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The Model



The Market

We begin with the case where a riskless asset, with deterministic

interest rate (r(s);s > 0) is the only asset available in the default-free

R(t) = exp A| \o GQ%V

market.



The Market

We begin with the case where a riskless asset, with deterministic

interest rate (r(s);s > 0) is the only asset available in the default-free

R(t) = exp A| \o GQ%V

The time-t price B(t,T) of a risk-free zero-coupon bond with maturity
T is

market.

T
B(t,T) “ exp I\ r(s)ds
t



Default occurs at time 7, where 7 is assumed to be a positive random

variable with density f, constructed on a probability space (€2, G, P).

F(t)=P(r <t) = \o f(s)ds.

We assume that F(t) < 1, Vt



Defaultable Zero-coupon with Payment at Maturity

A defaultable zero-coupon bond (DZC in short)- or a corporate

bond- with maturity 7" and rebate ¢ paid at maturity, consists of

e The payment of one monetary unit at time 7' if default has not

occurred before time T,

e A payment of 6 monetary units, made at maturity, if 7 < T', where
0<9<1.



Value of the defaultable zero-coupon bond

The “value” of the defaultable zero-coupon bond is defined as

DO (0. T) E (B(0,T) (Lirary + 0lr<ry) )

— B(0,T) (1—(1—8)F(T)) .



Value of the defaultable zero-coupon bond

The “value” of the defaultable zero-coupon bond is defined as

DY) (0,T)

E Aonuﬂv (Lyrery + mﬁ:ﬁmﬂ,v v
= B0, 7)) 1-(1-=6F(T)) .

The value D) (¢, T) of the DZC is the conditional expectation of the
discounted payoff B(¢,T) [Iyr<y + 01l <] given the information:

Nuahd Awu MJV — HFT.MSVme ij% + ﬁ?Aﬂw@au%v @“ MJV



Value of the defaultable zero-coupon bond

The “value” of the defaultable zero-coupon bond is defined as

E Ameuﬂv (Lyrery + %ﬁ?mﬂ,v v
= B0, 7)) 1-(1-=6F(T)) .

The value D) (¢, T) of the DZC is the conditional expectation of the
discounted payoff B(¢,T) [Iyr<y + 01l <] given the information:

Dauﬂv Awu MJV — HFT.MSVm@“ ij% + ﬁ?Aﬂw@av%v @“ MJV
where the predefault value DOT) (¢, T) is defined as

DO, T) = E(BLT)(Mirery +0lemy)|t <)
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DD, T) = E(BET)(Lirery +06lery) |t <7)

11



DD, T) = E(BET)(Lirery +06lery) |t <7)

= Bt,T)(1—(1-6P(r <T|t<T))
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DD, T) = E(BET)(Lirery +06lery) |t <7)

= Bt,T)(1—(1-6P(r <T|t<T))

— B(,T) AH _aqogBlisr miv

P(t < 1)

13



DD, T) = E(BET)(Lirery +06lery) |t <7)

= Bt,T)(1—(1-6P(r <T|t<T))

— B(,T) AH _aqogBlisr miv

P(t < 1)

— BT) AH — (1 — uvﬁmﬂlv WMVSV
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The formula

P(t<7r<T)

DOD(t,T) = B(t,T) - B(t.T)(1 - 9) Bl < 1)

can be read as

D@D (¢, T) = B(t,T) — EDLGD x DP
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The formula

P(t<7r<T)
P(t < 7)

D@D (. T) = B(t,T) — B(t,T)(1 —0)

can be read as

D@D (¢, T) = B(t,T) — EDLGD x DP
where the Expected Discounted Loss Given Default (EDLGD) is
defined as B(t,T)(1 — §) and the Default Probability (DP) is

Pt<7<T)

DP =
P(t < 7)

=P(r<Tjt<T).
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In case the payment is a function of the default time, say &(7), the

value of this defaultable zero-coupon is

DO, T) = E(B(0,T)Ligery + B(0,T)6(7) Ly <py)

= B(0,T) %GJAJLn\o d(s)f(s)ds

17



In case the payment is a function of the default time, say &(7), the

value of this defaultable zero-coupon is

DO, T) = E(B(0,T)Ligery + B(0,T)6(7) Ly <py)

= B(0,T) %GJAJLn\o d(s)f(s)ds

The predefault price D@D (¢, T) is

B(t, T)E(Lir<r) + 0(r)L{r<ry|t < 7)

= B(t,T) HWAMAAMVV._'%@HAi\ﬁ d(s)f(s)ds
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We introduce the increasing hazard function I' defined by
['(t) = —1In(1 — F(t))

and its derivative y(t) = 1 M@ﬁv@v where f(t) = F'(t), i.e.,

1—F@t)=eTW =exp A| \o J@v%v = P(r > 1).
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We introduce the increasing hazard function I' defined by
['(t) = —1In(1 — F(t))

and its derivative y(t) = 1 M@ﬁv@v where f(t) = F'(t), i.e.,

1—F@t)=eTW =exp A| \o J@v%v = P(r > 1).

The quantity v(t) called the hazard rate is the probability that the
default occurs in a small interval dt given that the default has not

occured before time ¢

1
= lim — < :
v(t) %mw ; P(r <t+h|t >1)
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For 0 = 0,
_ T
D(t,T) = exp I\ (r 4+ v)(s)ds
t

in other terms, the spot rate has to be adjusted by means of a spread

(7) in order to evaluate DZCs.
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Defaultable Zero-coupon with Payment at Hit
Here, a defaultable zero-coupon bond with maturity 7' consists of

e The payment of one monetary unit at time 7' if default has not yet

occurred,

e A payment of §(7) monetary units, where § is a deterministic

function, made at time 7 if 7 < T..

Here, we do not assume that F' is differentiable.
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Value of the defaultable zero-coupon

The value of this defaultable zero-coupon bond is
wav A©u MJV — ﬁAmAcu MJV HPA\HAQ.W + mAOQ ﬁv%mﬂvﬁﬁ.mﬁﬁwv
T
_ G(T)B(0.T) — \ B(0, 5)5(5)dG(s) .
0

where G(t) =1 — F(t) = P(t < 7) is the survival probability.
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For t < T,
DO (t,T) = 1<, DO (¢,T)

where D@ (¢, T) is called the predefault price defined by

mAOu NVN\MQV Aﬁ WNJV — ﬁAmAOu MJV H:MJAQ@ + mAOV ﬂv%AﬂvH:ﬂMmJ Tw < q.v

P(T < 1) 1

- P(t < 1) B0 T)+ Pt <t

v \ﬁ B(0, $)5(s)dF (s) .

Hence,

B(0,6)G(t)D® (¢, T) = G(T)B(0,T) — \W B(0,5)6(s)dG(s).
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In terms of the hazard function, the time-t value D) (¢, T) satisfies:

T
B(0,t)e YW DO (¢, T) = e VT B(0,T) + \ B(0,s)e T §(s)dl(s) .
t
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A particular case If F' is differentiable, the function v = I/ satisfies
f(t) =~(t)e T®. Then,

Ra(t) D¢, T) = Ry(T) + \ ) Ra(s)v(s)d(s)ds
with
Ry(t) = exp Al\o (r(s) +v(s)) &mv

The defaultable interest rate is » + v and is, as expected, greater than r
(the value of a DZC with § = 0 is smaller than the value of a

default-free zero-coupon).
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The dynamics of DO (¢,T) are
dDO) (¢, T) = (r(t) + v(£)) DO (¢, T)dt — 5(t)y(¢)dt .

The dynamics of D) includes a jump at time 7.
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Spreads

A term structure of credit spreads associated with the zero-coupon
bonds S(t,T) is defined as

S, T)=— In

In our setting, on the set {7 > t}

1
T —1

S, T)=— nQ(r>T|r>1),

whereas S(t,T) = oo on the set {7 < t}.
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Toy Model and Martingales

We denote by (Hy,t > 0) the right-continuous increasing process
Hy = 1>,y and by (H;) its natural filtration. Any integrable
H;-measurable r.v. H is of the form

H = h(t At) = h(T)1L-<4y + h(t) Ly Where h is a Borel function.

29



Key Lemma

If X is any integrable, G-measurable r.v.

E(XTgery)

ﬁﬂkiiwvﬁ.ﬁﬂAﬂw — HﬁﬁﬂAﬂw %AN < qlv
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Key Lemma

If X 1is any integrable, G-measurable r.v.

E(XTgery)

ﬁﬂkiiwvﬁ.ﬁwAﬂw — HﬁﬁﬁAﬂw %AN < \ﬁv

LetY = h(71) be a H-measurable random variable. Then

B(Y [He) = Lrenh(r) + Lgary [ hlu)e O TOdr(w
t
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An important Martingale

The process (My,t > 0) defined as

TNAT
dF'(s
i&”\ﬂ\wl\ H Av —
0

— F(s)

15 a H-martingale.
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Hazard Function

The hazard function is

L) = —In(1 — F(t)) = \o N@Nv

In particular, if F' is differentiable, the process

M, = H, — \oiimv% — - \oﬁ (5)(1 — H.)ds

is a martingale, where y(s) = 7 \AMJVA v is a deterministic non-negative
— F(s

function, called the intensity of 7.
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The Doob-Meyer decomposition of the submartingale H is
mw ”iwlTHJAN\/\HV

The predictable process A; = I';a, is called the compensator of H.
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The process

t
de
Ly =) Irsiyexp A\ imv&mv
0

15 a H-martingale.
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PROOF: We shall give 3 different arguments, each of which constitutes a
proof.

a) Since the function v is deterministic, for ¢t > s

E(L|H,) = exp A \o ﬁ isggv E(1Lgpery|Hs) .

From the Key Lemma

— 1 1 - ﬁ@v
— S F(s)

ﬁAﬁﬁAﬂw_imv — H:ﬂv,i exXp AlH,@v + ﬂAmvv .

Hence,

E(Li|Hs) = Lirsq) exp A\ i:v&@v = L.
0

36



b) Another method is to apply integration by parts formula to the
t
process L; = (1 — Hy) exp A\ imv&mv If U and V' are two finite
0

variation processes, Stieltjes’ integration by parts formula can be

written as follows

37



c) A third (sophisticated) method is to note that L is the exponential
martingale of M, i.e., the solution of the SDE

&N\w — |Nwﬁl&§@g N\o — H_.
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In the case where N is an inhomogeneous Poisson process with

deterministic intensity A and 7 is the first time when N jumps, let

/
H; = N¢epr. It is well known that N — \ A(s)ds is a martingale.
0

Therefore, the process stopped at time 7 is also a martingale, i.e.,

tAT
H; — \ A(s)ds is a martingale.
0

39



Change of probability

Let P* be a probability equivalent to P on the space (€2, H) where
H = Hs is the o-algebra generated by 7. Then,

dP* = h(r) dP

where h is a strictly positive fonction, such that Ep(h(7)) = 1. Let

['*(t) = —InP*(7 > t). If I is continuous, I'* is continuous and
h(t
dl'™(t) = b&ﬂ@
g(t)
where

g(t) = mﬂ@ﬁ%;xﬁiiv .

40



Proof:

P*(7 > ) = Ep(lyor h(7)) = \ B dF () = T O
Hence
e T Odr*(t) = h(t)dF(t) = h(t)e T®dr(¢)

Therefore
Ep(Lyerh(7))dD*(t) = h(t)e T dT(¢)

It follows that

dT* (t) = dr(t) = 2 qr ()

41



Exercices: Let n; = Ep(h(7)|H:). Prove that

m = \o h(s)dH, + (1 — Hy)g(t)

Prove that the martingale  admits a representation in terms of M as

- $\O§-A%| iM,

Note that y*(t) = y(t)(1 — (44 — 1))

42



Incompleteness of the Toy model

If the market consists only of the risk-free zero-coupon bond, there
exists infinitely many e.m.m’s. The discounted asset prices are
constant, hence the set Q of equivalent martingale measures is the set
of probabilities equivalent to the historical one. For any Q € Q, we

denote by Fp the cumulative function of 7 under Q, i.e.,

43



The range of prices is defined as the set of prices which do not induce
arbitrage opportunities. For a DZC with a constant rebate ¢ paid at

maturity, the range of prices is equal to the set

ﬁm@ AmAOQMJVAEIGJAq@ =+ @,H:ﬂAﬂvvv u@ S @W :

This set is exactly the interval | Ry, Rr|.

44



Risk Neutral Probability Measures

It is usual to interpret the absence of arbitrage opportunities as the
existence of an e.m.m. . If DZCs are traded, their prices are given by
the market, and the equivalent martingale measure Q, chosen by the

market, is such that, on the set {t < 7},
D(t,T) = B(t,T)Eq([Ir<r + 61icr<r] [t < T).

