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Introduction

The goal of this book is to provide a survey of mathematical techniques
that are used in the area of credit risk modeling and to review some recent
developments in this field. Special emphasis is put on the important issue of
hedging defaultable claims. In this respect, the present text is largely based
on some of our previous works, in particular:

• Modelling and valuation of credit risk. In: Stochastic Methods in Fi-
nance, M. Frittelli and W. Runggaldier, eds., Springer, 2004, 27–126,

• Hedging of defaultable claims. In: Paris-Princeton Lectures on Math-
ematical Finance 2003, R. Carmona et al., eds. Springer, 2004, 1–132,

• PDE approach to valuation and hedging of credit derivatives. Quanti-
tative Finance 5 (2005), 257–270,

• Hedging of credit derivatives in models with totally unexpected default.
In: Stochastic Processes and Applications to Mathematical Finance, J.
Akahori et al., eds., World Scientific, 2006, 35–100,

• Hedging of basket credit derivatives in credit default swap market.
Journal of Credit Risk 3 (2007), 91–132.

• Pricing and trading credit default swaps in a hazard process model.
Annals of Applied Probability 18 (2008), 2495–2529.

Credit risk embedded in a financial transaction is the risk that at least
one of the parties involved in the transaction will suffer a financial loss due
to default or decline in the creditworthiness either of the counterparty or of
some third party (reference name). To give just a few examples:

• A holder of a corporate bond bears a risk that the market value of the
bond will decline due to decline in credit rating of the issuer.

• A bank may suffer a loss if a bank’s debtor defaults on payment of the
interest due and/or the principal amount of the loan.

• A party involved in a trade of a credit derivative, such as a credit
default swap (CDS), may suffer a loss if a reference credit event occurs.

• The market value of individual tranches constituting a collateralized
debt obligation (CDO) may decline as a result of changes in the correla-
tion between the default times of the underlying defaultable securities
(that is, the collateral assets or the reference credit default swaps).
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The most extensively studied form of credit risk is the default risk –
that is, the risk that a counterparty in a financial contract will not fulfil a
contractual commitment to meet her/his obligations stated in the contract.
For this reason, the main tool in the area of credit risk modeling is a judicious
specification of the random time of default. A large part of the present
text is devoted to this issue. Our main goal is to present a comprehensive
introduction to the most important mathematical tools that are used in
arbitrage valuation of defaultable claims, which are also known under the
name of credit derivatives. We also examine in some detail the important
issue of hedging these claims. The book is organized as follows:

• In Chapter 1, we provide a concise summary of the main developments
within the so-called structural approach to modeling and valuation of
credit risk. In particular, we present the classic structural models, put
forward by Merton [143] and Black and Cox [28], and we mention some
variants and extensions of these models. We also study very succinctly
the case of a structural model with a random default triggering barrier.

• Chapter 2 is devoted to the study of an elementary model of credit risk
within the hazard function framework. We focus here on the deriva-
tion of pricing formulae for defaultable claims and the dynamics of
their prices. We also deal here with the issue of replication of single-
and multi-name credit derivatives in the stylized credit default swap
market. Results of this chapter should be seen as a first step toward
more practical approaches that are presented in the foregoing chapters.

• Chapter 3 deals with the alternative reduced-form approach in which
the main modeling tool is the hazard process. We examine the pricing
formulae for defaultable claims in the reduced-form setup with stochas-
tic hazard rate and we examine the behavior of the stochastic intensity
when the reference filtration is reduced. Special emphasis is put on the
so-called hypothesis (H) and its invariance with respect to an equivalent
change of a probability measure. As an application of mathematical
results, we present here an extension of hedging results established in
Chapter 2 in the case of deterministic pre-default intensities to the case
of stochastic default intensities.

• Chapter 4 is devoted to a study of hedging strategies for defaultable
claims. We first present some theoretical results on replication of de-
faultable claims in an abstract semimartingale market model. Next, we
develop the PDE approach to the valuation and hedging of defaultable
claims in a Markovian framework. For clarity of presentation, we focus
on the case of a market model with three traded primary assets and
we deal with a single default time. An extension of the PDE method
to the case of any finite number of traded assets and several default
times is readily available, however.
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• Chapter 5 provides an introduction to the area of modeling dependent
defaults and, more generally, to modeling of dependent credit rating
migrations for a portfolio of reference credit names. We present here
some applications of these models to the valuation of real-life exam-
ples of actively traded credit derivatives, such as: credit default swaps
and swaptions, first-to-default swaps, credit default index swaps and
tranches of collateralized debt obligations.

• For the reader’s convenience, we present in the appendix some well-
known results regarding the Poisson process and its generalizations,
such as: the inhomogeneous Poisson process and the conditional Pois-
son process. We also recall there the definition and basic properties of
the Doléans exponential of a semimartingale.

The detailed proofs of most results can be found in Bielecki, Jeanblanc
and Rutkowski [13, 14, 17], Bielecki and Rutkowski [21, 23], and Jeanblanc
and Rutkowski [111, 112, 113]. We also quote some of the seminal papers
but, unfortunately, we were not able to provide here a survey of an extensive
research in the area of credit risk modeling. For more information on credit
risk modeling and related issues, the interested reader is thus referred to
original papers by other authors, as well as to monographs by Ammann [2],
Bluhm, Overbeck and Wagner [31], Bielecki and Rutkowski [22], Cossin and
Pirotte [62], Duffie and Singleton [77], McNeil, Frey and Embrechts [142],
Lando [128], and Schönbucher [162].

It is assumed that the reader has some familiarity with fundamental con-
cepts and results of arbitrage pricing theory for financial derivatives and
term structure modeling; see, e.g., Björk [27], Brigo and Mercurio [41],
Dana and Jeanblanc [63], Elliott and Kopp [80], Hunt and Kennedy [103],
Karatzas and Shreve [118], Musiela and Rutkowski [146], Shiryaev [164], and
Shreve [165, 166].

Last but not least, some knowledge of the Itô stochastic calculus is also
expected; we refer, e.g., to the monographs by Elliott [78], Jeanblanc, Yor
and Chesney [114], Karatzas and Shreve [117], Klebaner [123], Kuo [124],
Øksendal [150], Protter [153], and Revuz and Yor [154].

The first draft of this book was completed during the visit of Marek
Rutkowski to the Center for the Study of Finance and Insurance at the
Osaka University in Fall 2007. He takes this opportunity to express his
gratitude to the Director of the Center, Professor Hideo Nagai, for the kind
invitation, great hospitality, and encouragement to complete and publish
this book. It is also his pleasure to thank the administrative assistant, Mrs
Hinako Kameyama, for her friendliness and invaluable help during his stay
in Osaka. Doumo arigatou gozaimashita!

The research of Marek Rutkowski was partially supported under Aus-
tralian Research Council’s Discovery Projects DP0881460.
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Chapter 1

Structural Approach

We start by presenting a rather succinct overview of the structural approach
to credit risk modeling. Since it is based on the modeling of the behavior of
the total value of the firm’s assets, it is also known as the value-of-the-firm
approach. In order to model credit events (the default event, in particular),
this methodology refers directly to economic fundamentals, such as the cap-
ital structure of a company. As we shall see in what follows, the two major
driving concepts in the structural modeling are: the total value of the firm’s
assets and the default triggering barrier. Historically, this was the first ap-
proach used in this area – it can be traced back to the fundamental papers
by Black and Scholes [29] and Merton [143]. The presentation in this chapter
is based on Chapters 2 and 3 in Bielecki and Rutkowski [22]; the interested
reader is encouraged to consult [22] for a more detailed exposition.

1.1 Notation and Definitions

We fix a finite horizon date T ∗ > 0. The underlying probability space
(Ω,F ,P) is endowed with some reference filtration F = (Ft)0≤t≤T∗ , and
is sufficiently rich to support the following random quantities:

• the short-term interest rate process r and thus also a default-free term
structure model,

• the value of the firm process V , which is interpreted as a stochastic
model for the total value of the firm’s assets,

• the barrier process v, which is used to specify the default time τ ,

• the promised contingent claim X representing the liabilities to be re-
deemed to the holder of a defaultable claim at maturity date T ≤ T ∗,

• the process A, which models the promised dividends, that is, the lia-
bilities that are redeemed continuously or discretely over time to the
holder of a defaultable claim,

• the recovery claim X̃ representing the recovery payoff received at time
T if default occurs prior to or at the claim’s maturity date T ,
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• the recovery process Z, which specifies the recovery payoff at time of
default if it occurs prior to or at the maturity date T.

The probability measure P is aimed to represent the real-world (or statistical )
probability, as opposed to a martingale measure (also known as a risk-neutral
probability). Any martingale measure will be denoted by Q in what follows.

1.1.1 Defaultable Claims

We postulate that the processes V, Z, A and v are progressively measurable
with respect to the filtration F, and that the random variables X and X̃
are FT -measurable. In addition, A is assumed to be a process of finite
variation with A0 = 0. We assume without mentioning that all random
objects introduced above satisfy suitable integrability conditions. Within
the structural approach, the default time τ is typically defined in terms of
the firm’s value process V and the barrier process v. We set

τ = inf { t > 0 : t ∈ T and Vt ≤ vt}
with the usual convention that the infimum over the empty set equals +∞.
Typically, the set T is the interval [0, T ] (or [0,∞) in the case of perpetual
claims). In classic first-passage-time structural models, the default time τ is
given by the formula

τ = inf { t > 0 : t ∈ [0, T ] and Vt ≤ v̄(t)},
where v̄ : [0, T ] → R+ is some deterministic function, termed the barrier.

Remark 1.1.1. In most structural models, the underlying filtration F is
generated by a standard Brownian motion. In that case, the default time τ
will be an F-predictable stopping time (as any stopping time with respect to a
Brownian filtration), meaning that there exists a strictly increasing sequence
of F-stopping times announcing the default time.

Provided that default has not occurred before or at time T , the promised
claim X is received in full at the claim’s maturity date T . Otherwise, de-
pending on the market convention regarding a particular contract, either the
amount X̃ is received at maturity T , or the amount Zτ is received at time
τ . If default occurs at maturity of the claim, that is, on the event {τ = T},
we adopt the convention that only the recovery payment X̃ is received.

It is sometimes convenient to consider simultaneously both kinds of recov-
ery payoff. Therefore, in this chapter, a generic defaultable claim is formally
defined as a quintuplet (X, A, X̃, Z, τ). In other chapters, we set X̃ = 0
and we consider a quadruplet (X,A, Z, τ), formally identified with a claim
(X,A, 0, Z, τ). In some cases, we will also set A = 0 so that a defaultable
claim will reduce to a triplet (X, Z, τ), to be identified with (X, 0, Z, τ).
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1.1.2 Risk-Neutral Valuation Formula

Suppose that our financial market model is arbitrage-free, in the sense that
there exists a martingale measure (risk-neutral probability) Q, meaning that
price process of any tradeable security, which pays no coupons or dividends,
becomes an F-martingale under Q, when discounted by the savings account
B, given as

Bt = exp
(∫ t

0

ru du
)
.

We introduce the default indicator process Ht = 1{t≥τ} and we denote by D
the process modeling all cash flows received by the owner of a defaultable
claim. Let us also denote

Xd
T = X1{τ>T} + X̃1{τ≤T}.

Definition 1.1.1. The dividend process D of a defaultable contingent claim
(X,A, X̃, Z, τ) with maturity date T equals, for every t ∈ R+,

Dt = Xd
T1[T,∞[(t) +

∫

]0,t]

(1−Hu) dAu +
∫

]0,t]

Zu dHu.

It is easy to check that the dividend process D is of finite variation, and
∫

]0,t]

(1−Hu) dAu =
∫

]0,t]

1{u<τ} dAu = Aτ−1{t≥τ} + At1{t<τ}.

Note that if default occurs at some date t, the promised dividend payment
At − At−, which was expected to be occur on this date, is not paid to the
holder of the claim. It is also easily seen that

∫

]0,t]

Zu dHu = Zτ1{t≥τ}.

Remark 1.1.2. In principle, the promised payoff X could be easily incor-
porated into the promised dividends process A. This alternative convention
would be more difficult to handle, however, since in practice the recovery
rules concerning the promised dividends A and the promised claim X are
likely to be different.

For instance, in the case of a defaultable coupon bond, it is frequently pos-
tulated that if default occurs then the future coupons are foregone, whereas
a strictly positive fraction of the face value is received by the bondholder.

We are in a position to define the risk-neutral ex-dividend price St of a
defaultable claim. In the financial interpretation, any time t, the random
variable St is aimed to represent the current market value of all future cash
flows associated with a given defaultable claim.
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Definition 1.1.2. For any date t ∈ [0, T ], the ex-dividend price of a default-
able claim (X, A, X̃, Z, τ) is given as

St = Bt EQ
( ∫

]t,T ]

B−1
u dDu

∣∣∣Ft

)
. (1.1)

Note that the discounted ex-dividend price S∗t = StB
−1
t satisfies, for every

t ∈ [0, T ],

S∗t = EQ
( ∫

]0,T ]

B−1
u dDu

∣∣∣Ft

)
−

∫

]0,t]

B−1
u dDu.

It is easy to see that S∗ is a supermartingale (submartingale, respectively)
under Q if and only if the dividend process D is increasing (decreasing,
respectively). The cumulative price Sc of (X, A, X̃, Z, τ) equals, for t ∈ [0, T ],

Sc
t = Bt EQ

( ∫

]0,T ]

B−1
u dDu

∣∣∣Ft

)
= St + Bt

∫

]0,t]

B−1
u dDu.

Hence the discounted cumulative price Sc∗
t = Sc

t B
−1
t is a martingale under Q.

1.1.3 Defaultable Zero-Coupon Bond

Assume that A = 0, Z = 0 and X = L for some positive constant L > 0.
Then the value process S represents the price of a defaultable zero-coupon
bond (also referred to as the corporate bond) with the face value L and the
recovery payoff X̃ at maturity. The ex-dividend price St = D(t, T ) of this
bond equals, for t < T ,

D(t, T ) = Bt EQ
(
B−1

T (L1{τ>T} + X̃1{τ≤T})
∣∣Ft

)
.

The last formula can be rewritten as follows

D(t, T ) = LBt EQ
(
B−1

T (1{τ>T} + δ(T )1{τ≤T})
∣∣Ft

)
,

where the random variable δ(T ) = X̃/L represents the recovery rate upon
default. For the corporate bond, it is natural to assume that 0 ≤ X̃ ≤ L, so
that the random variable δ(T ) satisfies 0 ≤ δ(T ) ≤ 1.

Alternatively, we may re-express the bond price as follows

D(t, T ) = L
(
B(t, T )−Bt EQ

(
B−1

T w(T )1{τ≤T}
∣∣Ft

))
,

where
B(t, T ) = Bt EQ(B−1

T | Ft)

is the price of a unit default-free zero-coupon bond and w(T ) = 1−δ(T ) is the
writedown rate upon default. Generally speaking, the value of a corporate
bond depends on the joint probability distribution under Q of the three-
dimensional random variable (BT , δ(T ), τ) or, equivalently, (BT , w(T ), τ).
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Example 1.1.1. According to the Merton [143] model, the recovery payoff
upon default (that is, on the event {VT < L}) equals X̃ = VT , where the
random variable VT is the firm’s value at maturity date T of a corporate
bond. Consequently, the random recovery rate upon default is equal here to
δ(T ) = VT /L and the writedown rate upon default equals w(T ) = 1−VT /L.

For simplicity, we assume that the savings account B is non-stochastic,
that is, that the short-term interest rate r is deterministic. Then the price
of a default-free zero-coupon bond equals B(t, T ) = BtB

−1
T and the price of

a zero-coupon corporate bond satisfies

D(t, T ) = Lt(1− w∗(t, T )),

where Lt = LB(t, T ) is the present value of future liabilities and w∗(t, T ) is
the conditional expected writedown rate under Q. The quantity w∗(t, T ) is
given by the following expression

w∗(t, T ) = EQ
(
w(T )1{τ≤T} | Ft

)
.

The conditional expected writedown rate upon default equals, under Q,

w∗t =
w∗(t, T )

p∗t
=
EQ

(
w(T )1{τ≤T} | Ft

)

Q(τ ≤ T | Ft)
,

where p∗t = Q(τ ≤ T | Ft) is the conditional risk-neutral probability of default.
Finally, δ∗t = 1 − w∗t is the conditional expected recovery rate upon default
under Q. In terms of the quantities p∗t , δ

∗
t and w∗t , we obtain

D(t, T ) = Lt(1− p∗t ) + Ltp
∗
t δ
∗
t = Lt(1− p∗t w

∗
t ).

If the random variables w(T ) and τ are conditionally independent with re-
spect to the σ-field Ft under Q then we have that w∗t = EQ(w(T ) | Ft).

Example 1.1.2. It is common to assume that the recovery rate is deter-
ministic. Let the recovery rate δ(T ) be constant, specifically, δ(T ) = δ for
some real number δ. In this case, the writedown rate w(T ) = w = 1 − δ is
deterministic as well. Then w∗(t, T ) = wp∗t and w∗t = w for every t ∈ [0, T ].
Furthermore, the price of a defaultable bond has the following representation

D(t, T ) = Lt(1− p∗t ) + δLtp
∗
t = Lt(1− wp∗t ).

For more details on various conventions regarding the recovery schemes for
corporate bonds, we refer to Section 2.1.
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1.2 The Merton Model

The standing assumption in most classic structural models is that the risk-
neutral dynamics for the value process V of the firm’s assets are given by
the following stochastic differential equation (SDE)

dVt = Vt

(
(r − κ) dt + σV dWt

)

with V0 > 0, where κ is the constant payout ratio (dividend yield) and the
process W is a standard Brownian motion under the martingale measure Q.
The positive constant σV represents the volatility of the firm’s value.

According to the classic model put forward by Merton [143], the valuation
of the corporate bond is based on the following postulates:

• a firm has a single liability with the notional value L, interpreted as a
zero-coupon bond with maturity T and face value L > 0,

• the ability of the firm to redeem its debt is determined exclusively by
the level VT of the total value firm’s assets at time T ,

• the default event may occur at the debt’s maturity date T only, and it
corresponds to the event {VT < L}.

Formally, the default time τ in the Merton model is given by the expres-
sion

τ = T1{VT <L} +∞1{VT≥L}.

Using the present notation, the corporate bond can be described by setting
A = 0, Z = 0, and

Xd
T = VT1{VT <L} + L1{VT≥L}

so that X̃ = VT . In other words, the bond’s payoff at maturity date T equals

D(T, T ) = min (VT , L) = L−max (L− VT , 0) = L− (L− VT )+.

The last equality makes it clear that the valuation of the corporate bond in
the Merton model is equivalent to the valuation of a European put option
written on the firm’s value with the strike equal to the bond’s face value.

Let D(t, T ) denote the price at time t < T of the corporate bond. Using
the option-like features of a corporate bond, Merton [143] derived a closed-
form expression for D(t, T ). Let N denote the standard Gaussian cumulative
distribution function

N(x) =
1√
2π

∫ x

−∞
e−u2/2 du, ∀x ∈ R.
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Proposition 1.2.1. For every t ∈ [0, T [, the value D(t, T ) of the corporate
bond equals

D(t, T ) = Vte
−κ(T−t)N

(− d+(Vt, T − t)
)

+ L B(t, T )N
(
d−(Vt, T − t)

)

where

d±(Vt, T − t) =
ln(Vt/L) +

(
r − κ± 1

2σ2
V

)
(T − t)

σV

√
T − t

.

The unique replicating strategy for the corporate bond involves holding, at any
time t ∈ [0, T [, φ1

t Vt units of cash invested in the firm’s value and φ2
t B(t, T )

units of cash invested in default-free bonds, where

φ1
t = e−κ(T−t)N

(− d+(Vt, T − t)
)

and

φ2
t =

D(t, T )− φ1
t Vt

B(t, T )
= LN

(
d−(Vt, T − t)

)
.

It is clear that the value D(Vt) = D(t, T ) of the firm’s debt admits the
following representation D(Vt) = LB(t, T ) − Pt, where Pt is the price of a
put option with strike L and expiration date T . Hence the value E(Vt) of
the firm’s equity at time t equals

E(Vt) = Vte
−κ(T−t) −D(Vt) = Vte

−κ(T−t) − LB(t, T ) + Pt = Ct,

where Ct stands for the price at time t of a call option written on the firm’s
assets, with strike price L and exercise date T. To justify the last equality
above, we may also observe that at time T we have

E(VT ) = VT −D(VT ) = VT −min (VT , L) = (VT − L)+.

We conclude that the firm’s shareholders can be seen as holders of the call
option with strike L and expiry T on the total value of the firm’s assets.

1.2.1 Credit Spreads

Let us now examine credit spreads in the Merton model. For notational
simplicity, we set κ = 0. Then Merton’s formula becomes

D(t, T ) = LB(t, T )
(
ΓtN(−d) + N(d− σV

√
T − t)

)
,

where we denote Γt = Vt/LB(t, T ) and

d = d+(Vt, T − t) =
lnΓt + 1

2σ2
V (T − t)

σV

√
T − t

.
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Since LB(t, T ) represents the current value of the face value of the firm’s
debt, the quantity Γt can be seen as a proxy of the asset-to-debt ratio
Vt/D(t, T ). It can be easily verified that the inequality D(t, T ) < LB(t, T )
is valid. This condition is in turn equivalent to the strict positivity of the
corresponding credit spread, as defined by formula (1.2) below.

In the present setup, the continuously compounded yield r(t, T ) at time t
on the T -maturity Treasury zero-coupon bond is constant and equal to the
short-term interest rate r since

B(t, T ) = e−r(t,T )(T−t) = e−r(T−t).

Let us denote by rd(t, T ) the continuously compounded yield at time t < T
on the corporate bond, so that

D(t, T ) = Le−rd(t,T )(T−t).

From the last equality, it follows that

rd(t, T ) = − ln D(t, T )− ln L

T − t
.

The credit spread S(t, T ) is defined as the excess return on the corporate
bond, that is, for any t < T ,

S(t, T ) = rd(t, T )− r(t, T ) =
1

T − t
ln

LB(t, T )
D(t, T )

. (1.2)

In the Merton model, the credit spread S(t, T ) is given by the following
expression

S(t, T ) = − ln
(
N(d− σV

√
T − t) + ΓtN(−d)

)

T − t
> 0.

The property that S(t, T ) > 0 is consistent with the real-life feature that
corporate bonds have an expected return in excess of the risk-free interest
rate. Indeed, the observed yields on bonds issued by companies are systemat-
ically higher than yields on Treasury bonds with matching notional amounts
and maturities. It was frequently argued in the financial literature that, for
realistic values of model’s parameters, the credit spreads produced by the
Merton model for bonds with short maturities are far below the corporate
bonds spreads observed in the market (see, however, the recent paper by
Hull et al. [99] for an alternative implementation of Merton’s model).

Note that when time t converges to maturity date T then the forward
short credit spread at time T in the Merton model tends either to infinity or
to 0, depending on whether VT < L or VT > L. To be more specific

S(T, T ) := lim
t↑T

S(t, T ) =
{

0, on the event {VT > L},
∞, on the event {VT < L}.
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1.3 First Passage Times

Before we proceed to an extension of the Merton model, put forward by Black
and Cox [28], we present some auxiliary mathematical results regarding the
first passage times, which will prove useful in what follows.

Let W be a standard one-dimensional Brownian motion under Q with
respect to its natural filtration F. We define an auxiliary process Y by
setting, for every t ∈ R+,

Yt = y0 + νt + σWt, (1.3)

for some constants ν ∈ R and σ > 0. It is clear that Y inherits from W the
strong Markov property with respect to the filtration F.

1.3.1 Distributions of First Passage Times

Let τ stand for the first passage time to zero by the process Y , that is,

τ = inf { t ∈ R+ : Yt = 0}. (1.4)

Recall that well-known fact that in an arbitrarily small interval [0, t] the sam-
ple path of the Brownian motion started at 0 passes through origin infinitely
many times. Using the Girsanov theorem and the strong Markov property
of the Brownian motion (see, e.g., Karatzas and Shreve [117]), it is thus easy
to deduce that the first passage time by Y to zero coincides with the first
crossing time by Y of the level 0, that is, with probability 1,

τ = inf { t ∈ R+ : Yt < 0} = inf { t ∈ R+ : Yt ≤ 0}.

Let us denote Xt = νt + σWt for every t ∈ R+.

Lemma 1.3.1. Let σ > 0 and ν ∈ R. Then for every x > 0 we have

Q
(

sup
0≤u≤s

Xu ≤ x
)

= N

(
x− νs

σ
√

s

)
− e2νσ−2xN

(−x− νs

σ
√

s

)
(1.5)

and for every x < 0

Q
(

inf
0≤u≤s

Xu ≥ x
)

= N

(−x + νs

σ
√

s

)
− e2νσ−2xN

(
x + νs

σ
√

s

)
. (1.6)

Proof. Assume first that σ = 1. Let Q̃ be the probability measure on (Ω,Fs)
given by

dQ̃
dQ

= e−νWs− ν2
2 s, Q-a.s.,
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so that the process W ∗
t := Xt = Wt + νt, t ∈ [0, s], is a standard Brownian

motion under Q̃. Also

dQ
dQ̃

= eνW∗
s − ν2

2 s, Q̃-a.s.

Moreover, for any x > 0,

Q
(

sup
0≤u≤s

Xu > x, Xs ≤ x
)

= EeQ
(
eνW∗

s − ν2
2 s 1{ sup 0≤u≤s W∗

u >x, W∗
s ≤x}

)
.

We set τx = inf { t ≥ 0 : W ∗
t = x} and we define an auxiliary process

(W̃t, t ∈ [0, s]) by setting

W̃t = W ∗
t 1{τx≥t} + (2x−W ∗

t )1{τx<t}. (1.7)

By virtue of the reflection principle, the process W̃ is a standard Brownian
motion under Q̃. Moreover, it is easy to check that

{ sup
0≤u≤s

W̃u > x, W̃s ≤ x} = {W ∗
s ≥ x} ⊂ {τx ≤ s}. (1.8)

Let us denote
J = Q

(
sup

0≤u≤s
(Wu + νu) ≤ x

)
.

We first observe that

J = Q(Xs ≤ x)−Q(
sup

0≤u≤s
Xu > x, Xs ≤ x

)

= Q(Xs ≤ x)− EeQ
(
eνW∗

s − ν2
2 s 1{ sup 0≤u≤s W∗

u >x, W∗
s ≤x}

)

= Q(Xs ≤ x)− EeQ
(
eνfWs− ν2

2 s 1{ sup 0≤u≤s
fWu>x,fWs≤x}

)

since W̃ is also a Brownian motion under Q̃. In view of (1.7) and (1.8), we
thus obtain

J = Q(Xs ≤ x)− EeQ
(
eν(2x−W∗

s )− ν2
2 s 1{W∗

s ≥x}
)

= Q(Xs ≤ x)− e2νx EeQ
(
eνW∗

s − ν2
2 s 1{W∗

s ≤−x}
)

= Q(Ws + νs ≤ x)− e2νxQ(Ws + νs ≤ −x)

= N

(
x− νs√

s

)
− e2νxN

(−x− νs√
s

)
.

This ends the proof of the first equality for σ = 1. For any σ > 0, we have

Q
(

sup
0≤u≤s

(σWu + νu) ≤ x
)

= Q
(

sup
0≤u≤s

(Wu + νσ−1u) ≤ xσ−1
)
,
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and this implies (1.5). Since the process −W is also a standard Brownian
motion under Q, we also have that, for any x < 0,

Q
(

inf
0≤u≤s

(σWu + νu) ≥ x
)

= Q
(

sup
0≤u≤s

(σWu − νu) ≤ −x
)
,

and thus (1.6) easily follows from (1.5). ¤
Proposition 1.3.1. The first passage time τ given by (1.4) has the inverse
Gaussian probability distribution under Q. Specifically, for any 0 < s < ∞,

Q(τ ≤ s) = Q(τ < s) = N(h1(s)) + e−2νσ−2y0N(h2(s)), (1.9)

where N is the standard Gaussian cumulative distribution function and

h1(s) =
−y0 − νs

σ
√

s
, h2(s) =

−y0 + νs

σ
√

s
.

Proof. Notice first that

Q(τ ≥ s) = Q
(

inf
0≤u≤s

Yu ≥ 0
)

= Q
(

inf
0≤u≤s

Xu ≥ −y0

)
, (1.10)

where Xu = νu + σWu. From Lemma 1.3.1, we have that, for every x < 0,

Q
(

inf
0≤u≤s

Xu ≥ x
)

= N

(−x + νs

σ
√

s

)
− e2νσ−2xN

(
x + νs

σ
√

s

)
,

and this yields (1.9), when combined with (1.10). ¤
The following corollary is a consequence of Proposition 1.3.1 and the

strong Markov property of the process Y with respect to the filtration F.

Corollary 1.3.1. For any t < s we have, on the event {t < τ},

Q(τ ≤ s | Ft) = N

(−Yt − ν(s− t)
σ
√

s− t

)
+ e−2νσ−2YtN

(−Yt + ν(s− t)
σ
√

s− t

)
.

We are in a position to apply the foregoing results to specific examples
of default times. We first examine the case of a constant lower threshold.

Example 1.3.1. Suppose that the short-term interest rate is constant, that
is, rt = r for every t ∈ R+. Let the value of the firm process V obey the
SDE

dVt = Vt

(
(r − κ) dt + σV dWt

)

with constant coefficients κ ∈ R and σV > 0. Let us also assume that the
barrier process v is constant and equal to v̄, where the constant v̄ satisfies
v̄ < V0, so that the default time is given as

τ = inf { t ∈ R+ : Vt ≤ v̄} = inf { t ∈ R+ : Vt < v̄}.
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We now set Yt = ln(Vt/v̄) so that ν = r−κ− 1
2σ2

V and σ = σV in formula
(1.3). By applying Corollary 1.3.1, we obtain, for every s > t on the event
{t < τ},

Q(τ ≤ s | Ft) = N

(
ln v̄

Vt
− ν(s− t)

σV

√
s− t

)
+

( v̄

Vt

)2a

N

(
ln v̄

Vt
+ ν(s− t)

σV

√
s− t

)
,

where we denote

a =
ν

σ2
V

=
r − κ− 1

2σ2
V

σ2
V

.

This result was used, in particular, in the paper by Leland and Toft [136].

Example 1.3.2. Let the value process V and the short-term interest rate r
be as in Example 1.3.1. For a strictly positive constant K and an arbitrary
γ ∈ R+, let the barrier function be defined as v̄(t) = Ke−γ(T−t) for t ∈ R+.
In other words, the function v̄(t) satisfies

dv̄(t) = γv̄(t) dt, v̄(0) = Ke−γT .

We now set Yt = ln(Vt/v̄(t)), so that the coefficients in formula (1.3) are
ν̃ = r − κ − γ − 1

2σ2
V and σ = σV . We define the default time τ by setting

τ = inf { t ≥ 0 : Vt ≤ v̄(t)}. From Corollary 1.3.1, we obtain, for every t < s
on the event {t < τ},

Q(τ ≤ s | Ft) = N

(
ln v̄(t)

Vt
− ν̃(s− t)

σV

√
s− t

)
+

(
v̄(t)
Vt

)2ea
N

(
ln v̄(t)

Vt
+ ν̃(s− t)

σV

√
s− t

)
,

where

ã =
ν̃

σ2
V

=
r − κ− γ − 1

2σ2
V

σ2
V

.

This formula was employed in the classic paper by Black and Cox [28].

1.3.2 Extensions to Joint Distributions

The next step is to find the joint probability distribution, for every y ≥ 0
and s > t,

I := Q(Ys ≥ y, τ ≥ s | Ft) = Q(Ys ≥ y, τ > s | Ft),

where τ is given by (1.4). Let us denote by MW and mW the running
maximum and minimum of a one-dimensional standard Brownian motion W ,
respectively. More explicitly, MW

s = sup 0≤u≤s Wu and mW
s = inf 0≤u≤s Wu.

It is well known that for every s > 0 we have

Q(MW
s > 0) = 1, Q(mW

s < 0) = 1.
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The following classic result, commonly referred to as the reflection prin-
ciple, is a straightforward consequence of the strong Markov property of the
Brownian motion.

Lemma 1.3.2. We have that, for every s > 0, y ≥ 0 and x ≤ y,

Q(Ws ≤ x, MW
s ≥ y) = Q(Ws ≥ 2y − x) = Q(Ws ≤ x− 2y). (1.11)

We need to examine the Brownian motion with non-zero drift. Consider
the process X that equals Xt = νt + σWt. We write MX

s = sup0≤u≤s Xu

and mX
s = inf0≤u≤s Xu. By virtue of the Girsanov theorem, the process X

is a Brownian motion, up to an appropriate re-scaling, under an equivalent
probability measure and thus we have, for any s > 0,

Q(MX
s > 0) = 1, Q(mX

s < 0) = 1.

Lemma 1.3.3. For every s > 0, the joint distribution of (Xs,M
X
s ) is given

by the expression

Q(Xs ≤ x, MX
s ≥ y) = e2νyσ−2

Q(Xs ≥ 2y − x + 2νs)

for every x, y ∈ R such that y ≥ 0 and x ≤ y.

Proof. Let us define Xσ
t = σ−1Xt = Wt + σ−1νt. It is easy to check that

the following equality is valid

I := Q
(
Xs ≤ x, MX

s ≥ y
)

= Q
(
Xσ

s ≤ xσ−1, MXσ

s ≥ yσ−1
)
.

We thus see that we may and do assume, without loss of generality, that
σ = 1. From the Girsanov theorem, it follows that X is a standard Brownian
motion under the probability measure Q̃, which is given on (Ω,Fs) by the
Radon-Nikodým density (recall that σ = 1)

dQ̃
dQ

= e−νWs− ν2
2 s, Q-a.s.

Note also that
dQ
dQ̃

= eνW∗
s − ν2

2 s, Q̃-a.s.,

where the process (W ∗
t = Xt = Wt + νt, t ∈ [0, s]) is a standard Brownian

motion under Q̃. It is easily seen that

I = EeQ
(
eνW∗

s − ν2
2 s 1{Xs≤x, MX

s ≥y}
)

= EeQ
(
eνW∗

s − ν2
2 s 1{W∗

s ≤x, MW∗
s ≥y}

)
.
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Since W ∗ is a standard Brownian motion under Q̃, an application of the
reflection principle gives

I = EeQ
(
eν(2y−W∗

s )− ν2
2 s 1{2y−W∗

s ≤x, MW∗
s ≥y}

)

= EeQ
(
eν(2y−W∗

s )− ν2
2 s 1{W∗

s ≥2y−x}
)

= e2νy EeQ
(
e−νW∗

s − ν2
2 s 1{W∗

s ≥2y−x}
)
,

since clearly 2y − x ≥ y.
Let us define one more equivalent probability measure, P̃ say, by setting

dP̃
dQ̃

= e−νW∗
s − ν2

2 s, P-a.s.

Is is clear that

I = e2νy EeQ
(
e−νW∗

s − ν2
2 s 1{W∗

s ≥2y−x}
)

= e2νy P̃(W ∗
s ≥ 2y − x).

Furthermore, the process (W̃t = W ∗
t + νt, t ∈ [0, s]) is a standard Brownian

motion under P̃ and we have that

I = e2νy P̃(W̃s + νs ≥ 2y − x + 2νs).

The last equality easily yields the asserted formula. ¤
It is worthwhile to observe that (a similar remark applies to all formulae

below)
Q(Xs ≤ x, MX

s ≥ y) = Q(Xs < x, MX
s > y).

The following result is a straightforward consequence of Lemma 1.3.3.

Proposition 1.3.2. For any x, y ∈ R satisfying y ≥ 0 and x ≤ y, we have
that

Q
(
Xs ≤ x, MX

s ≥ y
)

= e2νyσ−2
N

(
x− 2y − νs

σ
√

s

)
.

Hence

Q
(
Xs ≤ x, MX

s ≤ y
)

= N

(
x− νs

σ
√

s

)
− e2νyσ−2

N

(
x− 2y − νs

σ
√

s

)

for every x, y ∈ R such that x ≤ y and y ≥ 0.

Proof. For the first equality, note that

Q(Xs ≥ 2y − x + 2νs) = Q(−σWs ≤ x− 2y − νs) = N

(
x− 2y − νs

σ
√

s

)
,
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since −σWt has Gaussian law with zero mean and variance σ2t. For the
second formula, it is enough to observe that

Q(Xs ≤ x, MX
s ≤ y) +Q(Xs ≤ x, MX

s ≥ y) = Q(Xs ≤ x)

and to apply the first equality. ¤
It is clear that

Q(MX
s ≥ y) = Q(Xs ≥ y) +Q(Xs ≤ y, MX

s ≥ y)

for every y ≥ 0, and thus

Q(MX
s ≥ y) = Q(Xs ≥ y) + e2νyσ−2

Q(Xs ≥ y + 2νs).

Consequently,

Q(MX
s ≤ y) = 1−Q(MX

s ≥ y) = Q(Xs ≤ y)− e2νyσ−2
Q(Xs ≥ y + 2νs).

This leads to the following corollary.

Corollary 1.3.2. The following equality is valid, for every s > 0 and y ≥ 0,

Q(MX
s ≤ y) = N

(
y − νs

σ
√

s

)
− e2νyσ−2

N

(−y − νs

σ
√

s

)
.

We will now focus on the distribution of the minimal value of X. Observe
that we have, for any y ≤ 0,

Q
(

sup
0≤u≤s

(σWu − νu) ≥ −y
)

= Q
(

inf
0≤u≤s

Xu ≤ y
)
,

where we have used the symmetry of the Brownian motion. Consequently,
for every y ≤ 0 we have Q(mX

s ≤ y) = Q(M eX
s ≥ −y), where the process

X̃ equals X̃t = σWt − νt. It is thus not difficult to establish the following
result.

Proposition 1.3.3. The joint probability distribution of (Xs, m
X
s ) satisfies,

for every s > 0,

Q(Xs ≥ x, mX
s ≥ y) = N

(−x + νs

σ
√

s

)
− e2νyσ−2

N

(
2y − x + νs

σ
√

s

)

for every x, y ∈ R such that y ≤ 0 and y ≤ x.

Corollary 1.3.3. The following equality is valid, for every s > 0 and y ≤ 0,

Q(mX
s ≥ y) = N

(−y + νs

σ
√

s

)
− e2νyσ−2

N

(
y + νs

σ
√

s

)
.
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Recall that we denote Yt = y0 + Xt, where Xt = νt + σWt. We write

mX
s = inf

0≤u≤s
Xu, mY

s = inf
0≤u≤s

Yu.

Corollary 1.3.4. We have that, for any s > 0 and y ≥ 0,

Q(Ys ≥ y, τ ≥ s) = N

(−y + y0 + νs

σ
√

s

)
− e−2νσ−2y0 N

(−y − y0 + νs

σ
√

s

)
.

Proof. Since

Q(Ys ≥ y, τ ≥ s) = Q(Ys ≥ y, mY
s ≥ 0) = Q(Xs ≥ y − y0, mX

s ≥ −y0),

the asserted formula is rather obvious. ¤
More generally, the Markov property of Y justifies the following result.

Lemma 1.3.4. We have that, for any t < s and y ≥ 0, on the event {t < τ},

Q(Ys ≥ y, τ ≥ s | Ft) = N

(−y + Yt + ν(s− t)
σ
√

s− t

)

− e−2νσ−2YtN

(−y − Yt + ν(s− t)
σ
√

s− t

)
.

Example 1.3.3. Assume that the dynamics of the value of the firm process
V are

dVt = Vt

(
(r − κ) dt + σV dWt

)
(1.12)

and set τ = inf { t ≥ 0 : Vt ≤ v̄}, where the constant v̄ satisfies v̄ < V0.
By applying Lemma 1.3.4 to Yt = ln(Vt/v̄) and y = ln(x/v̄), we obtain the
following equality, which holds for x ≥ v̄ on the event {t < τ},

Q(Vs ≥ x, τ ≥ s | Ft) = N

(
ln(Vt/x) + ν(s− t)

σ
√

s− t

)

−
(

v̄

Vt

)2a

N

(
ln v̄2 − ln(xVt) + ν(s− t)

σ
√

s− t

)
,

where ν = r − κ− 1
2σ2

V and a = νσ−2
V .

Example 1.3.4. We consider the setup of Example 1.3.2, so that the value
process V satisfies (1.12) and the barrier function equals v̄(t) = Ke−γ(T−t)

for some constants K > 0 and γ ∈ R.
Making use again of Lemma 1.3.4, but this time with Yt = ln(Vt/v̄(t))

and y = ln(x/v̄(s)), we find that, for every t < s ≤ T and an arbitrary
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x ≥ v̄(s), the following equality holds on the event {t < τ}

Q(Vs ≥ x, τ ≥ s | Ft) = N

(
ln(Vt/v̄(t))− ln(x/v̄(s)) + ν̃(s− t)

σV

√
s− t

)

−
(

v̄(t)
Vt

)2ea
N

(− ln(Vt/v̄(t))− ln(x/v̄(s)) + ν̃(s− t)
σV

√
s− t

)
,

where ν̃ = r − κ− γ − 1
2σ2

V and ã = ν̃σ−2
V . Upon simplification, this yields

Q(Vs ≥ x, τ ≥ s | Ft) = N

(
ln(Vt/x) + ν(s− t)

σV

√
s− t

)

−
(

v̄(t)
Vt

)2ea
N

(
ln v̄2(t)− ln(xVt) + ν(s− t)

σV

√
s− t

)
,

where ν = r − κ− 1
2σ2

V .

Remark 1.3.1. Note that if we take x = v̄(s) = Ke−γ(T−s) then clearly

1−Q(Vs ≥ v̄(s), τ ≥ s | Ft) = Q(τ < s | Ft) = Q(τ ≤ s | Ft).

But we also have that

1−N

(
ln(Vt/v̄(s)) + ν(s− t)

σV

√
s− t

)
= N

(
ln(v̄(t)/Vt)− ν̃(s− t)

σV

√
s− t

)

and

N

(
ln v̄2(t)− ln(v̄(s)Vt) + ν(s− t)

σV

√
s− t

)
= N

(
ln(v̄(t)/Vt) + ν̃(s− t)

σV

√
s− t

)
.

By setting x = v̄(s), we rediscover the formula established in Example 1.3.2.

1.4 The Black and Cox Model

By construction, the original Merton model does not allow for a premature
default, in the sense that the default may only occur at the maturity of
the claim. Several authors have put forward various structural models for
valuation of a corporate debt in which this restrictive and unrealistic feature
was relaxed.

In most of these models, the time of default was defined as the first
passage time of the value process V to either deterministic or random barrier.
In principle, the bond’s default may thus occur at any time before or on
the maturity date T. The challenge is to appropriately specify the lower
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threshold v, the recovery process Z, and to explicitly evaluate the conditional
expectation that appears on the right-hand side of the risk-neutral valuation
formula

St = Bt EQ
( ∫

]t,T ]

B−1
u dDu

∣∣∣Ft

)
,

which is valid for t ∈ [0, T [. As one might easily guess, this is a non-trivial
mathematical problem, in general. In addition, the practical problem of the
lack of direct observations of the value process V largely limits the applica-
bility of the first-passage-time models based on the firm value process V .

1.4.1 Safety Covenants

Black and Cox [28] generalize the Merton [143] approach in many aspects
by taking into account such real-life features of debt contracts as: safety
covenants, debt subordination, and restrictions on the sale of assets.

As in the Merton model, they assume that the firm’s stockholders receive
continuous dividend payments proportional to the current value of firm’s
assets, so that the risk-neutral dynamics of the value process are

dVt = Vt

(
(r − κ) dt + σV dWt

)
, V0 > 0,

where W is a Brownian motion under the risk-neutral probability Q, the
constant κ ≥ 0 represents the payout ratio and σV > 0 is the constant
volatility. The short-term interest rate r is assumed to be constant.

The so-called safety covenants provide the bondholders with the right to
force the firm to bankruptcy or reorganization if the firm is doing poorly
according to some gauge. The standard for a poor performance is set by
Black and Cox in terms of a time-dependent deterministic barrier v̄(t) =
Ke−γ(T−t), t ∈ [0, T [, for some constant K > 0. As soon as the total value
of firm’s assets hits this lower threshold, the bondholders take over the firm.
Otherwise, default either occurs at maturity date T or not, depending on
whether the inequality VT < L holds or not.

Let us set

vt =
{

v̄(t), for t < T ,
L, for t = T .

Formally, the default event occurs at the first time t ∈ [0, T ] at which the
firm’s value Vt falls below the level vt, or the default event does not occur at
all. Hence the default time τ is now given by the expression (by convention
inf ∅ = +∞)

τ = inf { t ∈ [0, T ] : Vt ≤ vt}.
The recovery process Z and the recovery payoff X̃ are proportional to

the value process, specifically, Z = β2V and X̃ = β1VT for some constants
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β1, β2 ∈ [0, 1]. Though the case examined by Black and Cox [28] corre-
sponded to β1 = β2 = 1, the extension of their approach to the case of
arbitrary β1 and β2 is trivial.

To sum up, the corporate bond is now given as the following defaultable
claim

X = L, A = 0, X̃ = β1VT , Z = β2V, τ = τ̄ ∧ τ̂ ,

where the early default time τ̄ equals

τ̄ = inf { t ∈ [0, T [ : Vt ≤ v̄(t)}
and τ̂ stands for Merton’s default time, that is, τ̂ = T1{VT <L}+∞1{VT≥L}.

1.4.2 Corporate Bond

Similarly as in the Merton model, it is assumed that the short-term interest
rate is deterministic and equal to a positive constant r. It is postulated, in
addition, that v̄(t) ≤ LB(t, T ) for every t ∈ [0, T ] or, more explicitly,

Ke−γ(T−t) ≤ Le−r(T−t),

so that, in particular, K ≤ L. This additional condition is imposed in order
to guarantee that the payoff to the bondholder at the default time τ will
never exceed the face value of the debt, discounted at a risk-free rate.

Since the dynamics for the value process V are given in terms of a diffusion
process, a suitable partial differential equation can be used to characterize the
value process of the corporate bond. Let us write D(t, T ) = u(Vt, t). Then
the pricing function u = u(v, t) of a corporate bond satisfies the following
PDE

ut(v, t) + (r − κ)vuv(v, t) +
1
2
σ2

V v2uvv(v, t)− ru(v, t) = 0

on the domain

{(v, t) ∈ R+ × R+ : 0 < t < T, v > Ke−γ(T−t)}
with the boundary condition

u(Ke−γ(T−t), t) = β2Ke−γ(T−t)

and the terminal condition u(v, T ) = min (β1v, L).
Alternatively, the price D(t, T ) = u(Vt, t) of a defaultable bond has the

following probabilistic representation, on the event {t < τ} = {t < τ̄},
D(t, T ) = EQ

(
Le−r(T−t)1{τ̄≥T, VT ≥L}

∣∣∣Ft

)

+ β1EQ
(
VT e−r(T−t)1{τ̄≥T, VT <L}

∣∣∣Ft

)

+ β2K EQ
(
e−γ(T−τ̄)e−r(τ̄−t)1{t<τ̄<T}

∣∣∣Ft

)
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where Ft = FV
t = FW

t for every t ∈ [0, T ]. After default, that is, on the
event {t ≥ τ} = {t ≥ τ̄}, the bond price is obviously given by

D(t, T ) = β2v̄(τ)B−1(τ, T )B(t, T ) = β2Ke−γ(T−τ)er(t−τ).

We wish find explicit expressions for the conditional expectations arising in
the above probabilistic representation of the price D(t, T ). To this end, we
observe that:

• the first two conditional expectations can be computed by using the
formula for the joint conditional probability Q(Vs ≥ x, τ ≥ s | Ft),

• to evaluate the third conditional expectation, it suffices to employ the
conditional probability law of the first passage time of the process V
to the barrier v̄(t).

1.4.3 The Black and Cox Formula

Before stating the bond valuation formula established by Black and Cox
[28], let us recall the standing notation introduced in Section 1.3 (see, in
particular, Examples 1.3.2 and 1.3.4)

ν = r − κ− 1
2
σ2

V ,

ν̃ = ν − γ = r − κ− γ − 1
2
σ2

V ,

ã = ν̃σ−2
V .

For the sake of brevity, in the statement of Proposition 1.4.1 we shall write
σ instead of σV . As already mentioned, the probabilistic proof of this result
relies on the knowledge of the probability law of the first passage time of the
geometric (that is, exponential) Brownian motion to an exponential barrier.
All relevant results regarding this issue were already established in Section
1.3 (once again the reader is referred to Examples 1.3.2 and 1.3.4).

Proposition 1.4.1. Assume that ν̃2 +2σ2(r−γ) > 0. Prior to default, that
is, on the event {t < τ}, the price process D(t, T ) = u(Vt, t) of a defaultable
bond equals

D(t, T ) = LB(t, T )
(
N

(
h1(Vt, T − t)

)−R2ea
t N

(
h2(Vt, T − t)

))

+ β1Vte
−κ(T−t)

(
N

(
h3(Vt, T − t))−N

(
h4(Vt, T − t)

))

+ β1Vte
−κ(T−t)R2ea+2

t

(
N

(
h5(Vt, T − t))−N

(
h6(Vt, T − t)

))

+ β2Vt

(
Rθ+ζ

t N
(
h7(Vt, T − t)

)
+ Rθ−ζ

t N
(
h8(Vt, T − t)

))
,
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where Rt = v̄(t)/Vt, θ = ã + 1, ζ = σ−2
√

ν̃2 + 2σ2(r − γ) and

h1(Vt, T − t) =
ln (Vt/L) + ν(T − t)

σ
√

T − t
,

h2(Vt, T − t) =
ln v̄2(t)− ln(LVt) + ν(T − t)

σ
√

T − t
,

h3(Vt, T − t) =
ln (L/Vt)− (ν + σ2)(T − t)

σ
√

T − t
,

h4(Vt, T − t) =
ln (K/Vt)− (ν + σ2)(T − t)

σ
√

T − t
,

h5(Vt, T − t) =
ln v̄2(t)− ln(LVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h6(Vt, T − t) =
ln v̄2(t)− ln(KVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h7(Vt, T − t) =
ln (v̄(t)/Vt) + ζσ2(T − t)

σ
√

T − t
,

h8(Vt, T − t) =
ln (v̄(t)/Vt)− ζσ2(T − t)

σ
√

T − t
.

Before proceeding to the proof of Proposition 1.4.1, we need to establish
an elementary lemma.

Lemma 1.4.1. For any a ∈ R and b > 0 we have, for every y > 0,

∫ y

0

x dN

(
ln x + a

b

)
= e

1
2 b2−a N

(
ln y + a− b2

b

)
(1.13)

and
∫ y

0

x dN

(− ln x + a

b

)
= e

1
2 b2+a N

(− ln y + a + b2

b

)
. (1.14)

Let a, b, c ∈ R satisfy b < 0 and c2 > 2a. Then we have, for every y > 0,
∫ y

0

eax dN

(
b− cx√

x

)
=

d + c

2d
g(y) +

d− c

2d
h(y), (1.15)

where d =
√

c2 − 2a and where we denote

g(y) = eb(c−d) N

(
b− dy√

y

)
, h(y) = eb(c+d) N

(
b + dy√

y

)
.
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Proof. The derivation of equalities (1.13)–(1.14) is standard. For (1.15), we
first observe that

f(y) :=
∫ y

0

eax dN

(
b− cx√

x

)
=

∫ y

0

eax n

(
b− cx√

x

)(
− b

2x3/2
− c

2
√

x

)
dx,

where n is the probability density function of the standard Gaussian law.
Note also that

g′(x) = eb(c−√c2−2a) n

(
b−√c2 − 2ax√

x

)(
− b

2x3/2
−
√

c2 − 2a

2
√

x

)

= eax n

(
b− cx√

x

)(
− b

2x3/2
− d

2
√

x

)

and

h′(x) = eb(c+
√

c2−2a) n

(
b +

√
c2 − 2ax√

x

)(
− b

2x3/2
+
√

c2 − 2a

2
√

x

)

= eax n

(
b− cx√

x

)(
− b

2x3/2
+

d

2
√

x

)
.

Consequently,

g′(x) + h′(x) = −eax b

x3/2
n

(
b− cx√

x

)

and

g′(x)− h′(x) = −eax d

x1/2
n

(
b− cx√

x

)
.

Hence f can be represented as follows

f(y) =
1
2

∫ y

0

(
g′(x) + h′(x) +

c

d
(g′(x)− h′(x))

)
dx.

Since limy→0+ g(y) = limy→0+ h(y) = 0, we conclude that we have, for
every y > 0,

f(y) =
1
2
(g(y) + h(y)) +

c

2d
(g(y)− h(y)).

This ends the proof of the lemma. ¤
Proof of Proposition 1.4.1. To establish the asserted bond valuation formula,
it suffices to evaluate the following conditional expectations:

D1(t, T ) = LB(t, T )Q(VT ≥ L, τ̄ ≥ T | Ft),
D2(t, T ) = β1B(t, T )EQ

(
VT1{VT <L, τ̄≥T}

∣∣Ft

)
,

D3(t, T ) = Kβ2Bte
−γT EQ

(
e(γ−r)τ̄1{t<τ̄<T}

∣∣Ft

)
.
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For the sake of notational convenience, we will focus on the case t = 0.
The general result will follow easily from the Markov property of V .

Let us first evaluate D1(0, T ), that is, the part of the bond value cor-
responding to no-default event. From Example 1.3.4, we know that if L ≥
v̄(T ) = K then

Q(VT ≥ L, τ̄ ≥ T ) = N

(
ln V0

L + νT

σ
√

T

)
−R2ea

0 N

(
ln v̄2(0)

LV0
+ νT

σ
√

T

)

with R0 = v̄(0)/V0. It is thus clear that

D1(0, T ) = LB(0, T )
(
N

(
h1(V0, T )

)−R2ea
0 N

(
h2(V0, T )

))
.

Let us now examine D2(0, T ) – that is, the part of the bond’s value associated
with default at time T . We note that

D2(0, T )
β1B(0, T )

= EQ
(
VT1{VT <L, τ̄≥T}

)
=

∫ L

K

x dQ(VT < x, τ̄ ≥ T ).

Using again Example 1.3.4 and the fact that the probability Q(τ̄ ≥ T ) does
not depend on x, we obtain, for every x ≥ K,

dQ(VT < x, τ̄ ≥ T ) = dN

( ln x
V0
− νT

σ
√

T

)
+ R2ea

0 dN

(
ln v̄2(0)

xV0
+ νT

σ
√

T

)
.

Let us denote

K1(0) =
∫ L

K

x dN

(
ln x− ln V0 − νT

σ
√

T

)

and

K2(0) =
∫ L

K

x dN

(
2 ln v̄(0)− ln x− ln V0 + νT

σ
√

T

)
.

Using (1.13)–(1.14), we obtain

K1(0) = V0e
(r−κ)T

(
N

(
ln L

V0
− ν̂T

σ
√

T

)
−N

(
ln K

V0
− ν̂T

σ
√

T

))
,

where ν̂ = ν + σ2 = r − κ + 1
2σ2. Similarly,

K2(0) = V0R
2
0e

(r−κ)T


N

(
ln v̄2(0)

LV0
+ ν̂T

σ
√

T

)
−N

(
ln v̄2(0)

KV0
+ ν̂T

σ
√

T

)
 .

Since
D2(0, T ) = β1B(0, T )

(
K1(0) + Rea0K2(0)

)
,
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we conclude that D2(0, T ) is equal to

D2(0, T ) = β1V0e
−κT

(
N

(
h3(V0, T ))−N

(
h4(V0, T )

))

+ β1V0e
−κT R2ea+2

0

(
N

(
h5(V0, T )

)−N
(
h6(V0, T )

))
.

It remains to evaluate D3(0, T ), that is, the part of the bond value associated
with the possibility of the forced bankruptcy before the maturity date T . To
this end, it suffices to calculate the following expected value

v̄(0)EQ
(
e(γ−r)τ̄1{τ̄<T}

)
= v̄(0)

∫ T

0

e(γ−r)s dQ(τ̄ ≤ s),

where (see Example 1.3.2)

Q(τ̄ ≤ s) = N

(
ln(v̄(0)/V0)− ν̃s

σ
√

s

)
+

(
v̄(0)
V0

)2ea
N

(
ln(v̄(0)/V0) + ν̃s

σ
√

s

)
.

Note that v̄(0) < V0 and thus ln(v̄(0)/V0) < 0. Using (1.15), we obtain

v̄(0)
∫ T

0

e(γ−r)s dN

(
ln(v̄(0)/V0)− ν̃s

σ
√

s

)

=
V0(ã + ζ)

2ζ
Rθ−ζ

0 N
(
h8(V0, T )

)− V0(ã− ζ)
2ζ

Rθ+ζ
0 N

(
h7(V0, T )

)

and

v̄(0)2ea+1

V 2ea
0

∫ T

0

e(γ−r)s dN

(
ln(v̄(0)/V0) + ν̃s

σ
√

s

)

=
V0(ã + ζ)

2ζ
Rθ+ζ

0 N
(
h7(V0, T )

)− V0(ã− ζ)
2ζ

Rθ−ζ
0 N

(
h8(V0, T )

)
.

Consequently,

D3(0, T ) = β2V0

(
Rθ+ζ

0 N
(
h7(V0, T )

)
+ Rθ−ζ

0 N
(
h8(V0, T )

))
.

Upon summation, this completes the proof for t = 0. ¤
Let us consider some special cases of the Black and Cox pricing formula.

Assume that β1 = β2 = 1 and the barrier function v̄ is such that K = L.
Then necessarily γ ≥ r. It can be checked that for K = L the pricing formula
reduces to D(t, T ) = D1(t, T ) + D3(t, T ), where

D1(t, T ) = LB(t, T )
(
N

(
h1(Vt, T − t)

)−R2â
t N

(
h2(Vt, T − t)

))
,

D3(t, T ) = Vt

(
Rθ+ζ

t N
(
h7(Vt, T − t)

)
+ Rθ−ζ

t N
(
h8(Vt, T − t)

))
.
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• Case γ = r. If we assume, in addition, that γ = r then ζ = −σ−2ν̂ and
thus

VtR
θ+ζ
t = LB(t, T ), VtR

θ−ζ
t = VtR

2â+1
t = LB(t, T )R2â

t .

It is also easy to see that in this case

h1(Vt, T − t) =
ln(Vt/L) + ν(T − t)

σ
√

T − t
= −h7(Vt, T − t)

and

h2(Vt, T − t) =
ln v̄2(t)− ln(LVt) + ν(T − t)

σ
√

T − t
= h8(Vt, T − t).

We conclude that if v̄(t) = Le−r(T−t) = LB(t, T ) then D(t, T ) = LB(t, T ).
This valuation result is intuitively obvious. Indeed, a corporate bond with
the safety covenant represented by the barrier function v̄, which is given by
the bond’s face value discounted at the risk-free rate, is manifestly equivalent
to a default-free bond with the same face value and maturity.
• Case γ > r. For K = L and γ > r, it can be checked that D(t, T ) is
strictly smaller than LB(t, T ). In addition, one can show that when the
value of the parameter γ tends to infinity (all other parameters being fixed),
then the Black and Cox price of a corporate bond converges to Merton’s
value of the bond.

1.4.4 Corporate Coupon Bond

We now postulate that the short-term rate r > 0 and that a corporate
bond, with a fixed maturity date T and the face value L, pays continuously
coupons at a constant rate c, so that At = ct for every t ∈ R+. It is natural to
postulate that the coupon payments are discontinued as soon as the default
event occurs. Formally, we thus consider here a defaultable claim specified
as follows

X = L, At = ct, X̃ = β1VT , Z = β2V, τ = inf { t ∈ [0, T ] : Vt < vt}
with the Black and Cox barrier v. Let us denote by Dc(t, T ) the value of
such a claim at time t < T . It is clear that Dc(t, T ) = D(t, T ) + A(t, T ),
where A(t, T ) stands for the discounted value of future coupon payments.
The value of A(t, T ) can be computed as follows

A(t, T ) = EQ
( ∫ T

t

ce−r(s−t) 1{τ̄>s} ds
∣∣∣Ft

)
= cert

∫ T

t

e−rsQ(τ̄ > s | Ft) ds.

Setting t = 0, we thus obtain

Dc(0, T ) = D(0, T ) + c

∫ T

0

e−rsQ(τ̄ > s) ds = D(0, T ) + A(0, T ),
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where (recall that we write σ instead of σV )

Q(τ̄ > s) = N

(
ln(V0/v̄(0)) + ν̃s

σ
√

s

)
−

(
v̄(0)
V0

)2ea
N

(
ln(v̄(0)/V0) + ν̃s

σ
√

s

)
.

An integration by parts formula yields

∫ T

0

e−rsQ(τ̄ > s) ds =
1
r

(
1− e−rTQ(τ̄ > T ) +

∫ T

0

e−rs dQ(τ̄ > s)
)
.

We assume, as usual, that V0 > v̄(0), so that ln(v̄(0)/V0) < 0. Arguing in a
similar way as in the last part of the proof of Proposition 1.4.1 (specifically,
using formula (1.15)), we obtain

∫ T

0

e−rs dQ(τ̄ > s) = −
(

v̄(0)
V0

)ea+eζ
N

(
ln(v̄(0)/V0) + ζ̃σ2T

σ
√

T

)

−
(

v̄(0)
V0

)ea−eζ
N

(
ln(v̄(0)/V0)− ζ̃σ2T

σ
√

T

)
,

where

ν̃ = r − κ− γ − 1
2
σ2, ã = ν̃σ−2,

and

ζ̃ = σ−2
√

ν̃2 + 2σ2r.

Although we have focused on the case when t = 0, it is clear that the
derivation of the general valuation formula for any t < T hinges on essentially
the same arguments. We are thus in the position to state the following result.

Proposition 1.4.2. Consider a defaultable bond with face value L, which
pays continuously coupons at a constant rate c. The price of such a bond
equals Dc(t, T ) = D(t, T )+A(t, T ), where D(t, T ) is the value of a defaultable
zero-coupon bond given by Proposition 1.4.1 and A(t, T ) equals, on the event
{t < τ} = {t < τ̄},

A(t, T ) =
c

r

{
1−B(t, T )

(
N

(
k1(Vt, T − t)

)−R2ea
t N

(
k2(Vt, T − t)

))

−Rea+eζ
t N

(
g1(Vt, T − t)

)−Rea−
eζ

t N
(
g2(Vt, T − t)

)}
,
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where Rt = v̄(t)/Vt and

k1(Vt, T − t) =
ln(Vt/v̄(t)) + ν̃(T − t)

σ
√

T − t
,

k2(Vt, T − t) =
ln(v̄(t)/Vt) + ν̃(T − t)

σ
√

T − t
,

g1(Vt, T − t) =
ln(v̄(t)/Vt) + ζ̃σ2(T − t)

σ
√

T − t
,

g2(Vt, T − t) =
ln(v̄(t)/Vt)− ζ̃σ2(T − t)

σ
√

T − t
.

Some authors apply the general result to the special case when the default
triggering barrier is assumed to be a constant level v̄ ≥ L. Note that the
firm’s insolvency at maturity T is now excluded. In this special case, the
coefficient γ equals zero. Consequently, ν̃ = ν, ã = a = νσ−2 and

ζ̃ = σ−2
√

ν2 + 2σ2r = ζ.

For the sake of the reader’s convenience, we state the following immediate
corollary to Propositions 1.4.1 and 1.4.2.

Corollary 1.4.1. Assume that γ = 0 so that the default barrier is constant.
Specifically, let vt = v̄ ≥ L and Rt = v̄/Vt. Then the price of a defaultable
coupon bond equals, on the event {t < τ} = {t < τ̄},

Dc(t, T ) =
c

r
+ B(t, T )

(
L− c

r

)(
N

(
k1(Vt, T − t)

)−R2a
t N

(
k2(Vt, T − t)

))

+
(
β2v̄ − c

r

)(
Ra+ζ

t N
(
g1(Vt, T − t)

)
+ Ra−ζ

t N
(
g2(Vt, T − t)

))
.

It is worth mentioning that the valuation formula of Corollary 1.4.1 coin-
cides with expression (3) in Leland and Toft [136]. Letting the bond maturity
T tend to infinity, we obtain the following representation of the price of a
consol bond (that is, a perpetual coupon bond with infinite maturity)

Dc(t) = Dc(t,∞) =
c

r

(
1−

(
v̄

Vt

)a+ζ )
+ β2v̄

(
v̄

Vt

)a+ζ

. (1.16)

1.4.5 Optimal Capital Structure

Following Black and Cox [28], we will now present an example of an analysis
of the optimal capital structure of a firm. Let us consider a firm that has
an interest paying bonds outstanding. We assume that it is a consol bond,
which pays continuously coupon rate c, and we postulate, in addition, that
r > 0 and the payout rate κ is equal to zero.
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The condition κ = 0 can be given the financial interpretation as the
restriction on the sale of assets, as opposed to issuing of new equity. Equiv-
alently, we may think about a situation in which the stockholders will make
payments to the firm to cover the interest payments. However, they have the
right to stop making payments at any time and either turn the firm over to
the bondholders or pay them a lump payment of c/r per unit of the bond’s
notional amount.

Recall that we denote by E(Vt) (D(Vt), respectively) the value at time
t of the firm equity (debt, respectively), hence the total value of the firm’s
assets satisfies Vt = E(Vt) + D(Vt). Black and Cox [28] argue that there is
a critical level of the value of the firm, denoted as v∗, below which no more
equity can be sold. The critical value v∗ will be chosen by stockholders,
whose aim is to minimize the value of the bonds (equivalently, to maximize
the value of the equity). Let us observe that v∗ is nothing else than a constant
default barrier in the problem under consideration. The optimal default time
τ∗ is thus assumed to be given by the formula (see, however, Décamps and
Villeneuve [65] for a critique of this postulate in the context of Leland’s [135]
model)

τ∗ = inf { t ∈ R+ : Vt ≤ v∗}.
To find the critical value v∗, let us first fix the bankruptcy level v̄. Then

the ODE for the pricing function u∞ = u∞(V ) of a consol bond takes the
following form (recall that σ = σV )

1
2
V 2σ2u∞V V + rV u∞V + c− ru∞ = 0,

subject to the lower boundary condition u∞(v̄) = min (v̄, c/r) and the upper
boundary condition

lim
V→∞

u∞V (V ) = 0.

For the last condition, observe that when the firm’s value grows to infinity,
the possibility of default becomes meaningless, so that the value of the de-
faultable consol bond tends to the value c/r of the default-free consol bond.
The general solution to our problem has the following form

u∞(V ) =
c

r
+ K1V + K2V

−α,

where we denote α = 2r/σ2 and K1,K2 are some constants, to be determined
from boundary conditions. We find easily that K1 = 0 and

K2 =
{

v̄α+1 − (c/r)v̄α, if v̄ < c/r,
0, if v̄ ≥ c/r.
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This means that the bond price equals (cf. (1.16))

u∞(Vt) =
c

r

(
1−

(
v̄

Vt

)α)
+ v̄

(
v̄

Vt

)α

.

It is in the interest of the stockholders to select the bankruptcy level in such
a way that the value of the debt, represented here by D(Vt) = u∞(Vt), is
minimized, so that the value of the firm’s equity

E(Vt) = Vt −D(Vt) = Vt − c

r
(1− q̄t)− v̄q̄t

is maximized. It is not difficult to check that the optimal level of the barrier
does not depend on the current value of the firm, and it equals

v∗ =
c

r

α

α + 1
=

c

r + σ2/2
.

Given the optimal strategy of the stockholders, the price process of the firm’s
debt (i.e., of a consol bond) takes the form, on the event {τ∗ > t},

D∗(Vt) =
c

r
− 1

αV α
t

(
c

r + σ2/2

)α+1

=
c

r
(1− q∗t ) + v∗q∗t ,

where

q∗t =
(

v∗

Vt

)α

=
1

V α
t

(
c

r + σ2/2

)α

.

For other important developments in the area of the optimal capital struc-
ture, we refer to Leland [135], Leland and Toft [136], Christensen et al. [57],
and Décamps and Villeneuve [65]. Chen and Kou [53] and Hilberink and
Rogers [97] study analogous problems, but they model the firm’s value as a
diffusion process with jumps. This extension is aimed to eliminate an un-
desirable feature of a typical structural model that the credit spread for a
corporate bond converges to zero for short maturities.

1.5 Extensions of the Black and Cox Model

The Black and Cox first-passage-time approach was later developed by,
among others: Brennan and Schwartz [35, 36] – an analysis of convertible
bonds, Nielsen et al. [148] – a random barrier and random interest rates,
Leland [135], Leland and Toft [136] – a study of an optimal capital struc-
ture, bankruptcy costs and tax benefits, Longstaff and Schwartz [138] – a
constant barrier combined with random interest rates, Fouque et al. [84, 85]
– a stochastic volatility model and its extension to a multi-name case.
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In general, the default time can be given as

τ = inf { t ∈ R+ : Vt ≤ v(t)},
where v : R+ → R is an arbitrary function and the value of the firm V is
modeled as a geometric Brownian motion.

Moraux [144] (see also Çetin et al. [51] and Yıldırım [172] for exten-
sions) proposes to model the default time as a Parisian stopping time. For
a continuous process V and any t > 0, we define the random variable gb

t (V )
representing the last moment before t when the process V was at a level b
by setting

gb
t (V ) = sup { 0 ≤ s ≤ t : Vs = b}.

The Parisian stopping time is the first time at which the process V is below
the level b for a time period of length greater or equal to a constant α.
Formally, the default time τ is given by the formula

τ = inf { t ∈ R+ : (t− gb
t (V ))1{Vt<b} ≥ α}.

In the case of the process V governed by the Black and Scholes dynamics,
it is possible to find the joint probability distribution of (τ, Vτ ) by means of
the Laplace transform. Another plausible choice for the default time is the
first moment when the process V has spent more than α units of time below
a predetermined level, that is,

τ = inf { t ∈ R+ : AV
t > α},

where we denote AV
t =

∫ t

0
1{Vu<b} du. The probability distribution of this

random time is related to the so-called cumulative options.
Campi and Sbuelz [47] assume that the default time is given by the first

hitting time of 0 by the CEV process and they study the difficult problem
of pricing an equity default swap. More precisely, they assume that the
dynamics under Q of the firm’s value are

dVt = Vt−
(
(r − κ) dt + σV β

t dWt − dMt

)
,

where W is a Brownian motion and M the compensated martingale of a
Poisson process (i.e., Mt = Nt−λt), and they set τ = inf { t ∈ R+ : Vt ≤ 0}.
Put another way, Campi and Sbuelz [47] define the default time by setting
τ = τβ ∧ τN , where τN is the first jump of the Poisson process and τβ is
defined as τβ = inf { t ∈ R+ : Xt ≤ 0}, where in turn the process X obeys
the following SDE

dXt = Xt−
(
(r − κ + λ) dt + σXβ

t dWt

)
.
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Using the well-known fact that the CEV process can be expressed in terms
of a time-changed Bessel process and results on the hitting time of zero for a
Bessel process of dimension smaller than 2, they obtain closed-form solutions
(see also Campi et al. [48] and Carr and Linetsky [50]).

Zhou [176] examines the case where the dynamics under Q of the firm
are

dVt = Vt−
((

r − λν
)
dt + σ dWt + dXt

)
,

where W is a standard Brownian motion and X is a compound Poisson
process. Specifically, we set Xt =

∑Nt

i=1

(
eYi − 1

)
, where N is a Poisson

process with a constant intensity λ, random variables Yi are independent and
have the Gaussian distribution N(a, b2). We also set ν = exp(a + b2/2)− 1,
since for this choice of ν the process Vte

−rt is a martingale. Zhou [176]
studies the Merton problem in this setup and gives an approximation for the
first passage time problem.

1.5.1 Stochastic Interest Rates

In this section, we present a generalization of the Black and Cox valuation
formula for a corporate bond to the case of random interest rates. We assume
that the underlying probability space (Ω,F ,P), endowed with the filtration
F = (Ft)t∈R+ , supports the short-term interest rate process r and the value
process V. The dynamics under the martingale measure Q of the firm’s value
and of the price of a default-free zero-coupon bond B(t, T ) are

dVt = Vt

(
(rt − κ(t)) dt + σ(t) dWt

)

and
dB(t, T ) = B(t, T )

(
rt dt + b(t, T ) dWt

)

respectively, where W is a d-dimensional standard Q-Brownian motion. Fur-
thermore, κ : [0, T ] → R, σ : [0, T ] → Rd and b(·, T ) : [0, T ] → Rd are as-
sumed to be bounded functions. The forward value FV (t, T ) = Vt/B(t, T ) of
the firm satisfies under the forward martingale measure QT

dFV (t, T ) = −κ(t)FV (t, T ) dt + FV (t, T )
(
σ(t)− b(t, T )

)
dWT

t ,

where the process WT
t = Wt −

∫ t

0
b(u, T ) du, t ∈ [0, T ], is a d-dimensional

Brownian motion under QT . We set, for any t ∈ [0, T ],

Fκ
V (t, T ) = FV (t, T )e−

R T
t

κ(u) du.

Then
dFκ

V (t, T ) = Fκ
V (t, T )

(
σ(t)− b(t, T )

)
dWT

t .
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Furthermore, it is apparent that Fκ
V (T, T ) = FV (T, T ) = VT . We consider

the following modification of the Black and Cox approach

X = L, Zt = β2Vt, X̃ = β1VT , τ = inf { t ∈ [0, T ] : Vt < vt},
where β1, β2 ∈ [0, 1] are constants and the barrier v is given by the formula

vt =
{

KB(t, T )e
R T

t
κ(u) du, for t < T ,

L, for t = T ,

with the constant K satisfying 0 < K ≤ L. Let us denote, for any t ≤ T,

κ(t, T ) =
∫ T

t

κ(u) du, σ2(t, T ) =
∫ T

t

|σ(u)− b(u, T )|2 du,

where | · | is the Euclidean norm in Rd. For brevity, we write Ft = Fκ
V (t, T )

and we denote
η±(t, T ) = κ(t, T )± 1

2
σ2(t, T ).

The following result was established in Rutkowski [155].

Proposition 1.5.1. The forward price FD(t, T ) = D(t, T )/B(t, T ) of the
defaultable bond equals, for every t ∈ [0, T [ on the event {τ > t},

L
(
N

(
ĥ1(Ft, t, T )

)− (Ft/K)e−κ(t,T )N
(
ĥ2(Ft, t, T )

))

+ β1Fte
−κ(t,T )

(
N

(
ĥ3(Ft, t, T )

)−N
(
ĥ4(Ft, t, T )

))

+ β1K
(
N

(
ĥ5(Ft, t, T )

)−N
(
ĥ6(Ft, t, T )

))

+ β2KJ+(Ft, t, T ) + β2Fte
−κ(t,T )J−(Ft, t, T ),

where

ĥ1(Ft, t, T ) =
ln (Ft/L)− η+(t, T )

σ(t, T )
,

ĥ2(Ft, T, t) =
2 ln K − ln(LFt) + η−(t, T )

σ(t, T )
,

ĥ3(Ft, t, T ) =
ln (L/Ft) + η−(t, T )

σ(t, T )
,

ĥ4(Ft, t, T ) =
ln (K/Ft) + η−(t, T )

σ(t, T )
,

ĥ5(Ft, t, T ) =
2 ln K − ln(LFt) + η+(t, T )

σ(t, T )
,

ĥ6(Ft, t, T ) =
ln(K/Ft) + η+(t, T )

σ(t, T )
,
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and where we write, for Ft > 0 and t ∈ [0, T [,

J±(Ft, t, T ) =
∫ T

t

eκ(u,T ) dN

(
ln(K/Ft) + κ(t, T )± 1

2σ2(t, u)
σ(t, u)

)
.

