Credit risk

T. Bielecki, M. Jeanblanc and M. Rutkowski

Complements and Exercises

ii

Contents

1	\mathbf{Two}	o defaults	1
	1.1	Two defaults, trivial reference filtration	1
		1.1.1 Computation of joint laws	1
		1.1.2 Value of credit derivatives	3
		1.1.3 Martingales	4
		1.1.4 Application of Norros lemma for two defaults	7
	1.2	Cox process modelling	8
2	Exe	rcises	11
	2.1	Toy Model	11
	2.2	Hazard Process Approach	13
		2.2.1 Application of Key lemma	13
		2.2.2 Stopping times	14
		2.2.3 Multiplicative decomposition	15
		2.2.4 Immersion	16
		2.2.5 Pricing	16
	2.3	Multidefaults	19
		2.3.1 Jarrow and Yu model	19
		2.3.2 Norros Lemma	19
		2.3.3 Examples	20
	2.4	Density process	21

Chapter 1

Two defaults

1.1 Two defaults, trivial reference filtration

We assume in this section that r = 0.

Let us first study the case with two random times τ_1, τ_2 . We denote by $\tau_{(1)} = \inf(\tau_1, \tau_2)$ and $\tau_{(2)} = \sup(\tau_1, \tau_2)$, and we assume, for simplicity, that $\mathbb{P}(\tau_1 = \tau_2) = 0$. We denote by $(H_t^i, t \ge 0)$ the default process associated with $\tau_i, (i = 1, 2)$, and by $H_t = H_t^1 + H_t^2$ the process associated with two defaults. As before, \mathbf{H}^i is the filtration generated by the process H^i and \mathbf{H} is the filtration generated by the process H^i and \mathbf{H} is the filtration generated by the process H. The σ -algebra $\mathcal{G}_t = \mathcal{H}_t^1 \vee \mathcal{H}_t^2$ is equal to $\sigma(\tau_1 \wedge t) \vee \sigma(\tau_2 \wedge t)$. It is useful to note that \mathcal{G}_t is strictly greater than \mathcal{H}_t . Exemple: assume that τ_1 and τ_2 are independent and identically distributed. Then, obviously, for u < t

$$P(\tau_1 < \tau_2 | \tau_{(1)} = u, \tau_{(2)} = t) = 1/2,$$

hence $\sigma(\tau_1, \tau_2) \neq \sigma(\tau_{(1)}, \tau_{(2)}).$

1.1.1 Computation of joint laws

A $\mathcal{H}^1_t \vee \mathcal{H}^2_t$ -measurable random variable is equal to

- a constant on the set $t < \tau_{(1)}$,

- a $\sigma(\tau_{(1)})$ -measurable random variable on the set $\tau_{(1)} \leq t < \tau_{(2)}$, i.e., a $\sigma(\tau_1)$ -measurable random variable on the set $\tau_1 \leq t < \tau_2$, and a $\sigma(\tau_2)$ -measurable random variable on the set $\tau_2 \leq t < \tau_1$

- a $\sigma(\tau_1, \tau_2)$ -measurable random variable on the set $\tau_2 \leq t$. We note G the survival probability of the pair (τ_1, τ_2) , i.e.,

$$G(t,s) = \mathbb{P}(\tau_1 > t, \tau_2 > s).$$

We shall also use the notation

$$g(s) = \frac{d}{ds}G(s,s) = \partial_1 G(s,s) + \partial_2 G(s,s)$$

where $\partial_1 G$ is the partial derivative of G with respect to the first variable.

• We present in a first step some computations of conditional laws.

$$\begin{split} \mathbb{P}(\tau_{(1)} > s) &= \mathbb{P}(\tau_1 > s, \tau_2 > s) = G(s, s) \\ \mathbb{P}(\tau_{(2)} > t | \tau_{(1)} = s) &= \frac{1}{g(s)} \left(\partial_1 G(s, t) + \partial_2 G(t, s) \right), \text{ for } t > s \end{split}$$

• We also compute conditional expectation in the filtration $\mathbf{G} = \mathbf{H}^1 \vee \mathbf{H}^2$: For t < T

$$\begin{split} \mathbb{P}(T < \tau_{(1)} | \mathcal{H}_{t}^{1} \lor \mathcal{H}_{t}^{2}) &= & \mathbbm{1}_{t < \tau_{(1)}} \frac{\mathbb{P}(T < \tau_{(1)})}{\mathbb{P}(t < \tau_{(1)})} = \mathbbm{1}_{t < \tau_{(1)}} \frac{G(T, T)}{G(t, t)} \\ \mathbb{P}(T < \tau_{1} | \mathcal{H}_{t}^{1} \lor \mathcal{H}_{t}^{2}) &= & \mathbbm{1}_{t < \tau_{1}} \frac{\mathbb{P}(T < \tau_{1} | \mathcal{H}_{t}^{2})}{\mathbb{P}(t < \tau_{1} | \mathcal{H}_{t}^{2})} + \mathbbm{1}_{\tau_{1} < t} \\ &= & \mathbbm{1}_{t < \tau_{1}} \left(\mathbbm{1}_{t < \tau_{2}} \frac{\mathbb{P}(T < \tau_{1}, t < \tau_{2})}{\mathbb{P}(t < \tau_{1}, t < \tau_{2})} + \mathbbm{1}_{\tau_{2} \le t} \frac{\mathbb{P}(T < \tau_{1} | \tau_{2})}{\mathbb{P}(t < \tau_{1} | \tau_{2})} \right) + \mathbbm{1}_{\tau_{1} < t} \\ &= & \mathbbm{1}_{t < \tau_{1}} \left(\mathbbm{1}_{t < \tau_{2}} \frac{G(T, t)}{G(t, t)} + \mathbbm{1}_{\tau_{2} < t} \frac{\mathbb{P}(T < \tau_{1} | \tau_{2})}{\mathbb{P}(t < \tau_{1} | \tau_{2})} \right) + \mathbbm{1}_{\tau_{1} < t} \\ &= & \mathbbm{1}_{t < \tau_{1}} \left(\mathbbm{1}_{t < \tau_{2}} \frac{G(T, t)}{G(t, t)} + \mathbbm{1}_{\tau_{2} < t} \frac{\mathbb{P}(T < \tau_{1} | \tau_{2})}{\mathbb{P}(t < \tau_{1} | \tau_{2})} \right) + \mathbbm{1}_{\tau_{1} < t} \\ &= & \mathbbm{1}_{t < \tau_{1}} \left(\mathbbm{1}_{t < \tau_{2}} \frac{G(T, t)}{G(t, t)} + \mathbbm{1}_{\tau_{2} < t} \frac{\mathbb{P}(T < \tau_{1} | \tau_{2})}{\mathbb{P}(t < \tau_{1} | \tau_{2})} \right) + \mathbbm{1}_{\tau_{1} < t} \\ &= & \mathbbm{1}_{t < \tau_{1}} \frac{\mathbb{P}(t \le \tau_{1} < \tau_{2} < T)}{\mathbb{P}(t < \tau_{1})} + \mathbbm{1}_{\tau_{1} \le t < \tau_{2}} \frac{\mathbb{P}(t < \tau_{2} < T | \tau_{1})}{\mathbb{P}(t < \tau_{1} | \tau_{2})} + \mathbbm{1}_{\tau_{1} < t} \\ &= & \mathbbm{1}_{t < \tau_{1}} \frac{\mathbb{P}(t \le \tau_{1} < T | \tau_{2})}{\mathbb{P}(t < \tau_{1} | \tau_{2})} + \mathbbm{1}_{\tau_{1} < t} \\ \end{array}$$

• The computation of $\mathbb{P}(T < \tau_1 | \tau_2)$ can be done as follows: the function h such that $\mathbb{P}(T < \tau_1 | \tau_2) =$ $h(\tau_2)$ satisfies

$$\mathbb{E}(h(\tau_2)\varphi(\tau_2)\mathbb{1}_{\tau_2 < t}) = \mathbb{E}(\varphi(\tau_2)\mathbb{1}_{\tau_2 < t}\mathbb{1}_{T < \tau_1})$$

for any function φ . This implies that (assuming that the pair (τ_1, τ_2) has a density f)

$$\int_0^t dv h(v)\varphi(v) \int_0^\infty du f(u,v) = \int_0^t dv\varphi(v) \int_T^\infty du f(u,v)$$
$$\int_0^t dv h(v)\varphi(v)\partial_2 G(0,v) = \int_0^t dv\varphi(v)\partial_2 G(T,v)$$

or

hence, $h(v) = \frac{\partial_2 G(T,v)}{\partial_2 G(0,v)}$. We can also write

$$\mathbb{P}(T < \tau_1 | \tau_2 = v) = \frac{\mathbb{P}(T < \tau_1, \tau_2 \in dv)}{\mathbb{P}(\tau_2 \in dv)} = -\frac{1}{\mathbb{P}(\tau_2 \in dv)} \frac{d}{dv} \mathbb{P}(\tau_1 > T, \tau_2 > v) = \frac{\partial_2 G(T, v)}{\partial_2 G(0, v)}$$

hence, on the set $\tau_2 < T$,

$$\mathbb{P}(T < \tau_1 | \tau_2) = h(\tau_2) = \frac{\partial_2 G(T, \tau_2)}{\partial_2 G(0, \tau_2)}$$

• In the same way, for T > t

$$\mathbb{P}(\tau_1 \leq T < \tau_2 | \mathcal{H}_t^1 \lor \mathcal{H}_t^2) \mathbb{1}_{\{\tau_1 \leq t < \tau_2\}} = \mathbb{1}_{\{\tau_1 \leq t < \tau_2\}} \Psi(\tau_1)$$

where Ψ satisfies

$$\mathbb{E}(\varphi(\tau_1)\mathbb{1}_{\tau_1 \le t < T < \tau_2}) = \mathbb{E}(\varphi(\tau_1)\Psi(\tau_1)\mathbb{1}_{\{\tau_1 \le t < \tau_2\}})$$

for any function φ . In other terms

$$\begin{split} \int_0^t du\varphi(u) \int_T^\infty dv f(u,v) &= \int_0^t du\varphi(u) \Psi(u) \int_t^\infty dv f(u,v) \\ \int_0^t du\varphi(u) \partial_1 G(u,T) &= \int_0^t du\varphi(u) \Psi(u) \partial_1 G(u,t) \,. \end{split}$$

This implies that

or

$$\begin{split} \Psi(u) &= \frac{\partial_1 G(u,T)}{\partial_1 G(u,t)} \\ \mathbb{P}(\tau_1 \leq T < \tau_2 | \mathcal{H}_t^1 \lor \mathcal{H}_t^2) \mathbbm{1}_{\{\tau_1 \leq t < \tau_2\}} = \mathbbm{1}_{\{\tau_1 \leq t < \tau_2\}} \frac{\partial_1 G(\tau_1,T)}{\partial_1 G(\tau_1,t)} \,. \end{split}$$

