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Basket Credit Derivatives

Basket Credit Derivatives

Basket credit derivatives are credit derivatives deriving their cash flows
values (and thus their values) from credit risks of several reference

entities (or prespecified credit events).

Standing assumptions. We assume that:

e We are given a collection of default times 74,..., 7, defined on a

common probability space (£2,G, Q).
e Q{r;, =0} =0and Q{r; >t} > 0 for every ¢ and .

o Q{r; =7;} =0 for arbitrary ¢ # j (in a continuous time setup).




Basket Credit Derivatives

We associate with the collection 74, ..., 7, of default times the ordered

sequence 7(1) < T(2) < -+ < T(p), Where 7(;) stands for the random time
of the i*" default. Formally,

T(1) = Min {7, 7o, ..., Tp}
and for:=2,...,n
T(;) = Min {Tk ck=1,...,n, T > T(i_1>}.
In particular,
T(n) = MaxX{T1,T2,...,Tp}.




Basket Credit Derivatives

The i*"-to-Default Contingent Claims

A general i*P-to-default contingent claim which matures at time 7 is
specified by the following covenants:
o If 7;y =7 < T for some k =1,...,n it pays at time 7(;) the

amount Zf(i) where Z* is an F-predictable recovery process.

o If 7,y > T it pays at time 7" an Fp-measurable promised amount X.
(4) Y




Basket Credit Derivatives

Case of Two Entities

For the sake of notational simplicity, we shall frequently consider the

case of two reference credit risks.

Cash flows of the first-to-default contract (FDC):
o If 71y = min {7, o} = 7; < T for i = 1,2, the claim pays at time 7

the amount Z? .
o If min{r,»} > T, it pays at time T the amount X.
Cash flows of the last-to-default contract (LDC):

o If 79y = max {7, o} = 7; < T for i = 1,2, the claim pays at time 7;

the amount Z? .

o If max{r,»} > T, it pays at time T the amount X.




Basket Credit Derivatives

Values of FDC and LDC

The value at time ¢ of the FDC equals:
SiV = B Eq (/37_11271-1]1{n<72,t<n§5r} ‘Qt)
—I_ﬁt EQ (67'_21272-2 ]1{72<7'1, t<mo<T} | gt)

—I_ﬁt EQ (ﬁ%lX]l{T<T(1)} ) Qt) .




Basket Credit Derivatives

The value at time ¢ of the LDC equals:

S§2) — 5t EQ (5;11271-1 ]1{7'2 <T11,t<T1 <T} ‘ gt)
61 o (87, 22, My <m 1mety | gt>

—i_ﬁt EQ (67:1X]1{T<7_(2)} ‘ gt> .
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Basket Credit Derivatives

Independent Default Times

Suppose that 7q,..., 7, are independent random times under P. Let
Fy(t) = P{m, <t} and 7(1) < --- < 7(1) the ranked sequence of the 7;’s.

The cumulative distribution functions of 7(1) and 7(,) are:

n

Fay(t) = P{raqy <t} =1— ][ (1 - Fu(t))

and

F(n)(t> = P{T(n> <t} = H Fi.(t).
k=1
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Basket Credit Derivatives

Suppose, in addition, that the default times 7, ..., 7, admit

deterministic intensity functions v1(¢), ..., v, (%), such that

' tAT;
Hy —/ vi(s)ds
0
are H'-martingales. Then,
P{T(l) >t} = HP{Tz’ >t =e fO Yy () dv.

where

hence

is a HW-martingale, where Hgl) = o(11) A1)
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Copula-Based Approaches

Copula-Based Approaches

The concept of a copula function allows to produce various

multidimensional probability distributions with prespecified univariate

marginal laws.

