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Chapter 1

Two defaults

1.1 Two defaults, trivial reference filtration

We assume in this section that r = 0.

Let us first study the case with two random times τ1, τ2. We denote by τ(1) = inf(τ1, τ2) and
τ(2) = sup(τ1, τ2), and we assume, for simplicity, that P(τ1 = τ2) = 0. We denote by (Hi

t , t ≥ 0)
the default process associated with τi, (i = 1, 2), and by Ht = H1

t +H2
t the process associated with

two defaults. As before, Hi is the filtration generated by the process Hi and H is the filtration
generated by the process H. The σ-algebra Gt = H1

t ∨H2
t is equal to σ(τ1∧ t)∨σ(τ2∧ t). It is useful

to note that Gt is strictly greater than Ht. Exemple: assume that τ1 and τ2 are independent and
identically distributed. Then, obviously, for u < t

P (τ1 < τ2|τ(1) = u, τ(2) = t) = 1/2 ,

hence σ(τ1, τ2) 6= σ(τ(1), τ(2)).

1.1.1 Computation of joint laws

A H1
t ∨H2

t -measurable random variable is equal to
- a constant on the set t < τ(1),
- a σ(τ(1))-measurable random variable on the set τ(1) ≤ t < τ(2), i.e., a σ(τ1)-measurable

random variable on the set τ1 ≤ t < τ2, and a σ(τ2)-measurable random variable on the set τ2 ≤ t <
τ1

- a σ(τ1, τ2)-measurable random variable on the set τ2 ≤ t.
We note G the survival probability of the pair (τ1, τ2), i.e.,

G(t, s) = P(τ1 > t, τ2 > s) .

We shall also use the notation

g(s) =
d

ds
G(s, s) = ∂1G(s, s) + ∂2G(s, s)

where ∂1G is the partial derivative of G with respect to the first variable.

• We present in a first step some computations of conditional laws.

P(τ(1) > s) = P(τ1 > s, τ2 > s) = G(s, s)

P(τ(2) > t|τ(1) = s) =
1
g(s)

(∂1G(s, t) + ∂2G(t, s)) , for t > s

1



2 CHAPTER 1. TWO DEFAULTS

• We also compute conditional expectation in the filtration G = H1 ∨H2: For t < T

P(T < τ(1)|H1
t ∨H2

t ) = 11t<τ(1)

P(T < τ(1))
P(t < τ(1))

= 11t<τ(1)

G(T, T )
G(t, t)

P(T < τ1|H1
t ∨H2

t ) = 11t<τ1
P(T < τ1|H2

t )
P(t < τ1|H2

t )
+ 11τ1<t

= 11t<τ1

(
11t<τ2

P(T < τ1, t < τ2)
P(t < τ1, t < τ2)

+ 11τ2≤t
P(T < τ1|τ2)
P(t < τ1|τ2)

)
+ 11τ1<t

= 11t<τ1

(
11t<τ2

G(T, t)
G(t, t)

+ 11τ2<t
P(T < τ1|τ2)
P(t < τ1|τ2)

)
+ 11τ1<t

P(τ(2) ≤ T |H1
t ∨H2

t ) = 11t<τ(1)

P(t ≤ τ(1) < τ(2) < T )
P(t < τ(1))

+ 11τ1≤t<τ2
P(t < τ2 < T |τ1)
P(t < τ2|τ1)

+11τ2≤t<τ1
P(t < τ1 < T |τ2)
P(t < τ1|τ2)

+ 11τ(2)<t .

• The computation of P(T < τ1|τ2) can be done as follows: the function h such that P(T < τ1|τ2) =
h(τ2) satisfies

E(h(τ2)ϕ(τ2)11τ2<t) = E(ϕ(τ2)11τ2<t11T<τ1)

for any function ϕ. This implies that (assuming that the pair (τ1, τ2) has a density f)
∫ t

0

dvh(v)ϕ(v)
∫ ∞

0

duf(u, v) =
∫ t

0

dvϕ(v)
∫ ∞
T

duf(u, v)

or ∫ t

0

dvh(v)ϕ(v)∂2G(0, v) =
∫ t

0

dvϕ(v)∂2G(T, v)

hence, h(v) = ∂2G(T,v)
∂2G(0,v) .

We can also write

P(T < τ1|τ2 = v) =
P(T < τ1, τ2 ∈ dv)

P(τ2 ∈ dv)
= − 1

P(τ2 ∈ dv)
d

dv
P(τ1 > T, τ2 > v) =

∂2G(T, v)
∂2G(0, v)

hence, on the set τ2 < T ,

P(T < τ1|τ2) = h(τ2) =
∂2G(T, τ2)
∂2G(0, τ2)

• In the same way, for T > t

P(τ1 ≤ T < τ2|H1
t ∨H2

t )11{τ1≤t<τ2} = 11{τ1≤t<τ2}Ψ(τ1)

where Ψ satisfies
E(ϕ(τ1)11τ1≤t<T<τ2) = E(ϕ(τ1)Ψ(τ1)11{τ1≤t<τ2})

for any function ϕ. In other terms
∫ t

0

duϕ(u)
∫ ∞
T

dvf(u, v) =
∫ t

0

duϕ(u)Ψ(u)
∫ ∞
t

dvf(u, v)

or ∫ t

0

duϕ(u)∂1G(u, T ) =
∫ t

0

duϕ(u)Ψ(u)∂1G(u, t) .

This implies that

Ψ(u) =
∂1G(u, T )
∂1G(u, t)

P(τ1 ≤ T < τ2|H1
t ∨H2

t )11{τ1≤t<τ2} = 11{τ1≤t<τ2}
∂1G(τ1, T )
∂1G(τ1, t)

.
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1.1.2 Value of credit derivatives

We introduce different credit derivatives

A defaultable zero-coupon related to the default times Di delivers 1 monetary unit if τi is greater
that T : Di(t, T ) = E(11{T<τi}|H1

t ∨H2
t )

A contract which pays R1 is one default occurs before T and R2 if the two default occur before T :
CDt = E(R111{0<τ(1)≤T} +R211{0<τ(2)≤T}|H1

t ∨H2
t )

We obtain

D1(t, T ) = 11{τ1>t}

(
11{τ2≤t}

∂2G(T, τ2)
∂2G(t, τ2)

+ 11{τ2>t}
G(T, t)
G(t, t)

)
(1.1)

D2(t, T ) = 11{τ2>t}

(
11{τ1≤t}

∂1G(τ1, T )
∂2G(τ1, t)

+ 11{τ1>t}
G(t, T )
G(t, t)

)
(1.2)

CDt = R111{τ(1)>t}

(
G(t, t)−G(T, T )

G(t, t)

)
+R211{τ(2)≤t} +R111{τ(1)≤t} (1.3)

+R211{τ(2)>t}

{
It(0, 1)

(
1− ∂2G(T, τ2)

∂2G(t, τ2)

)
+ It(1, 0)

(
1− ∂1G(τ1, T )

∂1G(τ1, t)

)
(1.4)

