$$
\begin{gathered}
\text { School in Financial Mathematics } \\
\text { 7-20 September } 2009 \\
\text { Ljubljana }
\end{gathered}
$$

SəIમJədoId
8

SəIłJədoId
OI

12
${ }_{\mathcal{Z}} \ni X \mathrm{II}$

ешиәІ Кәу

14

- \perp јо Кұ!!

If $X \in \mathcal{F}_{T}$

ешшәェ Кәу
15

-рәұәәdхә sе

|| ||

-ssəวo.Jd
We now compute the expectation of the value at time τ of a predictable
We now compute the expectation of the value at time τ of a predictable
process.
(i) If h is an \mathbb{F}-predictable (bounded) process then

$$
\mathbb{E}\left(h_{\tau} \mid \mathcal{G}_{t}\right)=e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} d F_{u} \mid \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau>t\}}+h_{\tau} \mathbb{1}_{\{\tau \leq t\}}
$$

$\left.\qquad=e^{\Lambda_{t}} \mathbb{E}\left(\int_{t}^{\infty} h_{u} \lambda_{u} e^{-\Lambda_{u}}\right) d u \mid \mathcal{F}_{t}\right) \mathbb{1}_{\{\tau>t\}}+h_{\tau} \mathbb{1}_{\{\tau \leq t\}}$.
In particular

$$
\mathbb{E}\left(h_{\tau}\right)=\mathbb{E}\left(\int_{0}^{\infty} h_{u} \lambda_{u} \exp \left(-\Lambda_{u}\right) d u\right)
$$

(ii) The process $\left(M_{t}:=H_{t}-\int_{0}^{t \wedge \tau} \lambda_{s} d s, t \geq 0\right)$ is a \mathbb{G}-martingale.
(iii) The martingale $L_{t}=\mathbb{1}_{t<\tau} e^{\Lambda_{t}}$ satisfies $d L_{t}=-L_{t-} d M_{t}$.

 s. əાqеұ[nełəの	

The market price $D(t, T)$ of a defaultable zero-coupon bond with maturity
T is

${ }_{\mathcal{L}} \ni X$ ฉәТ
: \#ofed pes!̣uord

where $m_{t}^{Z}=\mathbb{E}\left(\int_{0}^{T} Z_{u} e^{-\Lambda_{u}} \lambda_{u} d u \mid \mathcal{F}_{t}\right)$

$Z_{u} e^{-\Lambda_{u}} \lambda_{u} d u+m_{t}^{Z}$

рие
рие
ә
ә.əцч әшиsse

$\cdot\left({ }_{\mathcal{Z}} \mid n p^{n} Y^{n}{ }_{\mathrm{V}-}{ }^{2} Z_{Z}{ }_{L}^{0} \int\right)$ 进 $={ }_{Z}^{7}$ и әләчм

$\left({ }_{Z}^{7} u+n p^{n} Y^{n} V_{-}-\partial^{n} Z{ }_{7} \int^{0}-\right)^{7} T=$
ұппјәт ұе ргед Кләлоәәч

40
with $m_{t}=\mathbb{Q}\left(\tau>T \mid \mathcal{F}_{t}\right)=\mathbb{E}\left(e^{-\Lambda_{T}} \mid \mathcal{F}_{t}\right)$.

41

The savings account $Y_{t}^{0}=1$, a risky asset with risk-neutral dynamics
$d Y_{t}=Y_{t} \sigma d W_{t}$ and a DZC of maturity T with price $D(t, T)$ are traded.
The reference filtration is that of the Brownian motion W. Then,
鿉

45

$\cdot\left(\left({ }^{7} X^{\wedge} 7\right)_{X} D^{n} Q={ }^{7} \nabla\right)$ 	

Furthermore,

Furthermore,

$$
\begin{aligned}
& =L_{t} m_{t}^{Y}=\mathbb{1}_{t<\tau} e^{\Lambda_{t} t} e^{-\Lambda_{T}} C^{Y}\left(t, Y_{t}\right) \\
& =L_{t} e^{-\Lambda_{T}} C^{Y}\left(t, Y_{t}\right)=D(t, T) C^{Y}\left(t, Y_{t}\right)
\end{aligned}
$$

[^0]
$\left({ }^{7} X^{7} 7\right)_{X} D\left(L^{\prime} 7\right) G={ }^{7} D$

[^0]:

