

ұӘצ.ЛеIN ӨЧ工
We assume that $F(t)<1, \forall t$

can be read as
e[nuiof әЧL

We introduce the increasing hazard function Γ defined by

${ }^{\prime} 0=\rho$ тод

- A payment of $\delta(\tau)$ monetary units, where δ is a deterministic
function, made at time τ if $\tau<T$.
Here, we do not assume that F is differentiable.
'рәлınэəo

$$
\begin{aligned}
& \text { әчц } \\
& \text { dynamics }
\end{aligned}
$$

ешшәт Кәу

ешиәт Кәу
-วฉрби!ๆนри- \mathbb{H} р s?

ио!ŋтйн рлеzен

-дұрбu!ๆлрu- \mathbb{H} p s?

Proof: We shall give 3 different arguments, each of which constitutes a
proof.
a) Since the function γ is deterministic, for $t>s$

b) Another method is to apply integration by parts formula to the
process $L_{t}=\left(1-H_{t}\right) \exp \left(\int_{0}^{t} \gamma(s) d s\right)$ If U and V are two finite
variation processes, Stieltjes' integration by parts formula can be
written as follows
-

$\cdot\left((\perp) y^{\perp>7} \mathbb{I}\right) \mathbb{d} \mathbb{H} \mathbb{H}_{(\not))_{\mathrm{I}}} \partial=(\neq) 6$
ә.ІӘЧм
where h is a strictly positive fonction, such that $\mathbb{E}_{\mathbb{P}}(h(\tau))=1$. Let
$\Gamma^{*}(t)=-\ln \mathbb{P}^{*}(\tau>t)$. If Γ is continuous, Γ^{*} is continuous and
$\mathbb{\mathbb { P }} p(\perp) Y={ }_{*} \mathbb{\mathbb { C }} p$

אұ!!!qeqoлd јо ә.ภиечจ

:foold

$F_{\mathbb{Q}}(t)=\mathbb{Q}(\tau \leq t)$.

$$
D(t, T)=B(t, T) \mathbb{E}_{\mathbb{Q}}\left(\left[\mathbb{1}_{T<\tau}+\delta \mathbb{1}_{t<\tau \leq T}\right] \mid t<\tau\right) .
$$

Therefore, we can characterize the cumulative function of τ under \mathbb{Q}
from the market prices of the DZC as follows.
It is usual to interpret the absence of arbitrage opportunities as the
existence of an e.m.m. . If DZCs are traded, their prices are given by
the market, and the equivalent martingale measure \mathbb{Q}, chosen by the
market, is such that, on the set $\{t<\tau\}$,

following equality holds

эฺฺ. e
оләZ
"u•u•ə

Let h be a (bounded) Borel function. Then, the martingale
$M_{t}^{h}=\mathbb{E}\left(h(\tau) \mid \mathcal{H}_{t}\right)$ admits the representation
шәлоәЧు ио!̣еұиәsəлdәч
Let h be a (bounded) Borel function. Then, the martingale
$M_{t}^{h}=\mathbb{E}\left(h(\tau) \mid \mathcal{H}_{t}\right)$ admits the representation

$$
\begin{aligned}
& \quad \mathbb{E}\left(h(\tau) \mid \mathcal{H}_{t}\right)=\mathbb{E}(h(\tau))+\int_{0}^{t \wedge \tau}(h(s)-\tilde{h}(s)) d M_{s}, \\
& \text { where } M_{t}=H_{t}-\Gamma(t \wedge \tau) \text { and } \tilde{h}(t)=-\frac{P^{\infty} h(u) d G(u)}{G(t)} . \\
& \text { Note that } \tilde{h}(t)=M_{t}^{h} \text { on } t<\tau .
\end{aligned}
$$

шәлоәЧ工 ио!ұеұиәsəлдәу

шәлоәЧц ио!ฺеұиәsəлдәу

гәрои s,ориет рие әщnの :ио!ұеилоји! ге!ұхед

rate r is constant.
We assume that the market has chosen a risk-neutral probability \mathbb{Q} and
that M and γ are computed w.r.t. \mathbb{Q}. We assume here that the interest

We assume that the market has chosen a risk-neutral probability \mathbb{Q} and
that M and γ are computed w.r.t. \mathbb{Q}. We assume here that the interest
rate r is constant.
Price dynamics of a survival claim $(X, 0, \tau)$.
Let $(X, 0, \tau)$ be a survival claim. The price of the payoff $\mathbb{1}_{\{T<\tau\}} X$ that
settles at time T is

$$
\begin{aligned}
& =e^{r t} \mathbb{E}_{\mathbb{Q}}\left(\mathbb{1}_{\{T<\tau\}} e^{-r T} X \mid \mathcal{H}_{t}\right) . \\
& \text { rice process is } \\
& \quad d Y_{t}=r Y_{t} d t-Y_{t-} d M_{t}
\end{aligned}
$$

Price dynamics of a recovery claim $(0, Z, \tau)$.
The recovery Z is paid at the time of default.
The ex-dividend price is
\quad p (7)) $\left({ }^{7} H\right.$
Price dynamics of a recovery claim $(0, Z, \tau)$.
The recovery Z is paid at the time of default.
The ex-dividend price is

$$
S_{t}=e^{r t} \mathbb{E}_{\mathbb{Q}}\left(\mathbb{1}_{\{T \geq \tau>t\}} e^{-r \tau} Z(\tau) \mid\right.
$$

Hence
рие

by the formula

66

səழs!̣ゃs

se рәиyәр әq ${ }_{\text {I }} \phi$ рие $\underset{\sim}{\underset{\sim}{f} \text { дәТ }}$

риеч әио әЧ士 UО