In the special case when κ = 0, the formula of Proposition 1.5.1 covers as a
special case the valuation result established by Briys and de Varenne [44]. In
some other recent studies of first passage time models, in which the triggering
barrier is assumed to be either a constant or an unspecified stochastic process,
typically no closed-form solution for the value of a corporate debt is available
and thus a numerical approach is required (see, for instance, Longstaff and
Schwartz [138], Nielsen et al. [148], or Saá-Requejo and Santa-Clara [158]).

1.6 Random Barrier

In the case of the full information and the Brownian filtration, the first
hitting time of a deterministic barrier is a predictable stopping time. This
is no longer the case when we deal with an incomplete information (as, e.g.,
in Duffie and Lando [73]), or when an additional source of randomness is
present. We present here a formula for credit spreads arising in a special
case of a totally inaccessible time of default. For a more detailed study we
refer to Babbs and Bielecki [9] and Giesecke [92]. As we shall see, the method
used here is in fact fairly close to the general method presented in Chapter 3.
We now postulate that the barrier which triggers default is represented by a
random variable η defined on the underlying probability space. The default
time τ is given as τ = inf { t ∈ R+ : Vt ≤ η}, where V is the value of the
firm and, for simplicity, V0 = 1. Note that {t < τ} = { infu≤t Vu > η}. We
shall denote by mV the running minimum of the continuous process V , that
is, mV

t = infu≤t Vu. With this notation, we have that {τ > t} = {mV
t > η}.

Note that mV is manifestly a decreasing, continuous process.

1.6.1 Independent Barrier

We assume that, under the risk-neutral probability Q, a random variable η
modeling the barrier is independent of the value of the firm. We denote by
Fη the cumulative distribution function of η, that is, Fη(z) = Q(η ≤ z). We
assume that Fη is a differentiable function and we denote by fη its derivative
(with fη(z) = 0 for z > V0).

Lemma 1.6.1. Let us set Ft = Q(τ ≤ t | Ft) and Γt = − ln(1− Ft). Then

Γt = −
∫ t

0

fη(mV
u )

Fη(mV
u )

dmV
u .
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Proof. If a random variable η is independent of F∞ then

Ft = Q(τ ≤ t | Ft) = Q(mV
t ≤ η | Ft) = 1− Fη(mV

t ).

The process mV is decreasing and thus Γt = − ln Fη(mV
t ). We conclude that

Γt = −
∫ t

0

fη(mV
u )

Fη(mV
u )

dmV
u ,

as required. ¤
Let us postulate, in addition, that the value process V is modeled by

a geometric Brownian motion with a drift. Specifically, we set Vt = eXt ,
where Xt = µt + σWt. It is clear that τ = inf { t ∈ R+ : mX

t ≤ ψ},
where ψ = ln η and mX is the running minimum of the process X, that
is, mX

t = inf {Xs : 0 ≤ s ≤ t}. We choose the Brownian filtration as the
reference filtration, that is, we set F = FW . This means that we assume
that the value of the firm process V (hence also the process X) is perfectly
observed. The barrier ψ is not observed, however. We only postulate that
an investor can observe the occurrence of the default time. In other words,
he can observe the process Ht = 1{t≥τ} = 1{mX

t ≤ψ}. We denote by H the
natural filtration of the process H. The information available to the investor
is thus represented by the joint filtration G = F ∨H.

If the default time τ and interest rates are independent under Q then it is
possible to establish the following result (for the proof, the interested reader
is referred to Giesecke [92] or Babbs and Bielecki [9]).

Proposition 1.6.1. Under the assumptions stated above, we deal with a unit
corporate bond with zero recovery. Then the credit spread S(t, T ) is given as,
for every t ∈ [0, T [,

S(t, T ) = −1{t<τ}
1

T − t
lnEQ

{
exp

( ∫ T

t

fψ(mX
u )

Fψ(mX
u )

dmX
u

) ∣∣∣Ft

}
.

Note that the process mX is decreasing, so that the stochastic integral
with respect to this process can be interpreted as a pathwise Stieltjes integral.
In Chapter 3, we will examine the notion of a hazard process of a random
time with respect to a reference filtration F. It is thus worth mentioning
that for the default time τ defined above, the F-hazard process Γ exists and
it is given by the formula

Γt = −
∫ t

0

fψ(mX
u )

Fψ(mX
u )

dmX
u .

Since this process is manifestly continuous, the default time τ is in fact a
totally inaccessible stopping time with respect to the filtration G.



Chapter 2

Hazard Function Approach

The goal of this chapter is to provide a detailed analysis of a relatively simple
case of the reduced-form methodology, when the information flow available to
an agent is reduced to the observations of the random time representing the
default event of some credit name. The emphasis is put on the evaluation of
conditional expectations with respect to the filtration generated by a default
time with the use of the hazard function. We also study hedging strategies
based on credit default swaps in the single-name setup and in the case of
several credit names. We conclude this chapter by dealing with examples of
copula-based credit risk models with several default times.

2.1 Elementary Market Model

We begin with the simple case where risk-free zero-coupon bonds, driven by
a deterministic short-term interest rate (r(t), t ∈ R+), are the only traded
assets in the default-free market model. Recall that in that case the price at
time t of the risk-free zero-coupon bond with maturity T equals

B(t, T ) = exp
(
−

∫ T

t

r(u) du
)

=
B(t)
B(T )

,

where B(t) = exp
( ∫ t

0

r(u) du
)

is the value at time t of the savings account.

Definition 2.1.1. By the default time τ we mean an arbitrary positive
random variable defined on some underlying probability space (Ω,G,Q).

Let F be the cumulative distribution function of a random variable τ so
that

F (t) = Q(τ ≤ t) =
∫ t

0

f(u) du,

where the second equality holds provided that the distribution of the random
time τ admits the probability density function f .
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It is assumed throughout that the inequality F (t) < 1 holds for every
t ∈ R+. Otherwise, there would exist a finite date t0 for which F (t0) = 1, so
that the default event would occur either before or at t0 with probability 1.

We emphasize that the random payoff of the form 1{T<τ} cannot be
perfectly hedged with deterministic zero-coupon bonds, which are the only
traded primary assets in our elementary market model. To hedge the default
risk, we shall later postulate that some defaultable assets are traded, e.g.,
a defaultable zero-coupon bond or a credit default swap. In the first step,
we will postulate that the “fair value” of a defaultable asset is given by the
risk-neutral valuation formula with respect to Q. Let us note in this regard
that in practice the risk-neutral distribution of default time is inferred from
market quotes of traded defaultable assets, rather than postulated a priori.

2.1.1 Hazard Function and Hazard Rate

Recall the standing assumption that F (t) < 1 for every t ∈ R+.

Definition 2.1.2. The hazard function Γ : R+ → R+ of τ is given by the
formula, for every t ∈ R+,

Γ(t) = − ln(1− F (t)).

Note that Γ is a non-decreasing function with the initial value Γ(0) = 0
and with the limit limt→+∞ Γ(t) = +∞. The following elementary result is
easy to prove.

Lemma 2.1.1. If the cumulative distribution function F is absolutely con-
tinuous with respect to the Lebesgue measure, so that F (t) =

∫ t

0
f(u) du

where f is the probability density function of τ , then the hazard function
Γ is absolutely continuous as well. Specifically, Γ(t) =

∫ t

0
γ(u) du where

γ(t) = f(t)(1− F (t))−1 for every t ∈ R+.

The function γ is called the hazard rate or the intensity function of default
time τ . When τ admits the hazard rate γ, we have that, for every t ∈ R+,

Q(τ > t) = 1− F (t) = e−Γ(t) = exp
(
−

∫ t

0

γ(u) du
)
.

The interpretation of the hazard rate is that it represents the conditional
probability of the occurrence of default in a small time interval [t, t + dt],
given that default has not occurred by time t. More formally, for almost
every t ∈ R+,

γ(t) = lim
h→0

1
h
Q(t < τ ≤ t + h | τ > t).
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Remark 2.1.1. Let τ be the moment of the first jump of an inhomogeneous
Poisson process with a deterministic intensity (λ(t), t ∈ R+). It is then well
known that the probability density function of τ equals

f(t) =
Q(τ ∈ dt)

dt
= λ(t) exp

(
−

∫ t

0

λ(u) du

)
= λ(t)e−Λ(t),

where Λ(t) =
∫ t

0
λ(u) du and thus F (t) = Q(τ ≤ t) = 1− e−Λ(t). The hazard

function Γ is thus equal to the compensator of the Poisson process, that is,
Γ(t) = Λ(t) for every t ∈ R+. In other words, the compensated Poisson
process Nt − Γ(t) = Nt − Λ(t) is a martingale with respect to the filtration
generated by the Poisson process N .

Conversely, if τ is a random time with the probability density function f ,
setting Λ(t) = − ln(1 − F (t)) allows us to interpret τ as the moment of the
first jump of an inhomogeneous Poisson process with the intensity function
equal to the derivative of Λ.

Remark 2.1.2. It is not difficult to generalize the study presented in what
follows to the case where τ does not admit a density, by dealing with the
right-continuous version of the cumulative function. The case where τ is
bounded can also be studied along the same method.

2.1.2 Defaultable Bond with Recovery at Maturity

We denote by H = (Ht, t ∈ R+) the right-continuous increasing process
Ht = 1{t≥τ}, referred to as the default indicator process. Let H stand for
the natural filtration of the process H. It is clear that the filtration H is the
smallest filtration which makes τ a stopping time. More explicitly, for any
t ∈ R+, the σ-field Ht is generated by the events {s ≥ τ} for s ≤ t. The key
observation is that any Ht-measurable random variable X has the form

X = h(τ)1{t≥τ} + c1{t<τ},

where h : R+ → R is a Borel measurable function and c is a constant.

Remark 2.1.3. It is worth mentioning that if the cumulative distribution
function F is continuous then the random time τ is known to be a totally
inaccessible stopping time with respect to H (see, e.g., Dellacherie [66] or
Dellacherie and Meyer [69], Page 107). We are not going to use explicitly
this important property in what follows, however.

Our next goal is to derive some useful valuation formulae for corporate
bonds with various conventions regarding recovery schemes in the case of
default prior to maturity.
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For the sake of simplicity, we will first assume that a bond is represented
by a single payoff at its maturity T . Therefore, it is possible to value a bond
as a European contingent claim X maturing at T , by applying the standard
risk-neutral valuation formula

πt(X) = B(t)EQ
(

X

B(T )

∣∣∣Ht

)
= B(t, T )EQ(X |Ht).

For the ease of notation, we will consider, without loss of generality, a de-
faultable bond with the face value L = 1. It is worth recalling that the
corporate bond price computed within the structural approach was not pro-
portional to its face value L. This feature is manifestly true for the bond
valuation formulae obtained within the reduced-form approach.

Constant Recovery at Maturity

A unit defaultable zero-coupon bond (DZC) with maturity T and recovery
value δ paid at maturity, is represented by the following cash flows:

• the payment of one monetary unit at time T if default has not occurred
before T , i.e., if τ > T ,

• the payment of δ monetary units, made at maturity, if τ ≤ T , where
δ ∈ [0, 1] is a constant.

The price at time 0 of the defaultable zero-coupon bond is formally de-
fined as the expectation under Q of the discounted payoff, so that

Dδ(0, T ) = B(0, T )EQ
(
1{T<τ} + δ1{τ≤T}

)
.

Consequently,

Dδ(0, T ) = B(0, T )− (1− δ)B(0, T )F (T ).

The value of the defaultable zero-coupon bond is thus equal to the value
of the default-free zero-coupon bond minus the discounted value of the ex-
pected loss computed under the risk-neutral probability. Of course, for δ = 1
we recover, as expected, the price of a default-free zero-coupon bond. Ob-
viously, the price defined above is not a hedging price, since the payoff at
maturity of the defaultable bond cannot be replicated by trading in pri-
mary assets; recall that only default-free zero-coupon bonds are traded in
the present setup. Therefore, we deal with an incomplete market model and
the risk-neutral pricing formula for the defaultable zero-coupon bond is thus
postulated, rather than derived from replication.

The value of the bond at any date t ∈ [0, T ] depends whether or not
default has happened before this time.
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On the one hand, if default has occurred before or at time t, the constant
payment of δ will surely be made at maturity date T and thus the price of
the DZC is obviously equal to δB(t, T ).

On the other hand, if default has not yet occurred before or at time t,
the date of its occurrence is uncertain. It is thus natural in this situation to
define the ex-dividend price Dδ(t, T ) at time t ∈ [0, T [ of the DZC maturing
at T as the conditional expectation under Q of the discounted payoff

B(t, T )
(
1{T<τ} + δ1{τ≤T}

)
, (2.1)

given the information, which is available at time t, that is, given the no-
default event {τ > t}.

In view of specification (2.1) of the bond’s payoff, we thus obtain

Dδ(t, T ) = 1{t≥τ}δB(t, T ) + 1{t<τ}D̃δ(t, T ),

where the pre-default value D̃δ(t, T ), t ∈ [0, T ], is defined as

D̃δ(t, T ) = EQ
(
B(t, T ) (1{T<τ} + δ1{τ≤T})

∣∣ t < τ
)
.

To compute D̃δ(t, T ), we observe that

D̃δ(t, T ) = B(t, T )
(
1− (1− δ)Q(τ ≤ T

∣∣ t < τ)
)

= B(t, T )
(

1− (1− δ)
Q(t < τ ≤ T )
Q(t < τ)

)

= B(t, T )
(

1− (1− δ)
G(t)−G(T )

G(t)

)
, (2.2)

where G(t) = 1 − F (t) is the survival function. Let us define, for every
t ∈ [0, T ],

Bγ(t, T ) = B(t, T )
G(T )
G(t)

= exp
(
−

∫ T

t

(r(u) + γ(u)) du
)
.

Then pre-default value of the bond can be represented as follows

D̃δ(t, T ) = Bγ(t, T ) + δ
(
B(t, T )−Bγ(t, T )

)
.

In particular, for δ = 0, that is, for the bond with zero recovery, we obtain
the equality D̃0(t, T ) = Bγ(t, T ), and thus the price D0(t, T ) satisfies

D0(t, T ) = 1{t<τ}D̃0(t, T ) = 1{t<τ}Bγ(t, T ).
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It is worth noting that the value of the DZC is discontinuous at default
time τ since we have, on the event {τ ≤ T},

Dδ(τ, T )−Dδ(τ−, T ) = δB(τ, T )− D̃δ(τ, T ) = (δ − 1)Bγ(t, T ) < 0,

where the last inequality holds for any δ < 1. Recall that for δ = 1 the DZC
is simply a default-free zero-coupon bond.

For practical purposes, equality (2.2) can be rewritten as follows

D̃δ(t, T ) = B(t, T )(1− LGD ×DP),

where the loss given default (LGD) is defined as 1 − δ and the conditional
default probability (DP) is given by the formula

DP =
Q(t < τ ≤ T )
Q(t < τ)

= Q(τ ≤ T | t < τ).

If the hazard rate γ ≥ 0 is constant then the pre-default credit spread
equals

S̃(t, T ) =
1

T − t
ln

B(t, T )

D̃δ(t, T )
= γ − 1

T − t
ln

(
1 + δ(eγ(T−t) − 1)

)
.

It is thus easily seen that the pre-default credit spread converges to the
constant γ(1 − δ) when time to maturity T − t tends to zero. It is thus
strictly positive when γ > 0 and 0 ≤ δ < 1.

Recall that for δ = 0, the equality D̃0(t, T ) = Bγ(t, T ) is valid. Hence
the short-term interest rate has simply to be adjusted by adding the credit
spread (equal here to γ) in order to price the DZC with zero recovery using
the formula for default-free bonds. The default-risk-adjusted interest rate
equals r̂ = r + γ and thus it is higher than the risk-free interest rate r if
γ is positive. This corresponds to the real-life feature that the value of a
DZC with zero recovery is strictly smaller than the value of a default-free
zero-coupon with the same par value and maturity provided, of course, that
the real-life probability of default event during the bond’s lifetime is positive.

General Recovery at Maturity

Let us now assume that the payment is a deterministic function of the default
time, denoted as δ : R+ → R+. Then the value at time 0 of this defaultable
zero-coupon is

Dδ(0, T ) = B(0, T )EQ
(
1{T<τ} + δ(τ)1{τ≤T}

)
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or, more explicitly,

Dδ(0, T ) = B(0, T )
(
G(T ) +

∫ T

0

δ(s)f(s) ds
)
,

where, as before, G(t) = 1 − F (t) stands for the survival probability. More
generally, the ex-dividend price is given by the formula, for every t ∈ [0, T [,

Dδ(t, T ) = B(t, T )EQ
(
1{T<τ} + δ(τ)1{τ≤T}

∣∣Ht

)
.

The following result furnishes an explicit representation for the bond’s price
in the present setup.

Lemma 2.1.2. The price of the bond satisfies, for every t ∈ [0, T [,

Dδ(t, T ) = 1{t<τ} D̃δ(t, T ) + 1{t≥τ} δ(τ)B(t, T ), (2.3)

where the pre-default value D̃δ(t, T ) equals

D̃δ(t, T ) = B(t, T )EQ
(
1{T<τ} + δ(τ)1{τ≤T}

∣∣ t < τ
)

= B(t, T )
G(T )
G(t)

+
B(t, T )
G(t)

∫ T

t

δ(u)f(u) du

= Bγ(t, T ) +
Bγ(t, T )

G(T )

∫ T

t

δ(u)f(u) du

= Bγ(t, T ) + Bγ(t, T )
∫ T

t

δ(u)γ(u)e
R T

u
γ(v) dv du.

The dynamics of the process (D̃δ(t, T ), t ∈ [0, T ]) are

dD̃δ(t, T ) = (r(t) + γ(t))D̃δ(t, T ) dt−B(t, T )γ(t)δ(t) dt. (2.4)

The proof of the lemma is based on straightforward computations. To
derive the dynamics of D̃δ(t, T ), it is useful to observe, in particular, that

dBγ(t, T ) = (r(t) + γ(t))Bγ(t, T ) dt.

The risk-neutral dynamics of the discontinuous process Dδ(t, T ) involve also
the H-martingale M introduced in Section 2.2 below (see Example 2.2.2).

2.1.3 Defaultable Bond with Recovery at Default

Let us now consider a corporate bond with recovery at default. A holder of
a defaultable zero-coupon bond with maturity T is now entitled to:
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• the payment of one monetary unit at time T if default has not yet
occurred,

• the payment of δ(τ) monetary units, where δ is a deterministic function;
note that this payment is made at time τ if τ ≤ T .

The price at time 0 of this defaultable zero-coupon bond is

Dδ(0, T ) = EQ
(
B(0, T )1{T<τ} + B(0, τ)δ(τ)1{τ≤T}

)

= Q(T < τ)B(0, T ) +
∫ T

0

B(0, u)δ(u) dF (u)

= G(T )B(0, T ) +
∫ T

0

B(0, u)δ(u)f(u) du.

Obviously, if the default has occurred before time t, the value of the DZC
is null (this was not the case for the recovery payment made at the bond’s
maturity) since, unless explicitly stated otherwise, we adopt throughout the
ex-dividend price convention for all assets.

Lemma 2.1.3. The price of the bond satisfies, for every t ∈ [0, T [,

Dδ(t, T ) = 1{t<τ}D̃δ(t, T ), (2.5)

where the pre-default value D̃δ(t, T ) equals

D̃δ(t, T ) = EQ
(
B(t, T )1{T<τ} + B(t, τ)δ(τ)1{τ≤T}

∣∣ t < τ
)

= B(t, T )
G(T )
G(t)

+
1

G(t)

∫ T

t

B(t, u)δ(u) dF (u)

= Bγ(t, T ) +
1

G(t)

∫ T

t

B(t, u)δ(u)f(u) du

= Bγ(t, T ) +
∫ T

t

Bγ(t, u)δ(u)γ(u) du.

The dynamics of the process (D̃δ(t, T ), t ∈ [0, T ]) are

dD̃δ(t, T ) = (r(t) + γ(t))D̃δ(t, T ) dt− δ(t)γ(t) dt. (2.6)

As expected, the dynamics of the price process Dδ(t, T ) will also include
a jump with a negative value occurring at time τ (see Proposition 2.2.2).

Fractional Recovery of Par Value

Assume that a DZC pays a constant recovery δ at default. The pre-default
value of the bond is here the same as for the recovery at maturity scheme with
the function δB−1(t, T ). This observation follows from a simple reasoning,
but it can also be deduced from the formulae established in Lemmas 2.1.2
and 2.1.3.
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Fractional Recovery of Treasury Value

We now consider the recovery δ(t) = δB(t, T ) at the moment of default. The
pre-default value is in this case the same as for a defaultable bond with a
constant recovery δ at maturity date T . Once again, this property is also a
consequence of Lemmas 2.1.2 and 2.1.3. Under this convention, we obtain
the following expressions for the pre-default value of the bond

D̃δ(t, T ) = e−
R T

t
(r(u)+γ(u)) du +

δB(t, T )
G(t)

∫ T

t

γ(u)G(u) du

= D̃0(t, T ) + δB(t, T )
∫ T

t

γ(u)e−
R u

t
γ(v) dv du.

Fractional Recovery of Market Value

Let us finally assume that the recovery is paid at the moment of default and
it equals δ(t)D̃δ(t, T ), where δ is a deterministic function. Equivalently, the
recovery payoff is given as δ(τ)Dδ(τ−, T ). The dynamics of the pre-default
value D̃δ(t, T ) are now given by (see Duffie and Singleton [75])

dD̃δ(t, T ) =
(
r(t) + γ(t)(1− δ(t))

)
D̃δ(t, T ) dt

with the terminal condition D̃δ(t, T ) = 1. This yields, for every t ∈ [0, T ],

D̃δ(t, T ) = exp
(
−

∫ T

t

r(u) du−
∫ T

t

γ(u)(1− δ(u)) du
)
.

2.2 Martingale Approach

We shall work under the standing assumption that F (t) = Q(τ ≤ t) < 1
for every t ∈ R+, but we do not impose any further restrictions on the
cumulative distribution function F of a default time τ under Q at this stage.
In particular, we do not postulate, in general, that F is a continuous function.

2.2.1 Conditional Expectations

We first give an elementary formula for the computation of the conditional
expectation with respect to the σ-field Ht, as presented, for instance, in
Brémaud [33], Dellacherie [66, 67], or Elliott [78].

Lemma 2.2.1. For any Q-integrable and G-measurable random variable X
we have that

1{t<τ}EQ(X |Ht) = 1{t<τ}
EQ(X1{t<τ})
Q(t < τ)

. (2.7)
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Proof. The conditional expectation EQ(X |Ht) is, obviously, Ht-measurable.
Therefore, it can be represented as follows

EQ(X |Ht) = h(τ)1{t≥τ} + c1{t<τ} (2.8)

for some Borel measurable function h : R+ → R and some constant c. By
multiplying both members by 1{t<τ} and taking the expectation, we obtain

EQ(1{t<τ}EQ(X |Ht)) = EQ(X1{t<τ}) = cQ(t < τ),

so that c = (Q(t < τ))−1EQ(X1{t<τ}). By combining this equality with
(2.8), we get the desired result. ¤

Let us recall the notion of the hazard function (cf. Definition 2.1.2).

Definition 2.2.1. The hazard function Γ of a default time τ is defined by
the formula Γ(t) = − ln(1− F (t)) for every t ∈ R+.

Corollary 2.2.1. Assume that X is an H∞-measurable and Q-integrable
random variable, so that X = h(τ) for some Borel measurable function
h : R+ → R such that EQ|h(τ)| < +∞. If the hazard function Γ of τ is
continuous then

EQ(X |Ht) = 1{t≥τ}h(τ) + 1{t<τ}

∫ ∞

t

h(u)eΓ(t)−Γ(u) dΓ(u). (2.9)

If, in addition, τ admits the intensity function γ then

EQ(X |Ht) = 1{t≥τ}h(τ) + 1{t<τ}

∫ ∞

t

h(u)γ(u)e−
R u

t
γ(v) dv du.

In particular, we have, for any t ≤ s,

Q(s < τ |Ht) = 1{t<τ}e−
R s

t
γ(v) dv

and
Q(t < τ < s |Ht) = 1{t<τ}

(
1− e−

R s
t

γ(v) dv
)
.

2.2.2 Compensator of Default Indicator Process

We first consider the general case of a possibly discontinuous cumulative
distribution function F of the default time τ .

Proposition 2.2.1. The process (Mt, t ∈ R+) defined as

Mt = Ht −
∫

]0,t∧τ ]

dF (u)
1− F (u−)

(2.10)

is an H-martingale.
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Proof. Let t < s. Then, on the one hand, we obtain

EQ(Hs −Ht |Ht) = 1{t<τ}EQ(1{t<τ≤s} |Ht) = 1{t<τ}
F (s)− F (t)

1− F (t)
, (2.11)

where the second equality follows from equality (2.7) with X = 1{s≥τ}.
On the other hand, by applying once again formula (2.7), we obtain

EQ

(∫

]t∧τ,s∧τ ]

dF (u)
1− F (u−)

∣∣∣Ht

)
= 1{t<τ}EQ

(∫

]t∧τ,s∧τ ]

dF (u)
1− F (u−)

∣∣∣Ht

)

= 1{t<τ}
1

Q(t < τ)
EQ

(∫

]t,s]

1{u≤τ}
dF (u)

1− F (u−)

)

= 1{t<τ}
1

Q(t < τ)

∫

]t,s]

Q(u ≤ τ)
dF (u)

1− F (u−)

= 1{t<τ}
1

Q(t < τ)

∫

]t,s]

(1− F (u−))
dF (u)

1− F (u−)

= 1{t<τ}
1

1− F (t)

∫

]t,s]

dF (u)

= 1{t<τ}
F (s)− F (t)

1− F (t)
.

In view of (2.11), this proves the result. ¤
Assume now that the cumulative distribution function F is continuous.

Then the process (Mt, t ∈ R+), defined as

Mt = Ht −
∫ τ∧t

0

dF (u)
1− F (u)

,

is an H-martingale.
Moreover, we have that

∫ t

0

dF (u)
1− F (u)

= − ln(1− F (t)) = Γ(t).

These observations yield the following corollary to Proposition 2.2.1.

Corollary 2.2.2. Assume that F (and thus also Γ) is a continuous function.
Then the process Mt = Ht − Γ(t ∧ τ), t ∈ R+, is an H-martingale.

In particular, if F is an absolutely continuous function then the process

Mt = Ht −
∫ τ∧t

0

γ(u) du = Ht −
∫ t

0

γ(u)(1−Hu) du (2.12)

is an H-martingale.
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Remark 2.2.1. From Corollary 2.2.2, we obtain the Doob-Meyer decom-
position of the submartingale H as Ht = Mt + Γ(t ∧ τ). The predictable
increasing process At = Γ(t ∧ τ) is called the compensator (or the dual pre-
dictable projection) of increasing and H-adapted process H.

Example 2.2.1. In the case where N is an inhomogeneous Poisson process
with deterministic intensity λ and τ is the moment of the first jump of N ,
let Ht = Nt∧τ . It is well known that Nt −

∫ t

0
λ(u) du is a martingale with

respect to the natural filtration of N . Therefore, the process stopped at time
τ is also a martingale, i.e., Ht −

∫ t∧τ

0
λ(u) du is a martingale. Furthermore,

we have seen in Remark 2.1.1 that we can reduce our attention to this case,
since any random time in the present setup can be viewed as the moment of
the first jump of an inhomogeneous Poisson process.

We are in a position to derive the dynamics of a defaultable zero-coupon
bond with recovery δ(τ) paid at default. We will use the property that the
process M is an H-martingale under the risk-neutral probability Q. For con-
venience, we shall work under the assumption that τ admits the hazard rate
γ. We emphasize that we are working here under a risk-neutral probability.
In the sequel, we shall see how to compute the risk-neutral default intensity
from the historical one, using a suitable Radon-Nikodým density process.

Proposition 2.2.2. Assume that τ admits the hazard rate γ. Then the
risk-neutral dynamics of a DZC with recovery δ(τ) paid at default, where
δ : R+ → R is a Borel measurable function, are

dDδ(t, T ) =
(
r(t)Dδ(t, T )− δ(t)γ(t)(1−Ht)

)
dt− D̃δ(t, T ) dMt

where the H-martingale M is given by (2.12).

Proof. Combining the equality (cf. (2.5))

Dδ(t, T ) = 1{t<τ}D̃δ(t, T ) = (1−Ht)D̃δ(t, T )

with dynamics (2.6) of the pre-default value D̃δ(t, T ), we obtain

dDδ(t, T ) = (1−Ht) dD̃δ(t, T )− D̃δ(t, T ) dHt

= (1−Ht)
(
(r(t) + γ(t))D̃δ(t, T )− δ(t)γ(t)

)
dt− D̃δ(t, T ) dHt

=
(
r(t)Dδ(t, T )− δ(t)γ(t)(1−Ht)

)
dt− D̃δ(t, T ) dMt,

as required. ¤

Example 2.2.2. Assume that τ admits the hazard rate γ. By combining
the pricing formula (2.3) with the pre-default dynamics (2.4), it is possible
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to show that the risk-neutral dynamics of the price Dδ(t, T ) of a DZC with
recovery δ(τ) paid at maturity are

dDδ(t, T ) = r(t)Dδ(t, T ) dt +
(
δ(t)B(t, T )− D̃δ(t, T )

)
dMt. (2.13)

From the last formula, one may also derive the integral representation of the
H-martingale B(0, t)Dδ(t, T ) for t ∈ [0, T [, which gives the discounted price
of the bond, in terms of the H-martingale M associated with τ (see also
Proposition 2.2.6 in this regard).

2.2.3 Martingales Associated with Default Time

We are going to furnish a few more examples of H-martingales.

Proposition 2.2.3. The process (Lt, t ∈ R+), given by the formula

Lt = 1{t<τ}eΓ(t) = (1−Ht)eΓ(t), (2.14)

is an H-martingale. If the hazard function Γ is continuous then the process
L satisfies

Lt = 1−
∫

]0,t]

Lu− dMu, (2.15)

where the H-martingale M is given by the formula Mt = Ht − Γ(t ∧ τ).

Proof. We will first show that L is an H-martingale. We have that, for any
t < s,

EQ(Ls |Ht) = eΓ(s) EQ(1{s<τ} |Ht).

By applying (2.7) to X = 1, we obtain

EQ(1{s<τ} |Ht) = 1{t<τ}
1− F (s)
1− F (t)

= 1{t<τ}eΓ(t)−Γ(s),

which means that, for every t ≤ s,

EQ(Ls |Ht) = 1{t<τ}eΓ(t) = Lt,

and thus L is an H-martingale. To establish (2.15), it suffices to note that
L0 = 1 and to apply the integration by parts formula for the product of two
functions of finite variation. Since Γ is assumed to be continuous, we obtain

dLt = −eΓ(t) dHt + (1−Ht)eΓ(t) dΓ(t) = −eΓ(t) dMt

= −1{t≤τ}eΓ(t) dMt = −Lt− dMt.
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Alternatively, it is possible to show directly that the process L given by
(2.14) is the Doléans exponential of M , that is, that L is the unique solution
of the SDE

dLt = −Lt− dMt, L0 = 1.

Note that this SDE can be solved pathwise, since M is manifestly a process
of finite variation (for more details, see Appendix A). ¤
Proposition 2.2.4. Assume that the hazard function Γ is continuous. Let
h : R+ → R be a Borel measurable function such that the random variable
h(τ) is Q-integrable. Then the process (M̄h

t , t ∈ R+), given by the formula

M̄h
t = 1{t≥τ}h(τ)−

∫ t∧τ

0

h(u) dΓ(u), (2.16)

is an H-martingale. Moreover, for every t ∈ R+,

M̄h
t =

∫

]0,t]

h(u) dMu = −
∫

]0,t]

e−Γ(u)h(u) dLu. (2.17)

Proof. The proof given below provides an alternative proof of Corollary 2.2.2.
We wish to establish, through direct calculations, the martingale property
of the process M̄h given by formula (2.16). On the one hand, formula (2.9)
in Corollary 2.2.1 yields

EQ
(
h(τ)1{t<τ≤s} |Ht

)
= 1{t<τ}eΓ(t)

∫ s

t

h(u)e−Γ(u) dΓ(u).

On the other hand, we note that

J := EQ
( ∫ s∧τ

t∧τ

h(u) dΓ(u)
)

= EQ
(
h̃(τ)1{t<τ≤s} + h̃(s)1{s<τ} |Ht

)
,

where we write h̃(s) =
∫ s

t
h(u) dΓ(u). Consequently, using again (2.9), we

obtain
J = 1{t<τ}eΓ(t)

( ∫ s

t

h̃(u)e−Γ(u) dΓ(u) + e−Γ(s)h̃(s)
)
.

To conclude the proof, it is enough to observe that the Fubini theorem yields
∫ s

t

e−Γ(u)

∫ u

t

h(v) dΓ(v) dΓ(u) + e−Γ(s)h̃(s)

=
∫ s

t

h(u)
∫ s

u

e−Γ(v) dΓ(v) dΓ(u) + e−Γ(s)

∫ s

t

h(u) dΓ(u)

=
∫ s

t

h(u)e−Γ(u) dΓ(u),

as required. The proof of formula (2.17) is left to the reader. ¤
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Corollary 2.2.3. Assume that the hazard function Γ of τ is continuous. Let
h : R+ → R be a Borel measurable function such that the random variable
eh(τ) is Q-integrable. Then the process (M̃h

t , t ∈ R+), given by the formula

M̃h
t = exp

(
1{t≥τ}h(τ)

)−
∫ t∧τ

0

(eh(u) − 1) dΓ(u),

is an H-martingale.

Proof. It suffices to observe that

exp
(
1{t≥τ}h(τ)

)
= 1{t≥τ}eh(τ) + 1{t<τ} = 1{t≥τ}(eh(τ) − 1) + 1,

and to apply Proposition 2.2.4 to the function eh − 1. ¤
Proposition 2.2.5. Assume that the hazard function Γ of τ is continuous.
Let h : R+ → R be a Borel measurable function such that h ≥ −1 and, for
every t ∈ R+, ∫ t

0

h(u) dΓ(u) < +∞.

Then the process (M̂h
t , t ∈ R+), given by the formula

M̂h
t =

(
1 + 1{t≥τ}h(τ)

)
exp

(
−

∫ t∧τ

0

h(u) dΓ(u)
)
,

is a non-negative H-martingale.

Proof. We start by noting that

M̂h
t = exp

(
−

∫ t

0

(1−Hu)h(u) dΓ(u)
)

+ 1{t≥τ}h(τ) exp
(
−

∫ τ

0

(1−Hu)h(u) dΓ(u)
)

= exp
(
−

∫ t

0

(1−Hu)h(u) dΓ(u)
)

+
∫

]0,t]

h(u) exp
(
−

∫ u

0

(1−Hs)h(s) dΓ(s)
)

dHu.

Using Itô’s formula, we thus obtain

dM̂h
t = exp

(
−

∫ t

0

(1−Hu)h(u) dΓ(u)
)(

h(t) dHt − (1−Ht)h(t) dΓ(t)
)

= h(t) exp
(
−

∫ t

0

(1−Hu)h(u) dΓ(u)
)

dMt.

This shows that M̂h is a non-negative local H-martingale and thus a super-
martingale. It can be checked directly that EQ(M̂h

t ) = 1 for every t ∈ R+.
Hence the process M̂h is indeed an H-martingale. ¤
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2.2.4 Predictable Representation Theorem

In this subsection, we assume that the hazard function Γ is continuous, so
that the process Mt = Ht − Γ(t ∧ τ) is an H-martingale. The next result
shows that the martingale M has the predictable representation property for
the filtration H generated by the default process. Let us observe that this
filtration is also generated by the martingale M .

Proposition 2.2.6. Let h : R+ → R be a Borel measurable function such
that the random variable h(τ) is integrable under Q. Then the martingale
Mh

t = EQ(h(τ) |Ht) admits the representation

Mh
t = Mh

0 +
∫

]0,t]

(h(u)− g(u)) dMu, (2.18)

where

g(t) =
1

G(t)

∫ ∞

t

h(u) dF (u) = eΓ(t) EQ(h(τ)1{t<τ}) = EQ(h(τ) | t < τ).

Moreover, g is a continuous function and g(t) = Mh
t on {t < τ}, so that

Mh
t = Mh

0 +
∫

]0,t]

(h(u)−Mh
u−) dMu.

Proof. From Lemma 2.2.1, we obtain

Mh
t = h(τ)1{t≥τ} + 1{t<τ}

EQ(h(τ)1{t<τ})
Q(t < τ)

= h(τ)1{t≥τ} + 1{t<τ}eΓ(t) EQ(h(τ)1{t<τ}).

We first consider the event {t < τ}. On this event, we clearly have that
Mh

t = g(t). The integration by parts formula yields

Mh
t = g(t) = eΓ(t) EQ

(
h(τ)1{t<τ}

)
= eΓ(t)

∫ ∞

t

h(u) dF (u)

=
∫ ∞

0

h(u) dF (u)−
∫ t

0

eΓ(u)h(u) dF (u) +
∫ t

0

e−Γ(u)g(u) deΓ(u)

=
∫ ∞

0

h(u) dF (u)−
∫ t

0

eΓ(u)h(u) dF (u) +
∫ t

0

g(u) dΓ(u).

On the other hand, the right-hand side of (2.18) yields, on the event {t < τ},

EQ(h(τ))−
∫ t

0

(h(u)− g(u)) dΓ(u)

=
∫ ∞

0

h(u) dF (u)−
∫ t

0

eΓ(u)h(u) dF (u) +
∫ t

0

g(u) dΓ(u),
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where we used the equality dΓ(u) = eΓ(u) dF (u). Hence equality (2.18) is
established on the event {t < τ}.

To prove that (2.18) holds on the event {t ≥ τ} as well, it suffices to note
that the process Mh and the process given by the right-hand side of (2.18)
are constant on this event (that is, they are stopped at τ) and the jump at
time τ of both processes are identical.

Specifically, on the event {t ≥ τ} we have that

∆Mh
τ = Mh

τ −Mh
τ− = h(τ)− g(τ).

This completes the proof. ¤
Assume that the default time τ admits the intensity function γ. Then an

alternative derivation of (2.18) consists in computing the conditional expec-
tation

Mh
t = EQ(h(τ) |Ht) = h(τ)1{t≥τ} + 1{t<τ}eΓ(t)

∫ ∞

t

h(u) dF (u)

=
∫

]0,t]

h(u) dHu + (1−Ht)eΓ(t)

∫ ∞

t

h(u) dF (u)

=
∫

]0,t]

h(u) dHu + (1−Ht)g(t).

Noting that
dF (t) = e−Γ(t) dΓ(t) = e−Γ(t)γ(t) dt,

we obtain

dg(t) = EQ(h(τ)1{t<τ}) deΓ(t) − eΓ(t)h(t)e−Γ(t)γ(t) dt = (g(t)− h(t))γ(t) dt.

Consequently, the Itô formula yields

dMh
t = (h(t)− g(t)) dHt + (1−Ht)(g(t)− h(t))γ(t) dt = (h(t)− g(t)) dMt,

since, obviously,
dMt = dHt − γ(t)(1−Ht) dt.

The following corollary to Proposition 2.2.6 emphasizes the important
role played by the basic martingale M .

Corollary 2.2.4. Any H-martingale (Xt, t ∈ R+) can be represented as
Xt = X0 +

∫
]0,t]

ζs dMs, where (ζt, t ∈ R+) is an H-predictable process.

Remark 2.2.2. Assume that the hazard function Γ is only right-continuous.
It is then possible to establish the following formula

EQ(h(τ) |Ht) = EQ(h(τ))−
∫

]0,t∧τ ]

e∆Γ(u)(g(u)− h(u)) dMu,

where ∆Γ(u) = Γ(u)− Γ(u−) and g is defined in Proposition 2.2.6.
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2.2.5 The Girsanov Theorem

Let τ be a non-negative random variable on a probability space (Ω,G,Q).
We denote by F the cumulative distribution function of τ under Q. It is
assumed throughout that F (t) < 1 for every t ∈ R+, so that the hazard
function Γ of τ under Q is well defined.

Let P be an arbitrary probability measure on (Ω,H∞), which is absolutely
continuous with respect to Q. Let η stand for the H∞-measurable Radon-
Nikodým density of P with respect to Q

η :=
dP
dQ

= h(τ) ≥ 0, Q-a.s., (2.19)

where h : R+ → R+ is a Borel measurable function satisfying

EQ(h(τ)) =
∫

[0,∞[

h(u) dF (u) = 1. (2.20)

The probability measure P is equivalent to Q if and only if the inequality in
formula (2.19) is strict, Q-a.s.

Let F̂ be the cumulative distribution function of τ under P, that is,

F̂ (t) := P(τ ≤ t) =
∫

[0,t]

h(u) dF (u).

We assume F̂ (t) < 1 for any t ∈ R+ or, equivalently, that

P(τ > t) = 1− F̂ (t) =
∫

]t,∞[

h(u) dF (u) > 0. (2.21)

Therefore, the hazard function Γ̂ of τ under P is well defined (of course, this
property always holds if P is equivalent to Q).

Put another way, we assume that

g(t) = eΓ(t)EQ
(
1{t<τ}h(τ)

)
= eΓ(t)

∫

]t,∞[

h(u) dF (u) = eΓ(t) P(τ > t) > 0.

Our first goal is to examine the relationship between the hazard functions
Γ̂(t) = − ln(1 − F̂ (t)) and Γ(t) = − ln(1 − F (t)). The first result is an
immediate consequence of the definition of the hazard function.

Lemma 2.2.2. We have, for every t ∈ R+,

Γ̂(t)
Γ(t)

=
ln

( ∫
]t,∞[

h(u) dF (u)
)

ln(1− F (t))
.
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From now on, we assume, in addition, that F is a continuous function.
The following result can be seen as an elementary counterpart of the cele-
brated Girsanov theorem for a Brownian motion.

Lemma 2.2.3. Assume that the cumulative distribution function F of τ
under Q is continuous. Then the cumulative distribution function F̂ of τ
under P is continuous and we have that, for every t ∈ R+,

Γ̂(t) =
∫ t

0

ĥ(u) dΓ(u),

where the function ĥ : R+ → R+ is given by the formula ĥ(t) = h(t)/g(t).
Hence the process (M̂t, t ∈ R+), which is given by the formula

M̂t := Ht −
∫ t∧τ

0

ĥ(u) dΓ(u) = Mt −
∫ t∧τ

0

(ĥ(u)− 1) dΓ(u),

is an H-martingale under P.

Proof. Indeed, if F (and thus F̂ ) is continuous, we obtain

dΓ̂(t) =
dF̂ (t)

1− F̂ (t)
=

d(1− e−Γ(t)g(t))
e−Γ(t)g(t)

=
g(t) dΓ(t)− dg(t)

g(t)
= ĥ(t) dΓ(t),

where we used the following, easy to check, equalities 1− F̂ (t) = e−Γ(t)g(t)
and dg(t) = (g(t)− h(t)) dΓ(t). ¤

Remark 2.2.3. Since Γ̂ is the hazard function of τ under P, we necessarily
have

lim
t→+∞

Γ̂(t) =
∫ ∞

0

ĥ(t) dΓ(t) = +∞. (2.22)

Conversely, if a continuous function Γ is the hazard function of τ under Q
and ĥ : R+ → R+ is a Borel measurable function such that, for every t ∈ R+,

Γ̂(t) :=
∫ t

0

ĥ(u) dΓ(u) < +∞ (2.23)

and (2.22) holds, then it is possible to find a probability measure P absolutely
continuous with respect to Q such that Γ̂ is the hazard function of τ under
P (see Remark 2.2.4).

In the special case when F is an absolutely continuous function, so that
the intensity function γ of τ under Q is well defined, the cumulative distrib-
ution function F̂ of τ under P equals

F̂ (t) =
∫ t

0

h(u)f(u) du,
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so that F̂ is an absolutely continuous function as well. Therefore, the inten-
sity function γ̂ of τ under P exists and it is given by the formula

γ̂(t) =
h(t)f(t)

1− F̂ (t)
=

h(t)f(t)

1− ∫ t

0
h(u)f(u) du

.

From Lemma 2.2.3, it follows that γ̂(t) = ĥ(t)γ(t). To re-derive this result,
observe that

γ̂(t) =
h(t)f(t)

1− F̂ (t)
=

h(t)f(t)

1− ∫ t

0
h(u)f(u) du

=
h(t)f(t)∫∞

t
h(u)f(u) du

=
h(t)f(t)

e−Γ(t)g(t)

= ĥ(t)
f(t)

1− F (t)
= ĥ(t)γ(t).

Let us now examine the Radon-Nikodým density process (ηt, t ∈ R+), which
is given by the formula

ηt :=
dP
dQ

∣∣Ht = EQ(η |Ht).

Proposition 2.2.7. Assume that F is a continuous function and let E stand
for the Doléans exponential (see Section A.4). Then

ηt = 1 +
∫

]0,t]

ηu−(ĥ(u)− 1) dMu (2.24)

or, equivalently,

ηt = Et

( ∫

]0, · ]
(ĥ(u)− 1) dMu

)
. (2.25)

Proof. Note that ηt = Mh
t where Mh

t = EQ(h(τ) |Ht). Using Proposition
2.2.6 and noting that η0 = Mh

0 = 1, we thus obtain (cf. (2.18))

ηt = η0 +
∫

]0,t]

(h(u)− g(u)) dMu = 1 +
∫

]0,t]

(h(u)− ηu−) dMu

= 1 +
∫

]0,t]

ηu−(ĥ(u)− 1) dMu.

Formula (2.25) follows from the definition of the Doléans exponential. ¤
It is worth noting that

ηt = 1{t≥τ}h(τ) + 1{t<τ}

∫ ∞

t

h(u)eΓ(t)−Γ(u) dΓ(u),
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but also (this can be deduced from (2.24))

ηt =
(
1 + 1{t≥τ}κ(τ)

)
exp

(
−

∫ t∧τ

0

κ(u) dΓ(u)
)
,

where we write κ = ĥ− 1. Since ĥ is a non-negative function, it is clear that
the inequality κ ≥ −1 holds.

Remark 2.2.4. Let κ be any Borel measurable function κ ≥ −1 (κ > −1,
respectively) such that the inequality

∫ t

0
κ(u) dΓ(u) < +∞ holds for every

t ∈ R+. Then, by virtue of Proposition 2.2.5, the process

ηκ
t := Et

( ∫

]0, · ]
κ(u) dMu

)

follows a non-negative (positive, respectively) H-martingale under Q. If, in
addition, we have that

∫ ∞

0

(1 + κ(u)) dΓ(u) = +∞

then ηκ
t = EQ(ηκ

∞ |Ht), where ηκ
∞ = limt→∞ ηκ

t . In that case, we may define
a probability measure P on (Ω,H∞) by setting dP = ηκ

∞ dQ. The hazard
function Γ̂ of τ under P satisfies dΓ̂(t) = (1 + κ(t)) dΓ(t). Note also that in
terms of κ we obtain (cf. Theorem 3.4.1)

M̂t := Mt −
∫ t∧τ

0

κ(u) dΓ(u) = Ht −
∫ t∧τ

0

(1 + κ(u)) dΓ(u).

2.2.6 Range of Arbitrage Prices

In order to study the important feature of model completeness, we first need
to specify the class of primary traded assets. In our elementary model,
the primary traded assets are risk-free zero-coupon bonds with deterministic
prices and thus there exists infinitely many equivalent martingale measures
(EMMs). Indeed, the discounted asset prices are constant and thus the class
Q of all EMMs coincide with the set of all probability measures equivalent
to the historical probability.

Let us assume that under the historical probability measure P the default
time is an unbounded random variable with a strictly positive probability
density function. For any Q ∈ Q, we denote by FQ the cumulative distribu-
tion function of τ under Q, that is,

FQ(t) = Q(τ ≤ t) =
∫ t

0

fQ(u) du.
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The range of arbitrage prices is defined as the set of all potential vi-
able prices, that is, prices that do not induce arbitrage opportunities. For
instance, in the case of a DZC with a constant recovery δ ∈ [0, 1[ paid at
maturity, the range of arbitrage prices is equal to the set

{B(0, T )EQ(1{T<τ} + δ1{τ≤T}), Q ∈ Q}.

It is easy to check that this set is exactly the open interval ]δB(0, T ), B(0, T )[.
Let us note that this range of arbitrage prices is manifestly too wide to be
useful for practical purposes.

2.2.7 Implied Risk-Neutral Default Intensity

The absence of arbitrage opportunities in a financial model is commonly in-
terpreted in terms of the existence of an EMM. If defaultable zero-coupon
bonds issued by a given firm are traded, their prices are observed in the bond
market. Therefore, the equivalent martingale measure Q, to be used for pric-
ing purposes for other credit derivatives with the same reference credit name,
is in some sense selected by the market, rather than arbitrarily postulated.
To support this claim, we will show that it is possible to derive the cumula-
tive distribution function of τ under an implied martingale measure Q from
market quotes for default-free and defaultable zero-coupon bonds, that is,
from observed Treasury and corporate yield curves.

It is important to stress that, in the present setup, no specific relationship
between the risk-neutral default intensity and the historical one is expected to
hold, in general. In particular, the risk-neutral default intensity can be either
higher or lower than the historical one. The historical default intensity can
be deduced from observation of default times for a cohort of credit names,
whereas the risk-neutral one is obtained from prices of traded defaultable
claims for a given credit name.

Zero Recovery

If a defaultable zero-coupon bond with zero recovery and maturity T is
traded at some price D0(t, T ) belonging to the interval ]0, B(t, T )[ then the
process B(0, t)D0(t, T ) is a martingale under a risk-neutral probability Q.
We do not postulate that the market model is complete, so we do not assume
that an equivalent martingale measure is unique. The following equalities
are thus valid under some martingale measure Q ∈ Q

B(0, t)D0(t, T ) = EQ(B(0, T )1{T<τ} |Ht)

= B(0, T )1{t<τ} exp
(
−

∫ T

t

γQ(u) du
)
,
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where γQ(u) = fQ(u)(1 − FQ(u))−1. Note that the knowledge of the im-
plied intensity γQ is manifestly sufficient for the computation of the implied
cumulative distribution function FQ.

Let us now consider t = 0. It is easily seen that if for any maturity date
T the price D0(0, T ) belongs to the range of arbitrage prices ]0, B(0, T )[ then
the function γQ is strictly positive and the converse implication holds as well.
Assuming that prices D0(0, T ), T > 0, are observed, the function γQ that
satisfies, for every T > 0,

D0(0, T ) = B(0, T ) exp
(
−

∫ T

0

γQ(u) du
)

is the implied risk-neutral default intensity, that is, the unique Q-intensity of
τ that is consistent with the market data for DZCs. More precisely, the value
of the integral

∫ T

0
γQ(u) du is known for any T > 0 as soon as defaultable

zero-coupon bonds with all maturities are traded at time 0.
The unique risk-neutral intensity can be formally obtained from the mar-

ket quotes for DZCs by differentiation with respect to maturity date T ,
specifically,

r(t) + γQ(t) = −∂T ln D0(0, T ) | T=t.

Of course, the last formula is valid provided that the partial derivative in
the right-hand side of this formula is well defined.

Recovery at Maturity

Assume that the prices of DZCs with different maturities and fixed recovery
δ at maturity, are known. Then we deduce from (2.1.2)

FQ(T ) =
B(0, T )−Dδ(0, T )

B(0, T )(1− δ)
.

Hence the probability distribution of τ under the EMM implied by the market
quotes of DZCs is uniquely determined. However, as observed by Hull and
White [100], extracting risk-neutral default probabilities from bond prices is
in practice more complicated, since most corporate bonds are coupon-bearing
bonds, rather than zero-coupons.

Recovery at Default

In this case, the cumulative distribution function can also be obtained by
differentiation of the defaultable zero-coupon curve with respect to the ma-
turity. Indeed, denoting by ∂T Dδ(0, T ) the derivative of the value of the
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DZC at time 0 with respect to the maturity and assuming that G = 1 − F
is differentiable, we obtain from (2.5)

∂T Dδ(0, T ) = g(T )B(0, T )−G(T )B(0, T )r(T )− δ(T )g(T )B(0, T ),

where we write g(t) = G′(t). By solving this equation, we obtain

Q(τ > t) = G(t) = K(t)

(
1 +

∫ t

0

∂T Dδ(0, u)
(K(u))−1

B(0, u)(1− δ(u))
du

)
,

where we denote K(t) = exp
(∫ t

0

r(u)
1− δ(u)

du
)
.

2.2.8 Price Dynamics of Simple Defaultable Claims

This section examines the dynamics of prices of some simple defaultable
claims. For the sake of simplicity, we postulate here that the interest rate r
is constant and we assume that the default intensity γ is well defined.

Recovery at Maturity

Let S be the price of an asset that only delivers a recovery Z(τ) at time
T for some function Z. Formally, this corresponds to the defaultable claim
(0, 0, Z(τ), 0, τ), that is, X̃ = Z(τ). We know already that the process

Mt = Ht −
∫ t

0

(1−Hu)γ(u) du

is an H-martingale. Recall that γ(t) = f(t)/G(t), where f is the probability
density function of τ . Observe that

e−rtSt = EQ(Z(τ)e−rT |Ht)

= 1{t≥τ}e−rT Z(τ) + 1{t<τ}e−rT EQ(Z(τ)1{t<τ≤T})
G(t)

= e−rT

∫

]0,t]

Z(u) dHu + 1{t<τ}e−rT Z̃(t),

where the function Z̃ : [0, T ] → R is given by the formula

Z̃(t) =
EQ(Z(τ)1{t<τ≤T})

G(t)
=

∫ T

t
Z(u)f(u) du

G(t)
.

It is easily seen that

dZ̃(t) = f(t)

∫ T

t
Z(u)f(u) du

G2(t)
dt− Z(t)f(t)

G(t)
dt = Z̃(t)

f(t)
G(t)

dt− Z(t)f(t)
G(t)

dt
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and thus

d(e−rtSt) = e−rT

(
Z(t) dHt + (1−Ht)

f(t)
G(t)

(
Z̃(t)− Z(t)

)
dt− Z̃(t−) dHt

)

=
(
e−rT Z(t)− e−rtSt−

)(
dHt − (1−Ht)γ(t) dt

)

= e−rt
(
e−r(T−t)Z(t)− St−

)
dMt.

The discounted price is here an H-martingale under the risk-neutral proba-
bility Q and the price S does not vanish (unless Z equals zero).

Recovery at Default

Assume now that the recovery payoff is received at default time. Hence we
deal here with the defaultable claim (0, 0, 0, Z, τ) and thus the price of this
claim is obviously equal to zero after τ . In general, we have

e−rtSt = EQ(e−rτZ(τ)1{t<τ≤T} |Ht) = 1{t<τ}
EQ(e−rτZ(τ)1{t<τ≤T})

G(t)
,

so that e−rtSt = 1{t<τ}Ẑ(t), where the function Ẑ : [0, T ] → R equals

Ẑ(t) =
1

G(t)

∫ T

t

Z(u)e−ruf(u) du.

Note that

dẐ(t) = −Z(t)e−rt f(t)
G(t)

dt + f(t)

∫ T

t
Z(u)e−ruf(u)du

G2(t)
dt

= −Z(t)e−rt f(t)
G(t)

dt + Ẑ(t)
f(t)
G(t)

dt

= γ(t)
(
Ẑ(t)− Z(t)e−rt

)
dt.

Consequently,

d(e−rtSt) = (1−Ht)γ(t)
(
Ẑ(t)− Z(t)e−rt

)
dt− Ẑ(t) dHt

=
(
Z(t)e−rt − Ẑ(t)

)
dMt − Z(t)e−rt(1−Ht)γ(t) dt

= e−rt(Z(t)− St−) dMt − Z(t)e−rt(1−Ht)γ(t) dt.

In that case, the discounted price is not an H-martingale under the risk-
neutral probability. By contrast, the process

Ste
−rt +

∫ t∧τ

0

e−ruZ(u)γ(u) du

is an H-martingale. It is also worth noting that the recovery can be formally
interpreted as a dividend stream paid at the rate Zγ up to time τ ∧ T .
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2.3 Pricing of General Defaultable Claims

We will now examine the behavior of the arbitrage price of a general de-
faultable claim. Let us first recall the standing notation. A strictly positive
random variable τ , defined on the probability space (Ω,G,P), is called the
random time. In view of its interpretation, it will be later referred to as the
default time. We introduce the default indicator process Ht = 1{t≥τ} associ-
ated with τ and we denote by H the filtration generated by this process. We
assume from now on that we are given, in addition, some auxiliary filtration
F and we write G = H ∨ F, meaning that we have Gt = σ(Ht,Ft) for every
t ∈ R+. Note that P is aimed to represent the real-life probability measure.

We simplify slightly the definition of a defaultable claim of Section 1.1.1
by setting X̃ = 0, so that a generic defaultable claim is now formally reduced
to a quadruplet (X,A, Z, τ).

Definition 2.3.1. By a defaultable claim maturing at time T we mean a
quadruplet (X, A, Z, τ), where X is an FT -measurable random variable, A is
an F-adapted process of finite variation, Z is an F-predictable process, and
τ is a random time.

As in Section 1.1.1, the role of each component of a defaultable claim will
become clear from the definition of the dividend process D (cf. Definition
1.1.1), which describes all cash flows associated with a defaultable claim
over the lifespan ]0, T ], that is, after the contract was initiated at time 0. Of
course, the choice of 0 as the date of inception is merely a convention.

Definition 2.3.2. The dividend process D of a defaultable claim maturing
at T equals, for every t ∈ [0, T ],

Dt = X1{τ>T}1[T,∞[(t) +
∫

]0,t]

(1−Hu) dAu +
∫

]0,t]

Zu dHu.

The financial interpretation of the process D justifies the following ter-
minology (cf. Section 1.1):

• X is the promised payoff at maturity T ,

• A represents the process of promised dividends,

• the recovery process Z specifies the recovery payoff at default.

It is worth stressing that we maintain here the convention that the cash
payment (premium) at time 0 is not included in the dividend process D
associated with a defaultable claim.

Example 2.3.1. When dealing with a credit default swap (CDS), it is nat-
ural to assume that the premium paid at time 0 is equal to zero and the
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process A represents the fee (annuity), which is paid in instalments up to
maturity date or default, whichever comes first. For instance, if At = −κt
for some constant κ > 0, then the market quote of a stylized credit default
swap is formally represented by this constant, referred to as the continuously
paid CDS spread or premium (see Section 2.4.1 for more details).

If the other covenants of the contract are known (i.e., the payoff X and
recovery Z are given), the valuation of a credit default swap is equivalent to
finding the level of the rate κ that makes the swap valueless at inception.

Typically, in a credit default swap we have X = 0, whereas the default
protection process Z is specified in reference to recovery rate of an underlying
credit name. In a more realistic approach, the process A is discontinuous,
with jumps occurring at the premium payment dates. In this text, we will
only deal with a stylized CDS with a continuously paid premium. For a
discussion of market conventions for CDSs, see, for instance, Brigo [38].

Let us return to the general setup. It is clear that the dividend process
D follows a process of finite variation on [0, T ]. Since

∫

]0,t]

(1−Hu) dAu =
∫

]0,t]

1{u<τ} dAu = Aτ−1{t≥τ} + At1{t<τ},

it is also apparent that if default occurs at some date t, the promised dividend
At−At− that is due to be received or paid at this date is canceled. We have
also that ∫

]0,t]

Zu dHu = Zτ1{t≥τ}.

Let us stress that the process Du −Dt, u ∈ [t, T ], represents all cash flows
from a defaultable claim to be received by an investor who has purchased it
at time t. Of course, the process Du −Dt may depend on the past behavior
of the claim (e.g., through some intrinsic parameters, such as credit spreads)
as well as on the history of the market prior to t. The past cash flows from
a claim are not valued by the market, however, so that the current market
value at time t of a claim (that is, the price at which it is traded at time t)
depends only on future cash flows to be either paid or received over the time
interval ]t, T ].

We will work under the standing assumption that our underlying financial
market model is arbitrage-free, in the sense that there exists a spot martingale
measure Q (also referred to as a risk-neutral probability), meaning that Q is
equivalent to the real-life probability P on (Ω,GT ) and the price process of
any traded security, paying no coupons or dividends, follows a G-martingale
under Q, when discounted by the savings account B, which is, as usual, given
by the formula

Bt = exp
(∫ t

0

ru du

)
.
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2.3.1 Buy-and-Hold Strategy

We write Si, i = 1, 2, . . . , k to denote the price processes of k primary securi-
ties in an arbitrage-free financial model. We make the standard assumption
that the processes Si, i = 1, 2, . . . , k−1 follow semimartingales. In addition,
we set Sk = B so that Sk represents the value process of the savings account.

The last assumption is not necessary, however. One may assume, for
instance, that Sk is the price of a T -maturity risk-free zero-coupon bond, or
choose any other strictly positive price process as a numéraire.

For the sake of convenience, we assume that Si, i = 1, 2, . . . , k − 1 are
non-dividend-paying assets and we introduce the discounted price processes
Si∗ by setting Si∗ = B−1Si. All processes are assumed to be given on a
filtered probability space (Ω,G,P), where P is the real-life (i.e., statistical)
probability measure.

Let us now assume that we have an additional traded security that pays
dividends during its lifespan, assumed to be the time interval [0, T ], accord-
ing to a process of finite variation D, with D0 = 0. Let S denote a (yet
unspecified) price process of this security. In particular, we do not postulate
a priori that S follows a semimartingale. It is not necessary to interpret S
as a price process of a defaultable claim, though we have here this particular
interpretation in mind.

Let a G-predictable, Rk+1-valued process φ = (φ0, φ1, . . . , φk) represent a
generic trading strategy, where φj

t represents the number of shares of the jth
asset held at time t. We identify here S0 with S, so that S is the 0th asset.
In order to derive a pricing formula for this asset, it suffices to examine a
simple trading strategy involving S, namely, the buy-and-hold strategy.

Suppose that one unit of the 0th asset was purchased at time 0, at the
initial price S0, and it was held until time T . We assume all dividends
are immediately reinvested in the savings account B. Formally, we consider
a buy-and-hold strategy ψ = (1, 0, . . . , 0, ψk), where ψk is a G-predictable
process. The wealth process V (ψ) of ψ equals, for every t ∈ [0, T ],

Vt(ψ) = St + ψk
t Bt. (2.26)

Definition 2.3.3. We say that a strategy ψ = (1, 0, . . . , 0, ψk) is self-
financing if

dVt(ψ) = dSt + dDt + ψk
t dBt,

or more explicitly, for every t ∈ [0, T ],

Vt(ψ)− V0(ψ) = St − S0 + Dt +
∫ t

0

ψk
u dBu. (2.27)

We assume from now on that the process ψk is chosen in such a way (with
respect to S, D and B) that a buy-and-hold strategy ψ is self-financing.
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In view of (2.26)–(2.27) this means that, for every t ∈ [0, T ],

ψk
t Bt = V0(ψ)− S0 + Dt +

∫ t

0

ψk
u dBu.

In addition, we make the standing assumption that the random variable
Y defined by the equality Y =

∫
]0,T ]

B−1
u dDu is Q-integrable, where Q is a

martingale measure.

Lemma 2.3.1. The discounted wealth process V ∗(ψ) = B−1V (ψ) of any
self-financing buy-and-hold trading strategy ψ satisfies, for every t ∈ [0, T ],

V ∗
t (ψ) = V ∗

0 (ψ) + S∗t − S∗0 +
∫

]0,t]

B−1
u dDu. (2.28)

Therefore, we have, for every t ∈ [0, T ],

V ∗
T (ψ)− V ∗

t (ψ) = S∗T − S∗t +
∫

]t,T ]

B−1
u dDu. (2.29)

Proof. We define an auxiliary process V̂ (ψ) by setting V̂t(ψ) = Vt(ψ)−St =
ψk

t Bt for t ∈ [0, T ]. In view of (2.27), we have

V̂t(ψ) = V̂0(ψ) + Dt +
∫ t

0

ψk
u dBu,

and thus the process V̂ (ψ) follows a semimartingale. An application of Itô’s
product rule yields

d
(
B−1

t V̂t(ψ)
)

= B−1
t dV̂t(ψ) + V̂t(ψ) dB−1

t

= B−1
t dDt + ψk

t B−1
t dBt + ψk

t Bt dB−1
t

= B−1
t dDt,

where we have used the obvious identity B−1
t dBt + Bt dB−1

t = 0. By inte-
grating the last equality, we obtain

B−1
t

(
Vt(ψ)− St

)
= B−1

0

(
V0(ψ)− S0

)
+

∫

]0,t]

B−1
u dDu,

and this immediately yields (2.28). ¤
Let us note that Lemma 2.3.1 remains valid if the assumption that Sk

represents the savings account B is relaxed. It suffices to assume that Sk is
a numéraire, that is, a strictly positive continuous semimartingale.
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For the sake of brevity, we write Sk = β. We say that ψ = (1, 0, . . . , 0, ψk)
is self-financing if the wealth process V (ψ), defined as

Vt(ψ) = St + ψk
t βt,

satisfies, for every t ∈ [0, T ],

Vt(ψ)− V0(ψ) = St − S0 + Dt +
∫ t

0

ψk
u dβu.

Lemma 2.3.2. The relative wealth V ∗
t (ψ) = β−1

t Vt(ψ) of a self-financing
trading strategy ψ satisfies, for every t ∈ [0, T ],

V ∗
t (ψ) = V ∗

0 (ψ) + S∗t − S∗0 +
∫

]0,t]

β−1
u dDu,

where S∗ = β−1
t St.

Proof. The proof proceeds along the same lines as the proof of Lemma 2.3.1.
It suffices to note that the equality β−1

t dβt + βt dβ−1
t + d〈β, β−1〉t = 0 holds

for every t ∈ [0, T ]. ¤

2.3.2 Spot Martingale Measure

Our next goal is to derive the risk-neutral valuation formula for the ex-
dividend price process S from the no-arbitrage principle. Recall that we have
assumed that our market model is arbitrage-free, meaning that it admits a
(not necessarily unique) martingale measure Q, equivalent to P, which is
associated with the choice of the savings account B as a numéraire. Let us
recall the definition of a spot martingale measure.

Definition 2.3.4. We say that Q is a spot martingale measure if the dis-
counted price Si∗ = SiB−1 of any non-dividend paying traded security Si

follows a Q-martingale with respect to the filtration G.

It is well known that the discounted wealth process V ∗(φ) = V (φ)B−1

of any self-financing trading strategy φ = (0, φ1, φ2, . . . , φk) is a local mar-
tingale under any martingale measure Q. In what follows, we only consider
admissible trading strategies, that is, strategies for which the discounted
wealth process V ∗(φ) is a martingale under some martingale measure Q.

A market model in which only admissible trading strategies are allowed
is arbitrage-free, that is, there are no arbitrage opportunities in this model.

Following this line of arguments, we now postulate, in addition, that the
trading strategy ψ introduced in Section 2.3.1 is also admissible, so that its
discounted wealth process V ∗(ψ) is a martingale under Q with respect to G.



2.3. Pricing of General Defaultable Claims 77

This assumption is fairly natural, since we wish to preclude arbitrage
opportunities from the extended model of the financial market. Indeed,
since we postulate that S is traded, the corresponding wealth process V (ψ)
can formally be seen as an additional non-dividend paying traded security.

To derive the pricing formula for a defaultable claim, we make a natural
assumption that the market value at time t of the 0th security is based
exclusively on its future dividends, that is, on the cash flows that occur in
the interval ]t, T ]. Since the overall lifespan of S is [0, T ], this amounts to
postulate that ST = S∗T = 0. To emphasize this property, we shall refer to
S as the ex-dividend price of the 0th asset.

Definition 2.3.5. A process S with ST = 0 is the ex-dividend price of the
0th asset if the discounted wealth V ∗(ψ) of any self-financing buy-and-hold
strategy ψ follows a G-martingale under a martingale measure Q.

As a special case, we obtain the ex-dividend price a defaultable claim
with maturity T .

Proposition 2.3.1. The ex-dividend price process S associated with the
dividend process D satisfies, for every t ∈ [0, T ],

St = Bt EQ
( ∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
. (2.30)

Proof. The postulated martingale property of the discounted wealth process
V ∗(ψ) yields, for every t ∈ [0, T ],

EQ
(
V ∗

T (ψ)− V ∗
t (ψ)

∣∣Gt

)
= 0.

Taking into account (2.29), we thus obtain

S∗t = EQ
(
S∗T +

∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
.

Since, by virtue of the definition of the ex-dividend price, the equalities
ST = S∗T = 0 are valid, the last formula yields (2.30). ¤

It is not difficult to show that the ex-dividend price S satisfies the equality
St = 1{t<τ}S̃t for t ∈ [0, T ], where the process S̃ represents the ex-dividend
pre-default price of a defaultable claim. The cumulative price process Sc

associated with the dividend process D is given by the formula, for every
t ∈ [0, T ],

Sc
t = Bt EQ

( ∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
. (2.31)

The corresponding discounted cumulative price process, Sc∗ := B−1Sc, is a
G-martingale under Q.



78 Chapter 2. Hazard Function Approach

Remark 2.3.1. The savings account B can be substituted with an arbitrary
numéraire β. The corresponding valuation formula becomes, for every t ∈
[0, T ],

St = βt EQβ

( ∫

]t,T ]

β−1
u dDu

∣∣∣Gt

)
,

where Qβ is a martingale measure on (Ω,GT ) associated with a numéraire
β, that is, a probability measure on (Ω,GT ) given by the formula

dQβ

dQ
=

B0βT

β0BT
, Q-a.s.

2.3.3 Self-Financing Trading Strategies

Let us now consider a general trading strategy φ = (φ0, φ1, . . . , φk) with G-
predictable components. The associated wealth process V (φ) is given by the
equality Vt(φ) =

∑k
i=0 φi

tS
i
t , where, as before S0 = S. A strategy φ is said

to be self-financing if Vt(φ) = V0(φ) + Gt(φ) for every t ∈ [0, T ], where the
gains process G(φ) is defined as follows, for every t ∈ [0, T ],

Gt(φ) =
∫

]0,t]

φ0
u dDu +

k∑

i=0

∫

]0,t]

φi
u dSi

u.

Corollary 2.3.1. Let Sk = B. Then for any self-financing trading strategy
φ, the discounted wealth process V ∗(φ) = B−1V (φ) is a martingale under Q.

Proof. Since B is a continuous process of finite variation, the Itô product
rule yields dSi∗

t = Si
t dB−1

t + B−1
t dSi

t for i = 0, 1, . . . , k. Consequently,

dV ∗
t (φ) = Vt(φ) dB−1

t + B−1
t dVt(φ)

= Vt(φ) dB−1
t + B−1

t

( k∑

i=0

φi
t dSi

t + φ0
t dDt

)

=
k∑

i=0

φi
t

(
Si

t dB−1
t + B−1

t dSi
t

)
+ φ0

t B
−1
t dDt

=
k−1∑

i=1

φi
t dSi∗

t + φ0
t

(
dS∗t + B−1

t dDt

)
=

k−1∑

i=1

φi
t dSi∗

t + φ0
t dSc∗

t ,

where the auxiliary process Sc∗ is given by the following expression

Sc∗
t = S∗t +

∫

]0,t]

B−1
u dDu.
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To conclude, it suffices to observe that in view of (2.30) the process Sc∗

satisfies
Sc∗

t = EQ
( ∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
, (2.32)

and thus it is a martingale under Q. ¤
It is worth noting that Sc∗

t , as given by formula (2.32), represents the
discounted cumulative price at time t of the 0th asset, that is, the arbitrage
price at time t of all past and future dividends associated with the 0th asset
over its lifespan. To check this, let us consider a buy-and-hold strategy such
that ψk

0 = 0. Then, in view of (2.29), the terminal wealth at time T of this
strategy equals

VT (ψ) = BT

∫

]0,T ]

B−1
u dDu.

It is clear that VT (ψ) represents all dividends from S in the form of a single
payoff at time T . The arbitrage price πt(Ŷ ) at time t ∈ [0, T [ of the claim
Ŷ = VT (ψ) equals (under the assumption that this claim is attainable)

πt(Ŷ ) = Bt EQ
(∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)

and thus Sc∗
t = B−1

t πt(Ŷ ). It is clear that discounted cumulative price
follows a martingale under Q (under the standard integrability assumption).

Remarks 2.3.1. (i) Under the assumption of uniqueness of a spot mar-
tingale measure Q, any Q-integrable contingent claim is attainable, and the
valuation formula established above can be justified by means of replica-
tion.
(ii) Otherwise – that is, when a martingale probability measure Q is not
uniquely determined by the model (S1, S2, . . . , Sk) – the right-hand side of
(2.30) may depend on the choice of a particular martingale probability, in
general. In this case, a process defined by (2.30) for an arbitrarily chosen
spot martingale measure Q can be taken as the no-arbitrage price process
of a defaultable claim. In some cases, a market model can be completed by
postulating that S is also a traded asset.

2.3.4 Martingale Properties of Arbitrage Prices

In the next result, we summarize the martingale properties of arbitrage prices
of a generic defaultable claim.

Corollary 2.3.2. The discounted cumulative price process (Sc∗
t , t ∈ [0, T ])

of a defaultable claim is a Q-martingale with respect to G. The discounted
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ex-dividend price (S∗t , t ∈ [0, T ]) satisfies, for every t ∈ [0, T ],

S∗t = Sc∗
t −

∫

]0,t]

B−1
u dDu

and thus it follows a supermartingale under Q if and only if the dividend
process D is increasing.

In an application considered in Section 2.4, the finite variation process
A is interpreted as the positive premium paid in instalments by the claim-
holder to the counterparty in exchange for a positive recovery. It is thus
natural to assume that A is a decreasing process, whereas other components
of the dividend process are increasing processes (that is, X ≥ 0 and Z ≥ 0).
It is rather clear that, under these assumptions, the discounted ex-dividend
price S∗ is neither a super- nor submartingale under Q, in general.

Assume now that A = 0, so that the premium for a defaultable claim is
paid upfront at time 0 and it is not accounted for in the dividend process D.
We postulate, as before, that X ≥ 0 and Z ≥ 0. In this case, the dividend
process D is manifestly increasing and thus the discounted ex-dividend price
S∗ is a supermartingale under Q. This feature is quite natural since the
discounted expected value of future dividends decreases when time elapses.

2.4 Single-Name Credit Derivatives

Following Bielecki et al. [19] (see also Schmidt [159]), we will now apply the
general theory to a widely particular class of credit derivatives, namely, to
credit default swaps. We do not need to specify explicitly the underlying
market model at this stage, but we make the following standing assumption.

Assumption 2.4.1. We assume throughout that:
• the underlying probability measure Q represents a spot martingale

measure on (Ω,HT ),

• the short-term interest rate r = 0, so that Bt = 1 for every t ∈ R+.

2.4.1 Stylized Credit Default Swap

A stylized T -maturity credit default swap is formally introduced through the
following definition.

Definition 2.4.1. A credit default swap (CDS) with a constant rate κ and
protection at default is a defaultable claim (0, A, Z, τ) where Z(t) = δ(t)
and A(t) = −κt for every t ∈ [0, T ]. A function δ : [0, T ] → R represents
the default protection whereas κ is the CDS spread (also termed the rate,
premium or annuity of a CDS).
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As usual, we denote by F the cumulative distribution function of default
time τ under Q and we assume that F is a continuous function, with F (0) = 0
and F (T ) < 1. Also, we write G = 1 − F to denote the survival probability
function of τ , so that the inequality G(t) > 0 is valid for every t ∈ [0, T ].

Remark 2.4.1. Note that the choice of Q is reflected in the cumulative
distribution function F ; in particular, in the default intensity if F admits
a probability density function. In practical applications of reduced-form
models, the choice of F is done by calibration.