Therefore, we can characterize the cumulative function of 7 under QQ

from the market prices of the DZC as follows.
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Zero Recovery If a DZC with zero recovery of maturity T is traded at
a price D(t,T) which belongs to the interval |0, R%[ , then, under any
risk-neutral probability Q, the process R(t)D(t,T) is a martingale, the
following equality holds

T
Eﬁﬁ vaﬁvu wv — Hm@AmAOv HvﬁﬁﬂAﬁiiﬁv — mAOv HNJVH_H,?AQ.W exXp | — \ Q\©Amv&m
t

dFi d
where vY(s) = ; MMAMNW\A% . The process v is the Q-intensity of 7.

Therefore the unique risk-neutral intensity can be obtained from the

prices of DZCs as

r(t) + Q@S = —0rInD(t,T)|r—¢

46



Fixed Payment at maturity If the prices of DZCs with different

maturities are known, then )

B(0,T) — D(0,T)
B(0,T)(1 — 6)

= Fo(T)

where Fp(t) = Q(7 <t), so that the law of 7 is known under the

€.111.11..
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Payment at hit In this case, denoting by 07D the derivative of the

value of the DZC at time 0 with respect to the maturity, we obtain
9rD(0,T) = g(T)B(0,T) — G(T)B(0, T)r(T) — 5(T)g(T)B(0,T),
where g(t) = G'(t). Therefore, solving this equation leads to

1
B(0,s)(1 —4d(s))

Q(r > t) = G(t) = A(t) T +\o dr-D(0, ) (A(s))"tds| |

where A(t) = exp A \o ﬁ H mﬁwws %v
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Representation Theorem

Let h be a (bounded) Borel function. Then, the martingale
M} = E(h(T)|H;) admits the representation

~

E(h(r)[Hy) = E(h(r)) — \ "(h(s) — h(s)) dM,

h(u)dG(u)
G(t)

where My, = H, — D(t A7) and h(t) = T
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Representation Theorem

Let h be a (bounded) Borel function. Then, the martingale
M} = E(h(T)|H;) admits the representation

~

E(h(r)[Hy) = E(h(r)) + \ (h(s) — B(s)) M,

h(u)dG(u)
G(t)

where My, = H, — D(t A7) and h(t) = T
Note that h(t) = M ont < 7.
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Representation Theorem

Let h be a (bounded) Borel function. Then, the martingale
M} = E(h(T)|H;) admits the representation

~

E(h(r)[Hy) = E(h(r)) — \ "(h(s) — h(s)) dM,

h(u)dG(u)

where My = Hy — T'(t A7) and MS = 47 G(t)

Note that h(t) = M ont < 7.

In particular, any square integrable H-martingale (X, t > 0) can be

written as Xy = Xo + h rsdMg where (x4, t > 0) is a predictable process.

o1



PROOF: A proof consists in computing the conditional expectation
E(h(T)|Hs) = h(1)H; + (1 — Hy)e T® \ h(s)dF(s)
t

and to use integration by parts formula.
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Partial information: Duffie and Lando’s model

Duffie and Lando study the case where 7 = inf{t : V; < m} where V

satisfies

dVy = p(t, Vi)dt + o (L, Vy)dWy .
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Partial information: Duffie and Lando’s model

Duffie and Lando study the case where 7 = inf{t : V; < m} where V
satisfies

dVy = p(t, Vi)dt + o (L, Vy)dWy .

Here the process W is a Brownian motion. If the information is the
Brownian filtration, the time 7 is a stopping time w.r.t. a Brownian

filtration, therefore is predictable and admits no intensity.
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Partial information: Duffie and Lando’s model

Duffie and Lando study the case where 7 = inf{t : V; < m} where V

satisfies

dVy = p(t, Vi)dt + o (L, Vy)dWy .

Here the process W is a Brownian motion. If the information is the
Brownian filtration, the time 7 is a stopping time w.r.t. a Brownian
filtration, therefore is predictable and admits no intensity. If the agent
does not know the behavior of V', but only the minimal information H,,

i.e. he knows when the default appears, the price of a zero-coupon is, in

T
the case where the default is not yet occurred, exp | — \ v(s)ds
t

f(s)
G(s)

cumulative function of 7 is differentiable.

where y(s) = and G(s) =P(7 > s), f = —G’, as soon as the
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Valuation and Trading Defaultable Claims

56



We assume that the market has chosen a risk-neutral probability Q and
that M and ~ are computed w.r.t. Q. We assume here that the interest

rate r is constant.

o7



We assume that the market has chosen a risk-neutral probability Q and
that M and ~ are computed w.r.t. Q. We assume here that the interest

rate r 1S constant.
Price dynamics of a survival claim (X,0,7).

