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Two Defaults

e F' is a reference filtration,
e 7,,1 = 1,2 are two default times,
e H} = 1,,<; are the default processes,
e H' is the natural filtration of H*,
e G' is the filtration G! = F; V H!
e GG is the filtration
G = F: VH} VH?

We assume that the interest rate is null



Two Defaults, Trivial reference filtration

Two Defaults, Trivial reference filtration

We assume that F is trivial (as in the toy model)

We introduce the joint survival process G(u,v): for every u,v € R,
G(u,v) = Q(11 > u, 2 > )

We write

oG 0°G
=5 (u,v), 012G(u,v) = 590 (u,v).

01G(u,v)

We assume that the joint density f(u,v) = 012G (u,v) exists. In other
words, we postulate that G(u,v) can be represented as follows

G, v) = \:8 Qg f(a.y)dy) da.



Two Defaults, Trivial reference filtration

We compute conditional expectation in the filtration G = H! v H?:
Fort < T

P(T < 71 |H3?)

P(t < 11|H?)

P(T < i |Hy VHE) = Tyer,

H@A\.NJ < 71,1 < ﬂwv

H@A\.NJ < \J_\ﬂwv
= 1 T 1 T Hr.
b<m A L Pt < m,t < 7o) + hnct P(t < m1|m2)
G(T,t) P(T < 1 |m2)
— H_. T ”_H T H_Hq.
< A <TG ) T At P(t < 71 |72)



Two Defaults, Trivial reference filtration

e The computation of P(T' < 7|m2) can be done as follows:

H@AMJ < T1,T2 € &Gv o QMQAMJ“GV

%u NJ = = =
(T <mir2 =v) P(r € dv) 9,G(0, v)

hence, on the set 75 < T,

QMQAMJQ \ﬂwv
QMQAOU q.wv

%AMJ < \JT.MV =



Two Defaults, Trivial reference filtration

Value of credit derivatives
We introduce different credit derivatives

A defaultable zero-coupon related to the default times 7; delivers 1
monetary unit if 7; is greater that T: D*(¢,T) = E(Lyr<.y|Hi V HF)

We obtain

G (T, ) G(T,t)
1 _ = = “

_ + 1 LTIy
D*(t,T) | ! Af@A& B2G(t, 7o) {r2>t} G(t,t) v



Two Defaults, Trivial reference filtration

A contract which pays R! is one default occurs before T' and R, if the

two defaults occur before T

CD; = E(Rill{ocr, <7y + Roljocry, <7} Hi V HE)

G(t,t) — G(T,T)
= muﬁﬁﬁbvﬁw A QAN wv + mwﬁﬁﬁmvmﬂw - muﬁﬁ.?vm&

Hhell (7, > TAP 1) AH _ G, avv + 1:(1,0) AH BCCIGE vv

02G(t, T2) hG(71,t)
G, T)+ G(T,t)—G(T,T)
[,(0.0) 11—
+10.0) A G(t,t)
where by
Ii(1,1) = Ny <t ry<ty 1:(0,0) = Ngr st ry>t
N@AH_JOV — H_I_mq.HMﬁﬁwwa Y NﬁAOQ Hv — H_,AﬂHVwL.MMwW



Two Defaults, Trivial reference filtration

More generally, some easy computation leads to
HWADA\N.T ﬂwiiﬁv — NﬁAHu Hvbﬂ\ﬂf ﬁwvlTNﬁAHu OvﬂH\ToA\JvnTNwAOU HvﬂH\OLAﬂanTNﬁAOU Ovﬂﬁovo

where

u, v)01G(u, dv)
)

1
1G(u,
1
2G(t,v

\\/J —
0,0 fw\

(u, v)G(du, dv)

7
\oo h(u,v)02G(du,v)
J



Two Defaults, Trivial reference filtration

Intensities

The process

tAT1I N\To . tAT1
M} = H} — \o AL du — \ A2 (u, 1) du,
t

NT1/N\To
is a (G-martingale where

OhG(t,t)
G(t,t) ’

S s)
QMQQ“ mv

Mo A2t 5) —

On the set t < 71 A 7o, the G-intensity of 71 is equal to

. H@@Aﬂum&wlTbvﬂwVS QHQQ“@V
lim — = —
h—0 h Q(my >t, 0 > 1) G(t,t)

On the set ™ <t < 71, the G-intensity of 71 is equal to

lim 1 f(t, )

h—0 E@Aﬂw < Tfﬂ + b:ﬁwv - |©wQQfﬂwv

10



Two Defaults, Trivial reference filtration

The process

—~ tATL _ 9 G(s,0)
M} := H} — \ Sl RN
' ' 0 Qﬂmucv ’

is a H'-martingale. In a general setting, it is not a G-martingale.

11



Two Defaults, Trivial reference filtration

The Doob-Meyer decomposition of the H?-supermartingale

G(s,t) 0oG(s,T2)
G(0,1) 092G (0, 72)

G? =P(r > tH2) = (1 — H) =2 + H?

