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Initial times

Initial times

Let (Ω,F,P) be a given filtered probability space, τ a random time and

Ht = 11τ≤t

Let G = F ∨ H where Ht = σ(Hs, s ≤ t). For any random time τ, we
write

GT
t (ω) = P(τ > T |Ft) (ω)

the conditional survival process.
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Initial times

The positive random time τ is called an initial time if there exists a
measure η on B(R+) such that P(τ ∈ ds|Ft) � η(ds). Then,

GT
t = P(τ > T |Ft) =

∫ ∞

T

f(u; t)η(du) .

From GT
s = E(GT

t |Fs) for any s ≤ t, it follows that for any u ≥ 0,
(f(u; t))t is a non negative F-martingale.
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Initial times

• Under the condition that the initial time τ avoids the F-stopping
times, there is equivalence between F is immersed in G and for any
u ≥ 0, the martingale f(u; ·) is constant after u.
• Let (Ku

t )t≥0 be a family of F-predictable processes indexed by u ≥ 0.
Then

E (Kτ
t | Ft) =

∫ ∞

0

Ku
t f(u; t)η (du)

• If X is an F-martingale, assuming that Gt = Gt
t = P(τ > t|Ft) is

continuous

Yt = Xt −
∫ t∧τ

0

d 〈X,G〉s
Gs

−
∫ t

t∧τ

d 〈X, f(θ; ·)〉s
f(θ; s)

∣∣∣∣
θ=τ

∈ M(G).
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Initial times

Example: “Cox-like” construction. Here
• λ is a non-negative F-adapted process, Λt =

∫ t

0
λsds

• Θ is a given r.v. independent of F∞ with unit exponential law
• V is a F∞ -measurable non-negative random variable
• τ = inf{t : Λt ≥ ΘV }.

For any T and t,

Gt(T ) = P(τ ≥ T |Ft) = P(ΛT ≤ ΘV |Ft) = P

(
exp−ΛT

V
≥ e−Θ

∣∣∣∣Ft

)
.

Let us denote exp(−Λt/V ) = 1 − ∫ t

0
ψsds, with

ψs = (λs/V ) exp−
∫ s

0

(λu/V ) du,

and define γ(s; t) = E (ψs| Ft). Then, f(s; t) = γ(s; t)/γ(s; 0).
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HJM model

HJM model

Assume that for any T > 0, the process (Gt(T ), 0 ≤ t) satisfies

dGt(T )
Gt(T )

= Ψ(t, T )dWt

where Ψ(t, T ) is an F-adapted process which is differentiable with
respect to T . Similar as in the interest rate modelling, we define the
forward rate γt(T ) = − ∂

∂T lnGt(T ). If, in addition,

ψ(t, T ) =
∂

∂T
Ψ(t, T ) is bounded, then we have

1. Gt(T ) = G0(T ) exp
(∫ t

0
Ψ(s, T )dWs − 1

2

∫ t

0
|Ψ(s, T )|2ds

)
2. γt(T ) = γ0(T ) − ∫ t

0
ψ(s, T )dWs +

∫ t

0
ψ(s, T )Ψ(s, T )∗ds.

3. Gt = exp
(
− ∫ t

0
γs(s)ds+

∫ t

0
Ψ(u, u)dWu − 1

2

∫ t

0
|Ψ(u, u)|2du

)
.
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HJM model

A general model of density process

Our aim is to give a large class of examples of density process. We start
with an explicit construction of a family (f(u) = f(u; t), t ≥ 0) which
satisfy:

(a) f(u; ·) is a family of martingales

(b) f(u; t) > 0,∀t ≥ 0,∀u ≥ 0

(c)
∫∞
0
f(u; t)du = 1, ∀t ≥ 0.

Define f(u; t) = λt(u) exp
(− ∫ u

0
λt(v)dv

)
where

dλt(u) = mt(u)dt+ σt(u)dWt with

mt(u) = σt(u)
∫ u

0

σt(v)dv, ∀t, u ≥ 0.