1.1.2 Value of credit derivatives

We introduce different credit derivatives

- A defaultable zero-coupon related to the default times D^i delivers 1 monetary unit if τ_i is greater that $T: D^i(t,T) = \mathbb{E}(\mathbb{1}_{\{T < \tau_i\}} | \mathcal{H}^1_t \lor \mathcal{H}^2_t)$
- A contract which pays R^1 is one default occurs before T and R_2 if the two default occur before T: $CD_t = \mathbb{E}(R_1 \mathbb{1}_{\{0 < \tau_{(1)} \le T\}} + R_2 \mathbb{1}_{\{0 < \tau_{(2)} \le T\}} | \mathcal{H}_t^1 \lor \mathcal{H}_t^2)$

We obtain

$$D^{1}(t,T) = \mathbb{1}_{\{\tau_{1} > t\}} \left(\mathbb{1}_{\{\tau_{2} \le t\}} \frac{\partial_{2}G(T,\tau_{2})}{\partial_{2}G(t,\tau_{2})} + \mathbb{1}_{\{\tau_{2} > t\}} \frac{G(T,t)}{G(t,t)} \right)$$
(1.1)

$$D^{2}(t,T) = \mathbb{1}_{\{\tau_{2} > t\}} \left(\mathbb{1}_{\{\tau_{1} \le t\}} \frac{\partial_{1} G(\tau_{1},T)}{\partial_{2} G(\tau_{1},t)} + \mathbb{1}_{\{\tau_{1} > t\}} \frac{G(t,T)}{G(t,t)} \right)$$
(1.2)

$$CD_t = R_1 \mathbb{1}_{\{\tau_{(1)} > t\}} \left(\frac{G(t, t) - G(T, T)}{G(t, t)} \right) + R_2 \mathbb{1}_{\{\tau_{(2)} \le t\}} + R_1 \mathbb{1}_{\{\tau_{(1)} \le t\}}$$
(1.3)

$$+R_{2}\mathbb{1}_{\{\tau_{(2)}>t\}}\left\{I_{t}(0,1)\left(1-\frac{\partial_{2}G(T,\tau_{2})}{\partial_{2}G(t,\tau_{2})}\right)+I_{t}(1,0)\left(1-\frac{\partial_{1}G(\tau_{1},T)}{\partial_{1}G(\tau_{1},t)}\right)$$
(1.4)

$$+I_t(0,0)\left(1 - \frac{G(t,T) + G(T,t) - G(T,T)}{G(t,t)}\right)\right\}$$
(1.5)

where by

$$\begin{split} I_t(1,1) &= 1\!\!1_{\{\tau_1 \le t, \tau_2 \le t\}} , \qquad I_t(0,0) = 1\!\!1_{\{\tau_1 > t, \tau_2 > t\}} \\ I_t(1,0) &= 1\!\!1_{\{\tau_1 \le t, \tau_2 > t\}} , \qquad I_t(0,1) = 1\!\!1_{\{\tau_1 > t, \tau_2 \le t\}} \end{split}$$

More generally, some easy computation leads to

$$\mathbb{E}(h(\tau_1,\tau_2)|\mathcal{H}_t) = I_t(1,1)h(\tau_1,\tau_2) + I_t(1,0)\Psi_{1,0}(\tau_1) + I_t(0,1)\Psi_{0,1}(\tau_2) + I_t(0,0)\Psi_{0,0}(\tau_1) + I_t(0,0)\Psi_{0,0}(\tau_1$$

where

$$\begin{split} \Psi_{1,0}(u) &= -\frac{1}{\partial_1 G(u,t)} \int_t^\infty h(u,v) \partial_1 G(u,dv) \\ \Psi_{0,1}(v) &= -\frac{1}{\partial_2 G(t,v)} \int_t^\infty h(u,v) \partial_2 G(du,v) \\ \Psi_{0,0} &= -\frac{1}{G(t,t)} \int_t^\infty \int_t^\infty h(u,v) G(du,dv) \end{split}$$

The next result deals with the valuation of a first-to-default claim in a bivariate set-up. Let us stress that the concept of the (tentative) price will be later supported by strict replication arguments. In this section, by a *pre-default price* associated with a \mathbb{G} -adapted price process π , we mean here the function $\tilde{\pi}$ such that $\pi_t \mathbb{1}_{\{\tau_{(1)}>t\}} = \tilde{\pi}(t)\mathbb{1}_{\{\tau_{(1)}>t\}}$ for every $t \in [0, T]$. In other words, the pre-default price $\tilde{\pi}$ and the price π coincide prior to the first default only.

Definition 1.1.1 Let Z_i be two functions, and X a constant. A FtD claim pays $Z_1(\tau_1)$ at time τ_1 if $\tau_1 < T, \tau_1 < \tau_2$, pays $Z_2(\tau_2)$ at time τ_2 if $\tau_2 < T, \tau_2 < \tau_1$, and X at maturity if $\tau_1 \wedge \tau_2 > T$

Proposition 1.1.1 The pre-default price of a FtD claim $(X, 0, Z, \tau_{(1)})$, where $Z = (Z_1, Z_2)$ and X = c(T), equals

$$\frac{1}{G(t,t)} \left(-\int_t^T Z_1(u) G(du,u) - \int_t^T Z_2(v) G(v,dv) + XG(T,T) \right).$$

PROOF: The price can be expressed as

$$\mathbb{E}_{\mathbb{Q}}(Z_{1}(\tau_{1})\mathbb{1}_{\{\tau_{1}\leq T,\tau_{2}>\tau_{1}\}}|\mathcal{H}_{t}) + \mathbb{E}_{\mathbb{Q}}(Z_{2}(\tau_{2})\mathbb{1}_{\{\tau_{2}\leq T,\tau_{1}>\tau_{2}\}}|\mathcal{H}_{t}) + \mathbb{E}_{\mathbb{Q}}(c(T)\mathbb{1}_{\{\tau_{(1)}>T\}}|\mathcal{H}_{t}).$$

The pricing formula now follows by evaluating the conditional expectation, using the joint distribution of default times under the martingale measure \mathbb{Q} .

Comments 1.1.1 Same computations appear in Kurtz and Riboulet [?]

1.1.3 Martingales

We present the computation of the martingales associated to the times τ_i in different filtrations. In particular, we shall obtain the computation of the intensities in various filtrations.

We have established that, if \mathbb{F} is a given reference filtration and $G_t = \mathbb{P}(\tau > t | \mathcal{F}_t)$ the Azéma supermartingale admitting a Doob-Meyer decomposition $G_t = Z_t - \int_0^t a_s ds$, then the process

$$H_t - \int_0^{t \wedge \tau} \frac{a_s}{G_{s-}} ds$$

is a \mathbb{G} -martingale, where $\mathbb{G} = \mathbb{F} \vee \mathbb{H}$ and $\mathcal{H}_t = \sigma(t \wedge tau)$.

• Filtration \mathbf{H}^i We study the decomposition of the semi-martingales H^i in the filtration \mathbf{H}^i . We set $F_i(s) = \mathbb{P}(\tau_i \leq s) = \int_0^s f_i(u) du$. From our general result applied to the case where \mathbb{F} is the trivial filtration, we obtain that for any i = 1, 2, the process

$$M_t^i = H_t^i - \int_0^{t \wedge \tau_i} \frac{f_i(s)}{1 - F_i(s)} ds$$
 (1.6)

is a \mathbf{H}^{i} -martingale.

• Filtration G We apply the general result to the case $\mathbb{F} = \mathbb{H}^2$ and $\mathbb{H} = \mathbb{H}^1$. Let

$$G_t^{1|2} = \mathbb{P}(\tau_1 > t | \mathcal{H}_t^2)$$

be the Azéma supermartingale of τ_1 in the filtration \mathbb{H}^2 . Then, the process

$$H_t^1 - \int_0^{t \wedge \tau_1} \frac{a_s^{(1)}}{G_{s-}^{1/2}} ds$$

is a **G**-martingale with Doob-Meyer decomposition $G_t^{1|2} = Z_t^{1|2} - \int_0^t a_s^{(1)} ds$ where $Z^{1|2}$ is a **H**²martingale. The process $A_t^{(1)} = \int_0^{t\wedge\tau_1} \frac{a_s^{(1)}}{G_{s-}^{1|2}} ds$ is the **H**²-adapted compensator of H^1 . The same methodology can be applied for the compensator of H^2 . In what follows, we assume that $G^{1|2}$ is continuous. We now compute in an explicit form the compensator of H^1 in order to establish the proposition

Proposition 1.1.2 The process

$$H_t^1 - \int_0^{t \wedge \tau_1} \frac{a_s^{(1)}}{G_s^{1/2}} ds$$

where $a_t^{(1)} = -H_t^2 \partial_1 h^{(1)}(t, \tau_2) - (1 - H_t^2) \frac{\partial_1 G(t,t)}{G(0,t)}$ and

$$h^{(1)}(t,s) = \frac{\partial_2 G(t,s)}{\partial_2 G(0,s)} \,.$$

is a \mathbf{G} -martingale. The process

$$H_t^2 - \int_0^{t \wedge \tau_2} \frac{a_s^{(2)}}{G_s^{2|1}} ds$$

where $a_t^{(2)} = -H_t^1 \partial_2 h^{(2)}(\tau_1, t) - (1 - H_t^1) \frac{\partial_2 G(t, t)}{G(t, 0)}$ and
 $h^{(2)}(t, s) = \frac{\partial_1 G(t, s)}{\partial_1 G(t, 0)}.$

is a \mathbf{G} -martingale.

PROOF: Some easy computation enables us to write

$$G_t^{1|2} = H_t^2 \mathbb{P}(\tau_1 > t | \tau_2) + (1 - H_t^2) \frac{\mathbb{P}(\tau_1 > t, \tau_2 > t)}{\mathbb{P}(\tau_2 > t)}$$

= $H_t^2 h^{(1)}(t, \tau_2) + (1 - H_t^2) \frac{G(t, t)}{G(0, t)} = H_t^2 h^{(1)}(t, \tau_2) + (1 - H_t^2) \psi(t)$ (1.7)

where

$$h^{(1)}(t,v) = \frac{\partial_2 G(t,v)}{\partial_2 G(0,v)}; \psi(t) = G(t,t)/G(0,t).$$

Function $t \to \psi(t)$ and process $t \to h(t, \tau_2)$ are continuous and of finite variation, hence integration by parts rule leads to

$$\begin{aligned} dG_t^{1|2} &= h(t,\tau_2)dH_t^2 + H_t^2\partial_1 h(t,\tau_2)dt + (1-H_t^2)\psi'(t)dt - \psi(t)dH_t^2 \\ &= (h(t,\tau_2) - \psi(t)) dH_t^2 + \left(H_t^2\partial_1 h(t,\tau_2) + (1-H_t^2)\psi'(t)\right)dt \\ &= \left(\frac{\partial_2 G(t,\tau_2)}{\partial_2 G(0,\tau_2)} - \frac{G(t,t)}{G(0,t)}\right) dH_t^2 + \left(H_t^2\partial_1 h(t,\tau_2) + (1-H_t^2)\psi'(t)\right)dt \end{aligned}$$

From the computation of the Stieljes integral, we can rewrite it as

$$\begin{split} \int_0^T \left(\frac{G(t,t)}{G(0,t)} - \frac{\partial_2 G(t,\tau_2)}{\partial_2 G(0,\tau_2)} \right) dH_t^2 &= \left(\frac{G(\tau_2,\tau_2)}{G(0,\tau_2)} - \frac{\partial_2 G(\tau_2,\tau_2)}{\partial_2 G(0,\tau_2)} \right) \mathbf{1}_{\{\tau_2 \le t\}} \\ &= \int_0^T \left(\frac{G(t,t)}{G(0,t)} - \frac{\partial_2 G(t,t)}{\partial_2 G(0,t)} \right) dH_t^2 \end{split}$$

and substitute it in the expression of $dG^{1|2}$:

$$dG_t^{1|2} = \left(\frac{\partial_2 G(t,t)}{\partial_2 G(0,t)} - \frac{G(t,t)}{G(0,t)}\right) dH_t^2 + \left(H_t^2 \partial_1 h(t,\tau_2) + (1-H_t^2)\psi'(t)\right) dt$$

We now use that

$$dH_t^2 = dM_t^2 - (1 - H_t^2) \frac{\partial_2 G(0, t)}{G(0, t)} dt$$

where M^2 is a \mathbb{H}^2 -martingale, and we get the \mathbb{H}^2 - Doob-Meyer decomposition of $G^{1|2}$:

$$dG_t^{1|2} = \left(\frac{\partial_2 G(t,t)}{\partial_2 G(0,t)} - \frac{G(t,t)}{G(0,t)}\right) dM_t^2 - \left(1 - H_t^2\right) \left(\frac{G(t,t)}{G(0,t)} - \frac{\partial_2 G(t,t)}{\partial_2 G(0,t)}\right) \frac{\partial_2 G(0,t)}{G(0,t)} dt + \left(H_t^2 \partial_1 h^{(1)}(t,\tau_2) + (1 - H_t^2)\psi'(t)\right) dt$$

and from

$$\psi'(t) = \left(\frac{\partial_2 G(t,t)}{\partial_2 G(0,t)} - \frac{G(t,t)}{G(0,t)}\right) \frac{\partial_2 G(0,t)}{G(0,t)} + \frac{\partial_1 G(t,t)}{G(0,t)}$$

we conclude

$$dG_t^{1|2} = \left(\frac{G(t,t)}{G(0,t)} - \frac{\partial_2 G(t,t)}{\partial_2 G(0,t)}\right) dM_t^2 + \left(H_t^2 \partial_1 h^{(1)}(t,\tau_2) + (1-H_t^2) \frac{\partial_1 G(t,t)}{G(0,t)}\right) dt$$

From (1.7), the process $G^{1|2}$ has a single jump of size $\frac{\partial_2 G(t,t)}{\partial_2 G(0,t)} - \frac{G(t,t)}{G(0,t)}$. From (1.7),

$$G^{1|2} = \frac{G(t,t)}{G(0,t)} = \psi(t)$$

on the set $\tau_2 > t$, and its bounded variation part is $\psi'(t)$. The hazard process has a non null martingale part, except if $\frac{G(t,t)}{G(0,t)} = \frac{\partial_2 G(t,t)}{\partial_2 G(0,t)}$ (this is the case if the default are independent). Hence, (H) hypothesis is not satisfied in a general setting between \mathbf{H}^i and \mathbf{G} .

• Filtration H We reproduce now the result of Chou and Meyer [?], in order to obtain the martingales in the filtration H, in case of two default times. Here, we denote by \mathbb{H} the filtration generated by the process $H_t = H_t^1 + H_t^2$. This filtration is smaller than the filtration \mathbb{G} . We denote by $T_1 = \tau_1 \wedge \tau_2$ the infimum of the two default times and by $T_2 = \tau_1 \vee \tau_2$ the supremum. The filtration H is the filtration generated by $\sigma(T_1 \wedge t) \vee \sigma - t_2 \wedge t$, up to completion with negligeable sets. Let us denote by $G_1(t)$ the survival distribution function of T_1 , i.e., $G_1(t) = \mathbb{P}(\tau_1 > t, \tau_2 > t) =$ G(t,t) and by $G_2(t;u)$ the survival conditional distribution function of T_2 with respect to T_1 , i.e., for t > u,

$$G_2(u;t) = \mathbb{P}(T_2 > t | T_1 = u) = \frac{1}{g(u)} \left(\partial_1 G(u,t) + \partial_2 G(t,u) \right),$$

where $g(t) = \frac{d}{dt}G(t,t) = \frac{1}{dt}\mathbb{P}(T_1 \in dt)$. We shall also note

$$K(u;t) = \mathbb{P}(T_2 - T_1 > t | T_1 = u) = G_2(u;t+u)$$

The process $M_t \stackrel{def}{=} H_t - \Lambda_t$ is a **H**-martingale, where

$$\Lambda_t = \Lambda_1(t) \mathbb{1}_{t < T_1} + [\Lambda_1(T_1) + \Lambda_2(T_1, t - T_1)] \mathbb{1}_{T_1 \le t < T_2}$$

with

$$\Lambda_1(t) = -\int_0^t \frac{dG_1(s)}{G_1(s)} = \int_0^t \frac{g(s)}{G(s,s)} ds = -\ln\frac{G(t,t)}{G(0,0)} = -\ln G(t,t)$$

and

$$\Lambda_2(s;t) = -\int_0^t \frac{d_u K(s;u)}{K(s,u)} = -\ln\frac{K(s;t)}{K(s;0)}$$

hence

$$\begin{split} \Lambda_2(T_1, t - T_1) &= -\ln \frac{K(T_1; t - T_1)}{K(T_1; 0)} = -\ln \frac{G_2(T_1; t)}{G_2(T_1; T_1)} \\ &= -\ln \frac{\partial_1 G(T_1, t) + \partial_2 G(t, T_1)}{\partial_1 G(T_1, T_1) + \partial_2 G(T_1, T_1)} \end{split}$$

It is proved in Chou-Meyer [?] that any **H**-martingale is a stochastic integral with respect to M. This result admits an immediate extension to the case of n successive defaults.

This representation theorem has an interesting consequence: a single asset is enough to get a complete market. This asset with price M, and final payoff $H_T - \Lambda_T$. It corresponds to a swap with cumulative premium leg Λ_t Remark 1.1.1 Note that

$$\begin{split} H_t^1 - \int_0^{t\wedge\tau_1} \frac{a_s^{(1)}}{G_s^{1|2}} ds &= H_t^1 - \int_0^{t\wedge\tau_1} \frac{H_s^2 \partial_1 h^{(1)}(s,\tau_2) - (1 - H_s^2) \partial_1 G(s,s)/G(0,s)}{H_s^2 h^{(1)}(s,\tau_2) + (1 - H_s^2) \psi(s)} ds \\ &= H_t^1 - \int_0^{t\wedge\tau_1} H_s^2 \frac{\partial_1 h^{(1)}(s,\tau_2)}{h^{(1)}(s,\tau_2)} - (1 - H_s^2) \frac{\partial_1 G(s,s)/G(0,s)}{\psi(s)} ds \\ &= H_t^1 - \int_{t\wedge\tau_1\wedge\tau_2}^{t\wedge\tau_1} \frac{\partial_1 h^{(1)}(s,\tau_2)}{h^{(1)}(s,\tau_2)} ds - \int_0^{t\wedge\tau_1\wedge\tau_2} \frac{\partial_1 G(s,s)}{G(s,s)} ds \\ &= H_t^1 - \ln \frac{h^{(1)}(t\wedge\tau_1\wedge\tau_2,\tau_2)}{h^{(1)}(t\wedge\tau_1,\tau_2)} - \int_0^{t\wedge\tau_1\wedge\tau_2} \frac{\partial_1 G(s,s)}{G(s,s)} ds \end{split}$$

It follows that the intensity of τ_1 in the **G**-filtration is $\frac{\partial_1 G(s,s)}{G(s,s)}$ on the set $\{t < \tau_2 \land \tau_1\}$ and $\frac{\partial_1 h^{(1)}(s,\tau_2)}{h^{(1)}(s,\tau_2)}$ on the set $\{\tau_2 < t < \tau_1\}$. It can be proved that the intensity of $\tau_1 \land \tau_2$ is

$$\frac{\partial_1 G(s,s)}{G(s,s)} + \frac{\partial_2 G(s,s)}{G(s,s)} = \frac{g(t)}{G(t,t)}$$

where $g(t) = \frac{d}{dt}G(t,t)$

1.1.4 Application of Norros lemma for two defaults

Norros's lemma

Proposition 1.1.3 Let $\tau_i, i = 1, \dots, n$ be *n* finite-valued random times and $\mathcal{G}_t = \mathcal{H}_t^1 \vee \cdots \vee \mathcal{H}_t^n$. Assume that

$$P(\tau_i = \tau_j) = 0, \forall i \neq j$$

there exists continuous processes A^i such that $M^i_t = H^i_t - A^i_{t \wedge \tau_i}$ are **G**-martingales

then, the r.v's $A^i_{\tau_i}$ are independent with exponential law.

Proof. For any $\mu_i > -1$ the processes $L_t^i = (1 + \mu_i)^{H_t^i} e^{-\mu_i A_t^i}$, solution of

$$dL_t^i = L_{t-}^i \mu_i dM_t^i$$

are uniformly integrable martingales. Moreover, these martingales have no commun jumps, and are orthogonal. Hence $E(\prod_i (1 + \mu_i)e^{-\mu_i A_{\infty}^i}) = 1$, which implies

$$E(\prod_{i} e^{-\mu_{i} A_{\infty}^{i}}) = \prod_{i} (1+\mu_{i})^{-1}$$

hence the independence property.