+It(0, 0)
(

1− G(t, T ) +G(T, t)−G(T, T )
G(t, t)

)}
(1.5)

where by

It(1, 1) = 11{τ1≤t,τ2≤t} , It(0, 0) = 11{τ1>t,τ2>t}
It(1, 0) = 11{τ1≤t,τ2>t} , It(0, 1) = 11{τ1>t,τ2≤t}

More generally, some easy computation leads to

E(h(τ1, τ2)|Ht) = It(1, 1)h(τ1, τ2) + It(1, 0)Ψ1,0(τ1) + It(0, 1)Ψ0,1(τ2) + It(0, 0)Ψ0,0

where

Ψ1,0(u) = − 1
∂1G(u, t)

∫ ∞
t

h(u, v)∂1G(u, dv)

Ψ0,1(v) = − 1
∂2G(t, v)

∫ ∞
t

h(u, v)∂2G(du, v)

Ψ0,0 =
1

G(t, t)

∫ ∞
t

∫ ∞
t

h(u, v)G(du, dv)

The next result deals with the valuation of a first-to-default claim in a bivariate set-up. Let us
stress that the concept of the (tentative) price will be later supported by strict replication arguments.
In this section, by a pre-default price associated with a G-adapted price process π, we mean here the
function π̃ such that πt11{τ(1)>t} = π̃(t)11{τ(1)>t} for every t ∈ [0, T ]. In other words, the pre-default
price π̃ and the price π coincide prior to the first default only.

Definition 1.1.1 Let Zi be two functions, and X a constant. A FtD claim pays Z1(τ1) at time τ1
if τ1 < T, τ1 < τ2, pays Z2(τ2) at time τ2 if τ2 < T, τ2 < τ1, and X at maturity if τ1 ∧ τ2 > T

Proposition 1.1.1 The pre-default price of a FtD claim (X, 0, Z, τ(1)), where Z = (Z1, Z2) and
X = c(T ), equals

1
G(t, t)

(
−
∫ T

t

Z1(u)G(du, u)−
∫ T

t

Z2(v)G(v, dv) +XG(T, T )

)
.
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Proof: The price can be expressed as

EQ(Z1(τ1)11{τ1≤T,τ2>τ1}|Ht) + EQ(Z2(τ2)11{τ2≤T,τ1>τ2}|Ht) + EQ(c(T )11{τ(1)>T}|Ht).

The pricing formula now follows by evaluating the conditional expectation, using the joint distribu-
tion of default times under the martingale measure Q. �

Comments 1.1.1 Same computations appear in Kurtz and Riboulet [?]

1.1.3 Martingales

We present the computation of the martingales associated to the times τi in different filtrations. In
particular, we shall obtain the computation of the intensities in various filtrations.

We have established that, if F is a given reference filtration and Gt = P(τ > t|Ft) the Azéma
supermartingale admitting a Doob-Meyer decomposition Gt = Zt −

∫ t
0
asds, then the process

Ht −
∫ t∧τ

0

as
Gs−

ds

is a G-martingale, where G = F ∨H and Ht = σ(t ∧ tau).

• Filtration Hi We study the decomposition of the semi-martingales Hi in the filtration Hi. We
set Fi(s) = P(τi ≤ s) =

∫ s
0
fi(u)du. From our general result applied to the case where F is the trivial

filtration, we obtain that for any i = 1, 2, the process

M i
t = Hi

t −
∫ t∧τi

0

fi(s)
1− Fi(s)ds (1.6)

is a Hi-martingale.

• Filtration G We apply the general result to the case F = H2 and H = H1. Let

G
1|2
t = P(τ1 > t|H2

t )

be the Azéma supermartingale of τ1 in the filtration H2. Then, the process

H1
t −

∫ t∧τ1

0

a
(1)
s

G
1|2
s−
ds

is a G-martingale with Doob-Meyer decomposition G
1|2
t = Z

1|2
t − ∫ t

0
a

(1)
s ds where Z1|2 is a H2-

martingale. The process A(1)
t =

∫ t∧τ1
0

a(1)
s

G
1|2
s−
ds is the H2-adapted compensator of H1. The same

methodology can be applied for the compensator of H2. In what follows, we assume that G1|2 is
continuous.
We now compute in an explicit form the compensator of H1 in order to establish the proposition

Proposition 1.1.2 The process

H1
t −

∫ t∧τ1

0

a
(1)
s

G
1|2
s

ds

where a(1)
t = −H2

t ∂1h
(1)(t, τ2)− (1−H2

t )∂1G(t,t)
G(0,t) and

h(1)(t, s) =
∂2G(t, s)
∂2G(0, s)

.



1.1. TWO DEFAULTS, TRIVIAL REFERENCE FILTRATION 5

is a G-martingale.
The process

H2
t −

∫ t∧τ2

0

a
(2)
s

G
2|1
s

ds

where a(2)
t = −H1

t ∂2h
(2)(τ1, t)− (1−H1

t )∂2G(t,t)
G(t,0) and

h(2)(t, s) =
∂1G(t, s)
∂1G(t, 0)

.

is a G-martingale.

Proof: Some easy computation enables us to write

G
1|2
t = H2

t P(τ1 > t|τ2) + (1−H2
t )
P(τ1 > t, τ2 > t)
P(τ2 > t)

= H2
t h

(1)(t, τ2) + (1−H2
t )
G(t, t)
G(0, t)

= H2
t h

(1)(t, τ2) + (1−H2
t )ψ(t) (1.7)

where

h(1)(t, v) =
∂2G(t, v)
∂2G(0, v)

;ψ(t) = G(t, t)/G(0, t).

Function t→ ψ(t) and process t→ h(t, τ2) are continuous and of finite variation, hence integration
by parts rule leads to

dG
1|2
t = h(t, τ2)dH2

t +H2
t ∂1h(t, τ2)dt+ (1−H2

t )ψ′(t)dt− ψ(t)dH2
t

= (h(t, τ2)− ψ(t)) dH2
t +

(
H2
t ∂1h(t, τ2) + (1−H2

t )ψ′(t)
)
dt

=
(
∂2G(t, τ2)
∂2G(0, τ2)

− G(t, t)
G(0, t)

)
dH2

t +
(
H2
t ∂1h(t, τ2) + (1−H2

t )ψ′(t)
)
dt

From the computation of the Stieljes integral, we can rewrite it as
∫ T

0

(
G(t, t)
G(0, t)

− ∂2G(t, τ2)
∂2G(0, τ2)

)
dH2

t =
(
G(τ2, τ2)
G(0, τ2)

− ∂2G(τ2, τ2)
∂2G(0, τ2)

)
1{τ2≤t}

=
∫ T

0

(
G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)
dH2

t

and substitute it in the expression of dG1|2 :

dG
1|2
t =

(
∂2G(t, t)
∂2G(0, t)

− G(t, t)
G(0, t)