Then, for any u, the process f(u; ·) is a martingale. Condition b) is
satisfied if λ ≥ 0
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HJM model

We have λt(u) = λ0(u) +
∫ t

0
ms(u)ds+

∫ t

0
σs(u)dWs. The non

negativity of λ will be satisfied if
• m is non negative
• for any u, there exists a positive constant C(u) such that

λ0(u) ≥ C(u)
• the quantity Xt = C(u) +

∫ t

0
σs(u)dWs is a positive martingale.

This is the case if X is a Doléans Dade exponential: there exists a
family b(u) of adapted processes

Xt = C(u) exp
(∫ t

0

bs(u)dWs − 1
2

∫ t

0

b2s(u)ds
)

In that case,
∫ t

0
σs(u)dWt =

∫ t

0
bs(u)XsdWs. Hence, we make the choice

of

σt(u) = bt(u)Xt = bt(u)C(u) exp
(∫ t

0

bs(u)dWs − 1
2

∫ t

0

b2s(u)ds
)

and propose a family of density processes.
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This is the case if X is a Doléans Dade exponential: there exists a
family b(u) of adapted processes

Xt = C(u) exp
(∫ t

0

bs(u)dWs − 1
2

∫ t

0

b2s(u)ds
)

In that case,
∫ t

0
σs(u)dWt =

∫ t

0
bs(u)XsdWs. Hence, we make the choice

of

σt(u) = bt(u)Xt = bt(u)C(u) exp
(∫ t

0

bs(u)dWs − 1
2

∫ t

0

b2s(u)ds
)

and propose a family of density processes.

With N. El Karoui and Y. Jiao 13



HJM model

Let λ0(u) be a family of probability densities on R+. Assume that b(u)
is a given family of non-negative adapted processes, and C(u) a family
of constants such that λ0(u) ≥ C(u) ≥ 0. Define

σt(u) = bt(u)C(u) exp
(∫ t

0

bs(u)dWs − 1
2

∫ t

0

b2s(u)ds
)

and

ft(u) = λt(u) exp
(
−
∫ t

0

λt(v)dv
)

λt(u) = λ0(u) +
∫ t

0

ms(u)ds+
∫ t

0

σs(u)dWs

mt(u) = σt(u)
∫ u

0

σt(v)dv .

Then the family f(u) satisfies the above conditions.
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Hedging of Credit Spreads and Default Correlations

Hedging of Credit Spreads and Default Correlations

In this section, we assume that F is a Brownian filtration and that the
interest rate is null.

Our aim is to obtain the dynamics of a CDS in the simple case where
two different credit names are considered.

We assume that we are given two strictly positive random times τ1 and
τ2.
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Hedging of Credit Spreads and Default Correlations

Joint Survival Process

We introduce the conditional joint survival process G(u, v; t)

G(u, v; t) = Q(τ1 > u, τ2 > v | Ft).

We write

∂1G(u, v; t) =
∂

∂u
G(u, v; t), ∂12G(u, v; t) =

∂2

∂u∂v
G(u, v; t) = f(u, v; t)

so that

G(u, v; t) =
∫ ∞

u

(∫ ∞

v

f(x, y; t) dy
)
dx

where f(u, v; s) is some F-predictable process (in fact an
(F,Q)-martingale).
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Hedging of Credit Spreads and Default Correlations

For any fixed (u, v) ∈ R2
+, the F-martingale

G(u, v; t) = Q(τ1 > u, τ2 > v | Ft) admits the integral representation

G(u, v; t) = Q(τ1 > u, τ2 > v) +
∫ t

0

g(u, v; s) dWs
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Hedging of Credit Spreads and Default Correlations

Let us introduce the filtrations Hi,H,Gi and G associated with default
times by setting

Hi
t = σ(Hi

s; s ∈ [0, t]), Ht = H1
t ∨H2

t , Gi
t = Ft ∨Hi

t, Gt = Ft ∨Ht,

where Hi
t = 11{τi≤t}. In this talk, we assume that immersion

hypothesis holds between F and G. In particular, any
F-martingale is also a Gi-martingale for i = 1, 2.