Application

In case of two defaults, this implies that U_1 and U_2 are independent, where

$$U_i = \int_0^{\tau_i} \frac{a_i(s)}{G_i^*(s)} ds$$

and

$$a_1(t) = -(1 - H_t^2)\frac{\partial_1 G(t, t)}{G(0, t)} + H_t^2 \partial_1 h^{(1)}(t, \tau_2), \quad G_1^*(t) = H_t^2 h^{(1)}(t, \tau_2) + (1 - H_t^2)\frac{G(t, t)}{G(0, t)}$$

$$a_2(t) = -(1 - H_t^1)\frac{\partial_2 G(t,t)}{G(t,0)} + H_t^1 \partial_2 h^{(2)}(\tau_1,t), \quad G_2^*(t) = H_t^1 h^{(2)}(\tau_1,t) + (1 - H_t^1)\frac{G(t,t)}{G(t,0)}$$

are independent. In a more explicit form,

$$\int_{0}^{\tau_{1}\wedge\tau_{2}} \frac{\partial_{1}G(s,s)}{G(s,s)} ds + \ln\frac{h^{(1)}(\tau_{1},\tau_{2})}{h^{(1)}(\tau_{1}\wedge\tau_{2},\tau_{2})} = \int_{0}^{\tau_{1}\wedge\tau_{2}} \frac{\partial_{1}G(s,s)}{G(s,s)} ds + \ln\frac{\partial_{2}G(\tau_{1},\tau_{2})}{\partial_{2}G(\tau_{1}\wedge\tau_{2},\tau_{2})} ds + \ln\frac{\partial_{2}G(\tau_{1},\tau_{2})}{\partial_{2}G(\tau_{1}\wedge\tau_{2},\tau_{2},\tau_{2})} ds + \ln\frac{\partial_{2}G(\tau_{1},\tau_{2},\tau_{2},\tau_{2},\tau_{2},\tau_{2})}{\partial_{2}G(\tau_{1}\wedge\tau_{2},\tau_$$

is independent from

$$\int_{0}^{\tau_{1}\wedge\tau_{2}} \frac{\partial_{2}G(s,s)}{G(s,s)} ds + \ln \frac{h^{(2)}(\tau_{1},\tau_{2})}{h^{(2)}(\tau_{1},\tau_{1}\wedge\tau_{2})} = \int_{0}^{\tau_{1}\wedge\tau_{2}} \frac{\partial_{2}G(s,s)}{G(s,s)} ds + \ln \frac{\partial_{1}G(\tau_{1},\tau_{2})}{\partial_{1}G(\tau_{1},\tau_{1}\wedge\tau_{2})} ds + \ln \frac{\partial_{1}G(\tau_{1},\tau_{2})}{\partial_{1}G(\tau_{1},\tau_{2}\wedge\tau_{2})} ds + \ln \frac{\partial_{1}G(\tau_{1},\tau_{2})}{\partial_{1}G(\tau_{1},\tau_{1}\wedge\tau_{2})} ds + \ln \frac{\partial_{1}G(\tau_{1},\tau_{2})}{\partial_{1}G(\tau_{1},\tau_{2}\wedge\tau_{2})} ds + \ln \frac{\partial_{1}G(\tau_{1},\tau_{2})}{\partial_{1}G(\tau_{1},\tau_{2}\wedge\tau_{2})} ds + \ln \frac{\partial_{1}G(\tau_{1},\tau_{2})}{\partial_{1}G(\tau_{1},\tau_{2}\wedge\tau_{$$

Example of Poisson process

In the case where τ_1 and τ_2 are the two first jumps of a Poisson process, we have

$$G(t,s) = \begin{cases} e^{-\lambda t} \text{ for } s < t\\ e^{-\lambda s} (1 + \lambda(s - t) \text{ for } s > t \end{cases}$$

with partial derivatives

$$\partial_1 G(t,s) = \begin{cases} -\lambda e^{-\lambda t} \text{ for } t > s \\ -\lambda e^{-\lambda s} \text{ for } s > t \end{cases}, \quad \partial_2 G(t,s) = \begin{cases} 0 \text{ for } t > s \\ -\lambda^2 e^{-\lambda s} (s-t) \text{ for } s > t \end{cases}$$

and

$$h(t,s) = \begin{cases} 1 \text{ for } t > s \\ \frac{t}{s} \text{ for } s > t \end{cases}, \ \partial_1 h(t,s) = \begin{cases} 0 \text{ for } t > s \\ \frac{1}{s} \text{ for } s > t \end{cases}$$
$$k(t,s) = \begin{cases} 0 \text{ for } t > s \\ 1 - e^{-\lambda(s-t)} \text{ for } s > t \end{cases}, \ \partial_2 k(t,s) = \begin{cases} 0 \text{ for } t > s \\ \lambda e^{-\lambda(s-t)} \text{ for } s > t \end{cases}$$

Then, one obtains $U_1 = \tau_1$ et $U_2 = \tau_2 - \tau_1$

1.2 Cox process modelling

We are now studying a financial market with null interest rate, and we work under the probability chosen by the market. We now assume that n non negative processes $\lambda_i, i = 1, \ldots, n$, \mathbb{F} -adapted are given and we denote $\Lambda_{i,t} = \int_0^t \lambda_{i,s} ds$. We assume the existence of n r.v. $U_i, i = 1, \cdots, n$ with uniform law, independent and independent of \mathcal{F}_{∞} and we define

$$\tau_i = \inf\{t : U_i \ge \exp(-\Lambda_{i,t})\}$$

We introduce the following different filtrations

- \mathbb{H}_i generated by $H_{i,t} = \mathbb{1}_{\tau_i \leq t}$
- \bullet the filtration \mathbbm{G} defined as

$$\mathcal{G}_t = \mathcal{F}_t \vee \mathcal{H}_{1,t} \vee \cdots \vee \mathcal{H}_{i,t} \vee \cdots \mathcal{H}_{n,t}$$

- the filtration \mathbb{G}_i as $\mathcal{G}_{i,t} = \mathcal{F}_t \vee \mathcal{H}_{i,t}$
- $\mathbb{H}_{(-i)}$ the filtration

$$\mathcal{H}_{(-i),t} = \mathcal{H}_{1,t} \lor \cdots \lor \mathcal{H}_{i-1,t} \lor \mathcal{H}_{i+1,t} \cdots \mathcal{H}_{n,t}$$

Note the obvious inclusions

$$\mathbb{F} \subset \mathbb{G}_i \subset \mathbb{G}, \quad \mathbb{H}_{(-i)} \subset \mathbb{G} = \mathbb{G}_i \vee \mathbb{H}_{(-i)}$$

We note $\ell_i(t,T)$ the loss process

$$\ell_i(t,T) = \mathbb{E}(\mathbb{1}_{\tau_i \le T} | \mathcal{G}_t) = \mathbb{P}(\tau_i \le T | \mathcal{G}_t) = \mathbb{E}(H_{i,T} | \mathcal{G}_t)$$

and $\widetilde{D}_i(t,T) = \mathbb{E}(\exp(\Lambda_{i,t} - \Lambda_{i,T})|\mathcal{F}_t)$ the predefault price if a DZC.

Lemma 1.2.1 The following equalities holds

$$\mathbb{P}(\tau_i \ge t_i, \forall i) = \mathbb{E}(\exp{-\sum_i \Lambda_{t_i,i}})$$
(1.8)

$$\mathbb{P}(\tau_i \ge t_i, \forall i | \mathcal{F}_t) = \exp - \sum_i \Lambda_{t_i, i}, \ \forall t_i \le t,$$
(1.9)

$$\mathbb{P}(\tau_i \ge t_i, \forall i | \mathcal{F}_t) = \prod_i \mathbb{P}(\tau_i \ge t | \mathcal{F}_t), \ \forall t_i \le t, \ \forall i$$
(1.10)

$$\mathbb{P}(\tau_i \ge t_i, \forall i | \mathcal{F}_t) = \mathbb{E}(\exp - \sum_i \Lambda_{t_i, i} | \mathcal{F}_t), \ \forall t_i,$$
(1.11)

$$\mathbb{P}(\tau_i \ge t_i, \forall i | \mathcal{G}_t) = \frac{\mathbb{P}(\tau_i \ge t_i, \forall i | \mathcal{F}_t)}{\mathbb{P}(\tau_i \ge t, \forall i | \mathcal{F}_t)} \quad on \quad the \quad set \quad \tau_i \ge t_i, \forall i$$
(1.12)

PROOF: From the definition

$$\mathbb{P}(\tau_i \ge t_i, \forall i) = \mathbb{P}(\exp{-\Lambda_{t_i, i}} \ge U_i, \forall i) = \mathbb{E}(\exp{-\sum_i \Lambda_{t_i, i}})$$

where we have used that $\mathbb{P}(u_i \ge U_i) = u_i$ and $\mathbb{E}(\Psi(X, Y)) = \mathbb{E}(\psi(X))$ with $\psi(x) = \mathbb{E}(\Psi(x, Y))$ for independent r.v. X and Y.

In the same way,

$$\begin{split} \mathbb{P}(\tau_i \geq t_i, \forall i | \mathcal{F}_t) &= \mathbb{P}(\exp{-\Lambda_{t_i, i}} \geq U_i, \forall i | \mathcal{F}_t) \\ &= \exp{-\sum_i \Lambda_{t_i, i}} \end{split}$$

where we have used that $\mathbb{E}(\Psi(X,Y)|X) = \psi(X)$ with $\psi(x) = \mathbb{E}(\Psi(x,Y))$ for independent r.v's X and Y, and that the $\Lambda_{t_i,i}$ are \mathcal{F}_t -measurable for $t_i \leq t$.

Lemma 1.2.2 (a) Any bounded \mathbb{F} -martingale is a \mathbb{G} -martingale. (b) Any bounded \mathbb{G}_i -martingale is a \mathbb{G} -martingale

PROOF: (a) Using the caracterisation of conditional expectation, one has to check that

$$\mathbb{E}(\eta|\mathcal{F}_t) = \mathbb{E}(\eta|\mathcal{F}_\infty)$$

for any \mathcal{G}_t -measurable r.v. It suffices to prove the equality for

$$\eta = F_t h_1(t \wedge \tau_1) \cdots h_n(t \wedge \tau_n)$$

where $F_t \in \mathcal{F}_t$ and $h_i, i = 1, \dots, n$ are bounded measurable functions. We can reduce attention to functions of the from $h_i(s) = \mathbb{1}_{[0,a_i]}(s)$. If $a_i > t$, $h_i(t \wedge \tau_i) = 1$, so we can pay attention to the case where all the a_i 's are smaller than t. The equality is now equivalent to

$$\mathbb{E}(\tau_i \le a_i, \forall i | \mathcal{F}_t) = \mathbb{E}(\tau_i \le a_i, \forall i | \mathcal{F}_\infty)$$

By definition

$$\mathbb{E}(\tau_i \le a_i, \forall i | \mathcal{F}_t) = \mathbb{E}(\exp{-\Lambda_{i,a_i}} < U_i, \forall i | \mathcal{F}_t) = \Psi(\Lambda_{i,t}; i = 1, \cdots, n)$$

with $\Psi(u_i; i = 1, \dots, n) = \prod (1 - u_i)$. The same computation leads to

$$\mathbb{E}(\tau_i \leq a_i, \forall i | \mathcal{F}_{\infty}) = \Psi(\Lambda_{i, a_i}, i = 1, \cdots, n)$$

(b) Using the same methodology, we are reduced to prove that for any bounded \mathcal{G}_t -measurable r.v. η ,

$$\mathbb{E}(\eta|\mathcal{G}_{i,t}) = \mathbb{E}(\eta|\mathcal{G}_{(i,\infty)})$$

or even only that

$$\mathbb{E}(\eta_1\eta_2|\mathcal{G}_{i,t}) = \mathbb{E}(\eta_1\eta_2|\mathcal{G}_{(i,\infty)})$$

for $\eta_1 \in \mathcal{G}_{i,t}$ and $\eta_2 \in \mathcal{H}_{(-i),t}$, that is

$$\mathbb{E}(\eta_2|\mathcal{G}_{i,t}) = \mathbb{E}(\eta_2|\mathcal{G}_{(i,\infty)})$$

To simplify, we assume that i = 1. Using the same elementary functions h as above, we have to prove that

$$\mathbb{E}(h_2(\tau_2 \wedge t) \cdots h_n(\tau_n \wedge a_n) | \mathcal{G}_{1,t}) = \mathbb{E}(h_2(\tau_2 \wedge t) \cdots h_n(\tau_n \wedge a_n) | \mathcal{G}_{(1,\infty)})$$

where $a_i < t$, that is

$$\mathbb{E}(\mathbbm{1}_{\tau_2 \leq a_2} \cdots \mathbbm{1}_{\tau_n \leq a_n} | \mathcal{G}_{1,t}) = \mathbb{E}(\mathbbm{1}_{\tau_2 \leq a_2} \cdots \mathbbm{1}_{\tau_n \leq a_n} | \mathcal{G}_{1,\infty})$$

