Credit Risk V. ### Summer School in Financial Mathematics 7-20 September 2009 Ljubljana ### Two Defaults - **F** is a reference filtration, - τ_i , i = 1, 2 are two default times, - $H_t^i = \mathbb{1}_{\tau_i \leq t}$ are the default processes, - \mathbf{H}^i is the natural filtration of H^i , - \mathbf{G}^i is the filtration $\mathcal{G}^i_t = \mathcal{F}_t \vee \mathcal{H}^i_t$ - **G** is the filtration $$\mathcal{G}_t = \mathcal{F}_t ee \mathcal{H}_t^1 ee \mathcal{H}_t^2$$ We assume that the interest rate is null # Two Defaults, Trivial reference filtration We assume that **F** is trivial (as in the toy model) We introduce the *joint survival process* G(u, v): for every $u, v \in \mathbb{R}_+$, $$G(u,v) = \mathbb{Q}(\tau_1 > u, \tau_2 > v)$$ We write $$\partial_1 G(u,v) = \frac{\partial G}{\partial u}(u,v), \quad \partial_{12} G(u,v) = \frac{\partial^2 G}{\partial u \partial v}(u,v).$$ words, we postulate that G(u,v) can be represented as follows We assume that the joint density $f(u,v) = \partial_{12}G(u,v)$ exists. In other $$G(u,v) = \int_{u}^{\infty} \left(\int_{v}^{\infty} f(x,y) \, dy \right) dx.$$ We compute conditional expectation in the filtration $\mathbf{G} = \mathbf{H}^1 \vee \mathbf{H}^2$: For t < T $$\mathbb{P}(T < \tau_1 | \mathcal{H}_t^1 \vee \mathcal{H}_t^2) = 1_{t < \tau_1} \frac{\mathbb{P}(T < \tau_1 | \mathcal{H}_t^2)}{\mathbb{P}(t < \tau_1 | \mathcal{H}_t^2)}$$ $$= \mathbb{1}_{t < \tau_{1}} \left(\mathbb{1}_{t < \tau_{2}} \frac{\mathbb{P}(T < \tau_{1}, t < \tau_{2})}{\mathbb{P}(t < \tau_{1}, t < \tau_{2})} + \mathbb{1}_{\tau_{2} \le t} \frac{\mathbb{P}(T < \tau_{1} | \tau_{2})}{\mathbb{P}(t < \tau_{1} | \tau_{2})} \right)$$ $$= \mathbb{1}_{t < \tau_{1}} \left(\mathbb{1}_{t < \tau_{2}} \frac{G(T, t)}{G(t, t)} + \mathbb{1}_{\tau_{2} \le t} \frac{\mathbb{P}(T < \tau_{1} | \tau_{2})}{\mathbb{P}(t < \tau_{1} | \tau_{2})} \right)$$ The computation of $\mathbb{P}(T < \tau_1 | \tau_2)$ can be done as follows: $$\mathbb{P}(T < \tau_1 | \tau_2 = v) = \frac{\mathbb{P}(T < \tau_1, \tau_2 \in dv)}{\mathbb{P}(\tau_2 \in dv)} = \frac{\partial_2 G(T, v)}{\partial_2 G(0, v)}$$ hence, on the set $\tau_2 < T$, $$\mathbb{P}(T < \tau_1 | \tau_2) = \frac{\partial_2 G(T, \tau_2)}{\partial_2 G(0, \tau_2)}$$ ## Value of credit derivatives We introduce different credit derivatives monetary unit if τ_i is greater that $T: D^i(t,T) = \mathbb{E}(\mathbb{1}_{\{T < \tau_i\}} | \mathcal{H}_t^1 \vee \mathcal{H}_t^2)$ A defaultable zero-coupon related to the default times τ_i delivers 1 We obtain $$D^{1}(t,T) = \mathbb{1}_{\{\tau_{1}>t\}} \left(\mathbb{1}_{\{\tau_{2}\leq t\}} \frac{\partial_{2}G(T,\tau_{2})}{\partial_{2}G(t,\tau_{2})} + \mathbb{1}_{\{\tau_{2}>t\}} \frac{G(T,t)}{G(t,t)} \right)$$ two defaults occur before T: A contract which pays R^1 is one default occurs before T and R_2 if the $$CD_{t} = \mathbb{E}(R_{1}\mathbb{1}_{\{0<\tau_{(1)}\leq T\}} + R_{2}\mathbb{1}_{\{0<\tau_{(2)}\leq T\}} | \mathcal{H}_{t}^{1} \vee \mathcal{H}_{t}^{2})$$ $$= R_{1}\mathbb{1}_{\{\tau_{(1)}>t\}} \left(\frac{G(t,t) - G(T,T)}{G(t,t)}\right) + R_{2}\mathbb{1}_{\{\tau_{(2)}\leq t\}} + R_{1}\mathbb{1}_{\{\tau_{(1)}\leq t\}}$$ $$+R_{2}\mathbb{1}_{\{\tau_{(2)}>t\}} \left\{I_{t}(0,1)\left(1 - \frac{\partial_{2}G(T,\tau_{2})}{\partial_{2}G(t,\tau_{2})}\right) + I_{t}(1,0)\left(1 - \frac{\partial_{1}G(\tau_{1},T)}{\partial_{1}G(\tau_{1},t)}\right)\right\}$$ $$+I_{t}(0,0)\left(1 - \frac{G(t,T) + G(T,t) - G(T,T)}{G(t,t)}\right)\right\}$$ where by $$I_t(1,1) = \mathbb{1}_{\{\tau_1 \le t, \tau_2 \le t\}} , \qquad I_t(0,0) = \mathbb{1}_{\{\tau_1 > t, \tau_2 > t\}}$$ $$I_t(1,0) = \mathbb{1}_{\{\tau_1 \le t, \tau_2 > t\}} , \qquad I_t(0,1) = \mathbb{1}_{\{\tau_1 > t, \tau_2 \le t\}}$$ More generally, some easy computation leads to $$\mathbb{E}(h(\tau_1, \tau_2) | \mathcal{H}_t) = I_t(1, 1)h(\tau_1, \tau_2) + I_t(1, 0)\Psi_{1,0}(\tau_1) + I_t(0, 1)\Psi_{0,1}(\tau_2) + I_t(0, 0)\Psi_{0,0}$$ where $$\Psi_{1,0}(u) = -\frac{1}{\partial_1 G(u,t)} \int_t^{\infty} h(u,v) \partial_1 G(u,dv)$$ $$\Psi_{0,1}(v) = -\frac{1}{\partial_2 G(t,v)} \int_t^{\infty} h(u,v) \partial_2 G(du,v)$$ $$\Psi_{0,0} = \frac{1}{G(t,t)} \int_t^{\infty} \int_t^{\infty} h(u,v) G(du,dv)$$ ### Intensities The process $$M_t^1 := H_t^1 - \int_0^{t \wedge \tau_1 \wedge \tau_2} \widetilde{\lambda}_u^1 \, du - \int_{t \wedge \tau_1 \wedge \tau_2}^{t \wedge \tau_1} \lambda^{1/2}(u, \tau_2) \, du,$$ is a **G**-martingale where $$\widetilde{\lambda}_t^1 = -\frac{\partial_1 G(t,t)}{G(t,t)}, \quad \lambda^{1|2}(t,s) = -\frac{f(t,s)}{\partial_2 G(t,s)}$$ On the set $t < \tau_1 \wedge \tau_2$, the **G**-intensity of τ_1 is equal to $$\lim_{h \to 0} \frac{1}{h} \frac{\mathbb{Q}(t < \tau_1 \le t + h, \tau_2 > t)}{\mathbb{Q}(\tau_1 > t, \tau_2 > t)} = -\frac{\partial_1 G(t, t)}{G(t, t)}$$ On the set $\tau_2 \leq t < \tau_1$, the **G**-intensity of τ_1 is equal to $$\lim_{h \to 0} \frac{1}{h} \mathbb{Q}(\tau_1 \in [t, t+h] | \tau_2) = -\frac{f(t, \tau_2)}{\partial_2 G(t, \tau_2)}$$ The process $$\widehat{M}_t^1 := H_t^1 - \int_0^{t \wedge \tau_1} \frac{-\partial_1 G(s, 0)}{G(s, 0)} ds$$ is a \mathbf{H}^1 -martingale. In a general setting, it is not a \mathbf{G} -martingale. The Doob-Meyer decomposition of the \mathbf{H}^2 -supermartingale $$G_t^{1|2} = \mathbb{P}(\tau_1 > t | \mathcal{H}_t^2) = (1 - H_t^2) \frac{G(s, t)}{G(0, t)} + H_t^2 \frac{\partial_2 G(s, \tau_2)}{\partial_2 G(0, \tau_2)}$$ \mathbf{s} $$dG_t^{1|2} = \left(\frac{G(t,t)}{G(0,t)} - \frac{\partial_2 G(t,t)}{\partial_2 G(0,t)}\right) d\widehat{M}_t^2 + \left(H_t^2 \frac{\partial_{1,2} G(t,\tau_2)}{\partial_2 G(0,\tau_2)} - (1 - H_t^2) \frac{\partial_1 G(t,t)}{G(0,t)}\right) dt$$ # Valuation of a Defaultable claim delivers $\delta(\tau_1)$ at time τ_1 if $\tau_1 \leq T$, where δ is a deterministic function. Let us now examine the valuation of a simple defaultable claim which on the information on the second default contained in that filtration, is The value S of this claim, computed in the filtration G, i.e., taking care $$S_t = \mathbb{1}_{t < \tau_1} \mathbb{E} \left(\delta(\tau_1) \mathbb{1}_{\tau_1 \le T} | \mathcal{G}_t \right)$$ $1_{\{t < \tau_{(1)}\}} S_t = 1_{\{t < \tau_{(1)}\}} \widetilde{S}_t$, where Let us denote by $\tau_{(1)} = \tau_1 \wedge \tau_2$ the moment of the first default. Then, $$\widetilde{S}_t = \mathbb{1}_{t < \tau_1} \frac{1}{G(t,t)} \mathbb{E}(\delta(\tau_1) \mathbb{1}_{\tau_1 \le T})$$ $$\widetilde{S}_t = \frac{1}{G(t,t)} \left(-\int_t^T \delta(u)\partial_1 G(u,t) du \right)$$ where $G(t,t) = \mathbb{Q}(\tau_{(1)} > t)$. Hence the dynamics of the pre-default ex-dividend price \tilde{S}_t are $$d\widetilde{S}_t = \left(\left(\widetilde{\lambda}_1(t) + \widetilde{\lambda}_2(t) \right) \widetilde{S}_t - \widetilde{\lambda}_1(t) \delta(t) - \widetilde{\lambda}_2(t) S_t^{1/2} \right) dt,$$ intensity of τ_i and $S_t^{1/2}$ is given by the expression where for i = 1, 2 the function $\tilde{\lambda}_i(t)$ is the (deterministic) pre-default $$S_t^{1|2} = \frac{1}{\partial_2 G(t,t)} \left(-\int_t^T \delta(u) f(u,t) \, du \right).$$ default τ_2 occurs at time t and the first name has not yet defaulted the claim on the first credit name, under the assumption that the In the financial interpretation, $S_t^{1|2}$ is the ex-dividend price at time t of (recall that simultaneous defaults are excluded). the claim equals Let us now consider the event $\{\tau_2 \le t < \tau_1\}$. The ex-dividend price of $$S_t = \frac{1}{\partial_2 G(t, \tau_2)} \left(-\int_t^T \delta(u) f(u, \tau_2) du \right).$$ Consequently, on the event $\{\tau_2 \le t < \tau_1\}$ we obtain $$dS_t = \lambda^{1/2}(t, \tau_2) \left(S_t - \delta(t) \right) dt$$ ### Dynamic of CDSs We consider a CDS - with a constant spread κ - which delivers $\delta(\tau_1)$ at time τ_1 if $\tau_1 < T$, where δ is a deterministic function. The value of the CDS takes the form $$V_t(\kappa) = \widetilde{V}_t(\kappa) \mathbb{1}_{t < \tau_2 \wedge \tau_1} + \widehat{V}_t(\kappa) \mathbb{1}_{\tau_1 \wedge \tau_2 \le t < \tau_1}.$$ First, we restrict our attention to the case $t < \tau_2 \wedge \tau_1$. On the set $t < \tau_2 \wedge \tau_1$, the value of the CDS is $$\widetilde{V}_t(\kappa) = \frac{1}{G(t,t)} \left(-\int_t^T \delta(u) \partial_1 G(u,t) \, du - \kappa \int_t^T G(u,t) \, du \right)$$ Proof The value $V(\kappa)$ of this CDS, computed in the filtration **H**, i.e., filtration, is taking care on the information on the second default contained in that $$V_t(\kappa) = \mathbb{1}_{t < \tau_1} \mathbb{E} \left(\delta(\tau_1) \mathbb{1}_{\tau_1 \le T} - \kappa((T \land \tau_1) - t) | \mathcal{H}_t \right)$$ Let us denote by $\tau = \tau_1 \wedge \tau_2$ the first default time. Then, $$1_{\{t<\tau\}}V_t(\kappa) = 1_{\{t<\tau\}}V_t(\kappa), \text{ where}$$ $$\begin{split} \widetilde{V}_{t}(\kappa) &= \frac{1}{\mathbb{Q}(\tau > t)} \mathbb{E}\left(\delta(\tau_{1}) \mathbb{1}_{\tau_{1} \leq T} \mathbb{1}_{t < \tau} - \kappa((T \wedge \tau_{1}) - t) \mathbb{1}_{t < \tau}\right) \\ &= \frac{1}{G(t, t)} \mathbb{E}\left(\delta(\tau_{1}) \mathbb{1}_{\tau_{1} \leq T} \mathbb{1}_{t < \tau} - \kappa((T \wedge \tau_{1}) - t) \mathbb{1}_{t < \tau}\right) \\ &= \frac{1}{G(t, t)} \left(\int_{t}^{T} \delta(u) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \right) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{\infty} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{T} \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{t}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) - (T - t) \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du, \tau_{2} > t) \\ &- \kappa \int_{T}^{T} (u - t) \mathbb{Q}(\tau_{1} \in du$$ In other terms, using integration by parts formula $$\widetilde{V}_t(\kappa) = \frac{1}{G(t,t)} \left(-\int_t^T \delta(u) \partial_1 G(u,t) \, du - \kappa \int_t^T G(u,t) \, du \right)$$ On the event $\{\tau_2 \leq t < \tau_1\}$, the CDS price equals $$\begin{aligned} V_t(\kappa) &=& \hat{V}_t = 1\!\!1_{t < \tau_1} \mathbb{E}\left(\delta(\tau_1) 1\!\!1_{\tau_1 \le T} - \kappa((T \wedge \tau_1) - t) | \sigma(\tau_2)\right) \\ &=& \frac{1}{\partial_2 G(t, \tau_2)} \left(-\int_t^T \delta(u) f(u, \tau_2) \, du - \kappa \int_t^T \partial_2 G(u, \tau_2) \, du \right) := V_t^{1/2}(\tau_2) \end{aligned}$$ where $$V_t^{1|2}(s) = \frac{1}{\partial_2 G(t,s)} \left(-\int_t^T \delta(u) f(u,s) du - \kappa \int_t^T \partial_2 G(u,s) du \right).$$ the deterministic function which gives the value of the CDS, we obtain The price of a CDS is $V_t = \tilde{V}_t \mathbb{1}_{t < \tau_2 \wedge \tau_1} + \tilde{V}_t \mathbb{1}_{\tau_2 \wedge \tau_1 \leq t < \tau_1}$. Differentiating $$d\widetilde{V}_{t}(\kappa) = \left(\left(\widetilde{\lambda}_{1}(t) + \widetilde{\lambda}_{2}(t) \right) \widetilde{V}_{t}(\kappa) + \kappa - \widetilde{\lambda}_{1}(t) \delta(t) - \widetilde{\lambda}_{2}(t) V_{t}^{1|2}(t) \right) dt,$$ $$d\widehat{V}_{t}(\kappa) = \left(\widetilde{\lambda}_{t}^{1|2}(\tau_{2}) \left(\widehat{V}_{t}(\kappa) - \delta(t) \right) + \kappa \right) dt$$ The price of a CDS follows $$dV_t = (1 - H_t^1)(1 - H_t^2)(\kappa - \delta(t)\widetilde{\lambda}^1(t))dt + (1 - H_t^1)H_t^2(\kappa - \delta(t)\widetilde{\lambda}^{1|2}_t)dt - V_{t-}dM_t^1 + (1 - H_t^1)(V_t^{1|2}(t) - V_{t-})dM_t^2$$ obtains Proof: Differentiating $V_t = \widetilde{V}_t(1 - H_t^1)(1 - H_t^2) + \hat{V}_t(1 - H_t^1)H_t^2$ one $$\begin{split} dV_t &= (1 - H_t^1)(1 - H_t^2)d\widetilde{V}_t + (1 - H_t^1)H_t^2d\widehat{V}_t - V_{t-}dH_t^1 \\ &+ (1 - H_t^1)(V_t^{1|2}(t) - \widetilde{V}_t)dH_t^2 \end{split}$$ which leads to the result after light computations # Example: Jarrow and Yu's Model Jarrow and Yu study the case where λ_1 is a constant and are independent random variables with exponential law of parameter 1. Let $\tau_i = \inf\{t : \Lambda_i(t) \ge \Theta_i\}, i = 1, 2 \text{ where } \Lambda_i(t) = \int_0^t \lambda_i(s) ds \text{ and } \Theta_i$ $$\lambda_2(t) = \lambda_2 + (\alpha_2 - \lambda_2) \mathbb{1}_{\{\tau_1 \le t\}} = \lambda_2 \mathbb{1}_{\{t < \tau_1\}} + \alpha_2 \mathbb{1}_{\{\tau_1 \le t\}}.$$ defaultable zero-coupon with default time τ_i , with a rebate δ_i : Assume for simplicity that r = 0 and compute the value of a $$D_{i,d}(t,T) = \mathbb{E}(\mathbb{1}_{\{\tau_i > T\}} + \delta_i \mathbb{1}_{\{\tau_i < T\}} | \mathcal{G}_t), \text{ for } \mathcal{G}_t = \mathcal{H}_t^1 \vee \mathcal{H}_t^2.$$ Let $G(s,t) = \mathbb{P}(\tau_1 > s, \tau_2 > t)$ equality Case $t \leq s$ For $t < s < \tau_1$, one has $\lambda_2(t) = \lambda_2 t$. Hence, the following $$\{\tau_1 > s\} \cap \{\tau_2 > t\} = \{\tau_1 > s\} \cap \{\Lambda_2(t) < \Theta_2\} = \{\tau_1 > s\} \cap \{\lambda_2 t < \Theta_2\}$$ $$= \{\lambda_1 s < \Theta_1\} \cap \{\lambda_2 t < \Theta_2\}$$ leads to for $$t < s$$, $P(\tau_1 > s, \tau_2 > t) = e^{-\lambda_1 s} e^{-\lambda_2 t}$ ### Case t > s $$\{\tau_1 > s\} \cap \{\tau_2 > t\} = \{\{t > \tau_1 > s\} \cap \{\tau_2 > t\}\} \cup \{\cap \{\tau_1 > t\} \cap \{\tau_2 > t\}\}$$ $$\{t > \tau_1 > s\} \cap \{\tau_2 > t\} = \{t > \tau_1 > s\} \cap \{\Lambda_2(t) < \Theta_2\}$$ $$= \{t > \tau_1 > s\} \cap \{\lambda_2\tau_1 + \alpha_2(t - \tau_1) < \Theta_2\}$$ #### Case t > s $$\{\tau_1 > s\} \cap \{\tau_2 > t\} = \{\{t > \tau_1 > s\} \cap \{\tau_2 > t\}\} \cup \{\cap \{\tau_1 > t\} \cap \{\tau_2 > t\}\}$$ $$\{t > \tau_1 > s\} \cap \{\tau_2 > t\} = \{t > \tau_1 > s\} \cap \{\Lambda_2(t) < \Theta_2\}$$ $$= \{t > \tau_1 > s\} \cap \{\lambda_2\tau_1 + \alpha_2(t - \tau_1) < \Theta_2\}$$ independent from Θ_2 The independence between Θ_1 and Θ_2 implies that the r.v. τ_1 is ### Case t > s $$\{\tau_1 > s\} \cap \{\tau_2 > t\} = \{\{t > \tau_1 > s\} \cap \{\tau_2 > t\}\} \cup \{\{(\tau_1 > t\}) \cap \{\tau_2 > t\}\}$$ $$\{t > \tau_1 > s\} \cap \{\tau_2 > t\} = \{t > \tau_1 > s\} \cap \{\Lambda_2(t) < \Theta_2\}$$ $$= \{t > \tau_1 > s\} \cap \{\lambda_2\tau_1 + \alpha_2(t - \tau_1) < \Theta_2\}$$ independent from Θ_2 , hence The independence between Θ_1 and Θ_2 implies that the r.v. τ_1 is $$P(t > \tau_{1} > s, \tau_{2} > t) = E\left(\mathbb{1}_{\{t > \tau_{1} > s\}} e^{-(\lambda_{2}\tau_{1} + \alpha_{2}(t - \tau_{1}))}\right)$$ $$= \int du \,\mathbb{1}_{\{t > u > s\}} e^{-(\lambda_{2}u + \alpha_{2}(t - u))} \lambda_{1} e^{-\lambda_{1}u}$$ $$= \frac{1}{\lambda_{1} + \lambda_{2} - \alpha_{2}} \lambda_{1} e^{-\alpha_{2}t} \left(e^{-s(\lambda_{1} + \lambda_{2} - \alpha_{2})} - e^{-t(\lambda_{1} + \lambda_{2} - \alpha_{2})}\right)$$ Setting $\Delta = \lambda_1 + \lambda_2 - \alpha_2$, it follows that $$P(\tau_1 > s, \tau_2 > t) = \frac{1}{\Delta} \lambda_1 e^{-\alpha_2 t} \left(e^{-s\Delta} - e^{-t\Delta} \right) + e^{-\lambda_1 t} e^{-\lambda_2 t}.$$ In particular, for s = 0, $$P(\tau_2 > t) = \frac{1}{\Delta} \left(\lambda_1 \left(e^{-\alpha_2 t} - e^{-(\lambda_1 + \lambda_2)t} \right) + \Delta e^{-\lambda_1 t} \right)$$ The computation of $D_{1,d}$ reduces to that of $$\mathbb{P}(\tau_1 > T | \mathcal{G}_t) = \mathbb{P}(\tau_1 > T | \mathcal{F}_t \vee \mathcal{H}_t^1)$$ where $\mathcal{F}_t = \mathcal{H}_t^2$. From the key lemma, $$\mathbb{P}(\tau_1 > T | \mathcal{F}_t \vee \mathcal{H}_t^1) = \mathbb{1}_{\{t < \tau_1\}} \frac{\mathbb{P}(\tau_1 > T | \mathcal{F}_t)}{\mathbb{P}(\tau_1 > t | \mathcal{F}_t)}.$$ Therefore, $$P_{1,d}(t,T) = \delta_1 + 1_{\{\tau_1 > t\}} (1 - \delta_1) e^{-\lambda_1 (T-t)}.$$ One can also use that $$\mathbb{P}(\tau_1 > T | \mathcal{G}_t) = 1 - DZC_t^1 = \mathbb{1}_{\{\tau_1 > t\}} \left(\mathbb{1}_{\{\tau_2 \le t\}} \frac{\partial_2 G(T, \tau_2)}{\partial_2 G(t, \tau_2)} + \mathbb{1}_{\{\tau_2 > t\}} \frac{G(T, t)}{G(t, t)} \right)$$ • The computation of $D_{2,d}$ follows $$D_{2,d}(t,T) = \delta_2 + (1 - \delta_2) \mathbb{1}_{\{\tau_2 > t\}} \left(\mathbb{1}_{\{\tau_1 \le t\}} e^{-\alpha_2(T-t)} + \mathbb{1}_{\{\tau_1 > t\}} \frac{1}{\Delta} (\lambda_1 e^{-\alpha_2(T-t)} + (\lambda_2 - \alpha_2) e^{-(\lambda_1 + \lambda_2)(T-t)}) \right)$$ marginal laws. multidimensional probability distributions with prespecified univariate The concept of a copula function allows to produce various multidimensional probability distributions with prespecified univariate The concept of a copula function allows to produce various marginal laws. conditions are satisfied: A function $C:[0,1]^n \to [0,1]$ is called a **copula** if the following (i) $C(1, ..., 1, v_i, 1, ..., 1) = v_i$ for any i and any $v_i \in [0, 1]$, multidimensional probability distributions with prespecified univariate The concept of a copula function allows to produce various marginal laws. conditions are satisfied: A function $C:[0,1]^n \to [0,1]$ is called a **copula** if the following - (i) $C(1, ..., 1, v_i, 1, ..., 1) = v_i$ for any i and any $v_i \in [0, 1]$, - (ii) $C(u_1, \ldots, u_n)$ is increasing with respect to each component u_i multidimensional probability distributions with prespecified univariate The concept of a *copula function* allows to produce various marginal laws conditions are satisfied: A function $C:[0,1]^n \to [0,1]$ is called a **copula** if the following - (i) $C(1, ..., 1, v_i, 1, ..., 1) = v_i$ for any i and any $v_i \in [0, 1]$, - (ii) $C(u_1, \ldots, u_n)$ is increasing with respect to each component u_i - (iii) For any $a, b \in [0, 1]^n$ with $a \le b$ (i.e., $a_i \le b_i$, $\forall i$) $$\sum_{i_1=1}^2 \dots \sum_{i_n=1}^2 (-1)^{i_1+\dots+i_n} C(u_{1,i_1},\dots,u_{n,i_n}) \ge 0,$$ where $u_{j,1} = a_j$, $u_{j,2} = b_j$. Let us give few examples of copulas: - Product copula: $\Pi(u_1, \ldots, u_n) = \prod_{i=1}^n u_i$, - Gumbel copula: for $\theta \in [1, \infty)$ we set $$C(u_1, \dots, u_n) = \exp\left(-\left[\sum_{i=1}^n (-\ln u_i)^{\theta}\right]^{1/\theta}\right),$$ Gaussian copula: $$C(u_1,\ldots,u_n) = N_{\Sigma}^n (N^{-1}(u_1),\ldots,N^{-1}(u_n)),$$ c.d.f. for the univariate standard normal distribution. with the linear correlation matrix Σ , and N^{-1} is the inverse of the where N_{Σ}^{n} is the c.d.f for the *n*-variate central normal distribution Sklar Theorem: a copula function C such that For any cumulative distribution function F on \mathbb{R}^n there exists $$F(x_1, \ldots, x_n) = C(F_1(x_1), \ldots, F_n(x_n))$$ where F_i is the i^{th} marginal cumulative distribution function. If, in addition, F is continuous then C is unique. ## Direct Application $(\tau_1, \tau_2, \dots, \tau_n)$ is derived by vector $(\tau_1, \tau_2, \ldots, \tau_n)$. The joint distribution of the random vector chosen in order to introduce a dependence structure of the random Let F_i be the probability distribution for τ_i . A copula function C is $$P\{\tau_i \le t_i, i = 1, 2, \dots, n\} = C(F_1(t_1), \dots, F_n(t_n)).$$ ## Indirect Application are uniform on [0,1]. by an n-dimensional copula C, and that the univariate marginal laws Assume that the cumulative distribution function of (ξ_1, \ldots, ξ_n) is given ## Indirect Application are uniform on [0, 1]. We postulate that (ξ_1, \ldots, ξ_n) are independent of by an n-dimensional copula C, and that the univariate marginal laws **F**, and we set Assume that the cumulative distribution function of (ξ_1, \ldots, ξ_n) is given $$\tau_i = \inf \left\{ t : \Gamma_t^i \ge -\ln \xi_i \right\}.$$ Then, $$\{\tau_i > t_i\} = \{e^{-\Gamma_{t_i}^i} > \xi_i\}.$$ #### l'hen: The case of default times conditionally independent with respect to for $t_1, \ldots, t_n \leq T$ we have **F** corresponds to the choice of the product copula II. In this case, $$P\{\tau_1 > t_1, \dots, \tau_n > t_n \mid \mathcal{F}_T\} = \Pi(Z_{t_1}^1, \dots, Z_{t_n}^n),$$ where we set $Z_t^i = e^{-\Gamma_t^i}$. In general, for $t_1, \ldots, t_n \leq T$ we obtain $$P\{\tau_1 > t_1, \dots, \tau_n > t_n \mid \mathcal{F}_T\} = C(Z_{t_1}^1, \dots, Z_{t_n}^n),$$ where C is the copula used in the construction of ξ_1, \ldots, ξ_n . #### An example International Settlements (BIS) standard). This example describes the use of one-factor Gaussian copula (Bank of Let q_i be a decreasing function taking values in [0,1] with $q_i(0) = 1$. $$\tau_i = \inf\{t : q_i(t) < U_i\}$$ Then, $q_i(t) = P(\tau_i > t) = 1 - p_i(t)$. The default thresholds are defined by $U_i = 1 - F_i(X_i)$ where F_i is the Y be independent random variables and $X_i = \rho_i Y + \sqrt{1 - \rho_i^2 Y_i}$. Correlation specification of the thresholds U_i : Let Y_1, \dots, Y_n and $$\tau_i = \inf\{t : \rho_i Y + \sqrt{1 - \rho_i^2 Y_i} \le F_i^{-1} (1 - q_i(t))\}.$$ cumulative distribution function of X_i . Then Conditioned on the common factor Y, $$p^{i}(t|Y) = F_{i}^{Y} \left(\frac{F_{i}^{-1}(p_{i}(t)) - \rho_{i}Y}{\sqrt{1 - \rho_{i}^{2}}} \right)$$ where F_i^Y is the cumulative distribution function of Y_i . Let us consider the particular case where $$X_i = \rho_i Y + \sqrt{1 - \rho_i^2 Y_i},$$ variables. In that case, X_i is also a standard Gaussian law and where $Y, Y_i, i = 1, 2, ..., n$, are independent standard Gaussian $$p^{i}(t|Y) = \mathcal{N}\left(\frac{\mathcal{N}^{-1}(p_{i}(t)) - \rho_{i}Y}{\sqrt{1 - \rho_{i}^{2}}}\right)$$ and $$P(\tau_i \le t_i, \forall i \le n) = \int \prod_i \mathcal{N}\left(\frac{\mathcal{N}^{-1}(F_i(t_i)) - \rho_i y}{\sqrt{1 - \rho_i^2}}\right) f(y) dy.$$ where f is the density of Y. The one-factor Gaussian copula model was Let us consider the particular case where $$X_i = \rho_i Y + \sqrt{1 - \rho_i^2 Y_i},$$ variables. In that case, X_i is also a standard Gaussian law and where $Y, Y_i, i = 1, 2, ..., n$, are independent standard Gaussian $$p^{i}(t|Y) = \mathcal{N}\left(\frac{\mathcal{N}^{-1}(p_{i}(t)) - \rho_{i}Y}{\sqrt{1 - \rho_{i}^{2}}}\right)$$ and $$P(\tau_i \le t_i, \forall i \le n) = \int \prod_i \mathcal{N}\left(\frac{\mathcal{N}^{-1}(F_i(t_i)) - \rho_i y}{\sqrt{1 - \rho_i^2}}\right) f(y) dy.$$ where f is the density of Y. The one-factor Gaussian copula model was not fit well the market data. proposed in the context of CDOs (Collateralized debt obligations) by Li (2000). It is now considered as the benchmark model. However, it does Recent alternative: Lévy Copulae Let $X, Y^{(i)}$ be independent Lévy processes with same law and such that $$\mathbb{E}(X_1) = 0, \operatorname{Var}(X_1) = 1$$ We set $X_i = X_{\rho} + Y_{1-\rho}^{(i)}$. By properties of Lévy processes, X_i has the same law as X_1 and $$Cor(X_i, X_j) = \rho$$ #### CDO - A CDO consists of a set of assets (its collateral portfolio) and a set of liabilities (the issued notes). - A CDO cash flow structure allocates interest income and principal prioritized collection of securities notes, which are commonly called repayment from a collateral pool of different debt instruments to a - A standard prioritizing structure is a simple subordination, i.e. notes are paid, with any residual cash flow to an equity piece. senior CDO notes are paid before mezzanine and lower subordinated - The tranches are ordered so that losses in interest or principal to losses, and it is called the equity tranche. riskiest one, because has to respond immediately to the incurred in order to the next tranche and so on. The lowest tranche is the the collateral are absorbed first by the lowest level tranche and then we have the following natural expression for L_t . Let L_t be the accumulated loss on the credit portfolio at time t. Then $$L_t = \sum_{j=1}^{n} M_j H_t^j = \sum_{j=1}^{n} (1 - \delta_j) N_j 1_{\{\tau_j \le t\}}.$$ equal to the non-recovered part of the credit, that is, $(1 - \delta_j)N_j$. L is a pure jump process with jumps at defaults and the jump size ### One-Factor Model - Let us consider a one-factor model. Let V be the latent factor, such assume that recoveries $\delta_1, \delta_2, \dots, \delta_n$ are independent of V and that conditionally on V the default times are independent. We $\tau_1, \tau_2, \ldots, \tau_n$ - Let us denote the counting process associated with the number of defaults by $H_t = \sum_{j=1}^n H_t^j$. - We first consider the probability generating function of H_t , which the accumulated loss. We have we will later use in the calculation of the characteristic function for $$\psi_{H_t}(u) = \mathbb{E}_P \left(e^{uH_t} \right)$$ $$= \mathbb{E}_P \left(e^{u \sum_{j=1}^n H_t^j} \right)$$ $$= \mathbb{E}_P \left[\mathbb{E}_P \left(e^{u \sum_{j=1}^n H_t^j} | V \right) \right].$$ By noting that H_t^j is a Bernoulli random variable and by denoting $$\mathbb{P}(\tau_j \leq t \,|\, V) = p_t^{j \,|\, V} \quad \text{and} \quad \mathbb{P}(\tau_j \geq t \,|\, V) = q_t^{j \,|\, V}$$ we can write $$\mathbb{E}_{P}(e^{uH_{t}^{j}}|V) = q_{t}^{j|V} + p_{t}^{j|V}e^{u}.$$ Recalling that H_t^1, \ldots, H_t^n are conditionally independent given V, we obtain $$\psi_{H_t}(u) = \mathbb{E}_P \left\{ \mathbb{E}_P \left[\exp\left(u \sum_{j=1}^n H_t^j\right) \middle| V \right] \right\}$$ $$= \mathbb{E}_P \left\{ \mathbb{E}_P \left[e^{uH_t^1} e^{uH_t^2} \cdots e^{uH_t^n} \middle| V \right] \right\}$$ $$= \mathbb{E}_P \left[\mathbb{E}_P \left(e^{uH_t^1} \middle| V \right) \mathbb{E}_P \left(e^{uH_t^2} \middle| V \right) \cdots \mathbb{E}_P \left(e^{uH_t^n} \middle| V \right) \right].$$ Finally, we get the following representation $$\psi_{H_t}(u) = \mathbb{E}_P \left[\prod_{j=1}^n \mathbb{E}_P \left(e^{uH_t^j} | V \right) \right]$$ $$= \mathbb{E}_P \left[\prod_{j=1}^n q_t^{j|V} + p_t^{j|V} e^u \right]$$ $$= \int_{j=1}^n \left(q_t^{j|V} + p_t^{j|V} e^u \right) f(v) dv$$ where f(v) is the density function of the factor V. # Characteristic Function of Loss Process - We will now use this result to compute the characteristic function of loss process L_t , for different time horizons. - The ultimate goal is to be able to find the distribution function of the loss process L_t , which is used in pricing CDO tranches. We have $$\mathcal{O}_{L_{t}}(u) = \mathbb{E}_{P} \left(\exp(iuL_{t}) \right) \\ = \mathbb{E}_{P} \left[\mathbb{E}_{P} \left(\exp(iuL_{t}) | V \right) \right] \\ = \mathbb{E}_{P} \left\{ \mathbb{E}_{P} \left[\exp\left(iu\sum_{j=1}^{n} M_{j} H_{t}^{j}\right) | V \right] \right\} \\ = \mathbb{E}_{P} \left\{ \mathbb{E}_{P} \left[\exp\left(iu\sum_{j=1}^{n} (1 - \delta_{j}) N_{j} H_{t}^{j}\right) | V \right] \right\} \\ = \mathbb{E}_{P} \left\{ \mathbb{E}_{P} \left[\left(e^{iu(1 - \delta_{1}) N_{1} H_{t}^{1}} \dots e^{iu(1 - \delta_{n}) N_{n} H_{t}^{n}} \right) | V \right] \right\}.$$ - Recall that the random variable H_t^1, \ldots, H_t^n are conditionally independent given V. - Hence we obtain $$\varphi_{L_t}(u) = \mathbb{E}_P \left\{ \mathbb{E}_P \left[e^{iu(1-\delta_1)N_1H_t^1} | V \right] \dots \mathbb{E}_P \left[e^{iu(1-\delta_n)N_nH_t^n} | V \right] \right\}$$ $$= \mathbb{E}_P \left[\prod_{j=1}^n \mathbb{E}_P \left(e^{iu(1-\delta_j)N_jH_t^j} | V \right) \right]$$ $$= \mathbb{E}_P \left[\prod_{j=1}^n \left(q_t^{j|V} + p_t^{j|V} e^{iu(1-\delta_j)N_j} \right) \right].$$ Note that we can write $$e^{iu(1-\delta_j)N_j} = \varphi_{1-\delta_j}(uN_j).$$ Let f(v) be the density function of V. Then $$\begin{split} \varphi_{L_t}(u) &= \mathbb{E}_P \left[\prod_{j=1}^n \left(q_t^{j|V} + p_t^{j|V} \varphi_{1-\delta_j}(uN_j) \right) \right] \\ &= \int_{\mathbb{R}} \prod_{j=1}^n \left(q_t^{j|V} + p_t^{j|V} \varphi_{1-\delta_j}(uN_j) \right) f(v) \, dv. \end{split}$$ - The last integral can be calculated through numerical integration over the distribution of the latent factor V - The distribution of the accumulated loss L_t can be obtained by some Fourier inversion techniques. - Observe that the only input to the model are the conditional default and survival probabilities. ## Pricing of the Mezzanine Tranche - We can now examine the pricing of a particular leg of a CDO. The as functions of the accumulated losses L_t . default payments on the different tranches of a CDO are obtained - Consider two thresholds A and B on the synthetic CDO where $$0 < A < B < \sum_{j=1}^{n} N_j = C.$$ Let the cumulative default payments on the mezzanine tranche be between A and B. Thus M_t equals denoted by M_t . We know the mezzanine tranche only bears losses $$M_t = (L_t - A) \mathbb{1}_{[A,B]}(L_t) + (B - A) \mathbb{1}_{[B,C]}(L_t).$$ We can write similar expressions for equity and senior tranches. More importantly we can now represent the discounted payoff corresponding to default payments as follows $$\int_0^T \beta_t \, dM_t$$ where β_t is the discount factor for maturity t $$\beta_t = \exp\left(-\int_0^t r(u) \, du\right).$$ - For simplicity, we assume deterministic interest rates. - The integration by parts formula yields $$\int_0^T \beta_t dM_t = \beta_T M_T + \int_0^T r(t)\beta_t M_t dt.$$ Recall that in order to price the mezzanine tranche, we need to compute the following expectation $$\mathbb{E}_P\Big(\int_0^T eta_t \, dM_t\Big).$$ Using Fubini's theorem, we obtain $$\mathbb{E}_P\left(\int_0^T \beta_t dM_t\right) = \beta_T \,\mathbb{E}_P(M_T) + \int_0^T r(t)\beta_t \,\mathbb{E}_P(M_t) \,dt.$$ Thus the pricing problem for the mezzanine tranche has been reduced to finding the expectation $\mathbb{E}_P(M_t)$. Using the expression for M_t derived before, we can now write $$\mathbb{E}_{P}(M_{t}) = \mathbb{E}_{P} \left[(L_{t} - A) \mathbb{1}_{[A,B]}(L_{t}) \right] + \mathbb{E}_{P} \left[(B - A) \mathbb{1}_{[B,C]}(L_{t}) \right]$$ $$= \mathbb{E}_{P} \left[(L_{t} - A) \mathbb{1}_{[A,B]}(L_{t}) \right] + (B - A) \mathbb{E}_{P} \left[\mathbb{1}_{[B,C]}(L_{t}) \right]$$ $$= \int_{A}^{B} (z - A) dF_{L_{t}}(z) + (B - A) \mathbb{P}(B < L_{t} \le C)$$ $$= \int_{A}^{B} (z - A) dF_{L_{t}}(z) + (B - A)(F_{L_{t}}(C) - F_{L_{t}}(B))$$ where F_{L_t} is the cumulative distribution function of L_t . - It can be checked that for the computation of the value of the fee losses L_t . leg of a CDO, we still only need the distribution of the accumulated - For details, see the papers by Laurent and Gregory (2003) and Burtschell et al. (2005). ### Credit Ratings categories, where, by convention, the category K corresponds to default. each reference entity falls to the set $\mathcal{K} = \{1, 2, \dots, K\}$ of K rating We consider n credit names and we assume that the credit quality of represents the evolution of credit ratings of the ith underlying entity. and taking values in the finite state space \mathcal{K} , where the process X^{i} Let X^i , i = 1, 2, ..., n be some stochastic processes defined on $(\Omega, \mathcal{G}, \mathbb{Q})$ Then we define the default time τ_i of the ith credit name by setting $$\tau_i = \inf \{ t \in \mathbb{R}_+ : X_t^i = K \}.$$ credit name the default event can only occur once. We postulate that the default state K is absorbing, so that for each # Markov Chain Credit Ratings Process Here, X is a birth-and-death process with absorption at state K. The intensity matrix Λ is tri-diagonal. | K | K-1 | ••• | ಲ | 2 | 1 | | |---|--------------------|-----|----------------|----------------|---------------------|----------| | 0 | 0 | ••• | 0 | $\lambda(2,1)$ | $\int \lambda(1,1)$ | <u> </u> | | 0 | 0 | ••• | $\lambda(3,2)$ | $\lambda(2,2)$ | $\lambda(1,2)$ | 2 | | • | • | | • | • | • | • | | 0 | $\lambda(K-1,K-1)$ | ••• | 0 | 0 | 0 | K-1 | | 0 | $\lambda(K-1,K)$ | ••• | | | 0 | K | Let $$p_t(k, k') = \mathbb{Q}(X_{s+t} = k' | X_s = k)$$. $t \in \mathbb{R}_+ \text{ and } k' = 1, 2, \dots, K,$ The transition probabilities $p_t(k, k')$ satisfy the following system for $$\frac{dp_t(1,k')}{dt} = -\lambda(1,2)p_t(1,k') + \lambda(1,2)p_t(2,k'), \frac{dp_t(k,k')}{dt} = \lambda(k,k-1)p_t(k-1,k') - (\lambda(k,k-1) + \lambda(k,k+1))p_t(k,k') + \lambda(k,k+1)p_t(k+1,k')$$ for k = 2, 3, ..., K - 1, whereas for k = K we simply have that $$\frac{dp_t(K, k')}{dt} = 0,$$ advantage of this representation is that the number of parameters can Note, in particular, that $p_t(K, k') = 0$ for every t if $k' \neq K$. The with the initial conditions $p_0(k, k') = \mathbb{1}_{\{k=k'\}}$. Once the transition be kept relatively small intensities $\lambda(k, k')$ are specified, the above system can be easily solved. $k'=1,2,\ldots,K,$ for transition probabilities take the following form, for $t \in \mathbb{R}_+$ and matrix is no longer tri-diagonal and the ordinary differential equations the default state K from any other state. In that case, the intensity A more flexible credit ratings model is obtained if we allow for jumps to $$\frac{dp_t(1, k')}{dt} = -(\lambda(1, 2) + \lambda(1, K))p_t(1, k') + \lambda(1, 2)p_t(2, k') + \lambda(1, K)p_t(K, k')$$ $$\frac{dp_t(k, k')}{dt} = \lambda(k, k - 1)p_t(k - 1, k') - (\lambda(k, k - 1) + \lambda(k, k + 1))p_t(k, k')$$ $$+ \lambda(k, K)p_t(k, k') + \lambda(k, k + 1)p_t(k + 1, k') + \lambda(k, K)p_t(K, k')$$ for k = 2, 3, ..., K - 1 and for k = K $$\frac{dp_t(K, k')}{dt} = 0,$$ with initial conditions $p_0(k, k') = \mathbb{1}_{\{k=k'\}}$. ## Survival Intensities For arbitrary $s \le t$ on the set $\{\tau_1 > s, \ldots, \tau_n > s\} = \{\tau_{(1)} > s\}$ we have $$P\{\tau_i > t \mid \mathcal{G}_s\} = \mathbb{E}_P\left(\frac{C(Z_s^1, \dots, Z_t^i, \dots, Z_s^n)}{C(Z_s^1, \dots, Z_s^n)} \mid \mathcal{F}_s\right).$$ ## Survival Intensities For arbitrary $s \le t$ on the set $\{\tau_1 > s, \ldots, \tau_n > s\} = \{\tau_{(1)} > s\}$ we have $$P\{\tau_i > t \mid \mathcal{G}_s\} = \mathbb{E}_P\left(\frac{C(Z_s^1, \dots, Z_t^i, \dots, Z_s^n)}{C(Z_s^1, \dots, Z_s^n)} \mid \mathcal{F}_s\right).$$ PROOF: The proof is straightforward, and follows from the key lemma $$P\{\tau_i > t \,|\, \mathcal{G}_s\} 1_{\{\tau_{(1)} > s\}} = 1_{\{\tau_{(1)} > s\}} \frac{P(\tau_1 > s, \dots, \tau_i > t, \dots, \tau_n > s \,|\, \mathcal{F}_s)}{P(\tau_1 > s, \dots, \tau_i > s, \dots, \tau_n > s \,|\, \mathcal{F}_s)}$$ Consequently, assuming that the derivatives $\gamma_t^i = \frac{d\Gamma_t^i}{dt}$ exist, the *i*-th intensity of intensity of survival equals, on the set $\{\tau_1 > t, \dots, \tau_n > t\}$, $$\lambda_t^i = \gamma_t^i Z_t^i \frac{\frac{\partial}{\partial v_i} C(Z_t^1, \dots, Z_t^n)}{C(Z_t^1, \dots, Z_t^n)} = \gamma_t^i Z_t^i \frac{\partial}{\partial v_i} \ln C(Z_t^1, \dots, Z_t^n),$$ where λ_t^i is understood as the limit: $$\lambda_t^i = \lim_{h \downarrow 0} h^{-1} \mathbb{Q} \{ t < \tau_i \le t + h \mid \mathcal{F}_t, \tau_1 > t, \dots, \tau_n > t \}.$$ if the j-th entity defaults at time t for some $j \neq i$. In fact, it holds that It appears that, in general, the i-th intensity of survival jumps at time t, $$\lambda_t^{i,j} = \gamma_t^i Z_t^i \frac{\frac{\partial^2}{\partial v_i \partial v_j} C(Z_t^1, \dots, Z_t^n)}{\frac{\partial}{\partial v_j} C(Z_t^1, \dots, Z_t^n)},$$ where $$\lambda_t^{i,j} = \lim_{h \downarrow 0} h^{-1} \mathbb{Q} \{ t < \tau_i \le t + h \, | \, \mathcal{F}_t, \tau_k > t, k \ne j, \tau_j = t \}.