In general, there is no reason that any Gi-martingale is a G-martingale.
(see a specific case in Ehlers and Schonbucher)
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Hedging of Credit Spreads and Default Correlations

Let τ(1) = τ1 ∧ τ2. We denote λ̃i
t = −∂iG(t,t;t)

G(t,t;t) the pre-default
intensity for the ith name:

M̂ i
t = Hi

t∧τ(1)
−
∫ t∧τ(1)

0

λ̃i
u du,

is a G-martingale, and λ̃ = λ̃1 + λ̃2 the intensity of τ(1).
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Hedging of Credit Spreads and Default Correlations

Valuation of Single-Name CDSs

Let us now examine the valuation of single-name CDSs under the
assumption that the interest rate equals zero.

We consider the CDS
• with the constant spread κ1,
• which delivers δ1(τ1) at time τ1 if τ1 < T1, where δ1 is a

deterministic function.

The value S1(κ1) of this CDS, computed in the filtration G, i.e., taking
care on the information on the second default contained in that
filtration, is computed in two successive steps.
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Hedging of Credit Spreads and Default Correlations

On the set t < τ(1), the ex-dividend price of the CDS equals

S1
t (κ1) = S̃1

t (κ1) =
1

G(t, t; t)

(
−
∫ T1

t

δ1(u)∂1G(u, t; t) du− κ1

∫ T1

t

G(u, t; t) du

)
.

On the event {τ2 ≤ t < τ1}, we have that

S1
t (κ1) = Ŝ1

t (κ1) =
1

∂2G(t, τ2; t)

(
−
∫ T1

t

δ1(u)f(u, τ2; t) du− κ1

∫ T1

t

∂2G(u, τ2; t) du
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Hedging of Credit Spreads and Default Correlations
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t (κ1) =
1

∂2G(t, τ2; t)

(
−
∫ T1

t

δ1(u)f(u, τ2; t) du− κ1

∫ T1

t

∂2G(u, τ2; t) du

With T. Bielecki and M. Rutkowski 22



Hedging of Credit Spreads and Default Correlations

Price Dynamics of Single-Name CDSs

By applying the Itô-Wentzell theorem, we get

G(u, t; t) = G(u, 0; 0) +
∫ t

0

g(u, s; s) dWs +
∫ t

0

∂2G(u, s; s) ds

G(t, t; t) = G(0, 0; 0) +
∫ t

0

g(s, s; s) dWs +
∫ t

0

(∂1G(s, s; s) + ∂2G(s, s; s)) ds.
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Hedging of Credit Spreads and Default Correlations

The dynamics of the process S̃1(κ1) are

dS̃1
t (κ1) =

(
− λ̃1

t δ1(t) + κ1 + λ̃tS̃
1
t (κ1) − λ̃2

tS
1
t|2(κ1)

)
dt+ σ1(t, T1) dWt

where

σ1(t, T1) = − 1
G(1)(t; t)

(∫ T1

t

(
δ1(u) ∂1g(u, t; t) + κ1g(u, t; t)

)
du

)

S1
t|2(κ1) =

1
∂2G(t, t; t)

(
−
∫ T1

t

δ1(u)f(u, t; t) du− κ1

∫ T1

t

∂2G(u, t; t) du

)
.
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Hedging of Credit Spreads and Default Correlations

The cumulative price

Sc,1(κ1) = S1
t (κ1) +Bt

∫
]0,t]

B−1
u dDu

where

Dt = Dt(κ1, δ1, T1, τ1) = δ1(τ1)11{τ1≤t} − κ1(t ∧ (T1 ∧ τ1))

satisfies, on [0, T1 ∧ τ(1)],

dSc,1
t (κ1) = (δ1(t) − S̃1

t (κ1)) dM̂1
t + (S1

t|2(κ1) − S̃1
t (κ1)) dM̂2

t + σ1(t, T1)dWt .
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Hedging of Credit Spreads and Default Correlations