)
dH2

t +
(
H2
t ∂1h(t, τ2) + (1−H2

t )ψ′(t)
)
dt

We now use that

dH2
t = dM2

t −
(
1−H2

t

) ∂2G(0, t)
G(0, t)

dt

where M2 is a H2-martingale, and we get the H2− Doob-Meyer decomposition of G1|2 :

dG
1|2
t =

(
∂2G(t, t)
∂2G(0, t)

− G(t, t)
G(0, t)

)
dM2

t −
(
1−H2

t

)(G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)
∂2G(0, t)
G(0, t)

dt

+
(
H2
t ∂1h

(1)(t, τ2) + (1−H2
t )ψ′(t)

)
dt

and from

ψ′(t) =
(
∂2G(t, t)
∂2G(0, t)

− G(t, t)
G(0, t)

)
∂2G(0, t)
G(0, t)

+
∂1G(t, t)
G(0, t)
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we conclude

dG
1|2
t =

(
G(t, t)
G(0, t)

− ∂2G(t, t)
∂2G(0, t)

)
dM2

t +
(
H2
t ∂1h

(1)(t, τ2) + (1−H2
t )
∂1G(t, t)
G(0, t)

)
dt

From (1.7), the process G1|2 has a single jump of size ∂2G(t,t)
∂2G(0,t) − G(t,t)

G(0,t) . From (1.7),

G1|2 =
G(t, t)
G(0, t)

= ψ(t)

on the set τ2 > t, and its bounded variation part is ψ′(t). The hazard process has a non null mar-
tingale part, except if G(t,t)

G(0,t) = ∂2G(t,t)
∂2G(0,t) (this is the case if the default are independent). Hence, (H)

hypothesis is not satisfied in a general setting between Hi and G.

• Filtration H We reproduce now the result of Chou and Meyer [?], in order to obtain the martin-
gales in the filtration H, in case of two default times. Here, we denote by H the filtration generated
by the process Ht = H1

t + H2
t . This filtration is smaller than the filtration G. We denote by

T1 = τ1 ∧ τ2 the infimum of the two default times and by T2 = τ1 ∨ τ2 the supremum. The filtration
H is the filtration generated by σ(T1 ∧ t) ∨ σ − t2 ∧ t), up to completion with negligeable sets.
Let us denote by G1(t) the survival distribution function of T1, i.e., G1(t) = P(τ1 > t, τ2 > t) =
G(t, t) and by G2(t;u) the survival conditional distribution function of T2 with respect to T1, i.e.,
for t > u,

G2(u; t) = P(T2 > t|T1 = u) =
1

g(u)
(∂1G(u, t) + ∂2G(t, u)) ,

where g(t) = d
dtG(t, t) = 1

dtP(T1 ∈ dt). We shall also note

K(u; t) = P(T2 − T1 > t|T1 = u) = G2(u; t+ u)

The process Mt
def
= Ht − Λt is a H-martingale, where

Λt = Λ1(t)11t<T1 + [Λ1(T1) + Λ2(T1, t− T1)] 11T1≤t<T2

with

Λ1(t) = −
∫ t

0

dG1(s)
G1(s)

=
∫ t

0

g(s)
G(s, s)

ds = − ln
G(t, t)
G(0, 0)

= − lnG(t, t)

and

Λ2(s; t) = −
∫ t

0

duK(s;u)
K(s, u)

= − ln
K(s; t)
K(s; 0)

hence

Λ2(T1, t− T1) = − ln
K(T1; t− T1)
K(T1; 0)

= − ln
G2(T1; t)
G2(T1;T1)

= − ln
∂1G(T1, t) + ∂2G(t, T1)

∂1G(T1, T1) + ∂2G(T1, T1)

It is proved in Chou-Meyer [?] that any H-martingale is a stochastic integral with respect to M .
This result admits an immediate extension to the case of n successive defaults.
This representation theorem has an interesting consequence: a single asset is enough to get a com-
plete market. This asset with price M , and final payoff HT − ΛT . It corresponds to a swap with
cumulative premium leg Λt
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Remark 1.1.1 Note that

H1
t −

∫ t∧τ1

0

a
(1)
s

G
1|2
s

ds = H1
t −

∫ t∧τ1

0

H2
s∂1h

(1)(s, τ2)− (1−H2
s )∂1G(s, s)/G(0, s)

H2
sh

(1)(s, τ2) + (1−H2
s )ψ(s)

ds

= H1
t −

∫ t∧τ1

0

H2
s

∂1h
(1)(s, τ2)

h(1)(s, τ2)
− (1−H2

s )
∂1G(s, s)/G(0, s)

ψ(s)
ds

= H1
t −

∫ t∧τ1

t∧τ1∧τ2

∂1h
(1)(s, τ2)

h(1)(s, τ2)
ds−

∫ t∧τ1∧τ2

0

∂1G(s, s)
G(s, s)

ds

= H1
t − ln

h(1)(t ∧ τ1 ∧ τ2, τ2)
h(1)(t ∧ τ1, τ2)

−
∫ t∧τ1∧τ2

0

∂1G(s, s)
G(s, s)

ds

It follows that the intensity of τ1 in the G-filtration is ∂1G(s,s)
G(s,s) on the set {t < τ2∧τ1} and ∂1h

(1)(s,τ2)
h(1)(s,τ2)

on the set {τ2 < t < τ1}. It can be proved that the intensity of τ1 ∧ τ2 is

∂1G(s, s)
G(s, s)

+
∂2G(s, s)
G(s, s)

=
g(t)
G(t, t)

where g(t) = d
dtG(t, t)

1.1.4 Application of Norros lemma for two defaults

Norros’s lemma

Proposition 1.1.3 Let τi, i = 1, · · · , n be n finite-valued random times and Gt = H1
t ∨ · · · ∨ Hnt .

Assume that

P (τi = τj) = 0,∀i 6= j

there exists continuous processes Ai such that M i
t = Hi

t −Ait∧τi are G-martingales

then, the r.v’s Aiτi are independent with exponential law.

Proof. For any µi > −1 the processes Lit = (1 + µi)H
i
te−µiA

i
t , solution of

dLit = Lit−µidM
i
t

are uniformly integrable martingales. Moreover, these martingales have no commun jumps, and are
orthogonal. Hence E(

∏
i(1 + µi)e−µiA

i
∞) = 1, which implies

E(
∏

i

e−µiA
i
∞) =

∏

i

(1 + µi)−1

hence the independence property. �

Application

In case of two defaults, this implies that U1 and U2 are independent, where

Ui =
∫ τi

0

ai(s)
G∗i (s)

ds

and

a1(t) = −(1−H2
t )
∂1G(t, t)
G(0, t)

+H2
t ∂1h

(1)(t, τ2), G∗1(t) = H2
t h

(1)(t, τ2) + (1−H2
t )
G(t, t)
G(0, t)

,
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a2(t) = −(1−H1
t )
∂2G(t, t)
G(t, 0)