A function C : [0,1]™ — [0, 1] is called a copula if the following
conditions are satisfied:

(i) C(1,...,1,v;,1,...,1) = v; for any ¢ and any v; € [0, 1],

(ii) C(uq, ..., uy) is increasing with respect to each component wu;
(iii) For any a,b € [0,1]™ with a < b (i.e., a; < b;, Vi)

2 2
Z c Z (—1)i1+“'+i”0(u1,i1, Ce ,Umin) >0,
11=1 =1

in

where Uj1 = @4, Uj2 = bj.
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Copula-Based Approaches

Let

us give few examples of copulas:
Product copula: II(uq, ..., uy,) = I u,,
Gumbel copula: for 0 € [1,00) we set

. 1/6
C(Uy,...,up) =e€xp | — [Z(lﬂui)el ;

i=1
Gaussian copula:
C(u1,...,uUp) = Ny (N_l(ul), e N_l(un)) :

where Ny is the c.d.f for the n-variate central normal distribution
with the linear correlation matrix 3, and N ! is the inverse of the

c.d.f. for the univariate standard normal distribution.
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Copula-Based Approaches

Sklar Theorem:

For any cumulative distribution function F' on IR™ there exists

a copula function C such that
F(zi,...,xn) = C(F1(z1),..., Fr(xy))

where F; is the i" marginal cumulative distribution function.

If, in addition, F' is continuous then C'is unique.
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Copula-Based Approaches

Direct Application

Let F; be the probability distribution for 7;. A copula function C' is
chosen in order to introduce a dependence structure of the random
vector (71,72,...,Tn). The joint distribution of the random vector

(11, 72,...,7y) is derived by

P{ri <t;,i=1,2,...,n} = C(Fi(t1),..., Fn(tn)).
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Copula-Based Approaches

Indirect Application

Assume that the cumulative distribution function of (&1,...,&,) is given
by an n-dimensional copula C, and that the univariate marginal laws
are uniform on [0, 1]. We postulate that (&1,...,&,) are independent of

F, and we set

T :inf{t . Fi > —1Il£7;}.

Then, {7'7; > ti} — {e_rii > é}}
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Copula-Based Approaches

Then:
e The case of default times conditionally independent with respect to
F' corresponds to the choice of the product copula II. In this case,

for t1,...,t, <T we have

P{Tl >t17"'77-n >tn‘FT} :H(Ztll”ZZ”L>’
where we set Z! = et

e In general, for t1,...,t, <1 we obtain
P{Tl >11,...,Tn >tn‘fT} :C<Zt11’7ZTZ)’

where C' is the copula used in the construction of &1, ..., &,.
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Copula-Based Approaches

An example

This example describes the use of one-factor Gaussian copula (Bank of
International Settlements (BIS) standard).

Let ¢; be a decreasing function taking values in |0, 1] with ¢;(0) = 1.

7; = inf{t : ¢;(t) < U;}

Then, ¢;(t) = P(1; > t) =1 — p;(t).

Correlation specification of the thresholds U;: Let Y7, ---,Y,, and Y be
independent random variables and X; = p;Y 4+ /1 — ,03YZ

The default thresholds are defined by U; = 1 — F;(X;) where F; is the

cumulative distribution function of X;. Then

7, =inf{t : p;Y + /1 = p2Y; < F7 11— qi(1))}.
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Copula-Based Approaches

Conditioned on the common factor Y,

F7 (pi(t)) — mY)

pi(t|Y) — FiY (

where F.¥ is the cumulative distribution function of Y;.
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Copula-Based Approaches

Let us consider the particular case where
Xi = piY +4/1 = p?Y;,

where Y, Y;, 1 =1,2,...,n, are independent standard Gaussian

variables. In that case, X, is also a standard Gaussian law and

pz(t|Y) — N <N1(p’&(t)) B sz>

and

P(Tigti,ViSn):/H/\/’ (Nl(Fi(ti))2_ pw) F(y)dy.

1 — p;

where f is the density of Y
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Copula-Based Approaches

The cumulative loss on the underlying portfolio is

Ly =>" 1 Ni(1—R;)1,,<; where N; is the nominal value of each firm
and R; is the (constant) recovery rate. The first defaults only affect the
equity tranche until the cumulative loss has arrived the total nominal

amount of the equity tranche and the loss on the tranche is given by

LE = Lillg e (L) +nPl,e oo (Ly) = Ly — (Ly — n®) "

Conditional on the common factor Y , we can rewrite

Ly =2 Ni(l = Ri)lly, < (5= ou(r))—piv) ) (1—p?)