On τ1 > t > τ2

dS1
t = dŜ1

t = σ1|2(t, T1)dWt + (δ1(t)λ
1|2
t (τ2) − κ1 + Ŝ1

t λ
1|2
t (τ2))dt

where

σ1|2(t, T 1) = −
∫ T

t

δ1(u)∂1∂2g(u, τ2; t)du− κ1

∫ T1

t

∂2g(u, τ2; t)du

λ1|2(t, s) = − f(t, s; t)
∂2G(t, s; t)
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Hedging of Credit Spreads and Default Correlations

Replication of a First-to-Default Claim

A first-to-default claim with maturity T is a claim (X,A,Z, τ(1))
where
• X is an FT -measurable amount payable at maturity if no default
occurs
• A : [0, T ] → R with A0 = 0 represents the dividend stream up to τ(1),
• Z = (Z1, Z2, . . . , Zn) is the vector of F-predictable, real-valued
processes, where Zi

τ(1)
specifies the recovery received at time τ(1) if the

ith name is the first defaulted name, that is, on the event
{τi = τ(1) ≤ T}.
• We denote by G(1)(t; t) = G(t, · · · , t; t)
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Hedging of Credit Spreads and Default Correlations

The cumulative price Scum is given by

dScum
t =

n∑
i=1

(Zi
t − St−) dM̂ i

t + (1 −H
(1)
t )(G(1)(t; t))−1 dmt,

where the F-martingale m is given by the formula

mt = EQ∗

(
G(1)(T ;T )X +

n∑
i=1

∫ T

0

G(1)(u;u)Zi
uλ̃

i
u du−

∫ T

0

G(1)(u;u) dAu

∣∣∣Ft

)
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Hedging of Credit Spreads and Default Correlations

The pre-default ex-dividend price satisfies

dS̃t = λ̃tS̃t dt−
n∑

i=1

λ̃i
tZ

i
t dt+ dAt + (G(t, t; t))−1 dmt.

Since F is generated by a Brownian motion, there exists an
F-predictable process ζ such that

dS̃t = λ̃tS̃t dt−
n∑

i=1

λ̃i
tZ

i
t dt+ dAt + (G(t, t; t))−1ζt dWt.
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Hedging of Credit Spreads and Default Correlations

We say that a self-financing strategy φ = (φ0, φ1, . . . , φk) replicates a
first-to-default claim (X,A,Z, τ(1)) if its wealth process V (φ) satisfies
the equality Vt∧τ(1)(φ) = St∧τ(1) for any t ∈ [0, T ].

We have, for any t ∈ [0, T ],

dVt(φ) =
k∑

�=1

φi
t

((
δ�
t − S̃�

t (κ�)
)
dM �

t +
k∑

j=1 ,j �=�

(
S�

t|j − S̃�
t (κ�)

)
dM j

t

+ (1 −Ht)(G(t, t; t))−1 dn�
t

)
where

n�
t = EQ∗

⎛⎝∫ T�

0

G(u, u;u)
(
δ�
uλ̃

i
u +

n∑
j=1,j �=�

S�
u|j λ̃

j
u

)
du− κ�

∫ T�

0

G(u, u;u) du
∣∣∣Ft

⎞⎠ .
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Hedging of Credit Spreads and Default Correlations

Let φ̃t = (φ̃1
t , φ̃

2
t , . . . , φ̃

k
t ) be a solution to the following equations

φ̃�
t

(
δ�
t − S̃�

t (κ�)
)

+
n∑

j=1, j �=�

φ̃j
t

(
Sj

t|�(κj) − S̃j
t (κj)

)
= Z�

t − S̃t

and
∑k

�=1 φ̃
�
tζ

�
t = ζt.

Let us set φ�
t = φ̃�(τ(1) ∧ t) for � = 1, 2, . . . , k and t ∈ [0, T ].

Then the self-financing trading strategy φ = ((V (φ) − φ · S), . . . , φk)
replicates the first-to-default claim (X,A,Z, τ(1)).
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Hedging of Credit Spreads and Default Correlations

Replication with Market CDSs

When considering trading strategies involving CDSs issued in the past,
one encounters a practical difficulty regarding their liquidity.

Recall that for each maturity Ti by the CDS issued at time t we mean
the CDS over [t, T ] with the spread κ(t, Ti) = κi.