Let (X,0,7) be a survival claim. The price of the payoff 1.1 X that

settles at time T is

Y = et HW@CHAHAQ.“,@I%%N ; \Iﬁv
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We assume that the market has chosen a risk-neutral probability Q and
that M and ~ are computed w.r.t. Q. We assume here that the interest

rate r 1S constant.
Price dynamics of a survival claim (X,0, 7).

Let (X,0,7) be a survival claim. The price of the payoff 1.1 X that

settles at time T’ is
Y = et ﬁ@ﬁ:ﬂAl,mlﬁﬂum _ \IL
The dynamics of the price process is

dY; =rY,dt — Y,_dM;
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Price dynamics of a recovery claim (0, Z, 7).

The recovery Z is paid at the time of default.

The ex-dividend price is

St =" Eg(Lir>,~ne " Z(T) | Hy)
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Price dynamics of a recovery claim (0, Z, 7).

The recovery Z is paid at the time of default.

The ex-dividend price is

St =" Eg(Lir>,~ne " Z(T) | Hy)

Hence

dSy = (rSy — Z(t)y(t))dt + (Z(t) — Si—)dMy — Z(t)(1 — Hy)y(t)dt .
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Price dynamics of a recovery claim (0, Z, 7).

The recovery Z is paid at the time of default.

The ex-dividend price is
St =" Eg(Lyrs,~ne " Z(T) | Hy)
Hence
dS; = (rSy — Z(t)vy(t))dt + (Z(t) — Sy )dMy — Z(t)(1 — Hy)y(t)dt .

The cum-dividend price process Y of (0,2, 1) is
M\w = mjw HW@AHﬁA\HNﬂw@Ij.N?.v i iwv ;
and

dY, =rY,dt+ (Z(t) —Y,_)dM,
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Valuation of a Credit Default Swap

A credit default swap (CDS) is a contract between two counterparties
A and B. Some maturity 7' is fixed.

B agrees to pay, at default time 7, a default payment Z(7) to A if a
default of the obligor C occurs before maturity. If there is no default
until the maturity of the default swap, B pays nothing.

A pays a fee for the default protection. The fee is paid till the maturity

or till the default event, whichever occurs the first.
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Valuation of a Credit Default Swap

A credit default swap (CDS) is a contract between two counterparties
A and B. Some maturity 7' is fixed.

B agrees to pay, at default time 7, a default payment Z(7) to A if a
default of the obligor C occurs before maturity. If there is no default
until the maturity of the default swap, B pays nothing.

A pays a fee for the default protection. The fee is paid till the maturity
or till the default event, whichever occurs the first.

A can not cancel the contract. Usually, the fee consists of C; paid at
time T; (this is the fixed leg). However, here we shall consider a
continuous payment x ( i.e., kdt is paid during the time interval dt).

The default payment is called the default leg.
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For simplicity, we assume that the interest rate » = 0, so that the price
of a savings account B; = 1 for every ¢t. Our results can be easily

extended to the case of a constant r.
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Ex-dividend Price of a CDS

The ex-dividend price of a CDS maturing at I" with spread  is given
by the formula

Si(k) = B (8() L perary — Tparyi((T AT) = 1) | Hy).
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Ex-dividend Price of a CDS

The ex-dividend price of a CDS maturing at I" with spread  is given
by the formula

%@TAV = ﬁ@ A%AﬂvﬁﬁAﬂM%w — H—?AAW\AAAQ. A MJV — wv _ iﬂv
The ex-dividend price at time t € |s,T| of a credit default swap with
spread Kk and recovery at default equals

1

5. = L g | - \@ 25%?7; \ﬁ 25%
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PROOF: We have, on the set {t < 7},

Si(k) = —= — K — 1

- sl  5(u) dG(u) — n(TG(T) ~ 1G(1) - / wd6()

It remains to note that

\H Gu)du=TG(T) —tG(t) — \HQQQA:Y

68



The ex-dividend price of a CDS can also be represented as follows
Si(k) = Lger Si(k), Vte[0,T7,

where S, (k) stands for the ez-dividend pre-default price of a CDS.