12 _ QQ“NV %m@@i& T2 MQH wQ?ﬂwv 9 QHQC&S
4Gy = Aoéb B @MESVV &SAE XIS B (%) v&

12



Two Defaults, Trivial reference filtration

Valuation of a Defaultable claim

Let us now examine the valuation of a simple defaultable claim which

delivers §(7y) at time 7 if 74 < T, where § is a deterministic function.

The value S of this claim, computed in the filtration G, i.e., taking care

on the information on the second default contained in that filtration, is

rmw — HH@AJH_W A%Aq@vﬁ.jMﬂ_Qwv

13



Two Defaults, Trivial reference filtration

Let us denote by 7(;) = 71 A 72 the moment of the first default. Then,
EﬁmwAﬁAvamﬁ — ﬁ.ﬁwAﬁva»mW“ A)LM@H.@

~ 1
St = H:AﬁHQ@ NVEA%AﬂHvH—JMHV

~ 1 T
St = ) I\ﬁ 0(u)01G(u,t) du

where G(t,t) = @AQC > 1).

14



Two Defaults, Trivial reference filtration

Hence the dynamics of the pre-default ex-dividend price Wﬁ are
dS, = A?S + Xa())S: — A ()d(t) — MMS&_MV dt,

where for i = 1,2 the function );(¢) is the (deterministic) pre-default

intensity of 7, and %M 2 is given by the expression

ﬂ
MM_M H QMQHQ 5 I\ﬁ %AQV\AF&&@

In the financial interpretation, MM 2 is the ex-dividend price at time t of

the claim on the first credit name, under the assumption that the
default 75 occurs at time ¢ and the first name has not yet defaulted
(recall that simultaneous defaults are excluded).

15



Two Defaults, Trivial reference filtration

Let us now consider the event {75 <t < 71}. The ex-dividend price of

the claim equals

1 ﬂ
Sy = G (t.72) I\ﬁ O(u) f(u, ) du

Consequently, on the event {75 <t < 7} we obtain

dS; = M2(t, 1) (S — 6(¢)) dt

16



Two Defaults, Trivial reference filtration

Dynamic of CDSs
We consider a CDS
e with a constant spread

e which delivers d(7y) at time 71 if 71 < T, where ¢ is a deterministic

function.

The value of the CDS takes the form

Vi(k) = Vi(8)Lpcrgnr, + Vi(B) L prg<icr, -

17



Two Defaults, Trivial reference filtration

First, we restrict our attention to the case t < 7o A 77.

On the set t < ™ A 11, the value of the CDS is

m?vnﬂ _ \ﬁ 5(u)9y G (u, ) du — & \*w G(u, 1) du

18



Two Defaults, Trivial reference filtration

Proof The value V (k) of this CDS, computed in the filtration H, i.e.,
taking care on the information on the second default contained in that

filtration, is
Vi(k) = Licr E(0(m0) L7y <7 — 6((T A 71) — £)[Hy)

Let us denote by 7 = 7 A 75 the first default time. Then,
IgieryVi(k) = Dy Vi(k), where

Vi(k) = @?Hv wvﬁ (0T <rlicr = KT A T1) = ) Lecr)
1
— %ﬁ Oy <7licr — k(T AT1) — ) Li<r)
! T
— % \ﬁ %AQV@?'H € du, 79 > wv

T 00
Im\\ (u—1)Q(m € du, 79 >t) — (T — wvm\ Q(m € du, 10 > 1)
t T

19



Two Defaults, Trivial reference filtration

In other terms, using integration by parts formula

ﬂ%@ — % I\w d(u)01G(u,t) &le\@ G(u,t)du

20



Two Defaults, Trivial reference filtration

On the event {m, <t < 71}, the CDS price equals

Vilk) = Vi= L E(8(r) L <7 — k(T A1) —t)|o(72))
= ! I%::ﬂ leﬂ u, ) du | = V'3 (7
S e el Gl RCOVCESETE) AR ORAPT B ARCS
where
SH_wAmvawQH@ 5 I\ﬂ %AQVNAF%VQQIR\& 02G(u, s) du

21



Two Defaults, Trivial reference filtration

The price of a CDS is V; = ANEAJ>J + Sﬁqﬁjmxj. Differentiating

the deterministic function which gives the value of the CDS, we obtain

4Vi(r) = (M () + 2e(0) Vi(r) + 1 = Ma()3(8) = 2OV, (1)) t,

aVi(m) = (NP (1) (Vi) = 6(8)) + )

22



Two Defaults, Trivial reference filtration

The price of a CDS follows

AV, = (1—HN1 = HY) (k- SON@®)dt + (1 — HHYH2(k — SN )t
~ViedM} + (1= BV () = Vi )dM}

23



Two Defaults, Trivial reference filtration

Proof: Differentiating V; = V;(1 — H)(1 — H2) + V(1 — H})H? one

obtains

v, = (1-HH(1-H>)dV,+ (1 — HHH?dV, — V,_dH]
+(1 - BV, *(t) = V)dH}

which leads to the result after light computations VAN

24



Example: Jarrow and Yu’s Model

Example: Jarrow and Yu’s Model

Let 7; = inf{t : A;(t) > ©;},i = 1,2 where A;(¢ %o s)ds and ©;
are independent random variables with @ﬁoos@bﬁ& law Om parameter 1.