Note that the vector (U_2, \dots, U_n) is independent from

$$\mathcal{G}_{1,\infty} = \mathcal{F}_{\infty} \lor \sigma(\tau_2) \lor \cdots \sigma(\tau_n) = \mathcal{F}_{\infty} \lor \sigma(U_2) \lor \cdots \sigma(U_n)$$

It follows that

$$\mathbb{E}(\mathbb{1}_{\tau_2 \le a_2} \cdots \mathbb{1}_{\tau_n \le a_n} | \mathcal{G}_{1,\infty}) = \mathbb{E}(\mathbb{1}_{\exp -\Lambda_{2,a_2} \le U_2} \cdots \mathbb{1}_{\exp -\Lambda_{n,a_n} \le U_n} | \mathcal{G}_{1,\infty}) = \prod_{i=2}^n (1 - \exp(-\Lambda_{i,a_i}))$$

Lemma 1.2.3 The processes $M_{i,t} \stackrel{def}{=} H_{i,t} - \int_0^t (1-H_{i,s}) \Lambda_{i,s} ds$ are \mathbb{G}_i -martingales and \mathbb{G} -martingales

PROOF: We have shown that $M_{i,t} \stackrel{def}{=} H_{i,t} - \int_0^t (1 - H_{i,s}) \Lambda_{i,s} ds$ are \mathbb{G}_i -martingales. Now, from the lemma, \mathbb{G}_i martingales are \mathbb{G} martingales as well.

Lemma 1.2.4 The processes $\ell_i(t,T)$ are \mathbb{G} -martingales and

$$\ell_{i,t} = (1 - H_{i,t})(1 - \mathbb{E}(\exp(\Lambda_{i,t} - \Lambda_{i,T})|\mathcal{F}_t) + H_{i,t}$$

From the definition, the processes $\ell_i(t,T)$ are \mathbb{G} -martingales. From Lemma

$$\mathbb{P}(\tau_i \ge T, \ |\mathcal{G}_t) = \mathbb{1}_{t < \tau_i} \frac{\mathbb{P}(\tau_i \ge T | \mathcal{F}_t)}{\mathbb{P}(\tau_i \ge t, \ |\mathcal{F}_t)} = (1 - H_{i,t}) \mathbb{E}(\exp{-(\Lambda_{i,t} - \Lambda_{i,T})} | \mathcal{F}_t)$$

hence $\ell_i(t,T) = H_{i,t} + (1 - H_{i,t})\mathbb{E}(1 - \exp{-(\Lambda_{i,t} - \Lambda_{i,T})}|\mathcal{F}_t)$

Chapter 2

Exercises

2.1 Toy Model

The proofs of the following exercises can be found in Osaka lecture notes.

Exercise 2.1.1 Prove that the payoff $\mathbb{1}_{T < \tau}$ can not be hedged with zero-coupon bonds.

Exercise 2.1.2 Prove that H is a submartingale.

Exercise 2.1.3 Assume that Γ is a continuous function. Then for any (bounded) Borel measurable function $h: \mathbb{R}_+ \to \mathbb{R}$, the process

$$M_t^h = 1_{\{\tau \le t\}} h(\tau) - \int_0^{t \wedge \tau} h(u) \, d\Gamma(u)$$
(2.1)

is a **H**-martingale.

Exercise 2.1.4 Let $\eta_t = \mathbb{E}_P(h(\tau)|\mathcal{H}_t)$. Prove that

$$\eta_t = \int_0^t h(s)dH_s + (1 - H_t)g(t)$$

Prove that the martingale η admits a representation in terms of M as

$$\eta_t = 1 + \int_0^t \eta_{u-1} (\frac{h(t)}{g(t)} - 1) dM_u$$

Exercise 2.1.5 Let $h: \mathbb{R}_+ \to \mathbb{R}$ be a (bounded) Borel measurable function. Then the process

$$\widetilde{M}_t^h = \exp\left(\mathbb{1}_{\{\tau \le t\}} h(\tau)\right) - \int_0^{t \wedge \tau} (e^{h(u)} - 1) \, d\Gamma(u)$$
(2.2)

is a **H**-martingale.

Exercise 2.1.6 Assume that Γ is a continuous function. Let $h : \mathbb{R}_+ \to \mathbb{R}$ be a non-negative Borel measurable function such that the random variable $h(\tau)$ is integrable. Then the process

$$\widehat{M}_t = (1 + \mathbb{1}_{\tau \le t} h(\tau)) \exp\left(-\int_0^{t \wedge \tau} h(u) \, d\Gamma(u)\right)$$
(2.3)

is a \mathbf{H} -martingale.

Exercise 2.1.7 In this exercise, F is only continuous on right, and F(t-) is the left limit at point t. Prove that the process $(M_t, t \ge 0)$ defined as

$$M_t = H_t - \int_0^{\tau \wedge t} \frac{dF(s)}{1 - F(s)} = H_t - \int_0^t (1 - H_{s-}) \frac{dF(s)}{1 - F(s)}$$

is a **H**-martingale.

Exercise 2.1.8 If Γ is not continuous, prove that

$$\mathbb{E}(h(\tau)|\mathcal{H}_t) = \mathbb{E}(h(\tau)) - \int_0^{t\wedge\tau} e^{\Delta\Gamma(s)}(\widehat{h}(s) - h(s)) \, dM_s \, .$$

The next result suggests that this martingale property uniquely characterizes the (continuous) hazard function of a random time.

Exercise 2.1.9 Suppose that an equivalent probability measure \mathbb{P}^* is given by formula $\mathbb{P}^*(A) = \mathbb{E}_{\mathbb{P}}(\mathbbm{1}_A h(\tau))$ for some function h. Let $\Lambda^* : \mathbb{R}_+ \to \mathbb{R}_+$ be an arbitrary continuous increasing function, with $\Lambda^*(0) = 0$. If the process $M_t^* := H_t - \Lambda^*(t \wedge \tau)$ follows a **H**-martingale under \mathbb{P}^* , then $\Lambda^*(t) = -\ln(1 - F^*(t))$

Exercise 2.1.10 Let M^1 and M^2 be arbitrary two \mathbb{H} -martingales under \mathbb{Q} . If for every $t \in [0,T]$ we have $\mathbb{1}_{\{t < \tau\}} M_t^1 = \mathbb{1}_{\{t < \tau\}} M_t^2$ then $M_t^1 = M_t^2$ for every $t \in [0,T]$.

Exercise 2.1.11 The dynamics of the ex-dividend price $S_t(\kappa(s))$ on [s,T] are also given as

$$dS_t(\kappa(s)) = -S_{t-}(\kappa(s)) \, dM_t + (1 - H_t) \left(\frac{\int_t^T G(u) \, du}{G(t)} \, d_t \nu(t, s) - \nu(t, s) \, dt \right). \tag{2.4}$$

Exercise 2.1.12 Assume that

- the savings account $Y_t^0 = 1$
- a risky asset with risk-neutral dynamics

 $dY_t = Y_t \sigma dW_t$

where W is a Brownian motion

• a DZC of maturity T with price D(t,T)

are traded. The reference filtration is that of the BM W. We assume that \mathbb{F} is immersed in \mathbb{G} .

Give the price of a defaultable call with payoff $1\!\!1_{T<\tau}(Y_T-K)^+$ and the associated hedging strategy

Solution: The price of the call is

$$C_t = \mathbb{E}(\mathbb{1}_{T < \tau}(Y_T - K)^+ | \mathcal{G}_t) = \mathbb{1}_{t < \tau} e^{\Lambda_t} \mathbb{E}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$$

= $L_t m_t^Y$

with $m_t^Y = \mathbb{E}(e^{-\Lambda_T}(Y_T - K)^+ | \mathcal{F}_t)$. hence

$$dC_t = L_t dm_t^Y - m_t^Y L_{t-} dM_t$$

In our model, λ is deterministic, hence

$$m_t^Y = e^{-\Lambda_T} E((Y_T - K)^+ | \mathcal{F}_t) = e^{-\Lambda_T} C_t^Y$$

2.2. HAZARD PROCESS APPROACH

where C^Y is the price of a call in the Black Scholes model. This quantity is $C_t^Y = C^Y(t, Y_t)$ and satisfies $dC_t^Y = \Delta_t dY_t$ where Δ_t is the Delta-hedge $(\Delta_t = \partial_y C^Y(t, Y_t))$.

$$C_t = \mathbb{1}_{t < \tau} e^{\Lambda_t} e^{-\Lambda_T} C^Y(t, Y_t) = L_t e^{-\Lambda_T} C^Y(t, Y_t) = D(t, T) C^Y(t, Y_t)$$

From

$$C_t = D(t, T)C^Y(t, Y_t)$$

we deduce

$$dC_t = e^{-\Lambda_T} (L_t dC^Y + C^Y dL_t) = e^{-\Lambda_T} (L_t \Delta_t dY_t - C^Y L_t dM_t)$$

= $e^{-\Lambda_T} (L_t \Delta_t dY_t - C^Y L_t dM_t)$

Therefore, using that $dD(t,T) = m_t dM_t = -e^{-\Lambda_T} L_t dM_t$ we get

$$dC_t = e^{-\Lambda_T} L_t \Delta_t dY_t - C^Y dD(t,T) = e^{-\Lambda_T} L_t \Delta_t dY_t + \frac{C_t}{D(t,T)} dD(t,T)$$

hence, an hedging strategy consists of holding $\frac{C_t}{D(t,T)}$ DZCs.

2.2 Hazard Process Approach

2.2.1 Application of Key lemma

Exercise 2.2.1 Assume that the process G is decreasing. Let \tilde{V} and R be \mathbb{F} -predictable processes. The process

$$V_t = V_t 1\!\!1_{\{t < \tau\}} + R_\tau 1\!\!1_{\{\tau \le t\}}$$

is a G-martingale if and only if the process

$$v_t \stackrel{def}{=} \widetilde{V}_t e^{-\Gamma_t} + \int_0^t R_u e^{-\Gamma_u} d\Gamma_u$$

is an $\mathbb F\text{-martingale}$

PROOF: The direct part comes from the fact that

$$\mathbb{E}(V_t - V_s | \mathcal{G}_s) = \mathbb{1}_{\tau > t} e^{\Gamma_t} \mathbb{E}(v_t - v_s | \mathcal{F}_s)$$

Exercise 2.2.2 Let \widetilde{V} and R be \mathbb{F} -predictable processes. The process

$$V_t = V_t 1\!\!1_{\{t < \tau\}} + R_\tau 1\!\!1_{\{\tau \le t\}}$$

is a G-martingale if and only if the process

$$v_t \stackrel{def}{=} \widetilde{V}_t e^{-\Gamma_t} + \int_0^t R_u dF_u$$

is an \mathbb{F} -martingale

PROOF: The direct part comes from the fact that

$$\mathbb{E}(V_t - V_s | \mathcal{G}_s) = \mathbb{1}_{\tau > t} e^{\Gamma_t} \mathbb{E}(v_t - v_s | \mathcal{F}_s).$$

Exercise 2.2.3 Let P be the price process of a claim which delivers R_{τ} at default time and pays a cumulative coupon C till the default time, i.e. the discounted cum-dividend process

$$B_t^{-1}P_t + 1_{\{\tau \le t\}} B_\tau^{-1} R_\tau + \int_0^{t \wedge \tau} B_u^{-1} dC_u$$

is a \mathbb{G} -martingale. Let \widetilde{P}_t be the predefault price of the process P, i.e., \widetilde{P} is \mathbb{F} -predictable and $P_t = \mathbb{1}_{\{t < \tau\}} \widetilde{P}_t$. Let $\alpha_t = \beta_t e^{-\Gamma_t}$. Prove that the process

$$P_t^* = \alpha_t \widetilde{P}_t + \int_0^t \alpha_s dC_s + \int_0^t R_u \alpha_u \, d\Gamma_u$$

is an \mathbb{F} -martingale, where $\alpha_t = B_t^{-1} e^{-\Gamma_t}$.