Since the ex-dividend price of a CDS is the price at which the contract is
actually traded, we shall refer to the ex-dividend price as the price in what
follows. Recall that we have also introduced the cumulative price, which
encompasses also all past payoffs from a CDS, assumed to be reinvested in
the savings account.

Let s ∈ [0, T ] be a fixed date. We consider a stylized T -maturity credit
default swap with a constant spread κ and default protection function δ,
initiated at time s and maturing at T .

The dividend process of a CDS equals

Dt =
∫

]s,t]

δ(u) dHu − κ

∫

]s,t]

(1−Hu) du (2.33)

and thus, in view of (2.30), the ex-dividend price of this contract equals, for
every t ∈ [s, T ],

St(κ, δ, T ) = EQ
(
1{t<τ≤T}δ(τ)

∣∣∣Ht

)
− EQ

(
1{t<τ}κ

(
(τ ∧ T )− t

) ∣∣∣Ht

)
,

where the first conditional expectation represents the current value of the
default protection stream (or simply the protection leg) and the second ex-
pectation is the value of the survival annuity stream (or the fee leg). To
alleviate notation, we shall write St(κ) instead of St(κ, δ, T ) in what follows.

Lemma 2.4.1. The ex-dividend price at time t ∈ [s, T ] of a credit default
swap started at s, with spread κ and default protection δ, equals

St(κ) = 1{t<τ}
1

G(t)

(
−

∫ T

t

δ(u) dG(u)− κ

∫ T

t

G(u) du
)
. (2.34)

Proof. We have, on the event {t < τ},

St(κ) = −
∫ T

t
δ(u) dG(u)
G(t)

− κ

(
− ∫ T

t
u dG(u) + TG(T )

G(t)
− t

)

=
1

G(t)

(
−

∫ T

t

δ(u) dG(u)− κ
(
TG(T )− tG(t)−

∫ T

t

u dG(u)
))

.
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Since ∫ T

t

G(u) du = TG(T )− tG(t)−
∫ T

t

u dG(u),

we conclude that (2.34) holds. ¤
The pre-default price is defined as the unique function S̃(κ) such that we

have, for every t ∈ [0, T ] (see Lemma 2.5.1 with n = 1)

St(κ) = 1{t<τ}S̃t(κ). (2.35)

Combining (2.34) with (2.35), we find that the pre-default price of the CDS
equals, for t ∈ [s, T ],

S̃t(κ) =
1

G(t)

(
−

∫ T

t

δ(u) dG(u)− κ

∫ T

t

G(u) du
)

(2.36)

so that S̃t(κ) = P̃ (t, T )− κÃ(t, T ), where

P̃ (t, T ) = − 1
G(t)

∫ T

t

δ(u) dG(u)

is the pre-default price at time t of the protection leg, and

Ã(t, T ) =
1

G(t)

∫ T

t

G(u) du

represents the pre-default price at time t of the fee leg for the period [t, T ]
per one unit of the CDS spread κ. We shall refer henceforth to Ã(t, T ) as
the CDS annuity (it is also known as the present value of one basis point of a
CDS). Note that, under our standing assumption that the survival function
G is continuous, the pre-default price S̃(κ) is a continuous function.

2.4.2 Market CDS Spread

A CDS that has null value at its inception plays an important role as a
benchmark CDS and thus we introduce a formal definition, in which it is
implicitly assumed that a protection function δ of a CDS is given and that
we are on the event {s < τ}, that is, the default of the reference name has
not yet occurred prior to or at time s.

Definition 2.4.2. A market CDS started at s is the CDS initiated at time
s whose initial value is equal to zero. The T -maturity market CDS spread
(also known as the fair CDS spread) at time s is the fixed level of the spread
κ = κ(s, T ) that makes the T -maturity CDS started at s valueless at its
inception. The market CDS spread at time s is thus determined by the
equation S̃s(κ(s, T )) = 0 where S̃s(κ) is given by the formula (2.36).
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Under the present assumptions, by virtue of (2.36), the T -maturity mar-
ket CDS spread κ(s, T ) equals, for every s ∈ [0, T ],

κ(s, T ) =
P̃ (s, T )

Ã(s, T )
= −

∫ T

s
δ(u) dG(u)

∫ T

s
G(u) du

. (2.37)

Example 2.4.1. Assume that δ(t) = δ is constant, and F (t) = 1− e−γt for
some constant default intensity γ > 0 under Q. In that case, the valuation
formulae for a CDS can be further simplified. In view of Lemma 2.4.1, the
ex-dividend price of a (spot) CDS with spread κ equals, for every t ∈ [0, T ],

St(κ) = 1{t<τ}(δγ − κ)γ−1
(
1− e−γ(T−t)

)
.

The last formula (or the general formula (2.37)) yields κ(s, T ) = δγ for
every s < T , so that the market spread κ(s, T ) is here independent of s. As a
consequence, the ex-dividend price of a market CDS started at s equals zero
not only at the inception date s, but indeed at any time t ∈ [s, T ], both prior
to and after default. Hence this process is trivially a martingale under Q.
As we shall see in what follows, this martingale property of the ex-dividend
price of a market CDS is an exception, in the sense so that it fails to hold if
the default intensity varies over time.

In what follows, we fix a maturity date T and we assume that credit de-
fault swaps with different inception dates have a common default protection
δ. We shall write briefly κ(s) instead of κ(s, T ). Then we have the following
result, in which the quantity ν(t, s) = κ(t) − κ(s) represents the calendar
CDS market spread for a given maturity T .

Proposition 2.4.1. The price of a market CDS started at s with protection
δ at default and maturity T equals, for every t ∈ [s, T ],

St(κ(s)) = 1{t<τ} (κ(t)− κ(s)) Ã(t, T ) = 1{t<τ} ν(t, s)Ã(t, T ). (2.38)

Proof. It suffices to observe that St(κ(s)) = St(κ(s)) − St(κ(t)), since
St(κ(t)) = 0, and to use (2.36) with κ = κ(t) and κ = κ(s). ¤

Note that formula (2.38) can be extended to any value of κ, specifically,

St(κ) = 1{t<τ}(κ(t)− κ)Ã(t, T ),

assuming that the CDS with spread κ was initiated at some date s ∈ [0, t].
The last representation shows that the price of a CDS can take negative
values. The negative value occurs whenever the current market spread is
lower than the contracted spread.



84 Chapter 2. Hazard Function Approach

2.4.3 Price Dynamics of a CDS

In the remainder of Section 2.4, we assume that the hazard function satisfies

G(t) = Q(τ > t) = exp
(
−

∫ t

0

γ(u) du

)
, ∀ t ∈ [0, T ],

where the default intensity γ(t) under Q is a strictly positive deterministic
function. Recall that the process M , given by the formula, for t ∈ [0, T ],

Mt = Ht −
∫ t

0

(1−Hu)γ(u) du, (2.39)

is an H-martingale under Q.
We first focus on the dynamics of the price of a CDS, with spread κ,

which was initiated at some date s < T .

Lemma 2.4.2. (i) The dynamics of the price St(κ), t ∈ [s, T ], are

dSt(κ) = −St−(κ) dMt + (1−Ht)(κ− δ(t)γ(t)) dt. (2.40)

(ii) The cumulative price Sc
t (κ), t ∈ [s, T ], is an H-martingale under Q,

specifically,
dSc

t (κ) =
(
δ(t)− St−(κ)

)
dMt. (2.41)

Proof. To prove (i), it suffices to recall that

St(κ) = 1{t<τ}S̃t(κ) = (1−Ht)S̃t(κ)

so that the integration by parts formula yields

dSt(κ) = (1−Ht) dS̃t(κ)− S̃t−(κ) dHt.

Using formula (2.34), we find easily that

dS̃t(κ) = γ(t)S̃t(κ) dt + (κ− δ(t)γ(t)) dt.

In view of (2.39) and the fact that

Sτ−(κ) = S̃τ−(κ)

and St(κ) = 0 for t ≥ τ , the derivation of dynamics (2.40) is completed. To
prove part (ii), we note that in the case of B = 1 the formulae (2.30) and
(2.31) yield the following relationship, for every t ∈ [s, T ],

Sc
t (κ) = St(κ) + Dt.
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Therefore, the cumulative price Sc
t (κ), t ∈ [s, T ] can be represented as

follows

Sc
t (κ) = St(κ) +

∫

]s,t]

δ(u) dHu − κ

∫ t

s

(1−Hu) du

= St(κ) +
∫

]s,t]

δ(u) dMu −
∫ t

s

(1−Hu)(κ− δ(u)γ(u)) du

= Sc
s(κ) +

∫

]s,t]

(
δ(u)− Su−(κ)

)
dMu,

where the last equality follows from (2.40) and the equality Ss(κ) = Sc
s(κ),

which in turns is clear since Ds = 0 (cf. (2.33)). ¤
Equality (2.40) emphasizes the fact that a single cash flow of δ(τ) oc-

curring at time τ can be formally treated as a dividend stream at the rate
δ(t)γ(t) paid continuously prior to default. It is clear that we also have

dSt(κ) = −S̃t−(κ) dMt + (1−Ht)(κ− δ(t)γ(t)) dt.

2.4.4 Replication of a Defaultable Claim

Our goal is to show that, in order to replicate a general defaultable claim,
it suffices to trade dynamically in two assets: a CDS maturing at T and the
savings account B, assumed here to be constant. Since one may always work
with discounted values, the last assumption is not restrictive. Moreover, it
is also possible to take a CDS with any maturity U ≥ T .

Let φ0, φ1 be H-predictable processes and let C : [0, T ] → R be a function
of finite variation with C(0) = 0. We say that (φ,C) = (φ0, φ1, C) is a
self-financing trading strategy with dividend stream C if the wealth process
V (φ, C), defined as

Vt(φ, C) = φ0
t + φ1

t St(κ),

where St(κ) is the price of a CDS at time t, satisfies

dVt(φ,C) = φ1
t

(
dSt(κ) + dDt

)− dC(t) = φ1
t dSc

t (κ)− dC(t),

where the dividend process D of a CDS is in turn given by (2.33). Note that
C represents both outflows and infusions of funds. It will be used to cover
the running cash flows associated with a claim we wish to replicate.

Consider a defaultable claim (X, A,Z, τ) where X is a constant, A is a
continuous function of finite variation, and Z is some recovery function. In
order to define replication of a defaultable claim (X,A, Z, τ), it suffices to
consider trading strategies on the random interval [0, τ ∧ T ].
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Definition 2.4.3. We say that a trading strategy (φ,C) replicates a default-
able claim (X, A, Z, τ) if:
(i) the processes φ = (φ0, φ1) and V (φ,C) are stopped at τ ∧ T ,
(ii) C(τ ∧ t) = A(τ ∧ t) for every t ∈ [0, T ],
(iii) the equality Vτ∧T (φ,C) = Y holds, where the random variable Y equals

Y = X1{τ>T} + Z(τ)1{τ≤T}. (2.42)

Remark 2.4.2. Alternatively, one may say that a self-financing trading
strategy φ = (φ, 0) (i.e., a trading strategy with C = 0) replicates a default-
able claim (X, A, Z, τ) if and only if Vτ∧T (φ) = Ŷ , where we set

Ŷ = X1{τ>T} + A(τ ∧ T ) + Z(τ)1{τ≤T}. (2.43)

However, in the case of non-zero (possibly random) interest rates, it is more
convenient to define replication of a defaultable claim via Definition 2.4.3,
since the running payoffs specified by A are distributed over time and thus,
in principle, they need to be discounted accordingly (this does not show in
(2.43), since it is assumed here that r = 0).

Let us denote, for every t ∈ [0, T ],

Z̃(t) =
1

G(t)

(
XG(T )−

∫ T

t

Z(u) dG(u)
)

and

Ã(t) =
1

G(t)

∫ T

t

G(u) dA(u).

Let π and π̃ be the risk-neutral value and the pre-default risk-neutral value
of a defaultable claim under Q, so that πt = 1{t<τ}π̃(t) for every t ∈ [0, T ].
Also, let π̂ stand for its risk-neutral cumulative price. It is clear that the
equalities π̃(0) = π(0) = π̂(0) = EQ(Ŷ ) are valid.

Proposition 2.4.2. The pre-default risk-neutral value of a defaultable claim
(X,A, Z, τ) equals π̃(t) = Z̃(t)+ Ã(t) for every t ∈ [0, T [ (clearly, π̃(T ) = 0).
Therefore, for every t ∈ [0, T [,

dπ̃(t) = γ(t)(π̃(t)− Z(t)) dt− dA(t). (2.44)

Moreover

dπt = −π̃(t−) dMt − γ(t)(1−Ht)Z(t) dt− dA(t ∧ τ) (2.45)

and
dπ̂t = (Z(t)− π̃(t−)) dMt.
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Proof. The proof of equality π̃(t) = Z̃(t) + Ã(t) is similar to the derivation
of formula (2.36). We have, for t ∈ [0, T [,

πt = EQ
(
1{t<τ}Y + A(τ ∧ T )−A(τ ∧ t)

∣∣∣Ht

)

= 1{t<τ}
1

G(t)

(
XG(T )−

∫ T

t

Z(u) dG(u)
)

+ 1{t<τ}
1

G(t)

∫ T

t

G(u) dA(u)

= 1{t<τ}(Z̃(t) + Ã(t)) = 1{t<τ}π̃(t).

By elementary computations, we obtain the following equalities

dZ̃(t) = γ(t)(Z̃(t)− Z(t)) dt

and
dÃ(t) = γ(t)Ã(t) dt− dA(t),

so that (2.44) holds. Formula (2.45) follows easily from (2.44) and the inte-
gration by parts formula applied to the equality πt = (1 −Ht)π̃(t) (see the
proof of Lemma 2.4.2 for similar computations). The last formula is also
easy to check. ¤

The next proposition shows that the risk-neutral value of a defaultable
claim is also its replication price, that is, a defaultable claim derives its value
from the price of the traded CDS.

Theorem 2.4.1. Assume that the inequality S̃t(κ) 6= δ(t) holds for every
t ∈ [0, T ]. Let φ1

t = φ̃1(τ ∧ t), where the function φ̃1 : [0, T ] → R is given by
the formula

φ̃1(t) =
Z(t)− π̃(t−)

δ(t)− S̃t(κ)
(2.46)

and let φ0
t = Vt(φ,A) − φ1

t St(κ), where the process V (φ,A) is given by the
formula

Vt(φ,A) = π̃(0) +
∫

]0,τ∧t]

φ̃1(u) dSc
u(κ)−A(t ∧ τ). (2.47)

Then the strategy (φ0, φ1, A) replicates the defaultable claim (X, A,Z, τ).

Proof. Assume first that a trading strategy φ = (φ0, φ1, C) is a replicating
strategy for (X,A, Z, τ). By virtue of condition (i) in Definition 2.4.3 we
have C = A and thus, by combining (2.47) with (2.41), we obtain

dVt(φ,A) = φ1
t (δ(t)− S̃t(κ)) dMt − dA(τ ∧ t)
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For φ1 given by (2.46), we thus obtain

dVt(φ,A) = (Z(t)− π̃(t−)) dMt − dA(τ ∧ t).

It is thus clear that if we take φ1
t = φ̃1(τ ∧ t) with φ̃1 given by (2.46), and the

initial condition V0(φ,A) = π̃(0) = π0, then we have that Vt(φ,A) = π̃(t) for
every t ∈ [0, T [ on the event {t < τ}. By examining, in particular, the jump
of the wealth process V (φ,A) at the moment of default, one may check that
all conditions of Definition 2.4.3 are indeed satisfied. ¤

Remark 2.4.3. Of course, if we take as (X,A, Z, τ) a CDS with spread κ and
protection function δ, then we have Z(t) = δ(t) and π̃(t−) = π̃(t) = S̃t(κ),
so that φ1

t = 1 for every t ∈ [0, T ].

2.5 Basket Credit Derivatives

In this section, we shall examine hedging of first-to-default basket claims
with single-name credit default swaps on the underlying n credit names,
denoted as 1, 2, . . . , n (see Bielecki et al. [19] and Schmidt and Ward [160]).
The standing Assumption 2.4.1 is maintained throughout this section.

Let the random times τ1, τ2, . . . , τn, given on a common probability space
(Ω,G,Q), represent the default times of n reference credit names. We denote
by

τ(1) = τ1 ∧ τ2 ∧ · · · ∧ τn = min (τ1, τ2, . . . , τn)

the moment of the first default, so that no defaults are observed on the event
{t < τ(1)}. Let

F (t1, t2, . . . , tn) = Q(τ1 ≤ t1, τ2 ≤ t2, . . . , τn ≤ tn)

be the joint probability distribution function of default times. We assume
that the probability distribution of default times is jointly continuous, and
we write f(t1, t2, . . . , tn) to denote the joint probability density function.
Also, let

G(t1, t2, . . . , tn) = Q(τ1 > t1, τ2 > t2, . . . , τn > tn)

stand for the joint probability that the names 1, 2, . . . , n have survived up to
times t1, t2, . . . , tn. In particular, the joint survival function is given by the
formula, for every t ∈ R+,

G(t, . . . , t) = Q(τ1 > t, τ2 > t, . . . , τn > t) = Q(τ(1) > t) = G(1)(t).

For i = 1, 2, . . . , n, we define the default indicator process Hi
t = 1{t≥τi} and

the corresponding filtration Hi = (Hi
t)t∈R+ where Hi

t = σ(Hi
u : u ≤ t).
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Let G be the joint filtration generated by default indicator processes
H1, H2, . . . , Hn, so that G = H1 ∨ H2 ∨ · · · ∨ Hn. It is clear that τ(1) is a
G-stopping time, as the minimum of a finite family of G-stopping times.

Finally, we define the process H
(1)
t = 1{t≥τ(1)} and the associated filtra-

tion H(1) = (H(1)
t )t∈R+ where H(1)

t = σ(H(1)
u : u ≤ t).

Since we postulate that Q(τi = τj) = 0 for any i 6= j, i, j = 1, 2, . . . , n,
we also have that

H
(1)
t = H

(1)
t∧τ(1)

=
n∑

i=1

Hi
t∧τ(1)

.

We now fix a finite horizon date T > 0, and we make the standing assumption
that

G(1)(T ) = Q(τ(1) > T ) > 0.

For any t ∈ [0, T ], the event {t < τ(1)} is an atom of the σ-field Gt. Hence
the following simple, but useful, result.

Lemma 2.5.1. Let X be a Q-integrable stochastic process on (Ω,G,Q). Then

1{t<τ(1)} EQ(Xt | Gt) = 1{t<τ(1)}X̃(t),

where the function X̃ : [0, T ] → R is given by the formula

X̃(t) =
EQ

(
1{t<τ(1)}Xt

)

G(1)(t)
.

If X is a G-adapted, Q-integrable stochastic process then, for every t ∈ [0, T ],

Xt = 1{t<τ(1)}X̃(t) + 1{t≥τ(1)}Xt.

By convention, the function X̃ : [0, T ] → R is called the pre-default value
of the process X.

2.5.1 First-to-Default Intensities

In this section, we introduce the notion of the first-to-default intensity. This
natural concept will prove useful in the valuation and hedging of a first-to-
default claim.

Definition 2.5.1. The function λ̃i : R+ → R+, given by the formula

λ̃i(t) = lim
h↓0

1
h
Q(t < τi ≤ t + h | τ(1) > t),
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is called the ith first-to-default intensity. The function λ̃ : R+ → R+, given
by

λ̃(t) = lim
h↓0

1
h
Q(t < τ(1) ≤ t + h | τ(1) > t), (2.48)

is called the first-to-default intensity.

Let us denote

∂iG(t, . . . , t) =
∂G(t1, t2, . . . , tn)

∂ti
∣∣t1=t2=···=tn=t

.

Then we have the following elementary lemma summarizing the properties
of first-to-default intensities λ̃i and λ̃.

Lemma 2.5.2. The ith first-to-default intensity λ̃i satisfies

λ̃i(t) =

∫∞
t

. . .
∫∞

t
f(u1, . . . , ui−1, t, ui+1, . . . , un) du1 . . . dui−1dui+1 . . . dun

G(t, . . . , t)

=

∫∞
t

. . .
∫∞

t
F (du1, . . . , dui−1, t, dui+1, . . . , dun)

G(1)(t)
= −∂iG(t, . . . , t)

G(1)(t)
.

The first-to-default intensity λ̃ satisfies

λ̃(t) = − 1
G(1)(t)

dG(1)(t)
dt

=
f(1)(t)
G(1)(t)

,

where f(1)(t) is the probability density function of the random time τ(1). The
equality λ̃(t) =

∑n
i=1 λ̃i(t) holds for every t ∈ R+.

Proof. Clearly

λ̃i(t) = lim
h↓0

1
h

∫∞
t

. . .
∫ t+h

t
. . .

∫∞
t

f(u1, . . . , ui, . . . , un) du1 . . . dui . . . dun

G(t, . . . , t)

and thus the first asserted formula follows. The second equality follows
directly from (2.48) and the definition of the joint survival function G(1).
Finally, equality λ̃(t) =

∑n
i=1 λ̃i(t) is equivalent to the equality

lim
h↓0

1
h

n∑

i=1

Q(t < τi ≤ t + h | τ(1) > t) = lim
h↓0

1
h
Q(t < τ(1) ≤ t + h | τ(1) > t),

which in turn is easy to establish. ¤



2.5. Basket Credit Derivatives 91

Remarks 2.5.1. The ith first-to-default intensity λ̃i should not be confused
with the marginal intensity function λi of τi, which is defined as

λi(t) =
fi(t)
Gi(t)

, ∀ t ∈ R+,

where fi is the marginal probability density function of τi, that is,

fi(t) =
∫ ∞

0

. . .

∫ ∞

0

f(u1, . . . , ui−1, t, ui+1, . . . , un) du1 . . . dui−1dui+1 . . . dun

and where Gi(t) = 1 − Fi(t) =
∫∞

t
fi(u) du. Indeed, we have that λ̃i 6= λi,

in general. However, if τ1, . . . , τn are mutually independent under Q then
λ̃i = λi, that is, the first-to-default and marginal default intensities coincide.

It is also rather clear that the first-to-default intensity λ̃ is not equal to the
sum of marginal default intensities, that is, we have that λ̃(t) 6= ∑n

i=1 λi(t),
in general.

2.5.2 First-to-Default Representation Theorem

We will now prove an integral representation theorem for any G-martingale
stopped at τ(1) with respect to some finite collection ofG-martingales stopped
at τ(1). To this end, we define, for every i = 1, 2, . . . n,

M̂ i
t = Hi

t∧τ(1)
−

∫ t∧τ(1)

0

λ̃i(u) du, ∀ t ∈ R+. (2.49)

Then we have the following result, referred to as the first-to-default pre-
dictable representation theorem.

Proposition 2.5.1. Consider the G-martingale M̂t = EQ(Y | Gt), t ∈ [0, T ],
where Y is a Q-integrable random variable given by the expression

Y =
n∑

i=1

Zi(τi)1{τi≤T, τi=τ(1)} + X1{τ(1)>T} (2.50)

for some functions Zi : [0, T ] → R, i = 1, 2, . . . , n and some constant X.
Then M̂ admits the following representation

M̂t = EQ(Y ) +
n∑

i=1

∫

]0,t]

hi(u) dM̂ i
u (2.51)

where the functions hi, i = 1, 2, . . . , n are given by

hi(t) = Zi(t)− M̂t− = Zi(t)− M̃(t−), ∀ t ∈ [0, T ], (2.52)
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where M̃ is the unique function such that M̂t1{t<τ(1)} = M̃(t)1{t<τ(1)} for

every t ∈ [0, T ]. The function M̃ satisfies M̃0 = EQ(Y ) and

dM̃(t) =
n∑

i=1

λ̃i(t)
(
M̃(t)− Zi(t)

)
dt. (2.53)

More explicitly,

M̃(t) = EQ(Y ) exp
( ∫ t

0

λ̃(s) ds
)
−

∫ t

0

n∑

i=1

λ̃i(s)Zi(s) exp
( ∫ t

s

λ̃(u) du
)
ds.

Proof. To alleviate notation, we provide the proof of this result in a bivariate
setting only, so that τ(1) = τ1 ∧ τ2 and Gt = H1

t ∨ H2
t . We start by noting

that

M̂t = EQ(Z1(τ1)1{τ1≤T, τ2>τ1} | Gt) + EQ(Z2(τ2)1{τ2≤T, τ1>τ2} | Gt)
+ EQ(X1{τ(1)>T} | Gt),

and thus (see Lemma 2.5.1)

1{t<τ(1)}M̂t = 1{t<τ(1)}M̃(t) = 1{t<τ(1)}
3∑

i=1

Ỹ i(t)

where the auxiliary functions Ỹ i : [0, T ] → R, i = 1, 2, 3, are given by

Ỹ 1(t) =

∫ T

t
duZ1(u)

∫∞
u

dvf(u, v)
G(1)(t)

,

Ỹ 2(t) =

∫ T

t
dvZ2(v)

∫∞
v

duf(u, v)
G(1)(t)

,

Ỹ 3(t) =
XG(1)(T )
G(1)(t)

.

By elementary calculations and using Lemma 2.5.2, we obtain

dỸ 1(t)
dt

= −Z1(t)
∫∞

t
dvf(t, v)

G(1)(t)
−

∫ T

t
duZ1(u)

∫∞
u

dvf(u, v)
G2

(1)(t)
dG(1)(t)

dt

= −Z1(t)

∫∞
t

dvf(t, v)
G(1)(t)

− Ỹ 1(t)
G(1)(t)

dG(1)(t)
dt

= −Z1(t)λ̃1(t) + Ỹ 1(t)(λ̃1(t) + λ̃2(t)), (2.54)
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and thus, by the symmetry of the problem,

dỸ 2(t)
dt

= −Z2(t)λ̃2(t) + Ỹ 2(t)(λ̃1(t) + λ̃2(t)). (2.55)

Moreover,

dỸ 3(t)
dt

= −XG(1)(T )
G2

(1)(t)
dG(1)(t)

dt
= Ỹ 3(t)(λ̃1(t) + λ̃2(t)). (2.56)

Therefore, recalling that M̃(t) =
∑3

i=1 Ỹ i(t), we obtain from (2.54)–(2.56)

dM̃(t) = −λ̃1(t)
(
Z1(t)− M̃(t)

)
dt− λ̃2(t)

(
Z2(t)− M̃(t)

)
dt. (2.57)

Consequently, since the function M̃ is continuous, we deduce that, on the
event {τ(1) > t},

dM̂t = −λ̃1(t)
(
Z1(t)− M̂t−

)
dt− λ̃2(t)

(
Z2(t)− M̂t−

)
dt.

We shall now check that both sides of equality (2.51) coincide at time τ(1)

on the event {τ(1) ≤ T}. To this end, we note that, on the event {τ(1) ≤ T},

M̂τ(1) = Z1(τ1)1{τ(1)=τ1} + Z2(τ2)1{τ(1)=τ2},

whereas the right-hand side in (2.51) is equal to

M̂0 +
∫

]0,τ(1)[

h1(u) dM̂1
u +

∫

]0,τ(1)[

h2(u) dM̂2
u

+ 1{τ(1)=τ1}

∫

[τ(1)]

h1(u) dH1
u + 1{τ(1)=τ2}

∫

[τ(1)]

h2(u) dH2
u

= M̃(τ(1)−) +
(
Z1(τ1)− M̃(τ(1)−)

)
1{τ(1)=τ1}

+
(
Z2(τ2)− M̃(τ(1)−)

)
1{τ(1)=τ2}

= Z1(τ1)1{τ(1)=τ1} + Z2(τ2)1{τ(1)=τ2}

as M̃(τ(1)−) = M̂τ(1)−. Since the processes on both sides of equality (2.51)
are stopped at time τ(1), we conclude that equality (2.51) is valid for every
t ∈ [0, T ]. Let us finally observe that formula (2.53) was also established in
the proof (cf. formula (2.57)). ¤

The next result shows that the processes M̂ i are in fact G-martingales.
They will be referred to as the basic first-to-default martingales.

Corollary 2.5.1. For each i = 1, 2, . . . , n, the process M̂ i given by the
formula (2.49) is a G-martingale stopped at time τ(1).
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Proof. Let us fix k ∈ {1, 2, . . . , n}. We start by noting that the process M̂k

is manifestly stopped at τ(1). We also observe that

M̃k(t) = −
∫ t

0

λ̃i(u) du

is the unique function such that, for every t ∈ [0, T ],

1{t<τ(1)}M̂
i
t = 1{t<τ(1)}M̃

k(t).

Let us take hk(t) = 1 and hi(t) = 0 for any i 6= k in formula (2.51) or,
equivalently, let us set

Zk(t) = 1 + M̃k(t), Zi(t) = M̃k(t), i 6= k,

in definition (2.50) of the random variable Y . Moreover, let a constant
X in (2.50) be chosen in such a way that the random variable Y satisfies
EQ(Y ) = M̂k

0 . Then we may deduce from (2.51) that M̂k = M̂ and thus we
deduce from Proposition 2.5.1 that M̂k is indeed a G-martingale. ¤

2.5.3 Price Dynamics of Credit Default Swaps

As primary traded assets in the market model under consideration, we take
the constant savings account and a family of single-name CDSs with default
protections δi and spreads κi for i = 1, 2, . . . , n.

For convenience, we assume that the CDSs have the same maturity T ,
but this assumption can be easily relaxed. The ith traded CDS is formally
defined by its dividend process (Di

t, t ∈ [0, T ]), which is given by the formula

Di
t =

∫

]0,t]

δi(u) dHi
u − κi(t ∧ τi).

Consequently, the price at time t of the ith CDS equals

Si
t(κi) = EQ(1{t<τi≤T}δi(τi) | Gt)− κi EQ

(
1{t<τi}

(
(τi ∧ T )− t

) ∣∣Gt

)
.

To replicate a first-to-default claim, we only need to examine the dynamics
of each CDS on the interval [0, τ(1) ∧ T ]. The following lemma will prove
useful in this regard.

Lemma 2.5.3. We have, on the event {t < τ(1)},

Si
t(κi) = EQ

(
1{t<τ(1)=τi≤T}δi(τ(1)) +

∑

j 6=i

1{t<τ(1)=τj≤T}Si
τ(1)

(κi)
∣∣∣Gt

)

− EQ
(
κi1{t<τ(1)}(τ(1) ∧ T − t)

∣∣∣Gt

)
.
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Proof. We first note that the price Si
t(κi) can be represented as follows, on

the event {t < τ(1)},

Si
t(κi) = EQ

(
1{t<τ(1)=τi≤T}δi(τ(1))

∣∣∣Gt

)

+
∑

j 6=i

EQ
(
1{t<τ(1)=τj≤T}1{τ(1)<τi≤T}δi(τi ∧ T )

∣∣∣Gt

)

− κi

∑

j 6=i

EQ
(
1{t<τ(1)=τj≤T}1{τ(1)<τi}(τi − τ(1))

∣∣∣Gt

)

− κi EQ
(
1{t<τ(1)}(τ(1) ∧ T − t)

∣∣Gt

)
.

By conditioning first on the σ-field Gτ(1) , we obtain the stated expression for
Si

t(κi). The details are left to the reader. ¤
The representation established in Lemma 2.5.3 is by no means surprising;

it merely shows that in order to compute the price of a CDS prior to the first
default, we can either do the computations in a single step, by considering
the cash flows occurring on ]t, τi ∧ T ] or, alternatively, we can first compute
the price of the contract at time τ(1) ∧ T and subsequently value all cash
flows occurring between t and τ(1) ∧ T .

In view of Lemma 2.5.3, we can argue that in what follows, instead of
considering the original ith CDS maturing at T , we can deal with the corre-
sponding synthetic CDS contract with the random maturity τ(1) ∧ T .

Similarly as in Section 2.4.1, we will write Si
t(κi) = 1{t<τ(1)}S̃

i
t(κi), where

the pre-default price S̃i
t(κi) satisfies

S̃i
t(κi) = P̃ i(t, T )− κiÃ

i(t, T ),

where P̃ i(t, T ) and κiÃ
i(t, T ) stand for the pre-default values of the protec-

tion leg and the fee leg, respectively.
For any j 6= i, we define a function Si

t|j(κi) : [0, T ] → R, which represents
the price of the ith CDS at time t on the event {τ(1) = τj = t}. Formally,
this quantity is defined as the unique function satisfying

1{τ(1)=τj≤T}Si
τ(1)

(κi) = 1{τ(1)=τj≤T}Si
τ(1)|j(κi),

so that
1{τ(1)≤T}Si

τ(1)
(κi) =

∑

j 6=i

1{τ(1)=τj≤T}Si
τ(1)|j(κi).

Let us examine, for instance, the case of two credit names. Then the
function S1

t|2(κ1), t ∈ [0, T ], represents the price of the first CDS at time t

on the event {τ(1) = τ2 = t}.
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Lemma 2.5.4. The function S1
v|2(κ1), v ∈ [0, T ], equals

S1
v|2(κ1) =

∫ T

v
δ1(u)f(u, v)du∫∞
v

f(u, v) du
− κ1

∫ T

v
du

∫∞
u

dzf(z, v)∫∞
v

f(u, v) du
. (2.58)

Proof. Note that the conditional cumulative distribution function of τ1 given
that τ1 > τ2 = v equals, for u ∈ [v,∞],

Q(τ1 ≤ u | τ1 > τ2 = v) = Fτ1|τ1>τ2=v(u) =

∫ u

v
f(z, v) dz∫∞

v
f(z, v) dz

,

so that the conditional tail equals, for u ∈ [v,∞],

Gτ1|τ1>τ2=v(u) = 1− Fτ1|τ1>τ2=v(u) =

∫∞
u

f(z, v) dz∫∞
v

f(z, v) dz
.

Let J be the right-hand side of (2.58). It is clear that

J = −
∫ T

v

δ1(u) dGτ1|τ1>τ2=v(u)− κ1

∫ T

v

Gτ1|τ1>τ2=v(u) du.

Combining Lemma 2.4.1 with the fact that S1
τ(1)

(κi) is equal to the condi-
tional expectation with respect to σ-field Gτ(1) of the cash flows of the ith
CDS on ]τ(1) ∨ τi, τi ∧ T ], we conclude that J coincides with S1

v|2(κ1), the
price of the first CDS on the event {τ(1) = τ2 = v}. ¤

The following result extends Lemma 2.4.2.

Lemma 2.5.5. The dynamics of the pre-default price S̃i
t(κi) are

dS̃i
t(κi) = λ̃(t)S̃i

t(κi) dt +
(
κi − δi(t)λ̃i(t)−

n∑

j 6=i

Si
t|j(κi)λ̃i(t)

)
dt (2.59)

where λ̃(t) =
∑n

i=1 λ̃i(t) or, equivalently,

dS̃i
t(κi) = λ̃i(t)

(
S̃i

t(κi)− δi(t)
)
dt (2.60)

+
∑

j 6=i

λ̃j(t)
(
S̃i

t(κi)− Si
t|j(κi)

)
dt + κi dt.

The cumulative price of the ith CDS stopped at τ(1) satisfies

Sc,i
t (κi) = Si

t(κi) +
∫

]0,t]

δi(u) dHi
u∧τ(1)

(2.61)

+
∑

j 6=i

∫

]0,t]

Si
u|j(κi) dHj

u∧τ(1)
− κi(τ(1) ∧ t),
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and thus

dSc,i
t (κi) =

(
δi(t)− S̃i

t−(κi)
)
dM̂ i

t +
∑

j 6=i

(
Si

t|j(κi)− S̃i
t−(κi)

)
dM̂ j

t . (2.62)

Proof. We shall consider the case n = 2. Using the formula derived in
Lemma 2.5.3, we obtain

P̃ 1(t, T ) =

∫ T

t
du δ1(u)

∫∞
u

dvf(u, v)
G(1)(t)

+

∫ T

t
dv S1

v|2(κ1)
∫∞

v
duf(u, v)

G(1)(t)
.

By adapting equality (2.54), we get

dP̃ 1(t, T ) =
(
(λ̃1(t) + λ̃2(t))g̃1(t)− λ̃1(t)δ1(t)− λ̃2(t)S1

t|2(κ1)
)
dt.

To establish (2.59)–(2.60), we need also to examine the fee leg. Its price
equals

EQ
(
1{t<τ(1)}κ1

(
(τ(1) ∧ T )− t

) ∣∣∣Gt

)
= 1{t<τ(1)}κ1Ã

i(t, T ),

To evaluate the conditional expectation above, it suffices to use the cumula-
tive distribution function F(1) of the random time τ(1). As in Section 2.4.1
(see the proof of Lemma 2.4.1), we obtain

Ãi(t, T ) =
1

G(1)(t)

∫ T

t

G(1)(u) du, (2.63)

and thus
dÃi(t, T ) =

(
1 + (λ̃1(t) + λ̃2(t))Ãi(t, T )

)
dt.

Since S̃1
t (κ1) = P̃ i(t, T ) − κiÃ

i(t, T ), the formulae (2.59) and (2.60) follow.
Formula (2.61) is rather clear. Finally, dynamics (2.62) can be deduced easily
from (2.60) and (2.61). ¤

2.5.4 Valuation of a First-to-Default Claim

In this section, we shall analyze the risk-neutral valuation of first-to-default
claims on a basket of n credit names.

Definition 2.5.2. A first-to-default claim (FTDC) with maturity T is a
defaultable claim (X,A, Z, τ(1)) where X is a constant amount payable at
maturity if no default occurs, A : [0, T ] → R with A0 = 0 is a continuous
function of bounded variation representing the dividend stream up to τ(1),
and Z = (Z1, Z2, . . . , Zn) is the vector of functions Zi : [0, T ] → R where
Zi(τ(1)) specifies the recovery received at time τ(1) if the ith name is the first
defaulted name, that is, on the event {τi = τ(1) ≤ T}.
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We define the risk-neutral value π of an FTDC by setting

πt =
n∑

i=1

EQ
(
Zi(τi)1{t<τ(1)=τi≤T} + 1{t<τ(1)}

∫ T

t

(1−H(1)
u ) dA(u)

∣∣∣Gt

)

+ EQ
(
X1{τ(1)>T}

∣∣∣Gt

)

and the risk-neutral cumulative value π̂ of an FTDC by the formula

π̂t =
n∑

i=1

EQ
(
Zi(τi)1{t<τ(1)=τi≤T} + 1{t<τ(1)}

∫ T

t

(1−H(1)
u ) dA(u)

∣∣∣Gt

)

+ EQ(X1{τ(1)>T}|Gt) +
n∑

i=1

∫

]0,t]

Zi(u) dHi
u∧τ(1)

+
∫ t

0

(1−H(1)
u ) dA(u)

where the last two terms represent the past dividends. Let us stress that
the risk-neutral valuation of an FTDC will be later supported by replication
arguments (see Theorem 2.5.1) and thus risk-neutral value π of an FTDC
will be shown to be its replication price.

By the pre-default risk-neutral value associated with a G-adapted process
π, we mean the function π̃ such that πt1{t<τ(1)} = π̃(t)1{t<τ(1)} for every
t ∈ [0, T ]. Direct calculations lead to the following result, which can also be
deduced from Proposition 2.5.1.

Lemma 2.5.6. The pre-default risk-neutral value of an FTDC equals

π̃(t) =
n∑

i=1

Ψi(t)
G(1)(t)

+
1

G(1)(t)

∫ T

t

G(1)(u) dA(u) + X
G(1)(T )
G(1)(t)

(2.64)

where

Ψi(t) =
∫ T

ui=t

∫ ∞

u1=ui

. . .

∫ ∞

ui−1=ui

∫ ∞

ui+1=ui

. . .

∫ ∞

un=ui

Zi(ui)

F (du1, . . . , dui−1, dui, dui+1, . . . , dun).

The next result extends Proposition 2.4.2 to the multi-name setup. Its
proof is similar to the proof of Lemma 2.5.5 and thus it is omitted.

Proposition 2.5.2. The pre-default risk-neutral value of an FTDC satisfies

dπ̃(t) =
∑

i=1

λ̃i(t)
(
π̃(t)− Zi(t)

)
dt− dA(t).

Moreover, the risk-neutral value of an FTDC satisfies

dπt = −
n∑

i=1

π̃(t−) dM̂ i
u − dA(τ(1) ∧ t) (2.65)
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and the risk-neutral cumulative value π̂ of an FTDC satisfies

dπ̂t =
n∑

i=1

(Zi(t)− π̃(t−)) dM̂ i
u.

2.5.5 Replication of a First-to-Default Claim

Let the savings account with the price B = 1 and single-name credit default
swaps with prices S1(κ1), . . . , Sn(κn) be primary traded assets. We say
that a G-predictable process φ = (φ0, φ1, . . . , φn) and a function C of finite
variation with C(0) = 0 define a self-financing strategy with dividend stream
C if the wealth process V (φ,C), defined as

Vt(φ,C) = φ0
t +

n∑

i=1

φi
tS

i
t(κi),

satisfies

dVt(φ,C) =
n∑

i=1

φi
t

(
dSi

t(κi)+dDi
t

)−dC(t) =
n∑

i=1

φi
t dSc,i

t (κi)−dC(t) (2.66)

where Si(κi) (Sc,i(κi), respectively) is the price (cumulative price, respec-
tively) of the ith traded CDS.

Definition 2.5.3. We say that a trading strategy (φ, C) replicates an FTDC
(X,A, Z, τ(1)) whenever the following conditions are satisfied:
(i) the processes φ = (φ0, φ1, . . . , φn) and V (φ,C) are stopped at τ(1) ∧ T ,
(ii) C(τ(1) ∧ t) = A(τ(1) ∧ t) for every t ∈ [0, T ],
(iii) the equality Vτ(1)∧T (φ,C) = Y holds, where the random variable Y
equals

Y = X1{τ(1)>T} +
n∑

i=1

Zi(τ(1))1{τi=τ(1)≤T}.

We are now in a position to extend Theorem 2.4.1 to the case of a first-
to-default claim written on a basket of n reference credit names.

Theorem 2.5.1. Assume that detN(t) 6= 0 for every t ∈ [0, T ], where

N(t) =




δ1(t)− S̃1
t (κ1) S2

t|1(κ2)− S̃2
t (κ2) . . . Sn

t|1(κn)− S̃n
t (κn)

S1
t|2(κ1)− S̃1

t (κ1) δ2(t)− S̃2
t (κ2) . . . Sn

t|2(κn)− S̃n
t (κn)

...
...

. . .
...

S1
t|n(κ1)− S̃1

t (κ1) S2
t|n(κ1)− S̃2

t (κ1) . . . δn(t)− S̃n
t (κn)
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For every t ∈ [0, T ], let φ̃(t) = (φ̃1(t), φ̃2(t), . . . , φ̃n(t)) be the unique solution
to the linear equation N(t)φ̃(t) = h(t) where h(t) = (h1(t), h2(t), . . . , hn(t))
with hi(t) = Zi(t)− π̃(t−) and where π̃ is given by Lemma 2.5.6. More ex-
plicitly, the functions φ̃1, φ̃2, . . . , φ̃n satisfy, for t ∈ [0, T ] and i = 1, 2, . . . , n,

φ̃i(t)
(
δi(t)− S̃i

t(κi)
)

+
∑

j 6=i

φ̃j(t)
(
Sj

t|i(κj)− S̃j
t (κj)

)
= Zi(t)− π̃(t−). (2.67)

Let us set φi
t = φ̃i(τ(1) ∧ t) for i = 1, 2, . . . , n and let, for every t ∈ [0, T ],

φ0
t = Vt(φ,A)−

n∑

i=1

φi
tS

i
t(κi), (2.68)

where the process V (φ,A) is given by the formula

Vt(φ,A) = π̃(0) +
n∑

i=1

∫

]0,τ(1)∧t]

φ̃i(u) dSc,i
u (κi)−A(τ(1) ∧ t). (2.69)

Then the trading strategy (φ,A) replicates the FTDC (X, A,Z, τ(1)).

Proof. The proof is based on similar arguments to those used in the proof
of Theorem 2.4.1. It suffices to check that under the assumption of the
theorem, for a trading strategy (φ, A) stopped at τ(1), we obtain from (2.62)
and (2.66) that

dVt(φ, A) =
n∑

i=1

φi
t

((
δi(t)− S̃i

t−(κi)
)
dM̂ i

t +
∑

j 6=i

(
Si

t|j(κi)− S̃i
t−(κi)

)
dM̂ j

t

)

− dA(τ(1) ∧ t).

For φi
t = φ̃i(τ(1) ∧ t), where the functions φ̃1, φ̃2, . . . , φ̃n solve (2.67), we thus

obtain

dVt(φ,A) =
n∑

i=1

(Zi(t)− π̃(t−)) dM̂ i
t − dA(τ(1) ∧ t).

By comparing the last formula with (2.65), we conclude that if, in addi-
tion, V0(φ,A) = π0 = π̃0 and φ0 is given by (2.68) then the strategy (φ,A)
replicates an FTDC (X, A, Z, τ(1)). ¤

2.5.6 Conditional Default Distributions

In the case of first-to-default claims, it was enough to consider the uncon-
ditional distribution of default times. As expected, in order to deal with a
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general basket defaultable claim, we need to analyze conditional distribu-
tions of default times. It is possible to extend the approach presented in the
preceding sections and to explicitly derive the dynamics of all processes of
interest on the time interval [0, T ]. However, since we deal here with a simple
model of joint defaults, it suffices to make a non-restrictive assumption that
we work on the canonical space Ω = Rn and to use simple arguments based
on the conditioning with respect to past defaults.

Suppose that k names out of a total of n names have already defaulted.
To introduce a convenient notation, we adopt the convention that the n− k
non-defaulted names are in their original order j1 < · · · < jn−k, whereas the
k defaulted names i1, . . . , ik are ordered in such a way that u1 < · · · < uk.
For the sake of brevity, we write Dk = {τi1 = u1, . . . , τik

= uk} to denote
the information structure of the past k defaults.

Definition 2.5.4. The joint conditional distribution function of default
times τj1 , . . . , τjn−k

equals, for every t1, . . . , tn−k > uk,

F (t1, . . . , tn−k | τi1 = u1, . . . , τik
= uk)

= Q
(
τj1 ≤ t1, . . . , τjn−k

≤ tn−k | τi1u1, . . . , τik
= uk

)
.

The joint conditional survival function of default times τj1 , . . . , τjn−k
is

given by the expression

G(t1, . . . , tn−k | τi1 = u1, . . . , τik
= uk)

= Q
(
τj1 > t1, . . . , τjn−k

> tn−k | τi1 = u1, . . . , τik
= uk

)

for every t1, . . . , tn−k > uk.

As expected, the conditional first-to-default intensities are defined us-
ing the joint conditional distributions, instead of the joint (unconditional)
distribution of default times. We will denote G(1)(t |Dk) = G(t, . . . , t |Dk).

Definition 2.5.5. Given the event Dk, for any jl ∈ {j1, . . . , jn−k} the
conditional first-to-default intensity of a surviving name jl is denoted by
λ̃jl

(t |Dk) = λ̃jl
(t | τi1 = u1, . . . , τik

= uk). It is given by the formula

λ̃jl
(t |Dk) =

∫∞
t

∫∞
t

. . .
∫∞

t
dF (t1, . . . , tl−1, t, tl+1, . . . , tn−k|Dk)

G(1)(t |Dk)

for every t ∈ [uk, T ].

In Section 2.5.3, we introduced the processes Si
t|j(κj) representing the

value of the ith CDS at time t on the event {τ(1) = τj = t}. According to
the notation introduced above, we thus dealt with the conditional value of
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the ith CDS with respect to the event D1 = {τj = t}. It is clear that to
value a CDS for each surviving name, one can proceed as prior to the first
default, except that one should now use the conditional distribution

F (t1, . . . , tn−1 |D1) = F (t1, . . . , tn−1 | τj = j), ∀ t1, . . . , tn−1 ∈ [t, T ],

rather than the unconditional distribution F (t1, . . . , tn), which was employed
in Proposition 2.5.6. The same argument can be applied to any default event
Dk. The corresponding conditional version of Proposition 2.5.6 is rather
easy to formulate and prove and thus we decided not to provide an explicit
conditional pricing formula here.

The conditional first-to-default intensities introduced in Definition 2.5.5
will allow us to construct the conditional first-to-default martingales in a
similar way as we defined the first-to-default martingales M i associated with
the first-to-default intensities λ̃i. However, since any name can default at
any time, we need to introduce an entire family of conditional martingales,
whose compensators are based on intensities conditioned on the information
about the past defaults.

Definition 2.5.6. Given the default event Dk = {τi1 = u1, . . . , τik
= uk},

for each surviving name jl ∈ {j1, . . . , jn−k}, we define the basic conditional
first-to-default martingale M̂ jl

t|Dk
by setting, for t ∈ [uk, T ],

M̂ jl

t|Dk
= Hjl

t∧τ(k+1)
−

∫ t

uk

1{u<τ(k+1)}λ̃jl
(u |Dk) du. (2.70)

The process M̂ jl

t|Dk
, t ∈ [uk, T ], is a martingale under the conditional proba-

bility measure Q|Dk, that is, the probability measure Q conditioned on the
event Dk and with respect to the filtration generated by default processes
of the surviving names, that is, the filtration GDk

t := Hj1
t ∨ · · · ∨ Hjn−k

t for
t ∈ [uk, T ].

Conditionally on the event Dk, we have τ(k+1) = τj1 ∧ τj2 ∧ · · · ∧ τjn−k
,

so that τ(k+1) is the first default for all surviving names. Formula (2.70) is
thus a rather straightforward generalization of formula (2.49). In particular,
for k = 0 we obtain M̂ i

t|D0
= M̂ i

t , t ∈ [0, T ], for any i = 1, 2, . . . , n.

The martingale property of the process M̂ jl

t|Dk
, as stated in Definition

2.5.6, follows from Proposition 2.5.3; this property can also be seen as a
conditional version of Corollary 2.5.1.

We are in a position to state the conditional version of the first-to-default
predictable representation theorem of Section 2.5.2. Formally, this result is
nothing else than a restatement of the martingale representation formula
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of Proposition 2.5.1 in terms of conditional first-to-default intensities and
conditional first-to-default martingales.

Let us fix an event Dk and let us write GDk = Hj1 ∨ · · · ∨Hjn−k .

Proposition 2.5.3. Let Y be a random variable given by the formula

Y =
n−k∑

l=1

Zjl|Dk
(τjl

)1{τjl
≤T, τjl

=τ(k+1)} + X1{τ(k+1)>T}

for some functions Zjl|Dk
: [uk, T ] → R, l = 1, 2, . . . , n−k and some constant

X (possibly dependent on Dk). Let us define, for t ∈ [uk, T ],

M̂t|Dk
= EQ|Dk

(Y | GDk
t ).

Then the process M̂t|Dk
, t ∈ [uk, T ], is a GDk -martingale with respect to the

conditional probability measure Q|Dk.
Furthermore, M̂t|Dk

admits the following representation, for t ∈ [uk, T ],

M̂t|Dk
= M̂0|Dk

+
n−k∑

l=1

∫

]uk,t]

hjl
(u|Dk) dM̂ jl

u|Dk
,

where the processes hjl
are given by

hjl
(t |Dk) = Zjl|Dk

(t)− M̂t−|Dk
, ∀ t ∈ [uk, T ].

Proof. The proof relies on a rather straightforward extension of arguments
used in the proof of Proposition 2.5.1 to the context of conditional default
distributions. Therefore, we leave the details to the reader. ¤

2.5.7 Recursive Valuation of a Basket Claim

We are ready to extend the results developed in the context of first-to-default
claims to value and hedge general basket claims. A generic basket claim is
any contingent claim that pays a specified amount on each default from a
basket of n credit names and a constant amount at maturity T if no defaults
have occurred prior to or at T .

Definition 2.5.7. A basket claim associated with a family of n credit names
is given as (X, A, Z̄, τ̄) where X is a constant amount payable at maturity
only if no default occurs prior to or at T , the vector τ̄ = (τ1, . . . , τn) repre-
sents default times and the time-dependent matrix Z̄ represents the recovery
payoffs at defaults, specifically,

Z̄ =




Z1(t |D0) Z2(t |D0) . . . Zn(t |D0)
Z1(t |D1) Z2(t |D1) . . . Zn(t |D1)

...
...

. . .
...

Z1(t |Dn−1) Z2(t |Dn−1) . . . Zn(t |Dn−1)


 .
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Note that the above matrix Z̄ is presented in the shorthand notation.
In fact, in each row one needs to specify, for an arbitrary choice of the
event Dk = {τi1 = u1, . . . , τik

= uk} and any name jl /∈ {i1, . . . , ik}, the
conditional payoff function at the moment of the (k + 1)th default, that is,

Zjl
(t |Dk) = Zjl

(t | τi1 = u1, . . . , τik
= uk), ∀ t ∈ [uk, T ].

In the financial interpretation, the function Zjl
(t |Dk) specifies the recov-

ery payment at the default of the name jl, conditional on the event Dk and
on the event {τjl

= τ(k+1) = t}, that is, assuming that the name jl is the
first defaulted name among all surviving names.

In particular, Zi(t |D0) := Zi(t) represents the recovery payment at the
default of the ith name at time t ∈ [0, T ], given that no defaults have occurred
prior to t, that is, at the moment of the first default. We will use the symbol
D0 to denote the situation where no defaults have occurred prior to time t.

Example 2.5.1. Let us consider the kth-to-default claim for some fixed
k ∈ {1, 2, . . . , n}. Assume that the payoff at the kth default depends only on
the moment of the kth default and the identity of the kth defaulted name.
Then all rows of the matrix Z̄ are equal to zero, except for the kth row,
which equals, for every t ∈ [0, T ],

[Z1(t | k − 1), Z2(t | k − 1), . . . , Zn(t | k − 1)].

We write here k − 1, rather than Dk−1, in order to emphasize that the
knowledge of timings and identities of the k defaulted names is not relevant
under the present assumptions.

More generally, for a generic basket claim in which the payoff at the
ith default depends on the time of the ith default and identity of the ith
defaulted name only, the recovery matrix Z̄ reads

Z̄ =




Z1(t) Z2(t) . . . Zn(t)
Z1(t |1) Z2(t |1) . . . Zn(t |1)

...
...

. . .
...

Z1(t |n− 1) Z2(t |n− 1) . . . Zn(t |n− 1)




where Zj(t |k − 1) represents the payoff at the moment τ(k) = t of the kth
default if j is the kth defaulting name, that is, on the event {τj = τ(k) = t}.
This shows that in several practically important examples of basket credit
derivatives, the matrix Z̄ of recoveries will have a relatively simple structure.

It is rather clear that any basket claim can be represented as a static port-
folio of kth-to-default claims for k = 1, 2, . . . , n. However, this decomposition
does not seem to be advantageous for the purposes of dynamic hedging.
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In what follows, we prefer to represent a basket claim as a sequence
of conditional first-to-default claims, with the same value between any two
defaults as a basket claim under consideration. Using this approach, we
will be able to directly apply previously developed results for the case of
first-to-default claims and thus to produce a rather straightforward recursive
algorithm for the valuation and hedging of a basket claim.

Instead of stating a formal result, which would require heavy notation,
we prefer to focus first on the computational algorithm for valuation and
hedging of a basket claim. An important concept in this algorithm is the
conditional pre-default price

Z̃(t |Dk) = Z̃(t | τi1 = u1, . . . , τik
= uk), ∀ t ∈ [uk, T ],

of a conditional first-to-default claim. The function Z̃(t |Dk), t ∈ [uk, T ], is
defined as the risk-neutral value of a conditional FTDC on n − k surviving
names, with the following recovery payoffs upon the first default at any date
t ∈ [uk, T ]

Ẑjl
(t |Dk) = Zjl

(t |Dk) + Z̃(t |Dk, τjl
= t). (2.71)

Assume for the moment that for any name jm /∈ {i1, . . . , ik, jl} the condi-
tional recovery payoff Ẑjm

(t | τi1 = u1, . . . , τik
= uk, τjl

= uk+1) upon the
first default after date uk+1 is known. Then we can compute the function

Z̃(t | τi1 = u1, . . . , τik
= uk, τjl

= uk+1), ∀ t ∈ [uk+1, T ],

as in Lemma 2.5.6, but using the conditional default distribution. The as-
sumption that the conditional payoffs are known is not restrictive, since the
functions appearing in right-hand side of (2.71) are known from the previous
step in the following recursive pricing algorithm.

• First step. We first derive the value of a basket claim assuming that
all but one defaults have already occurred. Let

Dn−1 = {τi1 = u1, . . . , τin−1 = un−1}.
For any t ∈ [un−1, T ], we deal with the payoffs

Ẑj1(t |Dn−1) = Zj1(t |Dn−1) = Zj1(t | τi1 = u1, . . . , τin−1 = un−1),

for j1 /∈ {i1, . . . , in−1} where the recovery payment Zj1(t |Dn−1) for
t ∈ [un−1, T ] is given by the specification of the basket claim. Hence we
can evaluate the pre-default value Z̃(t |Dn−1) at any time t ∈ [un−1, T ],
as a value of a conditional first-to-default claim with the said payoff,
using the conditional distribution under Q|Dn−1 of the random time
τj1 = τin on the interval [un−1, T ].
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• Second step. In this step, we assume that all but two names have
already defaulted. Let

Dn−2 = {τi1 = u1, . . . , τin−2 = un−2}.
For each surviving name j1, j2 /∈ {i1, . . . , in−2}, the payoff Ẑjl

(t |Dn−2)
for t ∈ [un−2, T ], of a basket claim at the moment of the next de-
fault formally comprises the recovery payoff from the defaulted name
jl, which is equal to Zjl

(t |Dn−2), as well as the pre-default value
Z̃(t |Dn−2, τjl

= t), t ∈ [un−2, T ], which was computed in the first
step. Therefore, we have, for every t ∈ [un−2, T ],

Ẑjl
(t |Dn−2) = Zjl

(t |Dn−2) + Z̃(t |Dn−2, τjl
= t).

To find the value of a basket claim between the moments of the (n−2)th
and the (n− 1)th default, it suffices to compute the pre-default value
of the conditional FTDC associated with the two surviving names,
j1, j2 /∈ {i1, . . . , in−2}. Since the conditional payoffs Ẑj1(t |Dn−2) and
Ẑj2(t |Dn−2) are already known at this stage, it is sufficient to compute
the expectation under the conditional probability measure Q|Dn−2 in
order to find the pre-default value of this conditional FTDC for any
t ∈ [un−2, T ].

• General induction step. We now assume that exactly k defaults
have occurred, that is, we assume that we are working on the event

Dk = {τi1 = u1, . . . , τik
= uk}.

From the preceding step, we know the function Z̃(t |Dk+1) where the
event Dk+1 is given as Dk+1 = {τi1 = u1, . . . , τik

= uk, τjl
= uk+1}.

In order to evaluate Z̃(t |Dk), we set, for t ∈ [uk, T ],

Ẑjl
(t |Dk) = Zjl

(t |Dk) + Z̃(t |Dk, τjl
= t), (2.72)

for any j1, . . . , jn−k /∈ {i1, . . . , ik} and we compute Z̃(t |Dk) for every
t ∈ [uk, T ] as the risk-neutral value under the conditional probability
Q|Dk of the conditional FTDC with payoffs given by (2.72).

We are in a position to state the valuation result for a basket claim, which
can be formally established using the reasoning outlined above.

Proposition 2.5.4. The risk-neutral value at time t ∈ [0, T ] of a basket
claim (X,A, Z̄, τ̄) equals, for t ∈ [0, T ],

πt =
n−1∑

k=0

Z̃(t |Dk)1[τ(k)∧T,τ(k+1)∧T [(t),
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where Dk = Dk(ω) = {τi1(ω) = u1, . . . , τik
(ω) = uk} for k = 1, 2, . . . , n and

D0 means that no defaults have yet occurred.

Proof. Assume that we are at some date t ∈ [0, T ] and suppose that exactly
k names (for some k = 1, 2, . . . , n) have already defaulted, hence the set Dk

is known to us (so that t ≥ uk). Form the point of view of valuation, the
basket claim can be seen this point of time as a conditional FTDC with the
conditional payoff Ẑ(t |Dk) = Z(t |Dk) + Z̃(t |Dk+1). We can now use the
pricing formula of Proposition 2.5.6 (using conditional distribution) for an
FTDC in order to derive the value of Z̃(t |Dk) for every t ∈ [uk, T ]. ¤

2.5.8 Recursive Replication of a Basket Claim

From our discussion, it is clear that a basket claim can be conveniently
interpreted as a specific sequence of conditional first-to-default claims and
thus the replication of a basket claim relies on hedging of a sequence of
conditional first-to-default claims. In the next result, we denote τ(0) = 0.

Theorem 2.5.2. For any k = 0, 1, . . . , n, the replicating strategy φ for a
basket claim (X,A, Z̄, τ̄) on the time interval [τk∧T, τk+1∧T ] coincides with
the replicating strategy for the conditional FTDC with payoffs Ẑ(t |Dk) given
by (2.72). The replicating strategy φ = (φ0, φj1, . . . , φjn−k , A), corresponding
to the units of savings account and units of CDS on each surviving name at
time t, has the wealth process

Vt(φ, A) = φ0
t +

n−k∑

l=1

φjl
t Sjl

t (κjl
),

where the processes φjl , l = 1, 2, . . . , n−k can be computed by the conditional
version of Theorem 2.5.1.

Proof. We know that the basket claim can be decomposed into a series
of conditional first-to-default claims. So, at any given moment of time t ∈
[0, T ], assuming that k defaults have already occurred, our basket claim
is equivalent to the conditional FTDC with payoffs Ẑ(t |Dk) and the pre-
default value Z̃(t |Dk). This conditional FTDC is alive up to the next default
τ(k+1) or maturity T , whichever comes first.

It is thus clear that the replicating strategy of a basket claim over the ran-
dom interval [τk ∧T, τk+1 ∧T ] need to coincide with the replicating strategy
for this conditional first-to-default claim and thus it can be found by pro-
ceeding along the same lines as in Theorem 2.5.1, but using the conditional
distribution of defaults for surviving names under Q|Dk. ¤
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2.6 Applications to Copula-Based Models

We will now apply the general results to simple models, in which some cop-
ula functions (see Section 5.4 for the definition) are used to describe the
dependence of default times. For various applications of copula functions
to credit risk modeling and to valuation of credit derivatives, the interested
reader is referred to, for instance, Andersen and Sidenius [4], Burtschell et
al. [45, 46], Cherubini and Luciano [55], Cherubini et al. [56], Embrechts et
al. [82], Frey et al. [89], Gennheimer [90], Giesecke [91], Kijima et al. [121],
Laurent and Gregory [134], Li [137], McNeil et al. [142], and Schönbucher
and Schubert [161].

For simplicity of exposition, we only consider the bivariate situation and
we work under the following standing assumptions.

Assumption 2.6.1. We assume that:

• we are given a first-to-default claim (X,A, Z, τ(1)) where Z = (Z1, Z2)
for some constants Z1, Z2 and X,

• the default times τ1 and τ2 have exponential marginal distributions
with parameters λ1 and λ2,

• the protection δi of the ith credit default swap is constant and κi = λiδi

for i = 1, 2.

2.6.1 Independent Default Times

Let us first consider the case where the default times τ1 and τ2 are inde-
pendent (of course, this corresponds to the product copula C(u, v) = uv).
In view of independence, the marginal intensities and the first-to-default
intensities can be easily shown to coincide. We have, for i = 1, 2,

Gi(u) = Q(τi > u) = e−λiu,

and thus the joint survival probability equals, for every (u, v) ∈ R2
+,

G(u, v) = G1(u)G2(v) = e−λ1ue−λ2v.

Consequently, we obtain

F (du, dv) = G(du, dv) = λ1λ2e
−λ1ue−λ2v dudv = f(u, v) dudv

and
G(du, u) = −λ1e

−(λ1+λ2)u du.
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Proposition 2.6.1. Assume that the default times τ1 and τ2 are indepen-
dent. Then the replicating strategy for an FTDC (X, 0, Z, τ(1)) is given as

φ̃1(t) =
Z1 − π̃(t)

δ1
, φ̃2(t) =

Z2 − π̃(t)
δ2

,

where

π̃(t) =
(Z1λ1 + Z2λ2)

λ1 + λ2
(1− e−(λ1+λ2)(T−t)) + Xe−(λ1+λ2)(T−t).

Proof. From the previous remarks, we obtain

π̃(t) =
Z1

∫ T

t

∫∞
u

dF (u, v)
G(t, t)

+
Z2

∫ T

t

∫∞
v

dF (u, v)
G(t, t)

+ X
G(T, T )
G(t, t)

=
Z1λ1

∫ T

t
e−(λ1+λ2)udu

e−(λ1+λ2)t
+

Z2λ2

∫ T

t
e−(λ1+λ2)vdv

e−(λ1+λ2)t
+ X

G(T, T )
G(t, t)

=
Z1λ1

(λ1 + λ2)
(1− e−(λ1+λ2)(T−t)) +

Z2λ2

(λ1 + λ2)
(1− e−(λ1+λ2)(T−t))

+ X
G(T, T )
G(t, t)

,

and thus

π̃(t) =
(Z1λ1 + Z2λ2)

λ1 + λ2
(1− e−(λ1+λ2)(T−t)) + Xe−(λ1+λ2)(T−t).

Under the assumption of independence of default times, we also have that
Si

t|j(κi) = S̃i
t(κi) for i, j = 1, 2 and i 6= j. Furthermore, from Example 2.4.1,

we have that S̃i
t(κi) = 0 for t ∈ [0, T ] and thus the matrix N(t) in Theorem

2.5.1 reduces to

N(t) =
[

δ1 0
0 δ2

]
.

The replicating strategy can be found easily by solving the linear equation
N(t)φ̃(t) = h(t) where h(t) = (h1(t), h2(t)) with the function hi given by the
formula

hi(t) = Zi − π̃(t−) = Zi − π̃(t)

for i = 1, 2. ¤
As an important example of a first-to-default claim, we will now consider

the case of a first-to-default swap (FTDS). A stylized FTDS is formally de-
fined by setting X = 0, A(t) = −κ(1)t where κ(1) is the swap spread and
Zi(t) = δi ∈ [0, 1) for some constants δi, i = 1, 2. Hence an FTDS can be
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equivalently seen as the FTDC (0,−κ(1)t, (δ1, δ2), τ(1)). Under the present
assumptions, we obtain

π0 = π̃(0) =
1− eλT

λ

(
(λ1δ1 + λ2δ2)− κ(1)

)

where we denote λ = λ1 + λ2. The FTDS market spread is the level of
κ(1) that makes the FTDS valueless at initiation. Hence, in this elementary
example, this spread equals λ1δ1 + λ2δ2. In addition, it can be shown that,
under the present assumptions, we have that π̃(t) = 0 for every t ∈ [0, T ].

Suppose that we wish to hedge the short position in the FTDS using
two CDSs, say CDSi, i = 1, 2, with respective default times τi, protection
payments δi and spreads κi = λiδi. Recall that in the present setup we have
that, for every t ∈ [0, T ],

Si
t|j(κi) = S̃i

t(κi) = 0, i, j = 1, 2, i 6= j. (2.73)

Consequently, we have here that hi(t) = −Zi(t) = −δi for every t ∈ [0, T ].
It then follows from equation N(t)φ̃(t) = h(t) that φ̃1(t) = φ̃2(t) = 1 for
every t ∈ [0, T ] and thus φ0

t = 0 for every t ∈ [0, T ]. This result is by no
means surprising; we hedge a short position in the FTDS by holding a static
portfolio of two single-name CDSs since, under the present assumptions,
the FTDS is equivalent to such a portfolio of the corresponding single-name
CDSs. Of course, one would not expect that this feature will still hold in a
general case of dependent default times.

The first equality in (2.73) is due to the standing assumption of indepen-
dence of default times τ1 and τ2 and thus it will no longer be true for other
copulae. The second equality follows from our simplifying postulate that the
risk-neutral marginal distributions of default times are exponential. In prac-
tice, the risk-neutral marginal distributions of default times are obtained by
calibrating a model to market data (i.e., market prices of single-name CDSs)
and thus, typically, they are not exponential.

2.6.2 Archimedean Copulae

We now proceed to the case of exponentially distributed, but dependent,
default times. The mutual dependence will be specified by a choice of some
Archimedean copula. Recall that a bivariate Archimedean copula is defined
as C(u, v) = ϕ−1(ϕ(u), ϕ(v)), where ϕ is called the generator of a copula.

Clayton Copula

Recall that the generator of the Clayton copula is given as ϕ(s) = s−θ−1 for
every s ∈ R+, for some strictly positive parameter θ and thus the bivariate
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Clayton copula can be represented as follows

C(u, v) = (u−θ + v−θ − 1)−
1
θ .

Under the present assumptions, the corresponding joint survival function
G(u, v) equals

G(u, v) = C(G1(u), G2(v)) = (eλ1uθ + eλ2vθ − 1)−
1
θ ,

so that
G(u, dv)

dv
= −λ2e

λ2vθ(eλ1uθ + eλ2vθ − 1)−
1
θ−1

and

f(u, v) =
G(du, dv)

dudv
= (θ + 1)λ1λ2e

λ1uθ+λ2vθ(eλ1uθ + eλ2vθ − 1)−
1
θ−2.

We only provide explicit formulae for φ̃1 and S1
v|2(κ1), since the quantities

φ̃2 and S2
u|1(κ2) are given by symmetric expressions.

Proposition 2.6.2. Let the joint distribution of (τ1, τ2) be given by the
Clayton copula with some θ > 0. Then the replicating strategy for an FTDC
(X, 0, Z, τ(1)) is given by the expression

φ̃1(t) =
δ2(Z1 − π̃(t)) + S2

t|1(κ2)(Z2 − π̃(t))

δ1δ2 − S1
t|2(κ1)S2

t|1(κ2)
, (2.74)

where

π̃(t) = Z1

∫ eλ1θT

eλ1θt (s + s
λ2
λ1 − 1)−

1
θ−1 ds

θ(eλ1θt + eλ2θt − 1)−
1
θ

+ Z2

∫ eλ2θT

eλ2θt (s + s
λ1
λ2 − 1)−

1
θ−1 ds

θ(eλ1θt + eλ2θt − 1)−
1
θ

+ X
(eλ1θT + eλ2θT − 1)−

1
θ

(eλ1θt + eλ2θt − 1)−
1
θ

and

S1
v|2(κ1) = δ1

[(eλ1θT + eλ2θT − 1)−
1
θ−1 − (eλ1θv + eλ2θv − 1)−

1
θ−1]

(eλ1θv + eλ2θv − 1)−
1
θ−1

− κ1

∫ T

v
(eλ1θu + eλ2θv − 1)−

1
θ−1du

(eλ1θv + eλ2θv − 1)−
1
θ−1

.
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Proof. Observe that
∫ T

t

du

∫ ∞

u

f(u, v)dv =
∫ T

t

λ1e
λ1uθ(eλ1uθ + eλ2uθ − 1)−

1
θ−1 du

=
1
θ

∫ eλ1θT

eλ1θt

(s + s
λ2
λ1 − 1)−

1
θ−1 ds

and thus, by symmetry,

∫ T

t

dv

∫ ∞

v

f(u, v)du =
1
θ

∫ eλ2θT

eλ2θt

(s + s
λ1
λ2 − 1)−

1
θ−1 ds.

Consequently,

π̃(t) =
Z1

∫ T

t

∫∞
u

dG(u, v)
G(t, t)

+
Z2

∫ T

t

∫∞
v

dG(u, v)
G(t, t)

+ X
G(T, T )
G(t, t)

= Z1

∫ eλ1θT

eλ1θt (s + s
λ2
λ1 − 1)−

1
θ−1 ds

θ(eλ1θt + eλ2θt − 1)−
1
θ

+ Z2

∫ eλ2θT

eλ2θt (s + s
λ1
λ2 − 1)−

1
θ−1 ds

θ(eλ1θt + eλ2θt − 1)−
1
θ

+ X
(eλ1θT + eλ2θT − 1)−

1
θ

(eλ1θt + eλ2θt − 1)−
1
θ

.

We are in a position to determine the replicating strategy. Under the stand-
ing assumption that κi = λiδi for i = 1, 2 we still have that S̃i

t(κi) = 0 for
i = 1, 2 and for t ∈ [0, T ]. Hence the matrix N(t) reduces to

N(t) =

[
δ1 −S2

t|1(κ2)
−S1

t|2(κ1) δ2

]

where

S1
v|2(κ1) = δ1

∫ T

v
f(u, v) du∫∞

v
f(u, v) du

− κ1

∫ T

v

∫∞
u

f(z, v) dzdu∫∞
v

f(u, v) du

= δ1
[(eλ1θT + eλ2θT − 1)−

1
θ−1 − (eλ1θv + eλ2θv − 1)−

1
θ−1]

(eλ1θv + eλ2θv − 1)−
1
θ−1

− κ1

∫ T

v
(eλ1θu + eλ2θv − 1)−

1
θ−1 du

(eλ1θv + eλ2θv − 1)−
1
θ−1

.

The expression for S2
u|1(κ2) can be found by analogous computations. By

solving the equation N(t)φ̃(t) = h(t), we obtain the required expression
(2.74) for the replicating strategy. ¤



2.6. Applications to Copula-Based Models 113

Gumbel Copula

As another example of an Archimedean copula, we consider the Gumbel
copula with the generator ϕ(s) = (− ln s)θ for every s ∈ R+ where the
parameter θ satisfies θ ≥ 1. The bivariate Gumbel copula can thus be
written as

C(u, v) = e−[(− ln u)θ+(− ln v)θ]
1
θ .

Under our standing assumptions, the corresponding joint survival function
G(u, v) equals

G(u, v) = C(G1(u), G2(v)) = e−(λθ
1uθ+λθ

2vθ)
1
θ .

Consequently, the partial derivatives of our interest satisfy

dG(u, v)
dv

= −G(u, v)λθ
2v

θ−1(λθ
1u

θ + λθ
2v

θ)
1
θ−1

and
dG(u, v)

dudv
= G(u, v)(λ1λ2)θ(uv)θ−1(λθ

1u
θ +λθ

2v
θ)

1
θ−2

(
(λθ

1u
θ +λθ

2v
θ)

1
θ +θ−1

)
.

As in the case of the Clayton copula, it is enough to derive the formulae for
φ̃1 and S1

v|2(κ1), since φ̃2 and S2
u|1(κ2) are given by symmetric expressions.

Proposition 2.6.3. Assume that the joint distribution of (τ1, τ2) is given
by the Gumbel copula with θ ≥ 1. Then the replicating strategy for an FTDC
(X, 0, Z, τ(1)) is given by

φ̃1(t) =
δ2(Z1 − π̃(t)) + S2

t|1(κ2)(Z2 − π̃(t))

δ1δ2 − S1
t|2(κ1)S2

t|1(κ2)
,

where
π̃(t) = (Z1λ

θ
1 + Z2λ

θ
2)λ

−θ(e−λt − e−λT ) + Xe−λ(T−t)

with λ = (λθ
1 + λθ

2)
1
θ and

S1
v|2(κ1) = δ1

e−(λθ
1T θ+λθ

2vθ)
1
θ (λθ

1T
θ + λθ

2v
θ)

1
θ−1 − e−λvλ1−θv1−θ

e−λvλ1−θv1−θ

− κ1

∫ T

v
e−(λθ

1T θ+λθ
2vθ)

1
θ (λθ

1u
θ + λθ

2v
θ)

1
θ−1 du

e−λvλ1−θv1−θ
.

Proof. Let us denote λ = (λθ
1 + λθ

2)
1
θ . We have that

∫ T

t

∫ ∞

u

dG(u, v) =
∫ T

t

λθ
1(λ

θ
1 + λθ

2)
1
θ−1e−(λθ

1+λθ
2)

1
θ u du

= (−λθ
1λ
−θe−λu)|u=T

u=t = λθ
1λ
−θ(e−λt − e−λT ).
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Similarly, we also obtain
∫ T

t

∫ ∞

v

dG(u, v) = λθ
2λ
−θ(e−λt − e−λT ).