Jarrow and Yu study the case where A\ is a constant and

A2(t) = Ao+ (a2 — A2) <y = Aol pery + 2llr <4y

Assume for simplicity that » = 0 and compute the value of a
defaultable zero-coupon with default time 7;, with a rebate 9;:

Uﬁ&@vﬂv — HWA.;FT.&VQQ + @,@.ﬁﬁjAﬂw_Qﬁv“ for G; = iw \ iw :

Let G(s,t) =P(m > s, > 1)

25



Example: Jarrow and Yu’s Model

Case t < s For t < s < 7y, one has A\3(t) = Aot. Hence, the following

equality
(m>stN{n >t} = {rn>sN{As(t) <Os} ={r > s} N {hat < Oy}
— Avﬁm < @ww M ﬁ\/ww < @ww
leads to
for t<s, P(ri > 8,10 >1t)=e M A2t

26



Example: Jarrow and Yu’s Model

Case t > s
{ri>stn{n>t} = {{t>n>stn{n >t} u{n{n >t}n{n >t}}
AwVﬂHV%WDAﬂwVNW — A_ﬁﬂVﬁHVmWDA\/w@vA@ww

= ATW > 711 > meﬁywﬂH |_|Qw@|ﬂuv < @ww

27



Example: Jarrow and Yu’s Model

Case t > s
{ri>stn{n>t} = {{t>n>stn{n >t} u{n{n >t}n{n >t}}
AwVﬂHV%WDAﬂwVNW — A_ﬁﬂVﬁHVmWDA\/w@vA@ww

= ATW > 711 > meﬁywﬂH |_|Qw@|ﬂuv < @ww

The independence between ©; and ©5 implies that the r.v. 7 is

independent from ©s

28



Example: Jarrow and Yu’s Model

Case t > s
{ri>stn{n>t} = {{t>n>stn{n >t} u{n{n >t}n{n >t}}
AwVﬂHV%WDAﬂwVNW — A_ﬁﬂVﬁHVmWDA\/w@vA@ww

= ATW > 711 > meﬁywﬂH |_|Qw@|ﬂuv < @ww

The independence between ©; and ©5 implies that the r.v. 7 is

independent from O3, hence
wAw >T1 > 8,Tg > wv = F AH—ﬁVﬂHVmwmlc,wjn_.ommﬁlﬁuvvv

_ \&Q ﬁﬁV:VmwmlﬁymﬁlTQm Qlﬁvvvﬁmlvﬁﬁ

w
| v, IQMW A ImA\/H+v,m|QmV| Iiv,i.v,mloﬁvv
v; + v,w — (9 1€ c c

29



Example: Jarrow and Yu’s Model

Setting A = A1 + Ay — ag, it follows that

1
P(ry > s, >t) = Mv;mlsw AmeD — mLDv + e Mt At

In particular, for s = 0,

1
w?.w > wv = M Avﬁ Amloﬁw — mlAyHn_.ywvwv + Dmlyiv

30



Example: Jarrow and Yu’s Model

e The computation of D; 4 reduces to that of
P(ty > T|G:) = P(ry > T|F: vV H;)

where F; = H?. From the key lemma,

%VA\J > ﬂ_.ﬂ.@v
%Tﬁ > i.ﬂwv .

%VAQ.H > M;.ﬂﬁ V iwv = W_HT\A%LV

Therefore,
wf&@u MJV — %H -+ HHAT.HV@WAH — %valy;ﬂlﬁv .

One can also use that

85 G(T, 7) G(T, 1) v

P(r > T|Gi) =1-DZC; =I5y Afsmﬁ 02G(t,72) T lhm> G(t,1)

31



Example: Jarrow and Yu’s Model

e The computation of D5 4 follows

Doa(t,T) = 0+ (1= 0) 1oy (Tgrzpye™ T

| . )
+lir s 5 (e 20T 4 (Mg — ag)e” M=)

32



Copula-Based Approaches

Copula-Based Approaches

The concept of a copula function allows to produce various
multidimensional probability distributions with prespecified univariate

marginal laws.

33



Copula-Based Approaches

Copula-Based Approaches

The concept of a copula function allows to produce various
multidimensional probability distributions with prespecified univariate

marginal laws.

A function C : [0,1]™ — [0, 1] is called a copula if the following
conditions are satisfied:
(i) C(1,...,1,v;,1,...,1) = v; for any ¢ and any v; € [0, 1],

34



Copula-Based Approaches

Copula-Based Approaches

The concept of a copula function allows to produce various

multidimensional probability distributions with prespecified univariate
marginal laws.

A function C : [0,1]™ — [0, 1] is called a copula if the following
conditions are satisfied:

(i) C(1,...,1,v;,1,...,1) = v; for any ¢ and any v; € [0, 1],

(ii) C'(uq, ..., uy) is increasing with respect to each component wu;

35



Copula-Based Approaches

Copula-Based Approaches

The concept of a copula function allows to produce various

multidimensional probability distributions with prespecified univariate
marginal laws.