+H1
t ∂2h

(2)(τ1, t), G∗2(t) = H1
t h

(2)(τ1, t) + (1−H1
t )
G(t, t)
G(t, 0)

are independent. In a more explicit form,
∫ τ1∧τ2

0

∂1G(s, s)
G(s, s)

ds+ ln
h(1)(τ1, τ2)

h(1)(τ1 ∧ τ2, τ2)
=
∫ τ1∧τ2

0

∂1G(s, s)
G(s, s)

ds+ ln
∂2G(τ1, τ2)

∂2G(τ1 ∧ τ2, τ2)

is independent from
∫ τ1∧τ2

0

∂2G(s, s)
G(s, s)

ds+ ln
h(2)(τ1, τ2)

h(2)(τ1, τ1 ∧ τ2)
=
∫ τ1∧τ2

0

∂2G(s, s)
G(s, s)

ds+ ln
∂1G(τ1, τ2)

∂1G(τ1, τ1 ∧ τ2)

Example of Poisson process

In the case where τ1 and τ2 are the two first jumps of a Poisson process, we have

G(t, s) =
{
e−λt for s < t
e−λs(1 + λ(s− t) for s > t

with partial derivatives

∂1G(t, s) =
{ −λe−λt for t > s
−λe−λs for s > t

, ∂2G(t, s) =
{

0 for t > s
−λ2e−λs(s− t) for s > t

and

h(t, s) =
{

1 for t > s
t
s for s > t

, ∂1h(t, s) =
{

0 for t > s
1
s for s > t

k(t, s) =
{

0 for t > s
1− e−λ(s−t) for s > t

, ∂2k(t, s) =
{

0 for t > s
λe−λ(s−t) for s > t

Then, one obtains U1 = τ1 et U2 = τ2 − τ1

1.2 Cox process modelling

We are now studying a financial market with null interest rate, and we work under the probability
chosen by the market. We now assume that n non negative processes λi, i = 1, . . . , n, F-adapted
are given and we denote Λi,t =

∫ t
0
λi,sds. We assume the existence of n r.v. Ui, i = 1, · · · , n with

uniform law, independent and independent of F∞ and we define

τi = inf{t : Ui ≥ exp(−Λi,t)} .
We introduce the following different filtrations
• Hi generated by Hi,t = 11τi≤t
• the filtration G defined as

Gt = Ft ∨H1,t ∨ · · · ∨ Hi,t ∨ · · ·Hn,t

• the filtration Gi as Gi,t = Ft ∨Hi,t
• H(−i) the filtration

H(−i),t = H1,t ∨ · · · ∨ Hi−1,t ∨Hi+1,t · · ·Hn,t
Note the obvious inclusions

F ⊂ Gi ⊂ G, H(−i) ⊂ G = Gi ∨H(−i)

We note `i(t, T ) the loss process

`i(t, T ) = E(11τi≤T |Gt) = P(τi ≤ T |Gt) = E(Hi,T |Gt)
and D̃i(t, T ) = E(exp(Λi,t − Λi,T )|Ft) the predefault price if a DZC.
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Lemma 1.2.1 The following equalities holds

P(τi ≥ ti, ∀i) = E(exp−
∑

i

Λti,i) (1.8)

P(τi ≥ ti, ∀i|Ft) = exp−
∑

i

Λti,i, ∀ti ≤ t, (1.9)

P(τi ≥ ti, ∀i|Ft) =
∏

i

P(τi ≥ t|Ft), ∀ti ≤ t, ∀i (1.10)

P(τi ≥ ti, ∀i|Ft) = E(exp−
∑

i

Λti,i|Ft), ∀ti, (1.11)

P(τi ≥ ti, ∀i|Gt) =
P(τi ≥ ti, ∀i|Ft)
P(τi ≥ t, ∀i|Ft) on the set τi ≥ ti, ∀i (1.12)

Proof: From the definition

P(τi ≥ ti, ∀i) = P(exp−Λti,i ≥ Ui, ∀i) = E(exp−
∑

i

Λti,i)

where we have used that P(ui ≥ Ui) = ui and E(Ψ(X,Y )) = E(ψ(X)) with ψ(x) = E(Ψ(x, Y )) for
independent r.v. X and Y .

In the same way,

P(τi ≥ ti, ∀i|Ft) = P(exp−Λti,i ≥ Ui,∀i|Ft)
= exp−

∑

i

Λti,i

where we have used that E(Ψ(X,Y )|X)) = ψ(X) with ψ(x) = E(Ψ(x, Y ) for independent r.v’s X
and Y , and that the Λti,i are Ft-measurable for ti ≤ t.

Lemma 1.2.2 (a) Any bounded F-martingale is a G-martingale.
(b) Any bounded Gi-martingale is a G-martingale

Proof: (a) Using the caracterisation of conditional expectation, one has to check that

E(η|Ft) = E(η|F∞)

for any Gt-measurable r.v. It suffices to prove the equality for

η = Fth1(t ∧ τ1) · · ·hn(t ∧ τn)

where Ft ∈ Ft and hi, i = 1, · · · , n are bounded measurable functions. We can reduce attention to
functions of the from hi(s) = 11[0,ai](s). If ai > t, hi(t ∧ τi) = 1, so we can pay attention to the case
where all the ai’s are smaller than t. The equality is now equivalent to

E(τi ≤ ai, ∀i|Ft) = E(τi ≤ ai, ∀i|F∞)

By definition

E(τi ≤ ai, ∀i|Ft) = E(exp−Λi,ai < Ui, ∀i|Ft) = Ψ(Λi,t; i = 1, · · · , n)

with Ψ(ui; i = 1, · · · , n) =
∏

(1− ui). The same computation leads to

E(τi ≤ ai, ∀i|F∞) = Ψ(Λi,ai , i = 1, · · · , n)

(b) Using the same methodology, we are reduced to prove that for any bounded Gt-measurable r.v.
η,

E(η|Gi,t) = E(η|G(i,∞))
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or even only that
E(η1η2|Gi,t) = E(η1η2|G(i,∞))

for η1 ∈ Gi,t and η2 ∈ H(−i),t, that is

E(η2|Gi,t) = E(η2|G(i,∞))

To simplify, we assume that i = 1. Using the same elementary functions h as above, we have to
prove that

E(h2(τ2 ∧ t) · · ·hn(τn ∧ an)|G1,t) = E(h2(τ2 ∧ t) · · ·hn(τn ∧ an)|G(1,∞))

where ai < t, that is

E(11τ2≤a2 · · · 11τn≤an |G1,t) = E(11τ2≤a2 · · · 11τn≤an |G1,∞)

Note that the vector (U2, · · · , Un) is independent from

G1,∞ = F∞ ∨ σ(τ2) ∨ · · ·σ(τn) = F∞ ∨ σ(U2) ∨ · · ·σ(Un)

It follows that

E(11τ2≤a2 · · · 11τn≤an |G1,∞) = E(11exp−Λ2,a2≤U2 · · · 11exp−Λn,an≤Un |G1,∞) =
n∏

i=2

(1− exp(−Λi,ai))

Lemma 1.2.3 The processes Mi,t
def
= Hi,t−

∫ t
0
(1−Hi,s)Λi,sds are Gi-martingales and G-martingales

Proof: We have shown that Mi,t
def
= Hi,t −

∫ t
0
(1−Hi,s)Λi,sds are Gi-martingales. Now, from the

lemma, Gi martingales are G martingales as well.