Furthermore, we have that G(T, T ) = e−λT and G(t, t) = e−λt. Hence

π̃(t) = Z1

∫ T

t

∫∞
u

dG(u, v)
G(t, t)

+ Z2

∫ T

t

∫∞
v

dG(u, v)
G(t, t)

+ X
G(T, T )
G(t, t)

or, more explicitly,

π̃(t) = Z1λ
θ
1λ
−θ(e−λt − e−λT ) + Z2λ

θ
2λ
−θ(e−λt − e−λT ) + Xe−λ(T−t).

We conclude that

π̃(t) = (Z1λ
θ
1 + δ2Z

θ
2 )λ−θ(e−λt − e−λT ) + Xe−λ(T−t).

In order to find the replicating strategy, we proceed as in the proof of
Proposition 2.6.2. Under the present assumptions, we obtain the following
expression for S1

v|2(κ1)

S1
v|2(κ1) = δ1

∫ T

v
f(u, v)du∫∞

v
f(u, v)du

− κ1

∫ T

v

∫∞
u

f(z, v)dzdu∫∞
v

f(u, v)du

= δ1
e−(λθ

1T θ+λθ
2vθ)

1
θ (λθ

1T
θ + λθ

2v
θ)

1
θ−1 − e−λvλ1−θv1−θ

e−λvλ1−θv1−θ

− κ1

∫ T

v
e−(λθ

1T θ+λθ
2vθ)

1
θ (λθ

1u
θ + λθ

2v
θ)

1
θ−1du

e−λvλ1−θv1−θ
.

By the symmetry of the model, a similar expression is valid for the value
S2

u|1(κ2). This completes the proof of the proposition. ¤
Prior to the recent global credit crisis, copula-based models were widely

used by the financial industry for modeling of dependent defaults. In par-
ticular, one of such models (the one-factor Gaussian copula model proposed
by Li [137] and presented in Section 5.5) was adopted by practitioners as
the market convention for valuing tranches of CDOs. It is this important to
observe that copula-based models suffer a major shortcoming of being inher-
ently static models. Therefore, their practical use should at best be limited
to the risk-neutral valuation of credit derivatives, as opposed to the arbi-
trage pricing of defaultable claims, which relies on the concept of dynamic
replication of a given credit derivative with traded assets, or to the credit
risk management. More realistic models and approaches to credit risk are
presented in the foregoing chapters.



Chapter 3

Hazard Process Approach

In the general reduced-form (or hazard process) approach, we deal with two
kinds of information: the information conveyed by assets prices and other
economic factors, denoted as F = (Ft)0≤t≤T∗ , and the information about
the occurrence of the default time, that is, the knowledge of the time where
the default occurred in the past, if the default has indeed already happen.
As we already know, the latter information is modeled by the filtration H
generated by the default process H.

At the intuitive level, the reference filtration F is generated by prices
of some assets, or by other economic factors (such as, e.g., interest rates).
This filtration can also be a sub-filtration of the filtration generated by the
asset prices. The case where F is the trivial filtration is exactly what we
have studied in the previous chapter. Though in a typical example F is
chosen to be the Brownian filtration, most theoretical results do not rely on
a particular choice of the reference filtration F. We denote by Gt = Ft ∨ Ht

the full filtration (sometimes referred to as the enlarged filtration).

Special attention will be paid in what follows to the so-called hypothesis
(H). In the present context, it postulates the preservation of the martingale
property with respect to the enlargement of F by the observations of default
time. It is important to note that this hypothesis is not preserved under an
equivalent change of a probability measure, in general.

In order to examine the precise meaning of market completeness in a
defaultable security market model and to derive the hedging strategies for
credit derivatives, we shall also establish a suitable version of the predictable
representation theorem.

Most results presented in Sections 3.1–3.6 can be found, for instance, in
survey papers by Jeanblanc and Rutkowski [111, 112]; see also the papers
by Artzner and Delbaen [6], Bélanger et al. [11], Jarrow and Turnbull [106],
Lando [126], and Wong [170].

Sections 3.7–3.8 are based on the paper by Bielecki et al. [20].
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3.1 Hazard Process and its Applications

The concepts introduced in the Chapter 2 will now be extended to a more
general setup, in which an additional flow of information, which will be
formally represented hereafter by some filtration F, is available.

We denote by τ a non-negative random variable on a probability space
(Ω,G,Q), satisfying Q(τ = 0) = 0 and Q(τ > t) > 0 for any t ∈ R+.
We introduce the right-continuous default indicator process H by setting
Ht = 1{t≥τ} for t ∈ R+ and we write H to denote the filtration generated
by the process H, so that Ht = σ(Hu : u ≤ t) for every t ∈ R+.

We assume that we are given an auxiliary reference filtration F such that
G = H ∨ F, that is, Gt = Ht ∨ Ft for any t ∈ R+. For each t ∈ R+, the total
information available at time t is captured by the σ-field Gt.

All filtrations considered in what follows are implicitly assumed to satisfy
the ‘usual conditions’ of right-continuity and completeness. For the sake of
simplicity, we assume that the σ-field F0 is trivial. Since Q(τ = 0) = 0 this
implies that G0 is the trivial σ-field as well.

The process H is obviouslyG-adapted, but it is not necessarily F-adapted.
In other words, the random time τ is a G-stopping time, but it may fail to
be an F-stopping time.

Lemma 3.1.1. Assume that the filtration G satisfies G = H ∨ F. Then
G ⊆ G∗ where the filtration G∗ = (G∗t ) t∈R+ is defined as follows

G∗t :=
{
A ∈ G : A ∩ {τ > t} = B ∩ {τ > t} for some B ∈ Ft

}
.

Proof. It is rather clear that the class G∗t is a sub-σ-field of G. Therefore, it
is enough to check that Ht ⊆ G∗t and Ft ⊆ G∗t for every t ∈ R+. Put another
way, we need to verify that if either A = {τ ≤ u} for some u ≤ t or A ∈ Ft

then there exists an event B ∈ Ft such that A ∩ {τ > t} = B ∩ {τ > t}. In
the former case, we may take B = ∅ and in the latter B = A. ¤

For any t ∈ R+, we write Ft = Q(τ ≤ t | Ft) and we denote by G the
F-survival process of τ with respect to the filtration F, given as

Gt := 1− Ft = Q(τ > t | Ft).

For any 0 ≤ t ≤ s the inclusion {τ ≤ t} ⊆ {τ ≤ s} holds, and thus

EQ(Fs | Ft) = EQ
(
Q(τ ≤ s | Fs)

∣∣Ft

)
= Q(τ ≤ s | Ft) ≥ Q(τ ≤ t | Ft) = Ft.

This shows that the process F (G, respectively) follows a bounded and
non-negative F-submartingale (F-supermartingale, respectively) underQ and
thus we may deal with the right-continuous modifications of F and G with
finite left-hand limits. It is worth noting that F0 = 0 and limt→∞ Ft = 1.

The next definition introduces a straightforward generalization of the
concept of the hazard function (see Definition 2.2.1).
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Definition 3.1.1. Assume that Ft < 1 for t ∈ R+. The F-hazard process
of τ under Q, denoted by Γ, is defined through the formula 1 − Ft = e−Γt .
Equivalently, Γt = − ln Gt = − ln (1− Ft) for every t ∈ R+.

Since G0 = 1, it is clear that Γ0 = 0. Moreover, limt→∞ Γt = ∞ since
limt→∞Gt = 0. For the sake of conciseness, we shall refer briefly to Γ as the
F-hazard process, rather than the F-hazard process under Q, unless there is
a danger of misunderstanding.

Throughout this chapter, we will work under the standing assumption
that the inequality Ft < 1 holds for every t ∈ R+, so that the F-hazard
process Γ is well defined. Therefore, the case when τ is an F-stopping time
(that is, the case when F = G) is not dealt with here.

3.1.1 Conditional Expectations

We will first focus on the conditional expectation EQ(1{t<τ}X | Gt), where
X is a Q-integrable random variable. We start by extending the formula
established in Lemma 2.2.1.

Lemma 3.1.2. For any G-measurable and Q-integrable random variable X
we have, for any t ∈ R+,

EQ(1{t<τ}X | Gt) = 1{t<τ}EQ(X | Gt) = 1{t<τ}
EQ(1{t<τ}X | Ft)
Q(t < τ | Ft)

. (3.1)

In particular, for any t ≤ s

Q(t < τ ≤ s | Gt) = 1{t<τ}
Q(t < τ ≤ s | Ft)
Q(t < τ | Ft)

= 1{t<τ}EQ(1− eΓt−Γs | Ft).

Proof. Since Ft ⊆ Gt, it suffices to check that

EQ
(
1CXQ(C | Ft)

∣∣Gt

)
= EQ

(
1CEQ(1CX | Ft)

∣∣Gt

)
,

where we denote C = {t < τ}. Put another way, we need to show that for
any A ∈ Gt we have

∫

A

1CXQ(C | Ft) dQ =
∫

A

1CEQ(1CX | Ft) dQ. (3.2)

In view of Lemma 3.1.1, for any A ∈ Gt we have A∩C = B ∩C for some
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event B ∈ Ft, and so
∫

A

1CXQ(C | Ft) dQ =
∫

A∩C

XQ(C | Ft) dQ =
∫

B∩C

XQ(C | Ft) dQ

=
∫

B

1CXQ(C | Ft) dQ =
∫

B

EQ(1CX | Ft)Q(C | Ft) dQ

=
∫

B

EQ(1CEQ(1CX | Ft) | Ft) dQ =
∫

B∩C

EQ(1CX | Ft) dQ

=
∫

A∩C

EQ(1CX | Ft) dQ =
∫

A

1CEQ(1CX | Ft) dQ.

We thus conclude that (3.2) holds. ¤
The following corollary to Lemma 3.1.2 is rather straightforward.

Corollary 3.1.1. Let X be a FT -measurable and Q-integrable random vari-
able. Then, for every t ≤ T ,

EQ(X1{T<τ} | Gt) = 1{t<τ}
EQ(X1{T<τ} | Ft)
EQ(1{t<τ} | Ft)

= 1{t<τ}EQ(XeΓt−ΓT | Ft).

The following result will be used in valuation of a recovery payoff that
occurs at default.

Lemma 3.1.3. Assume that Z is an F-predictable process such that the
random variable Zτ1{τ≤T} is Q-integrable. Then we have, for every t ≤ T ,

1{t<τ}EQ(Zτ1{τ≤T} | Gt) = 1{t<τ}eΓt EQ
( ∫

]t,T ]

Zu dFu

∣∣∣Ft

)
. (3.3)

Let F = N + C be the Doob-Meyer decomposition of F , where N is an F-
martingale, and C is an F-predictable increasing process. Then, for every
t ≤ T ,

1{t<τ}EQ(Zτ1{τ≤T} | Gt) = 1{t<τ}eΓt EQ
(∫

]t,T ]

Zu dCu

∣∣∣Ft

)
. (3.4)

If F is a continuous, increasing process then F = C = e−Γt so that the
equality dFt = e−Γt dΓt is valid. Consequently,

1{t<τ}EQ(Zτ1{τ≤T} | Gt) = 1{t<τ} EQ
( ∫ T

t

ZueΓt−Γu dΓu

∣∣∣Ft

)
.

Proof. We start by noting that (3.3) implies that

1{t<τ}EQ(Zτ1{τ≤T} | Gt) = 1{t<τ} eΓt EQ(Zτ1{t<τ≤T} | Ft).
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Let us first assume that Z is a stepwise F-predictable process; specifically,
Zu =

∑n
i=0 Zti

1{ti<u≤ti+1} for t < u ≤ T , where t0 = t < · · · < tn+1 = T ,
and Zti

is an Fti
-measurable random variable for i = 0, . . . , n. Then we

obtain

EQ(Zτ1{t<τ≤T} | Ft) = EQ(Zτ1{t<τ≤T} | Ft)

= EQ
( n∑

i=0

1{ti<τ≤ti+1}Zti

∣∣∣Ft

)

= EQ
( n∑

i=0

Zti(Fti+1 − Fti)
∣∣∣Ft

)
.

Hence for any stepwise, bounded, F-predictable process Z we have

EQ
(
1{t<τ≤T} Zτ | Ft

)
= EQ

( ∫

]t,T ]

Zu dFu

∣∣∣Ft

)
. (3.5)

In the next step, Z is approximated by a suitable sequence of bounded, step-
wise, F-predictable processes. The sum under the sign of the conditional
expectation converges to the Itô integral (or to the Lebesque-Stieltjes in-
tegral if the process F is of finite variation). The assumption that Z and
F are bounded is a sufficient condition for the convergence of sequence of
conditional expectations. ¤

The next auxiliary result will prove useful in valuation of defaultable
securities that pay dividends prior to the default time.

Proposition 3.1.1. Assume that A is a bounded, F-predictable process of
finite variation. Then, for every t ≤ T ,

EQ
(∫

]t,T ]

(1−Hu) dAu

∣∣∣Gt

)
= 1{t<τ}eΓtEQ

( ∫

]t,T ]

(1− Fu) dAu

∣∣∣Ft

)

or, equivalently,

EQ
( ∫

]t,T ]

(1−Hu) dAu

∣∣∣Gt

)
= 1{t<τ}EQ

( ∫

]t,T ]

eΓt−Γu dAu

∣∣∣Ft

)
.

Proof. For a fixed, but arbitrary, t ≤ T, we introduce an auxiliary process
Â by setting Âu = Au − At for u ∈ [t, T ]. It is clear that Â is a bounded
and F-predictable process of finite variation; the same remark applies to its
left-continuous version Ât−.
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Therefore,

Jt = EQ
( ∫

]t,T ]

(1−Hu) dAu

∣∣∣Gt

)

= EQ
( ∫

]t,T ]

1{τ>u} dÂu

∣∣∣Gt

)

= EQ
(
Âτ−1{t<τ≤T} + ÂT1{τ>T}

∣∣∣Gt

)

= 1{t<τ}eΓtEQ
( ∫

]t,T ]

Âu− dFu + ÂT (1− FT )
∣∣∣Ft

)
,

where the last equality follows from formulae (3.1) and (3.3). Using an
obvious equality Gt = 1− Ft, we obtain

EQ
( ∫

]t,T ]

Âu− dFu +ÂT (1−FT )
∣∣∣Ft

)
= EQ

(
−

∫

]t,T ]

Âu− dGu +ÂT GT

∣∣∣Ft

)
.

Since Â is a process of finite variation (so that its continuous martingale part
vanishes), the following version of Itô’s product rule is valid

ÂT GT = ÂtGt +
∫

]t,T ]

Âu− dGu +
∫

]t,T ]

Gu dÂu.

But Ât = 0, and thus

EQ
( ∫

]t,T ]

Âu− dFu + ÂT (1− FT )
∣∣∣Ft

)
= EQ

( ∫

]t,T ]

(1− Fu) dAu

∣∣∣Ft

)
.

This proves the first asserted formula. The second equality is merely a re-
statement of the first one. ¤

3.1.2 Hazard Rate

Let the process F be absolutely continuous, that is, Ft =
∫ t

0
fu du for some

F-progressively measurable, non-negative process f . Then necessarily F is
an increasing process and thus Γ is an absolutely continuous and increasing
process. Specifically, it is easy to check that Γ admits the F-hazard rate γ,
that is, Γt =

∫ t

0
γu du where in turn the F-progressively measurable, non-

negative process γ is given by the formula γt = (1 − Ft)−1ft. We will
sometimes refer to γ as the F-intensity (or simply stochastic intensity) of
default time τ (see Section 3.1.6).
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3.1.3 Valuation of Defaultable Claims

Our next goal is to establish a convenient representation for the pre-default
value of a defaultable claim in terms of the hazard process Γ of the default
time. We postulate that Q represents a martingale measure associated with
the choice of the savings account B as a discount factor (or a numéraire).
Therefore, in the present setup, the risk-neutral valuation formula reads (for
a justification of this formula, see Section 2.3)

St = Bt EQ
( ∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
, (3.6)

where S is the ex-dividend price process, B is the savings account and D is
the dividend process associated with a defaultable claim (see Section 1.1.2),
that is,

Dt = Xd
T1[T,∞[(t) +

∫

]0,t]

(1−Hu) dAu +
∫

]0,t]

Zu dHu. (3.7)

For the sake of conciseness, we will write

It = Bt EQ
( ∫

]t,T ]

B−1
u (1−Hu) dAu

∣∣∣Gt

)

Jt = Bt EQ
(
1{t<τ≤T}B−1

τ Zτ

∣∣Gt

)
,

and
Kt = Bt EQ

(
B−1

T X1{T<τ}
∣∣Gt

)
.

In view of (3.6)–(3.7), it is clear that the ex-dividend price of a generic
defaultable claim (X,A, Z, τ) (cf. Definition 2.3.1) can be represented as
follows St = It + Jt + Kt. It is noteworthy that the default time τ does
not appear explicitly in the conditional expectation in the right-hand side of
pricing formulae of Proposition 3.1.2.

Proposition 3.1.2. For every t ∈ [0, T ], the ex-dividend price of a default-
able claim (X,A, Z, τ) admits the following representation

St = 1{t<τ}G
−1
t Bt EQ

( ∫

]t,T ]

B−1
u (Gu dAu − Zu dGu) + GT B−1

T X
∣∣∣Ft

)
.

If F (and thus also Γ) is an increasing, continuous process then

St = 1{t<τ}Bt EQ
(∫

]t,T ]

B−1
u eΓt−Γu (dAu + Zu dΓu) + B−1

T XeΓt−ΓT

∣∣∣Ft

)
.



122 Chapter 3. Hazard Process Approach

Proof. By applying Proposition 3.1.1 to the process of finite variation∫
]0,t]

B−1
u dAu, we obtain

It = 1{t<τ}G
−1
t Bt EQ

( ∫

]t,T ]

B−1
u Gu dAu

∣∣∣Ft

)

or, equivalently,

It = 1{t<τ}Bt EQ
( ∫

]t,T ]

B−1
u eΓt−Γu dAu

∣∣∣Ft

)
.

Furthermore, Lemma 3.1.3 yields

Jt = 1{t<τ}eΓtBt EQ
( ∫

]t,T ]

B−1
u Zu dFu

∣∣∣Ft

)
.

If, in addition, the hazard process Γ is an increasing continuous process then

Jt = 1{t<τ}Bt EQ
( ∫ T

t

B−1
u eΓt−ΓuZu dΓu

∣∣∣Ft

)
.

Finally, it follows from (3.1) that

Kt = 1{t<τ}eΓtBt EQ(1{τ>T}B
−1
T X | Ft).

Since the random variables X and BT are FT -measurable, we also have

Kt = 1{t<τ}eΓtBt EQ(GT B−1
T X | Ft) = 1{t<τ}Bt EQ

(
B−1

T XeΓt−ΓT | Ft

)
.

Both formulae of the proposition are obtained upon summation. ¤
Let us note that St = 1{t<τ}S̃t, where the F-adapted process S̃ represents

the pre-default value of a defaultable claim (X, A,Z, τ). The next result is a
straightforward consequence of Proposition 3.1.2.

Corollary 3.1.2. Assume that F (and thus also Γ) is an increasing, contin-
uous process. Then the pre-default value of a defaultable claim (X, A, Z, τ)
coincides with the pre-default value of a defaultable claim (X, Â, 0, τ), where
the process Â is given by the formula Ât = At +

∫ t

0
Zu dΓu for t ∈ [0, T ].

Let us consider the case of a default time τ that admits the F-intensity
process γ. The second formula in Proposition 3.1.2 now becomes

St = 1{t<τ} EQ
(∫

]t,T ]

e−
R u

t
(rv+γv)dv (dAu + γuZu du)

∣∣∣Ft

)

+ 1{t<τ} EQ
(
e−
R T

t
(rv+γv)dvX

∣∣∣Ft

)
.
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To obtain a more intuitive representation for the last expression, we in-
troduce the default-risk-adjusted interest rate r̂ = r + γ and the associated
default-risk-adjusted savings account B̂, which is given by the formula

B̂t = exp
(∫ t

0

r̂u du
)
. (3.8)

Although the process B̂ does not represent the price of a tradeable security, it
enjoys the features of the savings account B. Specifically, B̂ is an F-adapted,
continuous process of finite variation (typically, though not necessarily, an
increasing process). In terms of the process B̂, we have

St = 1{t<τ}B̂t EQ
( ∫

]t,T ]

B̂−1
u dAu +

∫ T

t

B̂−1
u Zuγu du + B̂−1

T X
∣∣∣Ft

)
. (3.9)

3.1.4 Defaultable Bonds

Consider a defaultable zero-coupon bond with the par (face) value L and
maturity date T . We will re-examine the following recovery schemes: the
fractional recovery of par value and the fractional recovery of Treasury value;
recall that these schemes were already studied in Section 2.1 in the case of
deterministic intensity. The fractional recovery of market value scheme is
more difficult to deal with, though it is still tractable (cf. Duffie et al. [74]
and Duffie and Singleton [75]).

We assume in this subsection that τ admits the F-hazard rate γ.

Fractional Recovery of Par Value

Under this scheme, a fixed fraction of the bond face value is paid to the
bondholders at the time of default. Formally, we deal here with a defaultable
claim (X, 0, Z, τ), which settles at time T , with the promised payoff X = L,
where L stands for the bond’s face value and with the constant recovery
process Z = δL for some δ ∈ [0, 1]. The ex-dividend price at time t ∈ [0, T ]
of the bond is thus given by the following expression

Dδ(t, T ) = LBt EQ
(
δB−1

τ 1{t<τ≤T} + B−1
T 1{T<τ}

∣∣Gt

)
.

If τ admits the F-intensity process γ then the pre-default value of the bond
equals

D̃δ(t, T ) = LB̂t EQ
(
δ

∫ T

t

B̂−1
u γu du + B̂−1

T

∣∣∣Ft

)
. (3.10)
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Fractional Recovery of Treasury Value

According to this convention, the fixed fraction of the face value is paid
to bondholders at maturity date T . A corporate zero-coupon bond is now
given by a defaultable claim (X, 0, Z, τ) with the promised payoff X = L and
the recovery process Zt = δLB(t, T ) where, as usual, B(t, T ) stands for the
price at time t of a unit zero-coupon Treasury bond with maturity T . The
defaultable bond is here equivalent to a single contingent claim Y , which
settles at time T and equals

Y = L
(
1{τ>T} + δ1{τ≤T}

)
.

The ex-dividend price Dδ(t, T ) of this claim at time t < T thus equals

Dδ(t, T ) = LBt EQ
(
B−1

T (δ1{T≥τ} + 1{T<τ})
∣∣Gt

)

or, equivalently,

St = LBt EQ
(
δB−1

τ B(τ, T )1{t<τ≤T} + B−1
T 1{T<τ}

∣∣Gt

)
.

The pre-default value D̃δ(t, T ) of a defaultable bond that is subject to the
fractional recovery of Treasury value scheme is given by the expression

D̃δ(t, T ) = LB̂t EQ
(
δ

∫ T

t

B̂−1
u B(u, T )γu du + B̂−1

T

∣∣∣Ft

)
.

3.1.5 Compensator of Default Indicator Process

We will now examine the compensator of the default indicator process.

Proposition 3.1.3. (i) The process Lt = (1−Ht)eΓt is a G-martingale.
(ii) If X is an F-martingale and the process XL is integrable then it is a
G-martingale.
(iii) If the process F (or, equivalently, Γ) is increasing and continuous then
the process Mt = Ht − Γ(t ∧ τ) is a G-martingale.

Proof. (i) From Lemma 3.1.2, we obtain, for any t ≤ s,

EQ(Ls | Gt) = 1{t<τ}eΓtEQ(1{s<τ}eΓs | Ft) = 1{t<τ}eΓt = Lt,

since the tower rule yields (obviously, Ft ⊂ Fs)

EQ(1{s<τ}eΓs |Ft) = EQ(Q(τ > s | Fs)eΓs |Ft) = 1.
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(ii) Using again Lemma 3.1.2, we get, for any t ≤ s,

EQ(LsXs | Gt) = EQ(1{s<τ}LsXs | Gt)

= 1{t<τ}eΓt EQ
(
1{s<τ}eΓsXs

∣∣Ft

)

= 1{t<τ}eΓt EQ
(
EQ(1{s<τ} | Fs)eΓsXs

∣∣Ft

)

= LtXt.

(iii) Note that H is a process of finite variation and Γ is an increasing,
continuous process. Hence from the integration by parts formula, we obtain

dLt = (1−Ht)eΓt dΓt − eΓt dHt.

Moreover, the process Mt = Ht − Γ(t ∧ τ) can be represented as follows

Mt =
∫

]0,t]

dHu −
∫ t

0

(1−Hu) dΓu = −
∫

]0,t]

e−Γu dLu,

and thus it is a G-martingale, since L is G-martingale and e−Γt is a bounded
process. It should be noted that if the hazard process Γ is not assumed to
be increasing then the Itô differential deΓt becomes more complicated. ¤

It is worth stressing that the process F (or, equivalently, Γ) is not of
finite variation, in general. This means that part (iii) in Proposition 3.1.3
does not yield the general form of the Doob-Meyer decomposition of the
submartingale H.

For simplicity, in the next result we shall assume that F is a continuous
process. It is worth noting that part (iii) in Proposition 3.1.3 is a consequence
of Proposition 3.1.4, since for a continuous and increasing F we have that
F = C = 1− e−Γ.

Proposition 3.1.4. Assume that F is a continuous process with the Doob-
Meyer decomposition F = N + C. Then the process M = (Mt, t ∈ R+),
which is given by the formula

Mt = Ht −
∫ t∧τ

0

dCu

1− Fu
, (3.11)

is a G-martingale.

Proof. We split the proof into two steps.
First step. We shall prove that, for any t ≤ s,

EQ(Hs | Gt) = Ht + 1{t<τ}eΓt EQ(Cs − Ct | Ft). (3.12)
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Indeed, we have that

EQ(Hs | Gt) = 1−Q(s < τ | Gt) = 1− 1{t<τ}eΓt EQ(1− Fs | Ft)

= 1− 1{t<τ}eΓt EQ(1−Ns − Cs | Ft)

= 1− 1{t<τ}eΓt
(
1−Nt − Ct − EQ(Cs − Ct | Ft)

)

= 1− 1{t<τ}eΓt
(
1− Ft − EQ(Cs − Ct | Ft)

)

= 1{t≥τ} + 1{t<τ}eΓt EQ(Cs − Ct | Ft).

Second step. Let us denote

Ut =
∫ t

0

dCu

1− Fu
=

∫ t

0

eΓu dCu.

We shall prove that, for any t ≤ s,

EQ(Us∧τ | Gt) = Ut∧τ + 1{t<τ}eΓt EQ(Cs − Ct | Ft).

From Lemma 3.1.3, we obtain

EQ(Us∧τ | Gt) = Ut∧τ1{t≥τ} + 1{t<τ}eΓt EQ
(∫ ∞

t

Us∧u dFu

∣∣∣Ft

)

= Ut∧τ1{t≥τ} + 1{t<τ}eΓt EQ
(∫ s

t

Uu dFu +
∫ ∞

s

Us dFu

∣∣∣Ft

)

= Ut∧τ1{t≥τ} + 1{t<τ}eΓt EQ
(∫ s

t

Uu dFu + Us(1− Fs)
∣∣∣Ft

)
.

Using the integration by parts formula and the fact that U is a continuous
process of finite variation, we obtain

d(Ut(1− Ft)) = −Ut dFt + (1− Ft) dUt = −Ut dFt + dCt.

Consequently,
∫ s

t

Uu dFu + Us(1− Fs) = −Us(1− Fs) + Ut(1− Ft) + Cs − Ct

+ Us(1− Fs) = Ut(1− Ft) + Cs − Ct.

It follows that, for any t ≤ s,

EQ(Us∧τ | Gt) = 1{t≥τ}Ut∧τ + 1{t<τ}eΓt EQ
(
Ut(1− Ft) + Cs − Ct | Ft

)

= Ut∧τ + 1{t<τ}eΓt EQ(Cs − Ct | Ft).

By combining the formula above with (3.12), we conclude that the process
M given by (3.11) is a G-martingale. ¤
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Proposition 3.1.5. Assume that the bounded submartingale F admits the
Doob-Meyer decomposition F = N+C. Then the process M = (Mt, t ∈ R+),
which is given by the formula

Mt = Ht −
∫ t∧τ

0

dCu

1− Fu−
, (3.13)

is a G-martingale.

Proof. In the first part of the proof, we proceed along the same lines as in
the proof of Proposition 2.2.1. In view of Lemma 3.1.2, we find that, in the
present case, it is enough to show that the following equalities hold, for every
t ≤ s,

I := EQ
( ∫

]t,s∧τ ]

dCu

1− Fu−

∣∣∣Ft

)
= EQ(Fs − Ft | Ft) = EQ(Cs − Ct | Ft),

where the second equality is simply a consequence of the definition of C. We
have

I = EQ
(
1{s<τ}

∫

]t,s]

dCu

1− Fu−
+ 1{t<τ≤s}

∫

]t,s∧τ ]

dCu

1− Fu−

∣∣∣Ft

)

= EQ
(
EQ

(
1{s<τ}

∫

]t,s]

dCu

1− Fu−

∣∣∣Fs

)
+ 1{t<τ≤s}

∫

]t,s∧τ ]

dCu

1− Fu−

∣∣∣Ft

)

= EQ
(
(1− Fs)

∫

]t,s]

dCu

1− Fu−
+

∫

]t,s]

∫

]t,u]

dCv

1− Fv−
dCu

∣∣∣Ft

)

= EQ
(
(Λs − Λt)(1− Fs) +

∫

]t,s]

(Λu − Λt) dCu

∣∣∣Ft

)
,

where the third equality follows from formula (3.5) and where we denote, for
every r ∈ R+,

Λt =
∫

]0,t]

dCu

1− Fu−
. (3.14)

Since Λ is an F-predictable process and N is an F-martingale, we obtain

EQ
( ∫

]t,s]

(Λu − Λt) dNu

∣∣∣Ft

)
= 0,

and this in turn yields

I = EQ
(
(Λs − Λt)(1− Fs) +

∫

]t,s]

(Λu − Λt) dCu

∣∣∣Ft

)

= EQ
(
(Λs − Λt)(1− Fs) +

∫

]t,s]

(Λu − Λt) dFu

∣∣∣Ft

)
.
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Recall that our goal is to show that I = EQ(Cs − Ct | Ft). To this end,
we observe that

∫

]t,s]

(Λu − Λt) dFu = −Λt(Fs − Ft) +
∫

]t,s]

Λu dFu.

Since Λ is a process of finite variation, Itô’s product rule yields
∫

]t,s]

Λu dFu = ΛsFs − ΛtFt −
∫

]t,s]

Fu− dΛu. (3.15)

Finally, it follows from (3.14) that
∫

]t,s]

Fu− dΛu = Λs − Λt − Cs + Ct.

Combining the above formulae, we conclude that

(Λs − Λt)(1− Fs) +
∫

]t,s]

(Λu − Λt) dFu = Cs − Ct. (3.16)

This completes the proof. ¤

3.1.6 F-Intensity of Default Time

Assume that F admits the Doob-Meyer decomposition F = N + C, where
the process C is absolutely continuous with respect to the Lebesgue measure,
so that Ct =

∫ t

0
cu du for some F-progressively measurable process c.

Definition 3.1.2. The F-intensity of default time τ is a non-negative and
F-progressively measurable process λ such that M is a G-martingale, where
M is given by

Mt = Ht −
∫ t∧τ

0

λu du.

Under the present assumptions the F-intensity is given by the formula
λt = ct(1−Ft)−1 for every t ∈ R+ (note that since C is absolutely continuous
we have that (1−Ft−)−1dCt = (1−Ft)−1dCt). If we assume that the process
F is absolutely continuous, then we recover the definition of the hazard rate
of Section 3.1.2, since manifestly the equality λ = γ holds in that case. The
proof of the next lemma is left to the reader.

Lemma 3.1.4. The F-intensity of default time satisfies, for almost every
t ∈ R+,

λt = lim
h→0

1
h

Q(t < τ < t + h | Ft)
Q(t < τ | Ft)

.
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3.1.7 Reduction of Information

In this section, we follow Jeanblanc and LeCam [109]. Suppose that F̃ is a
sub-filtration of F, so that F̃t ⊂ Ft for every t ∈ R+. We define the full
filtration G̃ by setting G̃t = F̃t ∨Ht for every t ∈ R+. The hazard process of
τ with respect to F̃ is given by Γ̃t = − ln G̃t with

G̃t = Q(t < τ | F̃t) = EQ(Gt | F̃t).

For any Q-integrable random variable Y , Lemma 3.1.2 implies that

EQ(1{t<τ}Y | G̃t) = 1{t<τ}e
eΓt EQ(1{t<τ}Y | F̃t).

In particular, if Y is a F̃s-measurable random variable then, for every t ≤ s,

EQ(1{s<τ}Y | G̃t) = 1{t<τ}e
eΓt EQ(G̃sY | F̃t).

From the obvious equality

EQ(1{s<τ}Y | G̃t) = EQ(EQ(1{s<τ}Y | Gt) | G̃t),

we also obtain

EQ(1{s<τ}Y | G̃t) = EQ
(
1{t<τ}eΓt EQ(GsY | Ft) | G̃t

)

= 1{t<τ}e
eΓt EQ

(
1{t<τ}eΓt EQ(GsY | Ft)

∣∣ F̃t

)
.

From the uniqueness of the pre-default F-adapted process, it can now be
deduced that the following result is true.

Lemma 3.1.5. For any Q-integrable and F̃s-measurable random variable Y
we have, for every t ≤ s,

EQ(G̃sY | F̃t) = EQ
(
1{t<τ}eΓt EQ(GsY | Ft)

∣∣ F̃t

)
.

Proof. We provide a direct proof of the asserted formula. We have

EQ
(
1{t<τ}EQ(GsY | Ft)eΓt

∣∣ F̃t

)

= EQ
(
EQ(1{t<τ} | Ft)eΓt EQ(GsY | Ft)

∣∣ F̃t

)

= EQ
(
EQ(GsY | Ft)

∣∣ F̃t

)
= EQ(GsY | F̃t)

= EQ
(
EQ(Gs | F̃s)Y

∣∣ F̃t

)
= EQ(G̃sY | F̃t),

since we assumed that Y is F̃s-measurable. ¤



130 Chapter 3. Hazard Process Approach

Let F = N + C be the Doob-Meyer decomposition of the submartingale
F with respect to F and let us assume that C is absolutely continuous with
respect to t, that is, Ct =

∫ t

0
cu du. Since C is an increasing process, it is

easily seen that the process C̃t = EQ(Ct | F̃t) is a submartingale with respect
to F̃. Let us denote by C̃ = z̃+α̃ its Doob-Meyer decomposition with respect
to F̃ and let us set Ñt = EQ(Nt | F̃t). Since Ñ is an F̃-martingale, we see
that the submartingale

F̃t = Q(t ≥ τ | F̃t) = EQ(Ft | F̃t)

admits the Doob-Meyer decomposition F̃ = m̃ + α̃, where the F̃-martingale
part equals m̃ = Ñ + z̃. The next lemma furnishes an explicit relationship
between the increasing processes C and α̃.

Lemma 3.1.6. Let Ct =
∫ t

0
cu du be the F-predictable increasing process

in the Doob-Meyer decomposition of the F-submartingale F . Then the F̃-
predictable increasing process in the Doob-Meyer decomposition F̃ = m̃ + α̃
of the F̃-submartingale F̃ equals, for every t ∈ R+,

α̃t =
∫ t

0

EQ(cu | F̃u) du. (3.17)

Proof. To establish (3.17), we will show that the process

MF
t = EQ(Ft | F̃t)−

∫ t

0

EQ(cu | F̃u) du

is an F̃-martingale. Clearly, the process MF is integrable and F̃-adapted.
Moreover, for every t ≤ s,

EQ(MF
s | F̃t) = EQ

(
EQ(Fs | F̃s)−

∫ s

0

EQ(cu | F̃u) du
∣∣∣ F̃t

)

= EQ(Fs | F̃t)− EQ
( ∫ t

0

EQ(cu | F̃u) du
∣∣∣ F̃t

)

− EQ
( ∫ s

t

EQ(cu | F̃u) du
∣∣∣ F̃t

)

= Ñt + EQ
( ∫ t

0

cu du
∣∣∣ F̃t

)
+ EQ

(∫ s

t

cu du
∣∣∣ F̃t

)

−
∫ t

0

EQ(cu | F̃u) du− EQ
( ∫ s

t

EQ(cu | F̃u) du
∣∣∣ F̃t

)
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and thus

EQ(MF
s | F̃t) = MF

t + EQ
(∫ s

t

cu du
∣∣∣ F̃t

)
− EQ

( ∫ s

t

EQ(cu | F̃u) du
∣∣∣ F̃t

)

= MF
t +

∫ s

t

EQ(cu | F̃t) du−
∫ s

t

EQ
(
EQ(cu | F̃u)

∣∣∣ F̃t

)
du

= MF
t +

∫ s

t

EQ(cu | F̃t) du−
∫ s

t

EQ(cu | F̃t) du = MF
t .

We have thus shown that the process MF is an F̃-martingale. Moreover, the
F̃-adapted process α̃, given by (3.17) is manifestly continuous, and thus it
is F̃-predictable. By virtue of uniqueness of the Doob-Meyer decomposition,
we conclude that MF = m̃ and formula (3.17) is valid. ¤

Corollary 3.1.3. Let us denote c̃t = EQ(ct | F̃t). The process

M̃t = Ht −
∫ t∧τ

0

c̃u

1− F̃u

du

is a G̃-martingale and the F̃-intensity of τ is equal to λ̃t = c̃tG̃
−1
t .

Remark 3.1.1. It is worth noting that, typically, the inequality

EQ(λt | F̃t) = EQ(ctG
−1
t | F̃t) 6= EQ(ct | F̃t)G̃−1

t = λ̃t

holds. This means that the F̃-intensity of τ is not given by the optional
projection of the F-intensity on the reduced filtration F̃, in general.

3.1.8 General Enlargement of Filtration

Assume that G is any enlarged filtration, that is, F ∨ H ⊂ G. Then we
may work directly with the filtration G, provided that the decomposition of
any F-martingale in this filtration is known up to time τ . For example, if
W is an F-Brownian motion, then it is not necessarily a G-martingale and
its Doob-Meyer decomposition with respect to the filtration G up to time τ
reads

Wt∧τ = βt∧τ +
∫ t∧τ

0

d〈W,G〉u
Gu−

,

where (βt∧τ , t ∈ R+) is a continuous G-martingale with the increasing
process t ∧ τ . Suppose, for instance, that the dynamics of an asset S are
given by

dSt = St

(
rt dt + σt dWt

)
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in the default-free framework, that is, with respect to the filtration F. Then
its dynamics with respect to the enlarged filtration G are

dSt = St

(
rt dt + σt

d〈W,G〉t
Gt−

+ σt dβt

)

provided that we restrict our attention to the behavior of S prior to default.
We conclude that the possibility of default changes the drift term in the
price dynamics. The interested reader is referred to Mansuy and Yor [140]
for more information.

3.2 Hypothesis (H)

As already mentioned above, an arbitrary F-martingale does not remain a
G-martingale, in general. We shall now study a particular case in which
this martingale invariance property (also known as the immersion property
between F and G) actually holds.

3.2.1 Equivalent Forms of the Hypothesis (H)

Once again we consider a general situation where G = H ∨ F for some refer-
ence filtration F. We shall now examine the so-called hypothesis (H) which
can be stated as follows.

Hypothesis (H) Every F-local martingale is a G-local martingale.

This hypothesis implies, in particular, that any F-Brownian motion re-
mains a Brownian motion with respect to the filtration G. It was studied,
among others, by Brémaud and Yor [34], Jeanblanc and Le Cam [108], Mazz-
iotto and Szpirglas [141], Kusuoka [125] and Nikeghbali and Yor [149].

Let us first examine some equivalent forms of hypothesis (H) (for condi-
tional independence of σ-fields, see, e.g., Dellacherie and Meyer [68]).

Lemma 3.2.1. Assume that G = F ∨ H, where F is an arbitrary filtration
and H is generated by the process Ht = 1{t≥τ}. Then the following conditions
are equivalent to the hypothesis (H).
(i) For any t, h ∈ R+, we have

Q(τ ≤ t | Ft) = Q(τ ≤ t | Ft+h). (3.18)

(i′) For any t ∈ R+, we have

Q(τ ≤ t | Ft) = Q(τ ≤ t | F∞). (3.19)
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(ii) For any t ∈ R+, the σ-fields F∞ and Gt are conditionally independent
given Ft under Q. This means that the equality

EQ(ξη | Ft) = EQ(ξ | Ft)EQ(η | Ft)

holds for any bounded, F∞-measurable random variable ξ and any bounded,
Gt-measurable random variable η.
(iii) For any t ∈ R+ and any u ≥ t, the σ-fields Fu and Gt are conditionally
independent given Ft.
(iv) For any t ∈ R+ and any bounded, F∞-measurable random variable ξ,
we have that EQ(ξ | Gt) = EQ(ξ | Ft).
(v) For any t ∈ R+, and any bounded, Gt-measurable random variable η, we
have that EQ(η | Ft) = EQ(η | F∞).

Proof. If the hypothesis (H) holds then (3.19) is valid as well. If (3.19) holds
then the fact that Ht is generated by the events {τ ≤ s}, s ≤ t, proves that
the σ-fields F∞ and Ht are conditionally independent given Ft. The desired
property now follows. The equivalence between (3.19) and (3.18) is left to
the reader.

Using the monotone class theorem, it can be shown that conditions (i)
and (i′) are equivalent. The proof of equivalence of conditions (i′)–(v) can
be found, for instance, in Section 6.1.1 of Bielecki and Rutkowski [22] (for
related results, see Elliott et al. [79]).

Let us show, for instance, that condition (iv) and the hypothesis (H) are
equivalent.

Assume first that the hypothesis (H) is valid and consider an arbitrary
bounded, F∞-measurable random variable ξ. Let Mt = EQ(ξ | Ft) be the
martingale associated with ξ. Of course, M is also a local martingale with
respect to F. Then the hypothesis (H) implies that M is a local martingale
with respect toG and thus a G-martingale, since M is bounded (any bounded
local martingale is known to be a martingale). We conclude that Mt =
EQ(ξ | Gt) and thus (iv) holds.

Suppose now that (iv) holds. First, we note that the standard truncation
argument shows that the boundedness of a random variable ξ in condition
(iv) can be replaced by the assumption that ξ is Q-integrable. Hence any
F-martingale M is an G-martingale, since any F-martingale M is clearly
G-adapted and we have that, for every t ≤ s,

Mt = EQ(Ms | Ft) = EQ(Ms | Gt),

where the second equality is a consequence of (iv).
Suppose now that M is an F-local martingale. Then there exists an

increasing sequence of F-stopping times τn such that limn→∞ τn = ∞ and
for any n the stopped process Mτn is a uniformly integrable F-martingale.
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Hence Mτn is also a uniformly integrable G-martingale and this means that
M is a G-local martingale. ¤
Remarks 3.2.1. (i) Equality (3.19) appears in numerous papers on default
risk, typically without any reference to the hypothesis (H). For example, in
Madan and Unal [139], the main theorem follows from the fact that (3.19)
holds (see the proof of B9 in the appendix of [139]). This is also the case for
the model studied by Wong [170].
(ii) If τ is F∞-measurable and (3.19) holds then τ is an F-stopping time. If
τ is an F-stopping time then equality (3.18) holds.
(iii) Though the hypothesis (H) is not necessarily valid, in general, it is
satisfied when τ is constructed through the so-called canonical approach (or
for Cox processes). It also holds when τ is independent of F∞ (see Greenfield
[94]).
(iv) If the hypothesis (H) holds then from the condition

Q(τ ≤ t | Ft) = Q(τ ≤ t | F∞), ∀ t ∈ R+,

we deduce easily that F is an increasing process. The property that F is
increasing is equivalent to the fact that any F-martingale stopped at time τ
is a G-martingale. Nikeghbali and Yor [149] proved that this is equivalent to
EQ(Mτ ) = M0 for any bounded F-martingale M .
(v) The hypothesis (H) was also studied by Florens and Fougère [83], who
coined the term noncausality. For more comments on the hypothesis (H),
we refer to Elliott et al. [79].

Proposition 3.2.1. Assume that the hypothesis (H) holds. If a process X is
an F-martingale then the processes XL and [L,X] are G-local martingales.

Proof. From Proposition 3.1.3(ii), the process XL is a G-martingale. Since

[L,X]t = LtXt −
∫

]0,t]

Lu− dXu −
∫

]0,t]

Xu− dLu,

and the process X is an F-martingale (and thus also a G-martingale), we
conclude that the process [L,X] is a G-local martingale, as the sum of three
G-local martingales. ¤

3.2.2 Canonical Construction of Default Time

We now briefly describe the commonly used construction of a default time
associated with a given a priori hazard process Γ. It should be stressed
that the random time obtained through this particular method – which will
be called the canonical construction in what follows – has certain specific
features that are not necessarily shared by all random times with the same
F-hazard process Γ.
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We assume that we are given an F-adapted, right-continuous, increasing
process Γ defined on a filtered probability space (Ω,G,Q). As usual, we
assume that Γ0 = 0 and Γ∞ = +∞. In many instances, Γ is given by the
equality, for every t ∈ R+,

Γt =
∫ t

0

γu du

for some non-negative, F-progressively measurable intensity process γ.
To construct a random time τ , we postulate that the underlying probabil-

ity space (Ω,G,Q) is sufficiently rich to support a random variable ξ, which is
uniformly distributed on the interval [0, 1] and independent of the filtration
F under Q. In this version of the canonical construction, Γ represents the
F-hazard process of τ under Q.

We define the random time τ : Ω → R+ by setting

τ = inf { t ∈ R+ : e−Γt ≤ ξ } = inf { t ∈ R+ : Γt ≥ η },
where the random variable η = − ln ξ has a unit exponential law under Q.
It is not difficult to find the process Ft = Q(τ ≤ t | Ft). Indeed, since clearly
{τ > t} = {ξ < e−Γt} and the random variable Γt is F∞-measurable, we
obtain

Q(τ > t | F∞) = Q(ξ < e−Γt | F∞) = Q(ξ < e−x)x=Γt
= e−Γt .

Consequently, we have

1− Ft = Q(τ > t | Ft) = EQ
(
Q(τ > t | F∞)

∣∣Ft

)
= e−Γt ,

and so F is an F-adapted, right-continuous, increasing process. It is also
clear that the process Γ represents the F-hazard process of τ under Q. As
an immediate consequence of the last two formulae, we obtain the following
property of the canonical construction of the default time (cf. (3.19))

Q(τ ≤ t | F∞) = Q(τ ≤ t | Ft), ∀ t ∈ R+. (3.20)

To summarize, we have that

Q(τ ≤ t | F∞) = Q(τ ≤ t | Fu) = Q(τ ≤ t | Ft) = 1− e−Γt

for arbitrary dates 0 ≤ t ≤ u.

3.2.3 Stochastic Barrier

Suppose that

Q(τ ≤ t | Ft) = Q(τ ≤ t | F∞) = 1− e−Γt ,
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where Γ is a continuous, strictly increasing and F-adapted process. Our goal
is to show that there exists a random variable Θ, independent of F∞, with
exponential distribution of parameter 1, such that τ = inf {t ≥ 0 : Γt > Θ}.
Let us set Θ := Γτ . Then

{t < Θ} = {t < Γτ} = {Ct < τ},

where C is the right inverse of Γ, so that ΓCt
= t. Therefore

Q(Θ > u | F∞) = e−ΓCu = e−u.

We have thus established the required properties, namely, the probability
distribution of Θ and its independence of the σ-field F∞. Furthermore,

τ = inf{ t ∈ R+ : Γt > Γτ} = inf{ t ∈ R+ : Γt > Θ}.

3.3 Predictable Representation Theorem

Kusuoka [125] established the following representation theorem in which the
reference filtration F is generated by a Brownian motion.

Theorem 3.3.1. Assume that the hypothesis (H) is satisfied under Q. Then
any square-integrable martingale with respect to G admits a representation
as the sum of a stochastic integral with respect to the Brownian motion and a
stochastic integral with respect to the discontinuous martingale M associated
with τ .

To derive a version of the predictable representation theorem, we will
assume, for simplicity, that F is continuous and Ft < 1 for every t ∈ R+. If
the hypothesis (H) is assumed to hold, F is also an increasing process and
thus

dFt = e−Γt dΓt, deΓt = eΓt dΓt. (3.21)

The following result extends Proposition 2.2.6 to the case of the reference
filtration F that only supports continuous martingale; in particular, this
result covers the case when F is the Brownian filtration.

Theorem 3.3.2. Suppose that the hypothesis (H) holds under Q and that any
F-martingale is continuous. Then the martingale Mh

t = EQ(hτ | Gt), where
h is an F-predictable process such that EQ|hτ | < ∞, admits the following
decomposition in the sum of a continuous martingale and a discontinuous
martingale

Mh
t = mh

0 +
∫ t∧τ

0

eΓu dmh
u +

∫

]0,t∧τ ]

(hu −Mh
u−) dMu, (3.22)
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where mh is the continuous F-martingale given by

mh
t = EQ

( ∫ ∞

0

hu dFu

∣∣∣Ft

)

and M is the discontinuous G-martingale defined as Mt = Ht − Γt∧τ .

Proof. We start by noting that

Mh
t = EQ(hτ | Gt) = 1{t≥τ}hτ + 1{t<τ}eΓt EQ

( ∫ ∞

t

hu dFu

∣∣∣Ft

)

= 1{t≥τ}hτ + 1{t<τ}eΓt

(
mh

t −
∫ t

0

hu dFu

)
. (3.23)

We will sketch two slightly different derivations of (3.22).

First derivation. Let the process J be given by the formula, for t ∈ R+,

Jt = eΓt

(
mh

t −
∫ t

0

hu dFu

)
.

Noting that Γ is a continuous increasing process and mh is a continuous
martingale, we deduce from the Itô integration by parts formula that

dJt = eΓt dmh
t − eΓtht dFt +

(
mh

t −
∫ t

0

hu dFu

)
eΓt dΓt

= eΓt dmh
t − eΓtht dFt + Jt dΓt.

Therefore, from (3.21),

dJt = eΓt dmh
t + (Jt − ht) dΓt

or, in the integrated form,

Jt = Mh
0 +

∫ t

0

eΓu dmh
u +

∫ t

0

(Ju − hu) dΓu.

Note that Jt = Mh
t = Mh

t− on the event {t < τ}. Therefore, on the event
{t < τ},

Mh
t = Mh

0 +
∫ t∧τ

0

eΓu dmh
u +

∫ t∧τ

0

(Mh
u− − hu) dΓu.

From (3.23), the jump of Mh at time τ equals

hτ − Jτ = hτ −Mh
τ− = Mh

τ −Mh
τ−.

Equality (3.22) now easily follows.
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Second derivation. Equality (3.23) can be re-written as follows

Mh
t =

∫ t

0

hu dHu + (1−Ht)eΓt

(
mh

t −
∫ t

0

hu dFu

)
.

Hence formula (3.22) can be obtained directly by the Itô integration by parts
formula. ¤

3.4 The Girsanov Theorem

We now start by defining a random time τ on a probability space (Ω,G,Q)
and we postulate that it admits the continuous F-hazard process Γ under Q.
Hence, from Proposition 3.1.4, we know that the process Mt = Ht−Γt∧τ is a
G-martingale. We postulate that the hypothesis (H) holds under Q. Finally,
we postulate that the reference filtration F is generated by an F- (hence also
G-) Brownian motion under Q.

Let us fix T > 0. For a probability measure P equivalent to Q on (Ω,GT )
we introduce the G-martingale (ηt, t ∈ [0, T ]) by setting

ηt :=
dP
dQ

∣∣∣Gt = EQ(X | Gt), Q-a.s. (3.24)

Note that X = ηT is here some GT -measurable random variable such that
Q(X > 0) = 1 and EQX = 1.

Using Theorem 3.3.1, we deduce that the Radon-Nikodým density process
η admits the following representation, for every t ∈ [0, T ],

ηt = 1 +
∫ t

0

ξu dWu +
∫

]0,t]

ζu dMu,

where ξ and ζ are G-predictable stochastic processes. Since η is a strictly
positive martingale, by setting θt = ξtη

−1
t− and κt = ζtη

−1
t− , we obtain

ηt = 1 +
∫

]0,t]

ηu−
(
θu dWu + κu dMu

)
(3.25)

where θ and κ are G-predictable processes, with κ > −1. This means the
process η is the Doléans exponential or, more explicitly,

ηt = Et

(∫ ·

0

θu dWu

)
Et

( ∫

]0, · ]
κu dMu

)
= η

(1)
t η

(2)
t , (3.26)

where we write

η
(1)
t = Et

(∫ ·

0

θu dWu

)
= exp

(∫ t

0

θu dWu − 1
2

∫ t

0

θ2
u du

)
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and

η
(2)
t = Et

( ∫

]0, · ]
κu dMu

)
(3.27)

= exp
( ∫

]0,t]

ln(1 + κu) dHu −
∫ t∧τ

0

κuγu du

)
.

Then we have the following extension of the classic Girsanov theorem for a
Brownian motion.

Theorem 3.4.1. Let P be a probability measure on (Ω,GT ) equivalent to Q.
If the Radon-Nikodým density of P with respect to Q is given by (3.24) with
η satisfying (3.25) then the process (Ŵt, t ∈ [0, T ]), given by

Ŵt = Wt −
∫ t

0

θu du,

is a Brownian motion with respect to the filtration G under P and the process
(M̂t, t ∈ [0, T ]), given by

M̂t := Mt −
∫ t∧τ

0

κu dΓu = Ht −
∫ t∧τ

0

(1 + κu) dΓu,

is a G-martingale orthogonal to Ŵ under P.

Proof. Note first that, for every t ∈ [0, T ], we have

d(ηtŴt) = Ŵt dηt + ηt− dŴt + d[Ŵ , η]t
= Ŵt dηt + ηt− dWt − ηt−θt dt + ηt−θt d[W,W ]t
= Ŵt dηt + ηt− dWt.

This shows that Ŵ is a G-local martingale under P. Since the quadratic
variation of Ŵ under P equals [Ŵ , Ŵ ]t = t and Ŵ is continuous, using
the Lévy characterization theorem, we conclude that Ŵ follows a Brownian
motion under P. Similarly, for every t ∈ [0, T ],

d(ηtM̂t) = M̂t dηt + ηt− dM̂t + d[M̂, η]t
= M̂t dηt + ηt− dMt − ηt−κt dΓt∧τ + ηt−κt dHt

= M̂t dηt + ηt−(1 + κt) dMt.

This is turn shows that M̂ is a G-martingale under P. To complete the
proof of the proposition, it suffices to observe that Ŵ is a continuous process
whereas M̂ is manifestly a process of finite variation. Hence Ŵ and M̂ are
orthogonal G-martingales under P. ¤
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Corollary 3.4.1. Let Y be a G-martingale under P, where the probability
measure P is defined in Theorem 3.4.1. Then Y admits the following integral
representation

Yt = Y0 +
∫ t

0

ξ∗u dŴu +
∫

]0,t]

ζ∗u dM̂u, (3.28)

where ξ∗ and ζ∗ are G-predictable stochastic processes.

Proof. Consider the process Ỹ given by the formula

Ỹt =
∫

]0,t]

η−1
u− d(ηuYu)−

∫

]0,t]

η−1
u−Yu− dηu.

It is clear that Ỹ is a G-local martingale under Q. Notice also that Itô’s
formula yields

η−1
u− d(ηuYu) = dYu + η−1

u−Yu− dηu + η−1
u− d[Y, η]u,

and thus

Yt = Y0 + Ỹt −
∫

]0,t]

η−1
u− d[Y, η]u. (3.29)

From the predictable representation theorem, we know that the process
Ỹ admits the following integral representation

Ỹt = Y0 +
∫ t

0

ξ̃u dWu +
∫

]0,t]

ζ̃u dMu (3.30)

for some G-predictable processes ξ̃ and ζ̃. Consequently,

dYt = ξ̃t dWt + ζ̃t dMt − η−1
t− d[Y, η]t = ξ̃t dŴt + ζ̃t(1 + κt)−1 dM̂t,

since (3.25) combined with (3.29)–(3.30) yield

η−1
t− d[Y, η]t = ξ̃tθt dt + ζ̃tκt(1 + κt)−1 dHt.

To derive the last equality we observe, in particular, that in view of (3.29)
we have (we take into account continuity of Γ)

∆[Y, η]t = ηt−ζ̃tκt dHt − κt∆[Y, η]t.

We conclude that Y satisfies (3.28) with ξ∗ = ξ̃ and ζ∗ = ζ̃(1 + κ)−1, where
in turn the processes ξ̃ and ζ̃ are given by (3.30). ¤
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3.5 Invariance of the Hypothesis (H)

Kusuoka [125] shows by means of a counter-example (see Example 3.5.1)
that the hypothesis (H) is not invariant with respect to an equivalent change
of the underlying probability measure, in general. It is worth noting that
his counter-example is based on two filtrations, H1 and H2, generated by
the two random times τ1 and τ2 and H1 is chosen to play the role of the
reference filtration F. We shall argue that in the case where F is generated by
a Brownian motion, the above-mentioned invariance property is valid under
mild technical assumptions.

Let us first examine a general setup in which G = F ∨ H, where F is an
arbitrary filtration and H is generated by the default process H. We say
that Q is locally equivalent to P if Q is equivalent to P on (Ω,Gt) for every
t ∈ R+. Then there exists the Radon-Nikodým density process η such that,
for every t ∈ R+,

dQ | Gt = ηt dP | Gt . (3.31)

For part (i) in Lemma 3.5.1, we refer to Blanchet-Scalliet and Jeanblanc [30]
or Proposition 2.2 in Jamshidian [104]. For part (ii), see Jeulin and Yor
[115].

In this section, we will work under the standing assumption that the
hypothesis (H) is valid under P.

Lemma 3.5.1. (i) Let Q be a probability measure equivalent to P on (Ω,Gt)
for every t ∈ R+, with the associated Radon-Nikodým density process η. If
the density process η is F-adapted then we have that, for every t ∈ R+,

Q(τ ≤ t | Ft) = P(τ ≤ t | Ft).

Hence the hypothesis (H) is also valid under Q and the F-intensities of τ
under Q and under P coincide.
(ii) Assume that Q is equivalent to P on (Ω,G) and dQ = η∞ dP, so that
ηt = EP(η∞ | Gt). Then the hypothesis (H) is valid under Q whenever we
have, for every t ∈ R+,

EP(η∞Ht | F∞)
EP(η∞ | F∞)

=
EP(ηtHt | F∞)
EP(ηt | F∞)

. (3.32)

Proof. To prove (i), assume that the density process η is F-adapted. We
have for each t ≤ s ∈ R+

Q(τ ≤ t | Ft) =
EP(ηt1{t≥τ} | Ft)
EP(ηt | Ft)

= P(τ ≤ t | Ft)

= P(τ ≤ t | Fs) = Q(τ ≤ t | Fs),
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where the last equality follows by another application of the Bayes formula.
The assertion now follows from part (i) in Lemma 3.2.1.

To prove part (ii), it suffices to establish the equality

F̂t := Q(τ ≤ t | Ft) = Q(τ ≤ t | F∞), ∀ t ∈ R+.

Note that since the random variables ηt1{t≥τ} and ηt are P-integrable
and Gt-measurable, using the Bayes formula, part (v) in Lemma 3.2.1, and
assumed equality (3.32), we obtain the following chain of equalities

Q(τ ≤ t | Ft) =
EP(ηt1{t≥τ} | Ft)
EP(ηt | Ft)

=
EP(ηt1{t≥τ} | F∞)
EP(ηt | F∞)

=
EP(η∞1{t≥τ} | F∞)
EP(η∞ | F∞)

= Q(τ ≤ t | F∞).

We conclude that the hypothesis (H) holds under Q if and only if the equality
(3.32) is valid. ¤

Unfortunately, a straightforward verification of condition (3.32) is rather
cumbersome. For this reason, we shall provide alternative sufficient condi-
tions for the preservation of the hypothesis (H) under a locally equivalent
probability measure.

3.5.1 Case of the Brownian Filtration

Let W be a Brownian motion under P and let F be its natural filtration.
Since we work under the standing assumption that the hypothesis (H) is
satisfied under P, the process W is also a G-martingale, where G = F ∨ H.
Hence W is a Brownian motion with respect to G under P. Our goal is to
show that the hypothesis (H) is still valid under Q ∈ Q for a large class Q
of (locally) equivalent probability measures. We postulate that τ admits the
hazard rate γ with respect to F under P.

Let Q be an arbitrary probability measure locally equivalent to P on
(Ω,G). The predictable representation theorem implies that there exist G-
predictable processes θ and κ > −1 such that the Radon-Nikodým density η
of Q with respect to P satisfies the following SDE

dηt = ηt−
(
θt dWt + κt dMt

)

with the initial value η0 = 1. This means that the density process η is given
by formula (3.26). By virtue of a suitable version of the Girsanov theorem,
the processes Ŵ and M̂ are G-martingales under Q, where we set

Ŵt = Wt −
∫ t

0

θu du, M̂t = Mt −
∫ t∧τ

0

γuκu du.
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Proposition 3.5.1. Assume that the hypothesis (H) holds under P. Let Q
be a probability measure locally equivalent to P with the associated Radon-
Nikodým density process η given by formula (3.26). If the process θ is F-
adapted then the hypothesis (H) is valid under Q and the F-intensity of τ
under Q equals γ̂t = (1 + κ̃t)γt, where κ̃ is the unique F-predictable process
such that the equality κ̃t1{t≤τ} = κt1{t≤τ} holds for every t ∈ R+.

Proof. Let P̃ be the probability measure locally equivalent to P on (Ω,G),
given by

dP̃ | Gt = Et

( ∫

]0, · ]
κu dMu

)
dP | Gt

= η
(2)
t dP | Gt

. (3.33)

We claim that the hypothesis (H) holds under P̃. From the Girsanov theorem,
the process W follows a Brownian motion under P̃ with respect to both F and
G. Moreover, from the predictable representation property of W under P̃, we
deduce that any F-local martingale L under P̃ can be written as a stochastic
integral with respect to W . Specifically, there exists an F-predictable process
ξ such that

Lt = L0 +
∫ t

0

ξu dWu.

This shows that L is also a G-local martingale, and thus the hypothesis
(H) holds under P̃. Since we have that

dQ | Gt = Et

( ∫ ·

0

θu dWu

)
dP̃ | Gt ,

we conclude, by virtue of part (i) in Lemma 3.5.1, that the hypothesis (H)
is valid under Q as well. The last claim in the statement of the lemma can
be deduced from the fact that the hypothesis (H) holds under Q and, by the
Girsanov theorem, the process M̂ , given by the formula

M̂t = Mt −
∫ t

0

1{u<τ}γuκu du = Ht −
∫ t

0

1{u<τ}(1 + κ̃u)γu du,

is a Q-martingale. ¤
We claim that the equality P̃ = P holds on the filtration F. Indeed, we

have that dP̃ |Ft = η̃t dP |Ft , where we write η̃t = EP(η(2)
t | Ft). Furthermore,

for every t ∈ R+,

EP(η(2)
t | Ft) = EP

(
Et

( ∫

]0, · ]
κu dMu

) ∣∣∣F∞
)

= 1, (3.34)

where the first equality follows from part (v) in Lemma 3.2.1. To establish the
second equality in (3.34), we first note that since the process M is stopped at
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τ , we may assume, without loss of generality, that κ = κ̃, where the process κ̃
is F-predictable. Moreover, the conditional cumulative distribution function
of τ given F∞ has the form 1− exp(−Γt(ω)). Hence, for arbitrarily selected
sample paths of processes κ and Γ, the claimed equality can be seen as a
consequence of the martingale property of the Doléans exponential.

3.5.2 Extension to Orthogonal Martingales

Equality (3.34) suggests that Proposition 3.5.1 can be extended to the case of
arbitrary orthogonal local martingales. Such a generalization is convenient, if
we wish to cover the situation considered in Kusuoka’s counter-example. Let
N be a local martingale under P with respect to the filtration F. It is also aG-
local martingale, since we maintain the assumption that the hypothesis (H)
holds under P. Let Q be an arbitrary probability measure locally equivalent
to P on (Ω,G). We assume that the Radon-Nikodým density process η of Q
with respect to P equals

dηt = ηt−
(
θt dNt + κt dMt

)

for some G-predictable processes θ and κ > −1 (the properties of the process
θ depend, of course, on the choice of a local martingale N). The next result
covers the case where N and M are orthogonal G-local martingales under P,
so that the product MN is a G-local martingale.

Proposition 3.5.2. Assume that the following conditions hold:
(a) N and M are orthogonal G-local martingales under P,
(b) N has the predictable representation property under P with respect to F, in
the sense that any F-local martingale L under P there exists an F-predictable
process ξ such that, for every t ∈ R+,

Lt = L0 +
∫

]0,t]

ξu dNu,

(c) P̃ is a probability measure on (Ω,G) such that (3.33) holds.
Then we have:
(i) the hypothesis (H) is valid under P̃,
(ii) if the process θ is F-adapted then the hypothesis (H) is valid under Q.

Lemma 3.5.2. Under the assumptions of Proposition 3.5.2, we have:
(i) N is a G-local martingale under P̃,
(ii) N has the predictable representation property for F-local martingales
under P̃.
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Proof. In view of (c), we have dP̃ | Gt = η
(2)
t dP | Gt , where the density process

η(2) is given by (3.27), so that dη
(2)
t = η

(2)
t− κt dMt. From the assumed or-

thogonality of N and M , it follows that N and η(2) are orthogonal G-local
martingales under P and thus Nη(2) is a G-local martingale under P as well.
This means that N is a G-local martingale under P̃, so that (i) holds.

To establish part (ii) in the lemma, we first define the auxiliary process η̃

by setting η̃t = EP(η(2)
t | Ft). Then manifestly dP̃ |Ft = η̃t dP |Ft , and thus in

order to show that any F-local martingale under P̃ is an F-local martingale
under P, it suffices to check that η̃t = 1 for every t ∈ R+, so that P̃ = P on
F. To this end, we note that, for every t ∈ R+,

EP(η(2)
t | Ft) = EP

(
Et

( ∫

]0, · ]
κu dMu

) ∣∣∣F∞
)

= 1,

where the first equality follows from part (v) in Lemma 3.2.1 and the second
one can established similarly as the second equality in (3.34).

We are in a position to prove (ii). Let L be an F-local martingale under
P̃. Then it follows also an F-local martingale under P and thus, by virtue of
(b), it admits an integral representation with respect to N under P and P̃.
This shows that N has the predictable representation property with respect
to F under P̃. ¤
Proof of Proposition 3.5.2. We shall argue along the similar lines as in the
proof of Proposition 3.5.1. To prove (i), note that by part (ii) in Lemma 3.5.2
we know that any F-local martingale under P̃ admits the integral represen-
tation with respect to N . But, by part (i) in Lemma 3.5.2, N is a G-local
martingale under P̃. We conclude that L is a G-local martingale under P̃
and thus the hypothesis (H) is valid under P̃. Assertion (ii) now follows from
part (i) in Lemma 3.5.1. ¤

Example 3.5.1. Kusuoka [125] presents a counter-example based on the
two independent random times τ1 and τ2 given on some probability space
(Ω,G,P). We write M i

t = Hi
t −

∫ t∧τi

0
γi(u) du, where Hi

t = 1{t≥τi} and γi

is the deterministic intensity function of τi under P. Let us set dQ | Gt =
ηt dP | Gt , where ηt = η

(1)
t η

(2)
t and, for i = 1, 2 and every t ∈ R+,

η
(i)
t = 1 +

∫ t

0

η
(i)
u−κ(i)

u dM i
u = Et

( ∫

]0, · ]
κ(i)

u dM i
u

)

for some G-predictable processes κ(i), i = 1, 2, where G = H1 ∨ H2. We set
F = H1 and H = H2. Manifestly, the hypothesis (H) holds under P.

Moreover, in view of Proposition 3.5.2, it is still valid under the equivalent
probability measure P̃ given by dP̃ | Gt = η

(2)
t dP | Gt . It is clear that P̃ = P
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on F, since we have that, for every t ∈ R+,

EP(η(2)
t | Ft) = EP

(
Et

( ∫

]0, · ]
κ(2)

u dM2
u

) ∣∣∣H1
t

)
= 1.

However, the hypothesis (H) is not necessarily valid under Q if the process
κ(1) fails to be F-adapted. In Kusuoka’s counter-example, the process κ(1)

was chosen to be explicitly dependent on both random times and it was
shown that the hypothesis (H) fails to hold under Q.

For an alternative approach to Kusuoka’s example, through an absolutely
continuous change of a probability measure, the interested reader may con-
sult Collin-Dufresne et al. [58].

3.6 G-Intensity of Default Time

In an alternative approach to modeling of default time, we start by assuming
that we are given a default time τ and some filtration G such that τ is a
G-stopping time. In this setup, the default intensity is defined as follows.

Definition 3.6.1. A G-intensity of default time τ is any non-negative and
G-predictable process (λt, t ∈ R+) such that the process (Mt, t ∈ R+), which
is given as

Mt = Ht −
∫ t∧τ

0

λu du,

is a G-martingale.

The existence of a G-intensity of τ hinges on the fact that H is a bounded
increasing process, therefore a bounded sub-martingale, and thus, by the
Doob-Meyer decomposition, it can be written as a sum of a martingale M
and a G-predictable, increasing process A, which is stopped at τ . In the
case where τ is a predictable stopping time, obviously A = H. In fact, it is
known that the G-intensity exists only if τ is a totally inaccessible stopping
time with respect to G. In the present setup, the default intensity is not
well defined after time τ . Specifically, if λ is a G-intensity then for any
non-negative, G-predictable process g the process λ̃, given by the expression

λ̃t = λt1{t≤τ} + gt1{t>τ},

is also a version of a G-intensity. Let us write Λt =
∫ t

0
λu du. The following

result is a counterpart of Lemma 3.1.3(i).

Lemma 3.6.1. The process Lt = 1{t<τ}eΛt for t ∈ R+ is a G-martingale.
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Proof. From the integration by parts formula, we get

dLt = eΛt
(
(1−Ht)λt dt− dHt

)
= −eΛt dMt.

This shows that L is a G-martingale. ¤
The following result is due to Duffie et al. [74].

Proposition 3.6.1. For any GT -measurable and Q-integrable random vari-
able X we have

EQ(X1{T<τ} | Gt) = 1{t<τ}eΛt EQ(Xe−ΛT | Gt)− EQ(1{t<τ≤T}∆YτeΛτ | Gt),

where the process Y is defined by setting, for every t ∈ R+,

Yt = EQ
(
Xe−ΛT

∣∣Gt

)
.

Proof. Let us denote U = LY . The Itô integration by parts formula yields

dUt = Lt− dYt + Yt− dLt + d[L, Y ]t = Lt− dYt + Yt− dLt + ∆Lt∆Yt.

Since L and Y are G-martingales, we obtain

EQ(UT | Gt) = EQ
(
X1{T<τ} | Gt

)
= Ut − EQ

(
1{t<τ≤T}∆YτeΛτ | Gt

)
.

Consequently,

EQ(X1{T<τ} | Gt) = 1{t<τ}eΛtEQ
(
Xe−ΛT | Gt

)− EQ
(
1{t<τ≤T}eΛτ ∆Yτ | Gt

)

as required. ¤
It is worthwhile to compare the next result with the formula established

in Corollary 3.1.1.

Corollary 3.6.1. Assume that the process Yt = EQ
(
Xe−ΛT

∣∣Gt

)
is contin-

uous at time τ , that is, ∆Yτ = 0. Then for any GT -measurable, Q-integrable
random variable X

EQ(X1{T<τ} | Gt) = 1{t<τ} EQ
(
XeΛt−ΛT

∣∣Gt

)
.

It should be stressed that the continuity of the process Y at time τ
depends on the choice of λ after time τ and that this condition is rather
difficult to verify, in general. Furthermore, the jump size ∆Yτ is usually
quite hard to compute explicitly (see, e.g., Çetin et al. [51]). It is thus
worth noting that Collin-Dufresne et al. [58] apply an absolutely continuous
change of a probability measure that leads to an essential simplification of
the formula of Proposition 3.6.1. In a recent paper by Jeanblanc and Le
Cam [110], the authors provide a detailed comparison of the two alternative
approaches to the modeling of default time.
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3.7 Single-Name CDS Market

A strictly positive random variable τ defined on a probability space (Ω,G,Q)
is termed a random time. In view of its financial interpretation, we will refer
to it as a default time. We define the default indicator process Ht = 1{t≥τ}
and we denote by H the filtration generated by this process. We assume that
we are given, in addition, some auxiliary filtration F and we write G = H∨F,
meaning that we have Gt = σ(Ht,Ft) for every t ∈ R+. The filtration G is
referred to as to the full filtration. It is clear that τ is an H-stopping time,
as well as a G-stopping time (but not necessarily an F-stopping time).

All processes are defined on the space (Ω,G,P), where P is to be inter-
preted as the real-life (i.e., statistical) probability measure. Unless otherwise
stated, they are assumed to be G-adapted and with càdlàg sample paths.

3.7.1 Standing Assumptions

We assume that the underlying market model is arbitrage-free, meaning that
it admits a spot martingale measure Q (not necessarily unique) equivalent
to Q. A spot martingale measure is associated with the choice of the savings
account B as a numéraire, in the sense that the price process of any traded
security, which pays no coupons or dividends, is a G-martingale under Q
when discounted by the savings account B. As usual, B is given by

Bt = exp
( ∫ t

0

ru du
)
, ∀ t ∈ R+,

where the short-term r is assumed to follow an F-progressively measurable
stochastic process. The choice of a suitable term structure model is arbitrary
and it is not discussed in the present work.

Recall that Gt = Q(τ > t | Ft) is the survival process of τ with respect
to a filtration F. We postulate that G0 = 1 and Gt > 0 for every t ∈ R+

(hence the case where τ is an F-stopping time is excluded) so that the hazard
process Γ = − ln G of τ with respect to the filtration F is well defined.

Clearly, the process G is a bounded F-supermartingale and thus it admits
the unique Doob-Meyer decomposition G = µ−ν, where µ is an F-martingale
with µ0 = 1 and ν is an F-predictable, increasing process. If F = N + C is
the Doob-Meyer decomposition of F then, of course, µ = 1−N and C = ν.
We shall work throughout under the following standing assumption.

Assumption 3.7.1. We postulate that G is a continuous process and the
increasing process C in its Doob-Meyer decomposition is absolutely contin-
uous with respect to the Lebesgue measure, so that dCt = ct dt for some
F-progressively measurable, non-negative process c.
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Let λ be the F-progressively measurable process defined as λt = G−1
t ct.

For a further reference, let us note that, under Assumption 3.7.1, we have
dGt = dµt − λtGt dt, where the F-martingale µ is continuous. Moreover, in
view of the Lebesgue dominated convergence theorem, the continuity of G
implies that the expected value EQ(Gt) = Q(τ > t) is a continuous function,
and thus Q(τ = t) = 0 for any fixed t ∈ R+.

We already know that, under Assumption 3.7.1, the process M , which is
given by the formula

Mt = Ht − Λt∧τ = Ht −
∫ t∧τ

0

λu du, (3.35)

is a G-martingale. The increasing, absolutely continuous, F-adapted process
Λ satisfies the following equalities

Λt =
∫ t

0

G−1
u dCu =

∫ t

0

λu du.

Let us finally recall that the F-progressively measurable process λ is called
the F-intensity of a default time τ .