A function C : [0,1]™ — [0, 1] is called a copula if the following
conditions are satisfied:

(i) C(1,...,1,v;,1,...,1) = v; for any ¢ and any v; € [0, 1],
(ii) C'(uq, ..., uy) is increasing with respect to each component wu;
(iii) For any a,b € [0,1]"™ with a < b (i.e., a; < b;, Vi)

2 2
M ce M A|HV&H+...+&:QA§HV&C ce v\giksv > Ov
11=1 Tn=1

where U1 = @5, Uj2 = @u.

36



Copula-Based Approaches

Let

us give few examples of copulas:
Product copula: II(uq,...,u,) = u,,
Gumbel copula: for 0 € [1,00) we set

- 1/6
Clurs- o) =exp | — [ (~Inw)?| .

i=1
Gaussian copula:
C(uy,...,up) = Ny Q/\LASY . QZLA@:VV :

where Ny is the c.d.f for the n-variate central normal distribution
with the linear correlation matrix ¥, and N ! is the inverse of the

c.d.f. for the univariate standard normal distribution.

37



Copula-Based Approaches

Sklar Theorem:

For any cumulative distribution function F' on R"™ there exists

a copula function C such that
F(zi,....,xn) = C(F1(z1),..., Fr(zy))

where F; is the i" marginal cumulative distribution function.

If, in addition, F' is continuous then C' is unique.

38



Copula-Based Approaches

Direct Application

Let F; be the probability distribution for 7;. A copula function C' is
chosen in order to introduce a dependence structure of the random
vector (71,72,...,Tn). The joint distribution of the random vector

(11, 72,...,Tn) is derived by

P{ri <t;,i=1,2,...,n} = C(Fi(t1),..., Fn(tn)).

39



Copula-Based Approaches

Indirect Application

Assume that the cumulative distribution function of (&1,...,&,) is given
by an n-dimensional copula C, and that the univariate marginal laws

are uniform on [0, 1].

40



Copula-Based Approaches

Indirect Application

Assume that the cumulative distribution function of (&1,...,&,) is given
by an n-dimensional copula C, and that the univariate marginal laws
are uniform on [0, 1]. We postulate that (&1,...,&,) are independent of

F, and we set
, =inf{t : T" > —1In&; }.

Then, Aﬁ > ws@ — A_ﬁmlﬂw& > msuv

41



Copula-Based Approaches

Then:

e The case of default times conditionally independent with respect to
F' corresponds to the choice of the product copula II. In this case,
for t1,...,t, <T we have

P{ri > t1,...,mn >ty | Fr} =1(Z} ..., 2]),

, i
where we set Z! = e ',

e In general, for t1,...,t,, <1 we obtain
NNT.H >t1,...,Tn Vwﬂ;.ﬂ.ﬂw HQANMHQ“NMMV“
where C is the copula used in the construction of &4,...,&,.

42



Copula-Based Approaches

An example

This example describes the use of one-factor Gaussian copula (Bank of
International Settlements (BIS) standard).

Let ¢; be a decreasing function taking values in [0, 1] with ¢;(0) = 1.
7; = inf{t : q;(t) < U;}

Then, q;(t) = P(r; > t) =1 — p;().

Correlation specification of the thresholds U;: Let Y7, ---,Y,, and

Y be independent random variables and X, = p;Y + /1 — bwu\@
The default thresholds are defined by U, = 1 — F;(X;) where F; is the

cumulative distribution function of X;. Then

T =1inf{t : p;Y + /1 - p2V; < F7 11— (1)}

43



Copula-Based Approaches

Conditioned on the common factor Y,

@li @vi — piY

V1-p3

where FY is the cumulative distribution function of Y;.

E&Q_M\v — Nuw\

44



Copula-Based Approaches

Let us consider the particular case where
Xi = piY +1/1 = p7Y;,

where Y, Y;, 1 =1,2,...,n, are independent standard Gaussian

variables. In that case, X; is also a standard Gaussian law and

N~ (pi(t)) — piY

PHY) =N

and

where f is the density of Y.
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Copula-Based Approaches

Let us consider the particular case where
Xi = piY +1/1 = p7Y;,

where Y, Y;, 1 =1,2,...,n, are independent standard Gaussian
variables. In that case, X; is also a standard Gaussian law and
. N () — p.Y
sy = (A @0)
v 1—=0p;

and

where f is the density of Y. The one-factor Gaussian copula model was
proposed in the context of CDOs (Collateralized debt obligations) by Li
(2000). It is now considered as the benchmark model. However, it does
not fit well the market data.

46



Copula-Based Approaches

Recent alternative: Lévy Copulae

Let X, Y(® be independent Lévy processes with same law and such that
HWANHV = OU/NQH.ANHV =1
We set X; = X, + M\H@b.

By properties of Lévy processes, X; has the same law as X; and

OOH.AN? Lvmuv = pP

47



CDO

CDO

A CDO consists of a set of assets (its collateral portfolio) and a set

of liabilities (the issued notes).

A CDO cash flow structure allocates interest income and principal
repayment from a collateral pool of different debt instruments to a
prioritized collection of securities notes, which are commonly called

tranches .

A standard prioritizing structure is a simple subordination, i.e.
senior CDO notes are paid before mezzanine and lower subordinated

notes are paid, with any residual cash flow to an equity piece.