Lemma 1.2.4 The processes `i(t, T ) are G-martingales and

`i,t = (1−Hi,t)(1− E(exp(Λi,t − Λi,T )|Ft) +Hi,t

From the definition, the processes `i(t, T ) are G-martingales. From Lemma

P(τi ≥ T, |Gt) = 11t<τi
P(τi ≥ T |Ft)
P(τi ≥ t, |Ft) = (1−Hi,t)E(exp−(Λi,t − Λi,T )|Ft)

hence `i(t, T ) = Hi,t + (1−Hi,t)E(1− exp−(Λi,t − Λi,T )|Ft)



Chapter 2

Exercises

2.1 Toy Model

The proofs of the following exercises can be found in Osaka lecture notes.

Exercise 2.1.1 Prove that the payoff 11T<τ can not be hedged with zero-coupon bonds.

Exercise 2.1.2 Prove that H is a submartingale.

Exercise 2.1.3 Assume that Γ is a continuous function. Then for any (bounded) Borel measurable
function h : IR+ → IR, the process

Mh
t = 11{τ≤t}h(τ)−

∫ t∧τ

0

h(u) dΓ(u) (2.1)

is a H-martingale.

Exercise 2.1.4 Let ηt = EP (h(τ)|Ht). Prove that

ηt =
∫ t

0

h(s)dHs + (1−Ht)g(t)

Prove that the martingale η admits a representation in terms of M as

ηt = 1 +
∫ t

0

ηu−(
h(t)
g(t)

− 1)dMu

Exercise 2.1.5 Let h : IR+ → IR be a (bounded) Borel measurable function. Then the process

M̃h
t = exp

(
11{τ≤t}h(τ)

)−
∫ t∧τ

0

(eh(u) − 1) dΓ(u) (2.2)

is a H-martingale.

Exercise 2.1.6 Assume that Γ is a continuous function. Let h : IR+ → IR be a non-negative Borel
measurable function such that the random variable h(τ) is integrable. Then the process

M̂t = (1 + 11τ≤th(τ)) exp
(
−
∫ t∧τ

0

h(u) dΓ(u)
)

(2.3)

is a H-martingale.

11
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Exercise 2.1.7 In this exercise, F is only continuous on right, and F (t−) is the left limit at point
t. Prove that the process (Mt, t ≥ 0) defined as

Mt = Ht −
∫ τ∧t

0

dF (s)
1− F (s−)

= Ht −
∫ t

0

(1−Hs−)
dF (s)

1− F (s−)

is a H-martingale.

Exercise 2.1.8 If Γ is not continuous, prove that

E(h(τ)|Ht) = E(h(τ))−
∫ t∧τ

0

e∆Γ(s)(ĥ(s)− h(s)) dMs .

The next result suggests that this martingale property uniquely characterizes the (continuous) hazard
function of a random time.

Exercise 2.1.9 Suppose that an equivalent probability measure P∗ is given by formula P∗(A) =
EP(11Ah(τ)) for some function h. Let Λ∗ : IR+ → IR+ be an arbitrary continuous increasing function,
with Λ∗(0) = 0. If the process M∗t := Ht − Λ∗(t ∧ τ) follows a H-martingale under P∗, then
Λ∗(t) = − ln (1− F ∗(t))

Exercise 2.1.10 Let M1 and M2 be arbitrary two H-martingales under Q. If for every t ∈ [0, T ]
we have 11{t<τ}M1

t = 11{t<τ}M2
t then M1

t = M2
t for every t ∈ [0, T ].

Exercise 2.1.11 The dynamics of the ex-dividend price St(κ(s)) on [s, T ] are also given as

dSt(κ(s)) = −St−(κ(s)) dMt + (1−Ht)

(∫ T
t
G(u) du
G(t)

dtν(t, s)− ν(t, s) dt

)
. (2.4)

Exercise 2.1.12 Assume that

• the savings account Y 0
t = 1

• a risky asset with risk-neutral dynamics

dYt = YtσdWt

where W is a Brownian motion

• a DZC of maturity T with price D(t, T )

are traded. The reference filtration is that of the BM W . We assume that F is immersed in G.

Give the price of a defaultable call with payoff 11T<τ (YT − K)+ and the associated hedging
strategy

Solution: The price of the call is

Ct = E(11T<τ (YT −K)+|Gt) = 11t<τeΛtE(e−ΛT (YT −K)+|Ft)
= Ltm

Y
t

with mY
t = E(e−ΛT (YT −K)+|Ft). hence

dCt = Ltdm
Y
t −mY

t Lt−dMt

In our model, λ is deterministic, hence

mY
t = e−ΛTE((YT −K)+|Ft) = e−ΛTCYt



2.2. HAZARD PROCESS APPROACH 13

where CY is the price of a call in the Black Scholes model. This quantity is CYt = CY (t, Yt) and
satisfies dCYt = ∆tdYt where ∆tis the Delta-hedge (∆t = ∂yC

Y (t, Yt)).

Ct = 11t<τeΛte−ΛTCY (t, Yt) = Lte
−ΛTCY (t, Yt) = D(t, T )CY (t, Yt)

From
Ct = D(t, T )CY (t, Yt)

we deduce

dCt = e−ΛT (LtdCY + CY dLt) = e−ΛT (Lt∆tdYt − CY LtdMt)
= e−ΛT (Lt∆tdYt − CY LtdMt)

Therefore, using that dD(t, T ) = mtdMt = −e−ΛTLtdMt we get

dCt = e−ΛTLt∆tdYt − CY dD(t, T ) = e−ΛTLt∆tdYt +
Ct

D(t, T )
dD(t, T )

hence, an hedging strategy consists of holding Ct
D(t,T ) DZCs.

2.2 Hazard Process Approach

2.2.1 Application of Key lemma

Exercise 2.2.1 Assume that the process G is decreasing. Let Ṽ and R be F-predictable processes.
The process

Vt = Ṽt11{t<τ} +Rτ11{τ≤t}

is a G-martingale if and only if the process

vt
def
= Ṽte

−Γt +
∫ t

0

Rue
−ΓudΓu

is an F-martingale

Proof: The direct part comes from the fact that

E(Vt − Vs|Gs) = 11τ>teΓtE(vt − vs|Fs) .

�

Exercise 2.2.2 Let Ṽ and R be F-predictable processes. The process

Vt = Ṽt11{t<τ} +Rτ11{τ≤t}

is a G-martingale if and only if the process

vt
def
= Ṽte

−Γt +
∫ t

0

RudFu

is an F-martingale

Proof: The direct part comes from the fact that

E(Vt − Vs|Gs) = 11τ>teΓtE(vt − vs|Fs) .