Hence, the conditional total loss L7 on the factor Y can be written as

the sum of independent Bernoulli random variables, each with
probability p;(T'Y)

Survival Intensities

26



Copula-Based Approaches

For arbitrary s <t on the set {73 > s,...,7, > s} = {7(1) > s} we have

C(Z;,...,Zg,...,zg)|f
C(ZL,...,Z") s )

S

P{Ti>t‘g3}:Ep(
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Copula-Based Approaches

Survival Intensities

For arbitrary s <t on the set {ry >s,..., 7, > s} = {7(1) > s} we have

C(Z;,...,Zg,...,zg)|f
C(Zt,...,Zn) )

S

P{Ti>t‘g3}:Ep(

PROOF: The proof is straightforward, and follows from the key lemma

P(Tl>S,...,Ti>t,...,Tn>S|FS)
P{r; >t|gs}ﬂ{7(1)>8} - Il‘[T(1>>8}P(7-1 > S, Ty > Sy, T > S| Fs)

JAN
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Copula-Based Approaches

(A

Consequently, assuming that the derivatives ! = d;t exist, the ¢*"

intensity of survival equals, on the set {m > t,..., 7, > t},

0 n
CT S T oy Y

InC(Z;,...,2Z"),
where \! is understood as the limit:

Ai:lg%h—lc){t<ngt+h|ft,ﬁ>t,...,rn>t}.
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Copula-Based Approaches

It appears that, in general, the i*" intensity of survival jumps at time ¢,
g

if the j* entity defaults at time ¢ for some j # ¢. In fact, it holds that
9? n
e C(ZE,. .. 2p)

5 C(Z8,....20)

A = Z,

where

A :Ig]lc%h_lQ{t<n <t+h|Fi,m>tk#j1 =t}
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Copula-Based Approaches

Schonbucher and Schubert (2001) also examine the intensities of
survival after the default times of some entities. Let us fix s, and let
ti<sfori=1,2,....k<n,andT; >sfori=k+1,k+2,...,n.
Then,

Qlri>Tii=k+1,k+2,....n|Fs, 15=t;,j=1,2,... .k,
Ti>s,i:k+1,k+2,...,n}

k
Bo(5lon C(2L, . 2 25 73 ) | 7))

Ovy...0vg Ty’ n

ok 1 k k+1
Jor. Do C(Ztl,...,Ztk,ZS ,...,Zgb)
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Toy model

Toy model

We study the case with two random times such that P(my = 7m) =0

o (H!,t > 0) is the default processes associated with 7,

e H' is the completed filtration generated by the process H*

e H is the completed filtration generated by the processes H! and H?,

Hi =0o(my At)Vo(ma At)
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Toy model

Let G(t,s) = P(my > t, 75 > s). Then,

82G<t, 7’2>
aZG(Oa 7_2)

P(t < 7'1‘7'2) =

33



Toy model

Let 71y = inf(71, 72) and 7(9) = sup(71,72)
A 'H;-measurable random variable is equal to
- a constant on the set t < 7(y),
- a J(T(l))—measurable random variable on the set 7(1) <1 < 79,

- a o(7(1), T(2))-measurable random variable on the set 75y < 1.
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Toy model

Note that H is strictly greater than the filtration generated by H} + H?.

Exemple: assume that 7y and 7 are independent and identically

distributed. Then, obviously, for u < ¢
P(Tl < 7'2|7'(1) = U, T(2) = t) = 1/2,

hence o(71,72) # o(1(1), T(2))-
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Toy model

Pricing in a toy model

Noting
DZC; = E(lir<.|He)
CD; = E(élﬂ{0<T(1)§T}+52]1{O<T(2)§T}|Ht>
we obtain
82G<T, 7'2) G<T7 t)
DZC; = lirsy (ﬂ{vét} 02G(t, 7o) Tl G(t,¢)
alG(Tl,T) G(taT)
DZC{ = lyrsy (ﬂ{flft} G ) Y GRD)
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Toy model