The tranches are ordered so that losses in interest or principal to
the collateral are absorbed first by the lowest level tranche and then
in order to the next tranche and so on. The lowest tranche is the
riskiest one, because has to respond immediately to the incurred
losses, and it is called the equity tranche.

48



CDO

Let L; be the accumulated loss on the credit portfolio at time ¢t. Then

we have the following natural expression for L;.

n

Ly=> M;H]} =) (1-06;)N;l; <.

L is a pure jump process with jumps at defaults and the jump size

equal to the non-recovered part of the credit, that is, (1 — d;)NV;.

49



CDO

One-Factor Model

e Let us consider a one-factor model. Let V' be the latent factor, such
that conditionally on V' the default times are independent. We
assume that recoveries 91,09, ...,0, are independent of V' and

T1,725«+.,Tn.

e Let us denote the counting process associated with the number of
defaults by Hy = > | Hj.

e We first consider the probability generating function of H;, which
we will later use in the calculation of the characteristic function for

the accumulated loss. We have

Vi, (u)

Hmau Amzmﬁv
— Ep A%mf mv

= Ep [Ep (X V)).

50



CDO

e By noting that mw is a Bernoulli random variable and by denoting

Pir; <t|V)=pl"Y and P(r; >t|V)=¢g"

we can write
ﬁwAm:mm_<v _ &:\ +R_<m:.

e Recalling that H},..., H" are conditionally independent given V,

we obtain

Hmuﬁ HWNU exp QMW\M _<
7=1

= Ep ﬁmw szwm:mw : ..m:mw:\-w

— Ep Tm% A%E :\v Ep A%mw :\v . Ep A%i :\z |

Vi, (u)

51



CDO

e Finally, we get the following representation

er | TTEx (1)

|J=1

Vi, (u)

— Ep _—@u:\ b:\m:

_ \: (" + 5] e) flv) dv

where f(v) is the density function of the factor V.
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CDO

Characteristic Function of Loss Process

e We will now use this result to compute the characteristic function

of loss process L;, for different time horizons.

e The ultimate goal is to be able to find the distribution function of
the loss process L;, which is used in pricing CDO tranches. We have

pr,(u) = Ep(exp(iuly))
= Ep|Ep (exp(iuly)|V)]

exp A&QM:@ v])

ﬁwﬁﬁw
= Ep{Ep|exp () (1 - 5)N;17) | V]
ﬁﬁ ﬁﬁw

j=1
:m&iT?v?ﬂ ...méﬁ&:v?@mwv ' a@ W .
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CDO

e Recall that the random variable H}, ..., H* are conditionally

independent given V.

e Hence we obtain

o, A\Q\v _ Hmumu AHWT _HQN.:AHI%HVZHN&M:\H_ o .HWT _HQ&QAwl%SVZQ@mM@_H\H_W

= Epr [[]Er A@ET@E&_@

J=1

|V NV iu(l1=96. )
= Er |]] A&_ + !V gintl SBV
j=1

e Note that we can write

®s.§mH|mmu.v2. _ €H|%u A\Q\‘N/@v

.
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CDO

e Let f(v) be the density function of V. Then

v
o, (u) = Ep|]] A&_ +pj ﬁTi:va
j=1

-/ : (6 + 1 15, () F(0) o

e The last integral can be calculated through numerical integration
over the distribution of the latent factor V.

e The distribution of the accumulated loss L; can be obtained by

some Fourier inversion techniques.

e Observe that the only input to the model are the conditional

default and survival probabilities.
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CDO

Pricing of the Mezzanine Tranche

e We can now examine the pricing of a particular leg of a CDO. The
default payments on the different tranches of a CDO are obtained

as functions of the accumulated losses L;.

e Consider two thresholds A and B on the synthetic CDO where

0<A<B<) N;=C.

g=1

e Let the cumulative default payments on the mezzanine tranche be

denoted by M;. We know the mezzanine tranche only bears losses
between A and B. Thus M; equals

M; = (Ly — A)4 g1(Le) + (B — A) L o1(Le).

e We can write similar expressions for equity and senior tranches.
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CDO

e More importantly we can now represent the discounted payoft
corresponding to default payments as follows

T
\ 8, dM,
0

where 3; is the discount factor for maturity ¢

ﬁu@%T\oﬁigv%v

e For simplicity, we assume deterministic interest rates.

e The integration by parts formula yields

T T
\ By dMy = prMr + \ r(t) G My dt.
0 0
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CDO

e Recall that in order to price the mezzanine tranche, we need to

compute the following expectation

s [ )

e Using Fubini’s theorem, we obtain

Ep \o M) = BrEp (M) + \o ()5 ER(M,) dt.

e Thus the pricing problem for the mezzanine tranche has been

reduced to finding the expectation Ep(M;).
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CDO

e Using the expression for M, derived before, we can now write

ﬁﬁmiwv = Ep TN& — \CH:\»VQ_ Ahwl + Ep Tm — \CH:m“Q_AN:W:
= Ep [(Li — Al p(Ls)] +(B—A)Ep [115,0(L:)]

u \ﬂ§!@&ﬁ®jgm|EaEAhiﬁu
A

n NA?JéﬁﬁﬁYlmléﬁﬁﬁu|$LEv

where Fp, is the cumulative distribution function of L.

e It can be checked that for the computation of the value of the fee
leg of a CDO, we still only need the distribution of the accumulated

losses L.

e For details, see the papers by Laurent and Gregory (2003) and
Burtschell et al. (2005).
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Credit Ratings

Credit Ratings

We consider n credit names and we assume that the credit quality of
each reference entity falls to the set = {1,2,..., K} of K rating

categories, where, by convention, the category K corresponds to default.