69



Price Dynamics of a CDS

In what follows, we assume that

G(t) = Q(r > 1) = exp A| \o ) %v

where the default intensity v(¢) under Q is deterministic. We first focus
on the dynamics of the ex-dividend price of a CDS with spread k.
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The dynamics of the ex-dividend price Si(k) on [0,T] are
dSi(k) = =Si— (k) dM; + (1 — Hy)(k — 0(t)y(¢)) dt,

where the H-martingale M under Q is given by the formula

t
0
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PROOF: It suffices to recall that
St(k) = fﬂAiwﬁAxv = (1 EVWLAV

so that
dS, (k) = (1 — Hy) dSy(k) — S,_ (k) dH,.

Using the explicit expression of W? we find easily that we have
dSi(r) = ()i (k) dt + (k(s) — 6(t)y(t)) dt.

The SDE for S follows.
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Trading Strategies with a CDS

A strategy ¢; = (¢?, 1), t € [0,T], is self-financing if the wealth process
U(¢), defined as

Ur(d) = & + ¢ Si(k),
satisfies

dUy(¢) = ¢; dSi(k) + ¢; dDy,

where S(k) is the ex-dividend price of a CDS with the dividend stream
D. A strategy ¢ replicates a contingent claim Y if Up(¢) =Y.
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Hedging of a Contingent Claim in the CDS Market

Our aim is to find a replicating strategy for the defaultable claim
(X,0,7,7), where X is a constant and Z; = 2(t).
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Hedging of a Contingent Claim in the CDS Market

Our aim is to find a replicating strategy for the defaultable claim
(X,0,7,7), where X is a constant and Z; = 2(t).

Let y and ¢! be defined as
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Hedging of a Contingent Claim in the CDS Market

Our aim is to find a replicating strategy for the defaultable claim
(X,0,7,7), where X is a constant and Z; = 2(t).

Let y and ¢! be defined as

T

2(s)dG(s)

=
|
S
>
R
3
|
@N

A1) - 51
o(t) — m%mvu

Let ¢ = Vi(¢) — ¢*(t)S¢(k), where V;(¢) = Eq(Y|H;) and

' (t) =

Y = H:ﬂwﬁw\u?.v + H:HAJIN
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Hedging of a Contingent Claim in the CDS Market

Our aim is to find a replicating strategy for the defaultable claim
(X,0,7,7), where X is a constant and Z; = 2(t).

Let y and ¢! be defined as

T

2(s)dG(s)

=
|
S
>
R
3
|
@N

A1) - 51
o(t) — m%mvu

Let ¢ = Vi(¢) — ¢*(t)S¢(k), where V;(¢) = Eq(Y|H;) and

' (t) =

% — H—AMJNQ.WNAQ.V |_| H—AﬂAﬂwN

Then the self-financing strategy ¢ = (¢, ') based on the savings
account and the CDS is a replicating strategy.

7



Proof: The terminal value of the wealth is

Y =2(1)lprery + Xlpon
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Proof: The terminal value of the wealth is
Y =2(7) ety + Xlirory

On the one hand

BV =Y = 2(0gren + Lucn gy | XGT) = [ 2(9)dG(

1
(t)

— \O%EmmiTEvQ NQ@TN 2(5)dG(s)
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Proof: The terminal value of the wealth is
Y =2(7) ety + Xlirory
On the one hand

B =Y = 2(Dgren + Liren g | XGT) = [ 2(9)dG ()

t 1 T
n \O%EmMiTEVQS NQﬁT\ﬁ N@%@

hence dY; = (=(t) — () dM; with §(t) = b (XG(T) = [ 2(s)dG(s)).
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Proof: The terminal value of the wealth is
Y =2(7) ety + Xlirory

On the one hand

1

BOVH) =Y = 7 + Ler) g (XG) + [ (94G(6))

= \o 2(s)dHs + (1 — mﬁvﬂw

5 ANQA@ + \oﬁmAmEQ@vv

hence dY; = (z(t) — y(t)) dM; with y(t) = +$ANQQJV — bﬂ 2(s)dG(s)).

On the other hand,
dYy = ¢y (dSe(k) — k(1 — Hy)dt + 0(t)dHy) = ¢y ((t) — Sp— (k) dMy.
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