CDy = 51]1{T<1)>t} (G(t,t)(;zt’(j)(T, T>> + 52]1{T(2>§t} + 51]1{T<1>St}
1021 (5 1) {It(O, 1) (1 _ (?9222((? :22))> + 1,(1,0) (1 _ %11(2((7711: )))
L 1,(0,0) (1 -G, T) +(2$(1;g — G(T,T))}
where
It(la 1) — ﬂ{ngt,rggt} 3 It(070) — ]1{T1>t,7'2>t}
14(1,0) = L <t my>t} - 1:(0,1) = Ly7 5t rp<ty
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Toy model

First to default claims

A first-to-default claim (an FtD claim, for short) on a basket of 2
credit names is a defaultable claim (X0, Z, 7)), where X is a constant
amount payable at maturity if no default occurs, and Z = (41, Z),
where a function Z; : [0,7] — IR specifies the recovery payment made
at the time 7; if the ¢th firm was the first defaulted firm, that is, on the
event {7; = 7(1) < T'}.
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Toy model

The pre-default price of a FtD claim (X, 0, Z, 7(1)), where Z = (Z, Z>),

equals

39



Toy model

The pre-default price of a LtD claim (X, 0, Z, 7)) is

G(i, ) </t Z1 (u) F(du, u) “|‘/t Zs(v)F(v,dv) + X F(T, T)) :

40



Toy model

Martingales

e Filtration H' The processes

tAT;
M! = H — d
e / 1= Fi(s)

where F;(s) = P(1; < s) = [ fi(u)du are Hj-martingales.

41



Toy model

e Filtration H From our previous computation applied to
G =Hy=F: VH; = H:VH],

the process

tATq a
Hy — / s
0 1 —F"
is a H-martingale

Here F'2 is the submartingale F'”> = P(m < t|H2) with decomposition
F? =25 4 fot asds where Z12 is a H? martingale.

In general, F'13? is not increasing.
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Toy model

The previous computation enables us to write

P(r <t <m)
P(mp > t)
G(0,t) — G(t,t)
G(0,1)

F'? = H2P(m <tlr)+ (1—H?)

= Hih(t,m2)+ (1 — Hy)

where
82 G(t, ’U)

h(t,v) =1— 5,G(0.0)

It follows that

;2 G(t7t) aQG(tat) 2 2 2 alG(t’t)
dF}? = (G(M) - aga(o,w) th+(Htc‘91h(t,72) -~ (= HY)E0 s )dt

This process has a non null martingale part. This shows again that the

intensity is not the good tool to work with.
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Toy model

The process

tAT1
VL2 ol _/ a(s) ds
t t 0 1 — F132(s)

where a(t) = H201h(t,72) — (1 — Hf)alG(t’t> is a H-martingale.

G(0,0)
Note that
tATINT tNAT
) 1 2 1 h
Mt1,2 _ Htl _/ 81G(S’S)ds _/ O1h(s, 12) ds
0 G(S7 S) tATLINA\T2 1 o h(877_2)
tATINT
1272 01 G 1 — h(tA
_ Htl_/ 1 (S’S)ds—ln (t A 11,72)
0 G(s,s) 1 —h(t AT ATo,To)
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Toy model

Pricing CDS

Let Si(k;) the price of a CDS associated with 7;, and S(k;) its
predefault price. It is rather easy to find the dynamics of S'. One
starts from the fact that, on the set {71 > t, 75 > t}

S = G(i,t) </t 5(u)G(du,t)—/<;/t duG(u,t)>

= V(1)

and, on the set {73 >t > 7}

. 1 T T
S; = Gt 72) (—/t dud(u) f(u, ) — /ﬁ:/t du(‘bG(u,m))
— V2(t,7'2)
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Toy model