Conversely, if \widetilde{V} is an \mathbb{F} -predictable process such that the process $\alpha_t \widetilde{V}_t + \int_0^t \alpha_s dC_s + \int_0^t R_u \alpha_u d\Gamma_u$ is an \mathbb{F} -martingale, prove that (the discounted cum-dividend) process

$$B_t^{-1} \widetilde{V}_t \mathbb{1}_{\{t < \tau\}} + \mathbb{1}_{\{\tau \le t\}} B_\tau^{-1} R_\tau + \int_0^{t \wedge \tau} B_u^{-1} dC_u$$

is a G-martingale.

PROOF: This is an application of the Key Lemma.

2.2.2 Stopping times

Exercise 2.2.4 Prove that, for any \mathbb{F} -stopping time θ , we have:

$$\mathbb{Q}(\tau > \theta \,|\, \mathcal{F}_{\theta}) = e^{-\Gamma_{\theta}}.\tag{2.5}$$

This lemma plays an important role while dealing with convertible bonds.

Exercise 2.2.5 Let us be given $t \in \mathbb{R}_+$ and θ an \mathbb{F} stopping time, valued in (t,T]. Prove the following assertions

(i) For any bounded from below, \mathcal{F}_{θ} -measurable random variable χ , we have:

$$\mathbb{E}_{\mathbb{Q}}(\mathbb{1}_{\{t < \tau \le \theta\}} \chi \,|\, \mathcal{G}_t) = \mathbb{1}_{\{\tau > t\}} \mathbb{E}_{\mathbb{Q}}((1 - e^{\Gamma_t - \Gamma_\theta}) \chi \,|\, \mathcal{F}_t) , \ \mathbb{E}_{\mathbb{Q}}(\mathbb{1}_{\{\tau > \theta\}} \chi \,|\, \mathcal{G}_t) = \mathbb{1}_{\{\tau > t\}} e^{\Gamma_t} \mathbb{E}_{\mathbb{Q}}(e^{-\Gamma_\theta} \chi \,|\, \mathcal{F}_t) .$$

(ii) For any bounded from below, \mathbb{F} -predictable process Z, we have:

$$\mathbb{E}_{\mathbb{Q}}(Z_{\tau}\mathbb{1}_{\{t<\tau\leq\theta\}}|\mathcal{G}_{t}) = \mathbb{1}_{\{t<\tau\}}e^{\Gamma_{t}}\mathbb{E}_{\mathbb{Q}}\Big(\int_{t}^{\theta}Z_{u}e^{-\Gamma_{u}}\,d\Gamma_{u}\,\Big|\,\mathcal{F}_{t}\Big).$$
(2.6)

(iii) For any \mathbb{F} -predictable process process A with finite variation over [0, T], we have:

$$\mathbb{E}_{\mathbb{Q}}\left(\int_{t\wedge\tau}^{\theta\wedge\tau} dA_u \,\middle|\, \mathcal{G}_t\right) = \mathbb{1}_{\{t<\tau\}} e^{\Gamma_t} \,\mathbb{E}_{\mathbb{Q}}\left(\int_t^{\theta} e^{-\Gamma_u} dA_u \,\middle|\, \mathcal{F}_t\right).$$
(2.7)

Proof:

(ii) If suffices to prove 2.6 for an elementary predictable process of the form $Z_s = \mathbb{1}_{]u,v]}(s)A_u$ where $A_u \in \mathcal{F}_u$. For such a process, the result follows easily from part (i).

(iii) We have that

$$\int_{t\wedge\tau}^{\theta\wedge\tau} dQ_u = \mathbbm{1}_{\{t<\tau\}} \int_{t\wedge\tau}^{\theta\wedge\tau} dQ_u = \mathbbm{1}_{\{\theta<\tau\}} \int_t^{\theta} dQ_u + \mathbbm{1}_{\{t<\tau\le\theta\}} \int_t^{\tau} dQ_u$$

2.2. HAZARD PROCESS APPROACH

where Q is \mathbb{F} -predictable. Using parts (i) and (ii), we obtain

$$\mathbb{E}_{\mathbb{Q}}\left(\mathbbm{1}_{\{\tau<\tau\}}\int_{t}^{\theta}dQ_{u}\,\Big|\,\mathcal{G}_{t}\right)=\mathbbm{1}_{\{t<\tau\}}\mathbb{E}_{\mathbb{Q}}\left(e^{\Gamma_{t}-\Gamma_{\theta}}\int_{t}^{\theta}dQ_{u}\,\Big|\,\mathcal{F}_{t}\right)$$

and

$$\mathbb{E}_{\mathbb{Q}}\left(\mathbbm{1}_{\{t<\tau\leq\theta\}}\int_{t}^{\tau}dQ_{u}\,\Big|\,\mathcal{G}_{t}\right)=\mathbbm{1}_{\{t<\tau\}}\mathbb{E}_{\mathbb{Q}}\left(\int_{t}^{\theta}\left(\int_{t}^{s}dQ_{u}\right)e^{\Gamma_{t}-\Gamma_{s}}d\Gamma_{s}\,\Big|\,\mathcal{F}_{t}\right),$$

where, by Fubini theorem,

$$\int_{t}^{\theta} \left(\int_{t}^{s} dQ_{u} \right) e^{\Gamma_{t} - \Gamma_{s}} d\Gamma_{s} = \int_{t}^{\theta} \int_{t}^{s} dQ_{u} e^{\Gamma_{t} - \Gamma_{s}} d\Gamma_{s} = \int_{t}^{\theta} e^{\Gamma_{t} - \Gamma_{u}} dQ_{u} - e^{\Gamma_{t} - \Gamma_{\theta}} \int_{t}^{\theta} \beta_{u} dQ_{u}.$$

Hence

$$\mathbb{E}_{\mathbb{Q}}\Big(\int_{t\wedge\tau}^{\theta\wedge\tau} dQ_u \,\Big|\, \mathcal{G}_t\Big) = \mathbb{1}_{\{t<\tau\}} \mathbb{E}_{\mathbb{Q}}\Big(\int_t^{\theta} e^{\Gamma_t - \Gamma_u} \, dQ_u \,\Big|\, \mathcal{F}_t\Big),$$

and thus

$$\mathbb{E}_{\mathbb{Q}}\left(\int_{t\wedge\tau}^{\theta\wedge\tau} dQ_u \,\Big|\, \mathcal{G}_t\right) = \mathbb{1}_{\{t<\tau\}} e^{\Gamma_t} \mathbb{E}_{\mathbb{Q}}\left(\int_t^{\theta} e^{-\Gamma_u} \,dQ_u \,\Big|\, \mathcal{F}_t\right),\tag{2.8}$$

as expected.

2.2.3 Multiplicative decomposition

Exercise 2.2.6 Prove that the supermartingale G = Z - A admits a multiplicative decomposition $G_t = C_t N_t$ where N is a martingale and C a decreasing process.

Proof: The supermartingale G = Z - A admits a multiplicative decomposition $G_t = C_t N_t$ where N is a martingale and C a decreasing process satisfying

$$dN_t = -\frac{1}{C_t} dZ_t, \ dC_t = -C_t \frac{1}{G_t} dA_t \,.$$

Hence

$$C_t = \exp{-\int_0^t \frac{1}{G_s} dA_s} = \exp{-\Lambda_t}$$

and

$$e^{\Gamma_t} \mathbb{E}(e^{-\Gamma_T} X | \mathcal{F}_t) = \widehat{\mathbb{E}}(X \frac{C_T}{C_t} | \mathcal{F}_t) = \widehat{\mathbb{E}}(X \exp(-\int_t^T \lambda_s ds) | \mathcal{F}_t)$$

where

$$d\widehat{Q} = L_t d\mathbb{P}, \quad dL_t = -\exp(\Lambda_t) L_t dZ_t.$$

Exercise 2.2.7 Assume that $G_t = N_t e^{-\Lambda_t}$ where N is a continuous martingale. Prove that $H_t - \Lambda_{t \wedge \tau}$ is a \mathbb{G} -martingale.

Proof: The additive decomposition of G is

$$dG_t = e^{-\Lambda_t} dN_t - N_t e^{-\Lambda_t} d\Lambda_t$$

and the result follows

2.2.4 Immersion

Exercise 2.2.8 Let $\tau_1 < \tau_2$. Prove that \mathbb{F} is immersed in \mathbb{G} if and only if \mathbb{F} is immersed in $\mathbb{F} \vee \mathbb{H}^1$ and $\mathbb{F} \vee \mathbb{H}^1$ immersed in \mathbb{G} .