Let X', 1 =1,2,...,n be some stochastic processes defined on (2, G, Q)
and taking values in the finite state space KC, where the process X*
represents the evolution of credit ratings of the ¢th underlying entity.
Then we define the default time 7; of the ith credit name by setting

m,=inf{tc R, : X! = K}.

We postulate that the default state K is absorbing, so that for each

credit name the default event can only occur once.
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Credit Ratings

Markov Chain Credit Ratings Process
Here, X is a birth-and-death process with absorption at state K.

The intensity matrix A is tri-diagonal.

1 2 K—1 K
1 (A(1,1) A(L,2) 0 0 \
2 A2,1) A(2,2) 0
3 0 A(3,2) 0
K—-1| o0 0 - AME-1,K—1) XMNK-1,K)
K\ 0 0 - 0 0o )
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Credit Ratings

Let @wQ&.U\a\v = @Akml_uw = F\_Nm = \Av

The transition probabilities p;(k, k) satisfy the following system for
teRyand k' =1,2,..., K,

&Eﬁmﬂm \A\v — |v,AHva%ﬁAH“\A\v + VAHQMVB;MQ\&\VU
%ﬂmw ) Ak = Dpe(k — LK) — Ak, — 1) + Ak k + D)ok, &)

+ Mk, k+ Dp(k+1,K)

for k =2,3,..., K — 1, whereas for k = K we simply have that

dp: (K, k")
dt

with the initial conditions po(k, k) = Lyx—xy. Once the transition

= 0,

intensities A(k, k") are specified, the above system can be easily solved.
Note, in particular, that p; (K, k") = 0 for every t if k' # K. The
advantage of this representation is that the number of parameters can
be kept relatively small.
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Credit Ratings

A more flexible credit ratings model is obtained if we allow for jumps to
the default state K from any other state. In that case, the intensity
matrix is no longer tri-diagonal and the ordinary differential equations

for transition probabilities take the following form, for £ € R, and
K=1,2,..., K,

dp: (1, k")
dt
dp(k, k")
dt

= — (ML, 2)+ X1, K)pe(1, )+ A1, 2)pe (2, K 4+A (L, K)pe (K, k')

v — yQﬁ k— Hv@;\a|f \a\v R Av,Qﬁ \a|Hv + yQﬁ \AlTHVVEﬁQﬁ Na.\v
+ Ak, K)pe(k, k') + Ak, k+1)pe(k+1, k") +A(k, K)p: (K, k')
for k=2,3,..., K —1and for k=K

&Nww ANA‘U \A\V
dt

with initial conditions po(k, k') = M p=p:y.

= 0,
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Credit Ratings

Survival Intensities

For arbitrary s <t on the set {ry >s,..., 7, > s} = {7(1) > s} we have

Cczl,..., Mi.;va_gﬁ
C(ZL,.... 2" 0 )

S

wﬁﬂ&ViQmeﬁﬁA
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Credit Ratings

Survival Intensities

For arbitrary s <t on the set {ry >s,..., 7, > s} = {7(1) > s} we have

QANMT.; Mi.;va'gﬁ
C(ZL,...,Zn) 7))

wﬁﬂ&vﬂwi@mw”ﬁﬁﬁ

PROOF: The proof is straightforward, and follows from the key lemma

P(ri>s,...,Ti>t,...,Tn > 5| Fs)
PATi > ] Ga iy >sp = H_?Ev&wAJ > 8,y Ti > Sy T > S| Fs)

ZAN
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Credit Ratings

Consequently, assuming that the derivatives ! = dly exist, the i-th

dt
intensity of survival equals, on the set {m >¢,..., 7, > t},
C(Z}t,...,Z") . s,
— N;s = InC(Z},...,2"
E= Y C(ZL, ..., 2 "Vt @@Sb ( , 21 ),

where \! is understood as the limit:

ﬁw: 'Q{t < <t+h|Femi>t,..., 1 >t}
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Credit Ratings

It appears that, in general, the i-th intensity of survival jumps at time ¢,

if the j-th entity defaults at time ¢ for some j # 7. In fact, it holds that
9° n
?QANMT.;NL

50 C(Z4,....2¢)

1, i 7
v:w — V¢ Nﬁ
where

A HﬁwwL@ﬁAs_ <t+h|F,m>tk#j 1=t}
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Credit Ratings

Schonbucher and Schubert (2001) also examine the intensities of
survival after the default times of some entities. Let us fix s, and let
ti<sfori:=1,2,....,k<n,andT; >sfore=k+1,k+2,...,n.
Then,
Qr >T,i=k+1,k+2,....,n|Fs, 7, =t;,j=1,2,...,k,
T Vm;H\anTH“wl_‘wi.;\;v
Bo (50l C(Zh o 2, 250 23 ) | 7))

Ovi...0vg Tri1?