3.7.2 Valuation of a Defaultable Claim

Let us first recall the concept of a generic defaultable claim (cf. Section
1.1.1 and Definition 2.3.1). In this section, we work within a single-name
framework, so that τ is the moment of default of a reference credit name.
A generic defaultable claim is now specified by the following extension of
Definition 2.3.1 (note that, similarly as in Definition 2.3.1, we set X̃ = 0).

Definition 3.7.1. By a defaultable claim with maturity date T we mean
a quadruplet (X, A, Z, τ) where X is an FT -measurable random variable,
(At, t ∈ [0, T ]) is an F-adapted, continuous process of finite variation with
A0 = 0, (Zt, t ∈ [0, T ]) is an F-predictable process and τ is a random time.

As usual, the financial interpretation of components of a defaultable claim
can be inferred from the specification of the dividend process D describing
all cash flows associated with a defaultable claim over its lifespan ]0, T ],
that is, excluding the initial premium, if any. We follow here our standard
convention that the date 0 is the inception date of a defaultable contract.

Definition 3.7.2. The dividend process (Dt, t ∈ R+) of a defaultable claim
(X,A, Z, τ) maturing at T equals, for every t ∈ R+,

Dt = X1{T<τ}1[T,∞[(t) +
∫ t∧T

0

(1−Hu) dAu +
∫

]0,t∧T ]

Zu dHu.
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It is clear that the dividend process D is an F-adapted process of finite
variation on [0, T ].

Let us recall the financial interpretation of D is as follows: X is the
promised payoff, the process A represents the promised dividends and the
process Z, termed the recovery process, specifies the recovery payoff at de-
fault. As already mentioned above, according to our convention, a possible
cash payment (premium) at time 0 is not included in the dividend process
D associated with a defaultable claim.

3.7.3 Price Dynamics of a Defaultable Claim

For any fixed t ∈ [0, T ], the process Du −Dt, u ∈ [t, T ], represents all cash
flows from a defaultable claim received by an investor who purchased it at
time t. In general, the process Du − Dt may depend on the past prices of
underlying assets and on the history of the market prior to t. The past
dividends are not valued by the market, however, so that the current market
value at time t ∈ [0, T ] of a defaultable claim – that is, the price at which it
is traded at time t – will only reflect future cash flows over the time interval
]t, T ]. This leads to the following definition of the ex-dividend price of a
defaultable claim (cf. formula (3.6))

Definition 3.7.3. The ex-dividend price process S of a defaultable claim
(X,A, Z, τ) equals, for every t ∈ [0, T ],

St = Bt EQ
( ∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)
. (3.36)

Obviously, ST = 0 for any dividend process D. We work throughout
under the natural integrability assumptions: EQ|B−1

T X| < ∞,

EQ
∣∣∣
∫ T

0

B−1
u (1−Hu) dAu

∣∣∣ < ∞

and
EQ|B−1

τ∧T Zτ∧T | < ∞,

which ensure that the ex-dividend price St is well defined for any t ∈ [0, T ].
We will later need the following technical assumption

EQ
( ∫ T

0

(B−1
u Zu)2 d〈µ〉u

)
< ∞. (3.37)

We first derive a convenient representation for the ex-dividend price S of
a defaultable claim.
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Proposition 3.7.1. The ex-dividend price of a defaultable claim (X, A, Z, τ)
equals, for t ∈ [0, T [,

St = 1{t<τ}
Bt

Gt
EQ

(
B−1

T GT X +
∫ T

t

B−1
u Gu

(
Zuλu du + dAu

) ∣∣∣Ft

)
.

Proof. For any t ∈ [0, T [, the ex-dividend price is given by the conditional
expectation

St = Bt EQ
(
B−1

T X1{T<τ} +
∫ T∧τ

t∧τ

B−1
u dAu + B−1

τ Zτ1{t<τ≤T}
∣∣∣Gt

)
.

Let us fix t and let us introduce two auxiliary processes Y = (Yu)u∈[t,T ] and
R = (Ru)u∈[t,T ] by setting

Yu =
∫ u

t

B−1
v dAv, Ru = B−1

u Zu +
∫ u

t

B−1
v dAv = B−1

u Zu + Yu.

Then St can be represented as follows

St = Bt EQ
(
B−1

T X1{T<τ} + 1{T<τ}YT + Rτ1{t<τ≤T}
∣∣∣Gt

)
.

We use the formula of Corollary 3.1.1, to evaluate the conditional expecta-
tions

Bt EQ
(
1{T<τ}B

−1
T X

∣∣∣Gt

)
= 1{t<τ}

Bt

Gt
EQ

(
B−1

T GT X
∣∣∣Ft

)
,

and
Bt EQ

(
1{T<τ}YT

∣∣∣Gt

)
= 1{t<τ}

Bt

Gt
EQ

(
GT YT

∣∣∣Ft

)
.

In addition, we will use of the following formula

EQ(1{t<τ≤T}Rτ | Gt) = −1{t<τ}
1
Gt
EQ

(∫ T

t

Ru dGu

∣∣∣Ft

)
,

which is known to hold for any F-predictable process R such that EQ|Rτ | <
∞. We thus obtain, for any t ∈ [0, T [,

St = 1{t<τ}
Bt

Gt
EQ

(
B−1

T GT X + GT YT −
∫ T

t

(B−1
u Zu + Yu) dGu

∣∣∣Ft

)
,

Moreover, since dGt = dµt − λtGt dt, where µ is an F-martingale, we also
obtain

EQ
(
−

∫ T

t

B−1
u Zu dGu

∣∣∣Ft

)
= EQ

( ∫ T

t

B−1
u GuZuλu du

∣∣∣Ft

)
,

where we have used the assumed inequality (3.37).
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To complete the proof, it remains to observe that G is a continuous
semimartingale and Y is a continuous process of finite variation with Yt = 0,
so that the Itô integration by parts formula yields

GT YT −
∫ T

t

Yu dGu =
∫ T

t

Gu dYu =
∫ T

t

B−1
u Gu dAu,

where the second equality follows from the definition of Y . We conclude that
the asserted formula holds for any t ∈ [0, T [, as required. ¤

Proposition 3.7.1 implies that the ex-dividend price S satisfies, for every
t ∈ [0, T ],

St = 1{t<τ}S̃t

for some F-adapted process S̃, which is termed the ex-dividend pre-default
price of a defaultable claim. Note that S may not be continuous at time T ,
in which case ST− 6= ST = 0.

Definition 3.7.4. The cumulative price process Sc associated with the div-
idend process D is defined by setting, for every t ∈ [0, T ],

Sc
t = Bt EQ

( ∫

]0,T ]

B−1
u dDu

∣∣∣Gt

)
= St + Bt

∫

]0,t]

B−1
u dDu. (3.38)

Note that the discounted cumulative price process Sc∗ = B−1Sc follows a
G-martingale under Q. We deduce immediately from Proposition 3.7.1 and
Definition 3.7.4 that the following corollary is valid.

Corollary 3.7.1. The cumulative price of a defaultable claim (X, A, Z, τ)
equals, for t ∈ [0, T ],

Sc
t = 1{t<τ}

Bt

Gt
EQ

(
B−1

T GT X1{t<T} +
∫ T

t

B−1
u Gu

(
Zuλu du + dAu

) ∣∣∣Ft

)

+ Bt

∫

]0,t]

B−1
u dDu.

The pre-default cumulative price is the unique F-adapted process S̃c that
satisfies, for every t ∈ [0, T ],

1{t<τ}Sc
t = 1{t<τ}S̃c

t . (3.39)

Our next goal is to derive the dynamics underQ for the (pre-default) price
of a defaultable claim in terms of some G-martingales and F-martingales.
To simplify the presentation, we shall work from now on under the following
standing assumption.
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Assumption 3.7.2. Any F-martingale is a continuous process.

The following auxiliary result is well known (see, for instance, Lemma
5.1.6 in [22]). Recall that µ is the F-martingale appearing in the Doob-
Meyer decomposition of G.

Lemma 3.7.1. Let n be any F-martingale. Then the process ň given by

ňt = nt∧τ −
∫ t∧τ

0

G−1
u d〈n, µ〉u (3.40)

is a continuous G-martingale.

In particular, the process µ̌ given by

µ̌t = µt∧τ −
∫ t∧τ

0

G−1
u d〈µ, µ〉u (3.41)

is a continuous G-martingale.
In the next result, we deal with the dynamics of the ex-dividend price

process S. Recall that the G-martingale M is given by formula (3.35).

Proposition 3.7.2. The dynamics of the ex-dividend price S on [0, T ] are

dSt = −St− dMt + (1−Ht)
(
(rtSt − λtZt) dt− dAt

)
(3.42)

+ (1−Ht)G−1
t

(
Btdmt − Stdµt

)
+ (1−Ht)G−2

t

(
Std〈µ〉t −Btd〈µ,m〉t

)

where the continuous F-martingale m is given by the formula

mt = EQ
(
B−1

T GT X +
∫ T

0

B−1
u Gu

(
Zuλu du + dAu

) ∣∣∣Ft

)
. (3.43)

Proof. We shall first derive the dynamics of the pre-default ex-dividend price
S̃. In view of Proposition 3.7.1, the price S can be represented as follows,
for t ∈ [0, T [,

St = 1{t<τ}S̃t = 1{t<τ}BtG
−1
t Ut,

where the auxiliary process U equals

Ut = mt −
∫ t

0

B−1
u GuZuλu du−

∫ t

0

B−1
u Gu dAu,

where in turn the continuous F-martingale m is given by (3.43). It is thus
obvious that S̃ = BG−1U for t ∈ [0, T [ (of course, S̃T = 0). Since G = µ−C,
an application of Itô’s formula leads to

d(G−1
t Ut) = G−1

t dmt −B−1
t Ztλt dt−B−1

t dAt

+ Ut

(
G−3

t d〈µ〉t −G−2
t (dµt − dCt)

)
−G−2

t d〈µ, m〉t.
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Therefore, since under the present assumptions dCt = λtGt dt, using
again Itô’s formula, we obtain

dS̃t =
(
(λt + rt)S̃t − λtZt

)
dt− dAt + G−1

t

(
Bt dmt − S̃t dµt

)
(3.44)

+ G−2
t

(
S̃t d〈µ〉t −Bt d〈µ,m〉t

)
.

Note that, under the present assumptions, the pre-default ex-dividend price
S̃ follows on [0, T [ a continuous process with dynamics given by (3.44). This
means that St− = S̃t on {t ≤ τ} for any t ∈ [0, T [. Moreover, since G
is continuous, we clearly have that Q(τ = T ) = 0. Hence for the process
St = (1−Ht)S̃t we obtain, for every t ∈ [0, T ],

dSt = −St− dMt + (1−Ht)
(
(rtSt − λtZt) dt− dAt

)

+ (1−Ht)G−1
t

(
Btdmt − Stdµt

)
+ (1−Ht)G−2

t

(
Std〈µ〉t −Btd〈µ,m〉t

)

as expected. ¤
Let us now examine the dynamics of the cumulative price. As expected,

the discounted cumulative price Sc∗ = B−1Sc is a G-martingale under Q
(see formula (3.46) below).

Corollary 3.7.2. The dynamics of the cumulative price Sc on [0, T ] are

dSc
t = rtS

c
t dt + (Zt − St−) dMt + (1−Ht)G−1

t

(
Bt dmt − St dµt

)
(3.45)

+ (1−Ht)G−2
t

(
St d〈µ〉t −Bt d〈µ, m〉t

)

with the F-martingale m given by (3.43). Equivalently,

dSc
t = rtS

c
t dt + (Zt − St−) dMt + G−1

t (Bt dm̌t − St dµ̌t), (3.46)

where the G-martingales m̌ and µ̌ are given by (3.40) and (3.41) respectively.
The pre-default cumulative price S̃c satisfies, for t ∈ [0, T ],

dS̃c
t = rtS̃

c
t dt + λt(S̃t − Zt) dt + G−1

t

(
Bt dmt − S̃t dµt

)
(3.47)

+ G−2
t

(
S̃t d〈µ〉t −Bt d〈µ,m〉t

)
.

Proof. Formula (3.38) yields

dSc
t = dSt + d

(
Bt

∫

]0,t]

B−1
u dDu

)
= dSt + rt(Sc

t − St) dt + dDt

= dSt + rt(Sc
t − St) dt + (1−Ht) dAt + Zt dHt. (3.48)

By combining (3.48) with (3.42), we obtain (3.45). Formulae (3.46) and
(3.47) are immediate consequences of (3.40), (3.41) and (3.45). ¤
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Dynamics under the hypothesis (H). Let us now consider the special
case where the hypothesis (H) is satisfied under Q between the filtrations
F and G = H ∨ F. This means that the immersion property holds for the
filtrations F and G, in the sense that any F-martingale under Q is also a
G-martingale under Q. In that case, the survival process G of τ with respect
to F is known to be non-increasing, so that G = −C. In other words, the
continuous martingale µ in the Doob-Meyer decomposition of G vanishes.
Consequently, formula (3.42) becomes

dSt = −St− dMt + (1−Ht)
(
(rtSt − λtZt) dt− dAt

)
+ (1−Ht)BtG

−1
t dmt.

Similarly, (3.45) reduces to

dSc
t = rtS

c
t dt + (Zt − S̃t) dMt + (1−Ht)G−1

t Bt dmt

and (3.47) becomes

dS̃c
t = rtS̃

c
t dt + λt(S̃t − Zt) dt + G−1

t Bt dmt.

Remark 3.7.1. The hypothesis (H) is a rather natural assumption in the
present context. Indeed, it can be shown that it is necessarily satisfied under
the postulate that the underlying F-market model is complete and arbitrage-
free, and the extendedG-market model is arbitrage-free (see Blanchet-Scalliet
and Jeanblanc [30]).

3.7.4 Price Dynamics of a CDS

In Definition 3.7.5 of a stylized T -maturity credit default swap, we follow
the convention adopted in Section 2.4. Unlike in Section 2.4, the default
protection stream is now represented by an F-predictable process δ. We
assume that the default protection payment is received at the time of default
and it equals δt if default occurs at time t prior to or at maturity date T .
Note that δt represents the protection payment, so that according to our
notational convention the recovery rate equals 1 − δt rather than δt. The
notional amount of the CDS is equal to one monetary unit.

Definition 3.7.5. The stylized T -maturity credit default swap (CDS) with a
constant spread κ and protection at default is a defaultable claim (0, A, Z, τ)
in which we set Zt = δt and At = −κt for every t ∈ [0, T ]. An F-predictable
process δ : [0, T ] → R represents the default protection and a constant κ is
the fixed CDS spread (also termed the rate or premium of the CDS).

A credit default swap is thus a particular defaultable claim in which
the promised payoff X is null and the recovery process Z is determined in
reference to the estimated recovery rate of the reference credit name.
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We denote by D(κ, δ, T, τ) the dividend process of a CDS. It follows
immediately from Definition 3.7.2 that the dividend process D(κ, δ, T, τ) of
a stylized CDS equals, for every t ∈ R+,

Dt(κ, δ, T, τ) = δτ1{t≥τ} − κ(t ∧ T ∧ τ). (3.49)

In a more realistic approach, the process A is discontinuous, with jumps
occurring at the premium payment dates. In this section, we shall only deal
with a stylized CDS with a continuously paid premium.

Let us first examine the valuation formula for a stylized T -maturity CDS.
Since we now have X = 0, Z = δ and At = −κt, we deduce easily from (3.36)
that the ex-dividend price of such CDS contract equals, for every t ∈ [0, T ],

St(κ, δ, T, τ) = 1{t<τ}
(
P̃ (t, T )− κÃ(t, T )

)
, (3.50)

where we denote, for any t ∈ [0, T ],

P̃ (t, T ) =
Bt

Gt
EQ

(
1{t<τ≤T}B−1

τ δτ

∣∣∣Ft

)

and

Ã(t, T ) =
Bt

Gt
EQ

( ∫ T∧τ

t

B−1
u du

∣∣∣Ft

)
.

The quantity P̃ (t, T ) is the pre-default value at time t of the protection leg,
whereas Ã(t, T ) represents the pre-default present value at time t of one risky
basis point paid up to the maturity T or the default time τ , whichever comes
first. For ease of notation, we shall write St(κ) in place of St(κ, δ, T, τ) in
what follows. Note that the quantities P̃ (t, T ) and Ã(t, T ) are well defined
at any date t ∈ [0, T ], and not only prior to default as the terminology
‘pre-default values’ might suggest.

We are in a position to state the following immediate corollary to Propo-
sition 3.7.1.

Corollary 3.7.3. The ex-dividend price of a CDS equals, for every t ∈ [0, T ],

St(κ) = 1{t<τ}
Bt

Gt
EQ

( ∫ T

t

B−1
u Gu(δuλu − κ) du

∣∣∣Ft

)
(3.51)

and thus the cumulative price of a CDS equals, for every t ∈ [0, T ],

Sc
t (κ) = 1{t<τ}

Bt

Gt
EQ

(∫ T

t

B−1
u Gu(δuλu − κ) du

∣∣∣Ft

)
+ Bt

∫

]0,t]

B−1
u dDu.

The next result is a direct consequence of Proposition 3.7.2 and Corollary
3.7.2.
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Corollary 3.7.4. The dynamics of the ex-dividend price S(κ) are

dSt(κ) = −St−(κ) dMt + (1−Ht)(rtSt + κ− λtδt) dt (3.52)
+ (1−Ht)G−1

t (Bt dnt − St dµt) + (1−Ht)G−2
t

(
St d〈µ〉t −Bt d〈µ, n〉t

)

with the F-martingale n given by the formula

nt = EQ
(∫ T

0

B−1
u Gu(δuλu − κ) du

∣∣∣Ft

)
. (3.53)

The cumulative price Sc(κ) satisfies, for every t ∈ [0, T ],

dSc
t (κ) = rtS

c
t (κ) dt +

(
δt − St−(κ)

)
dMt + (1−Ht)G−1

t

(
Bt dnt − St(κ) dµt

)

+ (1−Ht)G−2
t

(
St(κ) d〈µ〉t −Bt d〈µ, n〉t

)

or, equivalently,

dSc
t (κ) = rtS

c
t (κ) dt +

(
δt−St−(κ)

)
dMt + G−1

t

(
Bt dňt−St(κ) dµ̌t

)
, (3.54)

where the G-martingales ň and µ̌ are given by (3.40) and (3.41) respectively.

Dynamics under the hypothesis (H). If the immersion property of F
and G holds, the martingale µ is null and thus (3.52) reduces to

dSt(κ) = −S̃t(κ) dMt + (1−Ht)
(
rtSt(κ) + κ− λtδt

)
dt + (1−Ht)BtG

−1
t dnt

since the process S̃t(κ), t ∈ [0, T ], is continuous and satisfies (cf. (3.44))

dS̃t(κ) =
(
(λt + rt)S̃t(κ) + κ− λtδt

)
dt + BtG

−1
t dnt.

Let us note that the quantity κ− λtδt has the intuitive interpretation as
the pre-default dividend rate of a CDS.

Similarly, we obtain from (3.54)

dSc
t (κ) = rtS

c
t (κ) dt +

(
δt − S̃t(κ)

)
dMt + (1−Ht)BtG

−1
t dnt (3.55)

and
dS̃c

t (κ) = rtS̃
c
t (κ) dt + λt

(
S̃t(κ)− δt

)
dt + BtG

−1
t dnt.

3.7.5 Dynamics of the Market CDS Spread

Let us now introduce the notion of the market CDS spread. It reflects the
real-world feature that for any date s the CDS issued at this time has the
fixed spread chosen in such a way that the CDS is worthless at its inception.
Note that the protection process (δt, t ∈ [0, T ]) is fixed throughout. We fix
the maturity date T and we assume that credit default swaps with different
inception dates have a common protection process δ.
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Definition 3.7.6. The T -maturity market CDS spread κ(s, T ) at any date
s ∈ [0, T ] is the level of the CDS spread that makes the values of the two
legs of a CDS equal to each other at time s.

It should be noted that CDSs are quoted in terms of spreads. At any
date t, one can take at no cost a long or short position in the CDS issued at
this date with the fixed spread equal to the actual value of the market CDS
spread for a given maturity and a given reference credit name.

Let us stress that the market CDS spread κ(s, T ) is not defined neither
at the moment of default nor after this date, so that we shall deal in fact
with the pre-default value of the market CDS spread. Observe that κ(s, T )
is represented by an Fs-measurable random variable. In fact, it follows
immediately from (3.51) that κ(s, T ) admits the following representation,
for every s ∈ [0, T ],

κ(s, T ) =
P̃ (s, T )

Ã(s, T )
=
EQ

( ∫ T

s
B−1

u Guδuλu du
∣∣Fs

)

EQ
( ∫ T

s
B−1

u Gu du
∣∣Fs

) =
K1

s

K2
s

,

where we denote

K1
s = EQ

( ∫ T

s

B−1
u Guδuλu du

∣∣Fs

)

and

K2
s = EQ

( ∫ T

s

B−1
u Gu du

∣∣Fs

)
.

In what follows, we shall write briefly κs instead of κ(s, T ). The next
result furnishes a convenient representation for the price at time t of a CDS
issued at some date s ≤ t, that is, the marked-to-market value of a CDS that
exists already for some time (recall that the market value of the just issued
CDS is null).

Proposition 3.7.3. The ex-dividend price S(κs) of a T -maturity market
CDS initiated at time s equals, for every t ∈ [s, T ],

St(κs) = 1{t<τ} (κt − κs) Ã(t, T ) = 1{t<τ}S̃t(κs), (3.56)

where S̃t(κs) is the pre-default ex-dividend price at time t.

Proof. To establish (3.56), it suffices to observe that St(κs) = St(κs)−St(κt)
since St(κt) = 0. Therefore, in order to conclude it suffices to use (3.50) with
κ = κt and κ = κs. ¤
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Let us now derive the dynamics of the market CDS spread. We define
the F-martingales

m1
s = EQ

( ∫ T

0

B−1
u Guδuλu du

∣∣∣Fs

)
= K1

s +
∫ s

0

B−1
u Guδuλu du

and

m2
s = EQ

( ∫ T

0

B−1
u Gu du

∣∣∣Fs

)
= K2

s +
∫ s

0

B−1
u Gu du.

Under Assumption 3.7.2, the F-martingales m1 and m2 are continuous.
Therefore, using the Itô formula, we find easily that the semimartingale
decomposition of the market spread process reads

dκs =
1

K2
s

(
B−1

s Gs(κs − δsλs) ds +
κs

K2
s

d〈m2〉s − 1
K2

s

d〈m1,m2〉s
)

+
1

K2
s

(
dm1

s − κs dm2
s

)
.

3.7.6 Trading Strategies in the CDS Market

We assume from now that k credit default swaps with certain maturities
Ti ≥ T , spreads κi and protection payments δi for i = 1, 2, . . . , k are traded
over the time interval [0, T ]. All these contracts are supposed to refer to the
same underlying credit name and thus they necessarily refer to a common
default time τ .

More formally, this family of credit default swaps is represented by the
corresponding dividend processes Di = D(κi, δ

i, Ti, τ), which are given by
formula (3.49). For brevity, the ex-dividend price of the ith traded CDS
will be denoted as Si(κi), rather than S(κi, δ

i, Ti, τ). Similarly, Sc,i(κi) will
stand for the cumulative price process of the ith traded CDS. The 0th traded
asset is the savings account B.

Our goal is to examine replicating strategies for a defaultable claim
(X,A, Z, τ). As expected, as primary traded assets we take the family of
k credit default swaps and the savings account. Therefore, we consider trad-
ing strategies φ = (φ0, . . . , φk) where φ0 is a G-adapted process and the
processes φ1, . . . , φk are G-predictable.

In the present setup, we consider trading strategies that are self-financing
in the standard sense, as recalled in the following definition.

Definition 3.7.7. The wealth process V (φ) of a strategy φ = (φ0, . . . , φk)
in the savings account B and ex-dividend CDS prices Si(κi), i = 1, 2, . . . , k
equals, for any t ∈ [0, T ],

Vt(φ) = φ0
t Bt +

k∑

i=1

φi
tS

i
t(κi).
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Definition 3.7.8. A trading strategy φ is said to be self-financing if Vt(φ) =
V0(φ)+Gt(φ) for every t ∈ [0, T ], where the gains process G(φ) is defined as
follows

Gt(φ) =
∫

]0,t]

φ0
u dBu +

k∑

i=1

∫

]0,t]

φi
u d(Si

u(κi) + Di
u),

where Di = D(κi, δ
i, Ti, τ) is the dividend process of the ith CDS (see for-

mula (3.49)).

The following lemma is fairly general; in particular, it is independent of
the choice of the underlying model. Indeed, in the proof of this result we
only use the obvious relationships dBt = rtBt dt and the relationship (cf.
(3.38))

Sc,i
t (κi) = Si

t(κi) + Bt

∫

]0,t]

B−1
u dDi

u. (3.57)

Let V ∗(φ) = B−1V (φ) stand for the discounted wealth process and let
Sc,i,∗(κi) = B−1Sc,i(κi) be the discounted cumulative price.

Lemma 3.7.2. Let φ = (φ0, . . . , φk) be a self-financing trading strategy in
the savings account B and ex-dividend prices Si(κi), i = 1, 2, . . . , k. Then
the discounted wealth process V ∗ = B−1V (φ) satisfies, for t ∈ [0, T ]

dV ∗
t (φ) =

k∑

i=1

φi
t dSc,i,∗

t (κi). (3.58)

Proof. We have

dV ∗
t (φ) = B−1

t dVt(φ)− rtB
−1
t Vt(φ) dt = B−1

t

(
dVt(φ)− rtVt(φ) dt

)

= B−1
t

[
φ0

t rtBt dt +
k∑

i=1

φi
t

(
dSi

t(κi) + dDi
t

)− rtVt(φ) dt
]

= B−1
t

[(
Vt(φ)−

k∑

i=1

φi
tS

i
t(κi)

)
rt dt +

k∑

i=1

φi
t

(
dSi

t(κi) + dDi
t

)]

− rtB
−1
t Vt(φ) dt

= B−1
t

k∑

i=1

φi
t

(
dSi

t(κi)− rtS
i
t(κi) dt + dDi

t

)

=
k∑

i=1

φi
t

(
d(B−1

t Si
t(κi)) + B−1

t dDi
t

)
.

By comparing the last formula with (3.57), we see that (3.58) holds. ¤
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3.7.7 Replication with Ex-Dividend Prices of CDSs

Recall that the cumulative price of a defaultable claim (X, A,Z, τ) is denoted
as Sc. We adopt the following, quite natural, definition of replication of a
defaultable claim. Note that the set of traded assets is not explicitly specified
in this definition. Hence this definition can be used for any choice of primary
traded assets.

Definition 3.7.9. We say that a self-financing strategy φ = (φ0, . . . , φk)
replicates a defaultable claim (X, A, Z, τ) if its wealth process V (φ) satisfies
Vt(φ) = Sc

t for every t ∈ [0, T ]. In particular, the equality Vt∧τ (φ) = Sc
t∧τ

holds for every t ∈ [0, T ].

In the remaining part of this section we assume that the hypothesis (H)
holds. Hence the hazard process Γ of default time is increasing and thus, by
Assumption 3.7.1, we have that, for any t ∈ [0, T ],

Γt = Λt =
∫ t

0

λu du.

The discounted cumulative price Sc,i,∗(κi) of the ith CDS is governed by
(cf. (3.55))

dSc,i,∗
t (κi) = B−1

t

(
δi
t − S̃i

t(κi)
)
dMt + (1−Ht)G−1

t dni
t, (3.59)

where (cf. (3.53))

ni
t = EQ

(∫ Ti

0

B−1
u Gu(δi

uλu − κi) du
∣∣∣Ft

)
. (3.60)

The next lemma yields the dynamics of the wealth process V (φ) for a self-
financing strategy φ.

Lemma 3.7.3. The discounted wealth process V ∗(φ) = B−1V (φ) of any
self-financing trading strategy φ satisfies, for any t ∈ [0, T ],

dV ∗
t (φ) =

k∑

i=1

φi
t

(
B−1

t

(
δi
t − S̃i

t(κi)
)
dMt + (1−Ht)G−1

t dni
t

)
. (3.61)

Proof. It suffices to combine (3.58) with (3.59). ¤
It is clear from the lemma that it is enough to search for the components

φ1, . . . , φk of a strategy φ. The same remark applies to self-financing strate-
gies introduced in Definition 3.7.8. It is worth stressing that in what follows,
we shall only consider admissible trading strategies, that is, strategies for
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which the discounted wealth process V ∗(φ) = B−1V (φ) is a G-martingale
under Q. The market model in which only admissible trading strategies are
allowed is arbitrage-free, that is, arbitrage opportunities are ruled out. Ad-
missibility of a replicating strategy will be ensured by the equality V (φ) = Sc

and the fact that the discounted cumulative price Sc∗ = B−1Sc of a default-
able claim is a G-martingale under Q.

We work throughout under the standing Assumptions 3.7.1 and 3.7.2 and
the following postulate.

Assumption 3.7.3. The filtration F is generated by a d-dimensional Brown-
ian motion W under Q.

Since the hypothesis (H) is assumed to hold, the process W is also a
Brownian motion with respect to the enlarged filtration G = H ∨ F. Re-
call that any (local) martingales with respect to a Brownian filtration is
necessarily continuous. Hence Assumption 3.7.2 is obviously satisfied under
Assumption 3.7.3.

The crucial observation is that, by the predictable representation prop-
erty of a Brownian motion, there exist F-predictable, Rd-valued processes ξ
and ζi, i = 1, 2, . . . , k such that dmt = ξt dWt and dni

t = ζi
t dWt, where the

F-martingales m and ni are given by (3.43) and (3.60), respectively.
We are now in a position to state the hedging result for a defaultable

claim in the single-name setup. We consider a defaultable claim (X, A, Z, τ)
satisfying the natural integrability conditions under Q, which ensure the
cumulative price process Sc for this claim is well defined.

Theorem 3.7.1. Assume that there exist F-predictable processes φ1, . . . , φk

satisfying the following conditions, for any t ∈ [0, T ],

k∑

i=1

φi
t

(
δi
t − S̃i

t(κi)
)

= Zt − S̃t,

k∑

i=1

φi
tζ

i
t = ξt. (3.62)

Let the process V (φ) be given by (3.61) with the initial condition V0(φ) = Sc
0

and let φ0 be given by, for t ∈ [0, T ],

φ0
t = B−1

t

(
Vt(φ)−

k∑

i=1

φi
tS

i
t(κi)

)
.

Then the self-financing trading strategy φ = (φ0, . . . , φk) in the savings ac-
count B and the assets Si(κi), i = 1, 2, . . . , k replicates the defaultable claim
(X,A, Z, τ).
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Proof. From Lemma 3.7.3, we know that the discounted wealth process
satisfies

dV ∗
t (φ) =

k∑

i=1

φi
t

(
B−1

t (δi
t − S̃i

t(κi)) dMt + (1−Ht)G−1
t dni

t

)
. (3.63)

Recall also that the discounted cumulative price Sc∗ of a defaultable claim
is governed by

dSc∗
t = B−1

t (Zt − S̃t) dMt + (1−Ht)G−1
t dmt. (3.64)

We will show that if the two conditions in (3.62) are satisfied for any t ∈ [0, T ],
then the equality Vt(φ) = Sc

t holds for any t ∈ [0, T ].
Let Ṽ ∗(φ) = B−1Ṽ (φ) stand for the discounted pre-default wealth, where

Ṽ (φ) is the unique F-adapted process such that 1{t<τ}Vt(φ) = 1{t<τ}Ṽt(φ)
for every t ∈ [0, T ]. On the one hand, using (3.62), we obtain

dṼ ∗
t (φ) =

k∑

i=1

φi
t

(
λtB

−1
t (S̃i

t(κi)− δi
t) dt + G−1

t ζi
t dWt

)

= λtB
−1
t (S̃t − Zt) dt + G−1

t ξt dWt.

On the other hand, the discounted pre-default cumulative price S̃c∗ satisfies

dS̃c∗
t = λtB

−1
t (S̃t − Zt) dt + G−1

t ξt dWt.

Since by assumption

Ṽ ∗
0 (φ) = V0(φ) = Sc

0 = S̃c∗
0 ,

it is clear that Ṽ ∗
t (φ) = S̃c∗

t for every t ∈ [0, T ]. We thus conclude that the
pre-default wealth Ṽ (φ) of φ and the pre-default cumulative price S̃c of the
claim coincide. Note that the first equality in (3.62) is in fact only essential
for those values of t ∈ [0, T ] for which λt 6= 0.

To complete the proof, we need to check what happens when default
occurs prior to or at maturity T . To this end, it suffices to compare the
jumps of Sc and V (φ) at time τ . In view of (3.62), (3.63) and (3.64), we
obtain

∆Vτ (φ) = Zτ − S̃τ = ∆Sc
τ

and thus Vt∧τ (φ) = Sc
t∧τ for any t ∈ [0, T ]. After default, we have

dVt(φ) = rtVt(φ) dt, dSc
t = rtS

c
t dt,

so that we conclude that the desired equality Vt(φ) = Sc
t is indeed satisfied

for every t ∈ [0, T ]. ¤
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3.8 Multi-Name CDS Market

In this section, we shall deal with a market model driven by a Brownian
filtration in which a finite family of CDSs with different underlying names is
traded.

3.8.1 Valuation of a First-to-Default Claim

Our first goal is to extend the pricing results of Section 3.7.1 to the case of
a multi-name credit risk model with stochastic default intensities.

Joint Survival Process

We assume that we are given n strictly positive random times τ1, . . . , τn,
defined on a common probability space (Ω,G,Q), and referred to as default
times of n credit names. We postulate that this space is endowed with a
reference filtration F, which satisfies Assumption 3.7.2.

In order to describe dynamic joint behavior of default times, we introduce
the conditional joint survival process G(u1, . . . , un; t) by setting, for every
u1, . . . , un, t ∈ R+,

G(u1, . . . , un; t) = Q(τ1 > u1, . . . , τn > un | Ft).

Let us set τ(1) = τ1 ∧ · · · ∧ τn and let us define the process G(1)(t; t), t ∈ R+

by setting

G(1)(t; t) = G(t, . . . , t; t) = Q(τ1 > t, . . . , τn > t | Ft) = Q(τ(1) > t | Ft).

It is easy to check that G(1) is a bounded supermartingale and thus it ad-
mits the unique Doob-Meyer decomposition G(1) = µ − C. We shall work
throughout under the following extension of Assumption 3.7.1.

Assumption 3.8.1. We assume that the process G(1) is continuous and the
increasing process C is absolutely continuous with respect to the Lebesgue
measure, so that dCt = ct dt for some F-progressively measurable, non-
negative process c. We denote by λ̃ the F-progressively measurable process
defined as λ̃t = G−1

(1)(t; t)ct. The process λ̃ is hereafter referred to as the
first-to-default intensity.

We denote Hi
t = 1{t≥τi} and we introduce the filtrations Hi,H and G

with the corresponding σ-fields Hi
t,Ht and Gt defined as follows:

Hi
t = σ(Hi

s; s ∈ [0, t]), Ht = H1
t ∨ · · · ∨ Hn

t , Gt = Ft ∨Ht,
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We assume that the usual conditions of completeness and right-continuity
are satisfied by these filtrations. Arguing as in Section 3.7.1, we see that the
process

M̂t = H
(1)
t − Λ̃t∧τ(1) = H

(1)
t −

∫ t∧τ(1)

0

λ̃u du = H
(1)
t −

∫ t

0

(1−H(1)
u )λ̃u du,

is a G-martingale, where we denote H
(1)
t = 1{t≥τ(1)} and Λ̃t =

∫ t

0
λ̃u du.

Note that the first-to-default intensity λ̃ satisfies

λ̃t = lim
h↓0

1
h

Q(t < τ(1) ≤ t + h | Ft)
Q(τ(1) > t | Ft)

=
1

G(1)(t; t)
lim
h↓0

1
h

(Ct+h − Ct).

We make an additional assumption, in which we introduce the first-to-
default intensity λ̃i and the associated martingale M̂ i for each credit name
i = 1, . . . , n.

Assumption 3.8.2. For any i = 1, 2, . . . , n, the process λ̃i given by

λ̃i
t = lim

h↓0
1
h

Q(t < τi ≤ t + h, τ(1) > t | Ft)
Q(τ(1) > t | Ft)

is well defined and the process M̂ i, given by the formula

M̂ i
t = Hi

t∧τ(1)
−

∫ t∧τ(1)

0

λ̃i
u du, (3.65)

is a G-martingale.

It is worth noting that the equalities
∑n

i=1 λ̃i = λ̃ and M̂ =
∑n

i=1 M̂ i

are valid.

Special Case

Let Γ̂i, i = 1, 2, . . . , n be a given family of F-adapted, increasing, continuous
processes, defined on a filtered probability space (Ω̃,F,P). We postulate that
Γ̂i

0 = 0 and limt→∞ Γ̂i
t = ∞. For the construction of default times satisfying

Assumptions 3.8.1 and 3.8.2, we postulate that (Ω̂, F̂ , P̂) is an auxiliary prob-
ability space endowed with a family ξi, i = 1, 2, . . . , n of random variables
uniformly distributed on [0, 1] and such that their joint probability distrib-
ution is given by an n-dimensional copula function C (see Section 5.4). We
then define, for every i = 1, 2, . . . , n,

τi(ω̃, ω̂) = inf { t ∈ R+ : Γ̂i
t(ω̃) ≥ − ln ξi(ω̂)}.
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We endow the space (Ω,G,Q) with the filtration G = F ∨H1 ∨ · · · ∨Hn,
where the filtration Hi is generated by the process Hi

t = 1{t≥τi} for every
i = 1, 2, . . . , n.

We have that, for any T > 0 and arbitrary t1, . . . , tn ≤ T ,

Q(τ1 > t1, . . . , τn > tn | FT ) = C(K1
t1 , . . . ,K

n
tn

),

where we denote Ki
t = e−bΓ

i
t .

Schönbucher and Schubert [161] show that the following equality holds,
for arbitrary t ≤ s,

Q(τi > s | Gt) = 1{t<τ(1)} EQ
(

C(K1
t , . . . , Ki

s, . . . , K
n
t )

C(K1
t , . . . , Kn

t )

∣∣∣Ft

)
.

Consequently, assuming that Γ̂i
t =

∫ t

0
γ̂i

u du, the ith survival intensity equals,
on the event {t < τ(1)},

λ̃i
t = γ̂i

tK
i
t

∂
∂vi

C(K1
t , . . . , Kn

t )
C(K1

t , . . . , Kn
t )

= γ̂i
tK

i
t

∂

∂vi
ln C(K1

t , . . . ,Kn
t ).

One can now easily show that the process M̂ i, which is given by formula
(3.65), is a G-martingale. This indeed follows from Aven’s lemma [8].

3.8.2 Price Dynamics of a First-to-Default Claim

We will now analyze the risk-neutral valuation of first-to-default claims on a
basket of n credit names. As before, τ1, . . . , τn are respective default times
and τ(1) = τ1 ∧ · · · ∧ τn stands for the moment of the first default.

Definition 3.8.1. A first-to-default claim with maturity T associated with
τ1, . . . , τn is a defaultable claim (X,A, Z, τ(1)), where X is an FT -measurable
amount payable at maturity T if no default occurs prior to or at T and an
F-adapted, continuous process of finite variation A : [0, T ] → R with A0 = 0
represents the dividend stream up to τ(1). Finally, Z = (Z1, . . . , Zn) is
the vector of F-predictable, real-valued processes, where Zi

τ(1)
specifies the

recovery received at time τ(1) if default occurs prior to or at T and the ith
name is the first defaulted name, that is, on the event {τi = τ(1) ≤ T}.

The next definition extends Definition 3.7.2 to the case of a first-to-default
claim. Recall that we denote H

(1)
t = 1{t≥τ(1)} for every t ∈ [0, T ].
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Definition 3.8.2. The dividend process (Dt, t ∈ R+) of a first-to-default
claim maturing at T equals, for every t ∈ R+,

Dt = X1{T<τ(1)}1[T,∞[(t) +
∫ t∧T

0

(1−H(1)
u ) dAu

+
∫

]0,t∧T ]

n∑

i=1

1{τ(1)=τi}Z
i
u dH(1)

u .

We are in a position to examine the prices of the first-to-default claim.
Note that

1{t<τ(1)}S
c
t = 1{t<τ(1)}S̃

c
t , 1{t<τ(1)}St = 1{t<τ(1)}S̃t,

where S̃c and S̃ are pre-default values of Sc and S, where the price processes
Sc and S are given by Definitions 3.7.3 and 3.7.4, respectively. We postulate
that EQ|B−1

T X| < ∞,

EQ
∣∣∣
∫ T

0

B−1
u (1−H(1)

u ) dAu

∣∣∣ < ∞,

and for i = 1, 2, . . . , n

EQ|B−1
τ(1)∧T Zi

τ(1)∧T | < ∞,

so that the ex-dividend price St (and thus also cumulative price Sc) is well de-
fined for any t ∈ [0, T ]. In the next auxiliary result, we denote Y i = B−1Zi.
Hence Y i is a real-valued, F-predictable process such that the inequality
EQ|Y i

τ(1)∧T | < ∞ is satisfied.

Lemma 3.8.1. We have that

Bt EQ
( n∑

i=1

1{t<τ(1)=τi≤T}Y i
τ(1)

∣∣∣Gt

)

= 1{t<τ(1)}
Bt

G(1)(t; t)
EQ

( ∫ T

t

n∑

i=1

Y i
uλ̃i

uG(1)(u;u) du
∣∣∣Ft

)
.

Proof. Let us fix i and let us consider the process Y i
u = 1A1]s,v](u) for some

fixed date t ≤ s < v ≤ T and some event A ∈ Fs. We note that

1{s<τ(1)=τi≤v} = Hi
v∧τ(1)

−Hi
s∧τ(1)

= M̂ i
v − M̂ i

s +
∫ v∧τ(1)

s∧τ(1)

λ̃i
u du.
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Using Assumption 3.8.2, we thus obtain

EQ
(
1{t<τ(1)=τi≤T}Y i

τ(1)

∣∣∣Gt

)
= EQ

(
1A1{s<τ(1)=τi≤v}

∣∣∣Gt

)

= EQ
(
1A

(
M̂ i

v − M̂ i
s +

∫ v∧τ(1)

s∧τ(1)

λ̃i
u du

) ∣∣∣Gt

)

= EQ
(
1A EQ

(
M̂ i

v − M̂ i
s +

∫ v∧τ(1)

s∧τ(1)

λ̃i
u du

∣∣∣Gs

) ∣∣∣Gt

)

= EQ
( ∫ T∧τ(1)

t∧τ(1)

Y i
uλ̃i

u du
∣∣∣Gt

)

= 1{t<τ(1)}
1

G(1)(t; t)
EQ

( ∫ T

t

Y i
uλ̃i

uG(1)(u; u) du
∣∣∣Ft

)
,

where the last equality follows from the formula

EQ
( ∫ T∧τ(1)

t∧τ(1)

Ru du
∣∣∣Gt

)
= 1{t<τ(1)}

1
G(1)(t; t)

EQ
( ∫ T

t

RuG(1)(u; u) du
∣∣∣Ft

)
,

which holds for any F-predictable process R such that the right-hand side is
well defined. ¤

Given Lemma 3.8.1, the proof of the next result is very much similar to
that of Proposition 3.7.1 and thus is omitted.

Proposition 3.8.1. The pre-default ex-dividend price S̃ of a first-to-default
claim (X,A, Z, τ(1)) satisfies

S̃t =
Bt

G(1)(t; t)
EQ

( ∫ T

t

B−1
u G(1)(u; u)

( n∑

i=1

Zi
uλ̃i

u du + dAu

) ∣∣∣Ft

)
.

+
Bt

G(1)(t; t)
EQ

(
B−1

T G(1)(T ; T )X1{t<T}
∣∣∣Ft

)
.

By proceeding as in the proof of Proposition 3.7.2, one can also establish
the following result, which gives dynamics of price processes S̃ and Sc of a
first-to-default claim.

Recall that µ is the continuous martingale arising in the Doob-Meyer
decomposition of the process G(1) (see Assumption 3.8.1).

Proposition 3.8.2. The dynamics of the pre-default ex-dividend price S̃ of
a first-to-default claim (X,A, Z, τ(1)) on [0, τ(1) ∧ T ] are

dS̃t = (rt + λ̃t)S̃t dt−
n∑

i=1

λ̃i
tZ

i
t dt− dAt + G−1

(1)(t; t)
(
Bt dmt − S̃t dµt

)

+ G−2
(1)(t; t)

(
S̃t d〈µ〉t −Bt d〈µ,m〉t

)
,
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where the continuous F-martingale m is given by the formula

mt = EQ
( ∫ T

0

B−1
u G(1)(u;u)

( n∑

i=1

Zi
uλ̃i

u du + dAu

) ∣∣∣Ft

)

+ EQ
(
B−1

T G(1)(T ;T )X
∣∣∣Ft

)
.

The dynamics of the cumulative price Sc on [0, τ(1) ∧ T ] are

dSc
t =

n∑

i=1

(Zi
t − S̃t−) dM i

t +
(
rtS̃t −

n∑

i=1

λ̃i
tZ

i
t

)
dt− dAt

+ G−1
(1)(t; t)

(
Bt dmt − S̃t dµt

)
+ G−2

(1)(t; t)
(
S̃t d〈µ〉t −Bt d〈µ,m〉t

)
.

Hypothesis (H)

As in the single-name case, the most explicit results can be derived under
an additional assumption of the immersion property of filtrations F and G.

Assumption 3.8.3. Any F-martingale under Q is a G-martingale under
Q. This also implies that the hypothesis (H) holds between F and G. In
particular, any F-martingale is also a Gi-martingale for i = 1, 2, . . . , n, that
is, the hypothesis (H) holds between F and Gi for i = 1, 2, . . . , n.

It is worth stressing that, in general, there is no reason to expect that any
Gi-martingale is necessarily a G-martingale. We shall argue that even when
the reference filtration F is trivial this is not the case, in general (except for
some special cases, for instance, under the independence assumption).

Example 3.8.1. Let us take n = 2 and let us denote G
1|2
t = Q(τ1 > t |H2

t )
and G(u, v) = Q(τ1 > u, τ2 > v). It is then easy to prove that

dG
1|2
t =

(
∂2G(t, t)
∂2G(0, t)

− G(t, t)
G(0, t)

)
dM2

t

+
(

H2
t ∂1h(t, τ2) + (1−H2

t )
∂1G(t, t)
G(0, t)

)
dt,

where h(t, u) = ∂2G(t,u)
∂2G(0,u) and M2 is the H2-martingale given by

M2
t = H2

t +
∫ t∧τ2

0

∂2G(0, u)
G(0, u)

du.

If the hypothesis (H) holds between the filtrations H2 and H1 ∨ H2 then
the martingale part in the Doob-Meyer decomposition of the process G1|2
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vanishes. We thus see that the hypothesis (H) is not always valid, since
clearly the quantity

∂2G(t, t)
∂2G(0, t)

− G(t, t)
G(0, t)

does not vanish, in general. One can also note that in the special case when
the inequality τ2 < τ1 is satisfied, the martingale part in the above-mentioned
decomposition disappears and thus the hypothesis (H) holds between the
filtrations H2 and H1 ∨H2.

From now on, we shall work under Assumption 3.8.3. In that case, the
dynamics of price processes obtained in Proposition 3.8.1 simplify, as the
following result shows.

Corollary 3.8.1. The pre-default ex-dividend price S̃ of a first-to-default
claim (X,A, Z, τ(1)) satisfies

dS̃t = (rt + λ̃t)S̃t dt−
n∑

i=1

λ̃i
tZ

i
t dt− dAt + BtG

−1
(1)(t; t) dmt

where m is the continuous F-martingale defined in Proposition 3.8.2. The
cumulative price Sc of a first-to-default claim (X, A, Z, τ(1)) is given by the
expression, for t ∈ [0, T ∧ τ(1)],

dSc
t = rtS

c
t dt +

n∑

i=1

(Zi
t − S̃t) dM̂ i

t + BtG
−1
(1)(t; t) dmt.

Equivalently, for every t ∈ [0, T ∧ τ(1)],

dSc
t = rtS

c
t dt +

n∑

i=1

(Zi
t − S̃t) dM̂ i

t + BtG
−1
(1)(t; t) dm̌t,

where m̌ is a G-martingale given by m̌t = mt∧τ(1) for every t ∈ [0, T ].

Let us assume, in addition, that the reference filtration F is generated
by the d-dimensional standard Brownian motion W . Then there exists an
Rd-valued, F-predictable process ξ for which dmt = ξt dWt and thus the last
formula in Corollary 3.8.1 yields the following result.

Corollary 3.8.2. The discounted cumulative price of a first-to-default claim
(X,A, Z, τ(1)) satisfies, for every t ∈ [0, T ∧ τ(1)],

dSc∗
t =

n∑

i=1

B−1
t (Zi

t − S̃t) dM̂ i
t + G−1

(1)(t; t)ξt dWt.
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3.8.3 Price Dynamics of a CDS

Let us first introduce a family of traded single-name credit default swaps.

Definition 3.8.3. By the ith CDS we mean the credit default swap written
on the ith reference credit name, with the maturity date Ti, the constant
spread κi and the protection process δi, as specified by Definition 3.7.5.

Let Si
t|j(κi) stand for the ex-dividend price at time t of the ith CDS on

the event τ(1) = τj = t for some j 6= i. This value can be represented using a
suitable extension of Proposition 3.8.1, but we decided to omit the derivation
of this pricing formula.

Assume that we have already computed Si
t|j(κi) for t ∈ [0, Ti]. Then the

ith CDS can be seen, on the random interval [0, Ti∧τ(1)], as a first-to-default
claim (X,A, Z, τ(1)) with X = 0,

Z = (Si
t|1(κi), . . . , δi, . . . , Si

t|n(κi))

and At = −κit. The last observation applies also to the random interval
[0, T ∧ τ(1)] for any fixed date T ≤ Ti. Let us denote by ni the following
F-martingale

ni
t = EQ

( n∑

i=1

∫ Ti

0

B−1
u G(1)(u; u)

(
δi
uλ̃i

u +
n∑

j=1 ,j 6=i

Si
u|j(κi)λ̃j

u − κi

)
du

∣∣∣Ft

)
.

The following result can be easily deduced from Proposition 3.8.1.

Corollary 3.8.3. The cumulative price of the ith CDS satisfies, for every
t ∈ [0, Ti ∧ τ(1)],

dSc,i
t (κi) = rtS

c,i
t (κi) dt + (δi

t − S̃i
t(κi)) dM̂ i

t

+
n∑

j=1, j 6=i

(Si
t|j(κi)− S̃i

t(κi)) dM̂ j
t + BtG

−1
(1)(t; t) dni

t.

If, in addition, the reference filtration F is generated by the d-dimensional
standard Brownian motion W then the discounted cumulative price of the ith
CDS satisfies, for every t ∈ [0, Ti ∧ τ(1)],

dSc,i,∗
t (κi) = B−1

t (δi
t − S̃i

t(κi)) dM̂ i
t + B−1

t

n∑

j=1, j 6=i

(Si
t|j(κi)− S̃i

t(κi)) dM̂ j
t

+ G−1
(1)(t; t)ζ

i
t dWt,

where ζi is the Rd-valued, F-predictable process such that dni
t = ζi

t dWt.
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3.8.4 Replication of a First-to-Default Claim

Our final goal is to extend Theorem 3.7.1 of Section 2.2.8 to the case of
several credit names in a hazard process model in which credit spreads are
driven by a multi-dimensional Brownian motion. We consider a self-financing
trading strategy φ = (φ0, . . . , φk) with G-predictable components, as defined
in Section 3.7.6. The 0th traded asset is thus the savings account; the re-
maining k primary assets are single-name CDSs with different underlying
credit names and/or maturities.

As before, for any l = 1, 2, . . . , k we will use the shorthand notation Sl(κl)
and Sc,l(κl) to denote the ex-dividend and cumulative prices of CDSs with
respective dividend processes D(κl, δ

l, Tl, τ̃l) given by a suitable version of
formula (3.49). Note that here τ̃l = τj for some j = 1, 2, . . . , n. We will thus
write τ̃l = τjl

in what follows.

Remark 3.8.1. Note that, typically, we will have k = n + d so that the
number of traded assets will be equal to n + d + 1.

Recall that we denote by Sc the cumulative price of a first-to-default claim
(X,A, Z, τ(1)), where the recovery process Z is n-dimensional, specifically,
Z = (Z1, . . . , Zn). We already know that if the hypothesis (H) is satisfied
by the filtrations F and G then the dynamics of Sc under the risk-neutral
measure Q are (see Corollary 3.8.1)

dSc
t = rtS

c
t dt +

n∑

i=1

(Zi
t − S̃t) dM̂ i

t + BtG
−1
(1)(t; t) dmt,

where the continuous F-martingale m under Q is given by the formula (see
Proposition 3.8.2)

mt = EQ
( ∫ T

0

B−1
u G(1)(u; u)

( n∑

i=1

Zi
uλ̃i

u du + dAu

) ∣∣∣Ft

)

+ EQ
(
B−1

T G(1)(T ; T )X
∣∣∣Ft

)
.

We adopt the following natural definition of replication of a first-to-
default claim.

Definition 3.8.4. We say that a self-financing strategy φ = (φ0, . . . , φk)
replicates a first-to-default claim (X, A,Z, τ(1)) if its wealth process V (φ)
satisfies the equality Vt∧τ(1)(φ) = Sc

t∧τ(1)
for any t ∈ [0, T ].

When dealing with replicating strategies in the sense of Definition 3.8.4,
we may and do assume, without loss of generality, that the components of
the process φ are F-predictable processes. More formally, we will search for
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F-predictable processes (φ̃0, . . . , φ̃k) representing the pre-default components
of a trading strategy.

Remark 3.8.2. The property that it is enough to consider F-predictable
trading strategies is rather clear from the mathematical point of view, since
it is well known that prior to default any G-predictable process is equal to the
unique F-predictable process. From the practical point of view, this property
is supported by the common intuition that the observations of default times
should not be used in the construction of the replicating strategy for a first-
to-default claim.

The following auxiliary result is a direct counterpart of Lemma 3.7.3.

Lemma 3.8.2. We have, for any t ∈ [0, T ∧ τ(1)],

dV ∗
t (φ) =

k∑

l=1

φl
tB

−1
t

(
δl
t − S̃l

t(κl)
)
dM̂ jl

t

+
k∑

l=1

( n∑

j=1 ,j 6=jl

B−1
t

(
Sl

t|j(κl)− S̃l
t(κl)

)
dM̂ j

t + G−1
(1)(t; t) dnl

t

)
,

where

nl
t = EQ

( ∫ Tl

0

B−1
u G(1)(u; u)

(
δl
uλ̃jl

u +
n∑

j=1 ,j 6=jl

Sl
u|j(κl)λ̃j

u − κl

)
du

∣∣∣Ft

)
.

Proof. The proof of the lemma easily follows from Lemma 3.7.2 combined
with Corollary 3.8.3. The details are left to the reader. ¤

We are now in a position to extend Theorem 3.7.1 to the case of a first-
to-default claim on a basket of n credit names. At the same time, Theorem
3.8.1 is also a generalization of Theorem 2.5.1 to the case of a non-trivial
reference filtration F.

Before we state the main result of this section, we need to introduce some
auxiliary notation. Let F be generated by a Brownian motion W and let ξ
and ζl, l = 1, 2, . . . , k be the Rd-valued, F-predictable processes such that
the following representations are valid

dmt = ξt dWt

and
dnl

t = ζl
t dWt.

The existence of processes ξ and ζl for l = 1, 2, . . . , k is an immediate con-
sequence of the classic predictable representation theorem for the Brownian
filtration. Needless to say that these processes are rarely explicitly known.
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Theorem 3.8.1. Assume that the processes φ̃1, . . . , φ̃n satisfy, for t ∈ [0, T ]
and i = 1, 2, . . . , n

k∑

l=1, jl=i

φ̃l
t

(
δl
t − S̃l

t(κl)
)

+
k∑

l=1, jl 6=i

φ̃l
t

(
Sl

t|i(κl)− S̃l
t(κl)

)
= Zi

t − S̃t

and
k∑

l=1

φ̃l
tζ

l
t = ξt.

Let us set φi
t = φ̃i(t ∧ τ(1)) for i = 1, 2, . . . , k and t ∈ [0, T ]. Let the process

V (φ) be given by Lemma 3.8.2 with the initial condition V0(φ) = Sc
0 and let

φ0 be given by

Vt(φ) = φ0
t Bt +

k∑

l=1

φl
tS

l
t(κl).

Then the self-financing strategy φ = (φ0, . . . , φk) replicates the first-to-default
claim (X,A, Z, τ(1)).

Proof. The proof goes along the similar lines as the proof of Theorem 3.7.1.
It suffices to examine replicating strategy on the random interval [0, T ∧τ(1)].
On the one hand, in view of Lemma 3.8.2, the wealth process of a self-
financing strategy φ satisfies on [0, T ∧ τ(1)]

dV ∗
t (φ) =

k∑

l=1

φ̃l
tB

−1
t

(
δl
t − S̃l

t(κl)
)
dM̂ jl

t

+
k∑

l=1

( n∑

j=1 ,j 6=jl

B−1
t

(
Sl

t|j(κl)− S̃l
t(κl)

)
dM̂ j

t + G−1
(1)(t; t)ζ

l
t dWt

)
.

On the other hand, the discounted cumulative price of a first-to-default claim
(X,A, Z, τ(1)) satisfies on the interval [0, T ∧ τ(1)]

dSc∗
t =

n∑

i=1

B−1
t (Zi

t − St−) dM̂ i
t + (1−H

(1)
t )G−1

(1)(t; t)ξt dWt.

A comparison of the last two formulae leads directly to the stated conditions.
To complete the proof, it suffices to verify that the strategy φ = (φ0, . . . , φk)
introduced in the statement of the theorem replicates a first-to-default claim,
in the sense of Definition 3.8.4. Since this verification is rather standard, we
leave the details to the reader. ¤



Chapter 4

Hedging of Defaultable Claims

In this chapter, we study hedging strategies for credit derivatives under the
assumption that certain primary assets are traded. We follow here Bielecki
et al. [15, 17] and we put special emphasis on the PDE approach in a
Markovian setup. For related methods and results, the interested reader is
referred to Arvanitis and Laurent [7], Blanchet-Scalliet and Jeanblanc [30],
Collin-Dufresne and Hugonnier [59], Greenfield [94], Laurent et al. [130],
Laurent [131], Petrelli et al. [152], Rutkowski and Yousiph [157], Vaillant
[168], and Vellekoop et al. [169].

4.1 Semimartingale Market Model

We assume that we are given a probability space (Ω,G,P) endowed with
a (one- or multi-dimensional) standard Brownian motion W and a random
time τ , which admits the F-intensity γ under P, where F is the filtration
generated by the process W . Since the default time is assumed to admit the
F-intensity, it is not an F-stopping time. Indeed, it is well known that any
stopping time with respect to a Brownian filtration is predictable, and thus
does not admit an F-intensity.

4.1.1 Dynamics of Asset Prices

We interpret τ as the common default time for all defaultable assets in our
model. In what follows, we fix a finite horizon date T > 0. For simplicity,
we assume that only three primary assets are traded in the market and the
dynamics under the historical probability P of their prices are, for i = 1, 2, 3
and every t ∈ [0, T ],

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt + κi,t dMt

)
, (4.1)

where Mt = Ht −
∫ t∧τ

0
γu du is a martingale or, equivalently,

dY i
t = Y i

t−
(
(µi,t − κi,tγt1{t<τ}) dt + σi,t dWt + κi,t dHt

)
. (4.2)
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The processes (µi, σi, κi) = (µi,t, σi,t, κi,t, t ∈ R+), i = 1, 2, 3, are as-
sumed to be G-adapted, where G = F ∨ H. In addition, we assume that
Y i

0 > 0 and κi ≥ −1 for any i = 1, 2, 3, so that Y i are non-negative processes
and they are strictly positive prior to τ . In the case of constant coefficients,
we have

Y i
t = Y i

0 eµiteσiWt−σ2
i t/2e−κiγi(t∧τ)(1 + κi)Ht .

According to Definition 4.1.2 below, replication refers to the behavior of
the wealth process V (φ) on the random interval [[0, τ ∧ T ]] only. Therefore,
for the purpose of replication of defaultable claims of the form (X, Z, τ),
it is sufficient to consider prices of primary assets stopped at τ ∧ T . This
implies that instead of dealing with G-adapted coefficients in (4.1), it suffices
to focus on F-adapted coefficients for the price processes stopped at τ ∧ T .
However, for the sake of completeness, we will also deal with a T -maturity
claim of the form Y = G(Y 1

T , Y 2
T , Y 3

T ,HT ) (see Section 4.4 below).

4.1.2 Pre-Default Values

As will become clear in what follows, when dealing with defaultable claims of
the form (X, Z, τ), we will be mainly concerned with the pre-default prices.
The pre-default price Ỹ i of the ith asset is an F-adapted, continuous process,
given by the equation, for i = 1, 2, 3 and t ∈ [0, T ],

dỸ i
t = Ỹ i

t

(
(µi,t − κi,tγt) dt + σi,t dWt

)
(4.3)

with Ỹ i
0 = Y i

0 . Put another way, Ỹ i is the unique F-predictable process such
that the equality

Ỹ i
t 1{t≤τ} = Y i

t 1{t≤τ}

holds for every t ∈ R+. When dealing with the pre-default prices, we may
and do assume, without loss of generality, that the processes µi, σi and κi

are F-predictable.
Let us stress that the historically observed drift coefficient is µi,t−κi,tγt,

which appears in (4.2), rather than the drift µi,t, which appears (4.1). The
drift coefficient µi,t is already credit-risk adjusted in the sense of our model
and it is not directly observed. This convention was chosen here for the
sake of simplicity of notation. It also lends itself to the following intuitive
interpretation: if φi is the number of units of the ith asset held in our
portfolio at time t then the gains/losses from trades in this asset, prior to
default time, can be represented by the differential

φi
t dỸ i

t = φi
tỸ

i
t

(
µi,t dt + σi,t dWt

)− φi
tỸ

i
t κi,tγt dt.

The last term in the formula above may be formally treated as an effect
of dividends that are paid continuously at the random dividend rate κi,tγt.
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This nice interpretation is not necessarily useful in practice, since the
quantity κi,tγt cannot be observed directly and, as is well known, a reliable
estimation of the drift coefficient in dynamics (4.3) is extremely difficult
anyway. Moreover, it is a delicate issue how to disentangle in practice the two
components of the drift coefficient in (4.3). Still, if this formal interpretation
is adopted, it is sometimes possible to make use of the standard results
concerning the valuation of derivatives of dividend-paying assets.

We shall argue below that, although there is formally nothing wrong
with the dividend-based approach, a more pertinent and simpler approach
to hedging of defaultable claims hinges on the assumption that only the
effective drift, which is given by the expression

µ̂i,t = µi,t − κi,tγt,

is observable. Moreover, in practical approach to hedging, the values of drift
coefficients in dynamics of asset prices will play no essential role, so that we
will not postulate that they are among market observables.

4.1.3 Market Observables

To summarize, we assume throughout that the market observables are: the
pre-default market prices of primary assets, their volatilities and correlations,
as well as the jump coefficients κi,t (the financial interpretation of jump
coefficients is examined in the next subsection). To summarize, we postulate
that under the statistical probability P the processes Y i, i = 1, 2, 3 satisfy

dY i
t = Y i

t−
(
µ̃i,t dt + σi,t dWt + κi,t dHt

)

where the drift terms µ̃i,t are not observed, but we can observe the volatilities
σi,t (and thus the asset correlations) and we have an a priori assessment of
jump coefficients κi,t. In this general setup, the most natural assumption
is that the dimension of a driving Brownian motion W coincide with the
number of tradable assets. However, for the sake of simplicity of presentation,
we will frequently assume that the process W is one-dimensional.

One of our goals will be to establish closed-form expressions for replicat-
ing strategies for derivative securities in terms of market observables only
(whenever replication of a given claim is actually feasible). To achieve this
goal, we shall combine a general theory of hedging defaultable claims within a
continuous semimartingale setup, with a judicious specification of particular
models with deterministic volatilities and correlations.
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4.1.4 Recovery Schemes

It is clear that the sample paths of price processes Y i are continuous, except
for a possible discontinuity at time τ . Specifically, we have that

∆Y i
τ := Y i

τ − Y i
τ− = κi,τY i

τ−,

so that the value of Y i at τ is given by

Y i
τ = Y i

τ−(1 + κi,τ ) = Ỹ i
τ−(1 + κi,τ ).

A primary asset Y i is termed a default-free asset (defaultable asset, re-
spectively) if κi = 0 (κi 6= 0, respectively). In the special case when κi = −1,
we say that a defaultable asset Y i is subject to the zero recovery scheme,
since its price drops to zero at time τ and remains null at any later date.
Such an asset ceases to exist after default, in the sense that it is no longer
traded after default. This feature makes the case of a zero recovery essen-
tially different from other cases, as we shall see in the sequel.

In the market practice, it is much more common for a credit derivative
to deliver a positive recovery if default event occurs during the contract’s
lifetime (for instance, a protection payment of a credit default swap).

Formally, the value of recovery at default is given as the value of some
predetermined stochastic process, that is, it is equal to the value at time τ
of some F-adapted recovery process Z.

For instance, the recovery process Z can be equal to δ, where δ is a
constant, or to g(t, δYt) where g is a deterministic function and (Yt, t ∈ R+)
is the price process of some default-free asset. Typically, the recovery is paid
at default time, but it is sometimes postponed to the maturity date.

Let us observe that the case where a defaultable asset Y i pays a pre-
determined recovery at default is covered by our setup defined in (4.1). For
example, the case of a constant recovery payoff δi ≥ 0 at default time τ
corresponds to the process κi,t = δi(Y i

t−)−1 − 1. Under this convention, the
price Y i is governed under P by the SDE

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt + (δi(Y i

t−)−1 − 1) dMt

)
.

If the recovery is proportional to the pre-default value Y i
τ− and it is paid

at default time τ (this scheme is known as the fractional recovery of market
value), we set κi,t = δi − 1 and thus

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt + (δi − 1) dMt

)
.

4.1.5 Defaultable Claims

For the purpose of this chapter, it will be enough to define a generic default-
able claim as follows (note that, formally, it suffices to set A = 0 in Definition
3.7.1 of a defaultable claim with promised dividends).
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Definition 4.1.1. A defaultable claim with maturity date T is represented
by a triplet (X, Z, τ), where:
(i) the default time τ specifies the random time of default, and thus also the
default events {t ≥ τ} for every t ∈ [0, T ],
(ii) the promised payoff X ∈ FT represents the random payoff received by
the owner of the claim at time T , provided that there was no default prior
to or at time T ; the actual payoff at time T associated with X thus equals
X1{T<τ},
(iii) the F-adapted recovery process (Zt, t ∈ [0, T ]) specifies the recovery
payoff Zτ received by the owner of a claim at time of default (or at maturity),
provided that the default occurred prior to or at maturity date T .

In practice, hedging of a credit derivative after default time is usually of
minor interest. Also, in a model with a single default time, hedging after
default reduces to replication of a non-defaultable claim. It is thus natural
to define the replication of a defaultable claim in the following way.

Definition 4.1.2. We say that a self-financing strategy φ replicates a de-
faultable claim (X, Z, τ) if its wealth process (Vt(φ), t ∈ [0, T ]) satisfies
VT (φ)1{T<τ} = X1{T<τ} and Vτ (φ)1{T≥τ} = Zτ1{T≥τ}.

When dealing with replicating strategies, in the sense of Definition 4.1.2,
we will always assume, without loss of generality, that the components of the
process φ are F-predictable processes, rather than G-predictable.

4.2 Trading Strategies

In this section, we consider a fairly general setup. In particular, processes
(Y i

t , t ∈ [0, T ]) for i = 1, 2, 3 are assumed to be non-negative semimartingales
on a probability space (Ω,G,P) endowed with some filtration G.

We assume that Y 1, Y 2 and Y 3 represent spot prices of traded assets in
our model of the financial market. Neither the existence of a savings account
nor the market completeness are postulated, in general. We will restrict here
our attention to the special case where only three primary assets are traded.
The general case of k traded primary assets with semimartingale prices was
examined in papers by Bielecki et al. [16, 18].

Our goal is to characterize contingent claims which are attainable, in the
sense that they can be replicated by continuously rebalanced portfolios con-
sisting of primary assets. Here, by a contingent claim we mean an arbitrary
GT -measurable random variable. We will work throughout under the stan-
dard assumptions of a frictionless market (no transaction costs or taxes, no
restrictions on the short sale of assets, perfect liquidity, etc.)
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4.2.1 Unconstrained Strategies

Let φ = (φ1, φ2, φ3) be a trading strategy; in particular, each process φi

is predictable with respect to the filtration G. The corresponding wealth
process (Vt(φ), t ∈ [0, T ]) is defined by the formula, for every t ∈ [0, T ],

Vt(φ) =
3∑

i=1

φi
tY

i
t .

A trading strategy φ is said to be self-financing if the wealth process satisfies,
for every t ∈ [0, T ],

Vt(φ) = V0(φ) +
3∑

i=1

∫

]0,t]

φi
u dY i

u.

Let Φ stand for the class of all self-financing trading strategies. We shall
first prove that a self-financing strategy is determined by its initial wealth
and the two components φ2, φ3. To this end, we postulate that the price of
Y 1 follows a strictly positive process and we choose Y 1 as a numéraire asset.
We shall now analyze the relative values, V 1 and Y i,1, which are given by

V 1
t (φ) = Vt(φ)(Y 1

t )−1, Y i,1
t = Y i

t (Y 1
t )−1.

Lemma 4.2.1. (i) For any φ ∈ Φ, we have, for every t ∈ [0, T ],

V 1
t (φ) = V 1

0 (φ) +
3∑

i=2

∫

]0,t]

φi
u dY i,1

u .

(ii) Conversely, let X be a GT -measurable random variable, and let us assume
that there exists x ∈ R and G-predictable processes φi, i = 2, 3 such that

X = Y 1
T

(
x +

3∑

i=2

∫

]0,T ]

φi
u dY i,1

u

)
. (4.4)

Then there exists a G-predictable process φ1 such that the trading strategy
φ = (φ1, φ2, φ3) is self-financing and replicates X. Moreover, the wealth
process of φ (that is, the price of X at time t) satisfies Vt(φ) = V 1

t Y 1
t ,

where, for every t ∈ [0, T ],

V 1
t = x +

3∑

i=2

∫

]0,t]

φi
u dY i,1

u . (4.5)
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Proof. In the case of continuous semimartingales, the result is well known;
the demonstration for discontinuous semimartingales is not much different.
Nevertheless, for the reader’s convenience, we provide a detailed proof.

Let us first introduce some notation. As usual, [X,Y ] stands for the
quadratic covariation (the bracket) of the two semimartingales X and Y , as
formally defined by the Itô integration by parts formula

XtYt = X0Y0 +
∫

]0,t]

Xu− dYu +
∫

]0,t]

Yu− dXu + [X,Y ]t.

For any càdlàg process Y , we denote by ∆Yt = Yt−Yt− the size of the jump
at time t. Let V = V (φ) be the value of a self-financing strategy and let
V 1 = V 1(φ) = V (φ)(Y 1)−1 be its value relative to the numéraire Y 1. The
integration by parts formula yields

dV 1
t = Vt− d(Y 1

t )−1 + (Y 1
t−)−1dVt + d[(Y 1)−1, V ]t.

From the self-financing condition, we have dVt =
∑3

i=1 φi
t dY i

t . Hence, using
elementary rules to compute the quadratic covariation [X, Y ] of the two
semimartingales X, Y , we obtain

dV 1
t = φ1

t Y
1
t− d(Y 1

t )−1 + φ2
t Y

2
t− d(Y 1

t )−1 + φ3
t Y

3
t− d(Y 1

t )−1

+ (Y 1
t−)−1φ1

t dY 1
t + (Y 1

t−)−1φ2
t dY 1

t + (Y 1
t−)−1φ3

t dY 1
t

+ φ1
t d[(Y 1)−1, Y 1]t + φ2

t d[(Y 1)−1, Y 2]t + φ3
t d[(Y 1)−1, Y 1]t

= φ1
t

(
Y 1

t− d(Y 1
t )−1 + (Y 1

t−)−1 dY 1
t + d[(Y 1)−1, Y 1]t

)

+ φ2
t

(
Y 2

t− d(Y 1
t )−1 + (Y 1

t−)−1 dY 1
t− + d[(Y 1)−1, Y 2]t

)

+ φ3
t

(
Y 3

t− d(Y 1
t )−1 + (Y 1

t−)−1 dY 1
t− + d[(Y 1)−1, Y 3]t

)
.

We now observe that

Y 1
t− d(Y 1

t )−1 + (Y 1
t−)−1 dY 1

t + d[(Y 1)−1, Y 1]t = d(Y 1
t (Y 1

t )−1) = 0

and

Y i
t− d(Y 1

t )−1 + (Y 1
t−)−1 dY i

t + d[(Y 1)−1, Y i]t = d((Y 1
t )−1Y i

t ).

Consequently,
dV 1

t = φ2
t dY 2,1

t + φ3
t dY 3,1

t ,

as was claimed in part (i). We now proceed to the proof of part (ii). We
assume that (4.4) holds for some constant x and processes φ2, φ3 and we
define the process V 1 by setting, for every t ∈ [0, T ] (cf. (4.5)),

V 1
t = x +

3∑

i=2

∫

]0,t]

φi
u dY i,1

u .
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Next, we define the process φ1 as follows

φ1
t = V 1

t −
3∑

i=2

φi
tY

i,1
t = (Y 1

t )−1
(
Vt −

3∑

i=2

φi
tY

i
t

)
,

where we set Vt = V 1
t Y 1

t for t ∈ [0, T ]. Since

dV 1
t =

3∑

i=2

φi
t dY i,1

t ,

for the process V we obtain

dVt = d(V 1
t Y 1

t ) = V 1
t−dY 1

t + Y 1
t−dV 1

t + d[Y 1, V 1]t

= V 1
t−dY 1

t +
3∑

i=2

φi
t

(
Y 1

t− dY i,1
t + d[Y 1, Y i,1]t

)
.

From the Itô integration by parts formula, we obtain

dY i
t = d(Y i,1

t Y 1
t ) = Y i,1

t− dY 1
t + Y 1

t− dY i,1
t + d[Y 1, Y i,1]t,

and thus

dVt = V 1
t− dY 1

t +
3∑

i=2

φi
t

(
dY i

t − Y i,1
t− dY 1

t

)

=
(
V 1

t− −
3∑

i=2

φi
tY

i,1
t−

)
dY 1

t +
3∑

i=2

φi
t dY i

t .

Our aim was to prove that dVt =
∑3

i=1 φi
t dY i

t . The last equality is indeed
satisfied if

φ1
t = V 1

t −
3∑

i=2

φi
tY

i,1
t = V 1

t− −
3∑

i=2

φi
tY

i,1
t− , (4.6)

that is, provided that

∆V 1
t =

3∑

i=2

φi
t∆Y i,1

t ,

which is satisfied, in view of definition (4.5) of V 1. Note also that, from
the second equality in (4.6), we deduce that the process φ1 is G-predictable.
Finally, the wealth process of φ satisfies Vt(φ) = V 1

t Y 1
t for every t ∈ [0, T ]

and thus VT (φ) = X. ¤
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We say that a self-financing strategy φ replicates a claim X ∈ GT if

X =
3∑

i=1

φi
T Y i

T = VT (φ)

or, equivalently,

X = V0(φ) +
3∑

i=1

∫

]0,T ]

φi
t dY i

t .