�
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Exercise 2.2.3 Let P be the price process of a claim which delivers Rτ at default time and pays a
cumulative coupon C till the default time, i.e. the discounted cum-dividend process

B−1
t Pt + 11{τ≤t}B−1

τ Rτ +
∫ t∧τ

0

B−1
u dCu

is a G-martingale. Let P̃t be the predefault price of the process P , i.e., P̃ is F-predictable and
Pt = 11{t<τ}P̃t. Let αt = βte

−Γt . Prove that the process

P ∗t = αtP̃t +
∫ t

0

αsdCs +
∫ t

0

Ruαu dΓu

is an F-martingale, where αt = B−1
t e−Γt .

Conversely, if Ṽ is an F-predictable process such that the process αtṼt+
∫ t

0
αsdCs+

∫ t
0
Ruαu dΓu

is an F-martingale, prove that (the discounted cum-dividend) process

B−1
t Ṽt11{t<τ} + 11{τ≤t}B−1

τ Rτ +
∫ t∧τ

0

B−1
u dCu

is a G-martingale.

Proof: This is an application of the Key Lemma. �

2.2.2 Stopping times

Exercise 2.2.4 Prove that, for any F-stopping time θ, we have:

Q(τ > θ | Fθ) = e−Γθ . (2.5)

This lemma plays an important role while dealing with convertible bonds.

Exercise 2.2.5 Let us be given t ∈ IR+ and θ an F stopping time, valued in (t, T ]. Prove the
following assertions
(i) For any bounded from below, Fθ-measurable random variable χ, we have:

EQ(11{t<τ≤θ}χ | Gt) = 11{τ>t} EQ
(
(1−eΓt−Γθ )χ

∣∣Ft
)
, EQ(11{τ>θ}χ | Gt) = 11{τ>t}eΓt EQ

(
e−Γθχ

∣∣Ft
)
.

(ii) For any bounded from below, F-predictable process Z, we have:

EQ(Zτ11{t<τ≤θ}|Gt) = 11{t<τ}eΓt EQ
(∫ θ

t

Zue
−Γu dΓu

∣∣∣Ft
)
. (2.6)

(iii) For any F-predictable process process A with finite variation over [0, T ], we have:

EQ
(∫ θ∧τ

t∧τ
dAu

∣∣∣Gt
)

= 11{t<τ}eΓt EQ
(∫ θ

t

e−ΓudAu

∣∣∣Ft
)
. (2.7)

Proof:

(ii) If suffices to prove 2.6 for an elementary predictable process of the form Zs = 11]u,v](s)Au where
Au ∈ Fu. For such a process, the result follows easily from part (i).

(iii) We have that
∫ θ∧τ

t∧τ
dQu = 11{t<τ}

∫ θ∧τ

t∧τ
dQu = 11{θ<τ}

∫ θ

t

dQu + 11{t<τ≤θ}

∫ τ

t

dQu
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where Q is F-predictable. Using parts (i) and (ii), we obtain

EQ
(

11{τ<τ}

∫ θ

t

dQu

∣∣∣Gt
)

= 11{t<τ}EQ
(
eΓt−Γθ

∫ θ

t

dQu

∣∣∣Ft
)

and

EQ
(

11{t<τ≤θ}

∫ τ

t

dQu

∣∣∣Gt
)

= 11{t<τ}EQ
(∫ θ

t

(∫ s

t

dQu

)
eΓt−ΓsdΓs

∣∣∣Ft
)
,

where, by Fubini theorem,

∫ θ

t

(∫ s

t

dQu

)
eΓt−Γs dΓs =

∫ θ

t

∫ s

t

dQue
Γt−Γs dΓs =

∫ θ

t

eΓt−Γu dQu − eΓt−Γθ

∫ θ

t

βu dQu.

Hence

EQ
(∫ θ∧τ

t∧τ
dQu

∣∣∣Gt
)

= 11{t<τ}EQ
(∫ θ

t

eΓt−Γu dQu

∣∣∣Ft
)
,

and thus

EQ
(∫ θ∧τ

t∧τ
dQu

∣∣∣Gt
)

= 11{t<τ}eΓtEQ
(∫ θ

t

e−Γu dQu

∣∣∣Ft
)
, (2.8)

as expected.

2.2.3 Multiplicative decomposition

Exercise 2.2.6 Prove that the supermartingale G = Z −A admits a multiplicative decomposition
Gt = CtNt where N is a martingale and C a decreasing process.

Proof: The supermartingale G = Z −A admits a multiplicative decomposition Gt = CtNt where N
is a martingale and C a decreasing process satisfying

dNt = − 1
Ct
dZt, dCt = −Ct 1

Gt
dAt .

Hence

Ct = exp−
∫ t

0

1
Gs

dAs = exp−Λt

and

eΓtE(e−ΓTX|Ft) = Ê(X
CT
Ct
|Ft) = Ê(X exp(−

∫ T

t

λsds)|Ft)

where
dQ̂ = LtdP, dLt = − exp(Λt)Lt dZt .

Exercise 2.2.7 Assume that Gt = Nte
−Λt where N is a continuous martingale. Prove that Ht −

Λt∧τ is a G-martingale.

Proof: The additive decomposition of G is

dGt = e−ΛtdNt −Nte−ΛtdΛt

and the result follows
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2.2.4 Immersion

Exercise 2.2.8 Let τ1 < τ2. Prove that F is immersed in G if and only if F is immersed in F ∨H1

and F ∨H1 immersed in G.‘

Solution: The only fact to check is that if F is immersed in G, then F∨H1 is immersed in G, or that

P(τ2 > t|Ft ∨H1
t ) = P(τ2 > t|F∞ ∨H1

∞)

This is equivalent to, for any h, and any A∞ ∈ F∞
E(A∞h(τ1)11τ2>t) = E(A∞h(τ1)P(τ2 > t|Ft ∨H1

t ))

We spilt this equality in two parts. The first equality

E(A∞h(τ1)11τ1>t11τ2>t) = E(A∞h(τ1)11τ1>tP(τ2 > t|Ft ∨H1
t ))

is obvious since 11τ1>t11τ2>t = 11τ1>t and 11τ1>tP(τ2 > t|Ft ∨H1
t ) = 11τ1>t. Now

E(A∞h(τ1)11t≥τ111τ2>t) = E(E(A∞|Gt)h(τ1)11τ1>tP(τ2 > t|Ft ∨H1
t ))

Since F is immersed in G, one has E(A∞|Gt) = E(A∞|Ft) and it follows that E(A∞|Gt) = E(A∞|Ft∨
H1
t ), therefore

E(A∞h(τ1)11t≥τ111τ2>t) = E(E(A∞|Ft ∨H1
t )P(h(τ1)11τ1>t11τ2>t|Ft ∨H1

t ))
= E(A∞P(h(τ1)11τ1>t11τ2>t|Ft ∨H1

t ))

Exercise 2.2.9 Prove that if λ is deterministic and Ht −
∫ t

0
λu(1 − Hu) is a G martingale, then

P(τ > t) = e−Λt

Hint: E(Ht) =
∫ t

0
λ(u)(1− E(Hu)) leads to an ODE

Exercise 2.2.10 Prove that if F is immersed in G and Ht −
∫ t

0
λu(1−Hu) is a G martingale, then

P(τ > t|Ft) = e−Λt

Hint: use the multiplicative decomposition of the supermartingale

2.2.5 Pricing

We work in a hazard process model with reference filtration F. The pricing probability is denoted
P. The filtered probability space is (Ω,F,P), τ is a strictly positive r.v., Ht = 11τ≤t, H = (Ht, t ≥ 0)
is the natural filtration of H, (taken càd and complete), G = F ∨ H, and Gt = P(τ > t|Ft). There
exists λ such that Mt := Ht −

∫ t
0
(1 −Hs)λsds is a G-martingale. The Doob-Meyer decomposition

of G is denoted Gt = Zt − At where Z is an F-martingale and A an F-predictable non-decreasing
process.