P C(ZL, ..., 2k ZE T Zn)

@@H...de ty°
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Brownien reference filtration

Brownien reference filtration

Here F is a Brownian filtration. We work under the hypothesis that F

is immersed in G, i.e., F martingales are G martingales.
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Brownien reference filtration

We introduce the conditional joint survival process G(u,v;t)

G(u,v;t) = Q(11 > u, 2 > v | Fy).

We write

01 G( .NVIWQAQ vit), 012G(u,v;t) = o G(u,v;t) = f(u,v;t)
1 U, v, — ou y Uy U )y 12 s Uy — Oudv s Uy — s Uy

so that

G(u,v;t) = %:8 Aboo f(x,y;t) &@v dx

where (f(x,y;t),t > 0) is a family of F-predictable processes (in fact
(F, Q)-martingales).
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Brownien reference filtration

For any fixed (u,v) € R%, the F-martingale
G(u,v;t) = Q(11 > u, 2 > v|F;) admits the integral representation

t
G(u,v;t) = Q(m > u, 7 > 0) +\ g(u,v;s) dW;
0
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Brownien reference filtration

Valuation of Single-Name CDSs

Let us now examine the valuation of single-name CDSs.

We consider the CDS
e with the constant spread k,
e which delivers 6(7) at time 7y if 74 < T, where ¢ is a

deterministic function.

The value S'(k) of this CDS, computed in the filtration G, i.e., taking
care on the information on the second default contained in that
filtration,

E@(m) Ly, <7 — k(T A1) = 1)|G¢)

is computed in two successive steps.
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Brownien reference filtration

On the set t < 7(q), the ex-dividend price of the CDS is S} (k) = S1(k)

where S (k) is an F-adapted process defined as

510 = s =T O s = K(T Am) — BIF)

1 ﬂ ﬂ
= GhiD I\ﬁ %AQVQHQAF@“S&@IR\W G(u,t;t) du
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Brownien reference filtration

On the event {m, <t < 71}, we have that

SR = G o B L — s(T AT) = DIV o(m)

1

ﬂ ﬂ
H | % .w&l @Q .w&
@wqﬂﬁﬂwwwv \w Aﬁv\ﬂﬁuﬂwv v u R‘\\w 2 A\gvﬂwu v u

74



Brownien reference filtration

Price Dynamics of Single-Name CDSs

By applying the Ito-Wentzell theorem, we get
t t
Gu,t;t) = G(u,0;0) |_.\ g(u, s;s) dWy +\ 0oG(u, s;s)ds
0 0
t t
G(t,t;t) = G(0,0;0) +\ g(s, s;8) dW +\ (01G(s,8;8) + 02G(s,8;8))ds
0 0

¢
= Qﬁovowoer\ (01G(s,8;8) + 02G (s, s;5)) ds
0

where the last equality is a consequence of the immersion hypothesis.
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Brownien reference filtration

The process
ﬁ\/q.AHv - tAT1
M} = H} — \ AL du — \ A2 (w, ) du,
0 w\/ﬂﬁv
is a G-martingale. Here

G(t, t; 1)

f(t, 5;t)
- 0,G(t, s; 1)

Ay = =12 MP(ts) =

Note that X = \! + X2 is the intensity of 71y = 71 A 72: the process

w>ﬁcv .
0

is a G-martingale.

Define
11

ﬂ
H_w H H | . w.w&
mﬁcﬁv Gt D) \w %Aﬁvxﬁzuﬂv@vgngx @ QMQAFvv\g

the time-t value of the CDS if default 7 occurs at time ¢.
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Brownien reference filtration

The dynamics of the process S (k) are

S} (k) = A ~NS(E) + K+ N SE(k) — MW&_M@V& + ol (t, T) dW,

where

ol (t,T)

1

G(t,t:t

v \ﬁ (6(u) Brg(u, t;t) + rg(u, t;t)) du

7



Brownien reference filtration

The cumulative price

seuml() = §L() + B, \ B-1dD,
0,1

where
@w — @wA\A“ mmv MJQ \ﬂHv — %AﬂHvH—T.HMS, o R.\Aw /\ AMJ A\ ﬁpvv
satisfies, on [0,T" A 7(1)],

dSE™ (k) = (8(t) — SE(r))dM} + (S (k) — SE(k)) M2 + ot (t, T)dW, .
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Brownien reference filtration

On7m >t>m

dS} = oo (t, TYAW; + (k — S(E)A 7 (12) + SEA; 2 (72))dt

where
T T
o2(t,T) = I\ BASQH@MQAFQHE:IE\ Oog(u, mo;t)du
¢ t
1|2 _ f(t,s5t)
AT () 3oG(t, 5:1)
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Replication of a First-to-Default Claim

Replication of a First-to-Default Claim

A first-to-default claim with maturity 7" is a claim (X, A, Z, 7))
where

e X is an Fp-measurable amount payable at maturity if no default
occurs

e A:[0,T] — R with Ay = 0 represents the dividend stream up to 7(y),
o 7 =(Z1,7Z%,...,Z") is the vector of F-predictable, real-valued
processes, where Z*  specifies the recovery received at time T(1) if the

