

әseə [еләиəŋ

əSеコ [елəUəワ

4
5

ӘSеつ [елӘUӘゆ
-әLqeṭien UOpuex

ешиəІ КәУ

8
where $\Gamma_{t} \stackrel{\text { def }}{=}-\ln \left(1-F_{t}\right)=-\ln G_{t}$

sə[e.8u!łтeIN
sə[e.8u!łтeIN

13
səjesu!q.गeIN

әлоıd әм : :Сəұs ұs.ı! H

$$
\begin{aligned}
& \qquad \begin{array}{ll}
\mathbb{E}\left(H_{t} \mid \mathcal{G}_{s}\right)=H_{s}+\mathbb{1}_{s<\tau} \frac{1}{G_{s}} \mathbb{E}\left(A_{t}-A_{s} \mid \mathcal{F}_{s}\right) \\
\text { Indeed, } \\
\qquad \begin{aligned}
\mathbb{E}\left(H_{t} \mid \mathcal{G}_{s}\right) & =1-\mathbb{P}\left(t<\tau \mid \mathcal{G}_{s}\right)=1-\mathbb{1}_{s<\tau} \frac{1}{G_{s}} \mathbb{E}\left(G_{t} \mid \mathcal{F}_{s}\right) \\
& =1-\mathbb{1}_{s<\tau} \frac{1}{G_{s}} \mathbb{E}\left(1-Z_{t}-A_{t} \mid \mathcal{F}_{s}\right) \\
& =1-\mathbb{1}_{s<\tau} \frac{1}{G_{s}}\left(1-Z_{s}-A_{s}-\mathbb{E}\left(A_{t}-A_{s} \mid \mathcal{F}_{s}\right)\right) \\
& =1-\mathbb{1}_{s<\tau} \frac{1}{G_{s}}\left(G_{s}-\mathbb{E}\left(A_{t}-A_{s} \mid \mathcal{F}_{s}\right)\right)
\end{aligned}
\end{array} .
\end{aligned}
$$

UOIH

8ε

$\left({ }_{\mathcal{L}} \mathcal{L} \mid 7>\perp\right)_{\mathbb{C}}={ }^{7} \boldsymbol{H}$
wort

(!) wort

(b) Let us prove that (i) implies (ii). Note that $\mathbb{E}\left(\eta_{t} \mid \mathcal{F}_{t}\right)$ is \mathcal{F}_{t} hence
\mathcal{F}_{∞}-measurable. From the definition of conditional expectation (ii) is
equivalent to: for any bounded \mathcal{F}_{∞}-measurable r.v. ξ
44

әұә[đuo,

martingale.

reads:

рие ио!ұ!uyəロ

$\mathbb{E}_{\mathbb{P}}\left(\xi \mid \mathcal{G}_{t}\right)=\mathbb{E}_{\mathbb{P}}\left(\xi \mid \mathcal{F}_{t}\right)$.

87

$$
\begin{aligned}
& \text { Let } \mathbb{Q} \text { be a probability measure equivalent to } \mathbb{P} \text { on }\left(\Omega, \mathcal{G}_{t}\right) \text { for every } t \in \mathbb{R}_{+} \text {, } \\
& \text { with the associated Radon-Nikodým density process } \eta \text {. If the density } \\
& \text { process } \eta \text { is } \mathbb{F} \text {-adapted then we have }
\end{aligned}
$$

S! J Ә.ІӘЧМ
Клетұ!q.те ие

-ssəəoıd pəұдере-피

ұечҰ әsoddns : : :〒ООчd
We have thus established the required properties, namely, the probability
law of Θ and its independence of the σ-field \mathcal{F}_{∞}. Furthermore,
$\tau=\inf \left\{t: \Gamma_{t}>\Gamma_{\tau}\right\}=\inf \left\{t: \Gamma_{t}>\Theta\right\}$.

${ }_{n-} \partial={ }_{n_{\mathcal{J}-}} \partial=\left({ }^{\infty} \mathcal{X} \mid n<\Theta\right) d$

where C is the right inverse of Γ, so that $\Gamma_{C_{t}}=t$. Therefore
$\cdot\left\{\perp>{ }^{7} D\right\}=\{\perp \mathrm{I}>7\}=\{\Theta>7\}$ Let us set $\Theta \stackrel{\text { def }}{=} \Gamma_{\tau}$. Then
әләчм
7еч7 әsoddns : : яоочd

廿əлоəцұ чо!ұеұนəsəлdəฯ

ио!ңеилођи! [е!ұлед

Here, \mathbb{F} is the filtration of the observations of V at discrete times $t_{1}, \cdots t_{n}$
where $t_{n} \leq t<t_{n+1}$, i.e.,

$$
F_{t}=1-\Phi\left(t-t_{1}, a-X_{t_{1}}\right)\left[1-\exp \left(-\frac{2 a}{t_{1}}\left(a-X_{t_{1}}\right)\right)\right] .
$$

The case $X_{t_{1}} \leq a$ corresponds to default: for $X_{t_{1}} \leq a, F_{t}=1$.

66

case, (H) hypothesis is not satisfied.
ио!甲ешлоృи! рәКецәа

IL

$\operatorname{sp}^{s}{\underset{\lrcorner \vee f}{ }}_{0}{ }^{7} H \underset{\overline{f \partial p}}{ }{ }^{7} I N$

[^0]

is continuous at time
$\mathbb{E}\left(U_{T} \mid \mathcal{G}_{t}\right)=\mathbb{E}\left(X \mathbb{1}_{\{T<\tau\}} \mid \mathcal{G}_{t}\right)=U_{t}-\mathbb{E}\left(e^{\Lambda_{\tau}} \Delta Y_{\tau} \mathbb{1}_{\tau<T} \mid \mathcal{G}_{t}\right)$.
and

Let $\phi_{t}^{0}=V_{t}(\phi)-\sum_{i=1}^{2} \phi_{t}^{i} S_{t}^{i}\left(\kappa_{i}\right)$, where the process $V(\phi)$ is given by

[^0]: Intensity approach
 In the so-called intensity approach, the default tim
 time. The intensity is defined as any non-negative