Exercise 2.2.11 Assume that λ be deterministic and that immersion property holds.

1. Prove that τ is independent of F.

2. Let S an F-adapted process which represents the price of some asset and assume that the
interest rate (r(s), s ≥ 0) is deterministic. We note βt = exp− ∫ t

0
r(s)ds.

(a) Compute the value Vt of an asset with payoff Φ = ϕ(ST )11T<τ .

(b) Show that there is a relation between Vt and Φt, the price of an asset with payoff ϕ(ST ).
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(c) Compute the value D(t, T ) of the price of a defaultable zero-coupon (with null recovery).
Determine the dynamics of D(t, T )?

(d) We recall that a self-financing portfolio with payoff ξ is a triple of G-adapted processes,
π1, π2, π3 such that, if Vt = π1

tD(t, T ) + π2
tSt + π3

tS
0
t , then

dVt = π1
t dD(t, T ) + π2

t dSt + π3
tS

0
t r(t)dt

ξ = π1
TD(T, T ) + π2

TST + π3
TS

0
T

Prove that there exists a self-financing portfolio with payoff ϕ(ST )11T<τ . Compute π1.

Exercise 2.2.12 Let Θ be a non-negative r.v. with cumulative distribution function F , independant
of F∞. Let (λt, t ≥ 0) be an F-adapted process, taking non-negative values and Λt =

∫ t
0
λsds. We

define
τ = inf{t : Λt ≥ Θ} .

We assume that the interest rate is null.

1. Check that τ is a G-stopping time.

2. Compute Gt in terms of Λ and F . Give the Doob-Meyer decomposition of G..

3. Let X be an FT -measurable, integrable r.v.. Compute E(X11T<τ |Gt) for t < T .

4. Prove that the process L defined as Lt = (1−Ht)(1− F (Λt))−1 is a G-martingale.

5. Find the process γ such that the process Mt = Ht −
∫ t∧τ

0
γsds is a G-martingale.

6. Let Z be an F-adapted process. A contingent claim pays Zτ at time T , in the case τ ≤ T (no
payment if τ > T . Compute the price at time t of this contingent claim and give the dynamics
of this price

7. let D(t, T ) = E(11T<τ |Gt) be the price at time t of a defaultable zero-coupon with maturity T .
We assume that the folowwing assets are traded

• an asset with price Y 0
t = 1 (i.e., the savings account, with null interest rate),

• an asset with price following the Black-Scholes dynamics

dYt = YtσdWt

where W is a Brownoian motion

• A DZC with price D(t, T )

(a) Show that
dD(t, T ) = µtdmt + ϕtdMt

where m is a martingale that can be written as a conditional expectation and where µ
and ϕ are given in a closed form. We shall assume that dmt = mtνtdWt.

(b) Write the EDP evaluation formula for the price of an asset paying Φ(YT ,HT ). What is
the hedging portfolio?

Exercise 2.2.13 We assume that the interest rate is constant.

We assume that G is continuous and valued in ]0, 1[ and we define Γt := − lnGt. We assume
that the process A in the Doob-Meyer decomposition of G is on the form At =

∫ t
0
asds. We recall

that

Mt := Ht −
∫ t∧τ

0

as
Gs

ds = Ht −
∫ t∧τ

0

λsds = Ht − Λt∧τ



18 CHAPTER 2. EXERCISES

(where λs = as
Gs
, Λt =

∫ t
0
λsds) is a G-martingale. We recall that for any F-predictable process h

E(hτ11τ<T |Gt) = hτ11{τ<t} + 11{τ>t}eΓtE

(∫ T

t

hudFu|Ft
)
.

1. We assume that G is non-increasing.

(a) Prove that Lt := (1−Ht)(Gt)−1 is a martingale and that, for any a > 0, the process

(1 + a)Ht exp
(
−a
∫ t

0

(1−Hs)λsds
)

is a martingale. Prove that E
[
(1 + a) e−aΛτ

]
= 1. Compute the law of Λτ .

(b) Let Ṽ and Z be F-predictable processes. Prove that

Vt := Ṽt11{t<τ} + Zτ11{τ≤t}

is a G-martingale if and only if

Ṽte
−Γt +

∫ t

0

Zue
−ΓudΓu

is an F-martingale

2. Assume that τ := inf{t : Ct < U} where U is a r.v. with uniform law on [0, 1], independent of
F∞ and C an F-adapted process, non-increasing of the form Ct = exp

(
− ∫ t

0
csds

)
such that

C0 = 1 and C∞ = 0.

(a) Compute Gt in terms of C.

(b) Compute the intensity of τ .

(c) Let Z be an F-predictable process and X an FT -mesurable i ntegrable r.v.. Compute the
price at time t of an asset which delivers Zτ at time τ ifτ ≤ T , and X at time T if T < τ .
Give the dynamics of this price.

(d) On note D(t, T ) = E(11T<τ |Gt) le prix à la date t d’un zéro coupon soumis au risque de
défaut (DZC) de maturité T . On suppose que le marché comporte

• un actif de prix Y 0
t = 1 (le savings account, de taux r nul),

• un actif de dynamique Black Scholes dont le prix suit, sous la probabilité risque
neutre, la dynamique

dYt = YtσdWt

où W est un mouvement Brownien; la filtration F est la filtration naturelle du mou-
vement Brownien W .

• le DZC de prix D(t, T )

i. Montrer que
dD(t, T ) = µtdmt + ϕtdMt

où m est une martingale que l’on caractérisera sous forme d’une espérance condi-
tionnelle -sans expliciter le dmt- et où µ et ϕ seront explicités. On supposera que
dmt = mtνtdWt.

ii. Ecrire l’EDP d’évaluation d’un produit de payoff Φ(YT ,HT ). Quel est le portefeuille
de couverture associé?