(1)
1th name is the first defaulted name, that is, on the event

T.@. = T(1) < M@.
e We denote by G(1)(t;t) = G(t,---,t;t)
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Replication of a First-to-Default Claim

The cumulative price S°“™ of the first to default claim is given by

dS¢™ = (Zi — Sp-) dM; + (1 — H{V) (G oy (1)~ dmy,
1=1

where the F-martingale m is given by the formula m; =

n T T
Eq QEAHW%VNLjM\o QﬁvA:m:vanggl\o Gy (u;u) dAy | Fy
1 =1
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Replication of a First-to-Default Claim

Since F is generated by a Brownian motion, there exists an

F-predictable process ( such that

ASg ™ = (Z) = S ) dM] + (1= Hy )Gy (1)) ' G dW.

1=1
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Replication of a First-to-Default Claim

We say that a self-financing strategy ¢ = (¢%, ¢!, ..., ¢") replicates a
first-to-default claim (X, A, Z, 7)) if its wealth process V(¢) satisfies
the equality Viar,, (¢) = Siar,, for any t € [0, T].

We have, for any t € [0, T],

dV; (& MU@A% S (kg)) dME + MU S — St(ke)) dM]
J=1,77#¢

+ (1= H)(Gy(t:) " dnf)

where

Ty . n
nt =Eq \ G(u, u; u) mew + M m\m:
0

j=1,j#¢

~ .,

Ty
ywv du — @\ Gy (wu) du | Fy
0
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Replication of a First-to-Default Claim

Let ¢, = (L, ¢2,..., ") be a solution to the following equations
0r (0 = Si(ke)) + Y ¢ (S8),(ky) = SL (k) = Z{ = S,
j=1,j70
and MMHH @m@m = Gt
Let us set ¢¢ = %?.E At) for £ =1,2,...,nand t € [0,T].

Then the self-financing trading strategy ¢ = ((V(¢) — ¢ - 5),..., ¢")
replicates the first-to-default claim (X, A, Z, 7).
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Replication of a First-to-Default Claim

Replication with Market CDSs

When considering trading strategies involving CDSs issued in the past,

one encounters a practical difficulty regarding their liquidity.

Recall that for each maturity 7; by the C'D.S issued at time ¢ we mean
the CDS over [t,T| with the spread x(t,T;) = K;.

We now define a market CDS — which at any time ¢ has similar
features as the T;-maturity CDS issued at this date ¢, in particular, it

has the ex-dividend price equal to zero.
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Replication of a First-to-Default Claim

A T;-maturity market CDS has the dividend process equal to
D= [ BB S, (k) + D,
10,1]

where D' = D(k;, 8", T;, ) for some fixed spread ;.

The ex-dividend price *S* of the T;-maturity market CDS
equals zero for any ¢ € [0, T;].
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Replication of a First-to-Default Claim

Since market CDSs are traded on the ex-dividend basis, to describe the
self-financing trading strategies in the savings account B and the
market CDSs with ex-dividend prices *S*.

A strategy ¢ = (¢, ..., ¢") in the savings account B and the market
CDSs with dividends *D* is said to be self-financing if its wealth

Vi(¢) = ¢Y By satisfies V;(¢) = Vo (@) + G¢(¢) for every t € [0,T], where
the gains process G(¢) is defined as follows

Gi(¢)= | ¢%dB,+> [ ¢L,d*D}.
10,¢] i—1 7 10,t]
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Replication of a First-to-Default Claim

Let ¢ be a self-financing strategy in the savings account B and

ex-dividend prices S*(k;), i =1,...,n.

Then the strategy 1 = (¢¥,...,9y") where ¢* = ¢* fori =1,...,n and
V) = B; 'V, (¢) is a self-financing strategy in the savings account B and

the market CDSs with dividends *D* and its wealth process satisfies
V(y) =V(e).
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Replication of a First-to-Default Claim

The cumulative price of the T;-maturity market CDS satisfies

]0,¢]
= Mpecr) 5~ ) T) ~ By + B [ Bt
0,t
where
B B T'NT
A(t,T) = _t Eg- \ B tdu 7 Fi
Gy ¢
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Replication of a First-to-Default Claim

If we choose k; = K, then

*Sit = Tgyery (ki — kDA, T) + By \ B ldD! = S (kD).
]0,¢]
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Replication of a First-to-Default Claim

Assume that there exist F-predictable processes ¢, ..., ¢" satisfying
the following conditions, for any t € [0, T,

k

k
MU%M. A& - WM?LV = Zt — Wﬁ MU%MQ. = &t
i=1

1=1

Let the process V(¢) be given by

k
aVi(@) = > 6i((6} — Si(wi) dM, + (1 — H,)B,G;  dnf)

i=1
with the initial condition Vp(¢) = Y, and let ¢° be given by, for
te 0,7,
¢7 = B, V().
Then the self-financing trading strategy ¢ = (¢,..., ¢") in the savings

account B and market CDSs with dividends *D*, i =1, ..., n replicates
the defaultable claim (X, A, Z, 7).
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