Suppose that there exists an EMM for some choice of a numéraire asset, and
let us restrict our attention to the class of all admissible trading strategies,
so that our model is arbitrage-free.

Assume that a claim X can be replicated by some admissible trading
strategy, so that it is attainable (or hedgeable). Then, by definition, the arbi-
trage price at time t of X, denoted as πt(X), equals Vt(φ) for any admissible
trading strategy φ that replicates X.

In the context of Lemma 4.2.1, it is natural to choose as an EMM a
probability measure Q1 equivalent to P on (Ω,GT ) and such that the prices
Y i,1, i = 2, 3, are G-martingales under Q1. If a contingent claim X is at-
tainable then its arbitrage price satisfies

πt(X) = Y 1
t EQ1(X(Y 1

T )−1 | Gt). (4.7)

We emphasize that even when an EMM Q1 is not unique, the price of any
attainable claim X is given by the conditional expectation above. Put an-
other way, in the case of an attainable claim, the conditional expectations
(4.7) under various equivalent martingale measures coincide.

4.2.2 Constrained Strategies

In this section, we make an additional assumption that the price process Y 3

is strictly positive. Let φ = (φ1, φ2, φ3) be a self-financing trading strategy
satisfying the following constraint

2∑

i=1

φi
tY

i
t− = Zt, ∀ t ∈ [0, T ], (4.8)

for a predetermined, G-predictable process Z. In the financial interpretation,
equality (4.8) means that a portfolio φ is rebalanced in such a way that the
total wealth invested in assets Y 1, Y 2 matches a predetermined stochastic
process Z. For this reason, the constraint given by (4.8) is referred to as the
balance condition.
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Our first goal is to extend part (i) in Lemma 4.2.1 to the case of con-
strained strategies. Let Φ(Z) stand for the class of all (admissible) self-
financing trading strategies that satisfy the balance condition (4.8). They
will be sometimes referred to as constrained strategies. Since any strategy
φ ∈ Φ(Z) is self-financing, from dVt(φ) =

∑3
i=1 φi

t dY i
t , we obtain

∆Vt(φ) =
3∑

i=1

φi
t∆Y i

t = Vt(φ)−
3∑

i=1

φi
tY

i
t−.

By combining this equality with (4.8), we deduce that

Vt−(φ) =
3∑

i=1

φi
tY

i
t− = Zt + φ3

t Y
i
t−.

Let us write
Y i,3

t = Y i
t (Y 3

t )−1, Z3
t = Zt(Y 3

t )−1.

The following result extends Lemma 1.7 in Bielecki et al. [13] from the case
of continuous semimartingales to the general case (see also [16, 18]). It is
apparent from Proposition 4.2.1 that the wealth process V (φ) of a strategy
φ ∈ Φ(Z) depends only on a single component of φ, namely, φ2.

Proposition 4.2.1. The relative wealth V 3
t (φ) = Vt(φ)(Y 3

t )−1 of any trading
strategy φ ∈ Φ(Z) satisfies

V 3
t (φ) = V 3

0 (φ) +
∫

]0,t]

φ2
u

(
dY 2,3

u − Y 2,3
u−

Y 1,3
u−

dY 1,3
u

)
+

∫

]0,t]

Z3
u

Y 1,3
u−

dY 1,3
u . (4.9)

Proof. Let us consider discounted values of price processes Y 1, Y 2, Y 3, with
Y 3 taken as a numéraire asset. By virtue of part (i) in Lemma 4.2.1, we thus
have

V 3
t (φ) = V 3

0 (φ) +
2∑

i=1

∫

]0,t]

φi
u dY i,3

u . (4.10)

The balance condition (4.8) implies that

2∑

i=1

φi
tY

i,3
t− = Z3

t ,

and thus
φ1

t = (Y 1,3
t− )−1

(
Z3

t − φ2
t Y

2,3
t−

)
. (4.11)

By inserting (4.11) into (4.10), we arrive at the asserted formula (4.9). ¤
The next result will prove particularly useful for deriving replicating

strategies for defaultable claims.
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Proposition 4.2.2. Let a GT -measurable random variable X represent a
contingent claim that settles at time T . We set

dY ∗
t = dY 2,3

t − Y 2,3
t−

Y 1,3
t−

dY 1,3
t = dY 2,3

t − Y 2,1
t− dY 1,3

t , (4.12)

where, by convention, the initial value is Y ∗
0 = 0. Assume that there exists

a G-predictable process φ2, such that

X = Y 3
T

(
x +

∫

]0,T ]

φ2
t dY ∗

t +
∫

]0,T ]

Z3
t

Y 1,3
t−

dY 1,3
t

)
. (4.13)

Then there exist G-predictable processes φ1 and φ3 such that the strategy
φ = (φ1, φ2, φ3) belongs to Φ(Z) and replicates X. The wealth process of φ
equals, for every t ∈ [0, T ],

Vt(φ) = Y 3
t

(
x +

∫

]0,t]

φ2
u dY ∗

u +
∫

]0,t]

Z3
u

Y 1,3
u−

dY 1,3
u

)
.

Proof. As expected, we first set (note that the component φ1 follows a
G-predictable process)

φ1
t =

1
Y 1

t−

(
Zt − φ2

t Y
2
t−

)
(4.14)

and

V 3
t = x +

∫

]0,t]

φ2
u dY ∗

u +
∫

]0,t]

Z3
u

Y 1,3
u−

dY 1,3
u .

Arguing along the same lines as in the proof of Proposition 4.2.1, we obtain

V 3
t = V 3

0 +
2∑

i=1

∫

]0,t]

φi
u dY i,3

u .

Now, we define

φ3
t = V 3

t −
2∑

i=1

φi
tY

i,3
t = (Y 3

t )−1
(
Vt −

2∑

i=1

φi
tY

i
t

)
,

where Vt = V 3
t Y 3

t . As in the proof of Lemma 4.2.1, we check that

φ3
t = V 3

t− −
2∑

i=1

φi
tY

i,3
t− ,
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and thus the process φ3 is G-predictable. It is clear that the strategy φ =
(φ1, φ2, φ3) is self-financing and its wealth process satisfies Vt(φ) = Vt for
every t ∈ [0, T ]. In particular, VT (φ) = X, so that φ replicates X. Finally,
equality (4.14) implies (4.8) and thus φ belongs to the class Φ(Z). ¤

Note that equality (4.13) is a necessary (by Lemma 4.2.1) and sufficient
(by Proposition 4.2.2) condition for the existence of a constrained strategy
that replicates a given contingent claim X.

4.2.3 Synthetic Asset

Let us take Z = 0 so that φ ∈ Φ(0). Then the balance condition becomes∑2
i=1 φi

tY
i
t− = 0 and formula (4.9) reduces to

dV 3
t (φ) = φ2

t

(
dY 2,3

t − Y 2,3
t−

Y 1,3
t−

dY 1,3
t

)
. (4.15)

The process Ȳ 2 = Y 3Y ∗, where Y ∗ is defined in (4.12) is called a synthetic
asset. It corresponds to a particular self-financing portfolio, with the long
position in Y 2, the short position of Y 2,1

t− number of shares of Y 1, and suitably
re-balanced positions in the third asset, so that the portfolio is self-financing,
as in Lemma 4.2.1.

It is not difficult to show (see Bielecki et al. [16, 18]) that trading in pri-
mary assets Y 1, Y 2, Y 3 is formally equivalent to trading in assets Y 1, Ȳ 2, Y 3.
This observation supports the name synthetic asset attributed to the process
Ȳ 2. It is worth noting, however, that the synthetic asset process may take
negative values, so that it is unsuitable as a numéraire, in general.

Case of Continuous Asset Prices

In the case of continuous asset prices, the relative price Y ∗ = Ȳ 2(Y 3)−1 of
the synthetic asset can be given an alternative representation, as the follow-
ing result shows. Recall that the predictable bracket of the two continuous
semimartingales X and Y , denoted as 〈X,Y 〉, coincides with their quadratic
covariation [X, Y ].

Proposition 4.2.3. Assume that the price processes Y 1 and Y 2 are contin-
uous. Then the relative price of the synthetic asset satisfies

Y ∗
t =

∫ t

0

(Y 3,1
u )−1eαu dŶu,

where we denote Ŷt = Y 2,1
t e−αt and

αt = 〈ln Y 2,1, ln Y 3,1〉t =
∫ t

0

(Y 2,1
u )−1(Y 3,1

u )−1 d〈Y 2,1, Y 3,1〉u. (4.16)
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In terms of the auxiliary process Ŷ , formula (4.9) becomes

V 3
t (φ) = V 3

0 (φ) +
∫ t

0

φ̂u dŶu +
∫ t

0

Z3
u

Y 1,3
u−

dY 1,3
u ,

where φ̂t = φ2
t (Y

3,1
t )−1eαt .

Proof. It suffices to give the proof for Z = 0. The proof relies on the
integration by parts formula stating that we have, for any two continuous
semimartingales, say X and Y ,

Y −1
t

(
dXt − Y −1

t d〈X, Y 〉t
)

= d(XtY
−1
t )−Xt dY −1

t ,

provided that Y is strictly positive. By applying this formula to processes
X = Y 2,1 and Y = Y 3,1, we obtain

(Y 3,1
t )−1(dY 2,1

t −(Y 3,1
t )−1d〈Y 2,1, Y 3,1〉t) = d(Y 2,1

t (Y 3,1
t )−1)−Y 2,1

t d(Y 3,1)−1
t .

The relative wealth V 3
t (φ) = Vt(φ)(Y 3

t )−1 of a strategy φ ∈ Φ(0) satisfies

V 3
t (φ) = V 3

0 (φ) +
∫ t

0

φ2
u dY ∗

u

= V 3
0 (φ) +

∫ t

0

φ2
u(Y 3,1

u )−1eαu dŶu,

= V 3
0 (φ) +

∫ t

0

φ̂u dŶu

where we denote φ̂t = φ2
t (Y

3,1
t )−1eαt . ¤

Remark 4.2.1. The financial interpretation of the auxiliary process Ŷ will
be studied below. Let us only observe here that if Y ∗ is a local martingale
under some probability Q then Ŷ is a Q-local martingale (and vice versa,
if Ŷ is a Q̂-local martingale under some probability Q̂ then Y ∗ is a Q̂-local
martingale). Nevertheless, for the reader’s convenience, we shall use two
symbols Q and Q̂, since this equivalence holds for continuous processes only.

Remark 4.2.2. It is thus worth stressing that we will apply Proposition
4.2.3 to pre-default values of assets, rather than directly to asset prices,
within the setup of a semimartingale model with a common default, as de-
scribed in Section 4.1.1. In this model, the asset prices may have disconti-
nuities, but their pre-default values follow continuous processes.
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4.3 Martingale Approach

Our goal is to derive quasi-explicit conditions for replicating strategies for a
defaultable claim in a fairly general setup introduced in Section 4.1.1. In this
section, we only deal with trading strategies based on the reference filtration
F and the underlying price processes (that is, prices of default-free assets
and pre-default values of defaultable assets) are assumed to be continuous.
Therefore, our arguments will hinge on Proposition 4.2.3, rather than on a
more general Proposition 4.2.1. We shall also adapt Proposition 4.2.2 to our
current purposes.

To simplify the presentation, we make the standing assumption that all
coefficient processes are such that the SDEs, which appear in what follows,
admit unique strong solutions and the Doléans exponentials (the Radon-
Nikodým derivatives) are true martingales under respective probabilities.

4.3.1 Defaultable Asset with Zero Recovery

We will first examine in some detail a particular model where the two assets,
Y 1 and Y 2, are default-free and satisfy, for i = 1, 2,

dY i
t = Y i

t

(
µi,t dt + σi,t dWt

)
,

where W is a one-dimensional Brownian motion. The third asset is a de-
faultable asset with zero recovery, so that

dY 3
t = Y 3

t−
(
µ3,t dt + σ3,t dWt − dMt

)
.

Since we will be interested in replicating strategies in the sense of Definition
4.1.2, we may and do assume, without loss of generality, that the coefficients
µi,t, σi,t, i = 1, 2, are F-predictable, rather than G-predictable. Recall that,
in general, there exist F-predictable processes µ̃3 and σ̃3 such that

µ̃3,t1{t≤τ} = µ3,t1{t≤τ}, σ̃3,t1{t≤τ} = σ3,t1{t≤τ}.

We assume throughout that Y i
0 > 0 for every i, so that the price processes

Y 1, Y 2 are strictly positive and the process Y 3 is non-negative and has
strictly positive pre-default value.

4.3.2 Default-Free Market

It is natural to postulate that the default-free market with two traded as-
sets, Y 1 and Y 2, is arbitrage-free. To be more specific, we choose Y 1 as a
numéraire and we require the existence of a probability measure P1, equiva-
lent to P on (Ω,FT ), and such that the process Y 2,1 is a P1-martingale.
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It is easy to check that the dynamics of processes (Y 1)−1 and Y 2,1 are

d(Y 1
t )−1 = (Y 1

t )−1
(
(σ2

1,t − µ1,t) dt− σ1,t dWt

)
, (4.17)

and

dY 2,1
t = Y 2,1

t

(
(µ2,t − µ1,t + σ1,t(σ1,t − σ2,t)) dt + (σ2,t − σ1,t) dWt

)
,

respectively. Hence the necessary condition for the existence of an EMM P1 is
the inclusion A ⊆ B, where A = {(t, ω) ∈ [0, T ]×Ω : σ1,t(ω) = σ2,t(ω)} and
B = {(t, ω) ∈ [0, T ] × Ω : µ1,t(ω) = µ2,t(ω)}. The necessary and sufficient
condition for the existence and uniqueness of an EMM P1 reads

EP
{
ET

(∫ ·

0

θu dWu

)}
= 1 (4.18)

where the process θ is given by the formula, for every t ∈ [0, T ],

θt = σ1,t − µ1,t − µ2,t

σ1,t − σ2,t
, (4.19)

where, by convention, 0/0 = 0. Note that in the case of constant coefficients,
if σ1 = σ2 then the considered model is arbitrage-free only in the trivial case
when µ2 = µ1.

Remark 4.3.1. Since the martingale measure P1 is unique, the default-free
model (Y 1, Y 2) is complete. However, this assumption is not necessary and
thus it can be relaxed. As we shall see in what follows, it is typically more
natural to assume that the driving Brownian motion W is multi-dimensional.

4.3.3 Arbitrage-Free Property

Let us now consider also a defaultable asset Y 3. Our goal is now to find a
martingale measure Q1 (if it exists) for relative prices Y 2,1 and Y 3,1. Recall
that we postulate that the hypothesis (H) holds under P for filtrations F and
G = F ∨H. The dynamics of Y 3,1 under P are

dY 3,1
t = Y 3,1

t−
{(

µ3,t − µ1,t + σ1,t(σ1,t − σ3,t)
)
dt + (σ3,t − σ1,t) dWt − dMt

}
.

Let Q1 be any probability measure equivalent to P on (Ω,GT ) and let η
be the associated Radon-Nikodým density process, so that

dQ1 | Gt = ηt dP | Gt , (4.20)

where the process η is a G-martingale under P and satisfies

dηt = ηt−(θt dWt + ζt dMt) (4.21)

for some G-predictable processes θ and ζ.
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From the Girsanov theorem (cf. Theorem 3.4.1), the processes Ŵ and
M̂ , which are given by the expressions

Ŵt = Wt −
∫ t

0

θu du (4.22)

and

M̂t = Mt −
∫ t∧τ

0

γuζu du, (4.23)

are G-martingales under Q1.
To ensure that Y 2,1 is a Q1-martingale, we postulate that conditions

(4.18) and (4.19) are satisfied. Consequently, for the process Y 3,1 to be a
Q1-martingale, it is necessary and sufficient that a process ζ satisfies

γtζt = µ3,t − µ1,t − µ1,t − µ2,t

σ1,t − σ2,t
(σ3,t − σ1,t).

To ensure that Q1 is a probability measure equivalent to P, we require that
the inequality ζt > −1 is valid. Then the unique martingale measure Q1 is
given by formula (4.20) where η solves (4.21), so that

ηt = Et

(∫ ·

0

θu dWu

)
Et

(∫

]0, · ]
ζu dMu

)
.

We are in a position to formulate the following result.

Proposition 4.3.1. Assume that the process θ given by (4.19) satisfies
(4.18) and

ζt =
1
γt

(
µ3,t − µ1,t − µ1,t − µ2,t

σ1,t − σ2,t
(σ3,t − σ1,t)

)
> −1. (4.24)

Then the market model M = (Y 1, Y 2, Y 3; Φ) is arbitrage-free and complete.
The dynamics of relative prices under the unique martingale measure Q1 are

dY 2,1
t = Y 2,1

t (σ2,t − σ1,t) dŴt,

dY 3,1
t = Y 3,1

t−
(
(σ3,t − σ1,t) dŴt − dM̂t

)
.

Since the coefficients µi,t, σi,t, i = 1, 2, are F-adapted, the process Ŵ is
an F-martingale (hence, a Brownian motion) under Q1. Therefore, by virtue
of Proposition 3.5.1, the hypothesis (H) holds under Q1, and the F-intensity
of default under Q1 equals

γ̂t = γt(1 + ζt) = γt +
(

µ3,t − µ1,t − µ1,t − µ2,t

σ1,t − σ2,t
(σ3,t − σ1,t)

)
.
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Example 4.3.1. We present an example where the condition (4.24) does not
hold and thus arbitrage opportunities arise. Assume that the coefficients are
constant and satisfy µ1 = µ2 = σ1 = 0, µ3 < −γ for a constant default
intensity γ > 0. Then

Y 3
t = 1{t<τ}Y 3

0 exp
(

σ3Wt − 1
2
σ2

3t + (µ3 + γ)t
)

≤ Y 3
0 exp

(
σ3Wt − 1

2
σ2

3t

)
= Vt(φ),

where V (φ) represents the wealth of a self-financing strategy (φ1, φ2, 0) with
φ2 = σ3

σ2
. Hence the arbitrage strategy would be to sell the asset Y 3 and to

follow the strategy φ.

Remark 4.3.2. Let us stress once again, that the existence of an EMM is a
necessary condition for the model viability, but the uniqueness of an EMM is
not always a natural condition to be imposed. In fact, when constructing a
model, we should be mostly concerned with its flexibility and ability to reflect
the pertinent risk factors, rather than with its mathematical completeness.
In the present context, it would be natural to postulate that the dimension of
the underlying Brownian motion coincides with the number of traded risky
assets.

4.3.4 Hedging a Survival Claim

We first focus on replication of a survival claim (X, 0, τ), that is, a default-
able claim represented by the terminal payoff X1{T<τ}, where X is an FT -
measurable random variable. For the moment, we maintain the simplifying
assumption that W is one-dimensional. As we shall see in what follows, it
may lead to certain pathological features of a model. If, on the contrary, the
driving noise is multi-dimensional, most of the analysis remains valid, except
that the model completeness is no longer ensured, in general.

Recall that Ỹ 3 stands for the pre-default price of Y 3, defined as follows
(see (4.3))

dỸ 3
t = Ỹ 3

t

(
(µ̃3,t + γt) dt + σ̃3,t dWt

)

with Ỹ 3
0 = Y 3

0 . This strictly positive, continuous, F-adapted process enjoys
the property that Y 3

t = 1{t<τ}Ỹ 3
t . Let us denote the pre-default values

relative to the numéraire Ỹ 3 by Ỹ i,3
t = Y i

t (Ỹ 3
t )−1 for i = 1, 2 and let us

introduce the pre-default relative price Ỹ ∗ of the synthetic asset Ȳ 2 by setting

dỸ ∗
t = dỸ 2,3

t − Ỹ 2,3
t

Ỹ 1,3
t

dỸ 1,3
t

= Ỹ 2,3
t

((
µ2,t − µ1,t + σ̃3,t(σ1,t − σ2,t)

)
dt + (σ2,t − σ1,t) dWt

)
.
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We postulate that σ1,t − σ2,t 6= 0. It is useful to note that the process Ŷ
defined in Proposition 4.2.3 satisfies

dŶt = Ŷt

((
µ2,t − µ1,t + σ̃3,t(σ1,t − σ2,t)

)
dt + (σ2,t − σ1,t) dWt

)
.

We are going to show that when α given by (4.16) is deterministic, the
process Ŷ has the financial interpretation as the credit-risk adjusted forward
price of Y 2 relative to Y 1. Therefore, it is more convenient to work with
the process Ỹ ∗ when dealing with the general case, but to use instead the
process Ŷ when analyzing a model with deterministic volatilities.

Consider an F-predictable self-financing strategy φ satisfying the balance
condition φ1

t Y
1
t + φ2

t Y
2
t = 0, and the corresponding wealth process

Vt(φ) :=
3∑

i=1

φi
tY

i
t = φ3

t Y
3
t .

Let us set Ṽt(φ) := φ3
t Ỹ

3
t . Since the process Ṽ (φ) is F-adapted, it is rather

clear that it represents the pre-default price process of the portfolio φ, in the
sense that the equality 1{t<τ}Vt(φ) = 1{t<τ}Ṽt(φ) is valid for every t ∈ [0, T ].
We shall call the process Ṽt(φ) the pre-default wealth of φ. Consequently, the
process Ṽ 3

t (φ) := Ṽt(φ)(Ỹ 3
t )−1 = φ3

t is termed the relative pre-default wealth.
Using Proposition 4.2.1, with a suitably adjusted notation, we find that

the F-adapted process Ṽ 3(φ) satisfies, for every t ∈ [0, T ],

Ṽ 3
t (φ) = Ṽ 3

0 (φ) +
∫ t

0

φ2
u dỸ ∗

u .

Let us define an equivalent probability measure Q∗ on (Ω,FT ) by setting

dQ∗ = η∗T dP,

where dη∗t = η∗t θ∗t dWt and

θ∗t =
µ2,t − µ1,t + σ̃3,t(σ1,t − σ2,t)

σ1,t − σ2,t
. (4.25)

The process (Ỹ ∗
t , t ∈ [0, T ]) is a (local) martingale under Q∗ driven by a

Brownian motion. We shall require that this process is in fact a true mar-
tingale; a sufficient condition for this is that

∫ T

0

EQ∗
(
Ỹ 2,3

t (σ2,t − σ1,t)
)2

dt < ∞.
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From the predictable representation theorem for the Brownian filtration,
it follows that for any random variable X ∈ FT , such that the random
variable X(Ỹ 3

T )−1 is square-integrable under Q∗, there exists a constant x
and an F-predictable process φ2 such that

X = Ỹ 3
T

(
x +

∫

]0,T ]

φ2
u dỸ ∗

u

)
. (4.26)

We now deduce from Proposition 4.2.2 that there exists a self-financing strat-
egy φ with the pre-default wealth Ṽt(φ) = Ỹ 3

t Ṽ 3
t for every t ∈ [0, T ], where

we set

Ṽ 3
t = x +

∫ t

0

φ2
u dỸ ∗

u . (4.27)

Moreover, the balance condition φ1
t Y

1
t + φ2

t Y
2
t = 0 is satisfied for every

t ∈ [0, T ]. Since, clearly, ṼT (φ) = X, we have that

VT (φ) = φ3
T Y 3

T = 1{T<τ}φ3
T Ỹ 3

T = 1{T<τ}ṼT (φ) = 1{T<τ}X.

We conclude that the strategy φ replicates the survival claim (X, 0, τ). In
particular, we have that Vt(φ) = 0 on the random interval [[τ, T ∧ τ ]].

Definition 4.3.1. We say that a survival claim (X, 0, τ) is attainable if the
process Ṽ 3 given by (4.27) is a martingale under Q∗.

The following result is an immediate consequence of (4.26) and (4.27).

Corollary 4.3.1. Let X ∈ FT be such that X(Ỹ 3
T )−1 is square-integrable

under Q∗. Then the survival claim (X, 0, τ) is attainable. Moreover, the
pre-default price π̃t(X, 0, τ) of the survival claim (X, 0, τ) is given by the
following conditional expectation, for every t ∈ [0, T ],

π̃t(X, 0, τ) = Ỹ 3
t EQ∗(X(Ỹ 3

T )−1 | Ft). (4.28)

The process π̃(X, 0, τ)(Ỹ 3)−1 is an F-martingale under Q∗.

Proof. Since X(Ỹ 3
T )−1 is square-integrable under Q∗, we know from the pre-

dictable representation theorem for the Brownian filtration that the process
φ2 in formula (4.26) is such that

EQ∗
( ∫ T

0

(φ2
t )

2 d〈Ỹ ∗〉t
)

< ∞.

Therefore, the process Ṽ 3 given by (4.27) is a true martingale under Q∗. We
conclude that the survival claim (X, 0, τ) is attainable.
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Now, let us denote by πt(X, 0, τ) the price at time t of the survival claim
(X, 0, τ). Since φ is a replicating strategy for the claim (X, 0, τ), we have that
Vt(φ) = πt(X, 0, τ) for every t ∈ [0, T ]. Consequently, for every t ∈ [0, T ],

1{t<τ}π̃t(X, 0, τ) = 1{t<τ}Ṽt(φ) = 1{t<τ}Ỹ 3
t EQ∗(Ṽ 3

T | Ft)

= 1{t<τ}Ỹ 3
t EQ∗(X(Ỹ 3

T )−1 | Ft).

This proves equality (4.28). ¤
In view of the last result, it is justified to refer to Q∗ as the pricing

measure relative to Y 3 for attainable survival claims.

Remark 4.3.3. It can be proved that there exists a unique absolutely con-
tinuous probability measure Q̄ on (Ω,GT ) such that we have

Y 3
t EQ̄

(
1{T<τ}X

Y 3
T

∣∣∣Gt

)
= 1{t<τ}Ỹ 3

t EQ∗
(

X

Ỹ 3
T

∣∣∣Ft

)
.

However, this probability measure is manifestly not equivalent to Q∗, since
its Radon-Nikodým density process vanishes after τ . For a related result,
the interested reader is referred to the paper by Collin-Dufresne et al. [58].

Example 4.3.2. We provide here an explicit calculation of the pre-default
price of a survival claim. For simplicity, we assume that X = 1, so that
the claim represents a defaultable zero-coupon bond. Also, we set γt = γ =
const, µi,t = 0, and σi,t = σi, i = 1, 2, 3. Straightforward calculations yield
the following pricing formula

π̃0(1, 0, τ) = Y 3
0 e−(γ+ 1

2 σ2
3)T .

We see that here the pre-default price π̃0(1, 0, τ) depends explicitly on the
intensity γ, or rather on the drift term in dynamics of the pre-default value of
a defaultable asset. Indeed, from the practical viewpoint, the interpretation
of the drift coefficient in dynamics of Y 2 as the real-world default intensity
is questionable, since, within the present setup, the default intensity never
appears as an independent variable; indeed, it is merely one component of
the drift term in dynamics of the pre-default value of Y 3.

Note also that we deal here with a model in which three traded assets
are driven by a common one-dimensional Brownian motion. No wonder that
this model enjoys the nice property of market completeness, but, at the same
time, it also exhibits an undesirable property that the pre-default values of
all three assets are perfectly correlated.

As we shall see later, if traded primary assets are judiciously chosen then,
typically, the pre-default price (and hence the price) of a survival claim will
not depend in an explicit way on the default intensity process.
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Remark 4.3.4. From the practical perspective, it seems natural to consider
a given market model as an acceptable model if its implementation does not
require estimation of drift parameters of pre-default prices, at least for the
purpose of hedging and valuation of a sufficiently large class of defaultable
contingent claims of interest. It is worth recalling that we do not postulate
that the drift coefficients are market observables. Since the default intensity
can formally be interpreted as a component of the drift term in dynamics of
pre-default prices, in an acceptable model there should be no need to estimate
this quantity. From this perspective, the model considered in Example 4.3.2
may serve as an example of an ‘unacceptable’ model, since its implementation
would require the knowledge of the drift parameter in dynamics of Y 3.

Let us stress that we do not claim that it is always possible to hedge
derivative assets without using the drift coefficients in dynamics of traded
assets; we merely argue that one should strive to develop market models in
which this knowledge is not essential.

4.3.5 Hedging a Recovery Process

Let us now briefly study the situation where the promised payoff equals zero
and the recovery payoff is paid at time τ and equals Zτ for some F-adapted
process Z. Put another way, we consider a defaultable claim of the form
(0, Z, τ). Once again, we make use of Propositions 4.2.1 and 4.2.2. In view
of (4.13), we need to find a constant x and an F-predictable process φ2 such
that

ψT := −
∫ T

0

Zt

Y 1
t

dỸ 1,3
t = x +

∫ T

0

φ2
t dỸ ∗

t .

Similarly as before, we conclude that, under suitable integrability conditions
on ψT , there exists φ2 such that dψt = φ2

t dY ∗
t , where ψt = EQ∗(ψT | Ft).

We now set

Ṽ 3
t = x +

∫ t

0

φ2
u dY ∗

u +
∫ T

0

Z̃3
u

Ỹ 1,3
u

dỸ 1,3
u ,

so that, in particular, Ṽ 3
T = 0. Then it is possible to find processes φ1 and

φ3 such that the strategy φ is self-financing and it satisfies: Ṽt(φ) = Ṽ 3
t Ỹ 3

t

and Vt(φ) = Zt + φ3
t Y

3
t for every t ∈ [0, T ]. It is thus clear that Vτ (φ) = Zτ

on the event {T ≥ τ} and VT (φ) = 0 on the event {T < τ}.

4.3.6 Hedging with a Defaultable Bond

Of course, an abstract semimartingale model considered until now furnishes
only a generic framework for a construction of acceptable models for hedging
of default risk. A choice of traded assets and specification of their dynamics
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need to be examined on a case-by-case basis, rather than in an abstract semi-
martingale setup. We shall address these important issues by examining a
few practically appealing examples of defaultable claims and the correspond-
ing models.

For the sake of concreteness, we postulate throughout this section that
Y 1

t = B(t, T ) is the price of a default-free ZCB with maturity T , whereas
Y 3

t = D0(t, T ) is the price of a defaultable ZCB with zero recovery, that is,
a defaultable asset with the terminal payoff Y 3

T = 1{T<τ} at maturity T .
We postulate that the dynamics under P of the default-free ZCB are

dB(t, T ) = B(t, T )
(
µ(t, T ) dt + b(t, T ) dWt

)

for some F-predictable processes µ(t, T ) and b(t, T ) and we select the process
Y 1

t = B(t, T ) as a numéraire. Since the prices of the other two assets are
not given a priori, we may take any probability measure Q equivalent to P
on (Ω,GT ) to play the role of Q1.

In such a case, the probability measure Q1 is commonly referred to as
the forward martingale measure for the date T and is denoted by QT . Hence
the Radon-Nikodým density of QT with respect to P is given by (4.21) for
some F-predictable processes θ and ζ, and the process

WT
t = Wt −

∫ t

0

θu du, ∀ t ∈ [0, T ],

is a Brownian motion under QT . Under QT the default-free ZCB is governed
by

dB(t, T ) = B(t, T )
(
µ̂(t, T ) dt + b(t, T ) dWT

t

)

where µ̂(t, T ) = µ(t, T ) + θtb(t, T ).
Let now Γ̂ stand for the F-hazard process of default time τ under QT ,

so that Γ̂t = − ln(1 − F̂t), where F̂t = QT (τ ≤ t | Ft). Assume that the
hypothesis (H) is valid under QT so that, in particular, the process Γ̂ is
increasing. We define the price process of the defaultable ZCB with zero
recovery by the formula

D0(t, T ) := B(t, T )EQT (1{T<τ} | Gt) = 1{t<τ}B(t, T )EQT

(
e
bΓt−bΓT

∣∣Ft

)
.

It is then easily seen that Y 3,1
t = D0(t, T )(B(t, T ))−1 is a QT -martingale

and the pre-default price D̃0(t, T ) equals

D̃0(t, T ) = B(t, T )EQT

(
e
bΓt−bΓT

∣∣Ft

)
.

The next result examines the basic properties of the auxiliary process
Γ̂(t, T ), which is given as, for every t ∈ [0, T ],

Γ̂(t, T ) = Ỹ 3,1
t = D̃0(t, T )(B(t, T ))−1 = EQT

(
e
bΓt−bΓT

∣∣Ft

)
.
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The quantity Γ̂(t, T ) can be interpreted as the conditional probability
under QT that default will not occur prior to the maturity date T , given
that we observe Ft and we know that the default has not yet happened. We
will be interested in its volatility process β(t, T ), which is implicitly defined
by the following result.

Lemma 4.3.1. Assume that the F-hazard process Γ̂ of τ under QT is contin-
uous. Then the process Γ̂(t, T ), t ∈ [0, T ], is a continuous F-submartingale
and

dΓ̂(t, T ) = Γ̂(t, T )
(
dΓ̂t + β(t, T ) dWT

t

)
(4.29)

for some F-predictable process β(t, T ). The process Γ̂(t, T ) is of finite vari-
ation if and only if the hazard process Γ̂ is deterministic. In this case, we
have Γ̂(t, T ) = e

bΓt−bΓT .

Proof. We have

Γ̂(t, T ) = EQT

(
e
bΓt−bΓT | Ft

)
= e

bΓtLt,

where we set Lt = EQT

(
e−bΓT | Ft

)
. Hence Γ̂(t, T ) is equal to the product of

a strictly positive, increasing, right-continuous, F-adapted process e
bΓt and

a strictly positive, continuous F-martingale L. Furthermore, there exists an
F-predictable process β̂(t, T ) such that L satisfies

dLt = Ltβ̂(t, T ) dWT
t

with the initial condition L0 = EQT

(
e−bΓT

)
. Formula (4.29) now follows by

an application of Itô’s formula and by setting β(t, T ) = e−bΓt β̂(t, T ). To
complete the proof, it suffices to recall that a continuous martingale is never
a process of finite variation, unless it is a constant process. ¤

Remark 4.3.5. It can be checked that β(t, T ) is also the volatility of the
process

Γ(t, T ) = EP
(
eΓt−ΓT

∣∣Ft

)
.

Assume that Γ̂t =
∫ t

0
γ̂u du for some F-predictable, non-negative default

intensity process γ̂ under QT . Then we have the following auxiliary result,
which yields, in particular, the volatility process of the defaultable ZCB.

Corollary 4.3.2. The dynamics under QT of the pre-default price D̃0(t, T )
are

dD̃0(t, T ) = D̃0(t, T )
(
µ̂(t, T ) + b(t, T )β(t, T ) + γ̂t

)
dt

+ D̃0(t, T )
(
b(t, T ) + β(t, T )

)
d̃(t, T ) dWT

t .



198 Chapter 4. Hedging of Defaultable Claims

Equivalently, the price D0(t, T ) of the defaultable ZCB satisfies under QT

dD0(t, T ) = D0(t, T )
((

µ̂(t, T ) + b(t, T )β(t, T )
)
dt + d̃(t, T ) dWT

t − dMt

)

where we write d̃(t, T ) = b(t, T ) + β(t, T ).

It is worth noting that the process β(t, T ) can be expressed in terms of
market observables, in the sense, that it can be represented as the difference
of volatilities d̃(t, T ) and b(t, T ) of pre-default prices of traded assets.

4.3.7 Credit-Risk-Adjusted Forward Price

Assume that the price Y 2 satisfies under the statistical probability P

dY 2
t = Y 2

t

(
µ2,t dt + σt dWt

)
(4.30)

with F-predictable coefficients µ and σ. Let FY 2(t, T ) = Y 2
t (B(t, T ))−1 be

the forward price of Y 2
T . For an appropriate choice of θ (see 4.25), we shall

have that
dFY 2(t, T ) = FY 2(t, T )

(
σt − b(t, T )

)
dWT

t .

Therefore, the dynamics of the pre-default synthetic asset Ỹ ∗
t under QT are

dỸ ∗
t = Ỹ 2,3

t

(
σt − b(t, T )

) (
dWT

t − β(t, T ) dt
)
,

and the process Ŷt = Y 2,1
t e−αt (see Proposition 4.2.3 for the definition of α)

satisfies
dŶt = Ŷt

(
σt − b(t, T )

) (
dWT

t − β(t, T ) dt
)
.

Let Q̂ be an equivalent probability measure on (Ω,GT ) such that Ŷ (or,
equivalently, Ỹ ∗) is a Q̂-martingale. By virtue of the Girsanov theorem, the
process Ŵ given by the formula, for t ∈ [0, T ],

Ŵt = WT
t −

∫ t

0

β(u, T ) du,

is a Brownian motion under Q̂. Thus, the forward price FY 2(t, T ) satisfies
under Q̂

dFY 2(t, T ) = FY 2(t, T )
(
σt − b(t, T )

)(
dŴt + β(t, T ) dt

)
. (4.31)

It appears that the valuation results are easier to interpret when they
are expressed in terms of forward prices associated with vulnerable forward
contracts, rather than in terms of spot prices of primary assets. For this
reason, we shall now examine credit-risk-adjusted forward prices of default-
free and defaultable assets.
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Definition 4.3.2. Let Y be a GT -measurable claim. An Ft-measurable
random variable K is called the credit-risk-adjusted forward price of Y if the
pre-default value at time t of the vulnerable forward contract represented by
the claim 1{T<τ}(Y −K) equals 0.

Lemma 4.3.2. The credit-risk-adjusted forward price F̂Y (t, T ) of an attain-
able survival claim (X, 0, τ), which is represented by a GT -measurable claim
Y = X1{T<τ}, equals π̃t(X, 0, τ)(D̃0(t, T ))−1, where π̃t(X, 0, τ) is the pre-
default price of (X, 0, τ). The process F̂Y (t, T ), t ∈ [0, T ], is an F-martingale
under Q̂.

Proof. The forward price is defined as an Ft-measurable random variable K
such that the claim

1{T<τ}(X1{T<τ} −K) = X1{T<τ} −KD0(T, T )

is worthless at time t on the event {t < τ}. It is clear that the pre-default
value at time t of this claim equals π̃t(X, 0, τ) −KD̃0(t, T ). Consequently,
we obtain F̃Y (t, T ) = π̃t(X, 0, τ)(D̃0(t, T ))−1. ¤

Let us now focus on default-free assets. It is clear that the credit-risk-
adjusted forward price of the bond B(t, T ) equals 1. To find the credit-risk-
adjusted forward price of Y 2, let us write

F̂Y 2(t, T ) := FY 2(t, T ) eαT−αt = Y 2,1
t eαT−αt , (4.32)

where α is given by (see (4.16))

αt =
∫ t

0

(
σu − b(u, T )

)
β(u, T ) du (4.33)

=
∫ t

0

(
σu − b(u, T )

)(
d̃(u, T )− b(u, T )

)
du.

Lemma 4.3.3. Assume that α given by (4.33) is a deterministic function.
Then the credit-risk-adjusted forward price of Y 2, denoted as F̂Y 2(t, T ), is
given by (4.32) for every t ∈ [0, T ].

Proof. According to Definition 4.3.2, the price F̂Y 2(t, T ) is an Ft-measurable
random variable K, which makes the forward contract represented by the
claim D0(T, T )(Y 2

T − K) worthless on the set {t < τ}. Assume that the
claim Y 2

T − K is attainable. Since D̃0(T, T ) = 1, from equation (4.28) it
follows that the pre-default value of this claim is given by the conditional
expectation

D̃0(t, T )EbQ
(
Y 2

T −K
∣∣Ft

)
.
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Therefore,

F̂Y 2(t, T ) = EbQ
(
Y 2

T

∣∣Ft

)
= EbQ

(
FY 2(T, T )

∣∣Ft

)
= FY 2(t, T ) eαT−αt ,

as was claimed. ¤
It is worth noting that the process F̂Y 2(t, T ) is a (local) martingale under

the pricing measure Q̂, since it satisfies

dF̂Y 2(t, T ) = F̂Y 2(t, T )(σt − b(t, T )) dŴt. (4.34)

Under the present assumptions, the auxiliary process Ŷ introduced in Propo-
sition 4.2.3 and the credit-risk-adjusted forward price F̂Y 2(t, T ) are closely
related to each other. Indeed, we have F̂Y 2(t, T ) = Ŷte

αT , so that the two
processes are proportional.

4.3.8 Vulnerable Option on a Default-Free Asset

We shall now analyze a vulnerable call option with the payoff

Cd
T = 1{T<τ}(Y 2

T −K)+

for a constant strike K. Our goal is to find a replicating strategy for this
claim, which is interpreted as a survival claim (X, 0, τ) with the promised
payoff X = CT = (Y 2

T −K)+, where CT is the payoff of an equivalent non-
vulnerable option. The method presented below is quite general, however,
so that it can be applied to any survival claim with the promised payoff
X = G(Y 2

T ) for some function G : R → R satisfying mild integrability
assumptions.

We assume that Y 1
t = B(t, T ), Y 3

t = D0(t, T ) and the price of a default-
free asset Y 2 is governed by (4.30). Then

Cd
T = 1{T<τ}(Y 2

T −K)+ = 1{T<τ}(Y 2
T −KY 1

T )+.

We are going to apply Proposition 4.2.3. In the present setup, we have
Y 2,1

t = FY 2(t, T ) and Ŷt = FY 2(t, T )e−αt . Since a vulnerable option is an
example of a survival claim, in view of Lemma 4.3.2, its credit-risk-adjusted
forward price satisfies F̂Cd(t, T ) = C̃d

t (D̃0(t, T ))−1.

Proposition 4.3.2. Suppose that the volatilities σ, b and β are deterministic
functions. Then the credit-risk-adjusted forward price of a vulnerable call
option written on a default-free asset Y 2 equals

F̂Cd(t, T ) = F̂Y 2(t, T )N(d+(F̂Y 2(t, T ), t, T ))−KN(d−(F̂Y 2(t, T ), t, T ))
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where

d±(z, t, T ) =
ln z − ln K ± 1

2v2(t, T )
v(t, T )

and

v2(t, T ) =
∫ T

t

(σu − b(u, T ))2 du.

The replicating strategy φ in the spot market satisfies,for every t ∈ [0, T ] on
the event {t < τ},

φ1
t B(t, T ) = −φ2

t Y
2
t ,

φ2
t = D̃0(t, T )(B(t, T ))−1N(d+(t, T ))eαT−αt ,

φ3
t D̃

0(t, T ) = C̃d
t ,

where d+(t, T ) = d+(F̂Y 2(t, T ), t, T ).

Proof. In the first step, we establish the valuation formula. Assume for
the moment that the option is attainable. Then the pre-default value of the
option equals, for every t ∈ [0, T ],

C̃d
t = D̃0(t, T )EbQ

(
(FY 2(T, T )−K)+

∣∣Ft

)

= D̃0(t, T )EbQ
(
(F̂Y 2(T, T )−K)+

∣∣Ft

)
.

In view of (4.34), this conditional expectation can be evaluated explicitly,
yielding the stated valuation formula.

To find the replicating strategy and establish attainability of the option,
we consider the Itô differential dF̂Cd(t, T ) and we identify terms in (4.27).
It appears that

dF̂Cd(t, T ) = N(d+(t, T )) dF̂Y 2(t, T ) = N(d+(t, T ))eαT dŶt (4.35)

= N(d+(t, T ))Ỹ 3,1
t eαT−αt dỸ ∗

t ,

so that the process φ2 in (4.26) equals

φ2
t = Ỹ 3,1

t N(d+(t, T ))eαT−αt .

Moreover, φ1 is such that φ1
t B(t, T ) + φ2

t Y
2
t = 0 and φ3

t = C̃d
t (D̃0(t, T ))−1.

It is easily seen that this proves also the attainability of the option. ¤
Let us now examine the financial interpretation of Proposition 4.3.2.
First, equality (4.35) shows that it is easy to replicate the option using

vulnerable forward contracts. Indeed, we have

F̂Cd(T, T ) = X =
C̃d

0

D̃0(0, T )
+

∫ T

0

N(d+(t, T )) dF̂Y 2(t, T )
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so that it is enough to invest the premium C̃d
0 = Cd

0 in defaultable ZCBs of
maturity T and take, at any instant t prior to default, N(d+(t, T )) positions
in vulnerable forward contracts. It is apparent that if default occurs prior
to T , all outstanding vulnerable forward contracts become void.

Second, it is worth stressing that neither the arbitrage price, nor the
replicating strategy for a vulnerable option, depend explicitly on the default
intensity. This remarkable feature is due to the fact that the default risk of
the writer of the option can be completely eliminated by trading in default-
able zero-coupon bond with the same exposure to credit risk as a vulnerable
option.

In fact, since the volatility β is invariant with respect to an equivalent
change of a probability measure, and so are the volatilities σ and b(t, T ), the
formulae of Proposition 4.3.2 are valid for any choice of a forward measure
QT equivalent to P (and, of course, they are valid under P as well). The only
way in which the choice of a forward measure QT impacts these results is
through the pre-default value of a defaultable ZCB.

We conclude that we deal here with the volatility based relative pricing
a defaultable claim. This should be contrasted with more popular intensity-
based risk-neutral pricing, which is commonly used to produce an arbitrage-
free model of traded defaultable assets. Recall, however, that if traded assets
are not chosen carefully for a given class of survival claims, then both hedg-
ing strategy and pre-default price may depend explicitly on values of drift
parameters that appear in our market model and which, in turn, can be
linked to the default intensity (see Example 4.3.2).

Remark 4.3.6. Assume that the promised payoff X = G(Y 2
T ) for some

function G : R → R. The pricing formula of Proposition 4.3.2 leads to the
conjecture that the credit-risk-adjusted forward price F̂Y (t, T ) of the survival
claim Y = 1{T<τ}G(Y 2

T ) satisfies the equality

F̂Y (t, T ) = w(t, F̂Y 2(t, T )),

where the pricing function w solves the PDE

∂tw(t, z) + 1
2 (σt − b(t, T ))2z2∂zzw(t, z) = 0

with the terminal condition w(T, z) = G(z). Let us mention that the PDE
approach is studied in some detail in Section 4.4 below.

Remark 4.3.7. Proposition 4.3.2 is still valid if the driving Brownian mo-
tion is two-dimensional, rather than one-dimensional. In an extended model,
the volatilities σt, b(t, T ) and β(t, T ) take values in R2 and the respective
products are interpreted as inner products in R3. Equivalently, one may pre-
fer to deal with real-valued volatilities, but with correlated one-dimensional
Brownian motions.
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4.3.9 Abstract Vulnerable Swaption

In this section, we relax the assumption that Y 1 is the price of a default-
free bond. We now let Y 1 and Y 2 to be arbitrary default-free assets, with
dynamics

dY i
t = Y i

t

(
µi,t dt + σi,t dWt

)
, i = 1, 2. (4.36)

We still take the defaultable zero-coupon bond with zero recovery and the
price process Y 3

t = D0(t, T ) to be the third traded asset.
We maintain the assumption that the model is arbitrage-free, but we

no longer postulate that it is complete. In other words, we postulate the
existence an EMMQ1, as defined in subsection on the arbitrage-free property,
but not the uniqueness of Q1.

We take the first asset as the numéraire, so that all prices are expressed
in units of Y 1. In particular, Y 1,1

t = 1 for every t ∈ R+, and the relative
prices Y 2,1 and Y 3,1 satisfy under Q1 (cf. Proposition 4.3.1)

dY 2,1
t = Y 2,1

t (σ2,t − σ1,t) dŴt,

dY 3,1
t = Y 3,1

t−
(
(σ3,t − σ1,t) dŴt − dM̂t

)
.

It is natural to postulate that the driving Brownian noise is two-dimensional.
In such a case, we may represent the joint dynamics of relative prices Y 2,1

and Y 3,1 under Q1 as follows

dY 2,1
t = Y 2,1

t (σ2,t − σ1,t) dW 1
t ,

dY 3,1
t = Y 3,1

t−
(
(σ3,t − σ1,t) dW 2

t − dM̂t

)
,

where W 1,W 2 are one-dimensional Brownian motions under Q1, such that
d〈W 1, W 2〉t = ρt dt for a deterministic instantaneous correlation coefficient
ρ taking values in [−1, 1].

We assume from now on that the volatilities σi, i = 1, 2, 3 are determin-
istic. Let us set

αt = 〈ln Ỹ 2,1, ln Ỹ 3,1〉t =
∫ t

0

ρu(σ2,u − σ1,u)(σ3,u − σ1,u) du, (4.37)

and let Q̂ be an equivalent probability measure on (Ω,GT ) such that the
process Ŷt = Y 2,1

t e−αt is a Q̂-martingale. To clarify the financial interpre-
tation of the auxiliary process Ŷ in the present context, we introduce the
concept of credit-risk-adjusted forward price relative to the numéraire Y 1.

Definition 4.3.3. Let Y be a GT -measurable claim. An Ft-measurable
random variable K is called the time-t credit-risk-adjusted Y 1-forward price
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of Y if the pre-default value at time t of a vulnerable forward contract,
represented by the claim

1{T<τ}(Y 1
T )−1(Y −KY 1

T ) = 1{T<τ}(Y (Y 1
T )−1 −K),

equals 0.

The credit-risk-adjusted Y 1-forward price of Y is denoted by F̂Y |Y 1(t, T )
and it is also interpreted as an abstract defaultable swap rate. The following
auxiliary results are easy to establish, by arguing along the same lines as in
Lemmas 4.3.2 and 4.3.3.

Lemma 4.3.4. The credit-risk-adjusted Y 1-forward price of a survival claim
Y = (X, 0, τ) equals

F̂Y |Y 1(t, T ) = π̃t(X1, 0, τ)(D̃0(t, T ))−1,

where X1 = X(Y 1
T )−1 is the price of X in the numéraire Y 1 and π̃t(X1, 0, τ)

is the pre-default value of a survival claim with the promised payoff X1.

Proof. It suffices to note that for Y = 1{T<τ}X we have

1{T<τ}(Y (Y 1
T )−1 −K) = 1{T<τ}X1 −KD0(T, T ),

where X1 = X(Y 1
T )−1, and to consider the pre-default values. ¤

Lemma 4.3.5. The credit-risk-adjusted Y 1-forward price of the asset Y 2

equals
F̂Y 2|Y 1(t, T ) = Y 2,1

t eαT−αt = Ŷte
αT ,

where α, assumed here to be deterministic, is given by formula (4.37).

Proof. It suffices to find an Ft-measurable random variable K for which

D̃0(t, T )EbQ
(
Y 2

T (Y 1
T )−1 −K

∣∣Ft

)
= 0.

From the last equality, we obtain K = F̂Y 2|Y 1(t, T ), where

F̂Y 2|Y 1(t, T ) = EbQ
(
Y 2,1

T

∣∣Ft

)
= Y 2,1

t eαT−αt = Ŷt eαT .

We have used here the facts that Ŷt = Y 2,1
t e−αt is a Q̂-martingale and α is

deterministic. ¤
We are in a position to examine a vulnerable option to exchange default-

free assets with the payoff

Cd
T = 1{T<τ}(Y 1

T )−1(Y 2
T −KY 1

T )+ = 1{T<τ}(Y
2,1
T −K)+. (4.38)
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The last expression shows that the option can be interpreted as a vulner-
able swaption associated with the assets Y 1 and Y 2. It is useful to observe
that

Cd
T

Y 1
T

=
1{T<τ}

Y 1
T

(
Y 2

T

Y 1
T

−K

)+

,

so that, when expressed in units of the numéraire Y 1, the payoff becomes

Cd,1
T = D0,1(T, T )(Y 2,1

T −K)+,

where Cd,1
t = Cd

t (Y 1
t )−1 and D0,1(t, T ) = D0(t, T )(Y 1

t )−1 stand for the prices
relative to the numéraire Y 1.

It is clear that we deal here with a model analogous to the model ex-
amined in previous subsections in which, however, all prices are expressed
in units of the numéraire asset Y 1. This observation allows us to directly
deduce the valuation formula from Proposition 4.3.2.

Proposition 4.3.3. Let us consider the market model (4.36) with a two-
dimensional Brownian motion W and deterministic volatilities σi, i = 1, 2, 3.
The credit-risk-adjusted Y 1-forward price of a vulnerable call option, with the
terminal payoff given by (4.38), equals

F̂Cd|Y 1(t, T ) = F̂tN
(
d+(F̂t, t, T )

)−KN
(
d−(F̂t, t, T )

)
,

where we write F̂t = F̂Y 2|Y 1(t, T ) and

d±(z, t, T ) =
ln z − ln K ± 1

2v2(t, T )
v(t, T )

with

v2(t, T ) =
∫ T

t

(σ2,u − σ1,u)2 du.

The replicating strategy φ in the spot market satisfies, on the event {t < τ},

φ1
t Y

1
t = −φ2

t Y
2
t , φ2

t = D̃0(t, T )(Y 1
t )−1N(d+(t, T ))eαT−αt , φ3

t D̃
0(t, T ) = C̃d

t ,

where d+(t, T ) = d+

(
F̂Y 2|Y 1(t, T ), t, T

)
.

Proof. The proof is analogous to that of Proposition 4.3.2 and thus it is
omitted. ¤

It is worth noting that the payoff (4.38) was judiciously chosen. Suppose
instead that the option payoff is not defined by (4.38), but it is given by an
apparently simpler expression

Cd
T = 1{T<τ}(Y 2

T −KY 1
T )+.
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Since the payoff Cd
T can be represented as follows

Cd
T = Ĝ(Y 1

T , Y 2
T , Y 3

T ) = Y 3
T (Y 2

T −KY 1
T )+,

where Ĝ(y1, y2, y3) = y3(y2 − Ky1)+, we deal with an option to exchange
the second asset for K units of the first asset, but with the payoff expressed
in units of the defaultable asset Y 3. When expressed in relative prices, the
payoff becomes

Cd,1
T = 1{T<τ}(Y

2,1
T −K)+.

where 1{T<τ} = D0,1(T, T )Y 1
T . It is thus rather clear that it is not longer

possible to apply the same method as in the proof of Proposition 4.3.2.

4.3.10 Defaultable Asset with Non-Zero Recovery

In this subsection, we still postulate that Y 1 and Y 2 are default-free assets
with price processes

dY i
t = Y i

t

(
µi,t dt + σi,t dWt

)
,

where W is a one-dimensional Brownian motion, but we now assume that

dY 3
t = Y 3

t−(µ3 dt + σ3 dWt + κ3 dMt)

with κ3 > −1 and κ3 6= 0. We assume that Y 3
0 > 0, so that Y 3

t > 0 for
every t ∈ R+. We shall briefly describe the same steps as in the case of a
defaultable asset with zero recovery.

Arbitrage-Free Property

As usual, we need first to impose specific constraints on model coefficients,
so that the model is arbitrage-free. In the case of constant coefficients, an
EMM Q1 exists if there exists a pair (θ, ζ) such that, for i = 2, 3,

θt(σi − σ1) + ζtξt
κi − κ1

1 + κ1
= µ1 − µi + σ1(σi − σ1) + ξt(κi − κ1)

κ1

1 + κ1
.

To ensure the existence of a solution (θ, ζ) on the event {τ < t} under the
present assumptions, we impose the condition

σ1 − µ1 − µ2

σ1 − σ2
= σ1 − µ1 − µ3

σ1 − σ3
,

that is,
µ1(σ3 − σ2) + µ2(σ1 − σ3) + µ3(σ2 − σ1) = 0.
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Since κ1 = κ2 = 0, on the event {τ ≥ t}, we have to solve the following
equations

θt(σ2 − σ1) = µ1 − µ2 + σ1(σ2 − σ1),
θt(σ3 − σ1) + ζtγκ3 = µ1 − µ3 + σ1(σ3 − σ1).

If, in addition, (σ2 − σ1)κ3 6= 0, we obtain the unique solution

θ = σ1 − µ1 − µ2

σ1 − σ2
= σ1 − µ1 − µ3

σ1 − σ3
,

ζ = 0 > −1,

so that the martingale measure Q1 exists and is unique.
Observe that, since ζ = 0, the default intensity under Q1 coincides here

with the default intensity under the real-life probability Q. It is interesting to
note that, in a more general situation when all three assets are defaultable
with non-zero recovery, the default intensity under Q1 coincides with the
default intensity under the real-life probability Q if and only if the process Y 1

is continuous. For more details, the interested reader is referred to Bielecki
et al. [15], where the general case is studied.

4.3.11 Two Defaultable Assets with Zero Recovery

In the remaining part of Section 4.3, we assume that we have only two assets
and both are defaultable assets with zero recovery. This case was recently
examined by Carr [49], who studied an imperfect hedging of digital options.
Note that we present here results for replication, that is, perfect hedging.

We shall briefly outline the analysis of hedging of a survival claim. Under
the present assumptions, we have, for i = 1, 2,

dY i
t = Y i

t−
(
µi,t dt + σi,t dWt − dMt

)
, (4.39)

where W is a one-dimensional Brownian motion, so that

Y 1
t = 1{t<τ}Ỹ 1

t , Y 2
t = 1{t<τ}Ỹ 2

t ,

with the pre-default prices governed by the SDEs

dỸ i
t = Ỹ i

t

(
(µi,t + γt) dt + σi,t dWt

)
. (4.40)

The wealth process V associated with the self-financing trading strategy
(φ1, φ2) satisfies, for every t ∈ [0, T ],

Vt = Y 1
t

(
V 1

0 +
∫ t

0

φ2
u dỸ 2,1

u

)
,
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where Ỹ 2,1
t = Ỹ 2

t /Ỹ 1
t . Since both primary traded assets are subject to zero

recovery, it is clear that the present model is incomplete, in the sense, that
not all defaultable claims can be replicated.

We shall check in what follows that, under the assumption that the
driving Brownian motion W is one-dimensional, all survival claims satis-
fying mild technical conditions are attainable, however. In the more realistic
case of a two-dimensional driving noise, we will still be able to replicate a
fairly large class of survival claims, including options written on a defaultable
asset, as well as options to exchange one defaultable asset for another.

4.3.12 Hedging a Survival Claim

For the sake of expositional simplicity, we assume in this subsection that the
driving Brownian motion W is one-dimensional. Arguably, this is not the
right choice, since we deal here with two risky assets, so that they will be
perfectly correlated. However, this assumption is convenient for the expo-
sitional purposes, since it ensures the model completeness with respect to
survival claims. We will later relax this temporary assumption so it is fair
to say that this assumption is not crucial.

We shall now argue that in a market model with two defaultable assets
that are subject to zero recovery, the replication of a survival claim (X, 0, τ)
is in fact equivalent to replication of an associated promised payoff X using
the pre-default price processes.

Lemma 4.3.6. If a trading strategy φi, i = 1, 2, based on pre-default values
Ỹ i, i = 1, 2, is a replicating strategy for an FT -measurable claim X, that is,
if φ is such that the process

Ṽt(φ) = φ1
t Ỹ

1
t + φ2

t Ỹ
2
t

satisfies, for every t ∈ [0, T ],

dṼt(φ) = φ1
t dỸ 1

t + φ2
t dỸ 2

t ,

ṼT (φ) = X,

then for the process Vt(φ) = φ1
t Y

1
t + φ2

t Y
2
t we have, for every t ∈ [0, T ],

dVt(φ) = φ1
t dY 1

t + φ2
t dY 2

t ,

VT (φ) = 1{T<τ}X.

This means that the strategy φ replicates the survival claim (X, 0, τ).

Proof. It is clear that Vt(φ) = 1{t<τ}Vt(φ) = 1{t<τ}Ṽt(φ). From the equality

φ1
t dY 1

t + φ2
t dY 2

t = −(φ1
t Ỹ

1
t + φ2

t Ỹ
2
t ) dHt + (1−Ht−)(φ1

t dỸ 1
t + φ2

t dỸ 2
t ),
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it follows that

φ1
t dY 1

t + φ2
t dY 2

t = −Ṽt(φ) dHt + (1−Ht−)dṼt(φ),

that is,
φ1

t dY 1
t + φ2

t dY 2
t = d(1{t<τ}Ṽt(φ)) = dVt(φ).

It is also easily seen that the equality VT (φ) = X1{T<τ} holds. ¤
Combining the last result with Lemma 4.2.1, we see that a strategy

(φ1, φ2) replicates a survival claim (X, 0, τ) whenever we have

Ỹ 1
T

(
x +

∫ T

0

φ2
t dỸ 2,1

t

)
= X

for some constant x and some F-predictable process φ2, where, in view of
(4.40),

dỸ 2,1
t = Ỹ 2,1

t

((
µ2,t − µ1,t + σ1,t(σ1,t − σ2,t)

)
dt + (σ2,t − σ1,t) dWt

)
.

We introduce a probability measure Q̃, equivalent to P on (Ω,GT ), and such
that Ỹ 2,1 is an F-martingale under Q̃. It is easily seen that the Radon-
Nikodým density η satisfies, for t ∈ [0, T ],

dQ̃ | Gt = ηt dP | Gt = Et

(∫ ·

0

θs dWs

)
dP | Gt

with

θt =
µ2,t − µ1,t + σ1,t(σ1,t − σ2,t)

σ1,t − σ2,t
,

provided, of course, that the process θ is well defined and satisfies suitable
integrability conditions. We shall show that a survival claim is attainable if
the random variable X(Ỹ 1

T )−1 is Q̃-integrable. Indeed, the pre-default value
Ṽt at time t of a survival claim equals

Ṽt = Ỹ 1
t EeQ

(
X(Ỹ 1

T )−1 | Ft

)

and, from the predictable representation theorem, we deduce that there exists
a process φ2 such that

EeQ
(
X(Ỹ 1

T )−1 | Ft

)
= EeQ

(
X(Ỹ 1

T )−1
)

+
∫ t

0

φ2
u dỸ 2,1

u .

The component φ1 of the self-financing trading strategy φ = (φ1, φ2) is then
chosen in such a way that, for every t ∈ [0, T ],

φ1
t Ỹ

1
t + φ2

t Ỹ
2
t = Ṽt.

To conclude, by focusing on pre-default values, we have shown that the repli-
cation of survival claims can be reduced here to classic results on replication
of (non-defaultable) contingent claims in a default-free market model.
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4.3.13 Option on a Defaultable Asset

In order to get a complete model with respect to survival claims, we pos-
tulated in the preceding subsection that the driving Brownian motion in
dynamics (4.39) is one-dimensional. This assumption is questionable, since
it clearly implies the perfect correlation between risky assets. However, we
may relax this restriction and work instead with the two correlated one-
dimensional Brownian motions. The model will no longer be complete, but
options on a defaultable asset will still be attainable.

The payoff of a (non-vulnerable) call option written on the defaultable
asset Y 2 equals

CT = (Y 2
T −K)+ = 1{T<τ}(Ỹ 2

T −K)+,

so that it is natural to interpret this contract as a survival claim with the
promised payoff X = (Ỹ 2

T −K)+.
To deal with this option in an efficient way, we consider a model in which

dY i
t = Y i

t−
(
µi,t dt + σi,t dW i

t − dMt

)
,

where W 1 and W 2 are two one-dimensional correlated Brownian motions
with the instantaneous correlation coefficient ρt. More specifically, we as-
sume that Y 1

t = D0(t, T ) = 1{t<τ}D̃0(t, T ) represents a defaultable ZCB
with zero recovery, and Y 2

t = 1{t<τ}Ỹ 2
t is a generic defaultable asset with

zero recovery. Within the present setup, the payoff can also be represented
as follows

CT = (Y 2
T −KY 1

T )+ = g(Y 1
T , Y 2

T ),

where g(y1, y2) = (y2 −Ky1)+, and thus it can also be seen as an option to
exchange the second asset for K units of the first asset.

The requirement that the process Ỹ 2,1
t = Ỹ 2

t (Ỹ 1
t )−1 is an F-martingale

under Q̃ implies that

dỸ 2,1
t = Ỹ 2,1

t

((
σ2,tρt − σ1,t

)
dW̃ 1

t + σ2,t

√
1− ρ2

t dW̃ 2
t

)
,

where W̃ = (W̃ 1, W̃ 2) follows a two-dimensional Brownian motion under Q̃.
Since Ỹ 1

T = 1, a replication of the option reduces to finding a constant x and
an F-predictable process φ2 satisfying

x +
∫ T

0

φ2
t dỸ 2,1

t = (Ỹ 2
T −K)+.

To obtain closed-form expressions for the option price and replicating
strategy, we postulate that the volatilities σ1, σ2 and the correlation coeffi-
cient ρ are deterministic. Let

F̂Y 2(t, T ) = Ỹ 2
t (D̃0(t, T ))−1
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and
F̂C(t, T ) = C̃t(D̃0(t, T ))−1

stand for the credit-risk-adjusted forward price of the second asset and of
the option, respectively. The proof of the following valuation result is fairly
standard and thus it is omitted.

Proposition 4.3.4. Assume that σ1, σ2 and ρ are deterministic. Let Y 1

be a defaultable zero-coupon bond with zero recovery. Then the credit-risk-
adjusted forward price of the option written on a defaultable asset Y 2 equals

F̂C(t, T ) = F̂Y 2(t, T )N
(
d+(F̂Y 2(t, T ), t, T )

)−KN
(
d−(F̂Y 2(t, T ), t, T )

)
.

Equivalently, the pre-default price of the option equals

C̃t = Ỹ 2
t N

(
d+(F̂Y 2(t, T ), t, T )

)−KD̃0(t, T )N
(
d−(F̂Y 2(t, T ), t, T )

)
,

where

d±(z, t, T ) =
ln z − ln K ± 1

2v2(t, T )
v(t, T )

and

v2(t, T ) =
∫ T

t

(σ2
1,u + σ2

2,u − 2ρuσ1,uσ2,u) du.

Moreover the replicating strategy φ in the spot market satisfies, for every
t ∈ [0, T ] on the event {t < τ},

φ1
t = −KN

(
d−(F̂Y 2(t, T ), t, T )

)
, φ2

t = N
(
d+(F̂Y 2(t, T ), t, T )

)
.

4.4 PDE Approach

In the remaining part of this chapter, in which we follow Bielecki et al. [15]
(see also Vellekoop et al. [169] and Rutkowski and Yousiph [157]), we take
a different perspective. We assume that trading occurs on the time interval
[0, T ] and we consider a contingent claim settling at time T of the form

Y = G(Y 1
T , Y 2

T , Y 3
T , HT ) = 1{T≥τ}g1(Y 1

T , Y 2
T , Y 3

T ) + 1{T<τ}g0(Y 1
T , Y 2

T , Y 3
T ).

We do not need to assume here that the coefficients in the dynamics
of primary assets are F-predictable. Since our goal is to develop the PDE
approach, it will be essential to postulate a Markovian character of a model.
For the sake of simplicity, we use the notation with constant coefficients, so
that we write, for i = 1, 2, 3,

dY i
t = Y i

t−
(
µi dt + σi dWt + κi dMt

)
.
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The assumption of constant coefficients is rarely, if ever, satisfied in prac-
tically relevant models of credit risk. It is thus important to stress that it is
postulated here mainly for the sake of notational convenience and the results
established in this section cover also the non-homogeneous Markov case in
which µi,t = µi(t, Y 1

t−, Y 2
t−, Y 3

t−, Ht−), σi,t = σi(t, Y 1
t−, Y 2

t−, Y 3
t−,Ht−), etc.

4.4.1 Defaultable Asset with Zero Recovery

We first assume that Y 1 and Y 2 are default-free, so that κ1 = κ2 = 0, and
the third asset is subject to total default, that is, κ3 = −1 and thus

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt − dMt

)
.

We work throughout under the assumptions of Proposition 4.3.1. This means
that any Q1-integrable contingent claim Y = G(Y 1

T , Y 2
T , Y 3

T ; HT ) is attainable
and its arbitrage price equals, for every t ∈ [0, T ],

πt(Y ) = Y 1
t EQ1(Y (Y 1

T )−1 | Gt). (4.41)

The following auxiliary result is thus rather obvious.

Lemma 4.4.1. The process (Y 1, Y 2, Y 3,H) has the Markov property with
respect to the filtration G under the martingale measure Q1. Consequently,
for any attainable claim Y = G(Y 1

T , Y 2
T , Y 3

T ; HT ) there exists a pricing func-
tion v : [0, T ]× R3 × {0, 1} → R such that πt(Y ) = v(t, Y 1

t , Y 2
t , Y 3

t ; Ht).

We introduce the pre-default pricing function v(· ; 0) = v(t, y1, y2, y3; 0)
and the post-default pricing function v(· ; 1) = v(t, y1, y2, y3; 1).

In fact, since we manifestly have that Y 3
t = 0 if Ht = 1, it suffices to

study the post-default function v(t, y1, y2; 1) = v(t, y1, y2, 0; 1). We denote

αi = µi − σi
µ1 − µ2

σ1 − σ2
, b = (µ3 − µ1)(σ1 − σ2)− (µ1 − µ3)(σ1 − σ3).

Let γ > 0 be the default intensity under P and let ζ > −1 be given by (4.24).

Proposition 4.4.1. Assume that the functions v(· ; 0) and v(· ; 1) belong to
the class C1,2([0, T ]× R3

+,R). Then v(t, y1, y2, y3; 0) satisfies the PDE

∂tv(· ; 0) +
2∑

i=1

αiyi∂iv(· ; 0) + (α3 + ζ)y3∂3v(· ; 0) +
1
2

3∑

i,j=1

σiσjyiyj∂ijv(· ; 0)

− α1v(· ; 0) +
(
γ − b

σ1 − σ2

)[
v(t, y1, y2; 1)− v(t, y1, y2, y3; 0)

]
= 0
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with the terminal condition v(T, y1, y2, y3; 0) = G(y1, y2, y3; 0). Furthermore,
the function v(t, y1, y2; 1) satisfies the PDE

∂tv(· ; 1) +
2∑

i=1

αiyi∂iv(· ; 1) +
1
2

2∑

i,j=1

σiσjyiyj∂ijv(· ; 1)− α1v(· ; 1) = 0

with the terminal condition v(T, y1, y2; 1) = G(y1, y2, 0; 1).

Proof. For simplicity, we write Ct = πt(Y ). Let us define

∆v(t, y1, y2, y3) = v(t, y1, y2; 1)− v(t, y1, y2, y3; 0).

Then the jump ∆Ct = Ct − Ct− can also be represented as follows

1{τ=t}
(
v(t, Y 1

t , Y 2
t ; 1)− v(t, Y 1

t , Y 2
t , Y 3

t−; 0)
)

= 1{τ=t}∆v(t, Y 1
t , Y 2

t , Y 3
t−).

We write ∂i to denote the partial derivative with respect to the variable
yi and we typically omit the variables (t, Y 1

t−, Y 2
t−, Y 3

t−,Ht−) in expressions
∂tv, ∂iv, ∆v, etc. We shall also make use of the fact that for any Borel
measurable function g we have

∫ t

0

g(u, Y 2
u , Y 3

u−) du =
∫ t

0

g(u, Y 2
u , Y 3

u ) du

since Y 3
u and Y 3

u− differ only for at most one value of u (for each ω). Let
ξt = 1{t<τ}γ. An application of Itô’s formula yields

dCt = ∂tv dt +
3∑

i=1

∂iv dY i
t +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv dt

+
(
∆v + Y 3

t−∂3v
)

dHt

= ∂tv dt +
3∑

i=1

∂iv dY i
t +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv dt

+
(
∆v + Y 3

t−∂3v
)(

dMt + ξt dt
)
,
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and this in turn implies that

dCt = ∂tv dt +
3∑

i=1

Y i
t−∂iv

(
µi dt + σi dWt

)
+

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv dt

+ ∆v dMt +
(
∆v + Y 3

t−∂3v
)
ξt dt

=
{

∂tv +
3∑

i=1

µiY
i
t−∂iv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv
}

dt

(
∆v + Y 3

t−∂3v
)
ξt dt +

( 3∑

i=1

σiY
i
t−∂iv

)
dWt + ∆v dMt.

The Itô integration by parts formula and (4.17) yield for Ĉt = Ct(Y 1
t )−1

dĈt = Ĉt−
(
(−µ1 + σ2

1) dt− σ1 dWt

)
+ (Y 1

t−)−1
(
∂tv +

3∑

i=1

µiY
i
t−∂iv

)
dt

+ (Y 1
t−)−1

{
1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt

}
dt

+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−∂iv dWt + (Y 1

t−)−1∆v dMt

− (Y 1
t−)−1σ1

3∑

i=1

σiY
i
t−∂iv dt.

Using (4.22)–(4.23), we obtain

dĈt = Ĉt−
((− µ1 + σ2

1 − σ1θ
)
dt− σ1 dŴt

)
+ (Y 1

t−)−1
3∑

i=1

µiY
i
t−∂iv dt

+ (Y 1
t−)−1

{
∂tv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt

}
dt

+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−∂iv dŴt + (Y 1

t−)−1
3∑

i=1

σiY
i
t−θ∂iv dt

+ (Y 1
t−)−1∆v dM̂t + (Y 1

t−)−1ζξt∆v dt− (Y 1
t−)−1σ1

3∑

i=1

σiY i
t−∂iv dt.
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Hence the process Ĉ admits the following decomposition under Q1

dĈt = Ĉt−
(− µ1 + σ2

1 − σ1θ
)
dt + (Y 1

t−)−1
3∑

i=1

µiY
i
t−∂iv dt

+ (Y 1
t−)−1

{
∂tv +

1
2

3∑

i,j=1

σiσjY
i
t−Y j

t−∂ijv +
(
∆v + Y 3

t−∂3v
)
ξt

}
dt

+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−θ∂iv dt + (Y 1

t−)−1ζξt∆v dt

− (Y 1
t−)−1σ1

3∑

i=1

σiY
i
t−∂iv dt + a Q1-martingale.

From (4.41), it follows that the process Ĉ is a martingale under Q1. There-
fore, the continuous finite variation part in the above decomposition neces-
sarily vanishes, and thus we get

0 = Ct−(Y 1
t−)−1

(− µ1 + σ2
1 − σ1θ

)
+ (Y 1

t−)−1
3∑

i=1

µiY
i
t ∂iv

+ (Y 1
t−)−1

{
∂tv +

1
2

3∑

i,j=1

σiσjY
i
t Y j

t ∂ijv +
(
∆v + Y 3

t ∂3v
)
ξt

}

+ (Y 1
t−)−1

3∑

i=1

σiY
i
t−θ∂iv + (Y 1

t−)−1ζξt∆v − (Y 1
t−)−1σ1

3∑

i=1

σiY
i
t−∂iv.

Consequently, we have that

0 = Ct−
(− µ1 + σ2

1 − σ1θ
)

+ ∂tv +
3∑

i=1

µiY
i
t ∂iv +

1
2

3∑

i,j=1

σiσjY
i
t Y j

t ∂ijv +
(
∆v + Y 3

t ∂3v
)
ξt

+
3∑

i=1

σiY
i
t θ∂iv + ζξt∆v − σ1

3∑

i=1

σiY
i
t ∂iv.

Finally, we conclude that

∂tv +
2∑

i=1

αiY
i
t ∂iv + (α3 + ξt) Y 3

t ∂3v +
1
2

3∑

i,j=1

σiσjY
i
t Y j

t ∂ijv

− α1Ct− + (1 + ζ)ξt∆v = 0.
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Recall that ξt = 1{t<τ}γ. It is thus clear that the functions v(·, 0) and
v(·; 1) satisfy the PDEs given in the statement of the proposition. ¤

It should be stressed that in what follows we only examine the form of a
replicating strategy prior to default time.

Proposition 4.4.2. The replicating strategy φ for the claim Y is given by
formulae

φ3
t Y

3
t− = −∆v(t, Y 1

t , Y 2
t , Y 3

t−) = v(t, Y 1
t , Y 2

t , Y 3
t−; 0)− v(t, Y 1

t , Y 2
t ; 1),

φ2
t Y

2
t (σ2 − σ1) = −(σ1 − σ3)∆v − σ1v +

3∑

i=1

Y i
t−σi∂iv,

φ1
t Y

1
t = v − φ2

t Y
2
t − φ3

t Y
3
t .

Proof. Let us sketch the proof. As a by-product of our computations, we
obtain

dĈt = −(Y 1
t )−1σ1v dŴt + (Y 1

t )−1
3∑

i=1

σiY
i
t−∂iv dŴt + (Y 1

t )−1∆v dM̂t.