Hence

St =(Q—H))1—-H)V'(t)+ (1 —H/})H V*(t, )
and

dS; = (1—H})NA—-H})dV'(t)+ (1 - H})H? dV3(t, )
—St_dH} — (1 — HH{V'(t) = V*(t, )} dH?
where
av'i(t) = ((71 () +72(t) V() + k1 — 01 (t) 71 () — Séz(m)w(t)) dt

dV2(t, 1) = (7”2(15,7'2)‘/2(75,7'2) — A U2(2 m)5, (1) +m) dt
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Toy model

and the function S §|2

[ oty [ du [ dzf(z 1)

i = — K
St|2(/<31) = ftoo F(u.t) du 1 ftoo F(ut) du

NOte that VQ(T27’7'2) = S71_2|2(/{/1>

(k1) equals
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Toy model

~

Let Stl(/ﬁ;l)Il{KT(l)} = Stl(/i1)]1{t<7(1)} where 71y = 71 A 72.

The dynamics of the pre-default price S (k1) are

dS} (k1) = (71(t) +2(1)S} (k1) dt + (k1 — S1(E) 1 (t) — Sp(k1)72(t)) dt,
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Example: Jarrow and Yu’s Model

Example: Jarrow and Yu’s Model

Let 75 = inf{t : A;(t) > ©;},7 = 1,2 where A;(¢ fo s)ds and ©;,
are independent random variables with exponentlal law of parameter 1.

Jarrow and Yu study the case where A\ is a constant and

)\Q(t) — )\2 + (042 — )‘2)]1{7-1§t} — )‘2]1{t<71} + OéQ]l{Tlgt} .

Assume for simplicity that » = 0 and compute the value of a

defaultable zero-coupon with default time 7;, with a rebate 9;:
D;a(t,T) = E(L{7,57y + 0ill{r,<1}|G:), for G, =D, vV D; .

Let G(s,t) = P(11 > 8,0 > 1)
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Example: Jarrow and Yu’s Model

Case t < s For t < s < 71, one has A\3(t) = Aot. Hence, the following

equality

{7’1 > 8} M {7’2 > t} = {’7'1 > S} M {Ag(t) < @2} = {’7’1 > S} M {)\Qt < @2}
= {)\18 < @1} M {)\2t < @2}

leads to

for t <s, Pty > 8,79 >1) = e~ Mg A2l
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Example: Jarrow and Yu’s Model

Case t > s
{ri>stn{n>t} = {{t>n>stn{n >t} u{n{rn >t}n{rn >t}}
{t>m>stnN{n >t} = {t>m >s}tN{Ax(t) < O3}

= {t > 71 > S}m{)\QTl —I—Oé2<t—7'1) < @2}

The independence between ©; and ©5 implies that the r.v. 77 is

independent from O3, hence
Pt>m>sm>t) = E (]l{t>n>s}6_(>‘271+0‘2(t_71))>

_ /du ]1{t>u>s}€_(>\2u+a2 <t_u)))\1€_>\1u

B 1 POPREL (e—s()\1+>\2—a2) B e—t(Al—H\g—ag))

A1+ A2 — an
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Example: Jarrow and Yu’s Model

Setting A = A1 + Ay — ag, it follows that

1
P(ry > 8,19 >t) = Z>\1€_Oé2t (e_SA — e_m) + e MtgT A2t

In particular, for s = 0,

1

P(rp >1t) = X ()\1 (e_O‘Qt — e_()‘1+>‘2)t) -+ A6_>‘1t>
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Example: Jarrow and Yu’s Model

e The computation of D; 4 reduces to that of
P(ry > T|G) = P(ry > T|F V Dy)

where F; = DZ. From the key lemma,

P(Tl > T’ft)

P(r > T|F \/Dg) — n{t<7‘1} P(m > t|F) .

Therefore,
Pl’d(t, T) = 51 -+ ]]-{7'1>t}(1 — 51)6_>\1(T_t) .

One can also use that

O2G (T, T Gt
P(ri > T|Gi) =1—DZC} = Ty (“{mét} aZG((t 722>) s G(“ t;)
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Example: Jarrow and Yu’s Model

e The computation of Ds 4 follows

Dya(t,T) = b2+ (1—062)l(r,5p (]1 (r<pye 02T

1 _ _
+]1{n>t}z(>\1€_a2(T_t> + (Mg — ag)e” i) t)))
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