$$ survival after the default times of some entities. Let us fix s, and let Schönbucher and Schubert (2001) also examine the intensities of $t_i \le s \text{ for } i = 1, 2, \dots, k < n, \text{ and } T_i \ge s \text{ for } i = k + 1, k + 2, \dots, n.$ $$\mathbb{Q}\left\{\tau_{i} > T_{i}, i = k+1, k+2, \dots, n \mid \mathcal{F}_{s}, \tau_{j} = t_{j}, j = 1, 2, \dots, k, \right.$$ $$\tau_{i} > s, i = k+1, k+2, \dots, n\right\}$$ $$= \frac{\mathbb{E}_{\mathbb{Q}}\left(\frac{\partial^{k}}{\partial v_{1} \dots \partial v_{k}} C(Z_{t_{1}}^{1}, \dots, Z_{t_{k}}^{k}, Z_{T_{k+1}}^{k+1}, \dots, Z_{T_{n}}^{n}) \mid \mathcal{F}_{s}\right)}{\frac{\partial^{k}}{\partial v_{1} \dots \partial v_{k}}} C(Z_{t_{1}}^{1}, \dots, Z_{t_{k}}^{k}, Z_{s}^{k+1}, \dots, Z_{s}^{n})}.$$ ## Brownien reference filtration is immersed in G, i.e., F martingales are G martingales. Here F is a Brownian filtration. We work under the hypothesis that F We introduce the conditional joint survival process G(u,v;t) $$G(u, v; t) = \mathbb{Q}(\tau_1 > u, \tau_2 > v \mid \mathcal{F}_t).$$ We write $$\partial_1 G(u, v; t) = \frac{\partial}{\partial u} G(u, v; t), \quad \partial_{12} G(u, v; t) = \frac{\partial^2}{\partial u \partial v} G(u, v; t) = f(u, v; t)$$ so that $$G(u, v; t) = \int_{u}^{\infty} \left(\int_{v}^{\infty} f(x, y; t) \, dy \right) dx$$ where $(f(x, y; t), t \ge 0)$ is a family of **F**-predictable processes (in fact (\mathbf{F}, \mathbb{Q}) -martingales). For any fixed $(u, v) \in \mathbb{R}^2_+$, the **F**-martingale $G(u, v; t) = \mathbb{Q}(\tau_1 > u, \tau_2 > v \mid \mathcal{F}_t)$ admits the integral representation $$G(u, v; t) = \mathbb{Q}(\tau_1 > u, \tau_2 > v) + \int_0^t g(u, v; s) dW_s$$ ## Valuation of Single-Name CDSs Let us now examine the valuation of single-name CDSs. We consider the CDS - with the constant spread κ , - which delivers $\delta(\tau_1)$ at time τ_1 if $\tau_1 \leq T$, where δ is a deterministic function. filtration, care on the information on the second default contained in that The value $S^1(\kappa)$ of this CDS, computed in the filtration **G**, i.e., taking $$\mathbb{E}(\delta(\tau_1)\mathbb{1}_{\tau_1\leq T}-\kappa((T\wedge\tau_1)-t)|\mathcal{G}_t)$$ is computed in two successive steps. where $\widetilde{S}^{1}(\kappa)$ is an **F**-adapted process defined as On the set $t < \tau_{(1)}$, the ex-dividend price of the CDS is $S_t^1(\kappa) = \widetilde{S}_t^1(\kappa)$ $$\widetilde{S}_{t}^{1}(\kappa) = \frac{1}{\mathbb{P}(\tau_{1} > t, \tau_{2} > t | \mathcal{F}_{t})} \mathbb{E}(\delta(\tau_{1}) \mathbb{1}_{\tau_{1} \leq T} - \kappa((T \wedge \tau_{1}) - t) | \mathcal{F}_{t})$$ $$= \frac{1}{G(t, t; t)} \left(-\int_{t}^{T} \delta(u) \partial_{1} G(u, t; t) du - \kappa \int_{t}^{T} G(u, t; t) du \right).$$ On the event $\{\tau_2 \leq t < \tau_1\}$, we have that $$S_t^1(\kappa) = \frac{1}{\mathbb{P}(\tau_1 > t | \mathcal{F}_t \vee \sigma(\tau_2))} \mathbb{E}(\delta(\tau_1) \mathbb{1}_{\tau_1 \leq T} - \kappa((T \wedge \tau_1) - t) | \mathcal{F}_t \vee \sigma(\tau_2))$$ $$= \frac{1}{\partial_2 G(t, \tau_2; t)} \left(-\int_t^T \delta(u) f(u, \tau_2; t) du - \kappa \int_t^T \partial_2 G(u, \tau_2; t) du \right).$$ ## Price Dynamics of Single-Name CDSs By applying the Itô-Wentzell theorem, we get $$G(u,t;t) = G(u,0;0) + \int_0^t g(u,s;s) dW_s + \int_0^t \partial_2 G(u,s;s) ds$$ $$G(t,t;t) = G(0,0;0) + \int_0^t g(s,s;s) dW_s + \int_0^t (\partial_1 G(s,s;s) + \partial_2 G(s,s;s)) ds$$ $$= G(0,0;0) + \int_0^t (\partial_1 G(s,s;s) + \partial_2 G(s,s;s)) ds$$ where the last equality is a consequence of the immersion hypothesis. The process $$M_t^1 = H_t^1 - \int_0^{t \wedge \tau_{(1)}} \widetilde{\lambda}_u^1 du - \int_{t \wedge \tau_{(1)}}^{t \wedge \tau_1} \lambda^{1/2}(u, \tau_2) du,$$ is a **G**-martingale. Here $$\widetilde{\lambda}_t^i = -\frac{\partial_i G(t,t;t)}{G(t,t;t)}, i = 1,2 \quad \lambda^{1|2}(t,s) = -\frac{f(t,s;t)}{\partial_2 G(t,s;t)}$$ Note that $\widetilde{\lambda} = \widetilde{\lambda}^1 + \widetilde{\lambda}^2$ is the intensity of $\tau_{(1)} = \tau_1 \wedge \tau_2$: the process $$1_{\tau_{(1)} \le t} - \int_0^{t \wedge \tau_{(1)}} \widetilde{\lambda}_u du$$ is a **G**-martingale. Define $$S_t^{1|2}(\kappa_1) = \frac{1}{\partial_2 G(t,t;t)} \left(-\int_t^T \delta(u) f(u,t;t) \, du + \kappa \int_t^{T_1} \partial_2 G(u,t;t) \, du \right)$$ the time-t value of the CDS if default τ_2 occurs at time t. The dynamics of the process $\tilde{S}^1(\kappa)$ are $$d\widetilde{S}_t^1(\kappa) = \Big(-\widetilde{\lambda}_t^1\delta(t) + \kappa + \widetilde{\lambda}_t\widetilde{S}_t^1(\kappa) - \widetilde{\lambda}_t^2S_t^{1|2}(\kappa)\Big)dt + \sigma^1(t,T)\,dW_t$$ $$\sigma^{1}(t,T) = -\frac{1}{G(t,t;t)} \int_{t}^{T} \left(\delta(u) \, \partial_{1}g(u,t;t) + \kappa g(u,t;t)\right) du$$ The cumulative price $$S^{\text{cum},1}(\kappa) = S_t^1(\kappa) + B_t \int_{]0,t]} B_u^{-1} dD_u$$ where $$D_t = D_t(\kappa, \delta, T, \tau_1) = \delta(\tau_1) \mathbb{1}_{\{\tau_1 \le t\}} - \kappa(t \wedge (T \wedge \tau_1))$$ satisfies, on $[0, T \wedge \tau_{(1)}]$, $$dS_t^{\text{cum},1}(\kappa) = (\delta(t) - \widetilde{S}_t^1(\kappa)) dM_t^1 + (S_t^{1|2}(\kappa) - \widetilde{S}_t^1(\kappa)) dM_t^2 + \sigma^1(t,T) dW_t.$$ On $\tau_1 > t > \tau_2$ $$dS_t^1 = \sigma_{1|2}(t, T)dW_t + (\kappa - \delta(t)\lambda_t^{1|2}(\tau_2) + S_t^1\lambda_t^{1|2}(\tau_2))dt$$ $$\sigma_{1|2}(t,T) = -\int_{t}^{T} \delta_{1}(u)\partial_{1}\partial_{2}g(u,\tau_{2};t)du - \kappa_{1}\int_{t}^{T} \partial_{2}g(u,\tau_{2};t)du$$ $$\lambda^{1|2}(t,s) = -\frac{f(t,s;t)}{\partial_{2}G(t,s;t)}$$ ## Replication of a First-to-Default Claim A first-to-default claim with maturity T is a claim $(X, A, Z, \tau_{(1)})$ where ullet X is an \mathcal{F}_T -measurable amount payable at maturity if no default • $A:[0,T]\to\mathbb{R}$ with $A_0=0$ represents the dividend stream up to $\tau_{(1)}$, ith name is the first defaulted name, that is, on the event processes, where $Z_{ au_{(1)}}^i$ specifies the recovery received at time $au_{(1)}$ if the $Z = (Z^1, Z^2, \dots, Z^n)$ is the vector of **F**-predictable, real-valued $$\{\tau_i = \tau_{(1)} \le T\}.