The self-financing strategy that replicates Y is determined by two compo-
nents φ2, φ3 and the following relationship

dĈt = φ2
t dY 2,1

t + φ3
t dY 3,1

t

= φ2
t Y

2,1
t (σ2 − σ1) dŴt + φ3

t Y
3,1
t−

(
(σ3 − σ1) dŴt − dM̂t

)
.

By identification, we thus obtain φ3
t Y

3,1
t− = (Y 1

t )−1∆v and

φ2
t Y

2
t (σ2 − σ1)− (σ3 − σ1)∆v = −σ1Ct +

3∑

i=1

Y i
t−σi∂iv.

This yields the required formulae. ¤

Corollary 4.4.1. In the case of a defaultable claim with zero recovery, the
hedging strategy satisfies the balance condition φ1

t Y
1
t + φ2

t Y
2
t = 0 for every

t ∈ [0, T ].

Proof. A zero recovery corresponds to the equality G(y1, y2, y3, 1) = 0. We
now have v(t, y1, y2; 1) = 0 and thus necessarily

φ3
t Y

3
t− = v(t, Y 1

t , Y 2
t , Y 3

t−; 0)

for every t ∈ [0, T ]. Hence the equality φ1
t Y

1
t + φ2

t Y
2
t = 0 holds for every

t ∈ [0, T ]. The last equality is the balance condition for Z = 0; it ensures
that the wealth of a replicating portfolio jumps to zero at default time. ¤
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Hedging with the Savings Account

Let us now study the particular case where Y 1 is the savings account, i.e.,

dY 1
t = rY 1

t dt, Y 1
0 = 1.

Of course, this corresponds to µ1 = r and σ1 = 0. Let r̂ = r + γ̂, where γ̂,
which equals

γ̂ = γ(1 + ζ) = γ + µ3 − r +
σ3

σ2
(r − µ2),

represents the default intensity under the martingale measure Q1. The quan-
tity r̂ defined above has a rather natural interpretation as the risk-neutral
credit-risk adjusted short-term interest rate. Straightforward calculations
yield the following corollary to Proposition 4.4.1.

Corollary 4.4.2. Assume that σ2 6= 0 and

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
µ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt − dMt

)
.

Then the function v(· ; 0) satisfies

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + r̂y3∂3v(t, y2, y3; 0)− r̂v(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0) + γ̂v(t, y2; 1) = 0

with v(T, y2, y3; 0) = G(y2, y3; 0) and the function v(· ; 1) satisfies

∂tv(t, y2; 1) + ry2∂2v(t, y2; 1) + 1
2σ2

2y2
2∂22v(t, y2; 1)− rv(t, y2; 1) = 0

with v(T, y2; 1) = G(y2, 0; 1).

In the special case of a survival claim, the function v(· ; 1) vanishes iden-
tically since the value of the claim after default is obviously zero, and thus
the following result can be established.

Corollary 4.4.3. The pre-default pricing function v(· ; 0) of a survival claim
Y = 1{T<τ}G(Y 2

T , Y 3
T ) is a solution of the following PDE

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + r̂y3∂3v(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0)− r̂v(t, y2, y3; 0) = 0

with the terminal condition v(T, y2, y3; 0) = G(y2, y3).
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The replicating strategy φ satisfies, on the event {t < τ},

φ2
t =

1
σ2Y 2

t

3∑

i=2

σiY
i
t−∂iv(t, Y 2

t , Y 3
t−; 0) + σ3v(t, Y 2

t , Y 3
t−; 0),

φ3
t = (Y 3

t−)−1v(t, Y 2
t , Y 3

t−; 0),
φ1

t = e−rt
(
Ct − φ2

t Y
2
t + φ3

t Y
3
t

)
,

where C is the price of Y , that is, Ct = e−r(T−t) EQ1(Y | Gt).

Example 4.4.1. Consider a survival claim Y = 1{T<τ}g(Y 2
T ), that is, a

vulnerable claim with a default-free underlying asset. Its pre-default pricing
function v(· ; 0) does not depend on y3 and satisfies the following PDE

∂tv(t, y2; 0) + ry2∂2v(t, y2; 0) + 1
2σ2

2y2
2∂22v(t, y2; 0)− r̂v(t, y2; 0) = 0

with the terminal condition v(T, y2; 0) = g(y2). One can check that the
solution to this PDE can be represented as follows

v(t, y2) = e−(br−r)(T−t) vr,σ2
g (t, y2) = e−bγ(T−t) vr,σ2

g (t, y2),

where the function vr,σ2
g (t, y2) is the price of the default-free claim g(Y 2

T )
when the dynamics of price processes (Y 1, Y 2) are given by the Black-Scholes
model with the interest rate r and the volatility parameter σ2.

4.4.2 Defaultable Asset with Non-Zero Recovery

We now assume that the price of a defaultable asset is governed by the SDE

dY 3
t = Y 3

t−(µ3 dt + σ3 dWt + κ3 dMt)

with κ3 > −1 and κ3 6= 0. We assume that Y 3
0 > 0, so that the inequality

Y 3
t > 0 is valid for every t ∈ R+. We shall briefly describe the same steps as

in the case of a defaultable asset with zero recovery.

Arbitrage-Free Property

Assume that the prices Y 1, Y 2, Y 3 of traded assets are governed by the fol-
lowing equations

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
µ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt + κ3 dMt

)
,

where we postulate that σ2 6= 0 and σ3 6= 0.
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The existence of an EMM for this model was examined in Section 4.3.10.
Recall that in order to ensure the existence of an EMM, on the event {t > τ},
we need to impose the following condition

r − µ2

σ2
=

r − µ3

σ3
,

that is,
r(σ3 − σ2)− µ2σ3 + µ3σ2 = 0.

Furthermore, on the event {t ≤ τ}, we obtain the following equations

θtσ2 = r − µ2,

θtσ3 + ζtγκ3 = r − µ3 + σ1.

If, in addition, (σ2 − σ1)κ3 6= 0, we obtain the unique solution

θ =
r − µ2

σ2
=

r − µ3

σ3
,

ζ = 0 > −1,

so that the martingale measure Q1 for Y 2,1 and Y 3,1 exists and is unique.

Pricing PDE and Replicating Strategy

We are in a position to derive the pricing PDEs. For the sake of simplicity,
we assume that Y 1 is the savings account, so that the foregoing result is
a counterpart of Corollary 4.4.2. For the proof of Proposition 4.4.3, the
interested reader is referred to Bielecki et al. [15].

Proposition 4.4.3. Let σ2 6= 0 and let the price processes Y 1, Y 2, Y 3 satisfy

dY 1
t = rY 1

t dt,

dY 2
t = Y 2

t

(
µ2 dt + σ2 dWt

)
,

dY 3
t = Y 3

t−
(
µ3 dt + σ3 dWt + κ3 dMt

)
.

Assume, in addition, that σ2(r − µ3) = σ3(r − µ2) and κ3 6= 0, κ3 > −1.
Then the price of a contingent claim Y = G(Y 2

T , Y 3
T ,HT ) can be represented

as πt(Y ) = v(t, Y 2
t , Y 3

t ,Ht), where the pricing functions v(· ; 0) and v(· ; 1)
satisfy the following PDEs

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + y3 (r − κ3γ) ∂3v(t, y2, y3; 0)

− rv(t, y2, y3; 0) +
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0)

+ γ
(
v(t, y2, y3(1 + κ3); 1)− v(t, y2, y3; 0)

)
= 0
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and

∂tv(t, y2, y3; 1) + ry2∂2v(t, y2, y3; 1) + ry3∂3v(t, y2, y3; 1)− rv(t, y2, y3; 1)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 1) = 0

subject to the terminal conditions

v(T, y2, y3; 0) = G(y2, y3; 0), v(T, y2, y3; 1) = G(y2, y3; 1).

The replicating strategy φ satisfies, on the event {t < τ},

φ2
t =

1
σ2Y 2

t

3∑

i=2

σiyi∂iv(t, Y 2
t , Y 3

t−, Ht−)

− σ3

σ2κ3Y 2
t

(
v(t, Y 2

t , Y 3
t−(1 + κ3); 1)− v(t, Y 2

t , Y 3
t−; 0)

)
,

φ3
t =

1
κ3Y 3

t−

(
v(t, Y 2

t , Y 3
t−(1 + κ3); 1)− v(t, Y 2

t , Y 3
t−; 0)

)
,

φ1
t = e−rt

(
Ct − φ2

t Y
2
t + φ3

t Y
3
t

)
,

where C is the price of Y , that is, Ct = e−r(T−t) EQ1(Y | Gt) for t ∈ [0, T ].

Hedging of a Survival Claim

We shall now illustrate Proposition 4.4.3 by means of examples. As a first
example, we will examine hedging of a survival claim Y of the form

Y = G(Y 2
T , Y 3

T ,HT ) = 1{T<τ}g(Y 3
T ).

Then the post-default pricing function v(· ; 1) vanishes identically and the
pre-default pricing function v(· ; 0) solves the PDE

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + y3 (r − κ3γ) ∂3v(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0)− (r + γ)v(t, y2, y3; 0) = 0

with the terminal condition v(T, y2, y3; 0) = g(y3). Let us denote α = r−κ3γ
and β = γ(1 + κ3). It is not difficult to check that the function

v(t, y2, y3; 0) = eβ(T−t)vα,σ3
g (t, y3)

is a solution of the above equation, where the function w(t, y3) = vα,σ3
g (t, y3)

is the solution of the following version of the Black-Scholes PDE

∂tw + αy3∂y3w + 1
2σ2

3y2
3∂y3y3w − αw = 0
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with the terminal condition vα,σ3
g (T, y3) = g(y3), that is, the price of the

default-free claim g(Y 3
T ) when the dynamics of (Y 1, Y 3) are given by the

Black-Scholes model with the interest rate r = α and the volatility σ3.
Let Ct be the current value of the contingent claim Y , so that

Ct = 1{t<τ}eβ(T−t)vα,σ3
g (t, Y 3

t ).

The hedging strategy for the survival claim Y satisfies, on the event {t < τ},

φ3
t Y

3
t = − 1

κ3
e−β(T−t)vα,σ3

g (t, Y 3
t ) = −Ct

κ3
,

φ2
t Y

2
t =

σ3

σ2

(
Y 3

t e−β(T−t)∂yvα,σ3
g (t, Y 3

t )− φ3
t Y

3
t

)
,

φ1
t Y

1
t = Ct − φ2

t Y
2
t + φ3

t Y
3
t .

Hedging of a Recovery Payoff

As another illustration of Proposition 4.4.3, we shall now consider the claim
G(Y 2

T , Y 3
T ,HT ) = 1{T≥τ}g(Y 2

T ), that is, we assume that recovery is paid at
maturity and equals g(Y 2

T ). We argue that the post-default pricing function
v(· ; 1) is independent of y3. Indeed, the post-default pricing PDE

∂tv(t, y2, y3; 1)+ry∂2v(t, y2, y3; 1)+ 1
2σ2

2y2∂22v(t, y2, y3; 1)−rv(t, y2, y3; 1) = 0

with the terminal condition v(T, y2, y3; 1) = g(y2), admits a unique solution
vr,σ2

g (t, y2), which is the price of g(Y 2
T ) in the Black-Scholes model with the

interest rate r and the volatility σ2. Prior to default, the price of the claim
can be found by solving the following PDE

∂tv(t, y2, y3; 0) + ry2∂2v(t, y2, y3; 0) + y3(r − κ3γ)∂3v(t, y2, y3; 0)

+
1
2

3∑

i,j=2

σiσjyiyj∂ijv(t, y2, y3; 0)− (r + γ)v(t, y2, y3; 0) = −γvr,σ2
g (t, y2)

with the terminal condition v(T, y2, y3; 0) = 0. It is not difficult to check
that

v(t, y2, y3; 0) = (1− e−γ(T−t))vr,σ2
g (t, y2).

It could be instructive to compare this result with Example 4.4.1.

4.4.3 Two Defaultable Assets with Zero Recovery

We shall now assume that only two primary assets are traded, and they are
defaultable assets with zero recovery. We postulate that, for i = 1, 2,

dY i
t = Y i

t−
(
µi dt + σi dWt − dMt

)
.
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This means that Y i
t = 1{t<τ}Ỹ i

t , i = 1, 2, with the pre-default prices
governed by the SDEs, for i = 1, 2,

dỸ i
t = Ỹ i

t

(
(µi + γ) dt + σi dWt

)
.

In the case where the promised payoff X of a survival claim Y = X1{T<τ}
is path-independent, so that

Y = X1{T<τ} = G(Y 1
T , Y 2

T )1{T<τ} = G(Ỹ 1
T , Ỹ 2

T )1{T<τ}

for some function G, it is possible to use the PDE approach in order to value
and replicate a survival claim prior to default. Under the present assump-
tions, we need not to examine the balance condition, since, if default event
occurs prior to the maturity date of the claim, the wealth of the portfolio
will fall to zero, as it should in view of the equality Z = 0.

From the martingale approach presented in Section 4.3.11, we already
know that hedging of a survival claim Y = X1{T<τ} is formally equivalent in
the present framework to replication of the promised payoff X = G(Ỹ 1

T , Ỹ 2
T )

using the pre-default values Ỹ 1 and Ỹ 2 of traded assets.
We shall find the pre-default pricing function v(t, y1, y2; 0), which is re-

quired to satisfy the terminal condition

v(T, y1, y2; 0) = G(y1, y2),

as well as the replicating strategy (φ1, φ2) for a survival claim. The repli-
cating strategy φ is such that for the pre-default value C̃ of the considered
claim Y we have

C̃t := v(t, Ỹ 1
t , Ỹ 2

t ; 0) = φ1
t Ỹ

1
t + φ2

t Ỹ
2
t ,

and
dC̃t = φ1

t dỸ 1
t + φ2

t dỸ 2
t . (4.42)

The following result furnishes the pre-default pricing PDE and an explicit
formulae for the replication strategy for a survival claim.

Proposition 4.4.4. Assume that σ1 6= σ2. Then the pre-default pricing
function v = v(t, y1, y2; 0) satisfies the PDE

∂tv + y1

(
µ1 + γ − σ1

µ2 − µ1

σ2 − σ1

)
∂1v + y2

(
µ2 + γ − σ2

µ2 − µ1

σ2 − σ1

)
∂2v

+
1
2

(
y2
1σ2

1∂11v + y2
2σ2

2∂22v + 2y1y2σ1σ2∂12v
)

=
(
µ1 + γ − σ1

µ2 − µ1

σ2 − σ1

)
v

with the terminal condition v(T, y1, y2) = G(y1, y2). The replicating strategy
satisfies

φ1
t Ỹ

1
t + φ2

t Ỹ
2
t = v(t, Ỹ 1

t , Ỹ 2
t )
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and

φ2
t Ỹ

2
t =

Ỹ 1
t σ1∂1v(t, Ỹ 1

t , Ỹ 2
t ) + Ỹ 2

t σ2∂2v(t, Ỹ 1
t , Ỹ 2

t )− σ1v(t, Ỹ 1
t , Ỹ 2

t )
σ2 − σ1

.

Proof. Let us sketch the derivation of the pricing PDE and the replicating
strategy. By applying the Itô formula to v(t, Ỹ 1

t , Ỹ 2
t ) and comparing the

diffusion terms in (4.42) and in the Itô differential dv(t, Ỹ 1
t , Ỹ 2

t ), we find
that

y1σ1∂1v + y2σ2∂2v = φ1y1σ1 + φ2y2σ2, (4.43)

where φi = φi(t, y1, y2), i = 1, 2 is a replicating strategy. Since we have

φ1y1 = v(t, y1, y2)− φ2y2, (4.44)

we deduce from (4.43) that

y1σ1∂1v + y2σ2∂2v = vσ1 + φ2y2(σ2 − σ1),

and thus the function φ2 equals

φ2y2 =
y1σ1∂1v + y2σ2∂2v − vσ1

σ2 − σ1
. (4.45)

Furthermore, by identification of drift terms in (4.43), we obtain

∂tv + y1(µ1 + γ)∂1v + y2(µ2 + γ)∂2v

+
1
2

(
y2
1σ2

1∂11v + y2
2σ2

2∂22v + 2y1y2σ1σ2∂12v
)

= φ1y1(µ1 + γ) + φ2y2(µ2 + γ).

Upon elimination of φ1 and φ2, we arrive at the stated PDE. Formulae (4.44)
and (4.45) yield the claimed equalities for the replicating strategy. ¤

Recall that the historically observed drift terms in dynamics of traded
assets are µ̂i = µi + γ, rather than µi. The pre-default pricing PDE derived
in Proposition 4.4.4 can thus be represented as follows

∂tv + y1

(
µ̂1 − σ1

µ̂2 − µ̂1

σ2 − σ1

)
∂1v + y2

(
µ̂2 − σ2

µ̂2 − µ̂1

σ2 − σ1

)
∂2v

+
1
2

(
y2
1σ2

1∂11v + y2
2σ2

2∂22v + 2y1y2σ1σ2∂12v
)

= v

(
µ̂1 − σ1

µ̂2 − µ̂1

σ2 − σ1

)
.

It is worth noting that the pre-default pricing function v does not depend
on the default intensity.
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In order to further simplify the pre-default pricing PDE for a survival
claim, we will make an additional assumption about the corresponding payoff
function G. Specifically, we suppose, in addition, that the payoff function G
of our claim is such that

G(y1, y2) = y1g(y2/y1)

for a certain function g : R+ → R or, equivalently, that the equality

G(y1, y2) = y2h(y1/y2)

holds for some function h : R+ → R. In that case, it is enough to focus on
the relative pre-default prices defined as follows

Ĉt = C̃t(Ỹ 1
t )−1, Ỹ 2,1

t = Ỹ 2
t (Ỹ 1

t )−1.

The corresponding pre-default pricing function v̂(t, z), which is defined as
the function such that the equality Ĉt = v̂(t, Ỹ 2,1

t ) holds for every t ∈ [0, T ],
satisfies the following PDE

∂tv̂ +
1
2
(σ2 − σ1)2z2∂zz v̂ = 0

with the terminal condition v̂(T, z) = g(z).
We conclude that the pre-default price C̃t = Ỹ 1

t v̂(t, Ỹ 2,1
t ) does not depend

directly on the drift coefficients µ̂1 and µ̂2. It is thus natural to conjecture
that one should always be able to derive an expression for the arbitrage price
of a defaultable claim in terms of market observables only, that is, the prices
of the underlying assets, their volatilities and the correlation coefficient. Put
another way, it natural to expect that neither the default intensity nor the
drift coefficients of the underlying assets will appear explicitly as parameters
in the formula for the pre-default pricing function.

Let us conclude this chapter by mentioning that we decided to present
here only some special cases of semimartingale market models and pricing
partial differential equations that were analyzed in papers by Bielecki et al.
[15] and Rutkowski and Yousiph [157]. It is thus worth stressing that an
extension of the PDE approach presented in this chapter to the case of any
finite number of primary traded assets and several default times presents no
essential technical difficulties. Note, however, that the study of the com-
pleteness of such a general semimartingale model with several default times
requires a detailed specification of properties of traded assets and their de-
pendencies and a thorough examination of the existence and uniqueness of
an equivalent martingale measure.



Chapter 5

Modeling Dependent Defaults

The issue of modeling dependent defaults is one of the most important and
challenging research areas in credit risk modeling and thus it attracted at-
tention of numerous researchers in recent years. In this chapter, we describe
the case of conditionally independent default times, the industry standard
copula-based approach, as well as the Jarrow and Yu [107] approach to the
modeling of contagious defaults through dependent stochastic intensities.
We conclude by presenting one of many alternative approaches that were
recently developed for the purpose of modeling joint credit ratings migra-
tions for several firms. Let us observe that the valuation of basket credit
derivatives covers, in particular, the following instruments:

• classic first-to-default swaps, which are aimed to offer protection against
the first default in a reference basket of credit names (e.g., Duffie [71]
or Kijima and Muromachi [122])

• general kth-to-default contracts, which give protection against the first
k defaults in a reference basket of credit names (e.g., Bielecki and
Rutkowski [24] or Brasch [32]).

Modeling issues arising in the context of portfolio credit derivatives include:
• correlated defaults in the structural framework (Zhou [175]),

• conditionally independent default times (Kijima and Muromachi [122]),

• simulation of correlated defaults (Duffie and Singleton [76]),

• modeling of infectious defaults (Davis and Lo [64]),

• asymmetric default intensities (Jarrow and Yu [107]),

• copulae (Laurent and Gregory [133], Schönbucher and Schubert [161]),

• dependent credit ratings (Lando [127], Bielecki and Rutkowski [23]),

• dependent credit migrations (Kijima et al. [120]),

• modeling defaults via the Marshall-Olkin copula (Elouerkhaoui [81]),

• modeling of losses for a large portfolio (Frey and McNeil [88]).
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5.1 Basket Credit Derivatives

Basket credit derivatives are credit derivatives deriving their cash flows (and
thus their values) from credit risks of several reference entities (or prespecified
credit events).
Standing assumptions. We assume that:

• we are given a collection of default times τ1, τ2, . . . , τn defined on a
common probability space (Ω,G,Q),

• Q(τi = 0) = 0 and Q(τi > t) > 0 for every i and t,

• Q(τi = τj) = 0 for arbitrary i 6= j (in a continuous time setup).

For a given collection τ1, τ2, . . . , τn of default times, we define the ordered
sequence τ(1) < τ(2) < · · · < τ(n), where τ(k) stands for the random time of
the kth default. Formally, we set

τ(1) = min {τ1, τ2, . . . , τn}

and, recursively, for k = 2, 3, . . . , n

τ(k) = min
{
τi : i = 1, 2, . . . , n, τi > τ(k−1)

}
.

In particular, τ(n) represents the moment of the last default, that is,

τ(n) = max {τ1, τ2, . . . , τn}.

5.1.1 The kth-to-Default Contingent Claims

We set Hi
t = 1{t≥τi} and we denote by Hi the filtration generated by the

process Hi, that is, by the observations of the default time τi. In addition,
we are given a reference filtration F on the space (Ω,G,Q). The filtration F
is related to some other market risks, for instance, to the interest rate risk.
Finally, we introduce the enlarged filtration G by setting

G = F ∨H1 ∨H2 ∨ · · · ∨Hn.

Note that the σ-field Gt models the total information available to market
participants at time t.

A general kth-to-default contingent claim, which matures at time T , is
formally specified by the following covenants:

• if τ(k) = τi ≤ T for some i = 1, 2, . . . , n then the claim pays at time
τ(k) the amount Zi

τ(k)
, where Zi is an F-predictable recovery process,

• if τ(k) > T then the claim pays at time T an FT -measurable promised
amount X.
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5.1.2 Case of Two Credit Names

For the sake of notational simplicity, we shall frequently consider the case
of two reference credit names. In that case, the cash flows of considered
contracts can be described as follows.

Cash flows of a first-to-default claim (FTDC):

• if τ(1) = min {τ1, τ2} = τi ≤ T for i = 1, 2, the claim pays at time τi

the amount Zi
τi

,

• if min {τ1, τ2} > T , it pays at time T the amount X.

Cash flows of a last-to-default claim (LTDC):

• if τ(2) = max {τ1, τ2} = τi ≤ T for i = 1, 2, the claim pays at time τi

the amount Zi
τi

,

• if max {τ1, τ2} > T , it pays at time T the amount X.

We recall that the savings account B equals

Bt = exp
(∫ t

0

ru du
)
,

and the probability measure Q is interpreted as a martingale measure for
our model of the financial market, which is assumed to include defaultable
securities. Consequently, the price B(t, T ) of a zero-coupon default-free bond
maturing at T equals, for every t ∈ [0, T ],

B(t, T ) = Bt EQ
(
B−1

T | Gt

)
.

Pricing of FTDC and LTDC

In general, the ex-dividend price at time t of a defaultable claim (X, Z, τ) is
given by the risk-neutral valuation formula

St = Bt EQ
( ∫

]t,T ]

B−1
u dDu

∣∣∣Gt

)

where D is the dividend process, which describes all cash flows associated
with a given defaultable claim. Consequently, the ex-dividend price at any
date t ∈ [0, T ] of an FTDC is given by the expression

S
(1)
t = Bt EQ

(
B−1

τ1
Z1

τ1
1{τ1<τ2, t<τ1≤T}

∣∣∣Gt

)

+ Bt EQ
(
B−1

τ2
Z2

τ2
1{τ2<τ1, t<τ2≤T}

∣∣∣Gt

)

+ Bt EQ
(
B−1

T X1{T<τ(1)}
∣∣∣Gt

)
.
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Similarly, the ex-dividend price of an LTDC equals, for every t ∈ [0, T ],

S
(2)
t = Bt EQ

(
B−1

τ1
Z1

τ1
1{τ2<τ1, t<τ1≤T}

∣∣∣Gt

)

+ Bt EQ
(
B−1

τ2
Z2

τ2
1{τ1<τ2, t<τ2≤T}

∣∣∣Gt

)

+ Bt EQ
(
B−1

T X1{T<τ(2)}
∣∣∣Gt

)
.

Both expressions above are merely special cases of a general formula. The
goal is to either derive more explicit representations under various assump-
tions about τ1 and τ2 or to provide ways of efficient calculation of involved
expected values by means of Monte Carlo simulation (using perhaps an equiv-
alent probability measure).

5.2 Conditionally Independent Defaults

The concept of conditional independence of default times with respect to a
reference filtration F is defined as follows.

Definition 5.2.1. The random times τi, i = 1, 2, . . . , n are said to be con-
ditionally independent with respect to F under Q if we have, for any T > 0
and any t1, . . . , tn ∈ [0, T ],

Q(τ1 > t1, . . . , τn > tn | FT ) =
n∏

i=1

Q(τi > ti | FT ).

Let us comment briefly on Definition 5.2.1.

• Conditional independence has the following intuitive interpretation:
the reference credits (credit names) are subject to common risk factors
that may trigger credit (default) events. In addition, each credit name
is subject to idiosyncratic risks that are specific for this name.

• Conditional independence of default times means that once the com-
mon risk factors are fixed then the idiosyncratic risk factors are in-
dependent of each other. This means that most computations can be
done similarly as in the case of independent default times.

• It is worth stressing that the property of conditional independence is
not invariant with respect to an equivalent change of a probability
measure (for a suitable counter-example, see Section 5.7).
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5.2.1 Canonical Construction

Let Γi, i = 1, 2, . . . , n be a given family of F-adapted, increasing, continu-
ous processes, defined on a probability space (Ω̃,F, P̃). We make the stan-
dard assumptions that Γi

0 = 0 and Γi
∞ = ∞. Let (Ω̂, F̂ , P̂) be an auxiliary

probability space with a sequence ξi, i = 1, 2, . . . , n of independent random
variables uniformly distributed on [0, 1]. We define τ1, . . . , τn by setting

τi(ω̃, ω̂) = inf { t ∈ R+ : Γi
t(ω̃) ≥ − ln ξi(ω̂)}

for every elementary event (ω̃, ω̂) belonging to the product probability space
(Ω,G,Q) = (Ω̃× Ω̂,F∞ ⊗ F̂ , P̃⊗ P̂). We endow the space (Ω,G,Q) with the
filtration G = F ∨H1 ∨ · · · ∨Hn.

Proposition 5.2.1. Let ξ1, . . . , ξn be independent random variables uni-
formly distributed on [0, 1]. Then Γi is the F-hazard process of τi and thus,
for any s ≥ t,

Q(τi > s | Ft ∨Hi
t) = 1{t<τi} EQ

(
eΓi

t−Γi
s | Ft

)
.

We have that Q(τi = τj) = 0 for every i 6= j and the default times τ1, . . . , τn

are conditionally independent with respect to F under Q.

Proof. It suffices to note that, for ti < T ,

Q(τ1 > t1, . . . , τn > tn | FT ) = Q(Γ1
t1 ≥ − ln ξ1, . . . , Γn

tn
≥ − ln ξn | FT )

=
n∏

i=1

e−Γi
ti .

The details are left to the reader. ¤
Recall that if Γi

t =
∫ t

0
γi

u du then γi is the F-intensity of τi. Intuitively,

Q(τi ∈ [t, t + dt] | Ft ∨Hi
t) ≈ 1{t<τi}γ

i
t dt.

5.2.2 Hypothesis (H)

If the hypothesis (H) holds between the filtrations F and G then it also holds
between the filtrations F and F∨Hi1 ∨ · · · ∨Hik for any i1, . . . , ik. However,
there is no reason for the hypothesis (H) to hold between F∨Hi1 and G. Note
that, if the hypothesis (H) holds then one has, for every t1 ≤ · · · ≤ tn ≤ T ,

Q(τ1 > t1, . . . , τn > tn | FT ) = Q(τ1 > t1, . . . , τn > tn | F∞).

It is not difficult to check that the hypothesis (H) holds when the random
times τ1, . . . , τn are given by the canonical construction of Section 5.2.1.
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5.2.3 Independent Default Times

We shall first examine the case of default times τ1, . . . , τn that are indepen-
dent under Q. Suppose that for every i = 1, 2, . . . , n we know the cumulative
distribution function Fi(t) = Q(τi ≤ t) of the default time of the ith reference
entity. The cumulative distribution functions of τ(1) and τ(n) are

F(1)(t) = Q(τ(1) ≤ t) = 1−
n∏

i=1

(1− Fi(t))

and

F(n)(t) = Q(τ(n) ≤ t) =
n∏

i=1

Fi(t).

More generally, we have that, for any i = 1, 2, . . . , n,

F(i)(t) = Q(τ(i) ≤ t) =
n∑

m=i

∑

π∈Πm

∏

j∈π

Fkj
(t)

∏

l 6∈π

(1− Fkl
(t)),

where Πm denote the family of all subsets of {1, 2, . . . , n} consisting of m
elements. Suppose, in addition, that the default times τ1, . . . , τn admit the
corresponding intensity functions γ1(t), . . . , γn(t), so that the processes

Hi
t −

∫ t∧τi

0

γi(u) du

are known to be Hi-martingales. Recall that Q(τi > t) = e−
R t
0 γi(u) du. It is

then easily seen that, for every t ∈ R+,

Q(τ(1) > t) =
n∏

i=1

Q(τi > t) = e−
R t
0 γ(1)(u) du,

where γ(1)(t) = γ1(t) + · · ·+ γn(t) for every t ∈ R+. Therefore, the process

H
(1)
t −

∫ t∧τ(1)

0

γ(1)(u) du

follows an H(1)-martingale, where the filtration H(1) is generated by the
process H(1)

t = σ(τ(1) ∧ t). By similar computations, it is also possible to
find the intensity function γ(k) of the random time τ(k) of the kth default for
every k = 2, 3, . . . , n.

Let us consider, for instance, a digital default put of basket type. To be
more specific, we postulate that a contract pays a fixed amount (e.g., one
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unit of cash) at the moment τ(k) of the kth default provided that τ(k) ≤ T .
If the interest rate is non-random then its value at time 0 equals

S0 = EQ
(
B−1

τ 1{τ(k)≤T}
)

=
∫

]0,T ]

B−1
u dF(k)(u).

If the default times τ1, . . . , τn have intensity functions γ1, . . . , γn then

S0 =
∫ T

0

B−1
u dF(k)(u) =

∫ T

0

B−1
u γ(k)(u)e−

R u
0 γ(k)(v) dv du.

5.2.4 Signed Intensities

Some authors (see, e.g., Kijima and Muromachi [122]) examine credit risk
models in which the negative values of “default intensities” are allowed. In
that case, the process chosen to model the “default intensity” does not play
the role of the actual default intensity, in particular, the process

Mt = Ht −
∫ t∧τ

0

γt dt

is not necessarily a martingale. Negative values of the “default intensity”
process clearly contradict the usual interpretation of the intensity as the
conditional default probability over an infinitesimal time interval.

Nevertheless, for a given collection Γi, i = 1, 2, . . . , n of F-adapted, con-
tinuous processes, with Γi

0 = 0, which are defined on (Ω̃,F, P̃), one can
construct random times τi, i = 1, 2, . . . , n on the enlarged probability space
(Ω,G,Q) by setting

τi = inf { t ∈ R+ : Γi
t ≥ − ln ξi }. (5.1)

Let us denote Γ̂i
t = maxu≤t Γi

u. Observe that if the process Γi is absolutely
continuous then so is the process Γ̂i. In that case, the actual intensity of τi

is obtained as the derivative of Γ̂i with respect to the time variable. The
following result examines the case of signed intensities.

Lemma 5.2.1. Random times τi, i = 1, 2, . . . , n given by (5.1) are condi-
tionally independent with respect to F under Q. In particular, for any T > 0
and every t1, . . . , tn ≤ T ,

Q(τ1 > t1, . . . , τn > tn | FT ) =
n∏

i=1

e−
bΓi

ti = e−
Pn

i=1
bΓi

ti .
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5.3 Valuation of FTDC and LTDC

Pricing of a first-to-default claim or a last-to-default claim is straightforward
under the assumption of conditional independence of default times as mani-
fested by the following result in which, for notational simplicity, we consider
only the case of two credit names. As usual, we do not state explicitly inte-
grability conditions that should be imposed on a recovery process Z and a
terminal payoff X.

Proposition 5.3.1. Let the default times τj , j = 1, 2 be F-conditionally
independent. Assume that the recovery Z = Z1 = Z2 is an F-predictable
process and the terminal payoff X is FT -measurable.
(i) If the hypothesis (H) holds between F and G and processes F i, i = 1, 2
are continuous then the price at time t = 0 of the first-to-default claim with
Z1 = Z2 = Z equals

S
(1)
0 = EQ

( ∫ T

0

B−1
u Zue−(Γ1

u+Γ2
u) d(Γ1

u + Γ2
u) + B−1

T XG
(1)
T

)
, (5.2)

where we denote

G
(1)
T = Q(τ(1) > T | FT ) = Q(τ1 > T | FT )Q(τ2 > T | FT ) = e−(Γ1

T +Γ2
T ).

(ii) In the general case, let

F i
t = Q(τi ≤ t | Ft) = N i

t + Ci
t = N i

t +
∫ t

0

ci
u du,

where N i is a continuous F-martingale. Then we have

S
(1)
0 = EQ

( ∫ T

0

B−1
u Zu

(
e−(Γ1

u+Γ2
u)(λ1

u + λ2
u) du + d〈N1, N2〉u

)
+ B−1

T XG
(1)
T

)

where λi
u = ci

u(1− F i
u)−1.

Proof. To simplify the notation, we will only consider the case where B = 1.
A computation of the expectation EQ(X1{τ(1)>T}) is straightforward. Thus,
let us focus on the evaluation of the expected value

EQ(Zτ1{τ≤T}),

where, for brevity, we denote τ = τ(1) = τ1 ∧ τ2.
From Lemma 3.1.3, we know that if Z is F-predictable then

EQ
(
Zτ1{τ≤T}

)
= EQ

( ∫

]0,T ]

Zu dFu

)
,

where Fu = Q(τ ≤ u | Fu).
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For τ = τ1 ∧ τ2, the conditional independence assumption yields

1− Fu = Q(τ1 > u, τ2 > u | Fu) = Q(τ1 > u | Fu)Q(τ2 > u | Fu)
= (1− F 1

u)(1− F 2
u).

Case (i). Under the assumption that the hypothesis (H) holds between fil-
trations F and Gi for i = 1, 2, the processes F i are continuous and increasing.
Consequently,

dFu = e−Γ1
u dF 2

u + e−Γ2
u dF 1

u = e−(Γ1
u+Γ2

u) d(Γ1
u + Γ2

u),

and this in turn yields

EQ
(
Zτ1∧τ21{τ1∧τ2<T}

)
= EQ

( ∫ T

0

Zue−(Γ1
u+Γ2

u) d(Γ1
u + Γ2

u)
)
.

Case (ii). In the general case, the Doob-Meyer decomposition of the process
F i is F i = N i + Ci and, under our assumptions, the process

Hi
t −

∫ t∧τi

0

λi
u du

is a Gi-martingale, where we write λi
u = ci

u(1− F i
u)−1. We now have

dFu = e−Γ1
u dF 2

u + e−Γ2
u dF 1

u + d〈N1, N2〉u.

Since N1 and N2 are martingales, it follows that

EQ
(
Zτ1∧τ21{τ1∧τ2<T}

)
= EQ

( ∫ T

0

Zu(e−Γ1
u dC2

u + e−Γ2
u dC1

u + d〈N1, N2〉u)
)

= EQ
( ∫ T

0

Zu

(
e−(Γ1

u+Γ2
u)(λ1

u + λ2
u) du + d〈N1, N2〉u

))
,

as required. ¤
The valuation formula (5.2) can be easily extended to the case of an

arbitrary date t ∈ [0, T ]. This is left as an exercise for the reader.

5.4 Copula-Based Approaches

As already mentioned in Section 2.6, the classic concept of a copula function
provides a convenient tool for producing multivariate probability distribu-
tions with predetermined univariate marginal distributions.
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Definition 5.4.1. A function C : [0, 1]n → [0, 1] is called a copula function
if the following conditions are satisfied:
(i) C(1, . . . , 1, vi, 1, . . . , 1) = vi for any i = 1, 2, . . . , n and any vi ∈ [0, 1],
(ii) C is an n-dimensional cumulative distribution function.

The following well known theorem, due to Sklar, underpins the theory
of copula functions. For the proof of this result and further properties of
copula functions, the interested reader is referred to Nelsen [147].

Theorem 5.4.1. For any cumulative distribution function F on Rn there
exists a copula function C such that F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))
for every x1, . . . , xn ∈ R, where Fi is the ith marginal cumulative distribution
function. If, in addition, the function F is continuous then C is unique.

Let us first give a few examples of copula functions:
(i) the product copula C(v1, . . . , vn) = Πn

i=1vi, which corresponds to the
independence,
(ii) the Gumbel copula, which is given by the formula, for θ ∈ [1,∞),

C(v1, . . . , vn) = exp
(
−

[ n∑

i=1

(− ln vi)θ

]1/θ)
,

(iii) the Gaussian copula, which is given by the expression

C(v1, . . . , vn) = Nn
Σ

(
N−1(v1), . . . , N−1(vn)

)
,

where Nn
Σ is the cumulative distribution function for the n-variate central

Gaussian distribution with the linear correlation matrix Σ and N−1 is the
inverse of the cumulative distribution function for the univariate standard
Gaussian distribution.
(iv) the Student t-copula, defined as

C(v1, . . . , vn) = Θn
ν,Σ

(
t−1
ν (v1), . . . , t−1

ν (vn)
)
,

where Θn
ν,Σ stands for the cumulative distribution function of the n-variate

t-distribution with ν degrees of freedom and with the linear correlation ma-
trix Σ and t−1

ν is the inverse of the cumulative distribution function of the
univariate Student t-distribution with ν degrees of freedom.

5.4.1 Direct Approach

In the direct approach, we first postulate that a (univariate marginal) cumu-
lative distribution function Fi for each random variable τi, i = 1, 2, . . . , n is
given. A particular copula function C is then chosen in order to introduce
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an appropriate dependence structure of the random vector (τ1, . . . , τn). The
joint probability distribution of the random vector (τ1, . . . , τn) is thus given
as

Q(τ1 ≤ t1, . . . , τn ≤ tn) = C
(
F1(t1), . . . , Fn(tn)

)
.

The direct copula-based approach has an apparent shortcoming of being
essentially a static approach, since it makes no account of the flow of market
information, which can be represented by some reference filtration.

5.4.2 Indirect Approach

A less straightforward application of copula functions relies on an extension
of the canonical construction of conditionally independent default times. In
the approach described below, the dependence between the default times is
enforced both through the dependence between the marginal hazard processes
Γ̂i, i = 1, 2, . . . , n and through the choice of a copula function C. For this
reason, it is sometimes referred to as the double correlation case.

Assume that the joint probability distribution of (ξ1, . . . , ξn) in the canon-
ical construction is given by an n-dimensional copula function C. Similarly
as in Section 5.2.1, we postulate that the random vector (ξ1, . . . , ξn) is inde-
pendent of F and we set

τi(ω̃, ω̂) = inf { t ∈ R+ : Γ̂i
t(ω̃) ≥ − ln ξi(ω̂)}.

We have that, for any T > 0 and arbitrary t1, . . . , tn ≤ T ,

Q(τ1 > t1, . . . , τn > tn | FT ) = C(K1
t1 , . . . ,K

n
tn

),

where we denote Ki
t = e−bΓ

i
t . Schönbucher and Schubert [161] show that the

following equality holds, for arbitrary s ≤ t on the event {τ1 > s, . . . , τn > s},

Q(τi > t | Gs) = EQ
(

C(K1
s , . . . , Ki

t , . . . , K
n
s )

C(K1
s , . . . , Kn

s )

∣∣∣Fs

)
.

Consequently, assuming that the derivatives γ̂i
t = dbΓi

t

dt exist, the ith survival
intensity equals, on the event {τ1 > t, . . . , τn > t},

λi
t = γ̂i

tK
i
t

∂
∂vi

C(K1
t , . . . , Kn

t )
C(K1

t , . . . , Kn
t )

= γ̂i
tK

i
t

∂

∂vi
ln C(K1

t , . . . ,Kn
t ),

where λi
t is understood as the following limit

λi
t = lim

h↓0
h−1Q(t < τi ≤ t + h | Ft, τ1 > t, . . . , τn > t).
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It appears that, in general, the survival intensity of the ith name jumps
at time t if the jth name defaults at time t for some j 6= i. In fact, it can be
shown that

λi,j
t = γ̂i

t Ki
t

∂2

∂vi∂vj
C(K1

t , . . . ,Kn
t )

∂
∂vj

C(K1
t , . . . , Kn

t )
,

where λi,j
t is defined as follows

λi,j
t = lim

h↓0
h−1Q(t < τi ≤ t + h | Ft, τk > t, k 6= j, τj = t).

Schönbucher and Schubert [161] examine the behavior of survival intensities
after defaults of some names. Let us fix s, and let ti ≤ s for i = 1, 2, . . . , k < n
and ti ≥ s for i = k + 1, k + 2, . . . , n. They show that

Q
(
τi > ti, i = k + 1, . . . , n | Fs, τj = tj , j = 1, . . . , k, τi > s, i = k + 1, . . . , n

)

=
EQ

(
∂k

∂v1...∂vk
C(K1

t1 , . . . , K
k
tk

,Kk+1
tk+1

, . . . ,Kn
tn

)
∣∣∣Fs

)

∂k

∂v1...∂vk
C(K1

t1 , . . . , K
k
tk

,Kk+1
s , . . . ,Kn

s )
.

Unfortunately, in this approach it is difficult to control the jumps of
intensities, otherwise than by a judicious choice of the copula function C.

5.5 One-factor Gaussian Copula Model

Laurent and Gregory [133] examine a simplified version of Schönbucher and
Schubert [161] approach, corresponding to the trivial reference filtration F
(we thus deal here with the direct approach). The marginal default intensities
γ̂i are deterministic functions and the marginal distributions of defaults are
given by the expression

Q(τi > t) = 1− Fi(t) = e−
R t
0 bγi(u) du.

They derive closed-form expressions for certain conditional default intensities
by making specific assumptions regarding the choice of a copula C.

Let us describe the one-factor Gaussian copula model, proposed by Li
[137]. It is worth noting that this model was widely adopted by the financial
industry as a benchmark model for valuing traded and bespoke tranches of
collateralized debt obligations (see Section 5.8.2). Let us set

Xi = ρV +
√

1− ρ2Vi,

where V and Vi, i = 1, 2, . . . , n are independent, standard Gaussian variables
under Q and the correlation parameter ρ belongs to (−1, 1).
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Let C be the copula function corresponding to the distribution of the
vector (X1, . . . , Xn), that is, let C be given by the expression, for every
v1, . . . , vn ∈ [0, 1],

C(v1, . . . , vn) = Q
(
X1 < N−1(v1), . . . , Xn < N−1(vn)

)
.

We define the default times τi, i = 1, 2, . . . , n by the formula

τi = inf
{

t ∈ R+ :
∫ t

0

γ̂i(u) du > − ln ξi

}

or, equivalently,
τi = inf { t ∈ R+ : 1− Fi(t) < ξi},

where the uniformly distributed random barriers are defined by the equality
ξi = 1 − N(Xi). It is worth noting that the random vectors (X1, . . . , Xn),
(ξ1, . . . , ξn) and (τ1, . . . , τn) share a common Gaussian copula function C;
this follows from the monotonicity of the transformations involved.

Moreover, the following equality is valid, for every i = 1, 2, . . . , n and
every t ∈ R+,

{τi ≤ t} = {ξi ≥ 1− Fi(t)} =
{

Vi ≤ N−1(Fi(t))− ρV√
1− ρ2

}
.

By the conditional independence of X1, . . . , Xn with respect to the common
factor V , which represents the market-wide (or systematic) credit risk, we
thus obtain, for every t1, . . . , tn ∈ R+,

Q(τ1 ≤ t1, . . . , τn ≤ tn) =
∫

R

n∏

i=1

N

(
N−1(Fi(ti))− ρv√

1− ρ2

)
n(v) dv,

where n is the probability density function of V . It is worth noting that
the components Vi are aimed to represent the firm-specific (or idiosyncratic)
part of the credit risk for individual names in a credit portfolio. For nu-
merical issues arising in implementations of the Li model, see Amman and
Brommundt [3], Joshi and Kainth [116], and Chen and Glasserman [54].

5.6 Jarrow and Yu Model

Jarrow and Yu [107] (see also Yu [173]) approach can be considered as an-
other attempt to develop a dynamic approach to dependence between default
times by modeling directly the contagion effect. For a given finite family of
reference credit names, Jarrow and Yu [107] propose to make a distinction
between primary and secondary firms.
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At the intuitive level, the rationale for their approach can be summarized
as follows:

• the class of primary firms encompasses these entities whose probabil-
ities of default are influenced by macroeconomic conditions, but not
by the credit risk of counterparties; the pricing of bonds and other
defaultable securities issued by primary firms is feasible through the
standard intensity-based methodology,

• it is thus sufficient to focus on defaultable securities issued by a sec-
ondary firm, that is, a firm for which the intensity of default depends
explicitly on the status of some other firms.

Let {1, 2, . . . , n} represent the set of all firms in our model and let F stand
for some reference filtration. Jarrow and Yu [107] formally postulate that:

• for any firm from the set {1, 2, . . . , k} of primary firms, the ‘default
intensity’ depends only on a reference filtration F,

• the ‘default intensity’ for any credit name that belongs to the class
{k + 1, k + 2, . . . , n} of secondary firms may depend not only on the
filtration F, but also on the status (default or no-default) of the primary
firms.

5.6.1 Construction of Default Times

To construct default times τ1, . . . , τn, we proceed in two steps.

First step. We first construct default times for all primary firms. To this
end, we assume that we are given a family of F-adapted ‘intensity processes’
λ1, . . . , λk and we produce a collection τ1, . . . , τk of F-conditionally indepen-
dent random times through the canonical method, that is, we set

τi = inf
{

t ∈ R+ :
∫ t

0

λi
u du ≥ − ln ξi

}

where ξi, i = 1, 2, . . . , k are mutually independent and identically distributed
random variables with the uniform distribution on [0, 1] under the martingale
measure Q.

Second step. In the second step, we are going to construct default times
corresponding to secondary firms. To this end, we assume that:

• the probability space (Ω,G,Q) is large enough to support a family
ξi, i = k + 1, k + 2, . . . , n of mutually independent random variables,
with uniform distribution on [0, 1],

• these random variables are independent not only of the filtration F, but
also of the already constructed in the first step default times τ1, . . . , τk

of primary firms.
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The default times τi, i = k + 1, k + 2, . . . , n are also defined by means of
the standard formula

τi = inf
{

t ∈ R+ :
∫ t

0

λi
u du ≥ − ln ξi

}
.

However, the ‘intensity processes’ λi for i = k +1, k +2, . . . , n are now given
by the following expression

λi
t = µi

t +
k∑

l=1

νi,l
t 1{t≥τl},

where µi and νi,l are F-adapted stochastic processes. In case where the
default of the jth primary firm does not affect the ‘default intensity’ of the
ith secondary firm, we set νi,j = 0.

Let G = F ∨ H1 ∨ · · · ∨ Hn stand for the enlarged filtration and let
F̂ = F∨Hk+1∨· · ·∨Hn be the filtration generated by the reference filtration
F and the observations of defaults of secondary firms. Then:

• the default times τ1, . . . , τk of primary firms are conditionally indepen-
dent with respect to F,

• the default times τ1, . . . , τk of primary firms are no longer conditionally
independent when we replace the filtration F by F̂,

• in general, the default intensity of a primary firm with respect to the
filtration F̂ differs from the intensity λi with respect to F.

5.6.2 Case of Two Credit Names

To illustrate the credit contagion effect, we will now consider the case of only
two credit names, A and B say, and we postulate that A is a primary firm,
whereas B is a secondary firm.

Let the constant process λ1
t = λ1 represent the F-intensity of default time

for firm A, so that

τ1 = inf
{

t ∈ R+ :
∫ t

0

λ1
u du = λ1t ≥ − ln ξ1

}
,

where ξ1 is a random variable independent of F with the uniform distribution
on [0, 1]. For the second firm, the ‘default intensity’ is assumed to satisfy

λ2
t = λ21{t<τ1} + α21{t≥τ1}

for some positive constants λ2 and α2. We set

τ2 = inf
{

t ∈ R+ :
∫ t

0

λ2
u du ≥ − ln ξ2

}
,
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where ξ2 is a random variable with the uniform probability distribution,
independent of F, and such that ξ1 and ξ2 are mutually independent. The
following result summarizes properties of processes Λ1 and Λ2.

Lemma 5.6.1. The following properties hold:
(i) the process Λ1 is the hazard process of τ1 with respect to F,
(ii) the process Λ2 is the hazard process of τ2 with respect to F ∨H1,
(iii) the process Λ1 is not the hazard process of τ1 with respect to F ∨ H2 if
the inequality λ2 6= α2 holds.

Assume for simplicity that r = 0. We wish to price a defaultable zero-
coupon bond with the default time τi and with constant recovery payoff δi.
We thus need to compute the following conditional expectation, for i = 1, 2,

Dδi
i (t, T ) = EQ(1{τi>T} + δi1{τi≤T} | Gt), (5.3)

where Gt = H1
t ∨ H2

t . To this end, we will first find the joint probability
distribution of the pair (τ1, τ2). Let us denote G(s, t) = Q(τ1 > s, τ2 > t).
We write ∆ = λ1 + λ2 − α2 and we assume that ∆ 6= 0.

Lemma 5.6.2. The joint distribution of (τ1, τ2) under Q is given by, for
every 0 ≤ t ≤ s,

Q(τ1 > s, τ2 > t) = e−λ1s−λ2t

and, for every 0 ≤ s < t,

Q(τ1 > s, τ2 > t) =
1
∆

λ1e
−α2t

(
e−s∆ − e−t∆

)
+ e−(λ1+λ2)t.

Proof. Let ψi = − ln ξi. For t < s, we have λ2
t = λ2t on the set {s < τ1}.

The equalities

{τ1 > s} ∩ {τ2 > t} = {Λ1
s < ψ1} ∩ {Λ2

t < ψ2} = {λ1s < ψ1} ∩ {λ2t < ψ2}
and the independence of ψ1 and ψ2 lead to

Q(τ1 > s, τ2 > t) = e−λ1s−λ2t.

In particular, by setting t = 0, we obtain the equality Q(τ1 > s) = e−λ1s for
every s ∈ R+.

For t > s, we have that

{τ1 > s} ∩ {τ2 > t} = {{t > τ1 > s} ∩ {τ2 > t}} ∪ {{τ1 > t} ∩ {τ2 > t}}
and

{t > τ1 > s} ∩ {τ2 > t} = {t > τ1 > s} ∩ {Λ2
t < ψ2}

= {t > τ1 > s} ∩ {λ2τ1 + α2(t− τ1) < ψ2}.



5.6. Jarrow and Yu Model 241

The independence between ψ1 and ψ2 implies that the random variable
τ1 is independent of ψ2 (note that τ1 = (λ1)−1ψ1). Consequently,

Q(t > τ1 > s, τ2 > t) = EQ
(
1{t>τ1>s}e−(λ2τ1+α2(t−τ1))

)

=
∫ t

s

e−(λ2u+α2(t−u))λ1e
−λ1u du

=
1

λ1 + λ2 − α2
λ1e

−α2t
(
e−(λ1+λ2−α2)s − e−(λ1+λ2−α2)t

)
.

Denoting ∆ = λ1 + λ2 − α2, it follows that

Q(τ1 > s, τ2 > t) =
1
∆

λ1e
−α2t

(
e−∆s − e−∆t

)
+ e−(λ1+λ2)t.

In particular, for s = 0, we obtain

Q(τ2 > t) =
1
∆

(
λ1

(
e−α2t − e−(λ1+λ2)t

)
+ ∆e−(λ1+λ2)t

)
.

This completes the proof. ¤

Bonds with Non-Zero Recovery

In view of (5.3), to find the price Dδ1
1 (t, T ), it suffices to compute

Q(τ1 > T | Gt) = Q(τ1 > T |H1
t ∨H2

t ) = 1{t<τ1}
Q(τ1 > T |H2

t )
Q(τ1 > t |H2

t )
.

Observe that

Q(τ1 > T | Gt) = 1{t<τ1}

(
1{t≥τ2}

∂2G(T, τ2)
∂2G(t, τ2)

+ 1{t<τ2}
G(T, t)
G(t, t)

)
.

Similarly, the valuation of Dδ2
2 (t, T ) follows from the computation of

Q(τ2 > T | Gt) = 1{t<τ2}
Q(τ2 > T |H1

t )
Q(τ2 > t |H1

t )
,

where, by symmetry, we have that

Q(τ2 > T | Gt) = 1{t<τ2}

(
1{t≥τ1}

∂1G(τ1, T )
∂1G(τ1, t)

+ 1{t<τ1}
G(t, T )
G(t, t)

)
.

By straightforward computations, we obtain the following pricing result
for defaultable bonds with non-zero recovery.
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Corollary 5.6.1. The prices of defaultable bonds equal, for every t ∈ [0, T ]

Dδ1
1 (t, T ) = 1{t≥τ1}δ1 + 1{t<τ1}

(
e−λ1(T−t) + δ1(1− e−λ1(T−t))

)

and

Dδ2
2 (t, T ) = δ2 + (1− δ2)1{t<τ2}

{
1{t≥τ1}e

−α2(T−t)

+ 1{t<τ1}
1

λ1 + λ2 − α2

(
λ1e

−α2(T−t) + (λ2 − α2)e−(λ1+λ2)(T−t)
)}

.

Bonds with Zero Recovery

Assume that λ1 + λ2 − α2 6= 0 and that the bond is subject to the zero
recovery scheme. We maintain the assumption that r = 0 so that B(t, T ) = 1
for t ≤ T . Therefore, we have D0

2(t, T ) = Q(τ2 > T |H1
t ∨ H2

t ) and thus the
general formula yields

D0
2(t, T ) = 1{t<τ2}

Q(τ2 > T |H1
t )

Q(τ2 > t |H1
t )

.

The following pricing result is an immediate consequence of Corollary 5.6.1.

Corollary 5.6.2. Assume that the recovery δ2 = 0. Then D2(t, T ) = 0 on
the event {t ≥ τ2}. On the event {t < τ2} we have

D0
2(t, T ) = 1{t<τ1}

1
λ1 + λ2 − α2

(
λ1e

−α2(T−t) + (λ2 − α2)e−(λ1+λ2)(T−t)
)

+ 1{t≥τ1} e−α2(T−t).

5.7 Kusuoka’s Model

Following Kusuoka [125] (see also Bielecki and Rutkowski [23]), we will argue
that the assumption that some firms are classified as primary, while some
other are considered to be secondary, is of no relevance from the point of view
of modeling. For simplicity, we make the following standing assumptions:

• we set n = 2, that is, we consider the case of two credit names,

• the interest rate r equals zero, so that B(t, T ) = 1 for every t ≤ T ,

• the reference filtration F is trivial,

• all corporate bonds are subject to the zero recovery scheme.
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In view of the model symmetry, it suffices to analyze a bond issued by
the first firm. By definition, the price of this bond at time t ∈ [0, T ] equals

D0
1(t, T ) = Q(τ1 > T |H1

t ∨H2
t ).

Of course, this value is based on the complete information, as modeled by
the full filtration G = H1 ∨ H2. For the sake of comparison, we will also
evaluate the corresponding values, which are based on the assumption that
only a partial observation is available; specifically, we will compute

D̂0
1(t, T ) = Q(τ1 > T |H1

t ), D̄0
1(t, T ) = Q(τ1 > T |H2

t ).

5.7.1 Model Specification

We follow here Kusuoka [125]. Under the original probability measure P the
random times τi, i = 1, 2 are assumed to be mutually independent random
variables with exponential laws with parameters λ1 and λ2, respectively.

For a fixed T > 0, we define a probability measure Q equivalent to P on
(Ω,G) by setting

dQ
dP

= ηT , P-a.s.,

where the Radon-Nikodým density process (ηt, t ∈ [0, T ]) satisfies

ηt = 1 +
2∑

i=1

∫

]0,t]

ηu−κi
u dM i

u,

where in turn the processes M1 and M2 are given by

M i
t = Hi

t −
∫ t∧τi

0

λi du = Hi
t − (t ∧ τi)λi,

where we write, as usual, Hi
t = 1{t≥τi}, and the G-predictable processes κ1

and κ2 are given by the following expressions

κ1
t = 1{t>τ2}

(α1

λ1
− 1

)

and
κ2

t = 1{t>τ1}
(α2

λ2
− 1

)

for some constants αi > 0 for i = 1, 2. Note that the inequality κi
t > −1

holds for i = 1, 2 and every t ∈ [0, T ]. It is not difficult to check, using the
Girsanov theorem, that the G-intensities (cf. Section 3.6) of τ1 and τ2 under
Q are given by the expressions

λ1
t = λ11{t<τ2} + α11{t≥τ2}
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and
λ2

t = λ21{t<τ1} + α21{t≥τ1}.

We focus on τ1 and we denote Λ1
t =

∫ t

0
λ1

u du. Let us make few observa-
tions. First, we note that the process λ1 is H2-predictable and the process

M1
t = H1

t −
∫ t∧τ1

0

λ1
u du = H1

t − Λ1
t∧τ1

is a G-martingale under Q, so that the process λ1 is a version of G-intensity
of τ under Q. In general, the process λ1 is not the H2-intensity of τ1 under
Q, since we have

Q(τ1 > s |H1
t ∨H2

t ) 6= 1{t<τ1} EQ
(
eΛ1

t−Λ1
s |H2

t

)
.

It is also interesting to observe that the process λ1 is the H2-intensity of τ1

under a probability measure Q̃, which is equivalent to P and is given by

dQ̃
dP

= η̃T , P-a.s.,

where the Radon-Nikodým density process (η̃t, t ∈ [0, T ]) satisfies

η̃t = 1 +
∫

]0,t]

η̃u−κ2
u dM2

u .

It can be checked that the following equality is satisfied, for every s > t,

Q̃(τ1 > s |H1
t ∨H2

t ) = 1{t<τ1} EeQ
(
eΛ1

t−Λ1
s |H2

t

)
.

Recall that the processes λ1 and λ2 have jumps provided that αi 6= λi.
The next result shows that the processes λ1 and λ2 specify the transition

intensities, so that the model can be dealt with as a two-dimensional Markov
chain (for related results and applications, see Herbertsson [95], Lando [127],
and Shaked and Shanthikumar [163]).

Proposition 5.7.1. For i = 1, 2 and every t ∈ R+ we have

λi = lim
h↓0

h−1Q(t < τi ≤ t + h | τ1 > t, τ2 > t),

α1 = lim
h↓0

h−1Q(t < τ1 ≤ t + h | τ1 > t, τ2 ≤ t),

α2 = lim
h↓0

h−1Q(t < τ2 ≤ t + h | τ2 > t, τ1 ≤ t).
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5.7.2 Bonds with Zero Recovery

We now present the bond valuation result in Kusuoka’s [125] model. We
focus on the bond price D0

1(t, T ); an analogous formula is valid for D0
2(t, T )

as well. Recall that we consider corporate bonds with zero recovery.

Proposition 5.7.2. The price D0
1(t, T ) equals, on the event {t < τ1},

D0
1(t, T ) = 1{t<τ2}

1
λ− α1

(
λ2e

−α1(T−t) + (λ1 − α1)e−λ(T−t)
)

+ 1{t≥τ2} e−α1(T−t),

where λ = λ1 + λ2. Furthermore,

D̂0
1(t, T ) = 1{t<τ1}

λ2e
−α1T + (λ1 − α1)e−λT

λ2e−α1t + (λ1 − α1)e−λt

and

D̄0
1(t, T ) = 1{t<τ2}

λ− α2

λ− α1

(λ1 − α1)e−λ(T−t) + λ2e
−α1(T−t)

λ1e−(λ−α2)t + λ2 − α2

+ 1{t≥τ2}
(λ− α2)λ2e

−α1(T−τ2)

λ1α2e(λ−α2)τ2 + λ(λ2 − α2)
.

It is worth noting that:
• the prices D0

1(t, T ) and D0
2(t, T ) correspond to the Jarrow and Yu price

of the bond issued by a secondary firm (cf. Corollary 5.6.2),

• the processes D0
1(t, T ) and D̂0

1(t, T ) represent ex-dividend prices of the
bond issued by the first firm, so they vanish after the default time τ1,

• the second remark does not apply to the process D̄0
1(t, T ).

5.8 Basket Credit Derivatives

We will now describe the mainstream basket credit derivatives, focusing on
the recently developed standardized instruments: credit default swap indices
and collateralized debt obligations. For various methods of valuation and
hedging of basket credit products, we refer to Andersen and Sidenius [5],
Cont and Minca [61], Cont and Kan [60], Brasch [32], Brigo [37], Brigo and
Alfonsi [39], Brigo and El-Bachir [40], Brigo and Morini [42, 145], Brigo et
al. [43], Burtschell et al. [45, 46], Di Graziano and Rogers [70], Duffie and
Gârleanu [72], Frey and Backhaus [86, 87], Giesecke and Goldberg [93], Her-
bertsson [96], Ho and Wu [98], Hull and White [100, 101, 102], Laurent et
al. [132], Laurent and Gregory [133], Pedersen [151], Rutkowski and Arm-
strong [156], Sidenius et al. [167], Wu [171] and Zheng [174].
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5.8.1 Credit Default Index Swaps

A credit default index swap (CDIS), also known as a CDS index, is a static
portfolio of n equally weighted credit default swaps with standard maturities,
typically five or ten years. Standard examples of a CDIS are iTraxx and
CDX. A credit default index swap usually matures few months before the
underlying CDSs. The CDSs in the pool are selected from among those
with highest trading volume in the respective industry sector. Credit default
index swaps are issued by a pool of licensed financial institutions, which are
called the market makers. At time of issuance of a CDIS, the market makers
determine an annual rate, known as the index spread, to be paid out to
investors on a periodic basis. The index spread, denoted by κ0, is constant
over the lifetime of a CDIS. Let us summarize the main provisions of a CDIS.

• We assume that the face value of each reference entity is one. Thus the
total notional of a CDIS equals n. The notional on which the market
maker pays the spread, henceforth referred to as residual protection, is
reduced by 1 after each default. For instance, after the first default,
the residual protection is revised from the original value n to n− 1.

• By purchasing a CDIS, an investor assumes the role of a protection
seller and she agrees to absorb all losses due to defaults in the reference
portfolio, occurring between the time of inception 0 and the maturity T .
In case of default of a reference entity, an investor makes the protection
payment to a market maker in the amount of 1 − δ, where δ ∈ [0, 1]
is a constant recovery rate, which is pre-determined in a given CDIS
(typically, it equals to 40%).

• In exchange, the protection seller receives from a market maker a pe-
riodic fixed premium on the residual protection at the annual rate of
κ0, which equals the fair CDIS spread at the inception date.

• A CDIS is also traded after its issuance date. Recall that whenever
one of reference entities defaults, its weight in the index is set to zero.
Therefore, by purchasing one unit of an index at time t, an investor
owes protection only on those names that have not yet defaulted prior
to time t. If the quotation of the market CDIS spread at time t differs
from the index spread fixed at issuance, i.e., κt 6= κ0, the credit-risky
present value of the difference is settled through an upfront payment.

The provisions of a single-name CDS correspond to the CDIS with n = 1,
except for the fact that, by the market convention, a buyer of a single-name
CDS is the protection buyer, rather than the protection seller.

We denote by τi the default time of the ith credit name in the index
portfolio and by Hi the default indicator process defined as Hi

t = 1{t≥τi} for
every i = 1, 2, . . . , n.
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Furthermore, we set N0 = n and we write

Nt = N0 −
n∑

i=1

Hi
t (5.4)

to denote the residual protection (or the reduced nominal) at time t ∈ [0, T ].
Let tj , j = 0, 1, . . . , J with t0 = 0 and tJ = T denote the tenor of the pre-

mium leg payments dates. The discounted cumulative cash flows associated
with a CDIS are as follows

Premium leg = κ0

J∑

j=1

B0

Btj

(
N0 −

n∑

i=1

Hi
tj

)
= κ0

J∑

j=1

B0

Btj

Ntj

and

Protection leg = (1− δ)
n∑

i=1

B0

Bτi

Hi
T .

5.8.2 Collateralized Debt Obligations

Collateralized debt obligations (CDO) are credit derivatives backed by port-
folios of assets. If the underlying portfolio is made up of bonds, loans or
other securitised receivables, the collateralized debt obligation is known as
the cash CDO. Alternatively, the underlying portfolio may consist of credit
derivatives referencing a pool of debt obligations. In the latter case, a CDO
is said to be synthetic.

Because of their recently acquired popularity, we focus our discussion on
standardized synthetic CDO contracts backed by CDS indices. We begin
with an overview of the covenants of a typical synthetic collateralized debt
obligation.

• The time of issuance of the contract is 0 and its maturity is T . The
notional of the CDO contract at any date t after issuance is equal to the
residual protection Nt of the reference CDS index (cf. formula (5.4)).

• The credit risk (that is, the potential loss due to credit events) borne by
the reference pool is layered into various standardized risk levels, with
the range in between two adjacent risk levels called a CDO tranche.
The lower bound of a tranche is usually referred to as attachment point
and the upper bound as detachment point. The credit risk is originally
sold in these tranches to protection sellers. For instance, in a typical
CDO contract on iTraxx, the credit risk is split into the equity tranche
(0− 3% of the total losses), four mezzanine tranches (corresponding to
3− 6%, 6− 9%, 9− 12% and 12− 22% of the total losses respectively),
and the senior tranche (over 22% of the total losses). At issuance, the
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notional value of each tranche is equal to the CDO notional weighted
by the respective tranche width.

• The tranche buyer sells partial protection to the pool owner, by agree-
ing to absorb the pool’s losses comprised in between the tranche attach-
ment and detachment point. This is better understood by an example.
Assume, for instance, that at time 0 the protection seller purchases
the 6 − 9% tranche with a given notional value. One year later, con-
sequently to a default event, the cumulative loss breaks through the
attachment point, reaching 8%. The protection seller then fulfills his
obligation by disbursing two thirds (= 8%−6%

9%−6% ) of a currency unit. The
tranche notional is then reduced to one third of its pre-default event
value. We refer to the remaining tranche notional as residual tranche
protection.

• In exchange, as of time t and up to time T , the CDO issuer (protection
buyer) makes periodic payments to the tranche buyer according to a
predetermined rate – termed tranche spread – on the residual tranche
protection. Returning to our example, after the loss reaches 8%, pre-
mium payments are made on 1

3 (= 9%−8%
9%−6% ) of the tranche notional,

until the next credit event occurs or the contract matures.
We denote by Ll and Ul the lower and upper attachment points for the

lth tranche and by κl
0 the corresponding spread. It is convenient to introduce

the percentage loss process

Qt =
1− δ

n

n∑

i=1

Hi
t = (1− δ)

N0 −Nt

N0
,

where N0 = n is the number of credit names in the reference portfolio and
the residual protection Nt is given by (5.4). Finally, denote by Cl = Ul −Ll

the width of the lth tranche; in particular, for the first (i.e., equity) tranche
we have C1 = U1 since L1 = 0.

Purchasing one unit of the lth tranche at time 0 generates the following
discounted cash flows

Premium leg = κl
0

J∑

j=1

B0

Btj

N l
tj

,

where N l
t is the residual tranche protection at time t, that is,

N l
t = N0

(
Cl −min

(
Cl, max (Qt − Ll, 0)

))
.

The discounted cash flows of the protection leg are

Protection leg = (1− δ)
n∑

i=1

B0

Bτi

Hi
T1{Ll<Qτi

≤Ul}.
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The equity tranche of the CDO on iTraxx or CDX is quoted differently;
specifically, it is quoted in terms if an upfront rate, say κ1

0, on the total
tranche notional, in addition to 500 basis points (5% rate) paid annually on
the residual tranche nominal. The discounted premium leg cash flows of the
equity tranche are thus given by the expression

κ1
0N0C0 + .05

J∑

j=1

B0

Btj

N0
tj

or, more explicitly,

κ1
0nC0 + .05

J∑

j=1

B0

Btj

n
(
C0 −min (C0, Qtj )

)
.

Additionally to standard traded tranches of a CDO, some non-standard
tranches – commonly referred to as bespoke tranches – are traded over-the-
counter. Typically, a credit risk model is first calibrated to market quotes
for standard tranches, and subsequently it is used to value bespoke tranches.

5.8.3 First-to-Default Swaps

A kth-to-default swap is a basket credit instrument backed by a portfolio of
single-name CDSs. Due to the rapid growth in popularity of credit default
swap indices and the associated derivatives, the kth-to-default swaps have
become rather illiquid. Currently, such products are typically customized
contracts between a bank and its customer, and hence they are relatively
bespoke to the customer’s credit portfolio.

For this reason, in the sequel we focus our attention on first-to-default
swaps issued on the iTraxx index, which are the only ones with a certain
degree of liquidity. Standardized first-to-default swaps are now issued on
each of the iTraxx sector sub-indices. Each first-to-default swap is backed
by an equally weighted portfolio of five single-name CDSs in the relative
sub-index, chosen according to some liquidity criteria. Let us describe the
main provisions of a first-to-default swap (FTDS).

• The time of issuance of the contract is 0 and the maturity is T .

• By investing in a first-to-default swap, the protection seller agrees to
absorb the loss produced by the first default in the reference credit
portfolio.

• In exchange, the protection seller is paid a periodic premium, known
as FTDS spread, up to maturity T or the moment of the first default,
whichever comes first. We denote the FTDS spread at time 0 by κ0.
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Recall that by tj , j = 0, 1, . . . , J with t0 = 0 and tJ = T we denote the
tenor of the premium leg payments dates. As usual, we denote by τ(1) the
random time of the first default in the pool. The discounted cumulative cash
flows associated with a first-to-default swap are as follows

Premium leg = κ0

J∑

j=1

B0

Btj

1{tj≤τ(1)}

and

Protection leg = (1− δ)
B0

Bτ(1)

1{τ(1)≤T}.

It is worth stressing that the market convention stipulates that the notional
corresponding to each credit name in the reference credit portfolio is equal.
Moreover, the recovery rate is assumed to be constant, that is, the recovery
rate does not depend on a particular credit name.

5.8.4 Step-up Corporate Bonds

As of now, step-up corporate bonds are not traded in baskets; however, they
are of our interest since they offer protection against credit events other than
defaults, for instance, the downgrade of the rating of the reference name.

Step-up corporate bonds are coupon-bearing bond issues for which the
amounts of coupon payments depend on the credit quality of the bond’s
issuer. As the name of the bond suggests, the coupon payment increases
when the credit quality of the issuer declines.

In practice, the above-mentioned credit quality is reflected by a credit
rating assigned to an issuer by at least one specialized ratings agency (such
as: Moody’s KMV, Fitch, or Standard & Poor’s). The provisions linking
the cash flows of the step-up bonds to the credit rating of an issuer have
different step amounts and different rating event triggers. In some cases,
a step-up of the coupon requires a downgrade to the trigger level by both
rating agencies. In other cases, there are step-up triggers for actions of each
rating agency. Under this specification, a downgrade by one of agencies will
trigger an increase in the coupon regardless of the rating from the other
agency.

Provisions also vary with respect to step-down features which, as the
name suggests, trigger a lowering of the coupon if the company regains its
original rating after a downgrade. In general, there is no step-down below
the initial coupon for ratings exceeding the initial rating.

Let Xt stand for some indicator of the issuer’s credit quality at time
t. Assume that tj , j = 1, 2, . . . , J are coupon payment dates and denote
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by cj = c(Xtj−1) the coupon amount at time tj . The time t discounted
cumulative cash flows of a step-up bond are given by the expression

(1−HT )
Bt

BT
+

∫

]t,T ]

(1−Hu)
Bt

Bu
dCu + recovery payment

where we denote by C the process given by the expression Ct =
∑

tj≤t cj .

5.8.5 Valuation of Basket Credit Derivatives

Computation of the fair spread at time t for a basket credit derivative involves
evaluating the conditional expectation under the martingale measure Q of
the associated discounted cash flows. In the case of CDS indices, CDOs and
FTDSs, the fair spread at time t is such that the value of the contract at time
t is exactly zero, i.e., the risk-neutral conditional expectations of discounted
cumulative cash flows of the premium and protection legs are identical.

The following expressions for fair spreads or values at time t ∈ [0, T ]
can be easily derived from the discounted cumulative cash flows given in the
preceding subsections (note, however, that

∑J
j=1 now stands for

∑J
j=1, tj≥t

and we assume that the CDO tranches were issued at time 0):
• the fair spread of a single-name CDS on the ith credit name

κi
t =

(1− δi)EQ
(

Bt

Bτi
(Hi

T −Hi
t)

∣∣∣Gt

)

EQ
( ∑J

j=1
Bt

Btj
(1−Hi

tj
)
∣∣∣Gt

) ,

• the fair spread of a CDIS

κt =
(1− δ)EQ

( ∑n
i=1

Bt

Bτi
(Hi

T −Hi
t)

∣∣∣Gt

)

EQ
( ∑J

j=1
Bt

Btj

(
n−∑n

i=1 Hi
tj

) ∣∣∣Gt

) ,

• the fair spread of the lth tranche of a CDO

κl
t =

(1− δ)EQ
( ∑n

i=1
Bt

Bτi
(Hi

T −Hi
t)1{Ll≤Qτi

≤Ul}
∣∣∣Gt

)

EQ
( ∑J

j=1
Bt

Btj
n
(
Cl −min

(
Cl, max (Qtj − Ll, 0)

)) ∣∣∣Gt

) ,

• the fair upfront rate of the equity tranche of a CDO

κ1
t =

1
nC0

EQ
(
(1− δ)

n∑

i=1

Bt

Bτi

(Hi
T −Hi

t)1{Qτi
≤U0}

∣∣∣Gt

)

− .05
nC0

EQ
( J∑

j=1

Bt

Btj

n
(
C0 −min (C0, Qtj )

) ∣∣∣Gt

)
,
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• the fair spread of a first-to-default swap

κt =
(1− δ)EQ

(
Bt

Bτ(1)
1{τ(1)≤T}

∣∣∣Gt

)

EQ
( ∑J

j=1
Bt

Btj
1{tj≤τ(1)}

∣∣∣Gt

) ,

• the fair value of a step-up corporate bond

EQ
(
(1−HT )

Bt

BT
+

∫

]t,T ]

(1−Hu)
Bt

Bu
dCu + recovery payment

∣∣∣Gt

)
.

Depending on the dimensionality of the problem, the above conditional
expectations will be evaluated either by means of Monte Carlo simulation or
through some other numerical method.