Solution: The only fact to check is that if \mathbb{F} is immersed in \mathbb{G} , then $\mathbb{F} \vee \mathbb{H}^1$ is immersed in \mathbb{G} , or that

$$\mathbb{P}(\tau_2 > t | \mathcal{F}_t \lor \mathcal{H}_t^1) = \mathbb{P}(\tau_2 > t | \mathcal{F}_\infty \lor \mathcal{H}_\infty^1)$$

This is equivalent to, for any h, and any $A_{\infty} \in \mathcal{F}_{\infty}$

$$\mathbb{E}(A_{\infty}h(\tau_1)\mathbb{1}_{\tau_2>t}) = \mathbb{E}(A_{\infty}h(\tau_1)\mathbb{P}(\tau_2>t|\mathcal{F}_t\vee\mathcal{H}_t^1))$$

We spilt this equality in two parts. The first equality

$$\mathbb{E}(A_{\infty}h(\tau_1)\mathbb{1}_{\tau_1>t}\mathbb{1}_{\tau_2>t}) = \mathbb{E}(A_{\infty}h(\tau_1)\mathbb{1}_{\tau_1>t}\mathbb{P}(\tau_2>t|\mathcal{F}_t\vee\mathcal{H}_t^1))$$

is obvious since $\mathbbm{1}_{\tau_1>t}\mathbbm{1}_{\tau_2>t} = \mathbbm{1}_{\tau_1>t}$ and $\mathbbm{1}_{\tau_1>t}\mathbb{P}(\tau_2>t|\mathcal{F}_t\vee\mathcal{H}_t^1) = \mathbbm{1}_{\tau_1>t}$. Now

$$\mathbb{E}(A_{\infty}h(\tau_1)\mathbb{1}_{t\geq\tau_1}\mathbb{1}_{\tau_2>t}) = \mathbb{E}(\mathbb{E}(A_{\infty}|\mathcal{G}_t)h(\tau_1)\mathbb{1}_{\tau_1>t}\mathbb{P}(\tau_2>t|\mathcal{F}_t\vee\mathcal{H}_t^1))$$

Since \mathbb{F} is immersed in \mathbb{G} , one has $\mathbb{E}(A_{\infty}|\mathcal{G}_t) = \mathbb{E}(A_{\infty}|\mathcal{F}_t)$ and it follows that $\mathbb{E}(A_{\infty}|\mathcal{G}_t) = \mathbb{E}(A_{\infty}|\mathcal{F}_t \vee \mathcal{H}_t^1)$, therefore

$$\begin{split} \mathbb{E}(A_{\infty}h(\tau_{1})1\!\!1_{t\geq\tau_{1}}1\!\!1_{\tau_{2}>t}) &= \mathbb{E}(\mathbb{E}(A_{\infty}|\mathcal{F}_{t}\vee\mathcal{H}_{t}^{1})\mathbb{P}(h(\tau_{1})1\!\!1_{\tau_{1}>t}1\!\!1_{\tau_{2}>t}|\mathcal{F}_{t}\vee\mathcal{H}_{t}^{1})) \\ &= \mathbb{E}(A_{\infty}\mathbb{P}(h(\tau_{1})1\!\!1_{\tau_{1}>t}1\!\!1_{\tau_{2}>t}|\mathcal{F}_{t}\vee\mathcal{H}_{t}^{1})) \end{split}$$

Exercise 2.2.9 Prove that if λ is deterministic and $H_t - \int_0^t \lambda_u (1 - H_u)$ is a \mathbb{G} martingale, then $\mathbb{P}(\tau > t) = e^{-\Lambda_t}$

Hint: $E(H_t) = \int_0^t \lambda(u)(1 - \mathbb{E}(H_u))$ leads to an ODE

Exercise 2.2.10 Prove that if \mathbb{F} is immersed in \mathbb{G} and $H_t - \int_0^t \lambda_u (1 - H_u)$ is a \mathbb{G} martingale, then $\mathbb{P}(\tau > t | \mathcal{F}_t) = e^{-\Lambda_t}$

Hint: use the multiplicative decomposition of the supermartingale

2.2.5 Pricing

We work in a hazard process model with reference filtration \mathbb{F} . The pricing probability is denoted \mathbb{P} . The filtered probability space is $(\Omega, \mathbf{F}, \mathbb{P}), \tau$ is a strictly positive r.v., $H_t = \mathbb{1}_{\tau \leq t}, \mathbf{H} = (\mathcal{H}_t, t \geq 0)$ is the natural filtration of H, (taken càd and complete), $\mathbb{G} = \mathbb{F} \vee \mathbb{H}$, and $G_t = \mathbb{P}(\tau > t | \mathcal{F}_t)$. There exists λ such that $M_t := H_t - \int_0^t (1 - H_s) \lambda_s ds$ is a \mathbb{G} -martingale. The Doob-Meyer decomposition of G is denoted $G_t = Z_t - A_t$ where Z is an \mathbb{F} -martingale and A an \mathbb{F} -predictable non-decreasing process.

Exercise 2.2.11 Assume that λ be deterministic and that immersion property holds.

- 1. Prove that τ is independent of **F**.
- 2. Let S an **F**-adapted process which represents the price of some asset and assume that the interest rate $(r(s), s \ge 0)$ is deterministic. We note $\beta_t = \exp \int_0^t r(s) ds$.
 - (a) Compute the value V_t of an asset with payoff $\Phi = \varphi(S_T) \mathbb{1}_{T < \tau}$.
 - (b) Show that there is a relation between V_t and Φ_t , the price of an asset with payoff $\varphi(S_T)$.

2.2. HAZARD PROCESS APPROACH

- (c) Compute the value D(t,T) of the price of a defaultable zero-coupon (with null recovery). Determine the dynamics of D(t,T)?
- (d) We recall that a self-financing portfolio with payoff ξ is a triple of **G**-adapted processes, π^1, π^2, π^3 such that, if $V_t = \pi_t^1 D(t, T) + \pi_t^2 S_t + \pi_t^3 S_t^0$, then

$$\begin{aligned} dV_t &= \pi_t^1 dD(t,T) + \pi_t^2 dS_t + \pi_t^3 S_t^0 r(t) dt \\ \xi &= \pi_T^1 D(T,T) + \pi_T^2 S_T + \pi_T^3 S_T^0 \end{aligned}$$

Prove that there exists a self-financing portfolio with payoff $\varphi(S_T) \mathbb{1}_{T < \tau}$. Compute π^1 .

Exercise 2.2.12 Let Θ be a non-negative r.v. with cumulative distribution function F, independent of \mathcal{F}_{∞} . Let $(\lambda_t, t \ge 0)$ be an **F**-adapted process, taking non-negative values and $\Lambda_t = \int_0^t \lambda_s ds$. We define

$$\tau = \inf\{t : \Lambda_t \ge \Theta\}.$$

We assume that the interest rate is null.

- 1. Check that τ is a **G**-stopping time.
- 2. Compute G_t in terms of Λ and F. Give the Doob-Meyer decomposition of G..
- 3. Let X be an \mathcal{F}_T -measurable, integrable r.v.. Compute $\mathbb{E}(X 1_{T < \tau} | \mathcal{G}_t)$ for t < T.
- 4. Prove that the process L defined as $L_t = (1 H_t)(1 F(\Lambda_t))^{-1}$ is a **G**-martingale.
- 5. Find the process γ such that the process $M_t = H_t \int_0^{t\wedge\tau} \gamma_s ds$ is a **G**-martingale.
- 6. Let Z be an F-adapted process. A contingent claim pays Z_{τ} at time T, in the case $\tau \leq T$ (no payment if $\tau > T$. Compute the price at time t of this contingent claim and give the dynamics of this price
- 7. let $D(t,T) = \mathbb{E}(\mathbb{1}_{T < \tau} | \mathcal{G}_t)$ be the price at time t of a defaultable zero-coupon with maturity T. We assume that the following assets are traded
 - an asset with price $Y_t^0 = 1$ (i.e., the savings account, with null interest rate),
 - an asset with price following the Black-Scholes dynamics

$$dY_t = Y_t \sigma dW_t$$

where W is a Brownoian motion

- A DZC with price D(t,T)
- (a) Show that

$$dD(t,T) = \mu_t dm_t + \varphi_t dM_t$$

where m is a martingale that can be written as a conditional expectation and where μ and φ are given in a closed form. We shall assume that $dm_t = m_t \nu_t dW_t$.

(b) Write the EDP evaluation formula for the price of an asset paying $\Phi(Y_T, H_T)$. What is the hedging portfolio?

Exercise 2.2.13 We assume that the interest rate is constant.

We assume that G is continuous and valued in]0,1[and we define $\Gamma_t := -\ln G_t$. We assume that the process A in the Doob-Meyer decomposition of G is on the form $A_t = \int_0^t a_s ds$. We recall that

$$M_t := H_t - \int_0^{t \wedge \tau} \frac{a_s}{G_s} \, ds = H_t - \int_0^{t \wedge \tau} \lambda_s ds = H_t - \Lambda_{t \wedge \tau}$$

(where $\lambda_s = \frac{a_s}{G_s}$, $\Lambda_t = \int_0^t \lambda_s ds$) is a **G**-martingale. We recall that for any \mathbb{F} -predictable process h

$$\mathbb{E}(h_{\tau}\mathbb{1}_{\tau < T}|\mathcal{G}_t) = h_{\tau}\mathbb{1}_{\{\tau < t\}} + \mathbb{1}_{\{\tau > t\}}e^{\Gamma_t}\mathbb{E}\left(\int_t^T h_u dF_u|\mathcal{F}_t\right)$$

- 1. We assume that G is non-increasing.
 - (a) Prove that $L_t := (1 H_t)(G_t)^{-1}$ is a martingale and that, for any a > 0, the process

$$(1+a)^{H_t} \exp\left(-a \int_0^t (1-H_s)\lambda_s ds\right)$$

is a martingale. Prove that $\mathbb{E}[(1+a)e^{-a\Lambda_{\tau}}] = 1$. Compute the law of Λ_{τ} .

(b) Let \widetilde{V} and Z be \mathbb{F} -predictable processes. Prove that

$$V_t := V_t 1\!\!1_{\{t < \tau\}} + Z_\tau 1\!\!1_{\{\tau \le t\}}$$

is a \mathbf{G} -martingale if and only if

$$\widetilde{V}_t e^{-\Gamma_t} + \int_0^t Z_u e^{-\Gamma_u} d\Gamma_u$$

is an $\mathbb F\text{-martingale}$

- 2. Assume that $\tau := \inf\{t : C_t < U\}$ where U is a r.v. with uniform law on [0, 1], independent of \mathcal{F}_{∞} and C an \mathbb{F} -adapted process, non-increasing of the form $C_t = \exp\left(-\int_0^t c_s ds\right)$ such that $C_0 = 1$ and $C_{\infty} = 0$.
 - (a) Compute G_t in terms of C.
 - (b) Compute the intensity of τ .
 - (c) Let Z be an \mathbb{F} -predictable process and X an \mathcal{F}_T -mesurable i ntegrable r.v.. Compute the price at time t of an asset which delivers Z_{τ} at time τ if $\tau \leq T$, and X at time T if $T < \tau$. Give the dynamics of this price.
 - (d) On note $D(t,T) = \mathbb{E}(\mathbb{1}_{T < \tau} | \mathcal{G}_t)$ le prix à la date t d'un zéro coupon soumis au risque de défaut (DZC) de maturité T. On suppose que le marché comporte
 - un actif de prix $Y_t^0 = 1$ (le savings account, de taux r nul),
 - un actif de dynamique Black Scholes dont le prix suit, sous la probabilité risque neutre, la dynamique

$$dY_t = Y_t \sigma dW_t$$

où W est un mouvement Brownien; la filtration $\mathbb F$ est la filtration naturelle du mouvement BrownienW.

- le DZC de prix D(t,T)
- i. Montrer que

$$dD(t,T) = \mu_t dm_t + \varphi_t dM_t$$

où m est une martingale que l'on caractérisera sous forme d'une espérance conditionnelle -sans expliciter le dm_t - et où μ et φ seront explicités. On supposera que $dm_t = m_t \nu_t dW_t$.

ii. Ecrire l'EDP d'évaluation d'un produit de payoff $\Phi(Y_T, H_T)$. Quel est le porte feuille de couverture associé?

