with the initial condition \(V_0(\phi) = S_{0}^{cum} \). Then the self-financing trading strategy \((B^{-1}(V(\phi) - \phi \cdot S^i), \phi^1, \ldots, \phi^k) \) replicates the defaultable claim \((X, A, Z, \tau) \).
Enlargement of filtration formula

Let τ be a unique random time. In general, it is not an honest time. However, it is possible to prove that any \mathbb{F}-martingale is a $\mathbb{G} = \mathbb{F} \lor \mathbb{F}$-semi-martingale. If X is a \mathbb{F} martingale, if

$$
\mathbb{P}(\tau > u | \mathcal{F}_t) = \int_u^{\infty} f(v; t)dv
$$

then

$$
X_t = \tilde{X}_t + \int_0^{t \land \tau} \frac{d\langle X, M^\tau \rangle_s}{S_{s-}} + \int_{t \land \tau}^{t} \varphi(\tau, ds),
$$

$$
= \tilde{X}_t + \int_0^{t \land \tau} \int_s^{\infty} \eta(dv) \frac{d\langle X, f^v \rangle_s}{S_{s-}} + \int_{t \land \tau}^{t} \varphi(\tau, ds)
$$

where \tilde{X} is a \mathbb{G}-martingale and

$$
\varphi(u, ds) = \frac{d\langle f(u; \cdot), X \rangle_s}{f(u; s)}
$$
In this section, we assume that \mathbb{F} is a Brownian filtration and that the interest rate is null. Our aim is to obtain the dynamics of a CDS in the simple case where two different credit names are considered.
Joint Survival Process

Hence we assume that we are given two strictly positive random times τ_1 and τ_2. We introduce the conditional joint survival process $G(u, v; t)$

$$G(u, v; t) = \mathbb{Q}^*(\tau_1 > u, \tau_2 > v \mid \mathcal{F}_t).$$

We write

$$\partial_1 G(u, v; t) = \frac{\partial}{\partial u} G(u, v; t), \quad \partial_{12} G(u, v; t) = \frac{\partial^2}{\partial u \partial v} G(u, v; t).$$
We assume that the density \(f(u, v; t) = \partial_{12} G(u, v; t) \) with respect to \(u \) and \(v \) exists, so that

\[
G(u, v; t) = \int_{u}^{\infty} \left(\int_{v}^{\infty} f(x, y; t) \, dy \right) \, dx.
\]

For any fixed \((u, v) \in \mathbb{R}_+^2\), the \(\mathbb{F} \)-martingale

\(G(u, v; t) = \mathbb{Q}^*(\tau_1 > u, \tau_2 > v \mid \mathcal{F}_t) \) admits the integral representation

\[
G(u, v; t) = \mathbb{Q}^*(\tau_1 > u, \tau_2 > v) + \int_0^t g(u, v; s) \, dW_s
\]

where \(g(u, v; s) \) is some \(\mathbb{F} \)-predictable process (in fact an \(\mathbb{F} \)-martingale under \(\mathbb{Q}^* \)).
Let us introduce the filtrations $\mathcal{H}^i, \mathcal{H}, \mathcal{G}^i$ and \mathcal{G} associated with default times by setting

$$
\mathcal{H}^i_t = \sigma(H^i_s; s \in [0, t]), \quad \mathcal{H}_t = \mathcal{H}^1_t \vee \mathcal{H}^2_t, \quad \mathcal{G}^i_t = \mathcal{F}_t \vee \mathcal{H}^i_t, \quad \mathcal{G}_t = \mathcal{F}_t \vee \mathcal{H}_t,
$$

where $H^i_t = 1_{\{\tau_i \leq t\}}$. We assume that the usual conditions of completeness and right-continuity are satisfied by these filtrations.
We assume that immersion hypothesis holds between \mathbb{F} and \mathbb{G}. In particular, any \mathbb{F}-martingale is also a \mathbb{G}^i-martingale for $i = 1, 2$.
In general, there is no reason that any \mathbb{G}^i-martingale is a \mathbb{G}-martingale. Indeed, when \mathbb{F} is a trivial filtration, denoting by $G_{t}^{1|2} = \mathbb{Q}^*(\tau_1 > t \mid \mathcal{H}_{t}^{2})$ and $G(u, v) = \mathbb{Q}(\tau_1 > u, \tau_2 > v)$,