5.9 Modeling of Credit Ratings

We will now give a brief description of a generic Markovian market model
that can be efficiently used for valuation and hedging basket credit instru-
ments. The model presented below is a special case of a general approach
examined in Bielecki et al. [12]. Some preliminary empirical studies of this
model and its extensions are reported in Bielecki et al. [25, 26].

For related methods and models, the interested reader is referred to, e.g.,
Albanese and Chen [1], Chen and Filipović [52], Frey and Backhaus [86, 87],
Jarrow et al. [105], Kijima and Komoribayashi [119], and Kijima et al. [120].

Let the underlying probability space be denoted by (Ω,G,G,Q), where
Q is a risk-neutral measure inferred from the market via calibration and
G = H ∨ F is a filtration containing all information available to market
agents. The filtration H carries information about evolution of credit events,
such as changes in credit ratings or defaults of respective credit names. An
additional filtration F is called a reference filtration; it is meant to contain the
information pertaining to the evolution of relevant macroeconomic variables.

We consider n credit names and we assume that the credit quality of each
reference entity falls to the set K = {1, 2, . . . , K} of K rating categories,
where, by convention, the category K corresponds to default.

Let Xi, i = 1, 2, . . . , n be some stochastic processes defined on (Ω,G,Q)
and taking values in the finite state space K, where the process Xi represents
the evolution of credit ratings of the ith underlying entity. Then we define
the default time τi of the ith credit name by setting

τi = inf { t ∈ R+ : Xi
t = K}.
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We postulate that the default state K is absorbing, so that for each credit
name the default event can only occur once.

We denote by X = (X1, X2, . . . , Xn) the joint credit ratings process for a
given portfolio of n credit names. The state space of X is thus X = Kn and
the elements of X will be denoted by x. We postulate that the filtration H is
the natural filtration of the process X, whereas the reference filtration F is
generated by an Rd-valued factor process Y , which represents the evolution
of other relevant economic variables, like interest rates or equity prices.

5.9.1 Infinitesimal Generator

Under the standing assumption that the factor process Y is Rd-valued, the
state space for the process M = (X, Y ) equals X ×Rd. At the intuitive level,
we wish to model the process M = (X, Y ) as a combination of a Markov
chain X modulated by a Lévy-type process Y and a Lévy-type process Y
modulated by a Markov chain X.

For this purpose, we start by making a general postulate that the infini-
tesimal generator A of M is given by the expression

Af(x, y) =
1
2

d∑

l,m=1

alm(x, y)∂l∂mf(x, y) +
d∑

l=1

bl(x, y)∂lf(x, y)

+ γ(x, y)
∫

Rd

(
f(x, y + g(x, y, y′))− f(x, y)

)
Π(x, y; dy′)

+
∑

x′∈X
λ(x, x′; y)f(x′, y),

where λ(x, x′; y) ≥ 0 for every x = (x1, x2, . . . , xn) 6= (x′1, x
′
2, . . . , x

′
n) = x′

and
λ(x, x; y) = −

∑

x′∈X , x′ 6=x

λ(x, x′; y).

Here ∂l denotes the partial derivative with respect to the variable yl. The
existence and uniqueness of a Markov process M with the generator A will
follow (under appropriate technical conditions) from the classic results re-
garding solutions to martingale problems.

We find it convenient to refer to X (Y , respectively) as the Markov chain
component of M (the jump-diffusion component of M , respectively). At
any time t, the intensity matrix of the Markov chain component is given as
Λt = [λ(x, x′;Yt)]x,x′∈X . The jump-diffusion component satisfies the SDE

dYt = b(Xt, Yt) dt + σ(Xt, Yt) dWt +
∫

Rd

g(Xt−, Yt−, y′)π(Xt−, Yt−; dy′, dt),
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where, for any fixed (x, y) ∈ X ×Rd, π(x, y; dy′, dt) is a Poisson measure with
the intensity measure γ(x, y)Π(x, y; dy′)dt and σ(x, y) satisfies the equality
σ(x, y)σ(x, y)T = a(x, y).

Remarks 5.9.1. If we take g(x, y, y′) = y′ and we suppose that the coef-
ficients σ = [σij ], b = [bi], γ and the measure Π do not depend on x and y
then the factor process Y is a Poisson-Lévy process with the characteristic
triplet (a, b, ν), where the diffusion matrix is a(x, y) = σ(x, y)σ(x, y)T, the
drift vector equals b(x, y) and the Lévy measure ν satisfies ν(dy) = γΠ(dy).

In order to proceed further with the analysis of the model, we need to
provide with more structure the Markov chain component of the infinitesimal
generator A. To this end, we make the following standing assumption.

Assumption (M). The infinitesimal generator of the process M = (X, Y )
has the following form

Af(x, y) =
1
2

d∑

l,m=1

alm(x, y)∂l∂mf(x, y) +
d∑

l=1

bl(x, y)∂lf(x, y)

+ γ(x, y)
∫

Rd

(
f(x, y + g(x, y, y′))− f(x, y)

)
Π(x, y; dy′) (5.5)

+
n∑

i=1

∑

xi′∈K
λi(x, x′i; y)f(x′i, y),

where we use the shorthand notation x′i = (x1, x2, . . . , xi−1, x
′
i, xi+1, . . . , xn).

Note that x′i is simply the vector x = (x1, x2, . . . , xn) with the ith coordinate
xi replaced by x′i.

In the case of two reference credit entities (that is, when n = 2), the
infinitesimal generator A becomes

Af(x, y) =
1
2

d∑

l,m=1

alm(x, y)∂l∂mf(x, y) +
d∑

l=1

bl(x, y)∂lf(x, y)

+ γ(x, y)
∫

Rd

(
f(x, y + g(x, y, y′))− f(x, y)

)
Π(x, y; dy′)

+
∑

x′1∈K
λ1(x, x′1; y)f(x′1, y) +

∑

x′2∈K
λ2(x, x′2; y)f(x′2, y),

where x = (x1, x2), x′1 = (x′1, x2) and x′2 = (x1, x
′
2). Returning to the

general form, we have that, for x = (x1, x2) and x′ = (x′1, x
′
2),

λ(x, x′; y) =





λ1(x, x′1; y), if x2 = x′2,
λ2(x, x′2; y), if x1 = x′1,
0, otherwise.
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Similar expressions can be derived for the case of an arbitrary number
of underlying credit names. Note that the model specified by (5.5) does not
allow for simultaneous jumps of credit ratings Xi and Xi′ for i 6= i′. This
is not a serious lack of generality, however, since the ratings of both credit
names may still change in an arbitrarily small time interval. The advantage
is that, for the purpose of simulation of paths of process X, rather than
dealing with Kn × Kn intensity matrix [λ(x, x′; y)], it will be sufficient to
deal with n intensity matrices [λi(x, x′i; y)] of dimension K × K (for any
fixed y). Within the present setup, the current credit rating of the credit
name i has a direct influence on the level of the transition intensity for the
current rating of the credit name i′, and vice versa. This property, known
as frailty, is likely to contribute to the default contagion effect.

Remarks 5.9.2. (i) It is clear that we can incorporate in the model the
case when at least some components of the factor process Y follow Markov
chains themselves. This feature is important, as factors such as economic
cycles may be modeled as Markov chains. It is known that default rates are
strongly related to business cycles.
(ii) Some of the factors Y 1, Y 2, . . . , Y d may represent cumulative duration
of visits of processes Xi in particular rating states. For example, we may set

Y 1
t =

∫ t

0

1{X1
u=1} du.

so that b1(x, y) = 1{x1=1}(x) and the corresponding components of coeffi-
cients σ and g equal zero.
(iii) In the area of structural arbitrage, the so-called credit–to–equity models
and/or equity–to–credit models are studied. The market model presented
in this section nests both types of interactions. For example, if one of the
factors is the price process of the equity issued by a credit name, and if credit
migration intensities depend on this factor (either implicitly or explicitly),
then we have a equity–to–credit type interaction. If the credit rating of a
given name impacts the equity dynamics for this name (and/or some other
names), then we deal with a credit–to–equity type interaction.

Let Hi
t = 1{t≥τi} for every i = 1, 2, . . . , n and let the process H be defined

as Ht =
∑n

i=1 Hi
t . It can be observed that the process S = (H, X, Y ) is a

Markov process on the state space {0, 1, . . . , n}×X ×Rd with respect to its
natural filtration. Given the form of the infinitesimal generator of the process
(X,Y ), we can easily describe the infinitesimal generator of the process
(H, X, Y ). To this end, it is enough to observe that the transition intensity
at time t of the component H from the state Ht to the state Ht + 1 is equal
to

∑n
i=1 λi(Xt,K; X(i)

t , Yt), provided that Ht < n (otherwise, the transition
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intensity equals zero), where we write X
(i)
t = (X1

t , . . . , Xi−1
t , Xi+1

t , . . . , Xn
t )

and we set λi(xi, x
′
i; x

(i), y) = λi(x, x′i; y).

5.9.2 Transition Intensities for Credit Ratings

One should always strive to find a right balance between the realistic features
of a financial model and its complexity. This issue frequently nests the issues
of functional representation of a model, as well as its parameterization. In
what follows, we present an example of a particular model for credit ratings,
which is rather arbitrary, but is nevertheless relatively simple, and thus it
should be easy to estimate and/or calibrate.

Let X̄t be the average credit rating at time t, so that

X̄t =
1
n

n∑

i=1

Xi
t .

Let L = {i1, i2, . . . , ibn} be a subset of the set of all credit names, where
n̂ < n. We consider L to be a collection of “major players” whose economic
situation, reflected by their credit ratings, effectively impacts all other credit
names in the pool. The following exponential-linear regression model appears
to be a plausible model for the ratings transitions intensities

ln λi(x, x′i; y) = αi,0(xi, x
′
i) +

d∑

l=1

αi,l(xi, x
′
i)yl + βi,0(xi, x

′
i)h

+
bn∑

k=1

βi,k(xi, x
′
i)xk + β̃i(xi, x

′
i)x̄ + β̂i(xi, x

′
i)(xi − x′i), (5.6)

where h represents a generic value of Ht, so that h =
∑n

i=1 1{K}(xi). Simi-
larly, x̄ stands for a generic value of X̄t, that is, x̄ = 1

n

∑n
i=1 xi.

The number of parameters involved in (5.6) can easily be controlled by
the number of model variables, in particular, the number of factors and the
number of credit ratings, as well as structure of the transition matrix (see
Section 5.9.9 below). In addition, the reduction of the number of parameters
can be obtained if the pool of all n credit names is partitioned into a (small)
number of homogeneous sub-pools. All of this is a matter of a practical
implementation of a specific Markovian model of credit ratings.

Assume, for instance, that there are ñ << n homogeneous sub-pools of
credit names, and the parameters α, β, β̃ and β̂ in (5.6) do not depend on
xi, x

′
i. Then the migration intensities (5.6) are parameterized by ñ(d+ n̂+4)

parameters.
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5.9.3 Conditionally Independent Credit Migrations

Suppose that the transition intensities λi(x, x′i; y) do not depend on the
vector x(i) = (x1, x2, . . . , xi−1, xi+1, . . . , xn) for every i = 1, 2, . . . , n. In
addition, assume that the dynamics of the factor process Y do not depend
on the migration process X. It turns out that in this case, given the structure
of our generator as in (5.5), the credit ratings processes Xi, i = 1, 2, . . . , n,
are conditionally independent given the sample path of the factor process Y .

We shall illustrate this point in the case of only two credit names in
the pool (i.e., for n = 2) and assuming that there is no factor process, so
that conditional independence really means independence between migration
processes X1 and X2. For this, suppose that X1 and X2 are independent
Markov chains, each taking values in the state space K and with the infini-
tesimal generator matrices Λ1 and Λ2, respectively. It is clear that the joint
process X = (X1, X2) is a Markov chain on K × K. An easy calculation
reveals that the infinitesimal generator of the process X is given as

Λ = Λ1 ⊗ IdK + IdK ⊗ Λ2,

where IdK is the identity matrix of size K and ⊗ denotes the matrix tensor
product. This result is consistent with structure (5.5) in the present case.

5.9.4 Examples of Markovian Models

We will now present three pertinent examples of Markovian market models.

Markov Chain Credit Ratings Process

In the first example, we assume that there is no factor process Y and thus we
only deal with a ratings migration process X. In this situation, an attractive
and efficient way to model credit ratings is to postulate that X is a birth-
and-death process with absorption at state K. The intensity matrix Λ is here
tri-diagonal. Let us write pt(k, k′) = Q(Xs+t = k′ |Xs = k).

The transition probabilities pt(k, k′) are known to satisfy the following
system of ordinary differential equations, for t ∈ R+ and k′ = 1, 2, . . . ,K,

dpt(1, k′)
dt

= −λ(1, 2)pt(1, k′) + λ(1, 2)pt(2, k′),

dpt(k, k′)
dt

= λ(k, k − 1)pt(k − 1, k′)− (λ(k, k − 1) + λ(k, k + 1))pt(k, k′)

+ λ(k, k + 1)pt(k + 1, k′)

for k = 2, 3, . . . , K − 1, whereas for k = K we simply have that

dpt(K, k′)
dt

= 0,
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with the initial conditions p0(k, k′) = 1{k=k′}. Once the transition intensi-
ties λ(k, k′) are specified, the above system can be easily solved. Note, in
particular, that pt(K, k′) = 0 for every t if k′ 6= K. The advantage of this
representation is that the number of parameters can be kept relatively small.

A more flexible credit ratings model is obtained if we allow for jumps to
the default state K from any other state. In that case, the intensity matrix
is no longer tri-diagonal and the ordinary differential equations for transition
probabilities take the following form, for t ∈ R+ and k′ = 1, 2, . . . ,K,

dpt(1, k′)
dt

=−(λ(1, 2)+λ(1,K))pt(1, k′)+λ(1, 2)pt(2, k′)+λ(1,K)pt(K, k′)

dpt(k, k′)
dt

= λ(k, k − 1)pt(k−1, k′)− (λ(k, k−1) + λ(k, k+1))pt(k, k′)

+ λ(k, K)pt(k, k′)+λ(k, k+1)pt(k+1, k′)+λ(k,K)pt(K, k′)

for k = 2, 3, . . . , K − 1 and for k = K

dpt(K, k′)
dt

= 0,

with initial conditions p0(k, k′) = 1{k=k′}.

Remark 5.9.1. Some authors model migrations of credit ratings using a
proxy diffusion, possibly with a jump to default. The birth-and-death process
with jumps to default furnishes a Markov chain counterpart of such proxy
diffusion models. The nice feature of the Markov chain model is that, at least
in principle, the credit ratings are here observable state variables, whereas
in the case of a proxy diffusion model they are not directly observable.

Diffusion-type Factor Process

We will now extend the Markov chain process by adding a factor process Y .
We may postulate, for instance, that the factor process follows a diffusion
process and that the generator of the Markov process M = (X,Y ) takes the
following form

Af(x, y) =
1
2

d∑

l,m=1

alm(x, y)∂l∂mf(x, y) +
d∑

l=1

bl(x, y)∂lf(x, y)

+
∑

x′∈K, x′ 6=x

λ(x, x′; y)(f(x′, y)− f(x, y)).

Let φ(t, x, y, x′, y′) be the transition probability of M , specifically,

φ(t, x, y, x′, y′) dy′ = Q(Xs+t = x′, Ys+t ∈ dy′ |Xs = x, Ys = y).
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In order to determine the function φ, one needs to examine the Kol-
mogorov equation of the form

dv(s, x, y)
ds

+ Av(s, x, y) = 0. (5.7)

For the generator A of the present form, the corresponding equation (5.7)
is commonly known as the reaction-diffusion equation (see, for instance,
Becherer and Schweizer [10]). Let us mention that a reaction-diffusion equa-
tion is a special case of a more general integro-partial-differential equation,
which was extensively studied in the mathematical literature.

Forward CDS Spread Model

Suppose now that the factor process Yt = κ(t, TS , TM ) is the forward CDS
spread (for the definition of κ(t, TS , TM ), see Section 5.9.6 below). We now
postulate that the generator of M = (X, Y ) is

Af(x, y) =
1
2
y2a(x)

d2f(x, y)
dy2

+
∑

x′∈K, x′ 6=x

λ(x, x′)(f(x′, y)− f(x, y)),

so that the forward CDS spread process satisfies the following SDE

dκ(t, TS , TM ) = κ(t, TS , TM )σ(Xt) dWt

for some Brownian motion process W , where σ(x) =
√

a(x). Note that
in this example κ(t, TS , TM ) is a conditionally log-Gaussian process given a
particular sample path of the credit ratings process X. Therefore, we are in
a position to make use of Proposition 5.9.1 below to value a credit default
swaption.

5.9.5 Forward Credit Default Swap

Let us first examine two examples of a single-name credit derivative. We
assume that the reference asset is a corporate bond maturing at time U
and we consider a forward CDS with the maturity date TM < U and the
start date TS < TM . If default occurs prior to or at time TS the contract
is terminated with no exchange of payments. Therefore, the two legs of this
CDS are manifestly TS-survival claims and thus the valuation of a forward
CDS is not much different from valuation of a spot CDS.

Protection Leg

Assume that the notional amount of the bond equals 1 and denote by δ a
deterministic recovery rate in case of default. Under the assumption that
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the recovery is paid at default time τ of the reference credit name, the value
at time t of the protection leg of a forward CDS is equal to, for every t ≤ TS ,

Pt = P (t, TS , TM ) = (1− δ)Bt EQ
(
1{TS<τ≤TM}B

−1
τ |Mt

)
.

The valuation of the protection leg relies on computation of this conditional
expectation for a given term structure model. In particular, if the savings
account B is a deterministic function of time then the computation reduces
to the following integration

Bt EQ
(
1{TS<τ≤TM}B

−1
τ |Mt

)
= Bt

∫ TM

TS

B−1
u Q(τ ∈ du |Mt).

Premium Leg

Let us denote by t1 < t2 < · · · < tJ the tenor of premium payments, where
TS < t1 < · · · < tJ ≤ TM . We assume that the premium accrual covenant is
in force, so that the cash flows associated with the premium leg are

κ
( J∑

j=1

1{tj<τ}1tj (t) +
J∑

j=1

1{tj−1<τ≤tj}1τ (t)
t− tj−1

tj − tj−1

)
.

where κ is the fixed CDS spread. Consequently, the value at time t ∈ [0, TS ]
of the premium leg equals κAt, where At = A(t, TS , TM ) equals

At = EQ
(
1{TS<τ}

J∑

j=1

[ Bt

Btj

1{tj<τ} +
Bt

Bτ
1{tj−1<τ≤tj}

τ − tj−1

tj − tj−1

]∣∣∣ Mt

)
.

Under the assumption that B is deterministic and the conditional distribu-
tion Q(τ ≤ s |Mt) is known, this conditional expectation can be evaluated.

5.9.6 Credit Default Swaptions

We consider a forward credit default swap starting at TS and maturing at
TM > TS , as described in the previous section. Our next goal is to examine
valuation of the corresponding credit default swaption with expiry date T <
TS and the strike spread K. The swaption’s payoff at its expiry date T
equals (

PT −KAT

)+
,

and thus the swaption’s price equals, for every t ∈ [0, T ],

Bt EQ
(
B−1

T

(
PT −KAT

)+
∣∣∣ Mt

)

= Bt EQ
(
B−1

T AT

(
κ(T, TS , TM )−K

)+
∣∣∣ Mt

)
,
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where the process κ(t, TS , TM ) = Pt/At, t ∈ [0, TS ], represents the forward
CDS spread.

Note that the random variables Pt and At are strictly positive on the
event {τ > t} for t ≤ T < TS and thus the forward CDS spread κ(t, TS , TM )
enjoys this property as well.

Conditionally Gaussian Case

In order to provide a more explicit representation for the value of a credit
default swaption, we assume that B is deterministic and the forward CDS
spread is conditionally log-Gaussian under Q. It is worth recalling that an
example of such a model was presented in Section 5.9.4.

Proposition 5.9.1. Suppose that, on the event {τ > t} and for arbitrary
t < t1 < · · · < tk ≤ T , the conditional distribution

Q
(
κ(tm, TS , TM ) ≤ km, m = 1, 2, . . . , k

∣∣∣ σ(Mt) ∨ FX
T

)

is lognormal, Q-a.s. Let us denote by σ(u, TS , TM ), u ∈ [t, T ], the conditional
volatility of the process κ(u, TS , TM ), u ∈ [t, T ], with respect to the σ-field
σ(Mt)∨FX

T . Then the price at time t of the credit default swaption is given
by the expression

Bt EQ
(
B−1

T

(
PT −KAT

)+
∣∣∣ Mt

)

= Bt EQ
(
1{τ>T}AT B−1

T

[
κtN(d+(t, T ))−KN(d−(t, T ))

] ∣∣∣ Mt

)
,

where, for brevity, we write κt = κ(t, TS , TM ). Moreover, we denote

d±(t, T ) =
ln κt

K

υt,T
± υt,T

2
,

and

υ2
t,T = υ(t, T, TS , TM )2 =

∫ T

t

σ(u, TS , TM )2 du.

Proof. We start by noting that

Bt EQ
(
B−1

T

(
PT −KAT

)+
∣∣∣ Mt

)

= Bt EQ
(
1{τ>T}B

−1
T

(
PT −KAT

)+
∣∣∣Mt

)

= Bt EQ
(
1{τ>T}B

−1
T EQ

((
PT −KAT

)+ |σ(Mt) ∨ FX
T

) ∣∣∣ Mt

)

= Bt EQ
(
1{τ>T}AT B−1

T EQ
((

κT −K
)+ |σ(Mt) ∨ FX

T

) ∣∣∣ Mt

)
.
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In view of the present assumptions, we also have that

EQ
((

κT −K
)+

∣∣∣ σ(Mt) ∨ FX
T

)

= κtN

(
ln κt

K

υt,T
+

υt,T

2

)
−KN

(
ln κt

K

υt,T
− υt,T

2

)
.

By combining the above equalities, we arrive at the stated formula. ¤

5.9.7 Spot kth-to-Default Credit Swap

Let us now examine the valuation of credit derivatives with several under-
lying credit names within the present framework. Feasibility of closed-form
computations of relevant conditional expectations depends to a large extent
on the type and amount of information one wishes to utilize. Typically, in
order to efficiently deal with exact calculations of conditional expectations,
one will need to amend specifications of the underlying model so that infor-
mation used in calculations is given by a coarser filtration, or perhaps by
some proxy filtration.

In this subsection, we will discuss the valuation of a generic kth-to-default
credit swap relative to a portfolio of n reference corporate bonds. The de-
terministic notional value of the ith constituent bond is denoted by Ni and
the corresponding deterministic recovery rate equals δi.

The maturities of the bonds in the portfolio are T1, T2, . . . , Tn, whereas
the maturity of the swap is TM < min {T1, T2, . . . , Tn}. Let us consider, for
instance, a plain-vanilla basket CDS written on such a portfolio of corporate
bonds under the convention of the fractional recovery of par value.

This means that, on the event {τ(k) < TM}, the protection buyer receives
at time τ(k) the cumulative compensation

∑

i∈Lk

(1− δi)Ni,

where Lk is the (random) set of all constituent credit names that defaulted in
the time interval ]0, τ(k)]. This means that the protection buyer is protected
against the cumulative effect of the first k defaults. Recall that, in view of
the model assumptions, the possibility of simultaneous defaults is excluded.

Protection Leg

The cash flows of the protection leg are given by the expression
∑

i∈Lk

(1− δi)Ni1{τ(k)≤TM}1τ(k)(t).
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Hence the value at time t of the protection leg is equal to

P
(k)
t = P (k)(t, TM ) = Bt EQ

(
1{t<τ(k)≤TM}B

−1
τ(k)

∑

i∈Lk

(1− δi)Ni

∣∣∣ Mt

)
.

In general, this conditional expectation will need to be evaluated numerically
by means of a Monte Carlo simulation.

A special case of a kth-to-default credit swap is when the protection
buyer is protected against losses associated with the kth default only. In
that case, the cash flow associated with the default protection leg is given
by the expression

(1− δι(k))Nι(k)1{τ(k)≤TM}1τ(k)(t) =
n∑

i=1

(1− δi)Ni1{Hτi
=k}1{τi≤TM}1τi

(t),

where ι(k) stands for the identity of the kth-to-default credit name. Under
the assumption that the numéraire process B is deterministic, it is possible to
represent the value at time t of the protection leg as the following conditional
expectation

P
(k)
t =

n∑

i=1

Bt EQ
(
1{t<τi≤TM}1{Hτi

=k}B−1
τi

(1− δi)Ni

∣∣∣ Mt

)

=
n∑

i=1

Bt(1− δi)Ni

∫ TM

t

B−1
u Q(Hu = k | τi = u,Mt)Q(τi ∈ du |Mt).

Note also that the conditional probability Q(Hu = k | τi = u, Mt) can be
approximated by the following expression

Q(Hu = k | τi = u,Mt) ≈
Q(Hu = k, Xi

u−ε 6= K,Xi
u = K |Mt)

Q(Xi
u−ε 6= K, Xi

u = K |Mt)
.

Therefore, if the number n of credit names is small, so that the Kolmogorov
equations for the conditional distribution of the process (H,X, Y ) can be
solved, the value of P

(k)
t can be approximated analytically.

Premium Leg

Let t1 < t2 < · · · < tJ denote the tenor of premium payments, where
0 = t0 < t1 < · · · < tJ < TM . Under the assumption that the premium
accrual covenant is in force, the cash flows associated with the premium leg
of the kth-to-default CDS admit the following representation

κ(k)

( J∑

j=1

1{tj<τ(k)}1tj (t) +
J∑

j=1

1{tj−1<τ(k)≤tj}1τ(k)(t)
t− tj−1

tj − tj−1

)
,

where κ(k) is the fixed spread of the kth-to-default CDS.
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Consequently, the value at time t of the premium leg equals κ(k)A
(k)
t ,

where

A
(k)
t = A(k)(t, TM ) = EQ

(
1{t<τ(k)}

J∑

j=j(t)

Bt

Btj

1{tj<τ(k)}
∣∣∣ Mt

)

+ EQ
(
1{t<τ(k)}

J∑

j=j(t)

Bt

Bτ(k)

1{tj−1<τ(k)}≤tj}
τ(k) − tj−1

tj − tj−1

∣∣∣ Mt

)
,

where j(t) is the smallest integer such that tj(t) > t. Again, in general, the
above conditional expectation will need to be approximated by simulation.
And again, for a small portfolio size n, if either exact or a numerical so-
lution of relevant Kolmogorov equations can be derived, then an analytical
computation of the expectation can be done, at least in principle.

5.9.8 Forward kth-to-Default Credit Swap

A forward kth-to-default credit swap has an analogous structure to a for-
ward CDS. The notation used here is consistent with the notation that was
introduced in Sections 5.9.5 and 5.9.7.

Protection Leg

The cash flow associated with the protection leg of a forward kth-to-default
credit swap can be expressed as follows

∑

i∈Lk

(1− δi)Ni1{TS<τ(k)≤TM}1τ(k)(t).

Consequently, the value of the protection leg equals, for every t ∈ [0, TS ],

P
(k)
t = P (k)(t, TS , TM ) = Bt EQ

(
1{TS<τ(k)≤TM}B

−1
τ(k)

∑

i∈Lk

(1− δi)Ni

∣∣∣ Mt

)
.

Premium Leg

As before, let t1 < t2 < · · · < tJ be the tenor of premium payments, where
TS < t1 < · · · < tJ < TM . Under the premium accrual covenant, the cash
flows associated with the premium leg are

κ(k)

( J∑

j=1

1{tj<τ(k)}1tj (t) +
J∑

j=1

1{tj−1<τ(k)≤tj}1τ(k)(t)
t− tj−1

tj − tj−1

)
,

where κ(k) is the fixed spread.
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Therefore, the value at time t of the premium leg is κ(k)A
(k)
t , where the

random variable A
(k)
t = A(k)(t, TS , TM ) is given by the expression

EQ
(
1{t<τ(k)}

[ J∑

j=1

Bt

Btj

1{tj<τ} +
J∑

j=1

Bt

Bτ
1{tj−1<τ(k)≤tj}

τ − tj−1

tj − tj−1

] ∣∣∣ Mt

)
.

We have only presented here two examples of credit derivatives with
several reference credit names. Computations of arbitrage prices and fair
spreads for other examples of basket credit derivative involve evaluating the
conditional expectations presented in Section 5.8.5.

It is worth stressing that the choice of a particular model for the valuation
of a given class of basket credit derivatives should be motivated by arguments
regarding its practical relevance as well as its mathematical tractability. In
the remaining part of this section, we will examine some issues arising in this
context.

5.9.9 Model Implementation

Let us now briefly discuss some practical problems related to the model
implementation. As already mentioned, when one deals with basket products
involving several reference credit names, direct computations may not be
feasible, since the cardinality of the state space K for the migration process
X is equal to Kn. Thus, for example, in case of K = 18 rating categories,
as in Moody’s ratings,1 and in case of a portfolio of n = 100 credit names,
the cardinality of the state space K equals 18100.

If one aims to derive closed-form expressions for conditional expectations,
but K is large, then, typically, it will be infeasible to work directly with in-
formation provided by the state vector (X, Y ) = (X1, X2, . . . , Xn, Y ) and
with the corresponding infinitesimal generator A. An essential reduction in
the amount of information that can be effectively used for analytical compu-
tations will be required. This goal can be achieved by reducing the number
of rating categories; this is typically done by considering only two categories:
pre-default and default.

This reduction may still not be sufficient enough in some circumstances,
however, and thus further simplifying structural modifications to the model
may need to be called for. Some types of additional modifications – such as:
homogeneous grouping of credit names and mean-field interactions between
credit names – were proposed in the financial literature to address this im-
portant issue. The interested reader is referred, for instance, to the paper
by Frey and Backhaus [86].

1We refer here to the following rating categories attributed by Moody’s: Aaa, Aa1,
Aa2, Aa3, A1, A2, A3, Baa1, Baa2, Baa3, Ba1, Ba2, Ba3, B1, B2, B3, Caa, D(efault).
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Recursive Simulation Procedure

When closed-form computations are not feasible, but one does not want to
give up on potentially available information, an alternative may be to carry
approximate calculations by means of either approximating some involved
formulae and/or by simulating sample paths of underlying random processes.
We will briefly examine the Monte Carlo simulations approach.

In general, a simulation of the evolution of the process X will be infeasible,
due to the curse of dimensionality. However, by virtue of the postulated
structure of the infinitesimal generator A (see (5.5)), a simulation of the
evolution of the process X reduces to a recursive simulation of the evolution
of processes Xi, whose state spaces are only of size K each. To facilitate
simulations even further, we also postulate that each migration process Xi

behaves like a birth-and-death process with absorption at default and with
possible jumps to default from every intermediate state (see Section 5.9.4).

Recall that we denote X
(i)
t = (X1

t , . . . , Xi−1
t , Xi+1

t , . . . , Xn
t ).

Given the state (x(i), y) of the process (X(i), Y ), the intensity matrix of
the ith migration process is sub-stochastic and is given as




1 2 · · · K − 1 K
1 λi(1, 1) λi(1, 2) · · · 0 λi(1,K)
2 λi(2, 1) λi(2, 2) · · · 0 λi(2,K)
3 0 λi(3, 2) · · · 0 λi(3,K)
...

...
...

. . .
...

...
K − 1 0 0 · · · λi(K − 1, K − 1) λi(K − 1,K)
K 0 0 · · · 0 0




,

where we use the shorthand notation λi(xi, x
′
i) = λi(x, x′i; y).

Also, we find it convenient to write λi(xi, x
′
i;x

(i), y) = λi(x, x′i; y) in what
follows. Then the diagonal elements are given as follows, for xi 6= K,

λi(x, x; y) = −λi(xi, xi − 1; x(i), y)− λi(xi, xi + 1; x(i), y)− λi(xi,K;x(i), y)

−
∑

l 6=i

(
λl(xl, xl − 1; x(l), y) + λl(xl, xl + 1;x(l), y) + λl(xl,K; x(l), y)

)

with the convention that λi(1, 0; x(i), y) = 0 for every i = 1, 2, . . . , n.
It is implicit in the above description that λi(K, xi; x(i), y) = 0 for any

i = 1, 2, . . . , n and xi = 1, 2, . . . , K. Suppose now that the current state of
the process (X, Y ) is (x, y). Then the intensity of a jump of the process X
equals

λ(x, y) := −
n∑

i=1

λi(x, x; y).



5.9. Modeling of Credit Ratings 267

Conditional on the occurrence of a jump of X, the probability distribution
of a jump for the component Xi, i = 1, 2, . . . , n, is given as follows:

• the probability of a jump from xi to xi − 1 equals

pi(xi, xi − 1;x(i), y) =
λi(xi, xi − 1;x(i), y)

λ(x, y)
,

• the probability of a jump from xi to xi + 1 equals

pi(xi, xi + 1; x(i), y) =
λi(xi, xi + 1; x(i), y)

λ(x, y)
,

• the probability of a jump from xi to K equals

pi(xi,K;x(i), y) =
λi(xi,K;x(i), y)

λ(x, y)
.

As expected, the following equality is valid

n∑

i=1

(
pi(xi, xi − 1;x(i), y) + pi(xi, xi + 1; x(i), y) + pi(xi,K;x(i), y)

)
= 1.

For a generic state x = (x1, x2, . . . , xn) of the migration process X, we
define the jump space

J (x) =
n⋃

i=1

{(xi − 1, i), (xi + 1, i), (K, i)}

with the convention that (K + 1, i) = (K, i), where the shorthand notation
(a, i) refers to the ith component of X. Given that the process (X, Y ) is in the
state (x, y) and conditional on the occurrence of a jump of X, the process X
jumps to a point in the space J (x) according to the probability distribution
denoted by p(x, y) and determined by the probabilities pi described above.
Thus, if a random variable ζ has the distribution given by p(x, y) then we
have that, for any (x′i, i) ∈ J (x),

Q(ζ = (x′i, i)) = pi(xi, x
′
i; x

(i), y).

Simulation Algorithm

We conclude this section by presenting in some detail the simulation algo-
rithm for the case when the dynamics of the factor process Y do not depend
on the credit ratings process X. The general case appears to be much harder.
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Under the assumption that the dynamics of the factor process Y do not
depend on the process X, the simulation procedure splits into two steps. In
Step 1, a sample path of the process Y is simulated; then, in Step 2, for a
given sample path Y , a sample path of the process X is simulated.

We consider here simulations of sample paths over some generic time
interval, say [t1, t2], where 0 ≤ t1 < t2. We assume that the number of
defaulted names at time t1 is less than k, that is Ht1 < k. We conduct the
simulation either until the kth default occurs or until time t2, depending on
whichever occurs first.

Step 1: The dynamics of the factor process are now given by the SDE

dYt = b(Yt) dt + σ(Yt) dWt +
∫

Rd

g(Yt−, y)π(Yt−; dy, dt), t ∈ [t1, t2].

Any standard procedure can be used to simulate a sample path of Y . Let us
denote by Ŷ the simulated sample path of Y .

Step 2: Once a sample path of Y has been simulated, simulate a sample
path of X on the interval [t1, t2] until the kth default time.

We exploit the fact that, according to our assumptions about the infini-
tesimal generator A, the components of the credit ratings process X do not
have simultaneous jumps. Therefore, the following algorithm for simulating
the evolution of X appears to be feasible:

Step 2.1: Set the counter m = 1 and simulate the first jump time of the
process X in the time interval [t1, t2]. Towards this end, simulate first a
value, say η̂1, of a unit exponential random variable η1. The simulated
value of the first jump time, τX

1 , is then given as

τ̂X
1 = inf

{
t ∈ [t1, t2] :

∫ t

t1

λ(Xt1 , Ŷu) du ≥ η̂1

}
,

where by convention the infimum over an empty set is +∞. If τ̂X
1 =

+∞, set the simulated value of the kth default time to be τ̂(k) = +∞,
stop the current run of the simulation procedure and go to Step 3.
Otherwise, go to Step 2.2.

Step 2.2: Simulate the jump of X at time τ̂X
1 by drawing from the distri-

bution p(Xt1 , ŶbτX
1 −) (see the discussion in Section 5.9.9). In this way,

one obtains a simulated value X̂bτX
1

, as well as the simulated value of

the number of defaults ĤbτX
1

. If ĤbτX
1

< k then let m := m + 1 and go
to Step 2.3; otherwise, set τ̂(k) = τ̂X

1 and go to Step 3.
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Step 2.3: Simulate the mth jump of process X. Towards this end, simu-
late a value, say η̂m, of a unit exponential random variable ηm. The
simulated value of the mth jump time τX

m is obtained from the formula

τ̂X
m = inf

{
t ∈ [τ̂X

m−1, t2] :
∫ t

bτX
m−1

λ(XbτX
m−1

, Ŷu) du ≥ η̂m

}
.

In case τ̂X
m = +∞, let the simulated value of the kth default time to

be τ̂(k) = +∞; stop the current run of the simulation procedure and
go to Step 3. Otherwise, go to Step 2.4.

Step 2.4: Simulate the jump of X at time τ̂X
m by drawing from the distrib-

ution p(XbτX
m−1

, ŶbτX
m−). In this way, produce a simulated value X̂bτX

m
, as

well as the simulated value of the number of defaults ĤbτX
m

. If ĤbτX
m

< k,
let m := m + 1 and go to Step 2.3; otherwise, set τ̂(k) = τ̂X

m and go to
Step 3.

Step 3: Calculate a simulated value of a relevant functional. For example,
in case of the kth-to-default CDS, compute

P̂
(k)
t1 = 1{t1<bτ(k)≤T}B̂t1B̂

−1
bτ(k)

∑

i∈ bLk

(1− δi)Ni

and

Â
(k)
t1 =

J∑

j=j(t1)

B̂t1

B̂tj

1{tj<bτ(k)} +
J∑

j=j(t1)

B̂t1

B̂bτ(k)

1{tj−1<bτ(k)≤tj}
τ̂(k) − tj−1

tj − tj−1
,

where, as before, the ‘hat’ indicates that we deal with simulated values.

Concluding Remarks

The issue of evaluating functionals associated with multiple credit migrations
is prominent with regard to measuring and managing of portfolio credit risk.
In some segments of the credit derivatives market, only the deterioration of
the value of a portfolio of debts (bonds or loans) due to defaults is essential.
For instance, such is the situation regarding the tranches of both cash and
synthetic collateralized debt obligations, as well as the tranches of traded
credit default swap indices, such as CDX and iTraxx.

It is rather clear, however, that a valuation model reflecting the possibil-
ity of intermediate credit migrations through other ratings classes, and not
only defaults, is called for in order to better account for changes in creditwor-
thiness of the reference credit entities. Likewise, for the purpose of managing
risks of a debt portfolio, it is necessary to account for changes in value of the
portfolio due to variations in credit ratings of constituent credit names.



270 Chapter 5. Dependent Defaults



Appendix A

Complements

In some credit risk models, the need to model a sequence of successive de-
faults may arise. This can be achieved by utilizing the F-conditional Poisson
process, which is also known as the doubly stochastic Poisson process. The
general idea is quite similar to the canonical construction of a single random
time (cf. Section 3.2.2). We start by assuming that we are given a stochas-
tic process Λ, to be interpreted as the hazard process, and we construct a
jump process, with unit jump size, such that the probabilistic features of
consecutive jump times are governed by the hazard process Λ.

A.1 Standard Poisson Process

We start be recalling the definition of the standard Poisson process.

Definition A.1.1. A process N defined on a probability space (Ω,G,P)
is called the (standard) Poisson process with a constant intensity λ with
respect to the filtration G if N0 = 0 and for any 0 ≤ s < t the following two
conditions are satisfied:
(i) the increment Nt −Ns is independent of the σ-field Gs,
(ii) the increment Nt − Ns has the Poisson law with parameter λ(t − s);
specifically, for any k = 0, 1, . . . we have

P(Nt −Ns = k | Gs) = P(Nt −Ns = k) =
λk(t− s)k

k!
e−λ(t−s).

The Poisson process of Definition A.1.1 is termed time-homogeneous,
since the probability law of the increment Nt+h − Ns+h is invariant with
respect to the shift h ≥ −s. In particular, for arbitrary s < t the probability
law of the increment Nt −Ns coincides with the law of the random variable
Nt−s. Let us finally observe that, for every 0 ≤ s < t,

EP(Nt −Ns | Gs) = EP(Nt −Ns) = λ(t− s). (A.1)

It is standard to take a version of the Poisson process whose sample paths
are, with probability 1, right-continuous stepwise functions with all jumps of
size 1.
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Let us set τ0 = 0 and let us denote by τ1, τ2, . . . the G-stopping times
given as the random moments of the successive jumps of N . For any k =
0, 1, . . .

τk+1 = inf { t > τk : Nt 6= Nτk
} = inf { t > τk : Nt −Nτk

= 1}.
One shows without difficulties that P( limk→∞ τk = ∞) = 1. It is convenient
to introduce the sequence (ξk, k ∈ N) of non-negative random variables,
where ξk = τk− τk−1 for every k ∈ N. Let us quote the following well known
result.

Proposition A.1.1. The random variables ξk, k ∈ N are mutually indepen-
dent and identically distributed, with the exponential law with parameter λ,
that is, for any k ∈ N we have, for every t ∈ R+,

P(ξk ≤ t) = P(τk − τk−1 ≤ t) = 1− e−λt.

Proposition A.1.1 suggests a simple construction of a process N , which
follows a time-homogeneous Poisson process with respect to its natural fil-
tration FN . Suppose that the probability space (Ω,G,P) is large enough to
support a family of mutually independent random variables ξk, k ∈ N with
the common exponential law with parameter λ > 0. We define the process
N on (Ω,G,P) by setting Nt = 0 if {t < ξ1} and, for any natural k,

Nt = k if and only if
k∑

i=1

ξi ≤ t <

k+1∑

i=1

ξi.

It can checked that the process N defined in this way is indeed a Poisson
process with parameter λ, with respect to its natural filtration FN . The
jump times of N are, of course, the random times τk =

∑k
i=1 ξi, k ∈ N.

Let us recall some useful equalities that are not hard to establish through
elementary calculations involving the Poisson law. For any a ∈ R and every
0 ≤ s < t we have

EP
(
eia(Nt−Ns)

∣∣Gs

)
= EP

(
eia(Nt−Ns)

)
= eλ(t−s)(eia−1)

and
EP

(
ea(Nt−Ns)

∣∣Gs

)
= EP

(
ea(Nt−Ns)

)
= eλ(t−s)(ea−1).

The next result is an easy consequence of (A.1) and the above formulae. The
proof of the proposition is thus left to the reader.

Proposition A.1.2. The following stochastic processes are G-martingales.
(i) The compensated Poisson process N̂ defined as

N̂t = Nt − λt.
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(ii) For any k ∈ N, the compensated Poisson process stopped at τk

M̂k
t = Nt∧τk

− λ(t ∧ τk).

(iii) For any a ∈ R, the exponential martingale Ma given by the formula

Ma
t = eaNt−λt(ea−1) = ea bNt−λt(ea−a−1).

(iv) For any fixed a ∈ R, the exponential martingale Ka given by the formula

Ka
t = eiaNt−λt(eia−1) = eia bNt−λt(eia−ia−1).

Remark A.1.1. (i) For any G-martingale M , defined on some filtered prob-
ability space (Ω,G,P), and an arbitrary G-stopping time τ , the stopped
process Mτ

t = Mt∧τ is necessarily a G-martingale. Thus, the second state-
ment of the proposition is an immediate consequence of the first, combined
with the simple observation that each jump time τk is a G-stopping time.
(ii) Consider the random time τ = τ1, where τ1 is the time of the first jump
of the Poisson process N . Then Nt∧τ = Nt∧τ1 = Ht, so that the process M̂1

introduced in part (ii) of the proposition coincides with the martingale M̂
associated with τ .
(iii) The property described in part (iii) of Proposition A.1.2 characterizes
the Poisson process in the following sense: if N0 = 0 and for every a ∈ R the
process Ma is a G-martingale, then N is the Poisson process with parameter
λ. Indeed, the martingale property of Ma yields, for every 0 ≤ s < t,

EP
(
ea(Nt−Ns)

∣∣Gs

)
= eλ(t−s)(ea−1).

By standard arguments, this implies that the random variable Nt − Ns is
independent of the σ-field Gs and has the Poisson law with parameter λ(t−s).
A similar remark applies to property (iv) in Proposition A.1.2.

Let us consider the case of a Brownian motion W and a Poisson process
N that are defined on a common filtered probability space (Ω,G,P). In par-
ticular, for every 0 ≤ s < t, the increment Wt − Ws is independent of the
σ-field Gs and has the Gaussian law N(0, t− s).

It might be useful to recall that for any real number b the following
processes follow martingales with respect to G:

Ŵt = Wt − t, mb
t = ebWt− 1

2 b2t, kb
t = eibWt+

1
2 b2t.

Proposition A.1.3. Let a Brownian motion W with respect to G and a
Poisson process N with respect to G be defined on a common probability
space (Ω,G,P). Then the processes W and N are mutually independent.
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Proof. In the first step of the proof, we will show that for any t ∈ R+ the
random variables Wt and Nt are mutually independent under P. On the one
hand, for any fixed a ∈ R and every t > 0, we have

eiaNt = 1 +
∑

0<u≤t

(eiaNt − eiaNt−) = 1 +
∫

]0,t]

(eia − 1)eiaNu− dNu,

= 1 +
∫

]0,t]

(eia − 1)eiaNu− dN̂u + λ

∫ t

0

(eia − 1)eiaNu− du.

On the other hand, for any b ∈ R, an application of the Itô formula yields
the following equality

eibWt = 1 + ib

∫ t

0

eibWu dWu − 1
2
b2

∫ t

0

eibWu du.

The continuous martingale part of the compensated Poisson process N̂ is
identically equal to 0 (since N̂ is a process of finite variation), and obviously
the processes N̂ and W have no common jumps. Therefore, using the Itô
product rule for semimartingales (see, for instance, Elliott [78] or Protter
[153]), we obtain

ei(aNt+bWt) = 1 + ib

∫ t

0

ei(aNu+bWu) dWu − 1
2
b2

∫ t

0

ei(aNu+bWu) du

+
∫

]0,t]

(eia − 1)ei(aNu−+bWu) dN̂u + λ

∫ t

0

(eia − 1)ei(aNu+bWu) du.

Let us denote fa,b(t) = EP(ei(aNt+bWt)). By taking the expectations of both
sides of the last equality, we get

fa,b(t) = 1 + λ

∫ t

0

(eia − 1)fa,b(u) du− 1
2
b2

∫ t

0

fa,b(u) du.

By solving the last equation, we obtain, for arbitrary a, b ∈ R,

EP
(
ei(aNt+bWt)

)
= fa,b(t) = eλt(eia−1)e−

1
2 b2t = EP

(
eiaNt

)
EP

(
eibWt

)
.

In view of the last equality, we conclude that, for any fixed t ∈ R+, the
random variables Wt and Nt are mutually independent under P.

In the second step, we fix 0 < t < s and we consider the following
expectation, for arbitrary real numbers a1, a2, b1 and b2,

f(t, s) := EP
(
ei(a1Nt+a2Ns+b1Wt+b2Ws)

)
.
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Let us denote ã1 = a1 + a2 and b̃1 = b1 + b2. By standard computations,
we obtain the following chain of equalities

f(t, s) = EP
(
ei(a1Nt+a2Ns+b1Wt+b2Ws)

)

= EP
(
EP

(
ei(ã1Nt+a2(Ns−Nt)+b̃1Wt+b2(Ws−Wt))

∣∣Gt

))

= EP
(
ei(ã1Nt+b̃1Wt)EP

(
ei(a2(Ns−Nt)+b2(Ws−Wt))

∣∣Gt

))

= EP
(
ei(ã1Nt+b̃1Wt)EP

(
ei(a2Ns−t+b2Ws−t)

))

= fa1,b1(s− t)EP
(
ei(ã1Nt+b̃1Wt)

)

= fa1,b1(s− t)fã1,b̃1
(t),

where we have used, in particular, the independence of the increments Ns−Nt

and Ws−Wt of the σ-field Gt and the time-homogeneity of the Poisson process
N and the Brownian motion W .

By setting b1 = b2 = 0 in the last formula, we obtain

EP
(
ei(a1Nt+a2Ns)

)
= fa1,0(s− t)fã1,0(t),

whereas the choice of a1 = a2 = 0 yields

EP
(
ei(b1Wt+b2Ws)

)
= f0,b1(s− t)f0,b̃1

(t).

It is not difficult to check that

fa1,b1(s− t)fã1,b̃1
(t) = fa1,0(s− t)fã1,0(t)f0,b1(s− t)f0,b̃1

(t).

We conclude that for any 0 ≤ t < s and arbitrary a1, a2, b1, b2 ∈ R:

EP
(
ei(a1Nt+a2Ns+b1Wt+b2Ws)

)
= EP

(
ei(a1Nt+a2Ns)

)
EP

(
ei(b1Wt+b2Ws)

)
.

This means that the random variables (Nt, Ns) and (Wt,Ws) are mutually
independent. By proceeding along the same lines, one may check that the
random variables (Nt1 , . . . , Ntn) and (Wt1 , . . . , Wtn) are mutually indepen-
dent for any n ∈ N and for any choice of 0 ≤ t1 < · · · < tn. ¤

Let us now examine the behavior of the Poisson process under a specific
equivalent change of the underlying probability measure. For a fixed T > 0,
we introduce a probability measure Q on (Ω,GT ) by setting

dQ
dP

∣∣∣
GT

= ηT , P-a.s., (A.2)

where the Radon-Nikodým density process (ηt, t ∈ [0, T ]) satisfies, for some
constant κ > −1,

dηt = ηt−κ dN̂t, η0 = 1, (A.3)
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Since Y := κN̂ is a process of finite variation, (A.3) admits a unique
solution, denoted as Et(Y ) or Et(κN̂). Clearly, this solution can be seen as a
special case of the Doléans (or stochastic) exponential. By solving (A.3) in
the path-by-path manner, we obtain

ηt = Et(κN̂) = eYt

∏

0<u≤t

(1 + ∆Yu)e−∆Yu = eY c
t

∏

0<u≤t

(1 + ∆Yu),

where Y c
t := Yt −

∑
0<u≤t ∆Yu is the path-by-path continuous part of Y .

Direct calculations show that

ηt = e−κλt
∏

0<u≤t

(1 + κ∆Nu) = e−κλt(1 + κ)Nt = eNt ln(1+κ)−κλt,

where the last equality is valid provided that κ > −1. Upon setting a =
ln(1 + κ) in part (iii) of Proposition A.1.2, we obtain η = Ma; this confirms
that the process η is a G-martingale under P. We have thus proved the
following result.

Lemma A.1.1. Assume that κ > −1. The unique solution η to the SDE
(A.3) is an exponential G-martingale under P. Specifically,

ηt = eNt ln(1+κ)−κλt = e
bNt ln(1+κ)−λt(κ−ln(1+κ)) = Ma

t , (A.4)

where a = ln(1+κ). In particular, the random variable ηT is strictly positive,
P-a.s. and EP(ηT ) = 1. Furthermore, the process Ma solves the following
SDE

dMa
t = Ma

t−(ea − 1) dN̂t, Ma
0 = 1.

We are in a position to establish the well-known result, which states that
the process (Nt, t ∈ [0, T ]) is a Poisson process with the constant intensity
λ∗ = (1 + κ)λ under Q.

Proposition A.1.4. Assume that under P a process N is a Poisson process
with intensity λ with respect to the filtration G. Suppose that the probability
measure Q is defined on (Ω,GT ) through (A.2) and (A.3) for some κ > −1.
(i) The process (Nt, t ∈ [0, T ]) is a Poisson process under Q with respect to
G with the constant intensity λ∗ = (1 + κ)λ.
(ii) The compensated process (N∗

t , t ∈ [0, T ]) defined as

N∗
t = Nt − λ∗t = Nt − (1 + κ)λt = N̂t − κλt,

is a G-martingale under Q.
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Proof. From Remark A.1.1(iii), we know that it suffices to find λ∗ such that,
for any fixed b ∈ R, the process M̃ b, given as

M̃ b
t := ebNt−λ∗t(eb−1), ∀ t ∈ [0, T ], (A.5)

is a G-martingale under Q. By standard arguments, the process M̃ b is a Q-
martingale if and only if the product M̃ bη is a martingale under the original
probability measure P. But in view of (A.4), we have

M̃ b
t ηt = exp

(
Nt

(
b + ln(1 + κ)

)− t
(
κλ + λ∗(eb − 1)

))
.

Let us write a = b + ln(1 + κ). Since b is an arbitrary real number, so is a.
Then, by virtue of part (iii) in Proposition A.1.2, we necessarily have

κλ + λ∗(eb − 1) = λ(ea − 1).

After simplifications, we conclude that, for any fixed real number b, the
process M̃ b defined by (A.5) is a G-martingale under Q if and only if λ∗ =
(1+κ)λ. In other words, the intensity λ∗ of N under Q satisfies λ∗ = (1+κ)λ.
Also the second statement is clear. ¤

Assume that W is a Brownian motion and N is a Poisson process under
P with respect to G. Let η satisfy

dηt = ηt−
(
θt dWt + κ dN̂t

)
, η0 = 1, (A.6)

for some G-predictable stochastic process θ and some constant κ > −1. A
simple application of the Itô’s product rule shows that if processes η1 and
η2 satisfy the SDEs dη1

t = η1
t−θt dWt and dη2

t = η2
t−κ dN̂t then their product

ηt = η1
t η2

t satisfies (A.6).
Taking the uniqueness of solutions to the linear SDE (A.6) for granted,

we conclude that the unique solution to this SDE is given by the expression:

ηt = exp
( ∫ t

0

θu dWu − 1
2

∫ t

0

θ2
u du

)
exp

(
Nt ln(1 + κ)− κλt

)
. (A.7)

We leave the proof of the next result as an exercise for the reader.

Proposition A.1.5. Let the probability Q be given by (A.2) and (A.7) for
some constant κ > −1 and a G-predictable process θ such that EP(ηT ) = 1.
(i) The process

(
W ∗

t = Wt−
∫ t

0
θu du, t ∈ [0, T ]

)
is a Brownian motion under

Q with respect to the filtration G.
(ii) The process (Nt, t ∈ [0, T ]) is a Poisson process with the constant inten-
sity λ∗ = (1 + κ)λ under Q with respect to the filtration G.
(iii) Processes W ∗ and N are mutually independent under Q.
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A.2 Inhomogeneous Poisson Process

Let λ : R+ → R+ be any non-negative, locally integrable function satisfying
the equality

∫∞
0

λ(u) du = ∞.

Definition A.2.1. A process N (with N0 = 0) is called the (inhomogeneous)
Poisson process with intensity function λ if for every 0 ≤ s < t the incre-
ment Nt −Ns is independent of the σ-field Gs and has the Poisson law with
parameter Λ(t)−Λ(s), where the hazard function Λ equals Λ(t) =

∫ t

0
λ(u) du.

More generally, let Λ : R+ → R+ be a right-continuous, increasing func-
tion with Λ(0) = 0 and Λ(∞) = ∞. The Poisson process with the hazard
function Λ satisfies, for every 0 ≤ s < t and every k = 0, 1, . . .

P(Nt −Ns = k | Gs) = P(Nt −Ns = k) =
(Λ(t)− Λ(s))k

k!
e−(Λ(t)−Λ(s)).

Example A.2.1. The most convenient, and thus widely used, method of
constructing a Poisson process with a hazard function Λ runs as follows: we
take a Poisson process Ñ with the constant intensity λ = 1 with respect to
some filtration G̃ and we define the time-changed process Nt := ÑΛ(t). The
process N is easily seen to follow a Poisson process with the hazard function
Λ with respect to the time-changed filtration G, where Gt = G̃Λ(t) for every
t ∈ R+.

Since for arbitrary 0 ≤ s < t

EP(Nt −Ns | Gs) = EP(Nt −Ns) = Λ(t)− Λ(s),

it is clear that the compensated Poisson process N̂t = Nt − Λ(t) is a G-
martingale under P. A suitable generalization of Proposition A.1.3 shows
that a Poisson process with the hazard function Λ and a Brownian motion
with respect to G follow mutually independent processes under P. The proof
of the next lemma relies on a direct application of the Itô formula and so it
is omitted.

Lemma A.2.1. Let Z be an arbitrary bounded, G-predictable process. Then
the process MZ , given by the formula

MZ
t = exp

( ∫

]0,t]

Zu dNu −
∫ t

0

(eZu − 1) dΛ(u)
)
,

is a G-martingale under P. Moreover, MZ is the unique solution to the SDE

dMZ
t = MZ

t−(eZt − 1) dN̂t, MZ
0 = 1.
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In the case of an inhomogeneous Poisson process with intensity function
λ, it can be easily deduced from Lemma A.2.1 that for any Borel measurable
function κ : R+ →]− 1,∞[ the process

ζt = exp
( ∫

]0,t]

ln(1 + κ(u)) dNu −
∫ t

0

κ(u)λ(u) du
)

is the unique solution to the SDE dζt = ζt−κ(t) dN̂t with η0 = 1. Using
similar arguments as in the case of a constant κ, one can show that the
unique solution to the SDE

dηt = ηt−
(
θt dWt + κ(t) dN̂t

)
, η0 = 1,

is given by the following expression

ηt = ζt exp
(∫ t

0

θu dWu − 1
2

∫ t

0

θ2
u du

)
. (A.8)

The proof of the following version of the Girsanov theorem is to the reader.
Note that this next result extends Proposition A.1.5.

Proposition A.2.1. Let Q be a probability measure, equivalent to P on
(Ω,GT ), such that the density process η in (A.2) is given by (A.8). Then
under Q and with respect to G we have that:
(i) the process

(
W ∗

t = Wt −
∫ t

0
θu du, t ∈ [0, T ]

)
is a Brownian motion,

(ii) the process (Nt, t ∈ [0, T ]) is a Poisson process with the intensity function
λ∗ given by λ∗(t) = 1 + κ(t)λ(t),
(iii) the processes W ∗ and N are mutually independent under Q.

A.3 Conditional Poisson Process

We start by assuming that we are given a filtered probability space (Ω,G,P)
and a certain sub-filtration F of G. Let Λ be an F-adapted, right-continuous,
increasing process with Λ0 = 0 and Λ∞ = ∞. We refer to Λ as the hazard
process. In some cases, we have Λt =

∫ t

0
λu du for some F-progressively

measurable process λ with locally integrable sample paths. Then the process
λ is called the F-intensity process.

We are in a position to state the definition of the F-conditional Poisson
process, which is also sometimes referred to as the doubly stochastic Poisson
process. A slightly different, but essentially equivalent, definition of a con-
ditional Poisson process can be found in monographs by Brémaud [33] and
Last and Brandt [129].
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Definition A.3.1. A process N defined on a probability space (Ω,G,P) is
called the F-conditional Poisson process with respect to G, associated with
the hazard process Λ, if for any 0 ≤ s < t and every k = 0, 1, . . .

P(Nt −Ns = k | Gs ∨ F∞) =
(Λt − Λs)k

k!
e−(Λt−Λs), (A.9)

where F∞ = σ(Fu : u ∈ R+).

At the intuitive level, if a particular sample path Λ·(ω) of the hazard
process is known, the process N has exactly the same probabilistic properties
as the Poisson process with respect to G with the hazard function Λ·(ω). In
particular, it follows from (A.9) that

P(Nt −Ns = k | Gs ∨ F∞) = P(Nt −Ns = k | F∞),

i.e., conditionally on the σ-field F∞ the increment Nt−Ns is independent of
the σ-field Gs for any 0 ≤ s < t. Similarly, for any 0 ≤ s < t ≤ u and every
k = 0, 1, . . . , we have

P(Nt −Ns = k | Gs ∨ Fu) =
(Λt − Λs)k

k!
e−(Λt−Λs). (A.10)

In other words, conditionally on the σ-field Fu, the process (Nt, t ∈ [0, u])
behaves like a Poisson process with the hazard function Λ·(ω).

Consequently, for any n ∈ N, any non-negative integers k1, k2, . . . , kn,
and arbitrary non-negative real numbers s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn,
we have that

P
( n⋂

i=1

{Nti −Nsi = ki}
)

= EP
( n∏

i=1

(
Λti − Λsi

)ki

ki!
e−(Λti

−Λsi
)
)
.

Let us observe that in all conditional expectations above, the reference filtra-
tion F can be replaced by the filtration FΛ generated by the hazard process.
In fact, the F-conditional Poisson process with respect to G is also the con-
ditional Poisson process with respect to the filtrations FN ∨ F and FN ∨ FΛ

with the same hazard process.
We shall henceforth postulate that EP(Λt) < ∞ for every t ∈ R+.

Lemma A.3.1. The compensated process N̂t = Nt−Λt is a martingale with
respect to G.

Proof. It is enough to notice that, for arbitrary 0 ≤ s < t,

EP(N̂t | Gs) = EP(EP(Nt − Λt | Gs ∨ F∞) | Gs) = EP(Ns − Λs | Gs) = N̂s,

where, in the second equality, we have used the property of a Poisson process
with a deterministic hazard function. ¤
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Given the two filtrations F and G and the hazard process Λ, it is not
obvious whether we may find a process N satisfying Definition A.3.1. To
provide a simple construction of a conditional Poisson process, we assume
that the underlying probability space (Ω,G,P), endowed with a reference
filtration F, is sufficiently large to accommodate for the following stochastic
processes: a Poisson process Ñ with the constant intensity equal to 1 and
an F-adapted hazard process Λ. In addition, we postulate that the Poisson
process Ñ is independent of the filtration F

Remark A.3.1. Given a filtered probability space (Ω,F,P), it is always
possible to enlarge this space in such a way that there exists a Poisson process
Ñ , which is defined on the enlarged space, has the constant intensity equal
to 1 and is independent of the filtration F.

Under the present assumptions, we have that, for every 0 ≤ s < t and
u ∈ R+, and any non-negative integer k,

P(Ñt − Ñs = k | F∞) = P(Ñt − Ñs = k | Fu) = P(Ñt − Ñs = k)

and

P(Ñt − Ñs = k | F Ñ
s ∨ Fs) = P(Ñt − Ñs = k) =

(t− s)k

k!
e−(t−s).

The next result describes an explicit construction of a conditional Poisson
process. This construction is based on a random time change associated with
the increasing process Λ.

Proposition A.3.1. Let Ñ be a Poisson process with the constant intensity
equal to 1 such that Ñ is independent of a reference filtration F. Let Λ be an
F-adapted, right-continuous, increasing process with Λ0 = 0 and Λ∞ = ∞.
Then the process Nt = ÑΛt , t ∈ R+, is the F-conditional Poisson process
with the hazard process Λ with respect to the filtration G = FN ∨ F.
Proof. Since Gs ∨ F∞ = FN

s ∨ F∞, it suffices to check that

P(Nt −Ns = k | FN
s ∨ F∞) =

(Λt − Λs)k

k!
e−(Λt−Λs)

or, equivalently,

P(ÑΛt − ÑΛs = k | F Ñ
Λs
∨ F∞) =

(Λt − Λs)k

k!
e−(Λt−Λs).

The last equality follows from the assumed independence of Ñ and F. ¤
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Remark A.3.2. Within the setup of Proposition A.3.1, any F-martingale
is also a G-martingale, so that the hypothesis (H) is satisfied.

Example A.3.1. Cox process. In some applications, it is natural to con-
sider a special case of an F-conditional Poisson process, with the filtration
F generated by a certain stochastic process, representing the state variables.
To be more specific, on considers a conditional Poisson process with the in-
tensity process λ given as λt = g(t, Yt), where Y is an Rd-valued stochastic
process independent of the Poisson process Ñ and g : R+×Rd → R+ is some
function. The reference filtration F is typically chosen to be the natural fil-
tration of the process Y ; that is, we set F = FY . In that case, the resulting
F-conditional Poisson process is referred to as the Cox process associated
with the state-variables process Y and the intensity map g.

Our last goal is to examine the behavior of an F-conditional Poisson
process N under an equivalent change of a probability measure. For the
sake of simplicity, we assume that the hazard process Λ is continuous, and
the reference filtration F is generated by a process W , which is a Brownian
motion with respect to G. For a fixed T > 0, we define the probability
measure Q on (Ω,GT ) by setting

dQ
dP

∣∣∣GT = ηT , P-a.s., (A.11)

where the Radon-Nikodým density process (ηt, t ∈ [0, T ]) solves the SDE

dηt = ηt−
(
θt dWt + κt dN̂t

)
, η0 = 1, (A.12)

for some G-predictable processes θ and κ such that κ > −1 and EP(ηT ) = 1.
An application of the Itô product rule shows that the unique solution to
(A.12) is equal to the product νζ, where ν and ζ are solutions to SDEs

dνt = νtθt dWt (A.13)

and
dζt = ζt−κt dN̂t (A.14)

with the initial values ν0 = ζ0 = 1. It is well know that the unique solution
to the SDE (A.13) is given by the expression

νt = exp
( ∫ t

0

θu dWu − 1
2

∫ t

0

θ2
u du

)
,

whereas unique solution to the SDE (A.14), which can be solved pathwise,
is given by the formula

ζt = exp(Ut)
∏

0<u≤t

(1 + ∆Uu) exp (−∆Uu),
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where in turn we denote Ut =
∫
]0,t]

κu dN̂u. Observe that the process ζ

admits also the following equivalent representations

ζt = exp
(
−

∫ t

0

κu dΛu

) ∏

0<u≤t

(1 + κu∆Nu)

and

ζt = exp
( ∫

]0,t]

ln(1 + κu) dNu −
∫ t

0

κu dΛu

)
.

Proposition A.3.2. Let the Radon-Nikodým density of Q with respect to P
be given by (A.11)–(A.12). Then the process W ∗ defined by, for t ∈ [0, T ],

W ∗
t = Wt −

∫ t

0

θu du,

is a Brownian motion with respect to G under Q and the process N∗ given
by, for t ∈ [0, T ],

N∗
t = N̂t −

∫ t

0

κu dΛu = Nt −
∫ t

0

(1 + κu) dΛu,

is a G-martingale under Q. If, in addition, the process κ is F-adapted then
the process N is under Q the F-conditional Poisson process with respect to
G and the hazard process of N under Q equals

Λ∗t =
∫ t

0

(1 + κu) dΛu.

A.4 The Doléans Exponential

We now recall some well-known results from stochastic analysis, regarding
the so-called Doléans exponential, which is also known as the stochastic expo-
nential. For the theory of Itô stochastic integration and stochastic differential
equations, the reader is referred to monographs by Elliott [78], Jeanblanc,
Yor and Chesney [114], Karatzas and Shreve [117], Klebaner [123], Kuo [124],
Øksendal [150], Protter [153], or Revuz and Yor [154].

A.4.1 Exponential of a Process of Finite Variation

Let us first examine a particular case of the Doléans exponential for a process
of finite variation. Let A be a real-valued, càdlàg process of finite variation
defined on a probability space (Ω,F,P). Consider the following linear sto-
chastic differential equation

dZt = Zt− dAt,

with the initial condition Z0 = 1.



284 Appendix A. Complements

Equivalently, the process Z satisfies, for every t ∈ R+,

Zt = 1 +
∫

]0,t]

Zu− dAu, (A.15)

where the integral is the pathwise Stieltjes integral.

Definition A.4.1. The unique solution Z = E(A) to the stochastic differ-
ential equation (A.15) is called the Doléans exponential of A,

The next result gives an explicit representation for E(A).

Proposition A.4.1. Let A be a real-valued, càdlàg process of finite varia-
tion. Then the Doléans exponential of A is given by the following expression,
for every t ∈ R+,

Et(A) = eAt

∏

0<u≤t

(1 + ∆Au)e−∆Au = eAc
t

∏

0<u≤t

(1 + ∆Au), (A.16)

where Ac is the path-by-path continuous part of A, that is, the continuous
process of finite variation given by the formula, for every t ∈ R+,

Ac
t = At −

∑

0<u≤t

∆Au.

A.4.2 Exponential of a Special Semimartingale

Let Y be a real-valued, càdlàg, special semimartingale defined on (Ω,F,P).

Definition A.4.2. The Doléans exponential of Y , denoted as E(Y ), is the
unique solution Z to the linear stochastic differential equation

dZt = Zt− dYt, (A.17)

with the initial condition Z0 = 1.

Of course, formula (A.17) is merely a shorthand notation for the integral
equation

Zt = 1 +
∫

]0,t]

Zu− dYu, (A.18)

where the integral should now be interpreted as the Itô stochastic integral.
Recall that the process of quadratic variation of an arbitrary semimartin-

gale Y is defined by the formula, for every t ∈ R+,

[Y ]t = Y 2
t − Y 2

0 − 2
∫

]0,t]

Yu− dYu.

The next result furnishes an extension of Proposition A.4.1 to the case of a
process Y that follows a special semimartingale.
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Proposition A.4.2. Assume that Y is a special semimartingale. Then the
Doléans exponential of Y , that is, the unique solution to linear stochastic
differential equation (A.17), is given by the formula

Et(Y ) = exp
(
Yt − Y0 − 1

2
[Y ]ct

) ∏

0<u≤t

(1 + ∆Yu) exp(−∆Yu),

where ∆Yu = Yu − Yu− and the process [Y ]c is defined as the path-by-path
continuous part of the quadratic variation process [Y ].

Recall that any special semimartingale Y admits the unique decomposi-
tion

Yt = Y0 + M c
t + Md

t + At, ∀ t ∈ R+,

where M c is a continuous local martingale, Md is a purely discontinuous
local martingale, and A is a predictable process of finite variation, with the
initial values M c

0 = Md
0 = A0 = 0. This decomposition is referred to as

the canonical decomposition of a special semimartingale Y . It is well known
that [Y ]c = 〈M c〉, where M c is the continuous martingale part of a special
semimartingale Y .

Let us state the following immediate corollary to Proposition A.4.2.

Corollary A.4.1. The Doléans exponential of Y is a strictly positive process
if and only if the jumps of Y satisfy ∆Yt > −1 for every t ∈ R+.

The following result summarizes the properties of the Doléans exponential
that prove useful in the context of the Girsanov theorem.

Proposition A.4.3. Assume that Y is a local martingale such that the
jumps of Y satisfy the inequality ∆Yt > −1 for every t ∈ R+.
(i) The Doléans exponential E(Y ) is a strictly positive local martingale and
thus a supermartingale. Hence the process E(Y ) is a martingale whenever
EP(Et(Y )) = 1 for every t ∈ R+.
(ii) The Doléans exponential E(Y ) is a uniformly integrable martingale when-
ever EP(E∞(Y )) = 1, where

E∞(Y ) := lim
t→∞

Et(Y )

and the limit in the right-hand side of the last formula is known to exist.
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[116] M. Joshi and D. Kainth. Rapid and accurate development of prices and
Greeks for nth to default credit swaps in the Li model. Quantitative
Finance, 4:266–275, 2004.

[117] I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus.
Springer, New York, 2nd edition, 1991.

[118] I. Karatzas and S.E. Shreve. Methods of Mathematical Finance.
Springer, New York, 1998.

[119] M. Kijima and K. Komoribayashi. A Markov chain model for valuing
credit risk derivatives. Journal of Derivatives, 6:97–108, 1998.

[120] M. Kijima, K. Komoribayashi, and E. Suzuki. A multivariate Markov
model for simulating correlated defaults. Journal of Risk, 4:1–32, 2002.

[121] M. Kijima, S. Motomiya, and Y. Suzuki. Pricing of CDOs based on
the multivariate Wang transform. Working paper, 2008.

[122] M. Kijima and Y. Muromachi. Credit events and the valuation of credit
derivatives of basket type. Review of Derivatives Research, 4:55–79,
2000.



296 Bibliography

[123] F.C. Klebaner. Introduction to Stochastic Calculus with Applications.
Imperial College Press, London, 2nd edition, 2005.

[124] H.-H. Kuo. Introduction to Stochastic Integration. Springer, New York,
2006.

[125] S. Kusuoka. A remark on default risk models. Advances in Mathemat-
ical Economics, 1:69–82, 1999.

[126] D. Lando. On Cox processes and credit risky securities. Review of
Derivatives Research, 2:99–120, 1998.

[127] D. Lando. On rating transition analysis and correlation. In Credit
Derivatives. Applications for Risk Management, Investment and Port-
folio Optimisation, pages 147–155. Risk Publications, London, 1998.

[128] D. Lando. Credit Risk Modeling. Princeton University Press, Princeton,
2004.

[129] G. Last and A. Brandt. Marked Point Processes on the Real Line:
The Dynamic Approach. Springer-Verlag, Berlin Heidelberg New York,
1995.

[130] J.-P. Laurent. Applying hedging techniques to credit derivatives.
Credit Risk Conference, London, 2001.

[131] J.-P. Laurent. A note of risk management of CDOs. Working paper,
2006.

[132] J.-P. Laurent, A. Cousin, and J.D. Fermanian. Hedging default risks
of CDOs in Markovian contagion models. Working paper, 2007.

[133] J.-P. Laurent and J. Gregory. Basket defaults swaps, CDOs and factor
copulas. Working paper, 2002.

[134] J.-P. Laurent and J. Gregory. Correlation and dependence in risk man-
agement. Working paper, 2003.

[135] H. Leland. Corporate debt value, bond covenants, and optimal capital
structure. Journal of Finance, 49:1213–1252, 1994.

[136] H. Leland and K. Toft. Optimal capital structure, endogenous bank-
ruptcy, and the term structure of credit spreads. Journal of Finance,
51:987–1019, 1996.

[137] D.-X. Li. On default correlation: A copula approach. Journal of Fixed
Income, 9:43–54, 2000.



Bibliography 297

[138] F.A. Longstaff and E.S. Schwartz. A simple approach to valuing risky
fixed and floating rate debt. Journal of Finance, 50:789–819, 1995.

[139] D. Madan and H. Unal. Pricing the risks of default. Review of Deriv-
atives Research, 2:121–160, 1998.

[140] R. Mansuy and M. Yor. Random Times and Enlargements of Filtra-
tions in a Brownian Setting. Springer-Verlag, Berlin Heidelberg New
York, 2006.

[141] G. Mazziotto and J. Szpirglas. Modèle général de filtrage non linéaire
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Poisson-Lévy process, 254
Pre-default

credit spread, 52
price, 77, 82
value, 51, 54, 86, 89

Predictable representation
first-to-default, 91
hazard function case, 62
hazard process case, 136
Kusuoka’s theorem, 136

Probability
risk-neutral, 14
statistical, 14

Promised
claim, 13, 72
dividends, 13, 72

Range of prices, 68
Recovery

at default, 53, 70
at maturity, 49, 69
claim, 14
fractional of

market value, 55
par value, 54
Treasury value, 55

process, 14, 72
zero, 68

Reference filtration
definition, 116
reduced, 129

Replicating strategy
defaultable claim, 85
first-to-default claim, 172
Merton’s model, 19

Risk-neutral
probability, 15, 68, 73
valuation, 15, 50, 86

Savings account, 15, 47
SDE, 18, 60, 276, 278
Short-term interest rate, 13
Spread

CDIS, 251
CDO tranche, 251
CDS, 80
credit, 20, 52
forward short, 20
FTDS, 251

Stochastic interest rate, 43
Survival

claim, 191
function, 51
probability, 53
process, 116

Synthetic asset, 186

Trading strategy
buy-and-hold, 74
constrained, 183
self-financing, 74, 78, 85, 180
unconstrained, 180

Value of the firm process, 13, 42
Vulnerable swaption, 203

Wealth process, 75, 78, 180
Writedown rate

conditional expected, 17
deterministic, 17
upon default, 16

ZCB
Black and Cox model, 32
defaultable, 50
dynamics, 197
Merton model, 19
recovery at default, 53
recovery at maturity, 50
recovery of market value, 55
risk-free, 47

Zero recovery, 51
Zero-coupon bond, see ZCB