Exercise 2.2.14 Assume that (H) hypothesis holds and that the F martingales are continuous. Let
M be a F martingale Lat a and b be G adapted processes such that

∫ t
0
asdMs and

∫ t
0
bsdM

d
s are

martingales Let Zt =
∫ t

0
asdMs +

∫ t
0
bsdM

d
s . Then E(Zt|Ft) =

∫ t
0
E(as|Fs)dMs
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Exercise 2.2.15 Assume that H hypothesis holds and that F is continuous (or at least that F does
not jump at time τ)

The process Mt = Ht − Γt∧τ is a martingale For any α ∈ IR, the process Zt = exp(αHt − (eα −
1)Γt∧τ ) is a martingale Indeed

dZt = e−(eα−1)Γt∧τ d(eαHt − (eα − 1)Zt−(1−Ht−)dΓt
= Zt−(eα(Ht−Ht−)dHt − (eα − 1)Zt−(1−Ht−)dΓt
= Zt−(eα − 1)dHt − (eα − 1)Zt−(1−Ht−)dΓt

2.3 Multidefaults

2.3.1 Jarrow and Yu model

Let λ, α, β be given non negative numbers. Construct τi, i = 1, 2 such that

M1
t := H1

t −
∫ t∧τ1

0

λds

is an H1 martingale and

M2
t := H2

t −
∫ t∧τ2

0

(α+ βH1
s )ds

is an H = H1 ∨H2 martingale. Prove that M1 is an H martingale. Let L be the martingale

dL = Lt−γH2
t−dM

1
t

and set
dQ|Ht = LtdP|Ht

Find the intensity of τ1 under Q. Compute the joint law of τ1, τ2 under Q. Are various immersion
properties satisfied?

2.3.2 Norros Lemma

Let τi be two default times, F a reference filtration. We introduce (Git)t≥0 by Git = Ft ∨ Hit, and
(Gt)t≥0 by Gt = Ft ∨H1

t ∨H2
t , for t ≥ 0. It is further assumed that all the considered filtrations are

right-continuous and completed by all the sets of P -measure zero. For any i = 1, 2, let Gi = (Git)t≥0

be the conditional survival probability process of the default time τi, defined by Git = P [τi > t | Ft],
for all t ≥ 0. There exists increasing predictable processes Ai such that Gi + Ai are F-martingales.
Let us define the process M i = (M i

t )t≥0 by:

M i
t = Hi

t − Λiτi∧t (2.9)

where the process Λi = (Λit)t≥0 is given by:

Λit =
∫ t

0

dAis
Gis

(2.10)

for all t ≥ 0. The process M i is a (Git)t≥0-martingale and Λi is continuous.

Let the processes Gi = (Git)t≥0, i = 1, 2, be continuous and such that Gi0 = 1, and assume that
P [τ1 = τ2] = 0 is satisfied. Prove that

(i) the variable Λiτi , defined in (2.10), has standard exponential law (with parameter 1);
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(ii) if (Ft)t≥0 is immersed in (Git)t≥0, then the variable Λiτi is independent of F∞;

(iii) if (Git)t≥0, i = 1, 2 are immersed in (Gt)t≥0, then the variables Λiτi , i = 1, 2, are independent;

(iv) if (Ft)t≥0 is immersed in (Git)t≥0 and

P [τi > t | Ft] = P [τi > t | G3−i
t ] (2.11)

hold for all t ≥ 0, then the variables Λiτi , i = 1, 2, are conditionally independent with respect to F∞.

2.3.3 Examples

Exercise 2.3.1 Let τ1 < τ2 be two random times and F a reference filtration. Prove that F is
immersed in F∨H1∨H2 if and only if F is immersed in F∨H1 and F∨H1 is immersed in F∨H1∨H2.

Exercise 2.3.2 Let τ̂i be independent random times such that P(τ̂i ≥ t) = e−q̂it and set τi =
τ̂i ∧ τ̂3 for i = 1, 2 . Show that H1

t = 11τ1≤t is a Markov process in its natural filtration and in
H = Ĥ1 ∨ Ĥ2 ∨ Ĥ3

Setting q1 = q̂1 + q̂3, prove that H1
t −

∫ t
0
(1−H1

s )q1ds is a martingale in H1 and in H.
Prove that (H1,H2) is a H-Markov process

Exercise 2.3.3 Let T1, T2 the first and the second jump of a standard Poisson process, with intensity
equal to 1, and FN the natural filtration of the Poisson process.

1. Prove that one can write

T1 = inf{t : t ≥ Θ1}
T2 = inf{t : t ≥ Θ1 + Θ2}

where Θi are independents r.v. with exponential law.

2. Prove that H1
t −

∫ t
0
(1−H1

s )ds is a H1 martingale and a FN martingale.

3. Prove that the cumulative function of Θ1 + Θ2 is 1− e−x(1 + x).

4. Prove that the intensity λ2 of T2 in the filtration H2 (i.e. the process λ2 such that H2
t −
∫ t

0
(1−

H2
s )λ2

sds is a H2 martingale ) is λ2
s = s

1+s .

5. Prove that

T2 = inf{t :
∫ t

0

γsds ≥ Θ}

where γs = 11s>T1 and Θ is an exponential law. Prove that H2
t −

∫ t
0
(1 − H2

s )γsds is a FN
martingale.

Exercise 2.3.4

We assume that
τi = inf{t : Λ(i)

t ≥ Θi}
where Θi are unit exponential r.vs, independent of F∞, and Λ(i)

t =
∫ t

0
λ

(i)
s ds where the processes

(λ(i)
t , t ≥ 0) are non-negative and F-adapted. A first to default claim pays some amount at time

τ = τ1 ∧ τ2.

1. We assume that Θi are independent. Let Gt = Ft ∨H1
t ∨H2

t where Hi is the natural filtration
of Hi

t = 11τi≤t. Let Z be an F-adaped process. Compute E(Zτ11{τ<T}|Gt).
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2. Assumpe that the joint law of Θi is known. Compute E(Zτ11{τ<T}) in the case where λ(i) are
deterministic and in the general case where λ(i) are processes.

3. let Di(t, T ) = E(11T<τi |Gt) be the price at time t of a defaultable zero-coupon bond with
maturity T , on the default time i. Assuming that the r.vs Θi are independant, compute
Di(t, T ).

2.4 Density process

The random time τ admits a density process if there exists a family of non-negative processes αt(u)
such that

P(τ > u|Ft) =
∫ ∞
u

αt(v)η(dv)

where η is the law of τ

Exercise 2.4.1 Compute the Doob-Meyer decomposition i=of the associated Azéma supermartin-
gale. intensity of τ

Exercise 2.4.2 It is known that if X is an F-martingale, then

Xt = µ̂t −
∫ t

0

d
〈
X,αθ

〉
u

αθu−

∣∣∣∣∣
θ=τ

where µ̂ is an F ∨ σ(τ)-martingale. Prove that

Xt = µt +
∫ t∧τ

0

d 〈X,G〉u
Gu

−
∫ t

t∧τ

d
〈
X,αθ

〉
u

αθu−

∣∣∣∣∣
θ=τ

(∗∗)

where µ is an G-martingale

Exercise 2.4.3 We assume that α∞ exists. Let Q defined as

dQ = EP(1/ατ∞|Gt)/EP(1/ατ∞)dP

Prove that, under Q, τ is independent of F∞