We now define a market CDS — which at any time t has similar
features as the Ti-maturity CDS issued at this date t, in particular, it
has the ex-dividend price equal to zero.
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Hedging of Credit Spreads and Default Correlations

A Ti-maturity market CDS has the dividend process equal to

∗Di
t =

∫
]0,t]

Bu d(B−1
u Si

u(κi)) +Di
t,

where Di = D(κi, δ
i, Ti, τ) for some fixed spread κi.

The ex-dividend price ∗Si of the Ti-maturity market CDS
equals zero for any t ∈ [0, Ti].
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Hedging of Credit Spreads and Default Correlations

Since market CDSs are traded on the ex-dividend basis, to describe the
self-financing trading strategies in the savings account B and the
market CDSs with ex-dividend prices ∗Si.

A strategy φ = (φ0, . . . , φk) in the savings account B and the market
CDSs with dividends ∗Di is said to be self-financing if its wealth
Vt(φ) = φ0

tBt satisfies Vt(φ) = V0(φ) +Gt(φ) for every t ∈ [0, T ], where
the gains process G(φ) is defined as follows

Gt(φ) =
∫

]0,t]

φ0
u dBu +

k∑
i=1

∫
]0,t]

φi
u d

∗Di
u.
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Hedging of Credit Spreads and Default Correlations

Let φ be a self-financing strategy in the savings account B and
ex-dividend prices Si(κi), i = 1, . . . , k.

Then the strategy ψ = (ψ0, . . . , ψk) where ψi = φi for i = 1, . . . , k and
ψ0

t = B−1
t Vt(φ) is a self-financing strategy in the savings account B and

the market CDSs with dividends ∗Di and its wealth process satisfies
V (ψ) = V (φ).
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Hedging of Credit Spreads and Default Correlations

The cumulative price of the Ti-maturity market CDS satisfies

∗Sc,i
t = ∗Si

t +Bt

∫
]0,t]

B−1
u d ∗Di

u

= 11{t<τ}(κi
t − κi)Ã(t, T ) −BtS

i
0(κi) +Bt

∫
]0,t]

B−1
u dDi

u

where

Ã(t, T ) =
Bt

Gt
EQ∗

(∫ T∧τ

t

B−1
u du

∣∣∣Ft

)
.
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If we choose κi = κi
0 then

∗Sc,i
t = 11{t<τ}(κi

t − κi
0)Ã(t, T ) +Bt

∫
]0,t]

B−1
u dDi

u = Sc,i
t (κi

0).
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Assume that there exist F-predictable processes φ1, . . . , φk satisfying
the following conditions, for any t ∈ [0, T ],

k∑
i=1

φi
t

(
δi
t − S̃i

t(κi)
)

= Zt − S̃t,

k∑
i=1

φi
tζ

i
t = ξt.

Let the process V (φ) be given by

dVt(φ) =
k∑

i=1

φi
t

((
δi
t − S̃i

t(κi)
)
dMt + (1 −Ht)BtG

−1
t dni

t

)
with the initial condition V0(φ) = Y0 and let φ0 be given by, for
t ∈ [0, T ],

φ0
t = B−1

t Vt(φ).

Then the self-financing trading strategy φ = (φ0, . . . , φk) in the savings
account B and market CDSs with dividends ∗Di, i = 1, . . . , k replicates
the defaultable claim (X,A,Z, τ).
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Intuitively, one can think of the market CDS as a stream of CDSs that
are continuously entered into and immediately unwound. Consequently,
one can assume an accounting convention according to which one never
holds a non-market CDS: suppose at time 0 one goes long the market
CDS with spread κi

0. If one still owns it at time t > 0, the convention
dictates that one owns at time t the market CDS with spread κi

t, but
that it has already paid the cumulative dividends. In this way, we avoid
any problem with considering the short-sale positions: what would be a
short-sale position in an on-the-run (i.e., non-market) CDS becomes a
short position in the corresponding market CDS. This mathematical
convention is actually consistent with the market practice where default
protection is bought or sold and then nullified, that is, CDSs are longed
or shorted and then unwound, as needed.
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