$$dG_{t}^{1|2} = \left(\frac{\partial_2 G(t, t)}{\partial_2 G(0, t)} - \frac{G(t, t)}{G(0, t)}\right) dM_{t}^2 + \left(H_{t}^{2} \partial_1 h(t, \tau_2) + (1 - H_{t}^{2}) \frac{\partial_1 G(t, t)}{G(0, t)}\right) dt$$

where M^2 is the \mathbb{H}^2-martingale given by

$$M_{t}^{2} = H_{t}^{2} + \int_{0}^{t \wedge \tau_2} \frac{\partial_2 G(0, s)}{G(0, s)} ds$$

and $h(t, s) = \frac{\partial_2 G(t, s)}{\partial_2 G(0, s)}$. Hence immersion hypothesis is not always valid between \mathbb{H}^2 and $\mathbb{H}^1 \vee \mathbb{H}^2$, since $\frac{\partial_2 G(t, t)}{\partial_2 G(0, t)} - \frac{G(t, t)}{G(0, t)}$ is not always null.
Valuation of Single-Name CDSs

Let us now examine the valuation of single-name CDSs under the assumption that the interest rate equals zero.

We consider the CDS

- with the constant spread κ_1,
- which delivers $\delta_1(\tau_1)$ at time τ_1 if $\tau_1 < T_1$, where δ_1 is a deterministic function.

The value $S_1^{1}(\kappa_1)$ of this CDS, computed in the filtration \mathcal{G}, i.e., taking care on the information on the second default contained in that filtration, is computed in two successive steps.
On the set $t < \tau_{(1)} = \tau_1 \land \tau_2$, the ex-dividend price of the CDS equals, on the event \{ $t < \tau_{(1)}$ \},

$$S_t^1(\kappa_1) = \tilde{S}_t^1(\kappa_1) = \frac{1}{G(t, t; t)} \left(- \int_t^{T_1} \delta_1(u) \partial_1 G(u, t; t) \, du - \kappa_1 \int_t^{T_1} G(u, t; t) \, du \right).$$
On the event $\{\tau_2 \leq t < \tau_1\}$, we have that

$$S^1_t(\kappa_1) = \frac{1}{\partial_2 G(t, \tau_2; t)} \left(- \int_t^{T_1} \delta_1(u) f(u, \tau_2; t) \, du - \kappa_1 \int_t^{T_1} \partial_2 G(u, \tau_2; t) \, du \right).$$
Price Dynamics of Single-Name CDSs

Let us return to the study of a general case. By applying the Itô-Wentzell theorem, we get

\[G(u, t; t) = G(u, 0; 0) + \int_{0}^{t} g(u, s; s) \, dW_s + \int_{0}^{t} \partial_2 G(u, s; s) \, ds \]

\[G(t, t; t) = G(0, 0; 0) + \int_{0}^{t} g(s, s; s) \, dW_s + \int_{0}^{t} (\partial_1 G(s, s; s) + \partial_2 G(s, s; s)) \, ds. \]
The cumulative price $S^{c,1}(\kappa_1)$ satisfies, on $[0, T \wedge \tau(1)]$,

$$
\begin{align*}
 dS^{c,1}_t(\kappa_1) &= (\delta_1(t) - \tilde{S}^1_t(\kappa_1)) \, d\hat{M}^1_t + (S^1_{t|2}(\kappa_1) - \tilde{S}^1_t(\kappa_1)) \, d\hat{M}^2_t \\
 &\quad - \frac{1}{G(t, t; t)} \left(\int_t^{T_1} \delta_1(u) \partial_1 g(u, t; t) \, du + \kappa_1 \int_t^{T_1} g(u, t; t) \, du \right) dW_t.
\end{align*}
$$

Here

$$
\hat{M}^i_t = H^i_{t\wedge \tau(1)} - \int_0^{t\wedge \tau(1)} \tilde{\lambda}^i_u \, du,
$$

is a \mathcal{G}-martingale, where $\tilde{\lambda}^i_t = -\frac{\partial_i G(t, t; t)}{G(t, t; t)}$ is the pre-default intensity for the ith name.
Replication of a First-to-Default Claim