Exercise 2.2.14 Assume that (H) hypothesis holds and that the \mathbb{F} martingales are continuous. Let M be a \mathbb{F} martingale Lat a and b be \mathbb{G} adapted processes such that $\int_0^t a_s dM_s$ and $\int_0^t b_s dM_s^d$ are martingales Let $Z_t = \int_0^t a_s dM_s + \int_0^t b_s dM_s^d$. Then $E(Z_t | \mathcal{F}_t) = \int_0^t E(a_s | \mathcal{F}_s) dM_s$

Exercise 2.2.15 Assume that H hypothesis holds and that \mathcal{F} is continuous (or at least that F does not jump at time τ)

The process $M_t = H_t - \Gamma_{t \wedge \tau}$ is a martingale For any $\alpha \in \mathbb{R}$, the process $Z_t = \exp(\alpha H_t - (e^{\alpha} - 1)\Gamma_{t \wedge \tau})$ is a martingale Indeed

$$dZ_t = e^{-(e^{\alpha}-1)\Gamma_{t\wedge\tau}} d(e^{\alpha H_t} - (e^{\alpha}-1)Z_{t-}(1-H_{t-})d\Gamma_t$$

= $Z_{t-}(e^{\alpha(H_t-H_{t-})}dH_t - (e^{\alpha}-1)Z_{t-}(1-H_{t-})d\Gamma_t$
= $Z_{t-}(e^{\alpha}-1)dH_t - (e^{\alpha}-1)Z_{t-}(1-H_{t-})d\Gamma_t$

2.3 Multidefaults

2.3.1 Jarrow and Yu model

Let λ, α, β be given non negative numbers. Construct $\tau_i, i = 1, 2$ such that

$$M_t^1 := H_t^1 - \int_0^{t \wedge \tau_1} \lambda ds$$

is an \mathbb{H}^1 martingale and

$$M_t^2 := H_t^2 - \int_0^{t \wedge \tau_2} (\alpha + \beta H_s^1) ds$$

is an $\mathbb{H} = \mathbb{H}^1 \vee \mathbb{H}^2$ martingale. Prove that M^1 is an \mathbb{H} martingale. Let L be the martingale

$$dL = L_{t-}\gamma H_{t-}^2 dM_t^1$$

and set

$$d\mathbb{Q}|_{\mathcal{H}_t} = L_t d\mathbb{P}|_{\mathcal{H}_t}$$

Find the intensity of τ_1 under \mathbb{Q} . Compute the joint law of τ_1, τ_2 under \mathbb{Q} . Are various immersion properties satisfied?

2.3.2 Norros Lemma

Let τ_i be two default times, \mathbb{F} a reference filtration. We introduce $(\mathcal{G}_t^i)_{t\geq 0}$ by $\mathcal{G}_t^i = \mathcal{F}_t \vee \mathcal{H}_t^i$, and $(\mathcal{G}_t)_{t\geq 0}$ by $\mathcal{G}_t = \mathcal{F}_t \vee \mathcal{H}_t^1 \vee \mathcal{H}_t^2$, for $t \geq 0$. It is further assumed that all the considered filtrations are right-continuous and completed by all the sets of *P*-measure zero. For any i = 1, 2, let $G^i = (G_t^i)_{t\geq 0}$ be the *conditional survival probability* process of the default time τ_i , defined by $G_t^i = P[\tau_i > t \mid \mathcal{F}_t]$, for all $t \geq 0$. There exists increasing predictable processes A^i such that $G^i + A^i$ are \mathbb{F} -martingales. Let us define the process $M^i = (M_t^i)_{t\geq 0}$ by:

$$M_t^i = H_t^i - \Lambda_{\tau_i \wedge t}^i \tag{2.9}$$

where the process $\Lambda^i = (\Lambda^i_t)_{t \ge 0}$ is given by:

$$\Lambda_t^i = \int_0^t \frac{dA_s^i}{G_s^i} \tag{2.10}$$

for all $t \geq 0$. The process M^i is a $(\mathcal{G}^i_t)_{t>0}$ -martingale and Λ^i is continuous.

Let the processes $G^i = (G_t^i)_{t \ge 0}$, i = 1, 2, be continuous and such that $G_0^i = 1$, and assume that $P[\tau_1 = \tau_2] = 0$ is satisfied. Prove that

(i) the variable $\Lambda_{\tau_i}^i$, defined in (2.10), has standard exponential law (with parameter 1);

- (ii) if $(\mathcal{F}_t)_{t\geq 0}$ is immersed in $(\mathcal{G}_t^i)_{t\geq 0}$, then the variable $\Lambda_{\tau_i}^i$ is independent of \mathcal{F}_{∞} ;
- (iii) if $(\mathcal{G}_t^i)_{t\geq 0}$, i = 1, 2 are immersed in $(\mathcal{G}_t)_{t\geq 0}$, then the variables $\Lambda_{\tau_i}^i$, i = 1, 2, are independent; (iv) if $(\mathcal{F}_t)_{t\geq 0}$ is immersed in $(\mathcal{G}_t^i)_{t\geq 0}$ and

$$P[\tau_i > t \mid \mathcal{F}_t] = P[\tau_i > t \mid \mathcal{G}_t^{3-i}]$$

$$(2.11)$$

hold for all $t \ge 0$, then the variables $\Lambda^i_{\tau_i}$, i = 1, 2, are conditionally independent with respect to \mathcal{F}_{∞} .

2.3.3 Examples

Exercise 2.3.1 Let $\tau_1 < \tau_2$ be two random times and \mathbb{F} a reference filtration. Prove that \mathbb{F} is immersed in $\mathbb{F} \vee \mathbb{H}^1 \vee \mathbb{H}^2$ if and only if \mathbb{F} is immersed in $\mathbb{F} \vee \mathbb{H}^1$ and $\mathbb{F} \vee \mathbb{H}^1$ is immersed in $\mathbb{F} \vee \mathbb{H}^1 \vee \mathbb{H}^2$.

Exercise 2.3.2 Let $\hat{\tau}_i$ be independent random times such that $\mathbb{P}(\hat{\tau}_i \geq t) = e^{-\hat{q}_i t}$ and set $\tau_i = \hat{\tau}_i \wedge \hat{\tau}_3$ for i = 1, 2. Show that $H_t^1 = \mathbbm{1}_{\tau_1 \leq t}$ is a Markov process in its natural filtration and in $\mathbbm{H} = \hat{\mathbbm{H}}^1 \vee \hat{\mathbbm{H}}^2 \vee \hat{\mathbbm{H}}^3$ Setting $q_1 = \hat{q}_1 + \hat{q}_3$, prove that $H_t^1 - \int_0^t (1 - H_s^1) q_1 ds$ is a martingale in \mathbbm{H}^1 and in \mathbbm{H} .

Prove that (H^1, H^2) is a \mathbb{H} -Markov process

Exercise 2.3.3 Let T_1, T_2 the first and the second jump of a standard Poisson process, with intensity equal to 1, and \mathbb{F}^N the natural filtration of the Poisson process.

1. Prove that one can write

$$T_1 = \inf\{t : t \ge \Theta_1\}$$

$$T_2 = \inf\{t : t \ge \Theta_1 + \Theta_2\}$$

where Θ_i are independents r.v. with exponential law.

- 2. Prove that $H_t^1 \int_0^t (1 H_s^1) ds$ is a \mathbb{H}^1 martingale and a \mathbb{F}^N martingale.
- 3. Prove that the cumulative function of $\Theta_1 + \Theta_2$ is $1 e^{-x}(1+x)$.

 τ

- 4. Prove that the intensity λ_2 of T_2 in the filtration \mathbb{H}^2 (i.e. the process λ_2 such that $H_t^2 \int_0^t (1 H_s^2)\lambda_s^2 ds$ is a \mathbb{H}^2 martingale) is $\lambda_s^2 = \frac{s}{1+s}$.
- 5. Prove that

$$T_2 = \inf\{t \, : \, \int_0^t \gamma_s ds \ge \Theta\}$$

where $\gamma_s = \mathbb{1}_{s>T_1}$ and Θ is an exponential law. Prove that $H_t^2 - \int_0^t (1 - H_s^2) \gamma_s ds$ is a \mathbb{F}^N martingale.

Exercise 2.3.4

We assume that

$$\dot{t}_i = \inf\{t : \Lambda_t^{(i)} \ge \Theta_i\}$$

where Θ_i are unit exponential r.vs, independent of \mathcal{F}_{∞} , and $\Lambda_t^{(i)} = \int_0^t \lambda_s^{(i)} ds$ where the processes $(\lambda_t^{(i)}, t \ge 0)$ are non-negative and **F**-adapted. A first to default claim pays some amount at time $\tau = \tau_1 \wedge \tau_2$.

1. We assume that Θ_i are independent. Let $\mathcal{G}_t = \mathcal{F}_t \vee \mathcal{H}_t^1 \vee \mathcal{H}_t^2$ where \mathbf{H}^i is the natural filtration of $H_t^i = \mathbb{1}_{\tau_i \leq t}$. Let Z be an **F**-adaped process. Compute $E(Z_\tau \mathbb{1}_{\{\tau < T\}} | \mathcal{G}_t)$.

2.4. DENSITY PROCESS

- 2. Assumpt that the joint law of Θ_i is known. Compute $E(Z_{\tau} \mathbb{1}_{\{\tau < T\}})$ in the case where $\lambda^{(i)}$ are deterministic and in the general case where $\lambda^{(i)}$ are processes.
- 3. let $D_i(t,T) = \mathbb{E}(\mathbb{1}_{T < \tau_i} | \mathcal{G}_t)$ be the price at time t of a defaultable zero-coupon bond with maturity T, on the default time i. Assuming that the r.vs Θ_i are independent, compute $D_i(t,T)$.

2.4 Density process

The random time τ admits a density process if there exists a family of non-negative processes $\alpha_t(u)$ such that

$$\mathbb{P}(\tau > u | \mathcal{F}_t) = \int_u^\infty \alpha_t(v) \eta(dv)$$

where η is the law of τ

Exercise 2.4.1 Compute the Doob-Meyer decomposition i=of the associated Azéma supermartingale. intensity of τ

Exercise 2.4.2 It is known that if X is an \mathbb{F} -martingale, then

$$X_t = \widehat{\mu}_t - \int_0^t \left. \frac{d \left\langle X, \alpha^{\theta} \right\rangle_u}{\alpha_{u-}^{\theta}} \right|_{\theta=\tau}$$

where $\widehat{\mu}$ is an $\mathbb{F} \vee \sigma(\tau)$ -martingale. Prove that

$$X_t = \mu_t + \int_0^{t \wedge \tau} \frac{d \langle X, G \rangle_u}{G_u} - \int_{t \wedge \tau}^t \frac{d \langle X, \alpha^{\theta} \rangle_u}{\alpha_{u-}^{\theta}} \bigg|_{\theta=\tau} \quad (**)$$

where μ is an \mathbb{G} -martingale

Exercise 2.4.3 We assume that α_{∞} exists. Let \mathbb{Q} defined as

$$d\mathbb{Q} = \mathbb{E}_{\mathbb{P}}(1/\alpha_{\infty}^{\tau}|\mathcal{G}_t)/\mathbb{E}_{\mathbb{P}}(1/\alpha_{\infty}^{\tau})d\mathbb{P}$$

Prove that, under \mathbb{Q} , τ is independent of \mathcal{F}_{∞}