$$ • We denote by $G_{(1)}(t;t) = G(t,\dots,t;t)$ The cumulative price S^{cum} of the first to default claim is given by $$dS_t^{cum} = \sum_{i=1}^{\infty} (Z_t^i - S_{t-}) dM_t^i + (1 - H_t^{(1)}) (G_{(1)}(t;t))^{-1} dm_t,$$ where the **F**-martingale m is given by the formula $m_t =$ $$\mathbb{E}_{\mathbb{Q}}\left(G_{(1)}(T;T)X + \sum_{i=1}^{n} \int_{0}^{T} G_{(1)}(u;u)Z_{u}^{i}\widetilde{\lambda}_{u}^{i} du - \int_{0}^{T} G_{(1)}(u;u) dA_{u} \middle| \mathcal{F}_{t}\right).$$ **F**-predictable process ζ such that Since F is generated by a Brownian motion, there exists an $$dS_t^{cum} = \sum_{i=1}^{\infty} (Z_t^i - S_{t-}) dM_t^i + (1 - H_t^{(1)}) (G_{(1)}(t;t))^{-1} \zeta_t dW_t.$$ the equality $V_{t\wedge\tau_{(1)}}(\phi)=S_{t\wedge\tau_{(1)}}$ for any $t\in[0,T]$. first-to-default claim $(X, A, Z, \tau_{(1)})$ if its wealth process $V(\phi)$ satisfies We say that a self-financing strategy $\phi = (\phi^0, \phi^1, \dots, \phi^n)$ replicates a We have, for any $t \in [0, T]$, $$dV_{t}(\phi) = \sum_{\ell=1}^{n} \phi_{t}^{i} \left(\left(\delta_{t}^{\ell} - \widetilde{S}_{t}^{\ell}(\kappa_{\ell}) \right) dM_{t}^{\ell} + \sum_{j=1, j \neq \ell}^{n} \left(S_{t|j}^{\ell} - \widetilde{S}_{t}^{\ell}(\kappa_{\ell}) \right) dM_{t}^{j} + \left(1 - H_{t} \right) \left(G_{(1)}(t;t) \right)^{-1} dn_{t}^{\ell} \right)$$ $$n_t^{\ell} = \mathbb{E}_{\mathbb{Q}} \left(\int_0^{T_{\ell}} G(u, u; u) \left(\delta_u^{\ell} \widetilde{\lambda}_u^i + \sum_{j=1, j \neq \ell}^n S_{u|j}^{\ell} \widetilde{\lambda}_u^j \right) du - \kappa_{\ell} \int_0^{T_{\ell}} G_{(1)}(u; u) du \, \middle| \, \mathcal{F}_t \right)$$ Let $\widetilde{\phi}_t = (\widetilde{\phi}_t^1, \widetilde{\phi}_t^2, \dots, \widetilde{\phi}_t^n)$ be a solution to the following equations $$\widetilde{\phi}_t^{\ell} \left(\delta_t^{\ell} - \widetilde{S}_t^{\ell}(\kappa_{\ell}) \right) + \sum_{j=1, \, j \neq \ell}^n \widetilde{\phi}_t^{j} \left(S_{t|\ell}^{j}(\kappa_j) - \widetilde{S}_t^{j}(\kappa_j) \right) = Z_t^{\ell} - \widetilde{S}_t$$ and $\sum_{\ell=1}^{k} \widetilde{\phi}_{t}^{\ell} \zeta_{t}^{\ell} = \zeta_{t}$. Let us set $\phi_t^{\ell} = \widetilde{\phi}^{\ell}(\tau_{(1)} \wedge t)$ for $\ell = 1, 2, ..., n$ and $t \in [0, T]$. replicates the first-to-default claim $(X, A, Z, \tau_{(1)})$. Then the self-financing trading strategy $\phi = ((V(\phi) - \phi \cdot S), \dots, \phi^k)$ ## Replication with Market CDSs one encounters a practical difficulty regarding their liquidity. When considering trading strategies involving CDSs issued in the past, the CDS over [t, T] with the spread $\kappa(t, T_i) = \kappa_i$. Recall that for each maturity T_i by the CDS issued at time t we mean features as the T_i -maturity CDS issued at this date t, in particular, it has the ex-dividend price equal to zero. We now define a market CDS — which at any time t has similar ## A T_i -maturity market CDS has the dividend process equal to $$*D_t^i = \int_{]0,t]} B_u d(B_u^{-1} S_u^i(\kappa_i)) + D_t^i,$$ where $D^i = D(\kappa_i, \delta^i, T_i, \tau)$ for some fixed spread κ_i . equals zero for any $t \in [0, T_i]$. The ex-dividend price $*S^i$ of the T_i -maturity market CDS self-financing trading strategies in the savings account B and the market CDSs with ex-dividend prices $*S^{i}$. Since market CDSs are traded on the ex-dividend basis, to describe the the gains process $G(\phi)$ is defined as follows A strategy $\phi = (\phi^0, \dots, \phi^n)$ in the savings account B and the market CDSs with dividends D^i is said to be self-financing if its wealth $V_t(\phi) = \phi_t^0 B_t$ satisfies $V_t(\phi) = V_0(\phi) + G_t(\phi)$ for every $t \in [0, T]$, where $$G_t(\phi) = \int_{]0,t]} \phi_u^0 dB_u + \sum_{i=1}^n \int_{]0,t]} \phi_u^i d * D_u^i.$$ ex-dividend prices $S^{i}(\kappa_{i}), i = 1, \ldots, n$. Let ϕ be a self-financing strategy in the savings account B and the market CDSs with dividends D^i and its wealth process satisfies $\psi_t^0 = B_t^{-1} V_t(\phi)$ is a self-financing strategy in the savings account B and $V(\psi) = V(\phi).$ Then the strategy $\psi = (\psi^0, \dots, \psi^n)$ where $\psi^i = \phi^i$ for $i = 1, \dots, n$ and The cumulative price of the T_i -maturity market CDS satisfies $$*S_t^{c,i} = *S_t^i + B_t \int_{]0,t]} B_u^{-1} d *D_u^i$$ $$= 1 \{ \{ t < \tau \} \} (\kappa_t^i - \kappa_i) \widetilde{A}(t,T) - B_t S_0^i(\kappa_i) + B_t \int_{]0,t]} B_u^{-1} dD_u^i$$ $$\widetilde{A}(t,T) = \frac{B_t}{G_t} \mathbb{E}_{Q^*} \left(\int_t^{T \wedge \tau} B_u^{-1} du \, \Big| \, \mathcal{F}_t \right).$$ If we choose $\kappa_i = \kappa_0^i$ then $$^*S^{c,i}_t = 1\!\!1_{\{t < \tau\}} (\kappa^i_t - \kappa^i_0) \widetilde{A}(t,T) + B_t \int_{]0,t]} B^{-1}_u \, dD^i_u = S^{c,i}_t(\kappa^i_0).$$ the following conditions, for any $t \in [0, T]$, Assume that there exist **F**-predictable processes ϕ^1, \ldots, ϕ^n satisfying $$\sum_{i=1}^k \phi_t^i \left(\delta_t^i - \widetilde{S}_t^i(\kappa_i) \right) = Z_t - \widetilde{S}_t, \quad \sum_{i=1}^k \phi_t^i \zeta_t^i = \xi_t.$$ Let the process $V(\phi)$ be given by $$dV_t(\phi) = \sum_{i=1}^{\tilde{r}} \phi_t^i \left(\left(\delta_t^i - \widetilde{S}_t^i(\kappa_i) \right) dM_t + (1 - H_t) B_t G_t^{-1} dn_t^i \right)$$ $t \in [0, T],$ with the initial condition $V_0(\phi) = Y_0$ and let ϕ^0 be given by, for $$\phi_t^0 = B_t^{-1} V_t(\phi).$$ the defaultable claim (X, A, Z, τ) . account B and market CDSs with dividends * D^i , i = 1, ..., n replicates Then the self-financing trading strategy $\phi = (\phi^0, \dots, \phi^n)$ in the savings