A **first-to-default claim** with maturity T is a defaultable claim $(X, A, Z, \tau_{(1)})$ where X is an \mathcal{F}_T-measurable amount payable at maturity if no default occurs, a continuous process of finite variation $A : [0, T] \rightarrow \mathbb{R}$ with $A_0 = 0$ represents the dividend stream up to $\tau_{(1)}$, and $Z = (Z^1, Z^2, \ldots, Z^n)$ is the vector of \mathbb{F}-predictable, real-valued processes, where $Z^i_{\tau_{(1)}}$ specifies the recovery received at time $\tau_{(1)}$ if the ith name is the first defaulted name, that is, on the event \{\tau_i = \tau_{(1)} \leq T\}.
The cumulative price S^{cum} is given by

$$dS^{cum}_t = r_t S^{cum}_t \, dt + \sum_{i=1}^{n} (Z^i_t - S_{t-}) \, d\hat{M}^i_t + (1 - H_t^{(1)}) B_t (G_{(1)}(t; t))^{-1} dm_t,$$

where the \mathbb{F}-martingale m is given by the formula

$$m_t = \mathbb{E}_{Q^*} \left(B_{T}^{-1} G_{(1)}(T; T) X + \sum_{i=1}^{n} \int_{0}^{T} B_{u}^{-1} G_{(1)}(u; u) Z^i_u \tilde{\lambda}^i_u \, du \
- \int_{0}^{T} B_{u}^{-1} G_{(1)}(u; u) \, dA_u \bigg\lvert \mathcal{F}_t \right).$$
The pre-default ex-dividend price satisfies

\[d\tilde{S}_t = (r_t + \tilde{\lambda}_t)\tilde{S}_t dt - \sum_{i=1}^n \tilde{\lambda}_t^i Z_t^i dt + dA_t + B_t(G(t, t; t))^{-1} dm_t. \]

Since \(\mathbb{F} \) is generated by a Brownian motion, there exists an \(\mathbb{F} \)-predictable process \(\zeta \) such that

\[d\tilde{S}_t = (r_t + \tilde{\lambda}_t)\tilde{S}_t dt - \sum_{i=1}^n \tilde{\lambda}_t^i Z_t^i dt + dA_t + B_t(G(t, t; t))^{-1} \zeta_t dW_t. \]
Hedging of Credit Spreads and Default Correlations

We say that a self-financing strategy \(\phi = (\phi^0, \phi^1, \ldots, \phi^k) \) replicates a first-to-default claim \((X, A, Z, \tau(1))\) if its wealth process \(V(\phi)\) satisfies the equality \(V_{t \wedge \tau(1)}(\phi) = S_{t \wedge \tau(1)}\) for any \(t \in [0, T]\).

We have, for any \(t \in [0, T]\),

\[
dV_t(\phi) = r_t V_t(\phi) \, dt + \sum_{i=1}^{n} \phi_t^i \left((\delta_t^i - \tilde{S}_t^i(\kappa_i)) \, dM_t^i + \sum_{j=1, j \neq i}^{n} (S_{t|j}^i - \tilde{S}_t^i(\kappa_i)) \, dM_t^j \right) \\
+ (1 - H_t) B_t (G(t, t; t))^{-1} dn_t^i
\]

where

\[
n_t^i = \mathbb{E}_{Q^*} \left(\int_0^{T_i} G(u, u; u) \frac{\delta_u \tilde{\lambda}_u^i + \sum_{j=1, j \neq i}^{n} S_{u|j}^i \tilde{\lambda}_u^j}{B_u} \, du - \kappa_i \int_0^{T_i} G(u, u; u) \frac{1}{B_u} \, du \bigg| \mathcal{F}_t \right).
\]
Let $\tilde{\phi}_t = (\tilde{\phi}_1^t, \tilde{\phi}_2^t, \ldots, \tilde{\phi}_n^t)$ be a solution to the following equations

$$\tilde{\phi}_i^t (\delta_t^i - \tilde{S}_t^i (\kappa_i)) + \sum_{j=1, j \neq i}^n \tilde{\phi}_j^t (S^j_{t|i} (\kappa_j) - \tilde{S}_t^j (\kappa_j)) = Z^i_t - \tilde{S}_t$$

and $\sum_{i=1}^n \tilde{\phi}_i^t \zeta_t^i = \zeta_t$. Let us set $\phi^i_t = \tilde{\phi}^i_t (\tau(1) \wedge t)$ for $i = 1, 2, \ldots, n$ and $t \in [0, T]$. Then the self-financing trading strategy

$\phi = (B^{-1} (V(\phi) - \phi \cdot S), \ldots, \phi^k)$ replicates the first-to-default claim $(X, A, Z, \tau(1))$.
References

REFERENCES

REFERENCES

Hedging of Credit Spreads and Default Correlations

Working paper.

